Package evaluation to test BifurcationKit on Julia 1.14.0-DEV.1475 (42ad41c179*) started at 2026-01-04T19:15:28.804 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.73s ################################################################################ # Installation # Installing BifurcationKit... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [0f109fa4] + BifurcationKit v0.5.5 Updating `~/.julia/environments/v1.14/Manifest.toml` [47edcb42] + ADTypes v1.21.0 [7d9f7c33] + Accessors v0.1.43 [79e6a3ab] + Adapt v4.4.0 [ec485272] + ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] + Arpack v0.5.3 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.2 [0f109fa4] + BifurcationKit v0.5.5 [8e7c35d0] + BlockArrays v1.9.3 [38540f10] + CommonSolve v0.2.6 [bbf7d656] + CommonSubexpressions v0.3.1 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [e2d170a0] + DataValueInterfaces v1.0.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [442a2c76] + FastGaussQuadrature v1.1.0 [1a297f60] + FillArrays v1.15.0 [f6369f11] + ForwardDiff v1.3.1 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [42fd0dbc] + IterativeSolvers v0.9.4 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [ae98c720] + Jieko v0.2.1 [ba0b0d4f] + Krylov v0.10.3 [0b1a1467] + KrylovKit v0.10.2 [7a12625a] + LinearMaps v3.11.4 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.2.0 [1914dd2f] + MacroTools v0.5.16 [2e0e35c7] + Moshi v0.3.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [65ce6f38] + PackageExtensionCompat v1.0.2 [d96e819e] + Parameters v0.12.3 ⌅ [d236fae5] + PreallocationTools v0.4.34 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.42.1 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [0bca4576] + SciMLBase v2.131.0 [a6db7da4] + SciMLLogging v1.8.0 [c0aeaf25] + SciMLOperators v1.14.1 [431bcebd] + SciMLPublic v1.0.1 [53ae85a6] + SciMLStructures v1.9.0 [276daf66] + SpecialFunctions v2.6.1 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [09ab397b] + StructArrays v0.7.2 [2efcf032] + SymbolicIndexingInterface v0.3.46 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [3a884ed6] + UnPack v1.0.2 [409d34a3] + VectorInterface v0.5.0 ⌅ [68821587] + Arpack_jll v3.5.2+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.02s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 13.3s ################################################################################ # Testing # Testing BifurcationKit Status `/tmp/jl_tLwlxg/Project.toml` ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [7d9f7c33] Accessors v0.1.43 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [0f109fa4] BifurcationKit v0.5.5 [8e7c35d0] BlockArrays v1.9.3 [13f3f980] CairoMakie v0.15.8 [b0b7db55] ComponentArrays v0.15.30 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [442a2c76] FastGaussQuadrature v1.1.0 [f6369f11] ForwardDiff v1.3.1 [42fd0dbc] IterativeSolvers v0.9.4 [ba0b0d4f] Krylov v0.10.3 [0b1a1467] KrylovKit v0.10.2 [7a12625a] LinearMaps v3.11.4 [1dea7af3] OrdinaryDiffEq v6.105.0 [d96e819e] Parameters v0.12.3 [91a5bcdd] Plots v1.41.3 ⌅ [d236fae5] PreallocationTools v0.4.34 [731186ca] RecursiveArrayTools v3.42.1 [189a3867] Reexport v1.2.2 [0bca4576] SciMLBase v2.131.0 [1ed8b502] SciMLSensitivity v7.91.0 [09ab397b] StructArrays v0.7.2 [e88e6eb3] Zygote v0.7.10 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_tLwlxg/Manifest.toml` [47edcb42] ADTypes v1.21.0 ⌃ [c29ec348] AbstractDifferentiation v0.4.4 [621f4979] AbstractFFTs v1.5.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 [79e6a3ab] Adapt v4.4.0 [35492f91] AdaptivePredicates v1.2.0 [66dad0bd] AliasTables v1.1.3 [27a7e980] Animations v0.4.2 [ec485272] ArnoldiMethod v0.4.0 ⌅ [7d9fca2a] Arpack v0.5.3 [4fba245c] ArrayInterface v7.22.0 [4c555306] ArrayLayouts v1.12.2 [a9b6321e] Atomix v1.1.2 [67c07d97] Automa v1.1.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 [18cc8868] BaseDirs v1.3.2 [0f109fa4] BifurcationKit v0.5.5 [d1d4a3ce] BitFlags v0.1.9 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] BlockArrays v1.9.3 [70df07ce] BracketingNonlinearSolve v1.6.2 [fa961155] CEnum v0.5.0 [2a0fbf3d] CPUSummary v0.2.7 [96374032] CRlibm v1.0.2 [159f3aea] Cairo v1.1.1 [13f3f980] CairoMakie v0.15.8 [7057c7e9] Cassette v0.3.14 [082447d4] ChainRules v1.72.6 [d360d2e6] ChainRulesCore v1.26.0 [fb6a15b2] CloseOpenIntervals v0.1.13 [944b1d66] CodecZlib v0.7.8 [a2cac450] ColorBrewer v0.4.2 [35d6a980] ColorSchemes v3.31.0 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [38540f10] CommonSolve v0.2.6 [bbf7d656] CommonSubexpressions v0.3.1 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [b0b7db55] ComponentArrays v0.15.30 [a33af91c] CompositionsBase v0.1.2 [95dc2771] ComputePipeline v0.1.6 [2569d6c7] ConcreteStructs v0.2.3 [f0e56b4a] ConcurrentUtilities v2.5.0 [187b0558] ConstructionBase v1.6.0 [d38c429a] Contour v0.6.3 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [927a84f5] DelaunayTriangulation v1.6.6 [8bb1440f] DelimitedFiles v1.9.1 [2b5f629d] DiffEqBase v6.194.0 [459566f4] DiffEqCallbacks v4.11.0 [77a26b50] DiffEqNoiseProcess v5.24.1 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.13 [31c24e10] Distributions v0.25.122 [ffbed154] DocStringExtensions v0.9.5 [4e289a0a] EnumX v1.0.5 [7da242da] Enzyme v0.13.111 [f151be2c] EnzymeCore v0.8.17 [429591f6] ExactPredicates v2.2.9 [460bff9d] ExceptionUnwrapping v0.1.11 [d4d017d3] ExponentialUtilities v1.29.0 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [411431e0] Extents v0.1.6 [c87230d0] FFMPEG v0.4.5 [7a1cc6ca] FFTW v1.10.0 [7034ab61] FastBroadcast v0.3.5 [9aa1b823] FastClosures v0.3.2 [442a2c76] FastGaussQuadrature v1.1.0 [a4df4552] FastPower v1.3.0 [5789e2e9] FileIO v1.17.1 [8fc22ac5] FilePaths v0.9.0 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.15.0 [6a86dc24] FiniteDiff v2.29.0 [53c48c17] FixedPointNumbers v0.8.5 [1fa38f19] Format v1.3.7 [f6369f11] ForwardDiff v1.3.1 [b38be410] FreeType v4.1.1 [663a7486] FreeTypeAbstraction v0.10.8 [f62d2435] FunctionProperties v0.1.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [61eb1bfa] GPUCompiler v1.7.5 [28b8d3ca] GR v0.73.19 [c145ed77] GenericSchur v0.5.6 [5c1252a2] GeometryBasics v0.5.10 [a2bd30eb] Graphics v1.1.3 [3955a311] GridLayoutBase v0.11.2 [42e2da0e] Grisu v1.0.2 [cd3eb016] HTTP v1.10.19 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [7869d1d1] IRTools v0.4.15 [615f187c] IfElse v0.1.1 [2803e5a7] ImageAxes v0.6.12 [c817782e] ImageBase v0.1.7 [a09fc81d] ImageCore v0.10.5 [82e4d734] ImageIO v0.6.9 [bc367c6b] ImageMetadata v0.9.10 [9b13fd28] IndirectArrays v1.0.0 [d25df0c9] Inflate v0.1.5 [a98d9a8b] Interpolations v0.16.2 [d1acc4aa] IntervalArithmetic v1.0.2 [8197267c] IntervalSets v0.7.13 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [f1662d9f] Isoband v0.1.1 [c8e1da08] IterTools v1.10.0 [42fd0dbc] IterativeSolvers v0.9.4 [82899510] IteratorInterfaceExtensions v1.0.0 [1019f520] JLFzf v0.1.11 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.3.0 [ae98c720] Jieko v0.2.1 [b835a17e] JpegTurbo v0.1.6 [63c18a36] KernelAbstractions v0.9.39 [5ab0869b] KernelDensity v0.6.10 [ba0b0d4f] Krylov v0.10.3 [0b1a1467] KrylovKit v0.10.2 [929cbde3] LLVM v9.4.4 [b964fa9f] LaTeXStrings v1.4.0 [23fbe1c1] Latexify v0.16.10 [10f19ff3] LayoutPointers v0.1.17 [5078a376] LazyArrays v2.9.4 [8cdb02fc] LazyModules v0.3.1 [87fe0de2] LineSearch v0.1.5 [d3d80556] LineSearches v7.5.1 [7a12625a] LinearMaps v3.11.4 [7ed4a6bd] LinearSolve v3.55.0 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [1914dd2f] MacroTools v0.5.16 [ee78f7c6] Makie v0.24.8 [d125e4d3] ManualMemory v0.1.8 [dbb5928d] MappedArrays v0.4.3 [0a4f8689] MathTeXEngine v0.6.7 [bb5d69b7] MaybeInplace v0.1.4 [739be429] MbedTLS v1.1.9 [442fdcdd] Measures v0.3.3 [e1d29d7a] Missings v1.2.0 [e94cdb99] MosaicViews v0.3.4 [2e0e35c7] Moshi v0.3.7 [46d2c3a1] MuladdMacro v0.2.4 [d41bc354] NLSolversBase v7.10.0 [872c559c] NNlib v0.9.32 [77ba4419] NaNMath v1.1.3 [f09324ee] Netpbm v1.1.1 [8913a72c] NonlinearSolve v4.13.0 [be0214bd] NonlinearSolveBase v2.9.0 [5959db7a] NonlinearSolveFirstOrder v1.11.0 [9a2c21bd] NonlinearSolveQuasiNewton v1.12.0 [26075421] NonlinearSolveSpectralMethods v1.6.0 [d8793406] ObjectFile v0.5.0 [510215fc] Observables v0.5.5 [6fe1bfb0] OffsetArrays v1.17.0 [52e1d378] OpenEXR v0.3.3 [4d8831e6] OpenSSL v1.6.1 [429524aa] Optim v1.13.3 [3bd65402] Optimisers v0.4.7 [bac558e1] OrderedCollections v1.8.1 [1dea7af3] OrdinaryDiffEq v6.105.0 [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.8.0 [6ad6398a] OrdinaryDiffEqBDF v1.13.0 [bbf590c4] OrdinaryDiffEqCore v2.3.0 [50262376] OrdinaryDiffEqDefault v1.11.0 [4302a76b] OrdinaryDiffEqDifferentiation v1.21.0 [9286f039] OrdinaryDiffEqExplicitRK v1.7.0 [e0540318] OrdinaryDiffEqExponentialRK v1.11.0 [becaefa8] OrdinaryDiffEqExtrapolation v1.12.0 [5960d6e9] OrdinaryDiffEqFIRK v1.19.0 [101fe9f7] OrdinaryDiffEqFeagin v1.7.0 [d3585ca7] OrdinaryDiffEqFunctionMap v1.8.0 [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.8.0 [9f002381] OrdinaryDiffEqIMEXMultistep v1.10.0 [521117fe] OrdinaryDiffEqLinear v1.9.0 [1344f307] OrdinaryDiffEqLowOrderRK v1.9.0 [b0944070] OrdinaryDiffEqLowStorageRK v1.10.0 [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.18.0 [c9986a66] OrdinaryDiffEqNordsieck v1.7.0 [5dd0a6cf] OrdinaryDiffEqPDIRK v1.9.0 [5b33eab2] OrdinaryDiffEqPRK v1.7.0 [04162be5] OrdinaryDiffEqQPRK v1.7.0 [af6ede74] OrdinaryDiffEqRKN v1.8.0 [43230ef6] OrdinaryDiffEqRosenbrock v1.21.0 [2d112036] OrdinaryDiffEqSDIRK v1.10.0 [669c94d9] OrdinaryDiffEqSSPRK v1.10.0 [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.9.0 [358294b1] OrdinaryDiffEqStabilizedRK v1.7.0 [fa646aed] OrdinaryDiffEqSymplecticRK v1.10.0 [b1df2697] OrdinaryDiffEqTsit5 v1.8.0 [79d7bb75] OrdinaryDiffEqVerner v1.9.0 [90014a1f] PDMats v0.11.37 [f57f5aa1] PNGFiles v0.4.4 [65ce6f38] PackageExtensionCompat v1.0.2 [19eb6ba3] Packing v0.5.1 [5432bcbf] PaddedViews v0.5.12 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [eebad327] PkgVersion v0.3.3 [ccf2f8ad] PlotThemes v3.3.0 [995b91a9] PlotUtils v1.4.4 [91a5bcdd] Plots v1.41.3 [e409e4f3] PoissonRandom v0.4.7 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [647866c9] PolygonOps v0.1.2 [85a6dd25] PositiveFactorizations v0.2.4 ⌅ [d236fae5] PreallocationTools v0.4.34 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [4b34888f] QOI v1.0.2 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [817f1d60] ReTestItems v1.35.0 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [01d81517] RecipesPipeline v0.6.12 [731186ca] RecursiveArrayTools v3.42.1 [189a3867] Reexport v1.2.2 [05181044] RelocatableFolders v1.0.1 [ae029012] Requires v1.3.1 [ae5879a3] ResettableStacks v1.2.0 [37e2e3b7] ReverseDiff v1.16.1 [79098fc4] Rmath v0.9.0 [5eaf0fd0] RoundingEmulator v0.2.1 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 [fdea26ae] SIMD v3.7.2 [94e857df] SIMDTypes v0.1.0 [0bca4576] SciMLBase v2.131.0 [19f34311] SciMLJacobianOperators v0.1.12 [a6db7da4] SciMLLogging v1.8.0 [c0aeaf25] SciMLOperators v1.14.1 [431bcebd] SciMLPublic v1.0.1 [1ed8b502] SciMLSensitivity v7.91.0 [53ae85a6] SciMLStructures v1.9.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [efcf1570] Setfield v1.1.2 [65257c39] ShaderAbstractions v0.5.0 [992d4aef] Showoff v1.0.3 [73760f76] SignedDistanceFields v0.4.1 [777ac1f9] SimpleBufferStream v1.2.0 [727e6d20] SimpleNonlinearSolve v2.10.0 [699a6c99] SimpleTraits v0.9.5 [45858cf5] Sixel v0.1.5 [a2af1166] SortingAlgorithms v1.2.2 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.23 [276daf66] SpecialFunctions v2.6.1 [860ef19b] StableRNGs v1.0.4 [cae243ae] StackViews v0.1.2 [aedffcd0] Static v1.3.1 [0d7ed370] StaticArrayInterface v1.8.0 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.9 [4c63d2b9] StatsFuns v1.5.2 [7792a7ef] StrideArraysCore v0.5.8 [09ab397b] StructArrays v0.7.2 [53d494c1] StructIO v0.3.1 [ec057cc2] StructUtils v2.6.0 [2efcf032] SymbolicIndexingInterface v0.3.46 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [62fd8b95] TensorCore v0.1.1 [1e6cf692] TestEnv v1.103.0 [8290d209] ThreadingUtilities v0.5.5 [731e570b] TiffImages v0.11.6 [a759f4b9] TimerOutputs v0.5.29 [9f7883ad] Tracker v0.2.38 [e689c965] Tracy v0.1.6 [3bb67fe8] TranscodingStreams v0.11.3 [981d1d27] TriplotBase v0.1.0 [781d530d] TruncatedStacktraces v1.4.0 [5c2747f8] URIs v1.6.1 [3a884ed6] UnPack v1.0.2 [1cfade01] UnicodeFun v0.4.1 [1986cc42] Unitful v1.27.0 [013be700] UnsafeAtomics v0.3.0 [41fe7b60] Unzip v0.2.0 [409d34a3] VectorInterface v0.5.0 [e3aaa7dc] WebP v0.1.3 [efce3f68] WoodburyMatrices v1.0.0 [e88e6eb3] Zygote v0.7.10 [700de1a5] ZygoteRules v0.2.7 ⌅ [68821587] Arpack_jll v3.5.2+0 [6e34b625] Bzip2_jll v1.0.9+0 [4e9b3aee] CRlibm_jll v1.0.1+0 [83423d85] Cairo_jll v1.18.5+0 [ee1fde0b] Dbus_jll v1.16.2+0 [5ae413db] EarCut_jll v2.2.4+0 ⌅ [7cc45869] Enzyme_jll v0.0.231+0 [2702e6a9] EpollShim_jll v0.0.20230411+1 [2e619515] Expat_jll v2.7.3+0 [b22a6f82] FFMPEG_jll v8.0.1+0 [f5851436] FFTW_jll v3.3.11+0 [a3f928ae] Fontconfig_jll v2.17.1+0 [d7e528f0] FreeType2_jll v2.13.4+0 [559328eb] FriBidi_jll v1.0.17+0 [0656b61e] GLFW_jll v3.4.1+0 [d2c73de3] GR_jll v0.73.19+1 [b0724c58] GettextRuntime_jll v0.22.4+0 [61579ee1] Ghostscript_jll v9.55.1+0 [59f7168a] Giflib_jll v5.2.3+0 [7746bdde] Glib_jll v2.86.2+0 [3b182d85] Graphite2_jll v1.3.15+0 [2e76f6c2] HarfBuzz_jll v8.5.1+0 [905a6f67] Imath_jll v3.2.2+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [aacddb02] JpegTurbo_jll v3.1.4+0 [c1c5ebd0] LAME_jll v3.100.3+0 [88015f11] LERC_jll v4.0.1+0 [dad2f222] LLVMExtra_jll v0.0.38+0 [1d63c593] LLVMOpenMP_jll v18.1.8+0 [dd4b983a] LZO_jll v2.10.3+0 [ad6e5548] LibTracyClient_jll v0.9.1+6 ⌅ [e9f186c6] Libffi_jll v3.4.7+0 [7e76a0d4] Libglvnd_jll v1.7.1+1 [94ce4f54] Libiconv_jll v1.18.0+0 [4b2f31a3] Libmount_jll v2.41.2+0 [89763e89] Libtiff_jll v4.7.2+0 [38a345b3] Libuuid_jll v2.41.2+0 [856f044c] MKL_jll v2025.2.0+0 [c8ffd9c3] MbedTLS_jll v2.28.1010+0 [e7412a2a] Ogg_jll v1.3.6+0 [6cdc7f73] OpenBLASConsistentFPCSR_jll v0.3.29+0 [18a262bb] OpenEXR_jll v3.4.4+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [91d4177d] Opus_jll v1.6.0+0 [36c8627f] Pango_jll v1.57.0+0 ⌅ [30392449] Pixman_jll v0.44.2+0 [c0090381] Qt6Base_jll v6.8.2+2 [629bc702] Qt6Declarative_jll v6.8.2+1 [ce943373] Qt6ShaderTools_jll v6.8.2+1 [e99dba38] Qt6Wayland_jll v6.8.2+2 [f50d1b31] Rmath_jll v0.5.1+0 [a44049a8] Vulkan_Loader_jll v1.3.243+0 [a2964d1f] Wayland_jll v1.24.0+0 [ffd25f8a] XZ_jll v5.8.2+0 [f67eecfb] Xorg_libICE_jll v1.1.2+0 [c834827a] Xorg_libSM_jll v1.2.6+0 [4f6342f7] Xorg_libX11_jll v1.8.12+0 [0c0b7dd1] Xorg_libXau_jll v1.0.13+0 [935fb764] Xorg_libXcursor_jll v1.2.4+0 [a3789734] Xorg_libXdmcp_jll v1.1.6+0 [1082639a] Xorg_libXext_jll v1.3.7+0 [d091e8ba] Xorg_libXfixes_jll v6.0.2+0 [a51aa0fd] Xorg_libXi_jll v1.8.3+0 [d1454406] Xorg_libXinerama_jll v1.1.6+0 [ec84b674] Xorg_libXrandr_jll v1.5.5+0 [ea2f1a96] Xorg_libXrender_jll v0.9.12+0 [c7cfdc94] Xorg_libxcb_jll v1.17.1+0 [cc61e674] Xorg_libxkbfile_jll v1.1.3+0 [e920d4aa] Xorg_xcb_util_cursor_jll v0.1.6+0 [12413925] Xorg_xcb_util_image_jll v0.4.1+0 [2def613f] Xorg_xcb_util_jll v0.4.1+0 [975044d2] Xorg_xcb_util_keysyms_jll v0.4.1+0 [0d47668e] Xorg_xcb_util_renderutil_jll v0.3.10+0 [c22f9ab0] Xorg_xcb_util_wm_jll v0.4.2+0 [35661453] Xorg_xkbcomp_jll v1.4.7+0 [33bec58e] Xorg_xkeyboard_config_jll v2.44.0+0 [c5fb5394] Xorg_xtrans_jll v1.6.0+0 [35ca27e7] eudev_jll v3.2.14+0 [214eeab7] fzf_jll v0.61.1+0 [9a68df92] isoband_jll v0.2.3+0 [a4ae2306] libaom_jll v3.13.1+0 [0ac62f75] libass_jll v0.17.4+0 [1183f4f0] libdecor_jll v0.2.2+0 [2db6ffa8] libevdev_jll v1.13.4+0 [f638f0a6] libfdk_aac_jll v2.0.4+0 [36db933b] libinput_jll v1.28.1+0 [b53b4c65] libpng_jll v1.6.53+0 [075b6546] libsixel_jll v1.10.5+0 [f27f6e37] libvorbis_jll v1.3.8+0 [c5f90fcd] libwebp_jll v1.6.0+0 [009596ad] mtdev_jll v1.1.7+0 [1317d2d5] oneTBB_jll v2022.0.0+1 ⌅ [1270edf5] x264_jll v10164.0.1+0 [dfaa095f] x265_jll v4.1.0+0 [d8fb68d0] xkbcommon_jll v1.13.0+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [8bf52ea8] CRC32c v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... --> There are 1 threads Problem wrap of ┌─ Bifurcation problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p1Problem wrap for curve of PD of periodic orbits. Based on the formulation: ┌─ Bifurcation problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 2 ├─ Symmetric: false └─ Parameter: p10.7897151665750313 0.9178269983552023 │ 1 │ │ 1 │ GMRES: system of size 100 pass k ‖rₖ‖ hₖ₊₁.ₖ timer 0 0 5.7e+00 ✗ ✗ ✗ ✗ 0.00s 1 2 9.8e-01 3.4e-01 0.00s 1 4 8.2e-02 2.8e-01 0.00s 1 6 7.0e-03 2.9e-01 0.00s 1 8 5.2e-04 2.6e-01 0.00s 1 10 4.6e-05 2.9e-01 0.00s 1 12 3.2e-06 2.9e-01 0.00s 1 14 2.4e-07 2.7e-01 0.00s 1 16 1.6e-08 2.6e-01 0.00s === gmres === rest iter resnorm 1 1 5.10e-01 1 2 1.16e-01 1 3 3.26e-02 1 4 1.32e-16 === gmres === rest iter resnorm 1 1 1.17e-01 1 2 2.23e-02 1 3 3.93e-03 1 4 1.63e-17 === gmres === rest iter resnorm 1 1 4.88e-01 1 2 1.93e-01 1 3 9.44e-02 1 4 1.46e-03 1 5 3.17e-16 [ Info: GMRES linsolve starts with norm of residual = 1.26e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 5.10e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 1.16e-01 [ Info: GMRES linsolve in iteration 1; step 3: normres = 3.26e-02 ┌ Info: GMRES linsolve converged at iteration 1, step 4: │ * norm of residual = 4.69e-16 └ * number of operations = 6 [ Info: GMRES linsolve starts with norm of residual = 2.94e-01 [ Info: GMRES linsolve in iteration 1; step 1: normres = 1.17e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 2.23e-02 [ Info: GMRES linsolve in iteration 1; step 3: normres = 3.93e-03 ┌ Info: GMRES linsolve converged at iteration 1, step 4: │ * norm of residual = 4.44e-17 └ * number of operations = 6 [ Info: GMRES linsolve starts with norm of residual = 1.28e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 4.88e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 1.93e-01 [ Info: GMRES linsolve in iteration 1; step 3: normres = 9.44e-02 [ Info: GMRES linsolve in iteration 1; step 4: normres = 1.46e-03 [ Info: GMRES linsolve in iteration 2; step 1: normres = 3.48e-04 [ Info: GMRES linsolve in iteration 2; step 2: normres = 1.31e-04 [ Info: GMRES linsolve in iteration 2; step 3: normres = 2.70e-05 [ Info: GMRES linsolve in iteration 2; step 4: normres = 7.68e-06 [ Info: GMRES linsolve in iteration 3; step 1: normres = 3.10e-06 [ Info: GMRES linsolve in iteration 3; step 2: normres = 1.80e-06 [ Info: GMRES linsolve in iteration 3; step 3: normres = 3.03e-07 [ Info: GMRES linsolve in iteration 3; step 4: normres = 7.88e-09 [ Info: GMRES linsolve in iteration 4; step 1: normres = 1.94e-09 [ Info: GMRES linsolve in iteration 4; step 2: normres = 7.34e-10 [ Info: GMRES linsolve in iteration 4; step 3: normres = 1.77e-10 ┌ Info: GMRES linsolve converged at iteration 4, step 4: │ * norm of residual = 4.23e-11 └ * number of operations = 15 [ Info: GMRES linsolve starts with norm of residual = 1.28e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 4.88e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 1.93e-01 [ Info: GMRES linsolve in iteration 1; step 3: normres = 9.44e-02 [ Info: GMRES linsolve in iteration 1; step 4: normres = 1.46e-03 [ Info: GMRES linsolve in iteration 2; step 1: normres = 3.48e-04 [ Info: GMRES linsolve in iteration 2; step 2: normres = 1.31e-04 [ Info: GMRES linsolve in iteration 2; step 3: normres = 2.70e-05 [ Info: GMRES linsolve in iteration 2; step 4: normres = 7.68e-06 [ Info: GMRES linsolve in iteration 3; step 1: normres = 3.10e-06 [ Info: GMRES linsolve in iteration 3; step 2: normres = 1.80e-06 [ Info: GMRES linsolve in iteration 3; step 3: normres = 3.03e-07 [ Info: GMRES linsolve in iteration 3; step 4: normres = 7.88e-09 [ Info: GMRES linsolve in iteration 4; step 1: normres = 1.94e-09 [ Info: GMRES linsolve in iteration 4; step 2: normres = 7.34e-10 [ Info: GMRES linsolve in iteration 4; step 3: normres = 1.77e-10 ┌ Info: GMRES linsolve converged at iteration 4, step 4: │ * norm of residual = 4.23e-11 └ * number of operations = 15 [ Info: GMRES linsolve starts with norm of residual = 1.28e+00 [ Info: GMRES linsolve in iteration 1; step 1: normres = 5.29e-01 [ Info: GMRES linsolve in iteration 1; step 2: normres = 1.57e-01 [ Info: GMRES linsolve in iteration 1; step 3: normres = 7.17e-02 [ Info: GMRES linsolve in iteration 1; step 4: normres = 4.87e-03 [ Info: GMRES linsolve in iteration 2; step 1: normres = 1.05e-03 [ Info: GMRES linsolve in iteration 2; step 2: normres = 6.03e-04 [ Info: GMRES linsolve in iteration 2; step 3: normres = 8.75e-05 [ Info: GMRES linsolve in iteration 2; step 4: normres = 1.86e-05 [ Info: GMRES linsolve in iteration 3; step 1: normres = 6.64e-06 [ Info: GMRES linsolve in iteration 3; step 2: normres = 3.07e-06 [ Info: GMRES linsolve in iteration 3; step 3: normres = 8.89e-07 [ Info: GMRES linsolve in iteration 3; step 4: normres = 7.77e-08 [ Info: GMRES linsolve in iteration 4; step 1: normres = 1.86e-08 [ Info: GMRES linsolve in iteration 4; step 2: normres = 9.48e-09 [ Info: GMRES linsolve in iteration 4; step 3: normres = 2.48e-09 [ Info: GMRES linsolve in iteration 4; step 4: normres = 3.15e-10 [ Info: GMRES linsolve in iteration 5; step 1: normres = 1.22e-10 ┌ Info: GMRES linsolve converged at iteration 5, step 2: │ * norm of residual = 4.96e-11 └ * number of operations = 16 0.151715 seconds (150.48 k allocations: 7.813 MiB, 99.95% compilation time) 0.104415 seconds (36.12 k allocations: 1.816 MiB, 99.47% compilation time) 0.000005 seconds (21 allocations: 2.828 KiB) Linear Solvers: Test Failed at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_linear.jl:513 Expression: ≈(out[1], outkk[1], rtol = 1.0e-9) Evaluated: [0.03470803470429072, 6.302316020659446, 1.0469260290539513, 0.8561402277596072, -1.3419081533557329, -1.6581513855181076, -1.8368387071857564, -0.889737167392091, 0.8585934740184058, 2.1661351221074905 … 2.5827928140842658, 0.9096516892844129, -1.0018687644085684, -2.535939726588401, 3.4049396037556976, 1.3369398633115919, -0.880656281564169, -2.3255998203152557, -0.8602378825241375, 3.315938524347312] ≈ [0.034708035310235655, 6.302316017202418, 1.0469260242148135, 0.8561402253312518, -1.3419081529916583, -1.6581513843005915, -1.836838708769881, -0.8897371678701913, 0.8585934758152796, 2.166135128357058 … 2.5827928087893524, 0.9096516864984826, -1.0018687630874519, -2.5359397277356335, 3.4049396023187546, 1.336939860099505, -0.8806562784763343, -2.32559981886877, -0.8602378817381204, 3.31593851767872] (rtol=1.0e-9) Stacktrace: [1] top-level scope @ ~/.julia/packages/BifurcationKit/q52qN/test/test_linear.jl:513 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:773 [inlined] [3] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [4] top-level scope @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:8 [5] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1995 [inlined] [6] macro expansion @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:9 [inlined] [7] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1995 [inlined] [8] macro expansion @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:12 [inlined] ──▶ Gram matrix = 3×3 Matrix{Float64}: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ──▶ Gram matrix = 3×3 Matrix{Float64}: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 ┌ Warning: Shift-Invert strategy not implemented for maps └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/EigSolver.jl:230 SI-ev: 1.303230 seconds (1.40 M allocations: 77.871 MiB, 6.01% gc time, 99.95% compilation time) [ Info: Entry in test-record-from-solution.jl WARNING: Method definition f(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test-record-from-solution.jl:5 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_results.jl:5. ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float32 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflation operator with 1 root(s) ├─ eltype = Float16 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false ┌─ Deflated Problem with uType Vector{Float64} ├─ Symmetric: false ├─ jacobian: nothing ├─ Parameter p └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 1.0 ├─ dist = dot └─ autodiff = false | 1 │ 1.0000e+00 │ ( 1, 1) | │ 1 │ │ ( 1, 1) │ 6.189480 seconds (5.86 M allocations: 303.283 MiB, 1.56% gc time, 99.97% compilation time) ┌ Error: Unrecognized keyword arguments found. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:55 Unrecognized keyword arguments: (:essai,) 4.397092 seconds (2.04 M allocations: 107.092 MiB, 99.97% compilation time) ┌─ Bifurcation problem with uType Vector{Float64} ├─ Inplace: false ├─ Dimension: 1 ├─ Symmetric: false └─ Parameter: p 4.026663 seconds (2.11 M allocations: 110.833 MiB, 2.71% gc time, 99.97% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───────────────────── AutoSwitch ───────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999333333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p = -1.5000e+00 ──▶ -1.4859e+00 [guess] Parameter p = -1.5000e+00 ──▶ -1.4859e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-02 Parameter p = -1.4859e+00 ──▶ -1.4672e+00 [guess] Parameter p = -1.4859e+00 ──▶ -1.4672e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-02 Parameter p = -1.4672e+00 ──▶ -1.4425e+00 [guess] Parameter p = -1.4672e+00 ──▶ -1.4425e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-02 Parameter p = -1.4425e+00 ──▶ -1.4100e+00 [guess] Parameter p = -1.4425e+00 ──▶ -1.4100e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-02 Parameter p = -1.4100e+00 ──▶ -1.3671e+00 [guess] Parameter p = -1.4100e+00 ──▶ -1.3671e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-02 Parameter p = -1.3671e+00 ──▶ -1.3104e+00 [guess] Parameter p = -1.3671e+00 ──▶ -1.3104e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 4.7288e-02 Parameter p = -1.3104e+00 ──▶ -1.2435e+00 [guess] Parameter p = -1.3104e+00 ──▶ -1.2435e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 5.1000e-02 Parameter p = -1.2435e+00 ──▶ -1.1714e+00 [guess] Parameter p = -1.2435e+00 ──▶ -1.1714e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 5.1000e-02 Parameter p = -1.1714e+00 ──▶ -1.0993e+00 [guess] Parameter p = -1.1714e+00 ──▶ -1.0993e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 5.1000e-02 Parameter p = -1.0993e+00 ──▶ -1.0272e+00 [guess] Parameter p = -1.0993e+00 ──▶ -1.0272e+00 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 5.1000e-02 Parameter p = -1.0272e+00 ──▶ -9.5505e-01 [guess] Parameter p = -1.0272e+00 ──▶ -9.5505e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -9.5505e-01 ──▶ -8.8293e-01 [guess] Parameter p = -9.5505e-01 ──▶ -8.8293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -8.8293e-01 ──▶ -8.1081e-01 [guess] Parameter p = -8.8293e-01 ──▶ -8.1081e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -8.1081e-01 ──▶ -7.3870e-01 [guess] Parameter p = -8.1081e-01 ──▶ -7.3870e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -7.3870e-01 ──▶ -6.6658e-01 [guess] Parameter p = -7.3870e-01 ──▶ -6.6658e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -6.6658e-01 ──▶ -5.9448e-01 [guess] Parameter p = -6.6658e-01 ──▶ -5.9448e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -5.9448e-01 ──▶ -5.2238e-01 [guess] Parameter p = -5.9448e-01 ──▶ -5.2238e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -5.2238e-01 ──▶ -4.5030e-01 [guess] Parameter p = -5.2238e-01 ──▶ -4.5030e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -4.5030e-01 ──▶ -3.7827e-01 [guess] Parameter p = -4.5030e-01 ──▶ -3.7827e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -3.7827e-01 ──▶ -3.0632e-01 [guess] Parameter p = -3.7827e-01 ──▶ -3.0632e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -3.0632e-01 ──▶ -2.3460e-01 [guess] Parameter p = -3.0632e-01 ──▶ -2.3460e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -2.3460e-01 ──▶ -1.6366e-01 [guess] Parameter p = -2.3460e-01 ──▶ -1.6366e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -1.6366e-01 ──▶ -9.6358e-02 [guess] Parameter p = -1.6366e-01 ──▶ -9.6358e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -9.6358e-02 ──▶ -5.1902e-02 [guess] Parameter p = -9.6358e-02 ──▶ -6.6989e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -6.6989e-02 ──▶ -5.2693e-02 [guess] Parameter p = -6.6989e-02 ──▶ -6.0828e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -6.0828e-02 ──▶ -6.1182e-02 [guess] Parameter p = -6.0828e-02 ──▶ -6.5523e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -6.5523e-02 ──▶ -7.3919e-02 [guess] Parameter p = -6.5523e-02 ──▶ -7.6829e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -7.6829e-02 ──▶ -9.0753e-02 [guess] Parameter p = -7.6829e-02 ──▶ -9.3007e-02 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3007e-02 ──▶ -1.1128e-01 [guess] Parameter p = -9.3007e-02 ──▶ -1.1317e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -1.1317e-01 ──▶ -1.3511e-01 [guess] Parameter p = -1.1317e-01 ──▶ -1.3677e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -1.3677e-01 ──▶ -1.6194e-01 [guess] Parameter p = -1.3677e-01 ──▶ -1.6342e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -1.6342e-01 ──▶ -1.9149e-01 [guess] Parameter p = -1.6342e-01 ──▶ -1.9283e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -1.9283e-01 ──▶ -2.2352e-01 [guess] Parameter p = -1.9283e-01 ──▶ -2.2474e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -2.2474e-01 ──▶ -2.5782e-01 [guess] Parameter p = -2.2474e-01 ──▶ -2.5894e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -2.5894e-01 ──▶ -2.9422e-01 [guess] Parameter p = -2.5894e-01 ──▶ -2.9525e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -2.9525e-01 ──▶ -3.3254e-01 [guess] Parameter p = -2.9525e-01 ──▶ -3.3349e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -3.3349e-01 ──▶ -3.7264e-01 [guess] Parameter p = -3.3349e-01 ──▶ -3.7351e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -3.7351e-01 ──▶ -4.1437e-01 [guess] Parameter p = -3.7351e-01 ──▶ -4.1517e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -4.1517e-01 ──▶ -4.5761e-01 [guess] Parameter p = -4.1517e-01 ──▶ -4.5835e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -4.5835e-01 ──▶ -5.0224e-01 [guess] Parameter p = -4.5835e-01 ──▶ -5.0293e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -5.0293e-01 ──▶ -5.4817e-01 [guess] Parameter p = -5.0293e-01 ──▶ -5.4881e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -5.4881e-01 ──▶ -5.9530e-01 [guess] Parameter p = -5.4881e-01 ──▶ -5.9530e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -5.9530e-01 ──▶ -6.4294e-01 [guess] Parameter p = -5.9530e-01 ──▶ -6.4294e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -6.4294e-01 ──▶ -6.9164e-01 [guess] Parameter p = -6.4294e-01 ──▶ -6.9164e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -6.9164e-01 ──▶ -7.4133e-01 [guess] Parameter p = -6.9164e-01 ──▶ -7.4133e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -7.4133e-01 ──▶ -7.9194e-01 [guess] Parameter p = -7.4133e-01 ──▶ -7.9194e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -7.9194e-01 ──▶ -8.4343e-01 [guess] Parameter p = -7.9194e-01 ──▶ -8.4343e-01 Predictor: Bordered ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -8.4343e-01 ──▶ -8.9571e-01 [guess] Parameter p = -8.4343e-01 ──▶ -8.9571e-01 Predictor: Bordered 4.707029 seconds (2.75 M allocations: 144.439 MiB, 99.82% compilation time) 3.927213 seconds (1.92 M allocations: 99.958 MiB, 99.93% compilation time) ┌ Warning: Assignment to `br0` in soft scope is ambiguous because a global variable by the same name exists: `br0` will be treated as a new local. Disambiguate by using `local br0` to suppress this warning or `global br0` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/q52qN/test/simple_continuation.jl:174 ┌─ Curve type: EquilibriumCont ├─ Number of points: 89 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -1.5, ends at -3.0 ├─ Algo: PALC [Secant] └─ Special points: - # 1, bp at p ≈ -0.06090827 ∈ (-0.06090827, -0.06089831), |δp|=1e-05, [converged], δ = ( 1, 0), step = 30 - # 2, endpoint at p ≈ -3.00000000, step = 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ────────────────────── Multiple ────────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.5000e-02 Parameter p = -1.5000e+00 ──▶ -1.4788e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.195, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ──▶ -1.4788e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.0225 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 2.2500e-02 Parameter p = -1.4788e+00 ──▶ -1.4470e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.2925, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4788e+00 ──▶ -1.4470e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 dsnew = 0.03375 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 3.3750e-02 Parameter p = -1.4470e+00 ──▶ -1.3992e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4470e+00 ──▶ -1.3992e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.3750e-02 Parameter p = -1.3992e+00 ──▶ -1.3515e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3992e+00 ──▶ -1.3515e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.3750e-02 Parameter p = -1.3515e+00 ──▶ -1.3038e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3515e+00 ──▶ -1.3038e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 3.3750e-02 Parameter p = -1.3038e+00 ──▶ -1.2561e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3038e+00 ──▶ -1.2561e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 3.3750e-02 Parameter p = -1.2561e+00 ──▶ -1.2083e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2561e+00 ──▶ -1.2083e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 3.3750e-02 Parameter p = -1.2083e+00 ──▶ -1.1606e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2083e+00 ──▶ -1.1606e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 3.3750e-02 Parameter p = -1.1606e+00 ──▶ -1.1129e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1606e+00 ──▶ -1.1129e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.3750e-02 Parameter p = -1.1129e+00 ──▶ -1.0651e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1129e+00 ──▶ -1.0651e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 3.3750e-02 Parameter p = -1.0651e+00 ──▶ -1.0174e+00 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0651e+00 ──▶ -1.0174e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 3.3750e-02 Parameter p = -1.0174e+00 ──▶ -9.6968e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0174e+00 ──▶ -9.6968e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 3.3750e-02 Parameter p = -9.6968e-01 ──▶ -9.2196e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.6968e-01 ──▶ -9.2196e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 3.3750e-02 Parameter p = -9.2196e-01 ──▶ -8.7423e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.2196e-01 ──▶ -8.7423e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 3.3750e-02 Parameter p = -8.7423e-01 ──▶ -8.2650e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7423e-01 ──▶ -8.2651e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 3.3750e-02 Parameter p = -8.2651e-01 ──▶ -7.7878e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.2651e-01 ──▶ -7.7878e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.3750e-02 Parameter p = -7.7878e-01 ──▶ -7.3106e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.7878e-01 ──▶ -7.3106e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 3.3750e-02 Parameter p = -7.3106e-01 ──▶ -6.8334e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.3106e-01 ──▶ -6.8334e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 3.3750e-02 Parameter p = -6.8334e-01 ──▶ -6.3562e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.8334e-01 ──▶ -6.3562e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 3.3750e-02 Parameter p = -6.3562e-01 ──▶ -5.8790e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.3562e-01 ──▶ -5.8791e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 3.3750e-02 Parameter p = -5.8791e-01 ──▶ -5.4020e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8791e-01 ──▶ -5.4020e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 3.3750e-02 Parameter p = -5.4020e-01 ──▶ -4.9250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.4020e-01 ──▶ -4.9250e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 3.3750e-02 Parameter p = -4.9250e-01 ──▶ -4.4481e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.9250e-01 ──▶ -4.4482e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 3.3750e-02 Parameter p = -4.4482e-01 ──▶ -3.9714e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.4482e-01 ──▶ -3.9717e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 3.3750e-02 Parameter p = -3.9717e-01 ──▶ -3.4951e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.9717e-01 ──▶ -3.4956e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 3.3750e-02 Parameter p = -3.4956e-01 ──▶ -3.0195e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.4956e-01 ──▶ -3.0203e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 3.3750e-02 Parameter p = -3.0203e-01 ──▶ -2.5451e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0203e-01 ──▶ -2.5467e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 3.3750e-02 Parameter p = -2.5467e-01 ──▶ -2.0735e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5467e-01 ──▶ -2.0771e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 3.3750e-02 Parameter p = -2.0771e-01 ──▶ -1.6083e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0771e-01 ──▶ -1.6179e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 3.3750e-02 Parameter p = -1.6179e-01 ──▶ -1.1613e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] └─ i = 12, s(i) = 0.405, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6179e-01 ──▶ -1.1904e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 3.3750e-02 Parameter p = -1.1904e-01 ──▶ -7.7200e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1904e-01 ──▶ -8.5672e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 3.3750e-02 Parameter p = -8.5672e-02 ──▶ -5.4366e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor ├─ i = 13, s(i) = 0.43875000000000003, converged = [ NO] ├─ i = 12, s(i) = 0.405, converged = [ NO] └─ i = 11, s(i) = 0.37125, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.5672e-02 ──▶ -6.7992e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 3.3750e-02 Parameter p = -6.7992e-02 ──▶ -5.1454e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.7992e-02 ──▶ -6.1556e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 3.3750e-02 Parameter p = -6.1556e-02 ──▶ -5.5277e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.1556e-02 ──▶ -6.1281e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = -0.06128105033038877 Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.21937500000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.10968750000000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.054843750000000004, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.027421875000000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.013710937500000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0068554687500000005, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0034277343750000002, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0017138671875000001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.0008569335937500001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00042846679687500003, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00021423339843750001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -0.00010711669921875001, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.3558349609375004e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.6779174804687502e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.3389587402343751e-5, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -6.6947937011718754e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -3.3473968505859377e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.6736984252929689e-6, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -8.368492126464844e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -4.184246063232422e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.092123031616211e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.0460615158081055e-7, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -5.230307579040528e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -2.615153789520264e-8, converged = [YES] Predictor: Secant Predictor: Secant ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = -1.307576894760132e-8, converged = [YES] Predictor: Secant Predictor: Secant Predictor: Secant ──> bp Bifurcation point at p ≈ -0.06496328859565723, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 3.3750e-02 Parameter p = -6.4963e-02 ──▶ -7.5203e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.4963e-02 ──▶ -7.1589e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 3.3750e-02 Parameter p = -7.1589e-02 ──▶ -7.8194e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.1589e-02 ──▶ -8.0562e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 3.3750e-02 Parameter p = -8.0562e-02 ──▶ -8.9523e-02 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.0562e-02 ──▶ -9.1534e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 3.3750e-02 Parameter p = -9.1534e-02 ──▶ -1.0250e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.1534e-02 ──▶ -1.0427e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 3.3750e-02 Parameter p = -1.0427e-01 ──▶ -1.1699e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0427e-01 ──▶ -1.1859e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 3.3750e-02 Parameter p = -1.1859e-01 ──▶ -1.3291e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1859e-01 ──▶ -1.3438e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 3.3750e-02 Parameter p = -1.3438e-01 ──▶ -1.5015e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3438e-01 ──▶ -1.5151e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 3.3750e-02 Parameter p = -1.5151e-01 ──▶ -1.6863e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5151e-01 ──▶ -1.6990e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 3.3750e-02 Parameter p = -1.6990e-01 ──▶ -1.8828e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6990e-01 ──▶ -1.8947e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 3.3750e-02 Parameter p = -1.8947e-01 ──▶ -2.0903e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8947e-01 ──▶ -2.1014e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 3.3750e-02 Parameter p = -2.1014e-01 ──▶ -2.3081e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1014e-01 ──▶ -2.3186e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 3.3750e-02 Parameter p = -2.3186e-01 ──▶ -2.5357e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3186e-01 ──▶ -2.5457e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 3.3750e-02 Parameter p = -2.5457e-01 ──▶ -2.7726e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5457e-01 ──▶ -2.7820e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 3.3750e-02 Parameter p = -2.7820e-01 ──▶ -3.0183e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7820e-01 ──▶ -3.0271e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 3.3750e-02 Parameter p = -3.0271e-01 ──▶ -3.2722e-01 [guess] ────────────────────────────────────────────────────────────────────── ┌─Multiple tangent predictor └─ i = 13, s(i) = 0.43875000000000003, converged = [YES] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.0271e-01 ──▶ -3.2806e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/continuation/Multiple.jl:139 ┌ Error: --> Decrease ds └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/continuation/Multiple.jl:139 ┌ Warning: Assignment to `brbd` in soft scope is ambiguous because a global variable by the same name exists: `brbd` will be treated as a new local. Disambiguate by using `local brbd` to suppress this warning or `global brbd` to assign to the existing global variable. └ @ ~/.julia/packages/BifurcationKit/q52qN/test/simple_continuation.jl:333 ┌ Error: Initial continuation parameter p = -3.2 must be within bounds [p_min, p_max] = [-3.0, -2.