Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1455 (9d9110fde9*) started at 2026-01-01T15:33:47.075 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.01s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.13s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 11.19s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_yqTMJV/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_yqTMJV/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:14 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001447245213622955 Iteration 10: d = 2.111701355752196e-5 Iteration 20: d = 3.296275426036984e-7 Iteration 30: d = 5.4206372125969494e-9 Iteration 40: d = 9.076077223298383e-11 Iteration 50: d = 1.534733396572454e-12 Iteration 60: d = 2.6075022063796924e-14 Converged after 67 iterations. d = 1.4635945111559892e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013503006979438646 Iteration 10: d = 1.860807349926406e-5 Iteration 20: d = 2.9922224440893834e-7 Iteration 30: d = 4.978350982294479e-9 Iteration 40: d = 8.347599033357002e-11 Iteration 50: d = 1.4063049661089646e-12 Iteration 60: d = 2.3737663548676898e-14 Converged after 66 iterations. d = 2.0482569004411997e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▎ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012784195415398078 Iteration 10: d = 1.3153332163130268e-5 Iteration 20: d = 1.946961486841034e-7 Iteration 30: d = 3.236663542392735e-9 Iteration 40: d = 5.5583325891022125e-11 Iteration 50: d = 9.69940151462665e-13 Iteration 60: d = 1.7112260148443954e-14 Converged after 66 iterations. d = 1.5402107496439487e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013378548876342977 Iteration 10: d = 1.6659409151852993e-5 Iteration 20: d = 2.7898854505741354e-7 Iteration 30: d = 4.866530903387664e-9 Iteration 40: d = 8.528447409604921e-11 Iteration 50: d = 1.4992698164003376e-12 Iteration 60: d = 2.6428830182652557e-14 Converged after 67 iterations. d = 1.585060194355461e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012112332060546986 Iteration 10: d = 1.652006528874689e-5 Iteration 20: d = 2.4560338869642857e-7 Iteration 30: d = 3.792333170963282e-9 Iteration 40: d = 5.90467431967105e-11 Iteration 50: d = 9.22235918856096e-13 Iteration 60: d = 1.444795984234185e-14 Converged after 65 iterations. d = 1.80070403734901e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011319290125438761 Iteration 10: d = 9.043929317008853e-6 Iteration 20: d = 1.0346032414512808e-7 Iteration 30: d = 1.3678193670501919e-9 Iteration 40: d = 1.9438061669711452e-11 Iteration 50: d = 2.875984344171357e-13 Iteration 60: d = 4.2957482561392074e-15 Converged after 62 iterations. d = 1.9015245279421796e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010949706551054517 Iteration 10: d = 1.0157316484505303e-5 Iteration 20: d = 1.301055582604454e-7 Iteration 30: d = 1.8653561598244732e-9 Iteration 40: d = 2.8023813514860818e-11 Iteration 50: d = 4.310005204520351e-13 Iteration 60: d = 6.7231990242922074e-15 Converged after 63 iterations. d = 1.952950080458536e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012437666355413202 Iteration 10: d = 1.6581412184521387e-5 Iteration 20: d = 2.3646655422560034e-7 Iteration 30: d = 3.5866990992706188e-9 Iteration 40: d = 5.536395638223114e-11 Iteration 50: d = 8.608354770831905e-13 Iteration 60: d = 1.3418150678029993e-14 Converged after 65 iterations. d = 1.6968132910169141e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013566742751273066 Iteration 10: d = 1.642169069380096e-5 Iteration 20: d = 2.3007420274380614e-7 Iteration 30: d = 3.4381140016129805e-9 Iteration 40: d = 5.2720787748146047e-11 Iteration 50: d = 8.185723527499596e-13 Iteration 60: d = 1.2738616188629942e-14 Converged after 65 iterations. d = 1.6262625966009313e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0009761992574737002 Iteration 10: d = 4.767673318951605e-6 Iteration 20: d = 4.6208488365481623e-8 Iteration 30: d = 6.211703383213714e-10 Iteration 40: d = 9.107359966441385e-12 Iteration 50: d = 1.3814306151711935e-13 Converged after 60 iterations. d = 2.1943411693731773e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005002062286400479 Iteration 10: d = 6.662876539746295e-5 Iteration 20: d = 9.25396642408189e-7 Iteration 30: d = 1.3477099367927555e-8 Iteration 40: d = 1.9708179758659265e-10 Iteration 50: d = 2.8885226013972625e-12 Iteration 60: d = 4.2417248561964125e-14 Converged after 67 iterations. d = 2.1976149600723647e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0036681543626998344 Iteration 10: d = 2.4664501232736936e-5 Iteration 20: d = 1.8414794559006547e-7 Iteration 30: d = 1.6758655896316808e-9 Iteration 40: d = 1.7051921903242047e-11 Iteration 50: d = 1.9729959485850845e-13 Iteration 60: d = 2.583031797460477e-15 Converged after 61 iterations. d = 1.6763007081245987e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002304939261849494 Iteration 10: d = 2.3094154619937377e-5 Iteration 20: d = 2.859896414711179e-7 Iteration 30: d = 4.280264769179025e-9 Iteration 40: d = 6.940384840862126e-11 Iteration 50: d = 1.1685089133465428e-12 Iteration 60: d = 2.0072191983746366e-14 Converged after 66 iterations. d = 1.749671260288125e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019058809906623557 Iteration 10: d = 1.8053259521194223e-5 Iteration 20: d = 2.221640607273367e-7 Iteration 30: d = 3.1346329403877217e-9 Iteration 40: d = 4.752284766903537e-11 Iteration 50: d = 7.648305874402234e-13 Iteration 60: d = 1.2840947650590944e-14 Converged after 65 iterations. d = 1.667498188647658e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012112332060546986 Iteration 10: d = 1.652006528874689e-5 Iteration 20: d = 2.4560338869642857e-7 Iteration 30: d = 3.792333170963282e-9 Iteration 40: d = 5.90467431967105e-11 Iteration 50: d = 9.22235918856096e-13 Iteration 60: d = 1.444795984234185e-14 Converged after 65 iterations. d = 1.80070403734901e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012709643270606811 Iteration 10: d = 1.4655670189242579e-5 Iteration 20: d = 1.9416323924604646e-7 Iteration 30: d = 2.732857419086148e-9 Iteration 40: d = 3.8735071529844995e-11 Iteration 50: d = 5.497388374691451e-13 Iteration 60: d = 7.799477709814111e-15 Converged after 63 iterations. d = 2.1573896098056166e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015008590866123596 Iteration 10: d = 1.8552472888409574e-5 Iteration 20: d = 2.3059173807852663e-7 Iteration 30: d = 3.153412145790317e-9 Iteration 40: d = 4.411866071503973e-11 Iteration 50: d = 6.220157498972397e-13 Iteration 60: d = 8.826401395965677e-15 Converged after 64 iterations. d = 1.5938403009838023e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.95701978339 Iteration 2: convergence error = 4821.889122993544 Iteration 3: convergence error = 1094.5197340602974 Iteration 4: convergence error = 317.33162004940823 Iteration 5: convergence error = 94.11128858069537 Iteration 6: convergence error = 28.260837947638493 Iteration 7: convergence error = 8.49724638752582 Iteration 8: convergence error = 2.544851375294911 Iteration 9: convergence error = 0.7603755989462115 Iteration 10: convergence error = 0.22688524043974212 Iteration 11: convergence error = 0.06764714487417223 Iteration 12: convergence error = 0.020160551792969272 Iteration 13: convergence error = 0.006006853003555079 Iteration 14: convergence error = 0.0017894915642955311 Iteration 15: convergence error = 0.0005330607875748683 Iteration 16: convergence error = 0.00015878274916758528 Iteration 17: convergence error = 4.7295307467720704e-5 Iteration 18: convergence error = 1.4087241197557887e-5 Iteration 19: convergence error = 4.19594107370358e-6 Iteration 20: convergence error = 1.2497760053520324e-6 Iteration 21: convergence error = 3.7223935578367673e-7 Iteration 22: convergence error = 1.1072393135691527e-7 Iteration 23: convergence error = 3.207105692126788e-8 Iteration 24: convergence error = 9.241375664714724e-9 Iteration 25: convergence error = 2.655269781826064e-9 Iteration 26: convergence error = 7.598828233312815e-10 Iteration 27: convergence error = 2.128217602148652e-10 Iteration 28: convergence error = 6.093614501878619e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012709643270606811 Iteration 10: d = 1.4655670189242579e-5 Iteration 20: d = 1.9416323924604646e-7 Iteration 30: d = 2.732857419086148e-9 Iteration 40: d = 3.8735071529844995e-11 Iteration 50: d = 5.497388374691451e-13 Iteration 60: d = 7.799477709814111e-15 Converged after 63 iterations. d = 2.1573896098056166e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.622632472528 Iteration 2: convergence error = 4814.137575698008 Iteration 3: convergence error = 1096.1558506395945 Iteration 4: convergence error = 321.19067212923414 Iteration 5: convergence error = 95.28360927143285 Iteration 6: convergence error = 28.416779308674904 Iteration 7: convergence error = 8.48555717255681 Iteration 8: convergence error = 2.543896185068661 Iteration 9: convergence error = 0.7608542303428294 Iteration 10: convergence error = 0.22725652747476488 Iteration 11: convergence error = 0.06782605687635623 Iteration 12: convergence error = 0.02023422157640198 Iteration 13: convergence error = 0.006034871800238761 Iteration 14: convergence error = 0.0017996481913087337 Iteration 15: convergence error = 0.0005366258346839459 Iteration 16: convergence error = 0.00016000552705008886 Iteration 17: convergence error = 4.770749205817992e-5 Iteration 18: convergence error = 1.4224309097699006e-5 Iteration 19: convergence error = 4.241026999807218e-6 Iteration 20: convergence error = 1.2644757134694373e-6 Iteration 21: convergence error = 3.770069270103704e-7 Iteration 22: convergence error = 1.1226620699744672e-7 Iteration 23: convergence error = 3.255900082876906e-8 Iteration 24: convergence error = 9.3916696641827e-9 Iteration 25: convergence error = 2.697561285458505e-9 Iteration 26: convergence error = 7.73070496506989e-10 Iteration 27: convergence error = 2.2237145458348095e-10 Iteration 28: convergence error = 6.639311322942376e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 7:14:10 Bin 1 ray tracing: 10%|██▉ | ETA: 0:00:34 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:20 Bin 1 ray tracing: 28%|████████▍ | ETA: 0:00:15 Bin 1 ray tracing: 39%|███████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 1 ray tracing: 84%|█████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 3 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▊ | ETA: 0:00:08 Bin 4 ray tracing: 33%|█████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 46%|█████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 55%|████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 66%|███████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:10 Bin 5 ray tracing: 29%|████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:09 Bin 6 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 6 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 40%|███████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 50%|██████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 59%|█████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 7 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 58%|█████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 68%|████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 8 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 8 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 74%|██████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 9 ray tracing: 25%|███████▍ | ETA: 0:00:07 Bin 9 ray tracing: 35%|██████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 45%|█████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 65%|███████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|███ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 10 ray tracing: 30%|████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 40%|███████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 49%|██████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 68%|███████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 78%|██████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 87%|█████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 27%|████████▊ | ETA: 0:00:03 Bin 2 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 2 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 3 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 5 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 6 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 6 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 7 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 27%|████████▊ | ETA: 0:00:03 Bin 8 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 8 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 33%|███████████ | ETA: 0:00:02 Bin 9 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 56%|█████████████████▊ | ETA: 0:00:02 Bin 10 progress: 84%|███████████████████████████ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012709643270606811 Iteration 10: d = 1.4655670189242579e-5 Iteration 20: d = 1.9416323924604646e-7 Iteration 30: d = 2.732857419086148e-9 Iteration 40: d = 3.8735071529844995e-11 Iteration 50: d = 5.497388374691451e-13 Iteration 60: d = 7.799477709814111e-15 Converged after 63 iterations. d = 2.1573896098056166e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001495173469059546 Iteration 10: d = 1.8703148700774327e-5 Iteration 20: d = 2.339598572498125e-7 Iteration 30: d = 3.2044882017164227e-9 Iteration 40: d = 4.4838533520878117e-11 Iteration 50: d = 6.319029787414548e-13 Iteration 60: d = 8.940327736865971e-15 Converged after 64 iterations. d = 1.6663489258205697e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013472027151954745 Iteration 10: d = 1.1331297097378768e-5 Iteration 20: d = 1.1840285966348432e-7 Iteration 30: d = 1.5493311769096813e-9 Iteration 40: d = 2.1326955026429256e-11 Iteration 50: d = 2.9818530243087963e-13 Iteration 60: d = 4.177514628201196e-15 Converged after 62 iterations. d = 1.8415321943574513e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001411103337391909 Iteration 10: d = 1.6294267370882128e-5 Iteration 20: d = 1.9934921372727241e-7 Iteration 30: d = 2.7154505642833784e-9 Iteration 40: d = 3.7966147210211194e-11 Iteration 50: d = 5.355258236028344e-13 Iteration 60: d = 7.591997748122212e-15 Converged after 63 iterations. d = 2.080927060825592e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012456536415304093 Iteration 10: d = 8.276517502549468e-6 Iteration 20: d = 7.209370751693486e-8 Iteration 30: d = 9.154300145120898e-10 Iteration 40: d = 1.2677154636434436e-11 Iteration 50: d = 1.7836368999894266e-13 Iteration 60: d = 2.4889815816251716e-15 Converged after 61 iterations. d = 1.5833894820265138e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015225394647531505 Iteration 10: d = 1.4815232147447714e-5 Iteration 20: d = 1.3787462365713765e-7 Iteration 30: d = 1.5802014026510353e-9 Iteration 40: d = 2.0017053140036744e-11 Iteration 50: d = 2.644106773114183e-13 Iteration 60: d = 3.59065984145974e-15 Converged after 62 iterations. d = 1.4836157162261042e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011663244723694227 Iteration 10: d = 1.3052618848864092e-5 Iteration 20: d = 1.6788822598379086e-7 Iteration 30: d = 2.3042790808168386e-9 Iteration 40: d = 3.1909599301829324e-11 Iteration 50: d = 4.4268515927562335e-13 Iteration 60: d = 6.1443404629312855e-15 Converged after 63 iterations. d = 1.6834072605669496e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014810341115039424 Iteration 10: d = 1.089610693051495e-5 Iteration 20: d = 1.0216917810109651e-7 Iteration 30: d = 1.2179600659800403e-9 Iteration 40: d = 1.5394035448039226e-11 Iteration 50: d = 1.983370829656827e-13 Iteration 60: d = 2.5836206766358942e-15 Converged after 61 iterations. d = 1.6487517655845251e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014524827117875254 Iteration 10: d = 1.0338232407920308e-5 Iteration 20: d = 9.948500703474662e-8 Iteration 30: d = 1.2911224564061914e-9 Iteration 40: d = 1.7737787309456727e-11 Iteration 50: d = 2.4722626216497505e-13 Iteration 60: d = 3.4624832726990734e-15 Converged after 62 iterations. d = 1.4504398950175143e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001427108534669691 Iteration 10: d = 9.32892309493649e-6 Iteration 20: d = 9.294484967496579e-8 Iteration 30: d = 1.2054756279690834e-9 Iteration 40: d = 1.621573850964224e-11 Iteration 50: d = 2.199729749578787e-13 Iteration 60: d = 2.9643412056286193e-15 Converged after 61 iterations. d = 1.9256699015372832e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8654.904353171109 Iteration 2: convergence error = 4816.98889853352 Iteration 3: convergence error = 1100.4901415216984 Iteration 4: convergence error = 318.2085226409595 Iteration 5: convergence error = 94.62018597463134 Iteration 6: convergence error = 28.515339628366746 Iteration 7: convergence error = 8.609726521199036 Iteration 8: convergence error = 2.5896516492039154 Iteration 9: convergence error = 0.7771754908276307 Iteration 10: convergence error = 0.23293776993000392 Iteration 11: convergence error = 0.06976628016195718 Iteration 12: convergence error = 0.020886858650328577 Iteration 13: convergence error = 0.006251723783861962 Iteration 14: convergence error = 0.0018709794585447526 Iteration 15: convergence error = 0.0005598935169928154 Iteration 16: convergence error = 0.00016754173248045845 Iteration 17: convergence error = 5.0133702188759344e-5 Iteration 18: convergence error = 1.5001339988884865e-5 Iteration 19: convergence error = 4.488767899601953e-6 Iteration 20: convergence error = 1.343135863862699e-6 Iteration 21: convergence error = 4.01901615987299e-7 Iteration 22: convergence error = 1.2011969374725595e-7 Iteration 23: convergence error = 3.495892997307237e-8 Iteration 24: convergence error = 1.0105850378749892e-8 Iteration 25: convergence error = 2.9067450668662786e-9 Iteration 26: convergence error = 8.355982572538778e-10 Iteration 27: convergence error = 2.3919710656628013e-10 Iteration 28: convergence error = 6.889422365929931e-11 Iteration 29: convergence error = 2.1373125491663814e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2948031119242 K, F = -7451.910221621858, relative_change = 0.03270519688807572 Iter 2: T = 936.6635246491636 K, F = -6316.823649707477, relative_change = 0.03166695237503135 Iter 3: T = 908.0748786164067 K, F = -5353.128015650392, relative_change = 0.03052178854030315 Iter 5: T = 856.8876152366357 K, F = -3840.6722934276213, relative_change = 0.027915909337337928 Iter 10: T = 761.6616466789632 K, F = -1663.1025360998042, relative_change = 0.02000175341919676 Iter 15: T = 705.8805493618912 K, F = -712.0821597900041, relative_change = 0.011992775651905674 Iter 20: T = 677.1811138650373 K, F = -301.8097436651435, relative_change = 0.006144231487837848 Iter 25: T = 663.7943408101017 K, F = -127.05745641986542, relative_change = 0.00283909583499664 Iter 30: T = 657.9002150257134 K, F = -53.296389140674, relative_change = 0.0012420767927194532 Iter 35: T = 655.3784772785478 K, F = -22.318159308284688, relative_change = 0.0005296849839446427 Iter 40: T = 654.3135172927844 K, F = -9.33887228149623, relative_change = 0.0002233626634371224 Iter 45: T = 653.8662980537625 K, F = -3.906535232776264, relative_change = 9.373906180218276e-5 Iter 50: T = 653.6789413771156 K, F = -1.6339188446899096, relative_change = 3.926012815271258e-5 Iter 55: T = 653.6005296894847 K, F = -0.6833522447585623, relative_change = 1.6429103613546777e-5 Iter 60: T = 653.5677270225764 K, F = -0.2857909468053452, relative_change = 6.872606524066092e-6 Iter 65: T = 653.5540068120929 K, F = -0.1195220401917167, relative_change = 2.8745139239005713e-6 Iter 70: T = 653.5482685512176 K, F = -0.04998569382973861, relative_change = 1.2022098946767702e-6 Iter 75: T = 653.545868688641 K, F = -0.020904640212791648, relative_change = 5.027879530826984e-7 Iter 80: T = 653.5448650281201 K, F = -0.008742574754548593, relative_change = 2.1027357372095657e-7 Iter 85: T = 653.544445283672 K, F = -0.0036562499682588068, relative_change = 8.793920780958287e-8 Iter 90: T = 653.5442697412456 K, F = -0.0015290875408393023, relative_change = 3.677727730288458e-8 Iter 95: T = 653.5441963272566 K, F = -0.0006394826962626832, relative_change = 1.5380705421220157e-8 Iter 100: T = 653.5441656246409 K, F = -0.0002674393049238444, relative_change = 6.432396233959328e-9 Iter 105: T = 653.5441527844388 K, F = -0.00011184631191651917, relative_change = 2.690105192486431e-9 Iter 110: T = 653.5441474145126 K, F = -4.6775463324488786e-5, relative_change = 1.1250341610418353e-9 Iter 115: T = 653.5441451687453 K, F = -1.9562057821553847e-5, relative_change = 4.705027402274552e-10 Iter 120: T = 653.5441442295387 K, F = -8.181086581016128e-6, relative_change = 1.9676987543210648e-10 Iter 125: T = 653.5441438367512 K, F = -3.4214287560896395e-6, relative_change = 8.229152758561597e-11 Iter 130: T = 653.5441436724827 K, F = -1.4308814616503795e-6, relative_change = 3.441527788777753e-11 Iter 135: T = 653.5441436037838 K, F = -5.984122516955459e-7, relative_change = 1.4392893119256751e-11 Iter 140: T = 653.544143575053 K, F = -2.502634011136706e-7, relative_change = 6.019285825847775e-12 Iter 145: T = 653.5441435630374 K, F = -1.0466234806605357e-7, relative_change = 2.5173180955170613e-12 Iter 150: T = 653.5441435580124 K, F = -4.377069745542528e-8, relative_change = 1.0527641582476192e-12 Iter 155: T = 653.5441435559109 K, F = -1.8305234272819604e-8, relative_change = 4.4027387433500486e-13 Converged in 159 iterations to T = 653.5441435551523 K Iter 1: T = 970.4148938236953 K, F = -6740.994584972351, relative_change = 0.02958510617630471 Iter 2: T = 942.9954721327755 K, F = -5709.35580885018, relative_change = 0.028255359501831057 Iter 3: T = 917.6965461865453 K, F = -4833.846127143029, relative_change = 0.026828258134698656 Iter 5: T = 873.2419696671999 K, F = -3460.8719822279477, relative_change = 0.023727849529865456 Iter 10: T = 794.4115478266293 K, F = -1489.45825274733, relative_change = 0.015422372849595896 Iter 15: T = 751.5192091254817 K, F = -633.9567177104186, relative_change = 0.008431033689864083 Iter 20: T = 730.7195818430674 K, F = -267.57729249773365, relative_change = 0.004052043987852251 Iter 25: T = 721.3633322328527 K, F = -112.38692809975919, relative_change = 0.001808143141564263 Iter 30: T = 717.3191548729619 K, F = -47.090806942383814, relative_change = 0.0007780537477347298 Iter 35: T = 715.6034638134128 K, F = -19.70992876715883, relative_change = 0.0003293802544022156 Iter 40: T = 714.8815684955217 K, F = -8.245753301926868, relative_change = 0.0001384610375440249 Iter 45: T = 714.5788900635746 K, F = -3.448968869513741, relative_change = 5.8031230964121594e-5 Iter 50: T = 714.4521704758354 K, F = -1.4424869428725784, relative_change = 2.4291316005001248e-5 Iter 55: T = 714.3991510243924 K, F = -0.6032804894750161, relative_change = 1.016276476746494e-5 Iter 60: T = 714.3769734894804 K, F = -0.2523017687212874, relative_change = 4.250862693173551e-6 Iter 65: T = 714.3676978504442 K, F = -0.10551607866358637, relative_change = 1.7778792971199669e-6 Iter 70: T = 714.3638185398903 K, F = -0.04412816570257583, relative_change = 7.435509514059353e-7 Iter 75: T = 714.362196143581 K, F = -0.018454940145240406, relative_change = 3.1096549026926503e-7 Iter 80: T = 714.3615176341675 K, F = -0.007718078858429789, relative_change = 1.3005011182732861e-7 Iter 85: T = 714.3612338727453 K, F = -0.0032277931870388077, relative_change = 5.438862008587312e-8 Iter 90: T = 714.3611152002104 K, F = -0.0013499017358153953, relative_change = 2.274598974541484e-8 Iter 95: T = 714.3610655699182 K, F = -0.0005645450392764984, relative_change = 9.51264790695726e-9 Iter 100: T = 714.3610448139336 K, F = -0.00023609948155678406, relative_change = 3.978303578111175e-9 Iter 105: T = 714.3610361335324 K, F = -9.873962271467196e-5, relative_change = 1.663774161988558e-9 Iter 110: T = 714.3610325032847 K, F = -4.129408933994938e-5, relative_change = 6.958102396997833e-10 Iter 115: T = 714.3610309850718 K, F = -1.726968021420472e-5, relative_change = 2.9099613632477016e-10 Iter 120: T = 714.3610303501372 K, F = -7.222388374028554e-6, relative_change = 1.2169809137776687e-10 Iter 125: T = 714.3610300845999 K, F = -3.0204902757846597e-6, relative_change = 5.089561557787154e-11 Iter 130: T = 714.3610299735489 K, F = -1.2632037489357373e-6, relative_change = 2.1285131412397194e-11 Iter 135: T = 714.3610299271061 K, F = -5.282876366363709e-7, relative_change = 8.90170867708735e-12 Iter 140: T = 714.3610299076831 K, F = -2.2093612161988574e-7, relative_change = 3.7227995788098945e-12 Iter 145: T = 714.3610298995602 K, F = -9.239765685897794e-8, relative_change = 1.556911362135934e-12 Iter 150: T = 714.3610298961631 K, F = -3.864095388106392e-8, relative_change = 6.511046079272474e-13 Iter 155: T = 714.3610298947424 K, F = -1.6159347082655984e-8, relative_change = 2.7228689486024063e-13 Converged in 157 iterations to T = 714.3610298944418 K Iter 1: T = 974.4439227651549 K, F = -5822.976508064837, relative_change = 0.025556077234845136 Iter 2: T = 951.0768696107685 K, F = -4926.4057582179785, relative_change = 0.0239798849461529 Iter 3: T = 929.8238653820011 K, F = -4166.0786619236005, relative_change = 0.022346252871721362 Iter 5: T = 893.3055894803665 K, F = -2975.3048626452937, relative_change = 0.01899126952412458 Iter 10: T = 831.8121873789203 K, F = -1272.2107284958183, relative_change = 0.011150476701159236 Iter 15: T = 800.6096397479453 K, F = -538.6741152210318, relative_change = 0.005625326972174661 Iter 20: T = 786.1845725649422 K, F = -226.64320634453537, relative_change = 0.0025766909404645187 Iter 25: T = 779.8628973287381 K, F = -95.04261437127471, relative_change = 0.0011225134510458854 Iter 30: T = 777.1641056704057 K, F = -39.79461811289566, relative_change = 0.0004777926876087311 Iter 35: T = 776.0254581232726 K, F = -16.6508679640885, relative_change = 0.00020131638110539293 Iter 40: T = 775.5474887106653 K, F = -6.9650497572830465, relative_change = 8.445776885445141e-5 Iter 45: T = 775.3472839496244 K, F = -2.913122655519616, relative_change = 3.536778507091926e-5 Iter 50: T = 775.2635011627668 K, F = -1.2183474503660157, relative_change = 1.4799385311636137e-5 Iter 55: T = 775.2284526110697 K, F = -0.5095352870218858, relative_change = 6.190707189994361e-6 Iter 60: T = 775.2137932101195 K, F = -0.21309511242355494, relative_change = 2.5892774369816072e-6 Iter 65: T = 775.2076621800177 K, F = -0.08911916057066072, relative_change = 1.08291043552116e-6 Iter 70: T = 775.2050980586622 K, F = -0.03727073917049062, relative_change = 4.528937184300932e-7 Iter 75: T = 775.2040257035085 K, F = -0.015587075554853502, relative_change = 1.8940689825898966e-7 Iter 80: T = 775.2035772302058 K, F = -0.006518702427173562, relative_change = 7.921246060432866e-8 Iter 85: T = 775.2033896730402 K, F = -0.0027261994292131497, relative_change = 3.312763790996962e-8 Iter 90: T = 775.2033112343455 K, F = -0.0011401291972295002, relative_change = 1.385438094064432e-8 Iter 95: T = 775.2032784303382 K, F = -0.00047681565208868015, relative_change = 5.794068803358889e-9 Iter 100: T = 775.2032647113091 K, F = -0.00019941000142320586, relative_change = 2.4231489897982077e-9 Iter 105: T = 775.2032589738471 K, F = -8.339564396797616e-5, relative_change = 1.0133898807150966e-9 Iter 110: T = 775.203256574372 K, F = -3.487705430105237e-5, relative_change = 4.238117572698042e-10 Iter 115: T = 775.2032555708828 K, F = -1.4586000435468094e-5, relative_change = 1.7724313701594152e-10 Iter 120: T = 775.2032551512116 K, F = -6.100039839807003e-6, relative_change = 7.412520002998145e-11 Iter 125: T = 775.2032549757001 K, F = -2.551109932857898e-6, relative_change = 3.1000049055645796e-11 Iter 130: T = 775.2032549022991 K, F = -1.066903742796832e-6, relative_change = 1.2964579829851934e-11 Iter 135: T = 775.203254871602 K, F = -4.4619323047445647e-7, relative_change = 5.421958443928549e-12 