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:343 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──────────────────────── PALC ──────────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -1.5, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -1.4999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p = -1.5000e+00 ──▶ -1.4986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.5000e+00 ──▶ -1.4986e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.4608e-03 Parameter p = -1.4986e+00 ──▶ -1.4965e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4986e+00 ──▶ -1.4965e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 2.1339e-03 Parameter p = -1.4965e+00 ──▶ -1.4935e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4965e+00 ──▶ -1.4935e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.1173e-03 Parameter p = -1.4935e+00 ──▶ -1.4891e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4935e+00 ──▶ -1.4891e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 4.5537e-03 Parameter p = -1.4891e+00 ──▶ -1.4827e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4891e+00 ──▶ -1.4827e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 6.6520e-03 Parameter p = -1.4827e+00 ──▶ -1.4732e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4827e+00 ──▶ -1.4732e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 9.7173e-03 Parameter p = -1.4732e+00 ──▶ -1.4595e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4732e+00 ──▶ -1.4595e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 1.4195e-02 Parameter p = -1.4595e+00 ──▶ -1.4394e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4595e+00 ──▶ -1.4394e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 2.0736e-02 Parameter p = -1.4394e+00 ──▶ -1.4101e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4394e+00 ──▶ -1.4101e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 3.0291e-02 Parameter p = -1.4101e+00 ──▶ -1.3673e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p = -1.4101e+00 ──▶ -1.3673e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 4.4249e-02 Parameter p = -1.3673e+00 ──▶ -1.3047e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3673e+00 ──▶ -1.3047e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 5.1000e-02 Parameter p = -1.3047e+00 ──▶ -1.2326e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3047e+00 ──▶ -1.2326e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 5.1000e-02 Parameter p = -1.2326e+00 ──▶ -1.1604e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2326e+00 ──▶ -1.1604e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 5.1000e-02 Parameter p = -1.1604e+00 ──▶ -1.0883e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1604e+00 ──▶ -1.0883e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 5.1000e-02 Parameter p = -1.0883e+00 ──▶ -1.0162e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0883e+00 ──▶ -1.0162e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 5.1000e-02 Parameter p = -1.0162e+00 ──▶ -9.4408e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0162e+00 ──▶ -9.4408e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 5.1000e-02 Parameter p = -9.4408e-01 ──▶ -8.7196e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.4408e-01 ──▶ -8.7196e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 5.1000e-02 Parameter p = -8.7196e-01 ──▶ -7.9984e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.7196e-01 ──▶ -7.9984e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 5.1000e-02 Parameter p = -7.9984e-01 ──▶ -7.2772e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.9984e-01 ──▶ -7.2773e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.1000e-02 Parameter p = -7.2773e-01 ──▶ -6.5561e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -7.2773e-01 ──▶ -6.5562e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 5.1000e-02 Parameter p = -6.5562e-01 ──▶ -5.8351e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.5562e-01 ──▶ -5.8352e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 5.1000e-02 Parameter p = -5.8352e-01 ──▶ -5.1142e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.8352e-01 ──▶ -5.1143e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 5.1000e-02 Parameter p = -5.1143e-01 ──▶ -4.3934e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -5.1143e-01 ──▶ -4.3937e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 5.1000e-02 Parameter p = -4.3937e-01 ──▶ -3.6732e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -4.3937e-01 ──▶ -3.6737e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 5.1000e-02 Parameter p = -3.6737e-01 ──▶ -2.9539e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -3.6737e-01 ──▶ -2.9552e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 5.1000e-02 Parameter p = -2.9552e-01 ──▶ -2.2370e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9552e-01 ──▶ -2.2410e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 5.1000e-02 Parameter p = -2.2410e-01 ──▶ -1.5279e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2410e-01 ──▶ -1.5429e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 5.1000e-02 Parameter p = -1.5429e-01 ──▶ -8.5126e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -1.5429e-01 ──▶ -9.3033e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 5.1000e-02 Parameter p = -9.3033e-02 ──▶ -3.5896e-02 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p = -9.3033e-02 ──▶ -6.4183e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 5.1000e-02 Parameter p = -6.4183e-02 ──▶ -3.9912e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4183e-02 ──▶ -6.1291e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ──▶ Bifurcation detected before p = -0.0612908522750683 ┌─── Entering [Locate bifurcation], state.n_unstable = (2, 0) ├─── [Bisection] initial ds = 0.051 ├─── [Bisection] state.ds = -0.051 ├─── 0 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.0255 p = -0.0612908522750683, #reverse = 0 ├─── bifurcation ∈ (-0.06418257359763878, -0.0612908522750683), precision = 2.892E-03 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.011015084493654244 + 0.0im 0.011015084493654355 + 0.0im Predictor: Secant ├─── 1 - [Bisection] (n1, n_current, n2) = (0, 0, 2), ds = 0.01275 p = -0.06102065204612017, #reverse = 1 ├─── bifurcation ∈ (-0.0612908522750683, -0.06102065204612017), precision = -2.702E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: -0.00682553599602289 + 0.0im -0.0068255359960178105 + 0.0im Predictor: Secant ├─── 2 - [Bisection] (n1, n_current, n2) = (0, 2, 2), ds = -0.006375 p = -0.06083954839238358, #reverse = 2 ├─── bifurcation ∈ (-0.06102065204612017, -0.06083954839238358), precision = 1.811E-04 ├─── 2 Eigenvalues closest to ℜ = 0: 2-element Vector{ComplexF64}: 0.0020769073856158893 + 0.0im 0.002076907385616472 + 0.0im ────> Found at p = -0.06083954839238358, δn = 2, δim = 0 from p = -0.0612908522750683 ────> Found at p = -0.06083954839238358 ∈ (-0.06102065204612017, -0.06083954839238358), δn = 2, δim = 0 from p = -0.0612908522750683 ──────────────────────────────────────── ┌─── Stopping reason: ├───── isnothing(next) = false ├───── |ds| < dsmin_bisection = false ├───── step >= max_bisection_steps = false ├───── n_inversion >= n_inversion = true └───── biflocated = false ────> Leaving [Locate bifurcation] ──> nd Bifurcation point at p ≈ -0.06083954839238358, δn_unstable = 2, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 5.1000e-02 Parameter p = -6.0840e-02 ──▶ -6.0115e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -6.0840e-02 ──▶ -6.5737e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 5.1000e-02 Parameter p = -6.5737e-02 ──▶ -7.0620e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.5737e-02 ──▶ -7.7229e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 5.1000e-02 Parameter p = -7.7229e-02 ──▶ -8.8673e-02 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.7229e-02 ──▶ -9.3566e-02 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 5.1000e-02 Parameter p = -9.3566e-02 ──▶ -1.0986e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -9.3566e-02 ──▶ -1.1387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 5.1000e-02 Parameter p = -1.1387e-01 ──▶ -1.3414e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.1387e-01 ──▶ -1.3759e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 5.1000e-02 Parameter p = -1.3759e-01 ──▶ -1.6129e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.3759e-01 ──▶ -1.6436e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 5.1000e-02 Parameter p = -1.6436e-01 ──▶ -1.9110e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.6436e-01 ──▶ -1.9387e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 5.1000e-02 Parameter p = -1.9387e-01 ──▶ -2.2336e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -1.9387e-01 ──▶ -2.2589e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 5.1000e-02 Parameter p = -2.2589e-01 ──▶ -2.5787e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.2589e-01 ──▶ -2.6018e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 5.1000e-02 Parameter p = -2.6018e-01 ──▶ -2.9446e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.6018e-01 ──▶ -2.9658e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 5.1000e-02 Parameter p = -2.9658e-01 ──▶ -3.3295e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9658e-01 ──▶ -3.3490e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 5.1000e-02 Parameter p = -3.3490e-01 ──▶ -3.7320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.3490e-01 ──▶ -3.7499e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 5.1000e-02 Parameter p = -3.7499e-01 ──▶ -4.1507e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -3.7499e-01 ──▶ -4.1672e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 5.1000e-02 Parameter p = -4.1672e-01 ──▶ -4.5844e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.1672e-01 ──▶ -4.5997e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 5.1000e-02 Parameter p = -4.5997e-01 ──▶ -5.0320e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -4.5997e-01 ──▶ -5.0461e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 5.1000e-02 Parameter p = -5.0461e-01 ──▶ -5.4924e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.0461e-01 ──▶ -5.5054e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 5.1000e-02 Parameter p = -5.5054e-01 ──▶ -5.9646e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.5054e-01 ──▶ -5.9767e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 5.1000e-02 Parameter p = -5.9767e-01 ──▶ -6.4480e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -5.9767e-01 ──▶ -6.4592e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 5.1000e-02 Parameter p = -6.4592e-01 ──▶ -6.9415e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.4592e-01 ──▶ -6.9520e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 5.1000e-02 Parameter p = -6.9520e-01 ──▶ -7.4447e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -6.9520e-01 ──▶ -7.4544e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 5.1000e-02 Parameter p = -7.4544e-01 ──▶ -7.9567e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.4544e-01 ──▶ -7.9657e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 5.1000e-02 Parameter p = -7.9657e-01 ──▶ -8.4770e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -7.9657e-01 ──▶ -8.4855e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 5.1000e-02 Parameter p = -8.4855e-01 ──▶ -9.0051e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -8.4855e-01 ──▶ -9.0130e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 5.1000e-02 Parameter p = -9.0130e-01 ──▶ -9.5405e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.0130e-01 ──▶ -9.5478e-01 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 5.1000e-02 Parameter p = -9.5478e-01 ──▶ -1.0083e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -9.5478e-01 ──▶ -1.0090e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 5.1000e-02 Parameter p = -1.0090e+00 ──▶ -1.0631e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0090e+00 ──▶ -1.0638e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 5.1000e-02 Parameter p = -1.0638e+00 ──▶ -1.1186e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.0638e+00 ──▶ -1.1192e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 5.1000e-02 Parameter p = -1.1192e+00 ──▶ -1.1746e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1192e+00 ──▶ -1.1752e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 5.1000e-02 Parameter p = -1.1752e+00 ──▶ -1.2311e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.1752e+00 ──▶ -1.2317e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 5.1000e-02 Parameter p = -1.2317e+00 ──▶ -1.2882e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2317e+00 ──▶ -1.2887e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 5.1000e-02 Parameter p = -1.2887e+00 ──▶ -1.3457e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.2887e+00 ──▶ -1.3462e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 5.1000e-02 Parameter p = -1.3462e+00 ──▶ -1.4037e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.3462e+00 ──▶ -1.4041e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 5.1000e-02 Parameter p = -1.4041e+00 ──▶ -1.4621e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4041e+00 ──▶ -1.4625e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 5.1000e-02 Parameter p = -1.4625e+00 ──▶ -1.5209e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.4625e+00 ──▶ -1.5213e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 5.1000e-02 Parameter p = -1.5213e+00 ──▶ -1.5801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5213e+00 ──▶ -1.5804e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 5.1000e-02 Parameter p = -1.5804e+00 ──▶ -1.6396e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.5804e+00 ──▶ -1.6400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 5.1000e-02 Parameter p = -1.6400e+00 ──▶ -1.6995e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6400e+00 ──▶ -1.6998e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 5.1000e-02 Parameter p = -1.6998e+00 ──▶ -1.7597e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.6998e+00 ──▶ -1.7600e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 5.1000e-02 Parameter p = -1.7600e+00 ──▶ -1.8202e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.7600e+00 ──▶ -1.8205e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 5.1000e-02 Parameter p = -1.8205e+00 ──▶ -1.8810e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8205e+00 ──▶ -1.8813e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 5.1000e-02 Parameter p = -1.8813e+00 ──▶ -1.9421e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.8813e+00 ──▶ -1.9424e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 5.1000e-02 Parameter p = -1.9424e+00 ──▶ -2.0035e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -1.9424e+00 ──▶ -2.0038e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 5.1000e-02 Parameter p = -2.0038e+00 ──▶ -2.0651e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0038e+00 ──▶ -2.0654e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 5.1000e-02 Parameter p = -2.0654e+00 ──▶ -2.1270e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.0654e+00 ──▶ -2.1273e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 5.1000e-02 Parameter p = -2.1273e+00 ──▶ -2.1891e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1273e+00 ──▶ -2.1894e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 5.1000e-02 Parameter p = -2.1894e+00 ──▶ -2.2515e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.1894e+00 ──▶ -2.2517e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 5.1000e-02 Parameter p = -2.2517e+00 ──▶ -2.3140e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.2517e+00 ──▶ -2.3143e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 5.1000e-02 Parameter p = -2.3143e+00 ──▶ -2.3768e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3143e+00 ──▶ -2.3770e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 5.1000e-02 Parameter p = -2.3770e+00 ──▶ -2.4398e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.3770e+00 ──▶ -2.4400e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 5.1000e-02 Parameter p = -2.4400e+00 ──▶ -2.5029e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.4400e+00 ──▶ -2.5031e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 5.1000e-02 Parameter p = -2.5031e+00 ──▶ -2.5663e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5031e+00 ──▶ -2.5665e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 5.1000e-02 Parameter p = -2.5665e+00 ──▶ -2.6298e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.5665e+00 ──▶ -2.6300e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 5.1000e-02 Parameter p = -2.6300e+00 ──▶ -2.6935e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6300e+00 ──▶ -2.6937e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 5.1000e-02 Parameter p = -2.6937e+00 ──▶ -2.7574e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.6937e+00 ──▶ -2.7575e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 5.1000e-02 Parameter p = -2.7575e+00 ──▶ -2.8214e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.7575e+00 ──▶ -2.8215e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 5.1000e-02 Parameter p = -2.8215e+00 ──▶ -2.8856e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8215e+00 ──▶ -2.8857e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 5.1000e-02 Parameter p = -2.8857e+00 ──▶ -2.9499e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p = -2.8857e+00 ──▶ -2.9500e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 5.1000e-02 Parameter p = -2.9500e+00 ──▶ -3.