Iter 140: T = 775.2032548587639 K, F = -1.8660158529471005e-7, relative_change = 2.2675064792960876e-12 Iter 145: T = 775.2032548533949 K, F = -7.803772572589907e-8, relative_change = 9.482826656556738e-13 Iter 150: T = 775.2032548511496 K, F = -3.263557546429041e-8, relative_change = 3.9657422367243723e-13 Converged in 154 iterations to T = 775.2032548503391 K Iter 1: T = 970.5284025761952 K, F = -6715.131507740548, relative_change = 0.0294715974238048 Iter 2: T = 943.2246056688216 K, F = -5687.27501738752, relative_change = 0.02813291896960222 Iter 3: T = 918.0427229061352 K, F = -4814.990461735193, relative_change = 0.0266976525117583 Iter 5: T = 873.8229385546073 K, F = -3447.1186944739816, relative_change = 0.023584609406541456 Iter 10: T = 795.5342674484386 K, F = -1483.2381380243878, relative_change = 0.015280281596846641 Iter 15: T = 753.0346757209408 K, F = -631.1967235537386, relative_change = 0.008330350398337185 Iter 20: T = 732.4604015554769 K, F = -266.38164219849386, relative_change = 0.0039966200674749 Iter 25: T = 723.2145144231014 K, F = -111.87799388952561, relative_change = 0.0017817877158114565 Iter 30: T = 719.2199385835212 K, F = -46.87625124765091, relative_change = 0.000766390631836825 Iter 35: T = 717.5256516310841 K, F = -19.61988644182359, relative_change = 0.00032438326146840945 Iter 40: T = 716.8128278649971 K, F = -8.208040863098306, relative_change = 0.00013634979887633235 Iter 45: T = 716.5139646238539 K, F = -3.4331872673732464, relative_change = 5.7144494060706484e-5 Iter 50: T = 716.3888443566573 K, F = -1.4358851671482937, relative_change = 2.3919805735556636e-5 Iter 55: T = 716.3364944201205 K, F = -0.6005192465765942, relative_change = 1.0007277967615452e-5 Iter 60: T = 716.3145969999077 K, F = -0.2511469312126203, relative_change = 4.185815816757842e-6 Iter 65: T = 716.3054385284076 K, F = -0.10503310259614296, relative_change = 1.7506723403791407e-6 Iter 70: T = 716.3016082222546 K, F = -0.04392617772874707, relative_change = 7.321720516056773e-7 Iter 75: T = 716.3000063207897 K, F = -0.018370466080688375, relative_change = 3.062065890731301e-7 Iter 80: T = 716.2993363826731 K, F = -0.007682750745205191, relative_change = 1.2805986335582518e-7 Iter 85: T = 716.2990562058886 K, F = -0.0032130185394806388, relative_change = 5.355627105829281e-8 Iter 90: T = 716.2989390324954 K, F = -0.0013437227988200018, relative_change = 2.239789083232194e-8 Iter 95: T = 716.2988900291626 K, F = -0.0005619609336321441, relative_change = 9.367068679869791e-9 Iter 100: T = 716.2988695353802 K, F = -0.00023501877551501682, relative_change = 3.91742055263102e-9 Iter 105: T = 716.298860964635 K, F = -9.828765924846383e-5, relative_change = 1.6383121625112699e-9 Iter 110: T = 716.2988573802469 K, F = -4.110507271914976e-5, relative_change = 6.851617252466649e-10 Iter 115: T = 716.2988558812128 K, F = -1.719063212279881e-5, relative_change = 2.865428158021093e-10 Iter 120: T = 716.298855254299 K, F = -7.189327848267091e-6, relative_change = 1.1983563136221788e-10 Iter 125: T = 716.2988549921162 K, F = -3.0066636160785976e-6, relative_change = 5.011670645140174e-11 Iter 130: T = 716.2988548824682 K, F = -1.2574233202444773e-6, relative_change = 2.0959416655315125e-11 Iter 135: T = 716.298854836612 K, F = -5.258687748588287e-7, relative_change = 8.765467113734463e-12 Iter 140: T = 716.2988548174344 K, F = -2.199241118105988e-7, relative_change = 3.665814861048373e-12 Iter 145: T = 716.2988548094141 K, F = -9.197596784193962e-8, relative_change = 1.5331055199742523e-12 Iter 150: T = 716.2988548060599 K, F = -3.8464586737951834e-8, relative_change = 6.411486786867773e-13 Iter 155: T = 716.2988548046573 K, F = -1.6088052556817445e-8, relative_change = 2.681644212068389e-13 Converged in 157 iterations to T = 716.2988548043604 K Iter 1: T = 969.3779506347713 K, F = -6977.263076956292, relative_change = 0.030622049365228658 Iter 2: T = 940.8982991129421 K, F = -5911.1331487618945, relative_change = 0.02937930608301958 Iter 3: T = 914.5216799337476 K, F = -5006.215310967061, relative_change = 0.028033443363710893 Iter 5: T = 867.8901253393933 K, F = -3586.7175940358798, relative_change = 0.025064989709403046 Iter 10: T = 783.9446082911418 K, F = -1546.5806571637265, relative_change = 0.01679245809628834 Iter 15: T = 737.245993646804 K, F = -659.4140849352958, relative_change = 0.009430473719247205 Iter 20: T = 714.217993983339 K, F = -278.6432410543264, relative_change = 0.004612843082379525 Iter 25: T = 703.7573187652819 K, F = -117.10644114564963, relative_change = 0.002077526624165916 Iter 30: T = 699.2137958475389 K, F = -49.082343751791655, relative_change = 0.0008978277996359474 Iter 35: T = 697.2820425511029 K, F = -20.546069160478414, relative_change = 0.0003808029633651802 Iter 40: T = 696.4684676217727 K, F = -8.596017968789122, relative_change = 0.00016020641127925686 Iter 45: T = 696.1272126079124 K, F = -3.5955561602737873, relative_change = 6.716786074807431e-5 Iter 50: T = 695.9843184019867 K, F = -1.5038094751438447, relative_change = 2.811982734631216e-5 Iter 55: T = 695.9245272624024 K, F = -0.628929453547023, relative_change = 1.1765202147035103e-5 Iter 60: T = 695.8995164534559 K, F = -0.2630290228617746, relative_change = 4.921250156897351e-6 Iter 65: T = 695.8890556825754 K, F = -0.11000244085884625, relative_change = 2.0582834105184934e-6 Iter 70: T = 695.8846806967526 K, F = -0.046004432813239515, relative_change = 8.60826309722631e-7 Iter 75: T = 695.8828509963083 K, F = -0.019239620409275737, relative_change = 3.6001267173110437e-7 Iter 80: T = 695.8820857886373 K, F = -0.00804624203088622, relative_change = 1.5056244328227705e-7 Iter 85: T = 695.8817657687598 K, F = -0.003365035036743236, relative_change = 6.296715960504621e-8 Iter 90: T = 695.8816319324693 K, F = -0.0014072979298123123, relative_change = 2.63336439391912e-8 Iter 95: T = 695.8815759605071 K, F = -0.0005885488162535868, relative_change = 1.1013048889609875e-8 Iter 100: T = 695.8815525523593 K, F = -0.00024613814638796416, relative_change = 4.605789356879572e-9 Iter 105: T = 695.8815427627915 K, F = -0.00010293791230930882, relative_change = 1.9261962424205687e-9 Iter 110: T = 695.8815386686772 K, F = -4.3049865003585985e-5, relative_change = 8.055583085871815e-10 Iter 115: T = 695.8815369564696 K, F = -1.800396688722561e-5, relative_change = 3.3689409437695733e-10 Iter 120: T = 695.8815362404041 K, F = -7.529474485123977e-6, relative_change = 1.4089314405635576e-10 Iter 125: T = 695.8815359409369 K, F = -3.148917275597185e-6, relative_change = 5.892321663587854e-11 Iter 130: T = 695.8815358156961 K, F = -1.3169149819525217e-6, relative_change = 2.4642396115152745e-11 Iter 135: T = 695.8815357633189 K, F = -5.507493364698135e-7, relative_change = 1.0305739930293781e-11 Iter 140: T = 695.881535741414 K, F = -2.3032977525261344e-7, relative_change = 4.309980248959048e-12 Iter 145: T = 695.8815357322533 K, F = -9.632572917084303e-8, relative_change = 1.8024677433197926e-12 Iter 150: T = 695.8815357284221 K, F = -4.0284802160783784e-8, relative_change = 7.538178747025214e-13 Iter 155: T = 695.8815357268198 K, F = -1.684734174389746e-8, relative_change = 3.1525107898566336e-13 Converged in 158 iterations to T = 695.8815357263508 K Iter 1: T = 963.5591580266025 K, F = -8303.080507828272, relative_change = 0.03644084197339746 Iter 2: T = 928.9958265872153 K, F = -7045.446863019649, relative_change = 0.03587048200566525 Iter 3: T = 896.2764519117623 K, F = -5977.383204037718, relative_change = 0.03522015249051424 Iter 5: T = 836.2506666904904 K, F = -4300.087970571446, relative_change = 0.03365033674702772 Iter 10: T = 716.5162427978743 K, F = -1879.1677114292704, relative_change = 0.027933643176647302 Iter 15: T = 636.8245321357267 K, F = -813.7445871284714, relative_change = 0.02002252589898747 Iter 20: T = 590.128284361888 K, F = -348.4260848499144, relative_change = 0.012010244708718606 Iter 25: T = 566.0963756179542 K, F = -147.68030493136726, relative_change = 0.0061551059208647795 Iter 30: T = 554.884728886517 K, F = -62.171964727329396, relative_change = 0.0028446322518725035 Iter 35: T = 549.9478265580423 K, F = -26.079228098274346, relative_change = 0.0012446081373912164 Iter 40: T = 547.8355317868819 K, F = -10.920850176586175, relative_change = 0.0005307853519912378 Iter 45: T = 546.9434668889635 K, F = -4.569755866843829, relative_change = 0.00022383046989618075 Iter 50: T = 546.5688500510586 K, F = -1.9115713599667767, relative_change = 9.39360612207536e-5 Iter 55: T = 546.4119086475861 K, F = -0.7995200110846511, relative_change = 3.9342754860957017e-5 Iter 60: T = 546.3462261276325 K, F = -0.3343824828754184, relative_change = 1.6463701060629103e-5 Iter 65: T = 546.318748550828 K, F = -0.13984513911031343, relative_change = 6.887082940265938e-6 Iter 70: T = 546.3072556366418 K, F = -0.05848532561897388, relative_change = 2.8805694204191085e-6 Iter 75: T = 546.3024489066642 K, F = -0.024459334807053368, relative_change = 1.2047426006755224e-6 Iter 80: T = 546.3004386300025 K, F = -0.0102291987190542, relative_change = 5.038472003368418e-7 Iter 85: T = 546.2995979004625 K, F = -0.004277975304159937, relative_change = 2.1071657044853833e-7 Iter 90: T = 546.2992462959586 K, F = -0.001789100752985412, relative_change = 8.812447553189442e-8 Iter 95: T = 546.2990992505164 K, F = -0.0007482233700368268, relative_change = 3.685475871092639e-8 Iter 100: T = 546.2990377543144 K, F = -0.0003129159602610898, relative_change = 1.5413109045448822e-8 Iter 105: T = 546.2990120358611 K, F = -0.0001308651932835081, relative_change = 6.4459478024966985e-9 Iter 110: T = 546.2990012800954 K, F = -5.472938658859783e-5, relative_change = 2.6957725994883202e-9 Iter 115: T = 546.2989967819057 K, F = -2.2888483023897344e-5, relative_change = 1.1274043369470372e-9 Iter 120: T = 546.2989949007089 K, F = -9.572237284372065e-6, relative_change = 4.714939821193852e-10 Iter 125: T = 546.2989941139699 K, F = -4.0032239052856244e-6, relative_change = 1.9718441334935662e-10 Iter 130: T = 546.2989937849462 K, F = -1.6741953907661866e-6, relative_change = 8.246484451472642e-11 Iter 135: T = 546.2989936473447 K, F = -7.001686906371596e-7, relative_change = 3.448779192390899e-11 Iter 140: T = 546.2989935897981 K, F = -2.928192421591813e-7, relative_change = 1.4423222910434912e-11 Iter 145: T = 546.2989935657314 K, F = -1.2246020281159176e-7, relative_change = 6.031949233100374e-12 Iter 150: T = 546.2989935556664 K, F = -5.121414003994573e-8, relative_change = 2.5226243765105107e-12 Iter 155: T = 546.2989935514571 K, F = -2.1418823964447498e-8, relative_change = 1.0550142481889074e-12 Iter 160: T = 546.2989935496968 K, F = -8.957607128268208e-9, relative_change = 4.412195163391287e-13 Converged in 164 iterations to T = 546.2989935490613 K Iter 1: T = 966.9930177500598 K, F = -7520.6723033946655, relative_change = 0.033006982249940184 Iter 2: T = 936.047613481258 K, F = -6375.632856156984, relative_change = 0.03200168326013739 Iter 3: T = 907.1331959744107 K, F = -5403.455919177939, relative_change = 0.03088990035379896 Iter 5: T = 855.2648265862964 K, F = -3877.5920024394127, relative_change = 0.02834826795447166 Iter 10: T = 758.2801597157102 K, F = -1680.1963653408593, relative_change = 0.02052616658002625 Iter 15: T = 700.988566981854 K, F = -719.9089768178505, relative_change = 0.012443807037281042 Iter 20: T = 671.2928499905726 K, F = -305.2926635459938, relative_change = 0.0064286846363005076 Iter 25: T = 657.3736795982724 K, F = -128.56454222102633, relative_change = 0.002984894839251817 Iter 30: T = 651.2292442886171 K, F = -53.93700046638585, relative_change = 0.0013089482213196075 Iter 35: T = 648.5972214765973 K, F = -22.58801001247597, relative_change = 0.0005587939924092325 Iter 40: T = 647.4850931920836 K, F = -9.452076837015074, relative_change = 0.000235745276953563 Iter 45: T = 647.0179595267776 K, F = -3.9539407064474523, relative_change = 9.895484364980665e-5 Iter 50: T = 646.822241113473 K, F = -1.6537552792609358, relative_change = 4.144799269671989e-5 Iter 55: T = 646.7403265970747 K, F = -0.6916499892858563, relative_change = 1.73452462502396e-5 Iter 60: T = 646.7060579799331 K, F = -0.28926149716685, relative_change = 7.255950003448736e-6 Iter 65: T = 646.6917245120538 K, F = -0.12097352432929975, relative_change = 3.0348680409287717e-6 Iter 70: T = 646.6857297482051 K, F = -0.050592732067501034, relative_change = 1.2692780761910635e-6 Iter 75: T = 646.683222607528 K, F = -0.02115851264308055, relative_change = 5.30837747608502e-7 Iter 80: T = 646.6821740810633 K, F = -0.008848747548910296, relative_change = 2.2200452166401318e-7 Iter 85: T = 646.6817355729737 K, F = -0.00370065275342063, relative_change = 9.28452633728482e-8 Iter 90: T = 646.6815521833389 K, F = -0.001547657325986329, relative_change = 3.882905412217237e-8 Iter 95: T = 646.6814754875485 K, F = -0.0006472488022465916, relative_change = 1.6238783961954908e-8 Iter 100: T = 646.6814434124433 K, F = -0.0002706871824991186, relative_change = 6.7912550793768724e-9 Iter 105: T = 646.6814299982497 K, F = -0.0001132046128018982, relative_change = 2.840184269264219e-9 Iter 110: T = 646.6814243882733 K, F = -4.7343520722498145e-5, relative_change = 1.1877990219053352e-9 Iter 115: T = 646.6814220421141 K, F = -1.9799624607685917e-5, relative_change = 4.967517157664982e-10 Iter 120: T = 646.6814210609224 K, F = -8.280439395769168e-6, relative_change = 2.0774749968066544e-10 Iter 125: T = 646.6814206505763 K, F = -3.4629783049466845e-6, relative_change = 8.688247713546192e-11 Iter 130: T = 646.6814204789647 K, F = -1.4482588793773843e-6, relative_change = 3.6335289468309223e-11 Iter 135: T = 646.6814204071947 K, F = -6.056785537555953e-7, relative_change = 1.5195836808227352e-11 Iter 140: T = 646.6814203771796 K, F = -2.5330207065188404e-7, relative_change = 6.355082090649509e-12 Iter 145: T = 646.6814203646269 K, F = -1.0593339527797951e-7, relative_change = 2.6577572834775845e-12 Iter 150: T = 646.6814203593772 K, F = -4.4302591595268836e-8, relative_change = 1.1115053490434592e-12 Iter 155: T = 646.6814203571818 K, F = -1.852760733722647e-8, relative_change = 4.648381487198632e-13 Converged in 160 iterations to T = 646.6814203562636 K Iter 1: T = 965.2376091843846 K, F = -7920.643814908395, relative_change = 0.03476239081561541 Iter 2: T = 932.4527691989043 K, F = -6717.895474028082, relative_change = 0.033965564202562595 Iter 3: T = 901.6160706460699 K, F = -5696.557635782104, relative_change = 0.033070520643449834 Iter 5: T = 845.6738382211425 K, F = -4093.0132880236233, relative_change = 0.030967585905840405 Iter 10: T = 737.7375622565964 K, F = -1780.8231229349453, relative_change = 0.02394423040100062 Iter 15: T = 670.3794919514329 K, F = -766.6488243643247, relative_change = 0.015638399775073288 Iter 20: T = 633.6013736719431 K, F = -326.39636552920683, relative_change = 0.008585050553413125 Iter 25: T = 615.720575746508 K, F = -137.78802813564403, relative_change = 0.004137176043582909 Iter 30: T = 607.6653177533665 K, F = -57.87861837599562, relative_change = 0.001848713630451051 Iter 35: T = 604.1809455774816 K, F = -24.252533927105112, relative_change = 0.0007960256783606407 Iter 40: T = 602.7022602619901 K, F = -10.151125611772759, relative_change = 0.000337083641915187 Iter 45: T = 602.0799996512761 K, F = -4.2468112988337765, relative_change = 0.0001417163496863485 Iter 50: T = 601.8190807211829 K, F = -1.776328846548961, relative_change = 5.939859703668041e-5 Iter 55: T = 601.7098414456658 K, F = -0.742927784352416, relative_change = 2.4864211501342354e-5 Iter 60: T = 601.6641352706225 K, F = -0.3107092967184119, relative_change = 1.0402539939756127e-5 Iter 65: T = 601.6450167254745 K, F = -0.12994374253529228, relative_change = 4.351171643602568e-6 Iter 70: T = 601.6370204782559 K, F = -0.05434427056960367, relative_change = 1.8198353161681696e-6 Iter 75: T = 601.6336762396414 K, F = -0.022727465910958866, relative_change = 7.610984423542283e-7 Iter 80: T = 601.6322776194314 K, F = -0.009504905178673417, relative_change = 3.1830423247103575e-7 Iter 85: T = 601.631692696314 K, F = -0.003975066171257091, relative_change = 1.331192915149463e-7 Iter 90: T = 601.6314480738787 K, F = -0.001662420375105167, relative_change = 5.567219296267043e-8 Iter 95: T = 601.6313457697495 K, F = -0.0006952440936117688, relative_change = 2.3282796126942126e-8 Iter 100: T = 601.6313029849225 K, F = -0.0002907593899768579, relative_change = 9.737146928775819e-9 Iter 105: T = 601.6312850917938 K, F = -0.00012159905028219509, relative_change = 4.0721917415786255e-9 Iter 110: T = 601.6312776086731 K, F = -5.085417600614317e-5, relative_change = 1.7030393521949043e-9 Iter 115: T = 601.6312744791425 K, F = -2.1267823359150118e-5, relative_change = 7.122314007955159e-10 Iter 120: T = 601.6312731703354 K, F = -8.894457367292219e-6, relative_change = 2.9786366891694156e-10 Iter 125: T = 601.6312726229766 K, F = -3.7197676398537105e-6, relative_change = 1.2457012224252648e-10 Iter 130: T = 601.6312723940646 K, F = -1.5556503403790778e-6, relative_change = 5.209668242242986e-11 Iter 135: T = 601.6312722983309 K, F = -6.505914096344156e-7, relative_change = 2.1787450046070817e-11 Iter 140: T = 601.6312722582941 K, F = -2.7208639319376005e-7, relative_change = 9.111815210000912e-12 Iter 145: T = 601.63127224155 K, F = -1.1378932701644473e-7, relative_change = 3.810654801996064e-12 Iter 150: T = 601.6312722345475 K, F = -4.758802402138329e-8, relative_change = 1.5936602932753939e-12 Iter 155: T = 601.6312722316189 K, F = -1.9901373660147215e-8, relative_change = 6.664708114440116e-13 Iter 160: T = 601.6312722303942 K, F = -8.322605715704867e-9, relative_change = 2.787131119413955e-13 Converged in 162 iterations to T = 601.631272230135 K Iter 1: T = 979.9332330398788 K, F = -4572.231940286866, relative_change = 0.02006676696012113 Iter 2: T = 961.919114555907 K, F = -3862.3986658636973, relative_change = 0.018383005981019516 Iter 3: T = 945.8382397684774 K, F = -3261.2452154562607, relative_change = 0.016717491672731427 Iter 5: T = 918.9577004782402 K, F = -2321.8710156921106, relative_change = 0.013530870094502923 Iter 10: T = 876.1969954128297 K, F = -985.9413927579415, relative_change = 0.007133974364232032 Iter 15: T = 855.911110140209 K, F = -415.52799397354937, relative_change = 0.003352517754368105 Iter 20: T = 846.897622427656 K, F = -174.39653362018072, relative_change = 0.0014789705457311931 Iter 25: T = 843.024692500089 K, F = -73.04777214452182, relative_change = 0.0006330834313540554 Iter 30: T = 841.3860032477388 K, F = -30.569617285786297, relative_change = 0.0002673985583960422 Iter 35: T = 840.6972934022996 K, F = -12.788135752009527, relative_change = 0.0001122969882848673 Iter 40: T = 840.4086684612621 K, F = -5.348775358368789, relative_change = 4.7046249160879344e-5 Iter 45: T = 840.2878570381713 K, F = -2.237031077956432, relative_change = 1.9689736002082543e-5 Iter 50: T = 840.2373138604656 K, F = -0.9355722488512452, relative_change = 8.237009764936448e-6 Iter 55: T = 840.2161728800473 K, F = -0.39127083531505225, relative_change = 3.445258032484389e-6 Iter 60: T = 840.2073309062451 K, F = -0.16363472165023785, relative_change = 1.4409254060736536e-6 Iter 65: T = 840.2036329886706 K, F = -0.06843409721366811, relative_change = 6.026257429949268e-7 Iter 70: T = 840.2020864581441 K, F = -0.028619974637758006, relative_change = 2.5202764902574716e-7 Iter 75: T = 840.2014396775941 K, F = -0.011969218320547759, relative_change = 1.0540138656913837e-7 Iter 80: T = 840.2011691857167 K, F = -0.005005670590153777, relative_change = 4.408019099609029e-8 Iter 85: T = 840.201056062691 K, F = -0.0020934313168972096, relative_change = 1.8434874964225764e-8 Iter 90: T = 840.2010087532746 K, F = -0.0008754979931433482, relative_change = 7.709687072960229e-9 Iter 95: T = 840.2009889679089 K, F = -0.0003661437203639206, relative_change = 3.224283603553482e-9 Iter 100: T = 840.2009806934321 K, F = -0.00015312567550918033, relative_change = 1.3484339632734392e-9 Iter 105: T = 840.200977232947 K, F = -6.403898679807618e-5, relative_change = 5.639312034273742e-10 Iter 110: T = 840.2009757857307 K, F = -2.678186717797182e-5, relative_change = 2.358427493425427e-10 Iter 115: T = 840.2009751804877 K, F = -1.1200496069063703e-5, relative_change = 9.86322491421022e-11 Iter 120: T = 840.2009749273678 K, F = -4.684180122893622e-6, relative_change = 4.124917492239739e-11 Iter 125: T = 840.20097482151 K, F = -1.958980352156914e-6, relative_change = 1.7250900081574298e-11 Iter 130: T = 840.200974777239 K, F = -8.192680105434391e-7, relative_change = 7.214523911839959e-12 Iter 135: T = 840.2009747587244 K, F = -3.4262630510539793e-7, relative_change = 3.017188074544687e-12 Iter 140: T = 840.2009747509813 K, F = -1.432910150533928e-7, relative_change = 1.2618293907540933e-12 Iter 145: T = 840.2009747477432 K, F = -5.992612739369463e-8, relative_change = 5.277131213890093e-13 Converged in 150 iterations to T = 840.2009747463889 K Iter 1: T = 976.4106121369887 K, F = -5374.8644638879405, relative_change = 0.023589387863011322 Iter 2: T = 954.9834120990241 K, F = -4544.83579206166, relative_change = 0.021944865993486707 Iter 3: T = 935.6269821533695 K, F = -3841.247051216006, relative_change = 0.020268865092755765 Iter 5: T = 902.7063002171191 K, F = -2740.16015450245, relative_change = 0.016915554909119043 Iter 10: T = 848.4740671695132 K, F = -1168.5045164835847, relative_change = 0.009522968714094074 Iter 15: T = 821.6895956548892 K, F = -493.81869496548944, relative_change = 0.004665762421330153 Iter 20: T = 809.5112463273033 K, F = -207.55110698171143, relative_change = 0.0021032092021796797 Iter 25: T = 804.2192152743538 K, F = -86.99243020708658, relative_change = 0.0009093016853252665 Iter 30: T = 801.9687487651229 K, F = -36.415825692248795, relative_change = 0.0003857394206261903 Iter 35: T = 801.0208586462226 K, F = -15.235649539040068, relative_change = 0.0001622957886890853 Iter 40: T = 800.6232495847447 K, F = -6.3728057851388265, relative_change = 6.8046074824164e-5 Iter 45: T = 800.4567554570284 K, F = -2.665371940427463, relative_change = 2.8487882824672178e-5 Iter 50: T = 800.3870889403843 K, F = -1.1147233667768146, relative_change = 1.1919263358539545e-5 Iter 55: T = 800.3579471489902 K, F = -0.4661963966692503, relative_change = 4.985704207746079e-6 Iter 60: T = 800.3457585801211 K, F = -0.1949699103130258, relative_change = 2.0852430307883467e-6 Iter 65: T = 800.340660978493 K, F = -0.08153892151587294, relative_change = 8.721018737466159e-7 Iter 70: T = 800.3385290662325 K, F = -0.03410058163978569, relative_change = 3.6472837473984637e-7 Iter 75: T = 800.3376374690513 K, F = -0.014261275887924252, relative_change = 1.5253462890623476e-7 Iter 80: T = 800.3372645914105 K, F = -0.005964236834401837, relative_change = 6.379195504480675e-8 Iter 85: T = 800.3371086493441 K, F = -0.002494315236734601, relative_change = 2.667858394658397e-8 Iter 90: T = 800.3370434324775 K, F = -0.0010431524488669908, relative_change = 1.1157307049133672e-8 Iter 95: T = 800.3370161579993 K, F = -0.00043625881624176355, relative_change = 4.666119856951214e-9 Iter 100: T = 800.3370047514858 K, F = -0.0001824486463491981, relative_change = 1.951427175059099e-9 Iter 105: T = 800.3369999811456 K, F = -7.630220480414618e-5, relative_change = 8.161101941657712e-10 Iter 110: T = 800.3369979861322 K, F = -3.191049388906464e-5, relative_change = 3.413070400738832e-10 Iter 115: T = 800.3369971517939 K, F = -1.3345349461291178e-5, relative_change = 1.427386790636289e-10 Iter 120: T = 800.3369968028636 K, F = -5.581183582181737e-6, relative_change = 5.969501031776285e-11 Iter 125: T = 800.3369966569368 K, F = -2.3341186694558758e-6, relative_change = 2.4965177390302707e-11 Iter 130: T = 800.3369965959084 K, F = -9.761560254561985e-7, relative_change = 1.0440732368871237e-11 Iter 135: T = 800.3369965703857 K, F = -4.082415810957585e-7, relative_change = 4.3664547260473695e-12 Iter 140: T = 800.3369965597117 K, F = -1.7073200397899058e-7, relative_change = 1.8261088537526397e-12 Iter 145: T = 800.3369965552478 K, F = -7.140161184526761e-8, relative_change = 7.636946356136014e-13 Iter 150: T = 800.3369965533808 K, F = -2.985870828364767e-8, relative_change = 3.1936163279117546e-13 Converged in 153 iterations to T = 800.3369965528342 K Iter 1: T = 980.7399398172515 K, F = -4388.423033686254, relative_change = 0.01926006018274847 Iter 2: T = 963.4964830901896 K, F = -3706.2984459381896, relative_change = 0.017582088815792547 Iter 3: T = 948.1445869977596 K, F = -3128.7454661858947, relative_change = 0.01593352582169512 Iter 5: T = 922.5795976903984 K, F = -2226.5808981739024, relative_change = 0.012810372934200679 Iter 10: T = 882.2082295056036 K, F = -944.6485822543068, relative_change = 0.0066634286348924545 Iter 15: T = 863.2088382296727 K, F = -397.9143137005418, relative_change = 0.0031062927254551396 Iter 20: T = 854.8036867975025 K, F = -166.95980541600773, relative_change = 0.0013648728350264033 Iter 25: T = 851.1996054957684 K, F = -69.92440264497633, relative_change = 0.0005831860002169213 Iter 30: T = 849.6760635492517 K, F = -29.260997729329688, relative_change = 0.00024613018734232286 Iter 35: T = 849.0359987393456 K, F = -12.240431988174919, relative_change = 0.00010333073790548437 Iter 40: T = 848.7678043894094 K, F = -5.119644629041767, relative_change = 4.328382855499815e-5 Iter 45: T = 848.655552522883 K, F = -2.141192814370352, relative_change = 1.8114029989393147e-5 Iter 50: T = 848.6085917254537 K, F = -0.895489256692096, relative_change = 7.57764237280151e-6 Iter 55: T = 848.5889494069461 K, F = -0.3745072493549988, relative_change = 3.1694347529358443e-6 Iter 60: T = 848.5807342732861 K, F = -0.15662391983841828, relative_change = 1.3255609267425891e-6 Iter 65: T = 848.5772985220602 K, F = -0.06550208393242096, relative_change = 5.543768602297249e-7 Iter 70: T = 848.5758616351355 K, F = -0.027393769529172163, relative_change = 2.318490262839119e-7 Iter 75: T = 848.5752607092871 K, F = -0.011456404322622182, relative_change = 9.696238190279901e-8 Iter 80: T = 848.5750093944702 K, F = -0.004791205586098135, relative_change = 4.055088733109896e-8 Iter 85: T = 848.5749042915336 K, F = -0.0020037394780334505, relative_change = 1.6958876064033438e-8 Iter 90: T = 848.5748603362166 K, F = -0.0008379877947666259, relative_change = 7.0924063808543e-9 Iter 95: T = 848.5748419535756 K, F = -0.0003504565043688235, relative_change = 2.9661293633307325e-9 Iter 100: T = 848.5748342657353 K, F = -0.0001465650967140686, relative_change = 1.2404707869199059e-9 Iter 105: T = 848.5748310505885 K, F = -6.129527227716203e-5, relative_change = 5.187796938866639e-10 Iter 110: T = 848.5748297059757 K, F = -2.5634411452202244e-5, relative_change = 2.169598360920448e-10 Iter 115: T = 848.5748291436427 K, F = -1.0720618920601055e-5, relative_change = 9.073521096806472e-11 Iter 120: T = 848.5748289084682 K, F = -4.483489436379884e-6, relative_change = 3.794653680284139e-11 Iter 125: T = 848.5748288101155 K, F = -1.875049735700074e-6, relative_change = 1.5869702572471363e-11 Iter 130: T = 848.5748287689831 K, F = -7.841669928954076e-7, relative_change = 6.636888990373984e-12 Iter 135: T = 848.5748287517811 K, F = -3.2794653259671236e-7, relative_change = 2.7756138061817537e-12 Iter 140: T = 848.5748287445871 K, F = -1.371499982472102e-7, relative_change = 1.160785039115679e-12 Iter 145: T = 848.5748287415785 K, F = -5.7357456784146166e-8, relative_change = 4.854515389630292e-13 Converged in 150 iterations to T = 848.5748287403202 K Iter 1: T = 967.3373048099727 K, F = -7442.226169291974, relative_change = 0.032662695190027305 Iter 2: T = 936.7502165965335 K, F = -6308.5420510134, relative_change = 0.03161987867246346 Iter 3: T = 908.2073409152925 K, F = -5346.041568055121, relative_change = 0.03047010310277259 Iter 5: T = 857.1155593670906 K, F = -3835.4754041326237, relative_change = 0.027855425910461327 Iter 10: T = 762.1345656692127 K, F = -1660.699712175201, relative_change = 0.019929231514427603 Iter 15: T = 706.5617179500621 K, F = -710.9842735469587, relative_change = 0.011931159004768347 Iter 20: T = 677.9983819283646 K, F = -301.3221543002557, relative_change = 0.006105732028334857 Iter 25: T = 664.6838925581684 K, F = -126.84674602748423, relative_change = 0.0028194694308686587 Iter 30: T = 658.8236390445168 K, F = -53.206883485549795, relative_change = 0.0012330990254628747 Iter 35: T = 656.3168019429659 K, F = -22.280467688370376, relative_change = 0.0005257816631055781 Iter 40: T = 655.2582104849937 K, F = -9.323062479038647, relative_change = 0.00022170309802864666 Iter 45: T = 654.8136792406781 K, F = -3.8999151100978966, relative_change = 9.304017601238388e-5 Iter 50: T = 654.627451067604 K, F = -1.6311487754109837, relative_change = 3.896699350228246e-5 Iter 55: T = 654.5495120984929 K, F = -0.6821935136723682, relative_change = 1.63063616607801e-5 Iter 60: T = 654.5169072621572 K, F = -0.28530630698046866, relative_change = 6.821248183519937e-6 Iter 65: T = 654.5032698102458 K, F = -0.11931935021814555, relative_change = 2.853030669312242e-6 Iter 70: T = 654.4975661640988 K, F = -0.049900925096179216, relative_change = 1.1932245392542787e-6 Iter 75: T = 654.4951807785332 K, F = -0.020869188675919415, relative_change = 4.990300298607964e-7 Iter 80: T = 654.4941831725966 K, F = -0.00872774845569052, relative_change = 2.0870194079707778e-7 Iter 85: T = 654.4937659602701 K, F = -0.0036500494260833793, relative_change = 8.728192787027535e-8 Iter 90: T = 654.4935914768109 K, F = -0.0015264943980420886, relative_change = 3.650239421484348e-8 Iter 95: T = 654.4935185056954 K, F = -0.0006383982126277887, relative_change = 1.526574589661676e-8 Iter 100: T = 654.4934879882949 K, F = -0.0002669857608290638, relative_change = 6.38431876375248e-9 Iter 105: T = 654.493475225552 K, F = -0.00011165663447482155, relative_change = 2.6699986191898905e-9 Iter 110: T = 654.4934698880202 K, F = -4.669613848001797e-5, relative_change = 1.1166253639159341e-9 Iter 115: T = 654.4934676558006 K, F = -1.9528882876096443e-5, relative_change = 4.669860723455257e-10 Iter 120: T = 654.4934667222598 K, F = -8.167212528831236e-6, relative_change = 1.9529916539255098e-10 Iter 125: T = 654.4934663318418 K, F = -3.4156259260398336e-6, relative_change = 8.16764461789643e-11 Iter 130: T = 654.4934661685643 K, F = -1.4284562138144885e-6, relative_change = 3.415808104620908e-11 Iter 135: T = 654.4934661002798 K, F = -5.973976024975514e-7, relative_change = 1.428532112900218e-11 Iter 140: T = 654.4934660717223 K, F = -2.4983960528190963e-7, relative_change = 5.9743108743917e-12 Iter 145: T = 654.4934660597792 K, F = -1.0448532589135695e-7, relative_change = 2.4985142689325483e-12 Iter 150: T = 654.4934660547844 K, F = -4.369753342503557e-8, relative_change = 1.0449209958640373e-12 Iter 155: T = 654.4934660526956 K, F = -1.8274506297100146e-8, relative_change = 4.369906908347225e-13 Converged in 159 iterations to T = 654.4934660519416 K Iter 1: T = 973.524093552887 K, F = -6032.560469063537, relative_change = 0.026475906447113 Iter 2: T = 949.2412099631026 K, F = -5105.005645063702, relative_change = 0.024943279524971818 Iter 3: T = 927.0838514117324 K, F = -4318.25600974415, relative_change = 0.02334217933103795 Iter 5: T = 888.8231379285081 K, F = -3085.696476260121, relative_change = 0.020012629618458184 Iter 10: T = 823.6862659596309 K, F = -1321.2076142127048, relative_change = 0.012002186795469083 Iter 15: T = 790.1677975571287 K, F = -559.9888771574482, relative_change = 0.0061501667857343225 Iter 20: T = 774.5315299473056 K, F = -235.74870421673825, relative_change = 0.0028421345402478925 Iter 25: T = 767.6465748143095 K, F = -98.88909948373995, relative_change = 0.0012434694045514517 Iter 30: T = 764.7008437871209 K, F = -41.410423617220346, relative_change = 0.0005302909431589694 Iter 35: T = 763.4568119598973 K, F = -17.327903573085017, relative_change = 0.00022362038460992152 Iter 40: T = 762.9343907163876 K, F = -7.248421726080602, relative_change = 9.38476102127363e-5 Iter 45: T = 762.7155286822561 K, F = -3.031672195213805, relative_change = 3.930565946745348e-5 Iter 50: T = 762.6239314314786 K, F = -1.267933293502332, relative_change = 1.6448169054211835e-5 Iter 55: T = 762.5856127152156 K, F = -0.5302739058682886, relative_change = 6.88058407002622e-6 Iter 60: T = 762.5695853313807 K, F = -0.22176846518715387, relative_change = 2.877850955340816e-6 Iter 65: T = 762.5628821313372 K, F = -0.09274649783504574, relative_change = 1.2036056081515541e-6 Iter 70: T = 762.5600787106303 K, F = -0.038787741500943995, relative_change = 5.033716793155565e-7 Iter 75: T = 762.5589062756975 K, F = -0.016221505195141317, relative_change = 2.1051769887089638e-7 Iter 80: T = 762.558415947498 K, F = -0.0067840286800034955, relative_change = 8.804130454487857e-8 Iter 85: T = 762.5582108860556 K, F = -0.002837162072043209, relative_change = 3.681997550793713e-8 Iter 90: T = 762.558125126853 K, F = -0.0011865351078303998, relative_change = 1.5398562328631013e-8 Iter 95: T = 762.5580892613201 K, F = -0.0004962231619110025, relative_change = 6.439864230129295e-9 Iter 100: T = 762.5580742619242 K, F = -0.0002075264549833422, relative_change = 2.693228414140764e-9 Iter 105: T = 762.5580679889972 K, F = -8.679004227774012e-5, relative_change = 1.1263403362266787e-9 Iter 110: T = 762.5580653655843 K, F = -3.629663312554321e-5, relative_change = 4.710490000378131e-10 Iter 115: T = 762.5580642684416 K, F = -1.5179685030619616e-5, relative_change = 1.9699831328190914e-10 Iter 120: T = 762.5580638096034 K, F = -6.348324947391681e-6, relative_change = 8.238703951114853e-11 Iter 125: T = 762.5580636177118 K, F = -2.654945900126826e-6, relative_change = 3.44552515582318e-11 Iter 130: T = 762.5580635374604 K, F = -1.110328772591096e-6, relative_change = 1.4409580695904439e-11 Iter 135: T = 762.5580635038984 K, F = -4.6435322875737484e-7, relative_change = 6.026264911581709e-12 Iter 140: T = 762.5580634898623 K, F = -1.941986970122045e-7, relative_change = 2.5202641465718687e-12 Iter 145: T = 762.5580634839923 K, F = -8.121626415835692e-8, relative_change = 1.0540052113297918e-12 Iter 150: T = 762.5580634815374 K, F = -3.3966476409297286e-8, relative_change = 4.408087901784475e-13 Converged in 154 iterations to T = 762.5580634806513 K Iter 1: T = 969.9569010437953 K, F = -6845.348675536171, relative_change = 0.03004309895620471 Iter 2: T = 942.0700817428849 K, F = -5798.462351264477, relative_change = 0.02875057569145663 Iter 3: T = 916.2970519641286 K, F = -4909.951647689926, relative_change = 0.027357868887073318 Iter 5: T = 870.8881371788394 K, F = -3516.4093391553542, relative_change = 0.02431201576287272 Iter 10: T = 789.8360577423903 K, F = -1514.6203853279405, relative_change = 0.0160110857923393 Iter 15: T = 745.312629858816 K, F = -645.1451859104674, relative_change = 0.008854046700807769 Iter 20: T = 723.5680648014475 K, F = -272.43207919195646, relative_change = 0.0042870252198631935 Iter 25: T = 713.7464249933448 K, F = -114.45530323130019, relative_change = 0.001920414928744849 Iter 30: T = 709.4924938870977 K, F = -47.96317898219209, relative_change = 0.000827847382296673 Iter 35: T = 707.6861746499699 K, F = -20.076108943602634, relative_change = 0.00035073467015515355 Iter 40: T = 706.9258479196329 K, F = -8.3991337078437, relative_change = 0.00014748703678910564 Iter 45: T = 706.6070027538764 K, F = -3.5131566063169104, relative_change = 6.182288083081096e-5 Iter 50: T = 706.4735054378968 K, F = -1.4693384297968053, relative_change = 2.5879994232990357e-5 Iter 55: T = 706.4176485460218 K, F = -0.6145113996001897, relative_change = 1.0827688620502603e-5 Iter 60: T = 706.3942838493978 K, F = -0.2569988965491554, relative_change = 4.529032754249302e-6 Iter 65: T = 706.3845116358667 K, F = -0.10748051334272224, relative_change = 1.8942292542694632e-6 Iter 70: T = 706.3804246363085 K, F = -0.044949722694407335, relative_change = 7.922126770595338e-7 Iter 75: T = 706.3787153792449 K, F = -0.018798526306076035, relative_change = 3.31316892044726e-7 Iter 80: T = 706.3780005431487 K, F = -0.007861770904634913, relative_change = 1.3856139623178866e-7 Iter 85: T = 706.3777015893904 K, F = -0.003287886953078134, relative_change = 5.794815575042743e-8 Iter 90: T = 706.3775765632246 K, F = -0.0013750336713648226, relative_change = 2.4234632648393418e-8 Iter 95: T = 706.3775242757655 K, F = -0.0005750555179350192, relative_change = 1.0135216636024562e-8 Iter 100: T = 706.3775024085215 K, F = -0.0002404950878327483, relative_change = 4.238669308130275e-9 Iter 105: T = 706.3774932633783 K, F = -0.00010057791744000344, relative_change = 1.7726622271106796e-9 Iter 110: T = 706.37748943877 K, F = -4.2062886782212594e-5, relative_change = 7.413485423246859e-10 Iter 115: T = 706.3774878392732 K, F = -1.7591202154831898e-5, relative_change = 3.1004082728184514e-10 Iter 120: T = 706.3774871703445 K, F = -7.3568510352561844e-6, relative_change = 1.2966278093834738e-10 Iter 125: T = 706.3774868905905 K, F = -3.0767228964556637e-6, relative_change = 5.422652243079836e-11 Iter 130: T = 706.3774867735941 K, F = -1.286723885662866e-6, relative_change = 2.267820796716641e-11 Iter 135: T = 706.3774867246647 K, F = -5.381216653388421e-7, relative_change = 9.48426867503907e-12 Iter 140: T = 706.3774867042018 K, F = -2.2504874408468822e-7, relative_change = 3.966431555640276e-12 Iter 145: T = 706.377486695644 K, F = -9.411865087294302e-8, relative_change = 1.6588192408564703e-12 Iter 150: T = 706.3774866920652 K, F = -3.936145998029161e-8, relative_change = 6.937365395646056e-13 Iter 155: T = 706.3774866905684 K, F = -1.6462722185472956e-8, relative_change = 2.9015163377062497e-13 Converged in 157 iterations to T = 706.3774866902517 K Iter 1: T = 973.5692757970314 K, F = -6022.265651755818, relative_change = 0.026430724202968565 Iter 2: T = 949.3315060754577 K, F = -5096.230724130281, relative_change = 0.024895783303895847 Iter 3: T = 927.2188317599988 K, F = -4310.7772491316655, relative_change = 0.023292889969356263 Iter 5: T = 889.0446290564397 K, F = -3080.267742454444, relative_change = 0.019961673247035454 Iter 10: T = 824.090693741318 K, F = -1318.7931158029874, relative_change = 0.011958853214619225 Iter 15: T = 790.690169235208 K, F = -558.9364531637626, relative_change = 0.0061230722875553 Iter 20: T = 775.1161655489956 K, F = -235.2985397608538, relative_change = 0.002828316685389434 Iter 25: T = 768.2603116535578 K, F = -98.69880734699495, relative_change = 0.001237147425164464 Iter 30: T = 765.3273683732966 K, F = -41.33046244244143, relative_change = 0.0005275420550869068 Iter 35: T = 764.088799492345 K, F = -17.29439470782753, relative_change = 0.00022245160239258907 Iter 40: T = 763.5686835730479 K, F = -7.23439585502861, relative_change = 9.33553979995155e-5 Iter 45: T = 763.350789306925 K, F = -3.025804287807337, relative_change = 3.90992088161158e-5 Iter 50: T = 763.2595974304178 K, F = -1.2654788928599476, relative_change = 1.6361723362554814e-5 Iter 55: T = 763.2214483590504 K, F = -0.5292473811419218, relative_change = 6.8444129613224925e-6 Iter 60: T = 763.2054919424357 K, F = -0.22133914890314355, relative_change = 2.8627205303035273e-6 Iter 65: T = 763.1988184251779 K, F = -0.09256695064621123, relative_change = 1.1972773176926577e-6 Iter 70: T = 763.1960274187694 K, F = -0.03871265237602639, relative_change = 5.007250136910757e-7 Iter 75: T = 763.1948601757498 K, F = -0.01619010196545323, relative_change = 2.0941081438259455e-7 Iter 80: T = 763.1943720188889 K, F = -0.006770895461658655, relative_change = 8.757838917828691e-8 Iter 85: T = 763.1941678655293 K, F = -0.0028316695995320718, relative_change = 3.662637821902793e-8 Iter 90: T = 763.1940824860985 K, F = -0.0011842380892547189, relative_change = 1.531759752924263e-8 Iter 95: T = 763.1940467793908 K, F = -0.0004952625204743821, relative_change = 6.406003757747519e-9 Iter 100: T = 763.1940318464174 K, F = -0.00020712470167139063, relative_change = 2.6790675368825206e-9 Iter 105: T = 763.1940256012693 K, F = -8.662202433706856e-5, relative_change = 1.1204180889544153e-9 Iter 110: T = 763.1940229894738 K, F = -3.622636541444901e-5, relative_change = 4.685722375965549e-10 Iter 115: T = 763.1940218971896 K, F = -1.5150299463639882e-5, relative_change = 1.9596251755023027e-10 Iter 120: T = 763.1940214403833 K, F = -6.336035531351314e-6, relative_change = 8.195385711876844e-11 Iter 125: T = 763.1940212493415 K, F = -2.649805881937972e-6, relative_change = 3.4274083821831016e-11 Iter 130: T = 763.1940211694456 K, F = -1.1081824184966393e-6, relative_change = 1.4333856445584635e-11 Iter 135: T = 763.1940211360321 K, F = -4.634550228033163e-7, relative_change = 5.99458866731046e-12 Iter 140: T = 763.1940211220581 K, F = -1.9382171390081027e-7, relative_change = 2.506999369004277e-12 Iter 145: T = 763.1940211162141 K, F = -8.105800319846423e-8, relative_change = 1.0484499326153963e-12 Iter 150: T = 763.1940211137701 K, F = -3.390104208467193e-8, relative_change = 4.384951995768059e-13 Converged in 154 iterations to T = 763.1940211128879 K Iter 1: T = 964.330321355564 K, F = -8127.370209758698, relative_change = 0.035669678644435994 Iter 2: T = 930.586521034863 K, F = -6894.918004646814, relative_change = 0.034991952003818765 Iter 3: T = 898.7376525144629 K, F = -5848.288150989871, relative_change = 0.03422451088694305 Iter 5: T = 840.6117636217599 K, F = -4204.8117258780785, relative_change = 0.032395048765001315 Iter 10: T = 726.4760537923322 K, F = -1833.7038031339966, relative_change = 0.025999574840830913 Iter 15: T = 652.8518260891396 K, F = -791.7651648542766, relative_change = 0.017798863263485835 Iter 20: T = 611.2256851114788 K, F = -338.02197462990074, relative_change = 0.010199027040474451 Iter 25: T = 590.4347119308414 K, F = -142.96319269988115, relative_change = 0.005057586786346096 Iter 30: T = 580.9169618635767 K, F = -60.11299426521812, relative_change = 0.002294717632664344 Iter 35: T = 576.7668689789724 K, F = -25.20073513676727, relative_change = 0.000995147226954485 Iter 40: T = 574.9992564066644 K, F = -10.550207472230346, relative_change = 0.00042272797162676794 