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p = -2.9500e+00 ──▶ -3.0000e+00 ──▶ Computed 2 eigenvalues in 1 iterations, #unstable = 2 Predictor: Secant ┌─ Entry in detect_loop, rtol = 0.001 ├─ bp type = nd, ||δx|| = 0.24416479616388265, |δp| = 1.3891604516076164 └─ Loop detected = false ┌─ Continuation algorithm: deflated continuation ├─ max_branches: 100 ├─ seek every: 1 ├─ deflated newton iterations: 5 ├─ jacobian (def. newton): BifurcationKit.DeflatedProblemCustomLS{Nothing}(nothing) └─ deflation operator: ┌─ Deflation operator with 1 root(s) ├─ eltype = Float64 ├─ power = 2 ├─ α = 0.001 ├─ dist = inner └─ autodiff = false Deflated continuation result, # branches = 3 Branch #1: ┌─ Curve type: EquilibriumCont ├─ Number of points: 801 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at 0.5, ends at -0.30000000000000066 ├─ Algo: PALC [Secant] Branch #2: ┌─ Curve type: EquilibriumCont ├─ Number of points: 240 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.061000000000000484, ends at -0.30000000000000066 ├─ Algo: PALC [Secant] Branch #3: ┌─ Curve type: EquilibriumCont ├─ Number of points: 239 ├─ Type of vectors: Vector{Float64} ├─ Parameter p starts at -0.062000000000000485, ends at -0.30000000000000066 ├─ Algo: PALC [Secant] WARNING: Method definition Ftb(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_bif_detection.jl:51 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_bif_detection.jl:112. ┌─ Curve type: EquilibriumCont ├─ Number of points: 134 ├─ Type of vectors: Vector{Float64} ├─ Parameter p1 starts at -3.0, ends at 4.0 ├─ Algo: PALC [Secant] └─ Special points: - # 1, bp at p1 ≈ -1.13286415 ∈ (-1.13286415, -1.13286415), |δp|=6e-10, [converged], δ = ( 1, 0), step = 36 - # 2, bp at p1 ≈ -2.32505847 ∈ (-2.32505847, -2.32505842), |δp|=5e-08, [converged], δ = (-1, 0), step = 49 - # 3, hopf at p1 ≈ -0.95381648 ∈ (-0.95385638, -0.95381648), |δp|=4e-05, [converged], δ = ( 2, 2), step = 63 - # 4, hopf at p1 ≈ +0.95387028 ∈ (+0.95385033, +0.95387028), |δp|=2e-05, [converged], δ = (-2, -2), step = 83 - # 5, bp at p1 ≈ +2.32505862 ∈ (+2.32505862, +2.32505862), |δp|=9e-11, [converged], δ = ( 1, 0), step = 97 - # 6, bp at p1 ≈ +1.13286415 ∈ (+1.13286415, +1.13286415), |δp|=5e-09, [converged], δ = (-1, 0), step = 110 - # 7, endpoint at p1 ≈ +4.00000000, step = 133 Newton failed to converge for the initial guess on the branch. Residuals: 6-element Vector{Float64}: 0.8128508702022819 2.3665451984059733 2.1672921788699626 624.7839569042914 6.275088578401012e9 NaN WARNING: Method definition F0_simple(Any, Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/simple_continuation.jl:10 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/plots-utils.jl:8. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = 0.0 ├─ smallest eigenvalue at bifurcation = 2.6121282233639645e-7 ┌── Normal form: a01⋅δμ + a02⋅δμ²/2 + b11⋅x⋅δμ + b20⋅x²/2 + b30⋅x³/6 ├─── a01 = 0.0 ├─── a02 = 0.0 ├─── b11 = 3.23 ├─── b20/2 = 3.3122999999999996 └─── b30/6 = 0.234 Transcritical bifurcation point at μ ≈ 0.0 Normal form (a01⋅δμ + a02⋅δμ²/2 + b10⋅x⋅δμ + b20⋅x²/2 + b30⋅x³/6) ┌─ a01 = 0.0 ├─ a02 = 0.0 ├─ b11 = 3.2299999999999995 ├─ b20 = 6.624599999999999 └─ b30 = 1.4040000000000001 ──> For μ = 8.087084282860571e-8 ──> There are 1 unstable eigenvalues ──> Eigenvalues for continuation step 1 ┌ Error: Deflated Newton did not converge to the non-trivial solution ( i.e. on the bifurcated branch). └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/DeflationOperator.jl:378 ┌ Warning: Deflated newton did not converge for the first guess on the bifurcated branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/bifdiagram/BranchSwitching.jl:181 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = 8.08708428424835e-8 ├─ smallest eigenvalue at bifurcation = 2.612128223812217e-7 ┌── left eigenvalues = 2-element Vector{ComplexF64}: 2.612128223812217e-7 + 0.0im -1.0 + 0.0im ├── right eigenvalue = 2.612128223812217e-7 └── left eigenvalue = 2.612128223812217e-7 + 0.0im ┌── Normal form: a01⋅δμ + a02⋅δμ²/2 + b11⋅x⋅δμ + b20⋅x²/2 + b30⋅x³/6 ├─── a01 = 0.0 ├─── a02 = 0.0 ├─── b11 = 3.23 ├─── b20/2 = 1.4219996285554635 └─── b30/6 = -1.0 Transcritical bifurcation point at μ ≈ 8.08708428424835e-8 Normal form (a01⋅δμ + a02⋅δμ²/2 + b10⋅x⋅δμ + b20⋅x²/2 + b30⋅x³/6) ┌─ a01 = 0.0 ├─ a02 = 0.0 ├─ b11 = 3.23 ├─ b20 = 2.843999257110927 └─ b30 = -6.0 ┌─ Curve type: EquilibriumCont from Transcritical bifurcation point. ├─ Number of points: 20 ├─ Type of vectors: Vector{Float64} ├─ Parameter μ starts at 8.08708428424835e-8, ends at 0.1154817908006078 ├─ Algo: PALC [Bordered] └─ Special points: - # 1, bp at μ ≈ +0.00074813 ∈ (+0.00000008, +0.00074813), |δp|=7e-04, [ guess], δ = (-1, 0), step = 1 - # 2, endpoint at μ ≈ +0.12350648, step = 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ───▶ Automatic computation of bifurcation diagram ──────────────────────────────────────────────────────────────────────────────── ──▶ New branch, level = 2, dim(Kernel) = 1, code = (0,), from bp #1 at p = 4.531578045579016e-6, type = bp ────▶ From Transcritical - # 1, bp at p ≈ +0.00000453 ∈ (-0.00000410, +0.00000453), |δp|=9e-06, [converged], δ = ( 1, 0), step = 6 ──▶ Considering bifurcation point: - # 1, bp at p ≈ -0.00000000 ∈ (-0.00156250, -0.00000000), |δp|=2e-03, [ guess], δ = (-1, 0), step = 14 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = -2.8189256484623115e-17 ├─ smallest eigenvalue at bifurcation = 5.637851296924623e-17 ┌── left eigenvalues = 1-element Vector{ComplexF64}: 5.637851296924623e-17 + 0.0im ├── right eigenvalue = 5.637851296924623e-17 └── left eigenvalue = 5.637851296924623e-17 + 0.0im ┌── Normal form: a01⋅δp1 + a02⋅δp1²/2 + b11⋅x⋅δp1 + b20⋅x²/2 + b30⋅x³/6 ├─── a01 = 5.637851296924623e-17 ├─── a02 = -2.0 ├─── b11 = 0.0 ├─── b20/2 = 1.0 └─── b30/6 = 0.0 ──▶ Start branch switching. ──▶ Bifurcation type = BranchPoint ────▶ newp = 0.0070710683672258485, δp = 0.007071068367225876 ────▶ amplitude = 1.0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p1 = -2.8189e-17 ──▶ 1.0000e-02 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.8189e-17 ──▶ 1.0000e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ──▶ Bifurcation detected before p = 0.010000000000000226 ┌─── Entering [Locate bifurcation], state.n_unstable = (1, 0) ├─── [Bisection] initial ds = 0.014608 ├─── [Bisection] state.ds = -0.014608 ├─── 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -0.007304 p = 0.010000000000000226, #reverse = 0 ├─── bifurcation ∈ (-2.8189256484623115e-17, 0.010000000000000226), precision = 1.000E-02 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.019999999999999667 + 0.0im Predictor: Secant ├─── 1 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -0.003652 p = 0.002696000000000062, #reverse = 0 ├─── bifurcation ∈ (-2.8189256484623115e-17, 0.002696000000000062), precision = 2.696E-03 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.005391999999999996 + 0.0im Predictor: Secant ├─── 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1), ds = 0.001826 p = -0.0009560000000000198, #reverse = 1 ├─── bifurcation ∈ (-0.0009560000000000198, 0.002696000000000062), precision = 3.652E-03 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -0.00191199999999984 + 0.0im Predictor: Secant ├─── 3 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -0.000913 p = 0.0008700000000000211, #reverse = 2 ├─── bifurcation ∈ (-0.0009560000000000198, 0.0008700000000000211), precision = 1.826E-03 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.0017400000000000779 + 0.0im Predictor: Secant ├─── 4 - [Bisection] (n1, n_current, n2) = (0, 0, 1), ds = 0.0004565 p = -4.299999999999931e-5, #reverse = 3 ├─── bifurcation ∈ (-4.299999999999931e-5, 0.0008700000000000211), precision = 9.130E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -8.59999999998811e-5 + 0.0im Predictor: Secant ├─── 5 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -0.00022825 p = 0.0004135000000000109, #reverse = 4 ├─── bifurcation ∈ (-4.299999999999931e-5, 0.0004135000000000109), precision = 4.565E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.0008270000000000984 + 0.0im Predictor: Secant ├─── 6 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -0.000114125 p = 0.0001852500000000058, #reverse = 4 ├─── bifurcation ∈ (-4.299999999999931e-5, 0.0001852500000000058), precision = 2.283E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.00037050000000010864 + 0.0im Predictor: Secant ├─── 7 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -5.70625e-5 p = 7.112500000000325e-5, #reverse = 4 ├─── bifurcation ∈ (-4.299999999999931e-5, 7.112500000000325e-5), precision = 1.141E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.00014225000000011378 + 0.0im Predictor: Secant ├─── 8 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -2.853125e-5 p = 1.4062500000001968e-5, #reverse = 4 ├─── bifurcation ∈ (-4.299999999999931e-5, 1.4062500000001968e-5), precision = 5.706E-05 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 2.812500000011634e-5 + 0.0im Predictor: Secant ├─── 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1), ds = 1.4265625e-5 p = -1.4468749999998671e-5, #reverse = 5 ├─── bifurcation ∈ (-1.4468749999998671e-5, 1.4062500000001968e-5), precision = 2.853E-05 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -2.8937499999882376e-5 + 0.0im Predictor: Secant ├─── 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1), ds = 7.1328125e-6 p = -2.0312499999835153e-7, #reverse = 5 ├─── bifurcation ∈ (-2.0312499999835153e-7, 1.4062500000001968e-5), precision = 1.427E-05 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -4.062499998830177e-7 + 0.0im Predictor: Secant ├─── 11 - [Bisection] (n1, n_current, n2) = (0, 1, 1), ds = -3.56640625e-6 p = 6.929687500001808e-6, #reverse = 6 ├─── bifurcation ∈ (-2.0312499999835153e-7, 6.929687500001808e-6), precision = 7.133E-06 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 1.3859375000116662e-5 + 0.0im ────> Found at p = 6.929687500001808e-6, δn = 1, δim = 0 from p = 0.010000000000000226 ────> Found at p = 6.929687500001808e-6 ∈ (-2.0312499999835153e-7, 6.929687500001808e-6), δn = 1, δim = 0 from p = 0.010000000000000226 ──────────────────────────────────────── ┌─── Stopping reason: ├───── isnothing(next) = false ├───── |ds| < dsmin_bisection = false ├───── step >= max_bisection_steps = false ├───── n_inversion >= n_inversion = true └───── biflocated = false ────> Leaving [Locate bifurcation] ──> bp Bifurcation point at p ≈ 6.929687500001808e-6, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.4608e-02 Parameter p1 = 6.9297e-06 ──▶ 1.4615e-02 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 6.9297e-06 ──▶ 1.4615e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 2.1912e-02 Parameter p1 = 1.4615e-02 ──▶ 3.6527e-02 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 1.4615e-02 ──▶ 3.6527e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.2868e-02 Parameter p1 = 3.6527e-02 ──▶ 6.9395e-02 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 3.6527e-02 ──▶ 6.9395e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 4.9302e-02 Parameter p1 = 6.9395e-02 ──▶ 1.1870e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 6.9395e-02 ──▶ 1.1870e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 7.3953e-02 Parameter p1 = 1.1870e-01 ──▶ 1.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 1.1870e-01 ──▶ 1.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 1.0000e-01 Parameter p1 = 1.9265e-01 ──▶ 2.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 1.9265e-01 ──▶ 2.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 1.0000e-01 Parameter p1 = 2.9265e-01 ──▶ 3.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 2.9265e-01 ──▶ 3.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 1.0000e-01 Parameter p1 = 3.9265e-01 ──▶ 4.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 3.9265e-01 ──▶ 4.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 1.0000e-01 Parameter p1 = 4.9265e-01 ──▶ 5.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 4.9265e-01 ──▶ 5.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 1.0000e-01 Parameter p1 = 5.9265e-01 ──▶ 6.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 5.9265e-01 ──▶ 6.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 1.0000e-01 Parameter p1 = 6.9265e-01 ──▶ 7.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 6.9265e-01 ──▶ 7.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 1.0000e-01 Parameter p1 = 7.9265e-01 ──▶ 8.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 7.9265e-01 ──▶ 8.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 1.0000e-01 Parameter p1 = 8.9265e-01 ──▶ 9.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = 8.9265e-01 ──▶ 9.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 1.0000e-01 Parameter p1 = 9.9265e-01 ──▶ 1.0000e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = 9.9265e-01 ──▶ 1.0000e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 1 Predictor: Secant Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-02 Parameter p1 = 7.0711e-03 ──▶ -2.9289e-03 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = 7.0711e-03 ──▶ -2.9289e-03 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ──▶ Bifurcation detected before p = -0.002928932188134337 ┌─── Entering [Locate bifurcation], state.n_unstable = (0, 1) ├─── [Bisection] initial ds = 0.014608 ├─── [Bisection] state.ds = -0.014608 ├─── 0 - [Bisection] (n1, n_current, n2) = (1, 0, 0), ds = -0.007304 p = -0.002928932188134337, #reverse = 0 ├─── bifurcation ∈ (-0.002928932188134337, 0.0070710683672258485), precision = 1.000E-02 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -0.00585786437626946 + 0.0im Predictor: Secant ├─── 1 - [Bisection] (n1, n_current, n2) = (1, 1, 0), ds = 0.003652 p = 0.004375067811865708, #reverse = 1 ├─── bifurcation ∈ (-0.002928932188134337, 0.004375067811865708), precision = 7.304E-03 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.00875013562373049 + 0.0im Predictor: Secant ├─── 2 - [Bisection] (n1, n_current, n2) = (1, 1, 0), ds = 0.001826 p = 0.0007230678118656905, #reverse = 1 ├─── bifurcation ∈ (-0.002928932188134337, 0.0007230678118656905), precision = 3.652E-03 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.0014461356237305241 + 0.0im Predictor: Secant ├─── 3 - [Bisection] (n1, n_current, n2) = (1, 0, 0), ds = -0.000913 p = -0.0011029321881343178, #reverse = 2 ├─── bifurcation ∈ (-0.0011029321881343178, 0.0007230678118656905), precision = 1.826E-03 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -0.0022058643762694584 + 0.0im Predictor: Secant ├─── 4 - [Bisection] (n1, n_current, n2) = (1, 0, 0), ds = -0.0004565 p = -0.00018993218813431365, #reverse = 2 ├─── bifurcation ∈ (-0.00018993218813431365, 0.0007230678118656905), precision = 9.130E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -0.0003798643762694669 + 0.0im Predictor: Secant ├─── 5 - [Bisection] (n1, n_current, n2) = (1, 1, 0), ds = 0.00022825 p = 0.00026656781186568844, #reverse = 3 ├─── bifurcation ∈ (-0.00018993218813431365, 0.00026656781186568844), precision = 4.565E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 0.0005331356237305289 + 0.0im Predictor: Secant ├─── 6 - [Bisection] (n1, n_current, n2) = (1, 1, 0), ds = 0.000114125 p = 3.831781186568745e-5, #reverse = 3 ├─── bifurcation ∈ (-0.00018993218813431365, 3.831781186568745e-5), precision = 2.283E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 7.663562373053106e-5 + 0.0im Predictor: Secant ├─── 7 - [Bisection] (n1, n_current, n2) = (1, 0, 0), ds = -5.70625e-5 p = -7.580718813431305e-5, #reverse = 4 ├─── bifurcation ∈ (-7.580718813431305e-5, 3.831781186568745e-5), precision = 1.141E-04 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -0.0001516143762694679 + 0.0im Predictor: Secant ├─── 8 - [Bisection] (n1, n_current, n2) = (1, 0, 0), ds = -2.853125e-5 p = -1.87446881343128e-5, #reverse = 4 ├─── bifurcation ∈ (-1.87446881343128e-5, 3.831781186568745e-5), precision = 5.706E-05 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -3.74893762694684e-5 + 0.0im Predictor: Secant ├─── 9 - [Bisection] (n1, n_current, n2) = (1, 1, 0), ds = 1.4265625e-5 p = 9.786561865687325e-6, #reverse = 5 ├─── bifurcation ∈ (-1.87446881343128e-5, 9.786561865687325e-6), precision = 2.853E-05 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: 1.957312373053135e-5 + 0.0im Predictor: Secant ├─── 10 - [Bisection] (n1, n_current, n2) = (1, 0, 0), ds = -7.1328125e-6 p = -4.479063134312735e-6, #reverse = 6 ├─── bifurcation ∈ (-4.479063134312735e-6, 9.786561865687325e-6), precision = 1.427E-05 ├─── 1 Eigenvalues closest to ℜ = 0: 1-element Vector{ComplexF64}: -8.958126269468522e-6 + 0.0im ────> Found at p = -4.479063134312735e-6, δn = 1, δim = 0 from p = -0.002928932188134337 ────> Found at p = -4.479063134312735e-6 ∈ (-4.479063134312735e-6, 9.786561865687325e-6), δn = 1, δim = 0 from p = -0.002928932188134337 ──────────────────────────────────────── ┌─── Stopping reason: ├───── isnothing(next) = false ├───── |ds| < dsmin_bisection = false ├───── step >= max_bisection_steps = false ├───── n_inversion >= n_inversion = true └───── biflocated = false ────> Leaving [Locate bifurcation] ──> bp Bifurcation point at p ≈ -4.479063134312735e-6, δn_unstable = 1, δn_imag = 0 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.4608e-02 Parameter p1 = -4.4791e-06 ──▶ -1.4612e-02 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -4.4791e-06 ──▶ -1.4612e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 2.1912e-02 Parameter p1 = -1.4612e-02 ──▶ -3.6524e-02 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -1.4612e-02 ──▶ -3.6524e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 3.2868e-02 Parameter p1 = -3.6524e-02 ──▶ -6.9392e-02 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -3.6524e-02 ──▶ -6.9392e-02 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 4.9302e-02 Parameter p1 = -6.9392e-02 ──▶ -1.1869e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -6.9392e-02 ──▶ -1.1869e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 7.3953e-02 Parameter p1 = -1.1869e-01 ──▶ -1.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -1.1869e-01 ──▶ -1.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 1.0000e-01 Parameter p1 = -1.9265e-01 ──▶ -2.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -1.9265e-01 ──▶ -2.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 1.0000e-01 Parameter p1 = -2.9265e-01 ──▶ -3.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -2.9265e-01 ──▶ -3.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 1.0000e-01 Parameter p1 = -3.9265e-01 ──▶ -4.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -3.9265e-01 ──▶ -4.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 1.0000e-01 Parameter p1 = -4.9265e-01 ──▶ -5.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -4.9265e-01 ──▶ -5.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 1.0000e-01 Parameter p1 = -5.9265e-01 ──▶ -6.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -5.9265e-01 ──▶ -6.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 1.0000e-01 Parameter p1 = -6.9265e-01 ──▶ -7.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -6.9265e-01 ──▶ -7.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 1.0000e-01 Parameter p1 = -7.9265e-01 ──▶ -8.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -7.9265e-01 ──▶ -8.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 1.0000e-01 Parameter p1 = -8.9265e-01 ──▶ -9.9265e-01 [guess] ──▶ Step Converged in 0 Nonlinear Iteration(s) Parameter p1 = -8.9265e-01 ──▶ -9.9265e-01 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 1.0000e-01 Parameter p1 = -9.9265e-01 ──▶ -1.0000e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -9.9265e-01 ──▶ -1.0000e+00 ──▶ Computed 1 eigenvalues in 1 iterations, #unstable = 0 Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ┌─ Normal form computation for 1d kernel ├─ analyse bifurcation at p = -2.8189256484623115e-17 ├─ smallest eigenvalue at bifurcation = 5.637851296924623e-17 ┌── left eigenvalues = 1-element Vector{ComplexF64}: 5.637851296924623e-17 + 0.0im ├── right eigenvalue = 5.637851296924623e-17 └── left eigenvalue = 5.637851296924623e-17 + 0.0im ┌── Normal form: a01⋅δp1 + a02⋅δp1²/2 + b11⋅x⋅δp1 + b20⋅x²/2 + b30⋅x³/6 ├─── a01 = 5.637851296924623e-17 ├─── a02 = -2.0 ├─── b11 = 0.0 ├─── b20/2 = 1.0 └─── b30/6 = 0.0 BranchPoint bifurcation point at p1 ≈ -2.8189256484623115e-17 Normal form (a01⋅δp1 + a02⋅δp1²/2 + b10⋅x⋅δp1 + b20⋅x²/2 + b30⋅x³/6) ┌─ a01 = 5.637851296924623e-17 ├─ a02 = -2.0 ├─ b11 = 0.0 ├─ b20 = 2.0 └─ b30 = 0.0 Normal forms: Error During Test at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:38 Got exception outside of a @test LoadError: matrix does not have contiguous columns Stacktrace: [1] error(s::String) @ Base ./error.jl:44 [2] _chkstride1(ok::Bool) @ LinearAlgebra /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/LinearAlgebra.jl:301 ┌ [3] _chkstride1 │ @ /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/LinearAlgebra.jl:302 [inlined] ╰──── repeated 2 times [5] chkstride1 @ /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/LinearAlgebra.jl:300 [inlined] [6] lacpy!