Iter 45: T = 574.2542372157495 K, F = -4.414164912959769, relative_change = 0.00017796131454005606 Iter 50: T = 573.9416356949821 K, F = -1.846398061972272, relative_change = 7.46324298310748e-5 Iter 55: T = 573.8107215680959 K, F = -0.7722456023857893, relative_change = 3.124850532824731e-5 Iter 60: T = 573.7559400799656 K, F = -0.3229728171549417, relative_change = 1.3074863464988899e-5 Iter 65: T = 573.7330242683576 K, F = -0.13507292358133383, relative_change = 5.4691781508618965e-6 Iter 70: T = 573.7234396330671 K, F = -0.05648943062648398, relative_change = 2.287470534352175e-6 Iter 75: T = 573.719431054579 K, F = -0.02362461063516047, relative_change = 9.566815907519135e-7 Iter 80: T = 573.7177545895272 K, F = -0.009880104119331212, relative_change = 4.001016299673987e-7 Iter 85: T = 573.7170534666344 K, F = -0.0041319792518689225, relative_change = 1.6732832289515446e-7 Iter 90: T = 573.7167602477604 K, F = -0.0017280433691217456, relative_change = 6.997888536951933e-8 Iter 95: T = 573.7166376199667 K, F = -0.0007226884259826094, relative_change = 2.926603746573714e-8 Iter 100: T = 573.7165863355314 K, F = -0.00030223693991793255, relative_change = 1.223941196993677e-8 Iter 105: T = 573.7165648877631 K, F = -0.00012639909947637085, relative_change = 5.1186692364145286e-9 Iter 110: T = 573.7165559180495 K, F = -5.2861613176580224e-5, relative_change = 2.140688774014318e-9 Iter 115: T = 573.7165521668079 K, F = -2.2107357823097917e-5, relative_change = 8.952616339974693e-10 Iter 120: T = 573.7165505979939 K, F = -9.245560893322846e-6, relative_change = 3.744091051753116e-10 Iter 125: T = 573.7165499418973 K, F = -3.866604767199799e-6, relative_change = 1.5658239186779682e-10 Iter 130: T = 573.7165496675096 K, F = -1.6170604833498636e-6, relative_change = 6.548463422024947e-11 Iter 135: T = 573.7165495527574 K, F = -6.762736653453949e-7, relative_change = 2.7386442316839488e-11 Iter 140: T = 573.7165495047668 K, F = -2.8282622660524837e-7, relative_change = 1.1453357628147048e-11 Iter 145: T = 573.7165494846965 K, F = -1.1828109619527183e-7, relative_change = 4.789922461788418e-12 Iter 150: T = 573.7165494763028 K, F = -4.9466234997019853e-8, relative_change = 2.0031893324497684e-12 Iter 155: T = 573.7165494727924 K, F = -2.06867949992251e-8, relative_change = 8.37734407494863e-13 Iter 160: T = 573.7165494713244 K, F = -8.650767546747318e-9, relative_change = 3.5032230103841144e-13 Converged in 163 iterations to T = 573.7165494708946 K Iter 1: T = 963.5679469459473 K, F = -8301.07794419515, relative_change = 0.03643205305405271 Iter 2: T = 929.0139787771716 K, F = -7043.730950973594, relative_change = 0.03586043753146354 Iter 3: T = 896.3045785586868 K, F = -5975.911241132248, relative_change = 0.035208727711007186 Iter 5: T = 836.3006788254887 K, F = -4299.000792629497, relative_change = 0.03363580614446563 Iter 10: T = 716.6318859983849 K, F = -1878.6467412821062, relative_change = 0.027910534018060845 Iter 15: T = 637.0137321549913 K, F = -813.4904434924479, relative_change = 0.019994771866923375 Iter 20: T = 590.3813691862832 K, F = -348.30430836408715, relative_change = 0.011986623481777576 Iter 25: T = 566.3916557808694 K, F = -147.62450758187558, relative_change = 0.006140327594992703 Iter 30: T = 555.2025320771869 K, F = -62.14745082054523, relative_change = 0.002837092807221081 Iter 35: T = 550.2762080348625 K, F = -26.068734519760152, relative_change = 0.0012411580697011353 Iter 40: T = 548.1685713187948 K, F = -10.916416261837728, relative_change = 0.0005292850950291219 Iter 45: T = 547.278498108136 K, F = -4.5678933661068175, relative_change = 0.00022319256361664973 Iter 50: T = 546.9047220601096 K, F = -1.9107909895656583, relative_change = 9.366741428501132e-5 Iter 55: T = 546.7481336725682 K, F = -0.7991933957959795, relative_change = 3.923007446093617e-5 Iter 60: T = 546.6825990319572 K, F = -0.3342458437455613, relative_change = 1.64165190359199e-5 Iter 65: T = 546.6551833427988 K, F = -0.13978798716675322, relative_change = 6.867340742424303e-6 Iter 70: T = 546.6437163182466 K, F = -0.058461422623885595, relative_change = 2.87231122796921e-6 Iter 75: T = 546.638920416932 K, F = -0.02444933804891189, relative_change = 1.2012886163762527e-6 Iter 80: T = 546.6369146691756 K, F = -0.01022501791341704, relative_change = 5.024026487005702e-7 Iter 85: T = 546.6360758337179 K, F = -0.004276226834127955, relative_change = 2.1011243223879931e-7 Iter 90: T = 546.6357250213488 K, F = -0.001788369520601324, relative_change = 8.787181605854681e-8 Iter 95: T = 546.635578307188 K, F = -0.0007479175587946363, relative_change = 3.6749093167685544e-8 Iter 100: T = 546.6355169495323 K, F = -0.0003127880666338734, relative_change = 1.5368918418767802e-8 Iter 105: T = 546.6354912890206 K, F = -0.00013081170726611524, relative_change = 6.427466776897065e-9 Iter 110: T = 546.6354805574869 K, F = -5.470701813492518e-5, relative_change = 2.688043614283617e-9 Iter 115: T = 546.6354760694311 K, F = -2.287912837328765e-5, relative_change = 1.1241719878871795e-9 Iter 120: T = 546.6354741924725 K, F = -9.568324787989635e-6, relative_change = 4.701421617993229e-10 Iter 125: T = 546.6354734075061 K, F = -4.001588030405623e-6, relative_change = 1.9661908450979948e-10 Iter 130: T = 546.6354730792237 K, F = -1.6735118353317091e-6, relative_change = 8.222844616182648e-11 Iter 135: T = 546.635472941932 K, F = -6.998825973214551e-7, relative_change = 3.438891636571769e-11 Iter 140: T = 546.635472884515 K, F = -2.9269910162277313e-7, relative_change = 1.4381847712147931e-11 Iter 145: T = 546.6354728605025 K, F = -1.2240983138234185e-7, relative_change = 6.0146394164462e-12 Iter 150: T = 546.6354728504602 K, F = -5.119322246671665e-8, relative_change = 2.5153925158870922e-12 Iter 155: T = 546.6354728462604 K, F = -2.1409208295075643e-8, relative_change = 1.0519471079102952e-12 Iter 160: T = 546.6354728445041 K, F = -8.953559893498664e-9, relative_change = 4.3993553174864515e-13 Converged in 164 iterations to T = 546.63547284387 K Iter 1: T = 969.399707498952 K, F = -6972.305754756615, relative_change = 0.030600292501048027 Iter 2: T = 940.9423748499606 K, F = -5906.898375011368, relative_change = 0.029355623308790983 Iter 3: T = 914.5885252789401 K, F = -5002.596556872267, relative_change = 0.028007931490196578 Iter 5: T = 868.0032499364124 K, F = -3584.07332064944, relative_change = 0.025036394621148074 Iter 10: T = 784.1682403702476 K, F = -1545.3764355343671, relative_change = 0.01676230847271364 Iter 15: T = 737.5537877964898 K, F = -658.8752210704487, relative_change = 0.009407907466064612 Iter 20: T = 714.5759533564217 K, F = -278.40824672343314, relative_change = 0.0045999640462202375 Iter 25: T = 704.1404086916186 K, F = -117.00602979764278, relative_change = 0.0020712842568467948 Iter 30: T = 699.6083091448562 K, F = -49.03993334124104, relative_change = 0.0008950406374383603 Iter 35: T = 697.681510685503 K, F = -20.52825597050234, relative_change = 0.0003796041441352858 Iter 40: T = 696.8700404155403 K, F = -8.58855458785613, relative_change = 0.00015969906224040133 Iter 45: T = 696.529671389091 K, F = -3.5924324690012686, relative_change = 6.695462012563783e-5 Iter 50: T = 696.3871487353555 K, F = -1.5025026859584307, relative_change = 2.8030460944292922e-5 Iter 55: T = 696.3275131626424 K, F = -0.6283828643967042, relative_change = 1.1727795333947321e-5 Iter 60: T = 696.3025674450254 K, F = -0.2628004197451421, relative_change = 4.905600453235039e-6 Iter 65: T = 696.2921339016127 K, F = -0.10990683403055274, relative_change = 2.0517375153773333e-6 Iter 70: T = 696.2877703036038 K, F = -0.04596444849929848, relative_change = 8.580885629149281e-7 Iter 75: T = 696.2859453658473 K, F = -0.019222898421765944, relative_change = 3.5886768265072135e-7 Iter 80: T = 696.2851821500186 K, F = -0.008039248684362899, relative_change = 1.5008358982142013e-7 Iter 85: T = 696.2848629631585 K, F = -0.0033621103320733425, relative_change = 6.276689640276701e-8 Iter 90: T = 696.2847294752469 K, F = -0.001406074784941591, relative_change = 2.6249891348248297e-8 Iter 95: T = 696.284673648981 K, F = -0.000588037282643894, relative_change = 1.0978022531824144e-8 Iter 100: T = 696.2846503017652 K, F = -0.00024592421813707244, relative_change = 4.591140933608489e-9 Iter 105: T = 696.2846405376798 K, F = -0.00010284844660191084, relative_change = 1.9200701267048226e-9 Iter 110: T = 696.2846364542226 K, F = -4.3012447734191994e-5, relative_change = 8.029962630018532e-10 Iter 115: T = 696.2846347464719 K, F = -1.7988318749662113e-5, relative_change = 3.3582262027038686e-10 Iter 120: T = 696.2846340322702 K, F = -7.522929481917906e-6, relative_change = 1.4044502647654615e-10 Iter 125: T = 696.2846337335825 K, F = -3.1461784034680917e-6, relative_change = 5.873577721810897e-11 Iter 130: T = 696.2846336086678 K, F = -1.3157698833810016e-6, relative_change = 2.45640128739631e-11 Iter 135: T = 696.2846335564269 K, F = -5.502711871718802e-7, relative_change = 1.0272973033823001e-11 Iter 140: T = 696.2846335345791 K, F = -2.3012969174729392e-7, relative_change = 4.2962745879999855e-12 Iter 145: T = 696.2846335254422 K, F = -9.624305929989418e-8, relative_change = 1.7967547204703829e-12 Iter 150: T = 696.284633521621 K, F = -4.024970301497177e-8, relative_change = 7.514187975490784e-13 Iter 155: T = 696.2846335200229 K, F = -1.6833636706792277e-8, relative_change = 3.1426594745379824e-13 Converged in 157 iterations to T = 696.2846335196847 K Iter 1: T = 966.4752640523202 K, F = -7638.642975935542, relative_change = 0.03352473594767977 Iter 2: T = 934.9894991721376 K, F = -6476.549712923747, relative_change = 0.03257793142906357 Iter 3: T = 905.5129870895817 K, F = -5489.8421371357, relative_change = 0.031526035435323216 Iter 5: T = 852.4631446077274 K, F = -3941.0106287475164, relative_change = 0.02910203450859482 Iter 10: T = 752.3801765147948 K, F = -1709.6588662237546, relative_change = 0.02146627960407433 Iter 15: T = 692.3595299359208 K, F = -733.4701588110166, relative_change = 0.013277164052564959 Iter 20: T = 660.8219862534581 K, F = -311.3581854784466, relative_change = 0.006966754497278128 Iter 25: T = 645.9030860943235 K, F = -131.19804084294026, relative_change = 0.0032645413071033034 Iter 30: T = 639.2846117426623 K, F = -55.05840023182514, relative_change = 0.0014380939612822043 Iter 35: T = 636.4428854098602 K, F = -23.06077604856985, relative_change = 0.0006151855597727172 Iter 40: T = 635.2409077631798 K, F = -9.65047725411797, relative_change = 0.0002597657442431455 Iter 45: T = 634.7358106989644 K, F = -4.0370354637408195, relative_change = 0.00010907845707015282 Iter 50: T = 634.5241469271889 K, F = -1.68852784682997, relative_change = 4.569556201508367e-5 Iter 55: T = 634.4355518067669 K, F = -0.7061960353589674, relative_change = 1.9124044545528177e-5 Iter 60: T = 634.398487166372 K, F = -0.29534548269560035, relative_change = 8.0002875516032e-6 Iter 65: T = 634.3829839979363 K, F = -0.12351803440587522, relative_change = 3.346232897447894e-6 Iter 70: T = 634.376499986565 K, F = -0.05165689662932166, relative_change = 1.3995075245472666e-6 Iter 75: T = 634.373788225399 K, F = -0.021603562480706162, relative_change = 5.853035228520898e-7 Iter 80: T = 634.3726541222201 K, F = -0.009034873319864523, relative_change = 2.4478315543988e-7 Iter 85: T = 634.3721798245799 K, F = -0.0037784928818262453, relative_change = 1.023716293546308e-7 Iter 90: T = 634.371981467267 K, F = -0.0015802110146285187, relative_change = 4.281310622348747e-8 Iter 95: T = 634.3718985118043 K, F = -0.00066086314780478, relative_change = 1.790496427340137e-8 Iter 100: T = 634.3718638188276 K, F = -0.0002763808658379774, relative_change = 7.488071976169221e-9 Iter 105: T = 634.3718493098083 K, F = -0.00011558577947318183, relative_change = 3.1316014867362775e-9 Iter 110: T = 634.371843241963 K, F = -4.833935416886925e-5, relative_change = 1.309673222491761e-9 Iter 115: T = 634.3718407043174 K, F = -2.0216095355074515e-5, relative_change = 5.477209968846001e-10 Iter 120: T = 634.3718396430437 K, F = -8.454612247799087e-6, relative_change = 2.2906345682419903e-10 Iter 125: T = 634.3718391992064 K, F = -3.5358195972778894e-6, relative_change = 9.579706775647235e-11 Iter 130: T = 634.3718390135883 K, F = -1.478721815106887e-6, relative_change = 4.006347332345933e-11 Iter 135: T = 634.3718389359607 K, F = -6.184197124392554e-7, relative_change = 1.6755038989301128e-11 Iter 140: T = 634.3718389034958 K, F = -2.586301636187116e-7, relative_change = 7.007148040615405e-12 Iter 145: T = 634.3718388899185 K, F = -1.081610921382925e-7, relative_change = 2.930442351814119e-12 Iter 150: T = 634.3718388842404 K, F = -4.523337648887349e-8, relative_change = 1.225522039059259e-12 Iter 155: T = 634.3718388818659 K, F = -1.891809225940122e-8, relative_change = 5.125537998908545e-13 Converged in 160 iterations to T = 634.3718388808728 K Iter 1: T = 966.4474180012851 K, F = -7644.987725152335, relative_change = 0.03355258199871492 Iter 2: T = 934.9325397372126 K, F = -6481.978042715544, relative_change = 0.03260899421641445 Iter 3: T = 905.4256820521423 K, F = -5494.489699189016, relative_change = 0.03156041364584867 Iter 5: T = 852.3118282940202 K, F = -3944.4242416581737, relative_change = 0.029143009934386135 Iter 10: T = 752.0592367630386 K, F = -1711.248404595921, relative_change = 0.02151835231622687 Iter 15: T = 691.8866007427788 K, F = -734.2044937517171, relative_change = 0.013324281226163373 Iter 20: T = 660.2448509354307 K, F = -311.6878302444351, relative_change = 0.006997671664168775 Iter 25: T = 645.2687733868635 K, F = -131.3415166698599, relative_change = 0.003280764846576042 Iter 30: T = 638.6230262171638 K, F = -55.119574763595196, relative_change = 0.0014456222019157284 Iter 35: T = 635.7692009011319 K, F = -23.086581946719136, relative_change = 0.0006184798909642398 Iter 40: T = 634.5620328342532 K, F = -9.66130979258946, relative_change = 0.0002611703069874422 Iter 45: T = 634.0547415199165 K, F = -4.04157289755507, relative_change = 0.00010967065620426748 Iter 50: T = 