(B::SubArray{Float64, 2, Array{Float64, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}, A::Matrix{Float64}, uplo::Char) @ LinearAlgebra.LAPACK /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/lapack.jl:7179 [7] copytrito! @ /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/generic.jl:2171 [inlined] [8] _copyto! @ /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/symmetric.jl:418 [inlined] [9] copyto! @ /opt/julia/share/julia/stdlib/v1.14/LinearAlgebra/src/symmetric.jl:413 [inlined] [10] copyto! @ ./broadcast.jl:987 [inlined] [11] copyto! @ ./broadcast.jl:946 [inlined] [12] materialize! @ ./broadcast.jl:904 [inlined] [13] materialize!(dest::SubArray{Float64, 2, Array{Float64, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}, bc::Base.Broadcast.Broadcasted{Base.Broadcast.DefaultArrayStyle{2}, Nothing, typeof(identity), Tuple{Symmetric{Float64, Matrix{Float64}}}}) @ Base.Broadcast ./broadcast.jl:901 [14] top-level scope @ ~/.julia/packages/BifurcationKit/q52qN/test/testNF.jl:185 [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [16] top-level scope @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:8 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1995 [inlined] [18] macro expansion @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:40 [inlined] [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1995 [inlined] [20] macro expansion @ ~/.julia/packages/BifurcationKit/q52qN/test/runtests.jl:40 [inlined] [21] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [22] top-level scope @ none:6 [23] eval(m::Module, e::Any) @ Core ./boot.jl:489 [24] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [25] _start() @ Base ./client.jl:585 in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testNF.jl:158 WARNING: Method definition testBranch(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/test_bif_detection.jl:18 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/event.jl:29. ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──────────────────────── PALC ──────────────────────── ━━━━━━━━━━━━━━━━━━ INITIAL GUESS ━━━━━━━━━━━━━━━━━━ ──▶ convergence of initial guess = OK ──▶ parameter = -3.0, initial step ━━━━━━━━━━━━━━━━━━ INITIAL TANGENT ━━━━━━━━━━━━━━━━━━ ──▶ convergence of the initial guess = OK ──▶ parameter = -2.9999933333333333, initial step (bis) Predictor: Secant ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 0 Step size = 1.0000e-03 Parameter p1 = -3.0000e+00 ──▶ -2.9986e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -3.0000e+00 ──▶ -2.9986e+00 Predictor: Secant ──▶ Event values: (-1.0,) ──▶ (-0.9986180397827904,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 1 Step size = 1.3200e-03 Parameter p1 = -2.9986e+00 ──▶ -2.9968e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9986e+00 ──▶ -2.9968e+00 Predictor: Secant ──▶ Event values: (-0.9986180397827904,) ──▶ (-0.9967938908852547,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 2 Step size = 1.7424e-03 Parameter p1 = -2.9968e+00 ──▶ -2.9944e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9968e+00 ──▶ -2.9944e+00 Predictor: Secant ──▶ Event values: (-0.9967938908852547,) ──▶ (-0.9943860817140209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 3 Step size = 2.3000e-03 Parameter p1 = -2.9944e+00 ──▶ -2.9912e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9944e+00 ──▶ -2.9912e+00 Predictor: Secant ──▶ Event values: (-0.9943860817140209,) ──▶ (-0.9912078912990223,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 4 Step size = 3.0360e-03 Parameter p1 = -2.9912e+00 ──▶ -2.9870e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9912e+00 ──▶ -2.9870e+00 Predictor: Secant ──▶ Event values: (-0.9912078912990223,) ──▶ (-0.9870128857077405,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 5 Step size = 4.0075e-03 Parameter p1 = -2.9870e+00 ──▶ -2.9815e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9870e+00 ──▶ -2.9815e+00 Predictor: Secant ──▶ Event values: (-0.9870128857077405,) ──▶ (-0.9814758384373605,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 6 Step size = 5.2899e-03 Parameter p1 = -2.9815e+00 ──▶ -2.9742e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9815e+00 ──▶ -2.9742e+00 Predictor: Secant ──▶ Event values: (-0.9814758384373605,) ──▶ (-0.9741675672042343,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 7 Step size = 6.9826e-03 Parameter p1 = -2.9742e+00 ──▶ -2.9645e+00 [guess] ──▶ Step Converged in 1 Nonlinear Iteration(s) Parameter p1 = -2.9742e+00 ──▶ -2.9645e+00 Predictor: Secant ──▶ Event values: (-0.9741675672042343,) ──▶ (-0.96452175753054,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 8 Step size = 9.2170e-03 Parameter p1 = -2.9645e+00 ──▶ -2.9518e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9645e+00 ──▶ -2.9518e+00 Predictor: Secant ──▶ Event values: (-0.96452175753054,) ──▶ (-0.9517912400484199,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 9 Step size = 1.0876e-02 Parameter p1 = -2.9518e+00 ──▶ -2.9368e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9518e+00 ──▶ -2.9368e+00 Predictor: Secant ──▶ Event values: (-0.9517912400484199,) ──▶ (-0.9367721236855182,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 10 Step size = 1.2834e-02 Parameter p1 = -2.9368e+00 ──▶ -2.9190e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9368e+00 ──▶ -2.9191e+00 Predictor: Secant ──▶ Event values: (-0.9367721236855182,) ──▶ (-0.9190536628212209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 11 Step size = 1.5144e-02 Parameter p1 = -2.9191e+00 ──▶ -2.8981e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.9191e+00 ──▶ -2.8982e+00 Predictor: Secant ──▶ Event values: (-0.9190536628212209,) ──▶ (-0.8981516940574208,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 12 Step size = 1.7870e-02 Parameter p1 = -2.8982e+00 ──▶ -2.8735e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8982e+00 ──▶ -2.8735e+00 Predictor: Secant ──▶ Event values: (-0.8981516940574208,) ──▶ (-0.8734956562166514,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 13 Step size = 2.1086e-02 Parameter p1 = -2.8735e+00 ──▶ -2.8444e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8735e+00 ──▶ -2.8444e+00 Predictor: Secant ──▶ Event values: (-0.8734956562166514,) ──▶ (-0.8444133892830563,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 14 Step size = 2.4882e-02 Parameter p1 = -2.8444e+00 ──▶ -2.8101e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8444e+00 ──▶ -2.8101e+00 Predictor: Secant ──▶ Event values: (-0.8444133892830563,) ──▶ (-0.8101133767613113,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 15 Step size = 2.9361e-02 Parameter p1 = -2.8101e+00 ──▶ -2.7696e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.8101e+00 ──▶ -2.7697e+00 Predictor: Secant ──▶ Event values: (-0.8101133767613113,) ──▶ (-0.7696640758044886,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 16 Step size = 3.4646e-02 Parameter p1 = -2.7697e+00 ──▶ -2.7219e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.7697e+00 ──▶ -2.7220e+00 Predictor: Secant ──▶ Event values: (-0.7696640758044886,) ──▶ (-0.7219699866515135,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 17 Step size = 4.0882e-02 Parameter p1 = -2.7220e+00 ──▶ -2.6657e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.7220e+00 ──▶ -2.6657e+00 Predictor: Secant ──▶ Event values: (-0.7219699866515135,) ──▶ (-0.665744179332389,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 18 Step size = 4.8240e-02 Parameter p1 = -2.6657e+00 ──▶ -2.5994e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.6657e+00 ──▶ -2.5995e+00 Predictor: Secant ──▶ Event values: (-0.665744179332389,) ──▶ (-0.5994771888264152,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 19 Step size = 5.6924e-02 Parameter p1 = -2.5995e+00 ──▶ -2.5213e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.5995e+00 ──▶ -2.5214e+00 Predictor: Secant ──▶ Event values: (-0.5994771888264152,) ──▶ (-0.5214026576247006,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 20 Step size = 6.7170e-02 Parameter p1 = -2.5214e+00 ──▶ -2.4293e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.5214e+00 ──▶ -2.4295e+00 Predictor: Secant ──▶ Event values: (-0.5214026576247006,) ──▶ (-0.42946118865407445,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 21 Step size = 7.9261e-02 Parameter p1 = -2.4295e+00 ──▶ -2.3210e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.4295e+00 ──▶ -2.3213e+00 Predictor: Secant ──▶ Event values: (-0.42946118865407445,) ──▶ (-0.3212664214828238,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 22 Step size = 9.3528e-02 Parameter p1 = -2.3213e+00 ──▶ -2.1936e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.3213e+00 ──▶ -2.1941e+00 Predictor: Secant ──▶ Event values: (-0.3212664214828238,) ──▶ (-0.19408367690357897,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 23 Step size = 1.0000e-01 Parameter p1 = -2.1941e+00 ──▶ -2.0581e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1941e+00 ──▶ -2.0588e+00 Predictor: Secant ──▶ Event values: (-0.19408367690357897,) ──▶ (-0.05881845865952107,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 24 Step size = 1.0000e-01 Parameter p1 = -2.0588e+00 ──▶ -1.9236e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.0588e+00 ──▶ -1.9245e+00 Predictor: Secant ──▶ Event values: (-0.05881845865952107,) ──▶ (0.07549051070721369,) ──▶ Event detected before p = -1.9245094892927863 ────▶ Entering [location event], indicator of 2 last events = (1, 0) ────▶ [Bisection] initial ds = 0.1 ────▶ [Bisection] state.ds = -0.1 ──▶ eve (initial) (-0.05881845865952107,) ──▶ (0.07549051070721369,) ────▶ eve (current) (0.07549051070721369,) ──▶ (0.07549051070721369,) ────▶ 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.05, p = -1.9245094892927863, #reverse = 0 ────▶ event ∈ (-2.058818458659521, -1.9245094892927863), precision = 1.343E-01 Predictor: Secant ────▶ eve (current) (0.07549051070721369,) ──▶ (0.008492072644623372,) ────▶ 1 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.025, p = -1.9915079273553766, #reverse = 0 ────▶ event ∈ (-2.058818458659521, -1.9915079273553766), precision = 6.731E-02 Predictor: Secant ────▶ eve (current) (0.008492072644623372,) ──▶ (-0.025114103463261817,) ────▶ 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0125, p = -2.025114103463262, #reverse = 1 ────▶ event ∈ (-2.025114103463262, -1.9915079273553766), precision = 3.361E-02 Predictor: Secant ────▶ eve (current) (-0.025114103463261817,) ──▶ (-0.008303466162076223,) ────▶ 3 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00625, p = -2.0083034661620762, #reverse = 1 ────▶ event ∈ (-2.0083034661620762, -1.9915079273553766), precision = 1.680E-02 Predictor: Secant ────▶ eve (current) (-0.008303466162076223,) ──▶ (9.56526144793024e-5,) ────▶ 4 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.003125, p = -1.9999043473855207, #reverse = 2 ────▶ event ∈ (-2.0083034661620762, -1.9999043473855207), precision = 8.399E-03 Predictor: Secant ────▶ eve (current) (9.56526144793024e-5,) ──▶ (-0.004103370599878975,) ────▶ 5 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0015625, p = -2.004103370599879, #reverse = 3 ────▶ event ∈ (-2.004103370599879, -1.9999043473855207), precision = 4.199E-03 Predictor: Secant ────▶ eve (current) (-0.004103370599878975,) ──▶ (-0.0020037272833750563,) ────▶ 6 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00078125, p = -2.002003727283375, #reverse = 3 ────▶ event ∈ (-2.002003727283375, -1.9999043473855207), precision = 2.099E-03 Predictor: Secant ────▶ eve (current) (-0.0020037272833750563,) ──▶ (-0.0009540044314153562,) ────▶ 7 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.000390625, p = -2.0009540044314154, #reverse = 3 ────▶ event ∈ (-2.0009540044314154, -1.9999043473855207), precision = 1.050E-03 Predictor: Secant ────▶ eve (current) (-0.0009540044314153562,) ──▶ (-0.00042916779351820367,) ────▶ 8 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0001953125, p = -2.000429167793518, #reverse = 3 ────▶ event ∈ (-2.000429167793518, -1.9999043473855207), precision = 5.248E-04 Predictor: Secant ────▶ eve (current) (-0.00042916779351820367,) ──▶ (-0.00016675567748913878,) ────▶ 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 9.765625e-5, p = -2.000166755677489, #reverse = 3 ────▶ event ∈ (-2.000166755677489, -1.9999043473855207), precision = 2.624E-04 Predictor: Secant ────▶ eve (current) (-0.00016675567748913878,) ──▶ (-3.5551170945780086e-5,) ────▶ 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 4.8828125e-5, p = -2.000035551170946, #reverse = 3 ────▶ event ∈ (-2.000035551170946, -1.9999043473855207), precision = 1.312E-04 Predictor: Secant ────▶ eve (current) (-3.5551170945780086e-5,) ──▶ (3.005069436556873e-5,) ────▶ 11 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -2.44140625e-5, p = -1.9999699493056344, #reverse = 4 ────▶ event ∈ (-2.000035551170946, -1.9999699493056344), precision = 6.560E-05 Predictor: Secant ────▶ eve (current) (3.005069436556873e-5,) ──▶ (-2.75020595363884e-6,) ────▶ 12 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 1.220703125e-5, p = -2.0000027502059536, #reverse = 5 ────▶ event ∈ (-2.0000027502059536, -1.9999699493056344), precision = 3.280E-05 Predictor: Secant ────▶ eve (current) (-2.75020595363884e-6,) ──▶ (1.3650244205853923e-5,) ────▶ 13 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -6.103515625e-6, p = -1.9999863497557941, #reverse = 6 ────▶ event ∈ (-2.0000027502059536, -1.9999863497557941), precision = 1.640E-05 Predictor: Secant ────▶ eve (current) (1.3650244205853923e-5,) ──▶ (5.450019125996519e-6,) ────▶ 14 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.0517578125e-6, p = -1.999994549980874, #reverse = 6 ────▶ event ∈ (-2.0000027502059536, -1.999994549980874), precision = 8.200E-06 Predictor: Secant ────▶ eve (current) (5.450019125996519e-6,) ──▶ (1.3499065860678172e-6,) ────▶ 15 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.52587890625e-6, p = -1.999998650093414, #reverse = 6 ────▶ event ∈ (-2.0000027502059536, -1.999998650093414), precision = 4.100E-06 Predictor: Secant ────▶ eve (current) (1.3499065860678172e-6,) ──▶ (-7.001496840075561e-7,) ────▶ 16 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 7.62939453125e-7, p = -2.000000700149684, #reverse = 7 ────▶ event ∈ (-2.000000700149684, -1.999998650093414), precision = 2.050E-06 Predictor: Secant ────▶ eve (current) (-7.001496840075561e-7,) ──▶ (3.248784510301306e-7,) ────▶ 17 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.814697265625e-7, p = -1.999999675121549, #reverse = 8 ────▶ event ∈ (-2.000000700149684, -1.999999675121549), precision = 1.025E-06 ────▶ Found at p = -1.999999675121549 ∈ (-2.000000700149684, -1.999999675121549), δn = 1, from p = -1.9245094892927863 ──────────────────────────────────────── ────▶ Stopping reason: ──────▶ isnothing(next) = false ──────▶ |ds| < dsmin_bisection = false ──────▶ step >= max_bisection_steps = false ──────▶ n_inversion >= n_inversion = true ──────▶ eventlocated = false ────▶ Leaving [location event] !! Continuous user point at p ≈ -1.999999675121549 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 25 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ──▶ -1.8656e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ──▶ -1.8662e+00 Predictor: Secant ──▶ Event values: (3.248784510301306e-7,) ──▶ (0.13376907259808446,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 26 Step size = 1.0000e-01 Parameter p1 = -1.8662e+00 ──▶ -1.7325e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.8662e+00 ──▶ -1.7339e+00 Predictor: Secant ──▶ Event values: (0.13376907259808446,) ──▶ (0.2661007198163412,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 27 Step size = 1.0000e-01 Parameter p1 = -1.7339e+00 ──▶ -1.6016e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.7339e+00 ──▶ -1.6037e+00 Predictor: Secant ──▶ Event values: (0.2661007198163412,) ──▶ (0.39634082668118786,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 28 Step size = 1.0000e-01 Parameter p1 = -1.6037e+00 ──▶ -1.4735e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.6037e+00 ──▶ -1.4766e+00 Predictor: Secant ──▶ Event values: (0.39634082668118786,) ──▶ (0.5233942744616238,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 29 Step size = 1.0000e-01 Parameter p1 = -1.4766e+00 ──▶ -1.3498e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.4766e+00 ──▶ -1.3549e+00 Predictor: Secant ──▶ Event values: (0.5233942744616238,) ──▶ (0.645113120545397,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 30 Step size = 1.0000e-01 Parameter p1 = -1.3549e+00 ──▶ -1.2336e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3549e+00 ──▶ -1.2434e+00 Predictor: Secant ──▶ Event values: (0.645113120545397,) ──▶ (0.7565581496409486,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 31 Step size = 1.0000e-01 Parameter p1 = -1.2434e+00 ──▶ -1.1330e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2434e+00 ──▶ -1.1565e+00 Predictor: Secant ──▶ Event values: (0.7565581496409486,) ──▶ (0.843533165755711,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 32 Step size = 1.0000e-01 Parameter p1 = -1.1565e+00 ──▶ -1.0725e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -1.1565e+00 ──▶ -1.1401e+00 Predictor: Secant ──▶ Event values: (0.843533165755711,) ──▶ (0.859856445339866,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 33 Step size = 1.0000e-01 Parameter p1 = -1.1401e+00 ──▶ -1.1261e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.1401e+00 ──▶ -1.2170e+00 Predictor: Secant ──▶ Event values: (0.859856445339866,) ──▶ (0.7830454777064411,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 34 Step size = 1.0000e-01 Parameter p1 = -1.2170e+00 ──▶ -1.2814e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2170e+00 ──▶ -1.3157e+00 Predictor: Secant ──▶ Event values: (0.7830454777064411,) ──▶ (0.6843239057500137,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 35 Step size = 1.0000e-01 Parameter p1 = -1.3157e+00 ──▶ -1.4109e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3157e+00 ──▶ -1.4228e+00 Predictor: Secant ──▶ Event values: (0.6843239057500137,) ──▶ (0.5771656121054785,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 36 Step size = 1.0000e-01 Parameter p1 = -1.4228e+00 ──▶ -1.5293e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.4228e+00 ──▶ -1.5348e+00 Predictor: Secant ──▶ Event values: (0.5771656121054785,) ──▶ (0.46516753224958163,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 37 Step size = 1.0000e-01 Parameter p1 = -1.5348e+00 ──▶ -1.6466e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.5348e+00 ──▶ -1.6493e+00 Predictor: Secant ──▶ Event values: (0.46516753224958163,) ──▶ (0.3506902873778335,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 38 Step size = 1.0000e-01 Parameter p1 = -1.6493e+00 ──▶ -1.7637e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.6493e+00 ──▶ -1.7647e+00 Predictor: Secant ──▶ Event values: (0.3506902873778335,) ──▶ (0.23529609391134554,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 39 Step size = 1.0000e-01 Parameter p1 = -1.7647e+00 ──▶ -1.8801e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.7647e+00 ──▶ -1.8797e+00 Predictor: Secant ──▶ Event values: (0.23529609391134554,) ──▶ (0.12028173206190695,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 40 Step size = 1.0000e-01 Parameter p1 = -1.8797e+00 ──▶ -1.9947e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -1.8797e+00 ──▶ -1.9929e+00 Predictor: Secant ──▶ Event values: (0.12028173206190695,) ──▶ (0.007072528817887669,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 41 Step size = 1.0000e-01 Parameter p1 = -1.9929e+00 ──▶ -2.1061e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.9929e+00 ──▶ -2.1023e+00 Predictor: Secant ──▶ Event values: (0.007072528817887669,) ──▶ (-0.10226139090966058,) ──▶ Event detected before p = -2.1022613909096606 ────▶ Entering [location event], indicator of 2 last events = (0, 1) ────▶ [Bisection] initial ds = 0.1 ────▶ [Bisection] state.ds = -0.1 ──▶ eve (initial) (0.007072528817887669,) ──▶ (-0.10226139090966058,) ────▶ eve (current) (-0.10226139090966058,) ──▶ (-0.10226139090966058,) ────▶ 0 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.05, p = -2.1022613909096606, #reverse = 0 ────▶ event ∈ (-2.1022613909096606, -1.9929274711821123), precision = 1.093E-01 Predictor: Secant ────▶ eve (current) (-0.10226139090966058,) ──▶ (-0.04833608289578972,) ────▶ 1 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.025, p = -2.0483360828957897, #reverse = 0 ────▶ event ∈ (-2.0483360828957897, -1.9929274711821123), precision = 5.541E-02 Predictor: Secant ────▶ eve (current) (-0.04833608289578972,) ──▶ (-0.020830735714093773,) ────▶ 2 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.0125, p = -2.0208307357140938, #reverse = 0 ────▶ event ∈ (-2.0208307357140938, -1.9929274711821123), precision = 2.790E-02 Predictor: Secant ────▶ eve (current) (-0.020830735714093773,) ──▶ (-0.0069715838769197624,) ────▶ 3 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.00625, p = -2.0069715838769198, #reverse = 0 ────▶ event ∈ (-2.0069715838769198, -1.9929274711821123), precision = 1.404E-02 Predictor: Secant ────▶ eve (current) (-0.0069715838769197624,) ──▶ (-1.7439125403306832e-5,) ────▶ 4 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -0.003125, p = -2.0000174391254033, #reverse = 0 ────▶ event ∈ (-2.0000174391254033, -1.9929274711821123), precision = 7.090E-03 Predictor: Secant ────▶ eve (current) (-1.7439125403306832e-5,) ──▶ (0.003465515391908758,) ────▶ 5 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.0015625, p = -1.9965344846080912, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9965344846080912), precision = 3.483E-03 Predictor: Secant ────▶ eve (current) (0.003465515391908758,) ──▶ (0.0017235585119625974,) ────▶ 6 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.00078125, p = -1.9982764414880374, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9982764414880374), precision = 1.741E-03 Predictor: Secant ────▶ eve (current) (0.0017235585119625974,) ──▶ (0.0008529423156780069,) ────▶ 7 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.000390625, p = -1.999147057684322, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.999147057684322), precision = 8.704E-04 Predictor: Secant ────▶ eve (current) (0.0008529423156780069,) ──▶ (0.00041772541266538177,) ────▶ 8 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 0.0001953125, p = -1.9995822745873346, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9995822745873346), precision = 4.352E-04 Predictor: Secant ────▶ eve (current) (0.00041772541266538177,) ──▶ (0.0002001398248798747,) ────▶ 9 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 9.765625e-5, p = -1.9997998601751201, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9997998601751201), precision = 2.176E-04 Predictor: Secant ────▶ eve (current) (0.0002001398248798747,) ──▶ (9.135275504923435e-5,) ────▶ 10 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 4.8828125e-5, p = -1.9999086472449508, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9999086472449508), precision = 1.088E-04 Predictor: Secant ────▶ eve (current) (9.135275504923435e-5,) ──▶ (3.696065216596267e-5,) ────▶ 11 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 2.44140625e-5, p = -1.999963039347834, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.999963039347834), precision = 5.440E-05 Predictor: Secant ────▶ eve (current) (3.696065216596267e-5,) ──▶ (9.764958859515005e-6,) ────▶ 12 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 1.220703125e-5, p = -1.9999902350411405, #reverse = 1 ────▶ event ∈ (-2.0000174391254033, -1.9999902350411405), precision = 2.720E-05 Predictor: Secant ────▶ eve (current) (9.764958859515005e-6,) ──▶ (-3.832798244118862e-6,) ────▶ 13 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -6.103515625e-6, p = -2.000003832798244, #reverse = 2 ────▶ event ∈ (-2.000003832798244, -1.9999902350411405), precision = 1.360E-05 Predictor: Secant ────▶ eve (current) (-3.832798244118862e-6,) ──▶ (2.9660803073650044e-6,) ────▶ 14 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 3.0517578125e-6, p = -1.9999970339196926, #reverse = 3 ────▶ event ∈ (-2.000003832798244, -1.9999970339196926), precision = 6.799E-06 Predictor: Secant ────▶ eve (current) (2.9660803073650044e-6,) ──▶ (-4.333589682659067e-7,) ────▶ 15 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -1.52587890625e-6, p = -2.0000004333589683, #reverse = 4 ────▶ event ∈ (-2.0000004333589683, -1.9999970339196926), precision = 3.399E-06 Predictor: Secant ────▶ eve (current) (-4.333589682659067e-7,) ──▶ (1.2663606696605711e-6,) ────▶ 16 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 7.62939453125e-7, p = -1.9999987336393303, #reverse = 5 ────▶ event ∈ (-2.0000004333589683, -1.9999987336393303), precision = 1.700E-06 Predictor: Secant ────▶ eve (current) (1.2663606696605711e-6,) ──▶ (4.165008506973322e-7,) ────▶ 17 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 3.814697265625e-7, p = -1.9999995834991493, #reverse = 5 ────▶ event ∈ (-2.0000004333589683, -1.9999995834991493), precision = 8.499E-07 Predictor: Secant ────▶ eve (current) (4.165008506973322e-7,) ──▶ (-8.429058784287236e-9,) ────▶ 18 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -1.9073486328125e-7, p = -2.000000008429059, #reverse = 6 ────▶ event ∈ (-2.000000008429059, -1.9999995834991493), precision = 4.249E-07 Predictor: Secant ────▶ eve (current) (-8.429058784287236e-9,) ──▶ (2.040358959565225e-7,) ────▶ 19 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 9.5367431640625e-8, p = -1.999999795964104, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.999999795964104), precision = 2.125E-07 Predictor: Secant ────▶ eve (current) (2.040358959565225e-7,) ──▶ (9.780341869713993e-8,) ────▶ 20 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 4.76837158203125e-8, p = -1.9999999021965813, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.9999999021965813), precision = 1.062E-07 Predictor: Secant ────▶ eve (current) (9.780341869713993e-8,) ──▶ (4.468717995642635e-8,) ────▶ 21 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 2.384185791015625e-8, p = -1.99999995531282, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.99999995531282), precision = 5.312E-08 Predictor: Secant ────▶ eve (current) (4.468717995642635e-8,) ──▶ (1.812906069709186e-8,) ────▶ 22 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 1.1920928955078126e-8, p = -1.9999999818709393, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.9999999818709393), precision = 2.656E-08 Predictor: Secant ────▶ eve (current) (1.812906069709186e-8,) ──▶ (4.850001067424614e-9,) ────▶ 23 - [Bisection] (n1, n_current, n2) = (1, 1, 0) ds = 5.960464477539063e-9, p = -1.999999995149999, #reverse = 7 ────▶ event ∈ (-2.000000008429059, -1.999999995149999), precision = 1.328E-08 Predictor: Secant ────▶ eve (current) (4.850001067424614e-9,) ──▶ (-1.7895289694536132e-9,) ────▶ 24 - [Bisection] (n1, n_current, n2) = (1, 0, 0) ds = -2.9802322387695314e-9, p = -2.000000001789529, #reverse = 8 ────▶ event ∈ (-2.000000001789529, -1.999999995149999), precision = 6.640E-09 ────▶ Found at p = -2.000000001789529 ∈ (-2.000000001789529, -1.999999995149999), δn = 1, from p = -2.1022613909096606 ──────────────────────────────────────── ────▶ Stopping reason: ──────▶ isnothing(next) = false ──────▶ |ds| < dsmin_bisection = false ──────▶ step >= max_bisection_steps = false ──────▶ n_inversion >= n_inversion = true ──────▶ eventlocated = false ────▶ Leaving [location event] !! Continuous user point at p ≈ -2.000000001789529 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 42 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ──▶ -2.1114e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ──▶ -2.1089e+00 Predictor: Secant ──▶ Event values: (-1.7895289694536132e-9,) ──▶ (-0.10890835885567185,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 43 Step size = 1.0000e-01 Parameter p1 = -2.1089e+00 ──▶ -2.2178e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1089e+00 ──▶ -2.2098e+00 Predictor: Secant ──▶ Event values: (-0.10890835885567185,) ──▶ (-0.20978632802030273,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 44 Step size = 1.0000e-01 Parameter p1 = -2.2098e+00 ──▶ -2.3103e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.2098e+00 ──▶ -2.2925e+00 Predictor: Secant ──▶ Event values: (-0.20978632802030273,) ──▶ (-0.2924701488272867,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 45 Step size = 1.0000e-01 Parameter p1 = -2.2925e+00 ──▶ -2.3738e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = -2.2925e+00 ──▶ -2.3234e+00 Predictor: Secant ──▶ Event values: (-0.2924701488272867,) ──▶ (-0.3233667252269701,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 46 Step size = 1.0000e-01 Parameter p1 = -2.3234e+00 ──▶ -2.3516e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.3234e+00 ──▶ -2.2370e+00 Predictor: Secant ──▶ Event values: (-0.3233667252269701,) ──▶ (-0.23703871354801942,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 47 Step size = 1.0000e-01 Parameter p1 = -2.2370e+00 ──▶ -2.1710e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.2370e+00 ──▶ -2.1183e+00 Predictor: Secant ──▶ Event values: (-0.23703871354801942,) ──▶ (-0.11833171560464839,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 48 Step size = 1.0000e-01 Parameter p1 = -2.1183e+00 ──▶ -2.0095e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.1183e+00 ──▶ -1.9961e+00 Predictor: Secant ──▶ Event values: (-0.11833171560464839,) ──▶ (0.003928127321359609,) ──▶ Event detected before p = -1.9960718726786404 ────▶ Entering [location event], indicator of 2 last events = (1, 0) ────▶ [Bisection] initial ds = 0.1 ────▶ [Bisection] state.ds = -0.1 ──▶ eve (initial) (-0.11833171560464839,) ──▶ (0.003928127321359609,) ────▶ eve (current) (0.003928127321359609,) ──▶ (0.003928127321359609,) ────▶ 0 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.05, p = -1.9960718726786404, #reverse = 0 ────▶ event ∈ (-2.1183317156046484, -1.9960718726786404), precision = 1.223E-01 Predictor: Secant ────▶ eve (current) (0.003928127321359609,) ──▶ (-0.05726063351211952,) ────▶ 1 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.025, p = -2.0572606335121195, #reverse = 1 ────▶ event ∈ (-2.0572606335121195, -1.9960718726786404), precision = 6.119E-02 Predictor: Secant ────▶ eve (current) (-0.05726063351211952,) ──▶ (-0.026850515268071806,) ────▶ 2 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0125, p = -2.026850515268072, #reverse = 1 ────▶ event ∈ (-2.026850515268072, -1.9960718726786404), precision = 3.078E-02 Predictor: Secant ────▶ eve (current) (-0.026850515268071806,) ──▶ (-0.011511713646775945,) ────▶ 3 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00625, p = -2.011511713646776, #reverse = 1 ────▶ event ∈ (-2.011511713646776, -1.9960718726786404), precision = 1.544E-02 Predictor: Secant ────▶ eve (current) (-0.011511713646775945,) ──▶ (-0.0038138853701057407,) ────▶ 4 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.003125, p = -2.0038138853701057, #reverse = 1 ────▶ event ∈ (-2.0038138853701057, -1.9960718726786404), precision = 7.742E-03 Predictor: Secant ────▶ eve (current) (-0.0038138853701057407,) ──▶ (4.189180612179655e-5,) ────▶ 5 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -0.0015625, p = -1.9999581081938782, #reverse = 2 ────▶ event ∈ (-2.0038138853701057, -1.9999581081938782), precision = 3.856E-03 Predictor: Secant ────▶ eve (current) (4.189180612179655e-5,) ──▶ (-0.0018865490239239335,) ────▶ 6 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.00078125, p = -2.001886549023924, #reverse = 3 ────▶ event ∈ (-2.001886549023924, -1.9999581081938782), precision = 1.928E-03 Predictor: Secant ────▶ eve (current) (-0.0018865490239239335,) ──▶ (-0.0009224706948671724,) ────▶ 7 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.000390625, p = -2.000922470694867, #reverse = 3 ────▶ event ∈ (-2.000922470694867, -1.9999581081938782), precision = 9.644E-04 Predictor: Secant ────▶ eve (current) (-0.0009224706948671724,) ──▶ (-0.0004403250183258045,) ────▶ 8 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 0.0001953125, p = -2.000440325018326, #reverse = 3 ────▶ event ∈ (-2.000440325018326, -1.9999581081938782), precision = 4.822E-04 Predictor: Secant ────▶ eve (current) (-0.0004403250183258045,) ──▶ (-0.00019922567926533574,) ────▶ 9 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 9.765625e-5, p = -2.0001992256792653, #reverse = 3 ────▶ event ∈ (-2.0001992256792653, -1.9999581081938782), precision = 2.411E-04 Predictor: Secant ────▶ eve (current) (-0.00019922567926533574,) ──▶ (-7.866939260958716e-5,) ────▶ 10 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 4.8828125e-5, p = -2.0000786693926096, #reverse = 3 ────▶ event ∈ (-2.0000786693926096, -1.9999581081938782), precision = 1.206E-04 Predictor: Secant ────▶ eve (current) (-7.866939260958716e-5,) ──▶ (-1.8389596001977537e-5,) ────▶ 11 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 2.44140625e-5, p = -2.000018389596002, #reverse = 3 ────▶ event ∈ (-2.000018389596002, -1.9999581081938782), precision = 6.028E-05 Predictor: Secant ────▶ eve (current) (-1.8389596001977537e-5,) ──▶ (1.175071549641693e-5,) ────▶ 12 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.220703125e-5, p = -1.9999882492845036, #reverse = 4 ────▶ event ∈ (-2.000018389596002, -1.9999882492845036), precision = 3.014E-05 Predictor: Secant ────▶ eve (current) (1.175071549641693e-5,) ──▶ (-3.319474676022338e-6,) ────▶ 13 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 6.103515625e-6, p = -2.000003319474676, #reverse = 5 ────▶ event ∈ (-2.000003319474676, -1.9999882492845036), precision = 1.507E-05 Predictor: Secant ────▶ eve (current) (-3.319474676022338e-6,) ──▶ (4.215620410086274e-6,) ────▶ 14 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -3.0517578125e-6, p = -1.99999578437959, #reverse = 6 ────▶ event ∈ (-2.000003319474676, -1.99999578437959), precision = 7.535E-06 Predictor: Secant ────▶ eve (current) (4.215620410086274e-6,) ──▶ (4.480728670319678e-7,) ────▶ 15 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -1.52587890625e-6, p = -1.999999551927133, #reverse = 6 ────▶ event ∈ (-2.000003319474676, -1.999999551927133), precision = 3.768E-06 Predictor: Secant ────▶ eve (current) (4.480728670319678e-7,) ──▶ (-1.4357009043841629e-6,) ────▶ 16 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 7.62939453125e-7, p = -2.0000014357009044, #reverse = 7 ────▶ event ∈ (-2.0000014357009044, -1.999999551927133), precision = 1.884E-06 Predictor: Secant ────▶ eve (current) (-1.4357009043841629e-6,) ──▶ (-4.938140185650752e-7,) ────▶ 17 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 3.814697265625e-7, p = -2.0000004938140186, #reverse = 7 ────▶ event ∈ (-2.0000004938140186, -1.999999551927133), precision = 9.419E-07 Predictor: Secant ────▶ eve (current) (-4.938140185650752e-7,) ──▶ (-2.287057565553141e-8,) ────▶ 18 - [Bisection] (n1, n_current, n2) = (0, 0, 1) ds = 1.9073486328125e-7, p = -2.0000000228705757, #reverse = 7 ────▶ event ∈ (-2.0000000228705757, -1.999999551927133), precision = 4.709E-07 Predictor: Secant ────▶ eve (current) (-2.287057565553141e-8,) ──▶ (2.126011457992405e-7,) ────▶ 19 - [Bisection] (n1, n_current, n2) = (0, 1, 1) ds = -9.5367431640625e-8, p = -1.9999997873988542, #reverse = 8 ────▶ event ∈ (-2.0000000228705757, -1.9999997873988542), precision = 2.355E-07 ────▶ Found at p = -1.9999997873988542 ∈ (-2.0000000228705757, -1.9999997873988542), δn = 1, from p = -1.9960718726786404 ──────────────────────────────────────── ────▶ Stopping reason: ──────▶ isnothing(next) = false ──────▶ |ds| < dsmin_bisection = false ──────▶ step >= max_bisection_steps = false ──────▶ n_inversion >= n_inversion = true ──────▶ eventlocated = false ────▶ Leaving [location event] !! Continuous user point at p ≈ -1.9999997873988542 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 49 Step size = 1.0000e-01 Parameter p1 = -2.0000e+00 ──▶ -1.8765e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -2.0000e+00 ──▶ -1.8746e+00 Predictor: Secant ──▶ Event values: (2.126011457992405e-7,) ──▶ (0.12541454498532234,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 50 Step size = 1.0000e-01 Parameter p1 = -1.8746e+00 ──▶ -1.7493e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.8746e+00 ──▶ -1.7468e+00 Predictor: Secant ──▶ Event values: (0.12541454498532234,) ──▶ (0.2532050055403856,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 51 Step size = 1.0000e-01 Parameter p1 = -1.7468e+00 ──▶ -1.6193e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.7468e+00 ──▶ -1.6185e+00 Predictor: Secant ──▶ Event values: (0.2532050055403856,) ──▶ (0.3815317944448464,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 52 Step size = 1.0000e-01 Parameter p1 = -1.6185e+00 ──▶ -1.4904e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.6185e+00 ──▶ -1.4909e+00 Predictor: Secant ──▶ Event values: (0.3815317944448464,) ──▶ (0.5091366130302286,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 53 Step size = 1.0000e-01 Parameter p1 = -1.4909e+00 ──▶ -1.3635e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.4909e+00 ──▶ -1.3656e+00 Predictor: Secant ──▶ Event values: (0.5091366130302286,) ──▶ (0.6343913554035898,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 54 Step size = 1.0000e-01 Parameter p1 = -1.3656e+00 ──▶ -1.2408e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.3656e+00 ──▶ -1.2455e+00 Predictor: Secant ──▶ Event values: (0.6343913554035898,) ──▶ (0.7544753094687404,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 55 Step size = 1.0000e-01 Parameter p1 = -1.2455e+00 ──▶ -1.1263e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.2455e+00 ──▶ -1.1364e+00 Predictor: Secant ──▶ Event values: (0.7544753094687404,) ──▶ (0.8635986779685172,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 56 Step size = 1.0000e-01 Parameter p1 = -1.1364e+00 ──▶ -1.0290e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.1364e+00 ──▶ -1.0494e+00 Predictor: Secant ──▶ Event values: (0.8635986779685172,) ──▶ (0.9506084141369897,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 57 Step size = 1.0000e-01 Parameter p1 = -1.0494e+00 ──▶ -9.6554e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -1.0494e+00 ──▶ -9.9309e-01 Predictor: Secant ──▶ Event values: (0.9506084141369897,) ──▶ (1.0069144000262225,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 58 Step size = 1.0000e-01 Parameter p1 = -9.9309e-01 ──▶ -9.3932e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.9309e-01 ──▶ -9.5230e-01 Predictor: Secant ──▶ Event values: (1.0069144000262225,) ──▶ (1.0477009623370268,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 59 Step size = 1.0000e-01 Parameter p1 = -9.5230e-01 ──▶ -9.1236e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.5230e-01 ──▶ -9.0310e-01 Predictor: Secant ──▶ Event values: (1.0477009623370268,) ──▶ (1.0969013178742912,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 60 Step size = 1.0000e-01 Parameter p1 = -9.0310e-01 ──▶ -8.5462e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -9.0310e-01 ──▶ -8.3422e-01 Predictor: Secant ──▶ Event values: (1.0969013178742912,) ──▶ (1.1657841705131626,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 61 Step size = 1.0000e-01 Parameter p1 = -8.3422e-01 ──▶ -7.6674e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -8.3422e-01 ──▶ -7.4772e-01 Predictor: Secant ──▶ Event values: (1.1657841705131626,) ──▶ (1.2522822772796536,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 62 Step size = 1.0000e-01 Parameter p1 = -7.4772e-01 ──▶ -6.6271e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = -7.4772e-01 ──▶ -6.4971e-01 Predictor: Secant ──▶ Event values: (1.2522822772796536,) ──▶ (1.3502929305611229,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 63 Step size = 1.0000e-01 Parameter p1 = -6.4971e-01 ──▶ -5.5267e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -6.4971e-01 ──▶ -5.4462e-01 Predictor: Secant ──▶ Event values: (1.3502929305611229,) ──▶ (1.4553817482413955,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 64 Step size = 1.0000e-01 Parameter p1 = -5.4462e-01 ──▶ -4.4005e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -5.4462e-01 ──▶ -4.3511e-01 Predictor: Secant ──▶ Event values: (1.4553817482413955,) ──▶ (1.5648883530692472,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 65 Step size = 1.0000e-01 Parameter p1 = -4.3511e-01 ──▶ -3.2587e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -4.3511e-01 ──▶ -3.2282e-01 Predictor: Secant ──▶ Event values: (1.5648883530692472,) ──▶ (1.677183275755629,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 66 Step size = 1.0000e-01 Parameter p1 = -3.2282e-01 ──▶ -2.1065e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -3.2282e-01 ──▶ -2.0879e-01 Predictor: Secant ──▶ Event values: (1.677183275755629,) ──▶ (1.7912091849513005,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 67 Step size = 1.0000e-01 Parameter p1 = -2.0879e-01 ──▶ -9.4823e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -2.0879e-01 ──▶ -9.3776e-02 Predictor: Secant ──▶ Event values: (1.7912091849513005,) ──▶ (1.9062244542808213,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 68 Step size = 1.0000e-01 Parameter p1 = -9.3776e-02 ──▶ 2.1219e-02 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = -9.3776e-02 ──▶ 2.1652e-02 Predictor: Secant ──▶ Event values: (1.9062244542808213,) ──▶ (2.0216517793398854,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 69 Step size = 1.0000e-01 Parameter p1 = 2.1652e-02 ──▶ 1.3708e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.1652e-02 ──▶ 1.3698e-01 Predictor: Secant ──▶ Event values: (2.0216517793398854,) ──▶ (2.1369780139096477,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 70 Step size = 1.0000e-01 Parameter p1 = 1.3698e-01 ──▶ 2.5230e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.3698e-01 ──▶ 2.5167e-01 Predictor: Secant ──▶ Event values: (2.1369780139096477,) ──▶ (2.2516729746800506,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 71 Step size = 1.0000e-01 Parameter p1 = 2.5167e-01 ──▶ 3.6636e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.5167e-01 ──▶ 3.6510e-01 Predictor: Secant ──▶ Event values: (2.2516729746800506,) ──▶ (2.3651026972002307,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 72 Step size = 1.0000e-01 Parameter p1 = 3.6510e-01 ──▶ 4.7850e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.6510e-01 ──▶ 4.7641e-01 Predictor: Secant ──▶ Event values: (2.3651026972002307,) ──▶ (2.476410232124028,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 73 Step size = 1.0000e-01 Parameter p1 = 4.7641e-01 ──▶ 5.8764e-01 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 4.7641e-01 ──▶ 5.8432e-01 Predictor: Secant ──▶ Event values: (2.476410232124028,) ──▶ (2.5843244502911666,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 74 Step size = 1.0000e-01 Parameter p1 = 5.8432e-01 ──▶ 6.9207e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 5.8432e-01 ──▶ 6.8684e-01 Predictor: Secant ──▶ Event values: (2.5843244502911666,) ──▶ (2.686836588721522,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 75 Step size = 1.0000e-01 Parameter p1 = 6.8684e-01 ──▶ 7.8903e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 6.8684e-01 ──▶ 7.8070e-01 Predictor: Secant ──▶ Event values: (2.686836588721522,) ──▶ (2.7806968185807444,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 76 Step size = 1.0000e-01 Parameter p1 = 7.8070e-01 ──▶ 8.7396e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 7.8070e-01 ──▶ 8.6100e-01 Predictor: Secant ──▶ Event values: (2.7806968185807444,) ──▶ (2.8609966965979323,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 77 Step size = 1.0000e-01 Parameter p1 = 8.6100e-01 ──▶ 9.4031e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 8.6100e-01 ──▶ 9.2260e-01 Predictor: Secant ──▶ Event values: (2.8609966965979323,) ──▶ (2.922600575438644,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 78 Step size = 1.0000e-01 Parameter p1 = 9.2260e-01 ──▶ 9.8302e-01 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 9.2260e-01 ──▶ 9.6691e-01 Predictor: Secant ──▶ Event values: (2.922600575438644,) ──▶ (2.9669107068862424,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 79 Step size = 1.0000e-01 Parameter p1 = 9.6691e-01 ──▶ 1.0104e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 9.6691e-01 ──▶ 1.0094e+00 Predictor: Secant ──▶ Event values: (2.9669107068862424,) ──▶ (3.0094192948188434,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 80 Step size = 1.0000e-01 Parameter p1 = 1.0094e+00 ──▶ 1.0513e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.0094e+00 ──▶ 1.0744e+00 Predictor: Secant ──▶ Event values: (3.0094192948188434,) ──▶ (3.0744445773076166,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 81 Step size = 1.0000e-01 Parameter p1 = 1.0744e+00 ──▶ 1.1376e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.0744e+00 ──▶ 1.1722e+00 Predictor: Secant ──▶ Event values: (3.0744445773076166,) ──▶ (3.172207127378895,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 82 Step size = 1.0000e-01 Parameter p1 = 1.1722e+00 ──▶ 1.2654e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1722e+00 ──▶ 1.2882e+00 Predictor: Secant ──▶ Event values: (3.172207127378895,) ──▶ (3.2882375375531687,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 83 Step size = 1.0000e-01 Parameter p1 = 1.2882e+00 ──▶ 1.4009e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2882e+00 ──▶ 1.4115e+00 Predictor: Secant ──▶ Event values: (3.2882375375531687,) ──▶ (3.4115204155053718,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 84 Step size = 1.0000e-01 Parameter p1 = 1.4115e+00 ──▶ 1.5333e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.4115e+00 ──▶ 1.5382e+00 Predictor: Secant ──▶ Event values: (3.4115204155053718,) ──▶ (3.5381942223448575,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 85 Step size = 1.0000e-01 Parameter p1 = 1.5382e+00 ──▶ 1.6642e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.5382e+00 ──▶ 1.6663e+00 Predictor: Secant ──▶ Event values: (3.5381942223448575,) ──▶ (3.6663317571389515,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 86 Step size = 1.0000e-01 Parameter p1 = 1.6663e+00 ──▶ 1.7941e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.6663e+00 ──▶ 1.7946e+00 Predictor: Secant ──▶ Event values: (3.6663317571389515,) ──▶ (3.7946030314208166,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 87 Step size = 1.0000e-01 Parameter p1 = 1.7946e+00 ──▶ 1.9226e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.7946e+00 ──▶ 1.9217e+00 Predictor: Secant ──▶ Event values: (3.7946030314208166,) ──▶ (3.921744385288159,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 88 Step size = 1.0000e-01 Parameter p1 = 1.9217e+00 ──▶ 2.0486e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.9217e+00 ──▶ 2.0460e+00 Predictor: Secant ──▶ Event values: (3.921744385288159,) ──▶ (4.046023593531713,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 89 Step size = 1.0000e-01 Parameter p1 = 2.0460e+00 ──▶ 2.1699e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0460e+00 ──▶ 2.1641e+00 Predictor: Secant ──▶ Event values: (4.046023593531713,) ──▶ (4.164129866974651,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 90 Step size = 1.0000e-01 Parameter p1 = 2.1641e+00 ──▶ 2.2815e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1641e+00 ──▶ 2.2674e+00 Predictor: Secant ──▶ Event values: (4.164129866974651,) ──▶ (4.267444993331688,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 91 Step size = 1.0000e-01 Parameter p1 = 2.2674e+00 ──▶ 2.3687e+00 [guess] ──▶ Step Converged in 4 Nonlinear Iteration(s) Parameter p1 = 2.2674e+00 ──▶ 2.3248e+00 Predictor: Secant ──▶ Event values: (4.267444993331688,) ──▶ (4.32483080528498,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 92 Step size = 1.0000e-01 Parameter p1 = 2.3248e+00 ──▶ 2.3768e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.3248e+00 ──▶ 2.2685e+00 Predictor: Secant ──▶ Event values: (4.32483080528498,) ──▶ (4.268512666749669,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 93 Step size = 1.0000e-01 Parameter p1 = 2.2685e+00 ──▶ 2.2254e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.2685e+00 ──▶ 2.1710e+00 Predictor: Secant ──▶ Event values: (4.268512666749669,) ──▶ (4.1709751610279655,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 94 Step size = 1.0000e-01 Parameter p1 = 2.1710e+00 ──▶ 2.0807e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1710e+00 ──▶ 2.0653e+00 Predictor: Secant ──▶ Event values: (4.1709751610279655,) ──▶ (4.065300427118338,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 95 Step size = 1.0000e-01 Parameter p1 = 2.0653e+00 ──▶ 1.9607e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0653e+00 ──▶ 1.9541e+00 Predictor: Secant ──▶ Event values: (4.065300427118338,) ──▶ (3.9541233264145603,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 96 Step size = 1.0000e-01 Parameter p1 = 1.9541e+00 ──▶ 1.8432e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.9541e+00 ──▶ 1.8400e+00 Predictor: Secant ──▶ Event values: (3.9541233264145603,) ──▶ (3.84003868168836,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 97 Step size = 1.0000e-01 Parameter p1 = 1.8400e+00 ──▶ 1.7260e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.8400e+00 ──▶ 1.7247e+00 Predictor: Secant ──▶ Event values: (3.84003868168836,) ──▶ (3.72473172076223,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 98 Step size = 1.0000e-01 Parameter p1 = 1.7247e+00 ──▶ 1.6094e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.7247e+00 ──▶ 1.6095e+00 Predictor: Secant ──▶ Event values: (3.72473172076223,) ──▶ (3.609522573980209,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 99 Step size = 1.0000e-01 Parameter p1 = 1.6095e+00 ──▶ 1.4943e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.6095e+00 ──▶ 1.4958e+00 Predictor: Secant ──▶ Event values: (3.609522573980209,) ──▶ (3.495772482037899,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 100 Step size = 1.0000e-01 Parameter p1 = 1.4958e+00 ──▶ 1.3820e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 1.4958e+00 ──▶ 1.3853e+00 Predictor: Secant ──▶ Event values: (3.495772482037899,) ──▶ (3.385337399046192,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 101 Step size = 1.0000e-01 Parameter p1 = 1.3853e+00 ──▶ 1.2750e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.3853e+00 ──▶ 1.2815e+00 Predictor: Secant ──▶ Event values: (3.385337399046192,) ──▶ (3.281465701189963,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 102 Step size = 1.0000e-01 Parameter p1 = 1.2815e+00 ──▶ 1.1779e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2815e+00 ──▶ 1.1914e+00 Predictor: Secant ──▶ Event values: (3.281465701189963,) ──▶ (3.1913640781766954,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 103 Step size = 1.0000e-01 Parameter p1 = 1.1914e+00 ──▶ 1.1022e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1914e+00 ──▶ 1.1356e+00 Predictor: Secant ──▶ Event values: (3.1913640781766954,) ──▶ (3.135597978397435,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 104 Step size = 1.0000e-01 Parameter p1 = 1.1356e+00 ──▶ 1.0823e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1356e+00 ──▶ 1.1702e+00 Predictor: Secant ──▶ Event values: (3.135597978397435,) ──▶ (3.1701783862625046,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 105 Step size = 1.0000e-01 Parameter p1 = 1.1702e+00 ──▶ 1.1988e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.1702e+00 ──▶ 1.2776e+00 Predictor: Secant ──▶ Event values: (3.1701783862625046,) ──▶ (3.2776372880167233,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 106 Step size = 1.0000e-01 Parameter p1 = 1.2776e+00 ──▶ 1.3709e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.2776e+00 ──▶ 1.3957e+00 Predictor: Secant ──▶ Event values: (3.2776372880167233,) ──▶ (3.3957484980259682,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 107 Step size = 1.0000e-01 Parameter p1 = 1.3957e+00 ──▶ 1.5107e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.3957e+00 ──▶ 1.5202e+00 Predictor: Secant ──▶ Event values: (3.3957484980259682,) ──▶ (3.5201631136735507,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 108 Step size = 1.0000e-01 Parameter p1 = 1.5202e+00 ──▶ 1.6438e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.5202e+00 ──▶ 1.6487e+00 Predictor: Secant ──▶ Event values: (3.5201631136735507,) ──▶ (3.6486658661718128,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 109 Step size = 1.0000e-01 Parameter p1 = 1.6487e+00 ──▶ 1.7768e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.6487e+00 ──▶ 1.7798e+00 Predictor: Secant ──▶ Event values: (3.6486658661718128,) ──▶ (3.7798009519623803,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 110 Step size = 1.0000e-01 Parameter p1 = 1.7798e+00 ──▶ 1.9108e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.7798e+00 ──▶ 1.9127e+00 Predictor: Secant ──▶ Event values: (3.7798009519623803,) ──▶ (3.9127359396364834,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 111 Step size = 1.0000e-01 Parameter p1 = 1.9127e+00 ──▶ 2.0456e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 1.9127e+00 ──▶ 2.0470e+00 Predictor: Secant ──▶ Event values: (3.9127359396364834,) ──▶ (4.04696714728299,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 112 Step size = 1.0000e-01 Parameter p1 = 2.0470e+00 ──▶ 2.1811e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.0470e+00 ──▶ 2.1822e+00 Predictor: Secant ──▶ Event values: (4.04696714728299,) ──▶ (4.182171043239362,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 113 Step size = 1.0000e-01 Parameter p1 = 2.1822e+00 ──▶ 2.3173e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 2.1822e+00 ──▶ 2.3181e+00 Predictor: Secant ──▶ Event values: (4.182171043239362,) ──▶ (4.318129123462045,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 114 Step size = 1.0000e-01 Parameter p1 = 2.3181e+00 ──▶ 2.4541e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.3181e+00 ──▶ 2.4547e+00 Predictor: Secant ──▶ Event values: (4.318129123462045,) ──▶ (4.454687608927973,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 115 Step size = 1.0000e-01 Parameter p1 = 2.4547e+00 ──▶ 2.5912e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.4547e+00 ──▶ 2.5917e+00 Predictor: Secant ──▶ Event values: (4.454687608927973,) ──▶ (4.5917345298399415,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 116 Step size = 1.0000e-01 Parameter p1 = 2.5917e+00 ──▶ 2.7288e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.5917e+00 ──▶ 2.7292e+00 Predictor: Secant ──▶ Event values: (4.5917345298399415,) ──▶ (4.72918601439873,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 117 Step size = 1.0000e-01 Parameter p1 = 2.7292e+00 ──▶ 2.8666e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.7292e+00 ──▶ 2.8670e+00 Predictor: Secant ──▶ Event values: (4.72918601439873,) ──▶ (4.866977717877386,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 118 Step size = 1.0000e-01 Parameter p1 = 2.8670e+00 ──▶ 3.0048e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 2.8670e+00 ──▶ 3.0051e+00 Predictor: Secant ──▶ Event values: (4.866977717877386,) ──▶ (5.005059259802331,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 119 Step size = 1.0000e-01 Parameter p1 = 3.0051e+00 ──▶ 3.1431e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.0051e+00 ──▶ 3.1434e+00 Predictor: Secant ──▶ Event values: (5.005059259802331,) ──▶ (5.143390494716593,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 120 Step size = 1.0000e-01 Parameter p1 = 3.1434e+00 ──▶ 3.2817e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.1434e+00 ──▶ 3.2819e+00 Predictor: Secant ──▶ Event values: (5.143390494716593,) ──▶ (5.281938940897032,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 121 Step size = 1.0000e-01 Parameter p1 = 3.2819e+00 ──▶ 3.4205e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.2819e+00 ──▶ 3.4207e+00 Predictor: Secant ──▶ Event values: (5.281938940897032,) ──▶ (5.42067796338077,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 122 Step size = 1.0000e-01 Parameter p1 = 3.4207e+00 ──▶ 3.5594e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.4207e+00 ──▶ 3.5596e+00 Predictor: Secant ──▶ Event values: (5.42067796338077,) ──▶ (5.5595854619459635,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 123 Step size = 1.0000e-01 Parameter p1 = 3.5596e+00 ──▶ 3.6985e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.5596e+00 ──▶ 3.6986e+00 Predictor: Secant ──▶ Event values: (5.5595854619459635,) ──▶ (5.698642905380923,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 124 Step size = 1.0000e-01 Parameter p1 = 3.6986e+00 ──▶ 3.8377e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.6986e+00 ──▶ 3.8378e+00 Predictor: Secant ──▶ Event values: (5.698642905380923,) ──▶ (5.837834608389984,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 125 Step size = 1.0000e-01 Parameter p1 = 3.8378e+00 ──▶ 3.9770e+00 [guess] ──▶ Step Converged in 2 Nonlinear Iteration(s) Parameter p1 = 3.8378e+00 ──▶ 3.9771e+00 Predictor: Secant ──▶ Event values: (5.837834608389984,) ──▶ (5.977147181812193,) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Continuation step 126 Step size = 1.0000e-01 Parameter p1 = 3.9771e+00 ──▶ 4.0000e+00 [guess] ──▶ Step Converged in 3 Nonlinear Iteration(s) Parameter p1 = 3.9771e+00 ──▶ 4.0000e+00 Predictor: Secant ──▶ Event values: (5.977147181812193,) ──▶ (6.0,) ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/events/EventDetection.jl:390 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/events/EventDetection.jl:390 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/events/EventDetection.jl:390 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/events/EventDetection.jl:390 ┌ Warning: More than one event in `SetOfEvents` was detected. We take the first in the list to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/events/EventDetection.jl:390 Hopf-Hopf bifurcation point at (:p1, :p2) ≈ (0.0, 0.0). Eigenvalues: λ1 = 0 λ2 = 0 (λ1 = 0, λ2 = 0) ┌ Error: Failure to converge with given tolerance = 1.0e-10. │ Step = 91 │ You can decrease the tolerance or pass a different norm using the argument `normC`. │ We reached the smallest value [dsmin] valid for ds, namely 0.0001. │ Stopping continuation at continuation step 91. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/continuation/Contbase.jl:70 WARNING: Method definition Jac_fold_fdMA(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testJacobianFoldDeflation.jl:67 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testJacobianFoldDeflation.jl:106. WARNING: Method definition Jac_fold_MA(Any, Any, BifurcationKit.FoldProblemMinimallyAugmented{Tprob, vectype, T, S, Sa, Sbd, Sbda, Tmass, Tn} where Tn where Tmass where Sbda<:BifurcationKit.AbstractBorderedLinearSolver where Sbd<:BifurcationKit.AbstractBorderedLinearSolver where Sa<:BifurcationKit.AbstractLinearSolver where S<:BifurcationKit.AbstractLinearSolver where T<:Real where vectype where Tprob<:BifurcationKit.AbstractBifurcationProblem) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testJacobianFoldDeflation.jl:80 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testJacobianFoldDeflation.jl:110. 7.209784 seconds (5.75 M allocations: 307.432 MiB, 1.51% gc time, 99.64% compilation time) ┌─ Minimally Augmented Problem continuation ├─ use hessian: true ├─ linear solver: DefaultLS useFactorization: Bool true ├─ linear solver for adjoint: DefaultLS useFactorization: Bool true ├─ linear solver for adjoint: DefaultLS useFactorization: Bool true ├─ linear bordered solver for the jacobian: MatrixBLS{Nothing}(nothing) ├─ linear bordered solver for the jacobian adjoint: MatrixBLS{Nothing}(nothing)WARNING: Method definition Bd2Vec(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testJacobianFoldDeflation.jl:62 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testHopfMA.jl:103. WARNING: Method definition Vec2Bd(Any) in module Main at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testJacobianFoldDeflation.jl:63 overwritten at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/testHopfMA.jl:104. 0.268339 seconds (130.13 k allocations: 27.738 MiB, 88.11% compilation time) ┌ Warning: Assignment to `outpo_f` in soft scope is ambiguous because a global variable by the same name exists: `outpo_f` will be treated as a new local. Disambiguate by using `local outpo_f` to suppress this warning or `global outpo_f` to assign to the existing global variable. └ @ timing.jl:394 ┌ Warning: Assignment to `br_pok2` in soft scope is ambiguous because a global variable by the same name exists: `br_pok2` will be treated as a new local. Disambiguate by using `local br_pok2` to suppress this warning or `global br_pok2` to assign to the existing global variable. └ @ timing.jl:394 linalgo = BifurcationKit.FullLU() 4.503895 seconds (2.23 M allocations: 135.146 MiB, 99.52% compilation time) 0.372524 seconds (120.75 k allocations: 21.451 MiB, 89.63% compilation time) 10.468242 seconds (7.53 M allocations: 436.317 MiB, 3.23% gc time, 99.59% compilation time) linalgo = BifurcationKit.BorderedLU() 0.650950 seconds (281.76 k allocations: 26.777 MiB, 97.05% compilation time) 0.434377 seconds (179.22 k allocations: 21.251 MiB, 95.83% compilation time) 7.847983 seconds (5.64 M allocations: 327.618 MiB, 2.69% gc time, 99.41% compilation time) linalgo = BifurcationKit.FullSparseInplace() 23.781945 seconds (14.44 M allocations: 776.795 MiB, 1.73% gc time, 99.92% compilation time) 0.424036 seconds (86.14 k allocations: 8.615 MiB, 96.32% compilation time) 11.478887 seconds (8.83 M allocations: 479.277 MiB, 1.91% gc time, 99.74% compilation time) 9.527584 seconds (5.86 M allocations: 305.123 MiB, 99.54% compilation time) ┌ Warning: Assignment to `sn_codim2` in soft scope is ambiguous because a global variable by the same name exists: `sn_codim2` will be treated as a new local. Disambiguate by using `local sn_codim2` to suppress this warning or `global sn_codim2` to assign to the existing global variable. └ @ timing.jl:394 11.874369 seconds (3.33 M allocations: 176.245 MiB, 99.88% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-1.519778020426737e-17 + 0.0im, -0.010626678255592477 + 0.0im] ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558583 4.440892098500626e-16; 0.010616691718406485 1.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 (a = 0.2077662136652572, b = 0.5773685192880053) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Zero-Hopf Normal form computation [ Info: Recomputing eigenvector on the fly [ Info: The eigenvalue is -3.1832156423636164e-14 + 0.0im ┌ Info: Eigenvalue : │ _λ = │ 4-element Vector{ComplexF64}: │ -3.1832156423636164e-14 + 0.0im │ -0.006989817672946458 - 1.0939651860105104im │ -0.006989817672946458 + 1.0939651860105104im │ -0.12862400185552367 + 0.0im │ _ind2 = │ 2-element Vector{Int64}: │ 2 └ 3 [ Info: Second eigenvalue = -0.006989817672946458 - 1.0939651860105104im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.183215634161249e-14 + 0.0im -0.006989817672946708 - 1.0939651860105097im -0.006989817672946708 + 1.0939651860105097im -0.12862400185552364 + 0.0im ├── right eigenvalue = -3.1832156423636164e-14 - 0.0im └── left eigenvalue = -3.183215634161249e-14 + 0.0im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.183215634161249e-14 + 0.0im -0.006989817672946708 - 1.0939651860105097im -0.006989817672946708 + 1.0939651860105097im -0.12862400185552364 + 0.0im ├── right eigenvalue = -0.006989817672946458 - 1.0939651860105104im └── left eigenvalue = -0.006989817672946708 - 1.0939651860105097im Zero-Hopf bifurcation point at (:F, :T) ≈ (1.2782833690071065, -4.96775491375201e-12). null eigenvalue ≈ -3.1832156423636164e-14 + 0.0im ω = 1.0939651860105104 There is a curve of NS of periodic orbits: false ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-1.519778020426737e-17 + 0.0im, -0.010626678255592477 + 0.0im] (a = 0.21442335092734682, b = 0.6065145518280867) - # 1, bt at p ≈ +0.01839057 ∈ (+0.01839057, +0.02404425), |δp|=6e-03, [ guess], δ = ( 0, 0), step = 9 ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558583 4.440892098500626e-16; 0.010616691718406485 1.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 13.624237 seconds (5.51 M allocations: 290.085 MiB, 99.81% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-6.960083458723114e-15 + 0.0im, -0.010626678255584757 + 0.0im] ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558584 2.220446049250313e-16; 0.010616691718406096 1.0000000000000002] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 (a = 0.2077662136652576, b = 0.5773685192880065) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Zero-Hopf Normal form computation [ Info: Recomputing eigenvector on the fly [ Info: The eigenvalue is -3.2052914509009494e-14 + 0.0im ┌ Info: Eigenvalue : │ _λ = │ 4-element Vector{ComplexF64}: │ -3.2052914509009494e-14 + 0.0im │ -0.006989817672946708 - 1.0939651860105104im │ -0.006989817672946708 + 1.0939651860105104im │ -0.12862400185552378 + 0.0im │ _ind2 = │ 2-element Vector{Int64}: │ 2 └ 3 [ Info: Second eigenvalue = -0.006989817672946708 - 1.0939651860105104im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.205291459878836e-14 + 0.0im -0.006989817672946916 - 1.0939651860105095im -0.006989817672946916 + 1.0939651860105095im -0.12862400185552372 + 0.0im ├── right eigenvalue = -3.2052914509009494e-14 - 0.0im └── left eigenvalue = -3.205291459878836e-14 + 0.0im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.205291459878836e-14 + 0.0im -0.006989817672946916 - 1.0939651860105095im -0.006989817672946916 + 1.0939651860105095im -0.12862400185552372 + 0.0im ├── right eigenvalue = -0.006989817672946708 - 1.0939651860105104im └── left eigenvalue = -0.006989817672946916 - 1.0939651860105095im Zero-Hopf bifurcation point at (:F, :T) ≈ (1.2782833690071067, -4.96775484646521e-12). null eigenvalue ≈ -3.2052914509009494e-14 + 0.0im ω = 1.0939651860105104 There is a curve of NS of periodic orbits: false ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-6.960083458723114e-15 + 0.0im, -0.010626678255584757 + 0.0im] (a = 0.21442335092734674, b = 0.6065145518280864) - # 1, bt at p ≈ +0.01839057 ∈ (+0.01839057, +0.02404425), |δp|=6e-03, [ guess], δ = ( 0, 0), step = 9 ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558584 2.220446049250313e-16; 0.010616691718406096 1.0000000000000002] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 13.665681 seconds (5.15 M allocations: 273.221 MiB, 99.68% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-2.098128253113988e-8 + 0.0im, -0.010626659246971613 + 0.0im] ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558584 2.220446049250313e-16; 0.010616691718406207 1.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 (a = 0.20776621366525744, b = 0.5773685192880058) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Zero-Hopf Normal form computation [ Info: Recomputing eigenvector on the fly [ Info: The eigenvalue is -3.2051170450253485e-14 + 0.0im ┌ Info: Eigenvalue : │ _λ = │ 4-element Vector{ComplexF64}: │ -3.2051170450253485e-14 + 0.0im │ -0.006989817672946624 - 1.0939651860105097im │ -0.006989817672946624 + 1.0939651860105097im │ -0.12862400185552378 + 0.0im │ _ind2 = │ 2-element Vector{Int64}: │ 2 └ 3 [ Info: Second eigenvalue = -0.006989817672946624 - 1.0939651860105097im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.2051170487120805e-14 + 0.0im -0.006989817672946819 - 1.0939651860105097im -0.006989817672946819 + 1.0939651860105097im -0.12862400185552383 + 0.0im ├── right eigenvalue = -3.2051170450253485e-14 - 0.0im └── left eigenvalue = -3.2051170487120805e-14 + 0.0im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.2051170487120805e-14 + 0.0im -0.006989817672946819 - 1.0939651860105097im -0.006989817672946819 + 1.0939651860105097im -0.12862400185552383 + 0.0im ├── right eigenvalue = -0.006989817672946624 - 1.0939651860105097im └── left eigenvalue = -0.006989817672946819 - 1.0939651860105097im Zero-Hopf bifurcation point at (:F, :T) ≈ (1.2782833690071063, -4.96775485854246e-12). null eigenvalue ≈ -3.2051170450253485e-14 + 0.0im ω = 1.0939651860105097 There is a curve of NS of periodic orbits: false ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-2.098128253113988e-8 + 0.0im, -0.010626659246971613 + 0.0im] (a = 0.21442335092734677, b = 0.6065145518280862) - # 1, bt at p ≈ +0.01839057 ∈ (+0.01839057, +0.02404425), |δp|=6e-03, [ guess], δ = ( 0, 0), step = 9 ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558584 2.220446049250313e-16; 0.010616691718406207 1.0] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 14.242051 seconds (5.20 M allocations: 274.302 MiB, 1.12% gc time, 99.79% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-6.960083458723114e-15 + 0.0im, -0.010626678255584757 + 0.0im] ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558584 2.220446049250313e-16; 0.010616691718406096 1.0000000000000002] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 (a = 0.2077662136652576, b = 0.5773685192880065) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Zero-Hopf Normal form computation [ Info: Recomputing eigenvector on the fly [ Info: The eigenvalue is -3.2052914509009494e-14 + 0.0im ┌ Info: Eigenvalue : │ _λ = │ 4-element Vector{ComplexF64}: │ -3.2052914509009494e-14 + 0.0im │ -0.006989817672946708 - 1.0939651860105104im │ -0.006989817672946708 + 1.0939651860105104im │ -0.12862400185552378 + 0.0im │ _ind2 = │ 2-element Vector{Int64}: │ 2 └ 3 [ Info: Second eigenvalue = -0.006989817672946708 - 1.0939651860105104im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.205291459878836e-14 + 0.0im -0.006989817672946916 - 1.0939651860105095im -0.006989817672946916 + 1.0939651860105095im -0.12862400185552372 + 0.0im ├── right eigenvalue = -3.2052914509009494e-14 - 0.0im └── left eigenvalue = -3.205291459878836e-14 + 0.0im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -3.205291459878836e-14 + 0.0im -0.006989817672946916 - 1.0939651860105095im -0.006989817672946916 + 1.0939651860105095im -0.12862400185552372 + 0.0im ├── right eigenvalue = -0.006989817672946708 - 1.0939651860105104im └── left eigenvalue = -0.006989817672946916 - 1.0939651860105095im Zero-Hopf bifurcation point at (:F, :T) ≈ (1.2782833690071067, -4.96775484646521e-12). null eigenvalue ≈ -3.2052914509009494e-14 + 0.0im ω = 1.0939651860105104 There is a curve of NS of periodic orbits: false ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[-6.960083458723114e-15 + 0.0im, -0.010626678255584757 + 0.0im] (a = 0.21442335092734674, b = 0.6065145518280864) - # 1, bt at p ≈ +0.01839057 ∈ (+0.01839057, +0.02404425), |δp|=6e-03, [ guess], δ = ( 0, 0), step = 9 ┌ Warning: G == I(2) is not valid. We built a basis such that G = [0.9990544545558584 2.220446049250313e-16; 0.010616691718406096 1.0000000000000002] └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/NormalForms.jl:171 11.514872 seconds (4.15 M allocations: 221.313 MiB, 1.62% gc time, 99.69% compilation time) 1.800591 seconds (308.42 k allocations: 20.513 MiB, 97.96% compilation time) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bogdanov-Takens Normal form computation ────▶ eigenvalues = ComplexF64[1.397566034310574e-13 - 1.6551769245094128e-5im, 1.397566034310574e-13 + 1.6551769245094128e-5im] (a = 0.2144233512666369, b = 0.6065145521433335) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Bautin Normal form computation ┌── left eigenvalues = 4-element Vector{ComplexF64}: 0.07678715032444051 - 1.184888001188561im 0.07678715032444051 + 1.184888001188561im -6.938893903907228e-17 - 0.6903672728778927im -6.938893903907228e-17 + 0.6903672728778927im ├── right eigenvalue = 1.3877787807814457e-17 - 0.6903672728778931im └── left eigenvalue = -6.938893903907228e-17 - 0.6903672728778927im ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ──▶ Hopf-Hopf Normal form computation [ Info: Recomputing eigenvector on the fly [ Info: The first eigenvalue is 8.326672684688674e-17 + 0.7432195214123517im, ω0 = 0.743219521412352 [ Info: The second eigenvalue is -7.332608738253032e-7 - 1.1515449881244528im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -1.942890293094024e-16 - 0.7432195214123521im -1.942890293094024e-16 + 0.7432195214123521im -7.332608733534585e-7 - 1.1515449881244515im -7.332608733534585e-7 + 1.1515449881244515im ├── right eigenvalue = -7.332608738253032e-7 - 1.1515449881244528im └── left eigenvalue = -7.332608733534585e-7 - 1.1515449881244515im ┌── left eigenvalues = 4-element Vector{ComplexF64}: -1.942890293094024e-16 - 0.7432195214123521im -1.942890293094024e-16 + 0.7432195214123521im -7.332608733534585e-7 - 1.1515449881244515im -7.332608733534585e-7 + 1.1515449881244515im ├── right eigenvalue = 8.326672684688674e-17 - 0.7432195214123517im └── left eigenvalue = -1.942890293094024e-16 - 0.7432195214123521im ┌─────────────────────────────────────────────────────┐ │ Newton step residual linear iterations │ ├─────────────┬──────────────────────┬────────────────┤ │ 0 │ 7.4976e-10 │ 0 │ │ 1 │ 3.6991e-16 │ 1 │ └─────────────┴──────────────────────┴────────────────┘ - # 2, bt at p ≈ +0.02094017 ∈ (+0.02094017, +0.02094017), |δp|=9e-11, [converged], δ = ( 0, 0), step = 0 ┌ Warning: You selected the PALC continuation algorithm with Bordered predictor. │ The jacobian being singular on Fold points, this could lead to bad prediction and convergence. │ If you have issues, try a different tangent predictor like Secant for example, you can pass it using `alg = PALC()`. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/MinAugFold.jl:366 - # 2, zh at p ≈ +0.00012654 ∈ (+0.00012654, +0.00012654), |δp|=4e-11, [converged], δ = ( 0, 0), step = 15 ┌ Warning: More than one Event was detected gh-bp. We call the continuous event to save data in the branch. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/events/EventDetection.jl:351 - # 4, hh at p ≈ -0.02627968 ∈ (-0.02627968, -0.02627009), |δp|=1e-05, [converged], δ = ( 2, 2), step = 28 ┌ Info: ┌─ Collocation functional for periodic orbits │ ├─ type : Vector{Float64} │ ├─ time slices (Ntst) : 20 │ ├─ degree (m) : 3 │ ├─ dimension (N) : 0 │ ├─ inplace : false │ ├─ update section : 1 │ ├─ jacobian : BifurcationKit.DenseAnalytical() │ ├─ mesh adaptation : false └ └─ # unknowns (without phase condition) : 0 ┌ Warning: You selected the PALC continuation algorithm with Bordered predictor. │ The jacobian being singular on Fold points, this could lead to bad prediction and convergence. │ If you have issues, try a different tangent predictor like Secant for example, you can pass it using `alg = PALC()`. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/MinAugFold.jl:366 ┌ Info: ┌─ Standard shooting functional for periodic orbits │ ├─ time slices : 9 │ ├─ lens : p │ ├─ jacobian : BifurcationKit.AutoDiffDense() │ ├─ update section : 1 │ ├─ integrator : Rodas5 └ └─ parallel : true ┌ Warning: You selected the PALC continuation algorithm with Bordered predictor. │ The jacobian being singular on Fold points, this could lead to bad prediction and convergence. │ If you have issues, try a different tangent predictor like Secant for example, you can pass it using `alg = PALC()`. └ @ BifurcationKit ~/.julia/packages/BifurcationKit/q52qN/src/codim2/MinAugFold.jl:366 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 21 running 1 of 1 signal (10): User defined signal 1 _ZN4llvm14MemoryLocation3getEPKNS_8LoadInstE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) unknown function (ip: 0x7fff0698b797) at (unknown file) unknown function (ip: 0xffffffff) at (unknown file) unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_70434.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2285 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000074adf0e16950 Total snapshots: 533. Utilization: 0% ╎533 @Base/task.jl:1168 wait_forever() 532╎ 533 @Base/task.jl:1246 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:228 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_70434.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2285 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) Allocations: 21340320 (Pool: 21339527; Big: 793); GC: 14 [21] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/lorenz84.jl:408 < at ./int.jl:83 [inlined] macro expansion at ./simdloop.jl:75 [inlined] copyto! at ./broadcast.jl:993 [inlined] copyto! at ./broadcast.jl:946 [inlined] copy at ./broadcast.jl:918 [inlined] materialize at ./broadcast.jl:893 [inlined] jacobian_neimark_sacker at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/PeriodicOrbitCollocation.jl:30 _get_bordered_terms at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/MinAugNS.jl:110 NSMALinearSolver at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/MinAugNS.jl:177 #_#1702 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/MinAugNS.jl:223 NSLinearSolverMinAug at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/MinAugNS.jl:221 [inlined] #_#150 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearSolver.jl:17 [inlined] AbstractLinearSolver at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearSolver.jl:15 [inlined] #BEC#221 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:133 BEC at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:124 [inlined] BEC0 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:104 [inlined] #_#218 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:107 [inlined] BorderingBLS at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:87 [inlined] #solve_bls_palc#213 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:28 [inlined] solve_bls_palc at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/LinearBorderSolver.jl:16 [inlined] #newton_palc#353 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/continuation/Palc.jl:463 newton_palc at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/continuation/Palc.jl:398 [inlined] #corrector!#351 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/continuation/Palc.jl:158 corrector! at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/continuation/Palc.jl:150 [inlined] #corrector!#342 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/continuation/Contbase.jl:22 [inlined] corrector! at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/continuation/Contbase.jl:22 [inlined] #iterate#320 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:447 iterate at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:430 [inlined] continuation! at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:562 unknown function (ip: 0x7d5b8a17dfd2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 continuation at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:589 #continuation#321 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:660 continuation at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/Continuation.jl:630 [inlined] #continuation_ns#1706 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/MinAugNS.jl:413 continuation_ns at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/MinAugNS.jl:247 [inlined] #_continuation#1655 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/codim2.jl:409 _continuation at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/codim2.jl:297 unknown function (ip: 0x7d5b8a971cf8) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #continuation#1638 at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/codim2.jl:185 continuation at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/src/periodicorbit/codim2/codim2.jl:173 unknown function (ip: 0x7d5b8a957172) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 top-level scope at /home/pkgeval/.julia/packages/BifurcationKit/q52qN/test/lorenz84.jl:409 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:746 jl_eval_toplevel_stmts at /source/src/toplevel.c:600 jl_toplevel_eval_flex at /source/src/toplevel.c:698 ijl_toplevel_eval at /source/src/toplevel.c:769 ijl_toplevel_eval_in at /source/src/toplevel.c:814 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_73611.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:757 jl_eval_toplevel_stmts at /source/src/toplevel.c:600 jl_toplevel_eval_flex at /source/src/toplevel.c:698 ijl_toplevel_eval at /source/src/toplevel.c:769 ijl_toplevel_eval_in at /source/src/toplevel.c:814 eval at ./boot.jl:489 include_string at ./loading.jl:3151 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3211 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_73611.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2285 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:757 jl_eval_toplevel_stmts at /source/src/toplevel.c:600 jl_toplevel_eval_flex at /source/src/toplevel.c:698 ijl_toplevel_eval at /source/src/toplevel.c:769 ijl_toplevel_eval_in at /source/src/toplevel.c:814 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:585 jfptr__start_36920.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2285 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7d5c04ee6249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1715498147 (Pool: 1715478910; Big: 19237); GC: 1885 PkgEval terminated after 2741.75s: test duration exceeded the time limit