633.8421559113216 K, F = -1.6904267119145542, relative_change = 4.5944072823288536e-5 Iter 55: T = 633.7531745333616 K, F = -0.7069903836815794, relative_change = 1.9228123266763414e-5 Iter 60: T = 633.7159482267059 K, F = -0.2956777272173465, relative_change = 8.043840535322793e-6 Iter 65: T = 633.7003774249694 K, F = -0.12365698978192624, relative_change = 3.3644518292342527e-6 Iter 70: T = 633.6938651245998 K, F = -0.05171501060796052, relative_change = 1.4071276961007325e-6 Iter 75: T = 633.6911415319471 K, F = -0.021627866647770055, relative_change = 5.884905089759868e-7 Iter 80: T = 633.6900024805784 K, F = -0.009045037649567655, relative_change = 2.4611601549047324e-7 Iter 85: T = 633.6895261135251 K, F = -0.0037827437316055312, relative_change = 1.0292905159226002e-7 Iter 90: T = 633.6893268907552 K, F = -0.0015819887726459259, relative_change = 4.304622762673051e-8 Iter 95: T = 633.6892435733473 K, F = -0.0006616066271198373, relative_change = 1.8002458544828934e-8 Iter 100: T = 633.6892087290007 K, F = -0.0002766917984909356, relative_change = 7.528845286398985e-9 Iter 105: T = 633.6891941566769 K, F = -0.00011571581637898065, relative_change = 3.148653407297962e-9 Iter 110: T = 633.6891880623567 K, F = -4.839373772058675e-5, relative_change = 1.3168045554260724e-9 Iter 115: T = 633.689185513639 K, F = -2.02388388653163e-5, relative_change = 5.507033963482205e-10 Iter 120: T = 633.6891844477349 K, F = -8.464124736928813e-6, relative_change = 2.303107558733598e-10 Iter 125: T = 633.689184001961 K, F = -3.539797856666471e-6, relative_change = 9.631870371442388e-11 Iter 130: T = 633.689183815533 K, F = -1.480384975272031e-6, relative_change = 4.028161149024198e-11 Iter 135: T = 633.6891837375666 K, F = -6.19114523092712e-7, relative_change = 1.6846246833336655e-11 Iter 140: T = 633.6891837049602 K, F = -2.5892080934841744e-7, relative_change = 7.045294049718343e-12 Iter 145: T = 633.6891836913238 K, F = -1.0828378804728089e-7, relative_change = 2.9464264753708693e-12 Iter 150: T = 633.689183685621 K, F = -4.528586694529935e-8, relative_change = 1.2322387288040591e-12 Iter 155: T = 633.6891836832359 K, F = -1.893918166739894e-8, relative_change = 5.153394362756134e-13 Converged in 160 iterations to T = 633.6891836822384 K Iter 1: T = 976.2777414167167 K, F = -5405.139183894585, relative_change = 0.023722258583283255 Iter 2: T = 954.7202641699561 K, F = -4570.6022058460685, relative_change = 0.022081295447213347 Iter 3: T = 935.2372641718481 K, F = -3863.169829894116, relative_change = 0.020407024684918288 Iter 5: T = 902.0788358433086 K, F = -2756.0094157452745, relative_change = 0.017051352340617217 Iter 10: T = 847.3771490796884 K, F = -1175.4680793413968, relative_change = 0.00962542980968505 Iter 15: T = 820.3145894224452 K, F = -496.82073869447123, relative_change = 0.004724558511957305 Iter 20: T = 807.9971953236502 K, F = -208.82631393178318, relative_change = 0.0021317908329149785 Iter 25: T = 802.6419965511074 K, F = -87.52957790481781, relative_change = 0.0009220807434364279 Iter 30: T = 800.3641365825795 K, F = -36.641171939778786, relative_change = 0.0003912393127609956 Iter 35: T = 799.4046113998133 K, F = -15.330017831135756, relative_change = 0.00016462398799780594 Iter 40: T = 799.0021045215616 K, F = -6.412293926087025, relative_change = 6.902473269770518e-5 Iter 45: T = 798.8335564434734 K, F = -2.681890248515543, relative_change = 2.8898044641457557e-5 Iter 50: T = 798.7630299530131 K, F = -1.1216322029371408, relative_change = 1.2090951398978232e-5 Iter 55: T = 798.7335283373764 K, F = -0.46908587389287104, relative_change = 5.057533065174376e-6 Iter 60: T = 798.7211892554492 K, F = -0.1961783450918536, relative_change = 2.1152874180737497e-6 Iter 65: T = 798.7160287021683 K, F = -0.08204430702547194, relative_change = 8.846676176972892e-7 Iter 70: T = 798.7138704618487 K, F = -0.03431194053347919, relative_change = 3.699836627614557e-7 Iter 75: T = 798.712967853797 K, F = -0.014349668813836591, relative_change = 1.5473247828458446e-7 Iter 80: T = 798.7125903712501 K, F = -0.006001203832269986, relative_change = 6.471112631451969e-8 Iter 85: T = 798.7124325033521 K, F = -0.0025097752783429517, relative_change = 2.7062993099006485e-8 Iter 90: T = 798.7123664810788 K, F = -0.0010496180239980557, relative_change = 1.1318071687464012e-8 Iter 95: T = 798.71233886977 K, F = -0.0004389627978444999, relative_change = 4.733353580338671e-9 Iter 100: T = 798.7123273223897 K, F = -0.0001835794831033244, relative_change = 1.9795451179585005e-9 Iter 105: T = 798.7123224931373 K, F = -7.67751325818633e-5, relative_change = 8.278694366553703e-10 Iter 110: T = 798.7123204734861 K, F = -3.210827688293616e-5, relative_change = 3.462248845579595e-10 Iter 115: T = 798.7123196288439 K, F = -1.3428064648324245e-5, relative_change = 1.4479538011528248e-10 Iter 120: T = 798.7123192756046 K, F = -5.615778805201366e-6, relative_change = 6.05551767697361e-11 Iter 125: T = 798.7123191278756 K, F = -2.3485853030136283e-6, relative_change = 2.5324893169993403e-11 Iter 130: T = 798.7123190660935 K, F = -9.822061476372212e-7, relative_change = 1.0591169814895187e-11 Iter 135: T = 798.7123190402556 K, F = -4.107711291112537e-7, relative_change = 4.429362201213274e-12 Iter 140: T = 798.7123190294499 K, F = -1.7178909927917374e-7, relative_change = 1.852409015752842e-12 Iter 145: T = 798.7123190249307 K, F = -7.184431316531459e-8, relative_change = 7.747002225403638e-13 Iter 150: T = 798.7123190230408 K, F = -3.004533233319506e-8, relative_change = 3.239800705106473e-13 Converged in 153 iterations to T = 798.7123190224875 K Iter 1: T = 965.2975136029967 K, F = -7906.994536143827, relative_change = 0.034702486397003365 Iter 2: T = 932.5757913710398 K, F = -6706.21036691078, relative_change = 0.03389806952865989 Iter 3: T = 901.8054706111241 K, F = -5686.545278519353, relative_change = 0.03299498126010582 Iter 5: T = 846.0054996439693 K, F = -4085.642812685805, relative_change = 0.03087515732927565 Iter 10: T = 738.4647841597675 K, F = -1777.3535764916726, relative_change = 0.02381609810842256 Iter 15: T = 671.4916633459311 K, F = -765.01578109506, relative_change = 0.01551006225615315 Iter 20: T = 634.9996454061389 K, F = -325.6485119899291, relative_change = 0.008493340356775018 Iter 25: T = 617.2852771274028 K, F = -137.4578528578762, relative_change = 0.004086414842900302 Iter 30: T = 609.3120898498248 K, F = -57.73673717702067, relative_change = 0.0018245064293916581 Iter 35: T = 605.8647216660557 K, F = -24.1924614589441, relative_change = 0.0007852990369513039 Iter 40: T = 604.4020267378896 K, F = -10.12586791686907, relative_change = 0.0003324852150374021 Iter 45: T = 603.7865472758464 K, F = -4.236224217128877, relative_change = 0.00013977302642471527 Iter 50: T = 603.5284809898286 K, F = -1.7718969685419497, relative_change = 5.858230100674839e-5 Iter 55: T = 603.4204376638937 K, F = -0.7410735769791268, relative_change = 2.452219844515022e-5 Iter 60: T = 603.375232164982 K, F = -0.30993371490405375, relative_change = 1.025939588068005e-5 Iter 65: T = 603.3563230988887 K, F = -0.12961936218225656, relative_change = 4.291287813141013e-6 Iter 70: T = 603.3484144741172 K, F = -0.05420860684608536, relative_change = 1.7947878105649792e-6 Iter 75: T = 603.3451068830218 K, F = -0.022670729024224567, relative_change = 7.506226864277921e-7 Iter 80: T = 603.3437235897254 K, F = -0.009481177012939768, relative_change = 3.139230430415109e-7 Iter 85: T = 603.3431450765909 K, F = -0.0039651427475951295, relative_change = 1.3128700772349227e-7 Iter 90: T = 603.3429031349018 K, F = -0.001658270275525786, relative_change = 5.490590679048567e-8 Iter 95: T = 603.3428019518954 K, F = -0.0006935084723000418, relative_change = 2.296232556471539e-8 Iter 100: T = 603.3427596359357 K, F = -0.000290033532109657, relative_change = 9.603122209464236e-9 Iter 105: T = 603.342741938893 K, F = -0.00012129548874700857, relative_change = 4.016141016812567e-9 Iter 110: T = 603.3427345377778 K, F = -5.07272224907207e-5, relative_change = 1.67959825148119e-9 Iter 115: T = 603.3427314425429 K, F = -2.1214730004770477e-5, relative_change = 7.024280562270074e-10 Iter 120: T = 603.3427301480787 K, F = -8.872253356329018e-6, relative_change = 2.937638019289742e-10 Iter 125: T = 603.3427296067183 K, F = -3.7104825287848087e-6, relative_change = 1.2285553799313481e-10 Iter 130: T = 603.342729380315 K, F = -1.5517681490884172e-6, relative_change = 5.1379654710271934e-11 Iter 135: T = 603.3427292856303 K, F = -6.489674886367425e-7, relative_change = 2.1487569215058753e-11 Iter 140: T = 603.3427292460321 K, F = -2.714061325681527e-7, relative_change = 8.986363974908186e-12 Iter 145: T = 603.3427292294716 K, F = -1.1350500095375082e-7, relative_change = 3.758195299510654e-12 Iter 150: T = 603.3427292225459 K, F = -4.7469382868925436e-8, relative_change = 1.5717299685421614e-12 Iter 155: T = 603.3427292196494 K, F = -1.9851873145348975e-8, relative_change = 6.573033410000553e-13 Iter 160: T = 603.3427292184381 K, F = -8.302377896285407e-9, relative_change = 2.748950030845886e-13 Converged in 162 iterations to T = 603.3427292181818 K Iter 1: T = 964.577383711671 K, F = -8071.076816902735, relative_change = 0.035422616288328955 Iter 2: T = 931.0952759698478 K, F = -6846.704931544649, relative_change = 0.034711686493192444 Iter 3: T = 899.5233070434862 K, F = -5806.954339774773, relative_change = 0.033908419193165326 Iter 5: T = 841.9974958800931 K, F = -4174.336598583121, relative_change = 0.03200114451270239 Iter 10: T = 729.5897881598223 K, F = -1819.240801636582, relative_change = 0.025417683327787394 Iter 15: T = 657.7576171526072 K, F = -784.8513699210388, relative_change = 0.017167116178451024 Iter 20: T = 617.5559648896658 K, F = -334.79686419437587, relative_change = 0.009712979057018858 Iter 25: T = 597.6382451542263 K, F = -141.51877834477853, relative_change = 0.00477490624096987 Iter 30: T = 588.5649159404716 K, F = -59.487173992768376, relative_change = 0.002156297240623447 Iter 35: T = 584.6184096981616 K, F = -24.9347017508573, relative_change = 0.0009330446841807445 Iter 40: T = 582.939410936363 K, F = -10.438152944113705, relative_change = 0.00039595934839499724 Iter 45: T = 582.2320890225006 K, F = -4.367159780099018, relative_change = 0.00016662230480027934 Iter 50: T = 581.9353669023121 K, F = -1.826714763752316, relative_change = 6.986476802587235e-5 Iter 55: T = 581.811113838049 K, F = -0.7640093876152567, relative_change = 2.9250116514977255e-5 Iter 60: T = 581.7591216158459 K, F = -0.3195275585812565, relative_change = 1.2238325139435782e-5 Iter 65: T = 581.737372926923 K, F = -0.13363193961638212, relative_change = 5.11918982218887e-6 Iter 70: T = 581.7282765045012 K, F = -0.05588677018519403, relative_change = 2.1410770868955605e-6 Iter 75: T = 581.7244721213988 K, F = -0.023372566689194352, relative_change = 8.954538783388162e-7 Iter 80: T = 581.7228810566077 K, F = -0.009774695604881756, relative_change = 3.7449473052291644e-7 Iter 85: T = 581.7222156497031 K, F = -0.004087896024268622, relative_change = 1.566190824613208e-7 Iter 90: T = 581.7219373677832 K, F = -0.0017096072149467845, relative_change = 6.550013053256451e-8 Iter 95: T = 581.7218209868199 K, F = -0.0007149782023614382, relative_change = 2.7392964757649065e-8 Iter 100: T = 581.7217723148867 K, F = -0.00029901243177254955, relative_change = 1.14560699072031e-8 Iter 105: T = 581.7217519596985 K, F = -0.00012505057080136606, relative_change = 4.791066081096134e-9 Iter 110: T = 581.7217434469151 K, F = -5.2297642237242314e-5, relative_change = 2.0036811962961303e-9 Iter 115: T = 581.7217398867672 K, F = -2.1871498561754077e-5, relative_change = 8.379634301883838e-10 Iter 120: T = 581.7217383978708 K, F = -9.146921618574666e-6, relative_change = 3.5044630741336757e-10 Iter 125: T = 581.7217377751965 K, F = -3.825351576447478e-6, relative_change = 1.465608209250752e-10 Iter 130: T = 581.7217375147868 K, F = -1.599807962715527e-6, relative_change = 6.129349529109584e-11 Iter 135: T = 581.7217374058804 K, F = -6.690590643732008e-7, relative_change = 2.5633682044291414e-11 Iter 140: T = 581.7217373603343 K, F = -2.7980866756927014e-7, relative_change = 1.0720318731651295e-11 Iter 145: T = 581.7217373412864 K, F = -1.1701900520799668e-7, relative_change = 4.483353016130165e-12 Iter 150: T = 581.7217373333203 K, F = -4.893867006083852e-8, relative_change = 1.8749888844719923e-12 Iter 155: T = 581.7217373299889 K, F = -2.046642849640179e-8, relative_change = 7.841309518410516e-13 Iter 160: T = 581.7217373285956 K, F = -8.559626618609428e-9, relative_change = 3.279452577234352e-13 Converged in 163 iterations to T = 581.7217373281876 K Iter 1: T = 964.3222474676788 K, F = -8129.209852793597, relative_change = 0.03567775253232122 Iter 2: T = 930.5698880726603 K, F = -6896.493691184151, relative_change = 0.03500112071836219 Iter 3: T = 898.7119543797296 K, F = -5849.639127380149, relative_change = 0.034234864142136556 Iter 5: T = 840.5663855157295 K, F = -4205.808039298301, relative_change = 0.032407988072541985 Iter 10: T = 726.3736838456128 K, F = -1834.177267386398, relative_change = 0.026018886128246935 Iter 15: T = 652.6897280665719 K, F = -791.9920994974104, relative_change = 0.017820112964493567 Iter 20: T = 611.0155615660731 K, F = -338.12818694885874, relative_change = 0.010215586586311045 Iter 25: T = 590.1948735490683 K, F = -143.01088976559234, relative_change = 0.005067303355528671 Iter 30: T = 580.66191420548 K, F = -60.13369280511854, relative_change = 0.0022994985944230833 Iter 35: T = 576.5048336538961 K, F = -25.209540871810525, relative_change = 0.0009972971311981724 Iter 40: T = 574.7341755212315 K, F = -10.553917792070138, relative_change = 0.00042365560295317637 Iter 45: T = 573.9878599577266 K, F = -4.415721570110837, relative_change = 0.00017835442335726627 Iter 50: T = 573.6747122238608 K, F = -1.8470499506148221, relative_change = 7.479774878027447e-5 Iter 55: T = 573.5435689484366 K, F = -0.7725183838887834, relative_change = 3.13178049061931e-5 Iter 60: T = 573.4886915019915 K, F = -0.32308692460081884, relative_change = 1.310387364589405e-5 Iter 65: T = 573.4657355374567 K, F = -0.1351206493977161, relative_change = 5.4813155047108545e-6 Iter 70: T = 573.4561341058799 K, F = -0.05650939095771043, relative_change = 2.2925473867491776e-6 Iter 75: T = 573.4521185023102 K, F = -0.023632958428056655, relative_change = 9.5880494254744e-7 Iter 80: T = 573.4504390991674 K, F = -0.009883595290890446, relative_change = 4.009896675320623e-7 Iter 85: T = 573.4497367475094 K, F = -0.004133439305752995, relative_change = 1.6769971543824765e-7 Iter 90: T = 573.4494430147475 K, F = -0.0017286539822259361, relative_change = 7.013420699170965e-8 Iter 95: T = 573.4493201720392 K, F = -0.0007229437917073978, relative_change = 2.9330994960642907e-8 Iter 100: T = 573.4492687977237 K, F = -0.00030234373655091407, relative_change = 1.2266577979203316e-8 Iter 105: T = 573.4492473123665 K, F = -0.00012644376277720637, relative_change = 5.130030376853231e-9 Iter 110: T = 573.4492383269328 K, F = -5.28802918036142e-5, relative_change = 2.145440135346375e-9 Iter 115: T = 573.4492345691169 K, F = -2.2115169737768614e-5, relative_change = 8.9724872192209e-10 Iter 120: T = 573.4492329975534 K, F = -9.24882824510087e-6, relative_change = 3.7524014189661414e-10 Iter 125: T = 573.4492323403067 K, F = -3.867969514737002e-6, relative_change = 1.569298725219943e-10 Iter 130: T = 573.4492320654384 K, F = -1.6176315302263156e-6, relative_change = 6.562996668874605e-11 Iter 135: T = 573.4492319504851 K, F = -6.765123503615911e-7, relative_change = 2.744721664452114e-11 Iter 140: T = 573.4492319024104 K, F = -2.8292561021769913e-7, relative_change = 1.1478756473370137e-11 Iter 145: T = 573.4492318823048 K, F = -1.183230823875725e-7, relative_change = 4.800561699193963e-12 Iter 150: T = 573.4492318738965 K, F = -4.9483493969049164e-8, relative_change = 2.0076265857290205e-12 Iter 155: T = 573.4492318703801 K, F = -2.0695094360423383e-8, relative_change = 8.396339526743407e-13 Iter 160: T = 573.4492318689095 K, F = -8.654870153890215e-9, relative_change = 3.5114229057006723e-13 Converged in 163 iterations to T = 573.4492318684788 K Iter 1: T = 980.0627805712985 K, F = -4542.714412021395, relative_change = 0.019937219428701535 Iter 2: T = 962.1726944371231 K, F = -3837.326214874156, relative_change = 0.018254020547282576 Iter 3: T = 946.2094049675308 K, F = -3239.959211494907, relative_change = 0.0165908776687235 Iter 5: T = 919.5417564494938 K, F = -2306.5562485259416, relative_change = 0.01341386945086276 Iter 10: T = 877.1702248307581 K, F = -979.2980878194115, relative_change = 0.007056709812050158 Iter 15: T = 857.0953722016008 K, F = -412.69219298095453, relative_change = 0.003311817025534657 Iter 20: T = 848.1820678538367 K, F = -173.1987488949661, relative_change = 0.0014600474912963154 Iter 25: T = 844.3534967865266 K, F = -72.54461830955755, relative_change = 0.0006247954801512751 Iter 30: T = 842.7338223195968 K, F = -30.358790256590503, relative_change = 0.0002638635800312453 Iter 35: T = 842.0531483457355 K, F = -12.699894072701495, relative_change = 0.00011080631062032935 Iter 40: T = 841.7678989327607 K, F = -5.311859091795412, relative_change = 4.642065761098078e-5 Iter 45: T = 841.6485018044186 K, F = -2.2215900553819616, relative_change = 1.9427724740137196e-5 Iter 50: T = 841.5985505589973 K, F = -0.9291142438038527, relative_change = 8.127366710900751e-6 Iter 55: T = 841.5776572117965 K, F = -0.3885699531115161, relative_change = 3.3993923039502657e-6 Iter 60: T = 841.5689188151729 K, F = -0.16250516867270393, relative_change = 1.421741764795525e-6 Iter 65: T = 841.5652642172621 K, F = -0.06796170261009427, relative_change = 5.946025572710254e-7 Iter 70: T = 841.563735803965 K, F = -0.02842241321297201, relative_change = 2.486721943501412e-7 Iter 75: T = 841.5630966003316 K, F = -0.011886595708484604, relative_change = 1.0399808438772245e-7 Iter 80: T = 841.5628292772244 K, F = -0.004971116817845012, relative_change = 4.349331136595944e-8 Iter 85: T = 841.5627174794186 K, F = -0.0020789805146772533, relative_change = 1.818943455872209e-8 Iter 90: T = 841.5626707242253 K, F = -0.0008694544953580241, relative_change = 7.60704091111318e-9 Iter 95: T = 841.5626511706424 K, F = -0.0003636162570597179, relative_change = 3.1813557399141113e-9 Iter 100: T = 841.5626429931 K, F = -0.00015206866251915585, relative_change = 1.3304810369622818e-9 Iter 105: T = 841.562639573154 K, F = -6.359693098367813e-5, relative_change = 5.564230717773953e-10 Iter 110: T = 841.5626381428917 K, F = -2.659699745310995e-5, relative_change = 2.32702787913899e-10 Iter 115: T = 841.562637544739 K, F = -1.1123183728756203e-5, relative_change = 9.731910067980187e-11 Iter 120: T = 841.5626372945843 K, F = -4.6518464278388905e-6, relative_change = 4.0699994042908516e-11 Iter 125: T = 841.5626371899667 K, F = -1.94545976883731e-6, relative_change = 1.702124140973581e-11 Iter 130: T = 841.5626371462145 K, F = -8.136162643612721e-7, relative_change = 7.118501793684141e-12 Iter 135: T = 841.5626371279167 K, F = -3.4026709783141484e-7, relative_change = 2.9770692310298303e-12 Iter 140: T = 841.5626371202642 K, F = -1.4230145617410983e-7, relative_change = 1.2450257148721358e-12 Iter 145: T = 841.5626371170639 K, F = -5.951076742505279e-8, relative_change = 5.206723651980983e-13 Converged in 150 iterations to T = 841.5626371157255 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 1 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 1 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 41%|████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 2 ray tracing: 31%|█████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 3 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 3 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 3 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 3 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 3 ray tracing: 41%|████████████▍ | ETA: 0:00:09 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 4 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 4 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 4 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 4 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 5 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 5 ray tracing: 31%|█████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 38%|███████████▌ | ETA: 0:00:08 Bin 5 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 6 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 6 ray tracing: 33%|█████████▉ | ETA: 0:00:09 Bin 6 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 6 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 7 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:09 Bin 7 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 7 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 8 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:06 Bin 8 ray tracing: 46%|█████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 57%|█████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 12%|███▋ | ETA: 0:00:07 Bin 9 ray tracing: 24%|███████▎ | ETA: 0:00:06 Bin 9 ray tracing: 36%|██████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 47%|██████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:10 Bin 10 ray tracing: 37%|██████████▊ | ETA: 0:00:09 Bin 10 ray tracing: 44%|████████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 52%|███████████████ | ETA: 0:00:07 Bin 10 ray tracing: 61%|█████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 72%|█████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 96%|████████████████████████████ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3294394506613 K, F = -7444.018298892959, relative_change = 0.03267056054933868 Iter 2: T = 936.7341743139733 K, F = -6310.074628769325, relative_change = 0.031628588864268205 Iter 3: T = 908.182830409586 K, F = -5347.352958391376, relative_change = 0.030479665082462835 Iter 5: T = 857.0733871813333 K, F = -3836.437090310204, relative_change = 0.027866611425524167 Iter 10: T = 762.0471083278679 K, F = -1661.144294144977, relative_change = 0.01994262800407684 Iter 15: T = 706.4358035485453 K, F = -711.1873677410177, relative_change = 0.01194252733652068 Iter 20: T = 677.8473569609541 K, F = -301.41233431311935, relative_change = 0.006112828751835681 Iter 25: T = 664.5195391271068 K, F = -126.88571217343039, relative_change = 0.002823085320515022 Iter 30: T = 658.653041874993 K, F = -53.223434467033556, relative_change = 0.0012347526265858854 Iter 35: T = 656.1434585248892 K, F = -22.28743724416737, relative_change = 0.0005265005265305468 Iter 40: T = 655.0836933999939 K, F = -9.325985830846179, relative_change = 0.00022200872018262005 Iter 45: T = 654.6386667946396 K, F = -3.901139213964925, relative_change = 9.316887866080014e-5 Iter 50: T = 654.4522306561362 K, F = -1.6316609780934075, relative_change = 3.902097495517701e-5 Iter 55: T = 654.3742045728897 K, F = -0.6824077698971913, relative_change = 1.6328964803144742e-5 Iter 60: T = 654.3415632797577 K, F = -0.2853959197113365, relative_change = 6.830705895786403e-6 Iter 65: T = 654.3279105768682 K, F = -0.11935682876998044, relative_change = 2.8569868389487983e-6 Iter 70: T = 654.3222005518259 K, F = -0.04991659932495951, relative_change = 1.1948792038263853e-6 Iter 75: T = 654.3198124983982 K, F = -0.020875743869934682, relative_change = 4.997220561021602e-7 Iter 80: T = 654.3188137767066 K, F = -0.00873048992335157, relative_change = 2.089913589283061e-7 Iter 85: T = 654.3183960977541 K, F = -0.0036511959417340756, relative_change = 8.740296677176057e-8 Iter 90: T = 654.3182214191457 K, F = -0.0015269738851529935, relative_change = 3.65530142747882e-8 Iter 95: T = 654.3181483664163 K, F = -0.0006385987385943426, relative_change = 1.528691580296237e-8 Iter 100: T = 654.3181178148837 K, F = -0.00026706962334471784, relative_change = 6.393172279319836e-9 Iter 105: T = 654.3181050378665 K, F = -0.0001116917075070778, relative_change = 2.673701283237706e-9 Iter 110: T = 654.318099694365 K, F = -4.67108059256649e-5, relative_change = 1.1181738500370933e-9 Iter 115: T = 654.3180974596488 K, F = -1.9535017354022077e-5, relative_change = 4.676336767821493e-10 Iter 120: T = 654.3180965250638 K, F = -8.169777104716225e-6, relative_change = 1.9556997891086917e-10 Iter 125: T = 654.3180961342091 K, F = -3.4166976347060896e-6, relative_change = 8.178968381878017e-11 Iter 130: T = 654.3180959707491 K, F = -1.4289038224313266e-6, relative_change = 3.420542420727299e-11 Iter 135: T = 654.3180959023881 K, F = -5.975838786032028e-7, relative_change = 1.43050986051932e-11 Iter 140: T = 654.3180958737987 K, F = -2.499157406576913e-7, relative_change = 5.982539760273095e-12 Iter 145: T = 654.3180958618424 K, F = -1.0451822157753199e-7, relative_change = 2.501980926329354e-12 Iter 150: T = 654.3180958568421 K, F = -4.371081091525397e-8, relative_change = 1.0463593193384671e-12 Iter 155: T = 654.3180958547509 K, F = -1.828148249449768e-8, relative_change = 4.376262800710524e-13 Converged in 159 iterations to T = 654.318095853996 K Iter 1: T = 970.4494315647535 K, F = -6733.125127818376, relative_change = 0.029550568435246553 Iter 2: T = 943.0652004922601 K, F = -5702.637061762004, relative_change = 0.028218091723067915 Iter 3: T = 917.8019069435109 K, F = -4828.108577357041, relative_change = 0.02678849090769376 Iter 5: T = 873.4188438359967 K, F = -3456.686753105928, relative_change = 0.023684201123619804 Iter 10: T = 794.7536296124168 K, F = -1487.5649672973836, relative_change = 0.015378981266844187 Iter 15: T = 751.9812645093192 K, F = -633.1163896679018, relative_change = 0.008400229494906028 Iter 20: T = 731.2505651508258 K, F = -267.21317740114074, relative_change = 0.004035066491107894 Iter 25: T = 721.9280970690049 K, F = -112.23192178188299, relative_change = 0.0018000648537873794 Iter 30: T = 717.8991081785434 K, F = -47.02545576114416, relative_change = 0.0007744778082136304 Iter 35: T = 716.1899723633005 K, F = -19.68250219673362, relative_change = 0.0003278479695024776 Iter 40: T = 715.4708555095807 K, F = -8.234266098325211, relative_change = 0.00013781360928753314 Iter 45: T = 715.1693456424827 K, F = -3.4441617727805207, relative_change = 5.775929977509373e-5 Iter 50: T = 715.043115921179 K, F = -1.4404760292903847, relative_change = 2.4177385709289715e-5 Iter 55: T = 714.9903015409827 K, F = -0.6024394088701557, relative_change = 1.0115081756625611e-5 Iter 60: T = 714.9682098049085 K, F = -0.25195000257449923, relative_change = 4.230914786797351e-6 Iter 65: T = 714.9589700541995 K, F = -0.10536896302731646, relative_change = 1.7695357418750447e-6 Iter 70: T = 714.9551057536625 K, F = -0.04406663969142188, relative_change = 7.400613840969364e-7 Iter 75: T = 714.953489634912 K, F = -0.018429209147056147, relative_change = 3.0950607783048053e-7 Iter 80: T = 714.9528137508818 K, F = -0.007707317831745164, relative_change = 1.2943976220268406e-7 Iter 85: T = 714.952531087432 K, F = -0.003223292793676946, relative_change = 5.4133363537710947e-8 Iter 90: T = 714.9524128740834 K, F = -0.0013480196158266455, relative_change = 2.2639238206610392e-8 Iter 95: T = 714.9523634358286 K, F = -0.0005637579155034489, relative_change = 9.468003129962017e-9 Iter 100: T = 714.9523427601564 K, F = -0.0002357702958502017, relative_change = 3.959632574601729e-9 Iter 105: T = 714.9523341133427 K, F = -9.860195284827622e-5, relative_change = 1.6559657165090213e-9 Iter 110: T = 714.9523304971418 K, F = -4.123651447296428e-5, relative_change = 6.925446596892189e-10 Iter 115: T = 714.9523289848034 K, F = -1.7245602679238914e-5, relative_change = 2.896304479551389e-10 Iter 120: T = 714.9523283523255 K, F = -7.212317241656052e-6, relative_change = 1.2112691688116092e-10 Iter 125: T = 714.9523280878157 K, F = -3.0162774672382042e-6, relative_change = 5.065672771548075e-11 Iter 130: T = 714.9523279771944 K, F = -1.2614432991497893e-6, relative_change = 2.1185249193646456e-11 Iter 135: T = 714.9523279309312 K, F = -5.27549066653421e-7, relative_change = 8.85989758707691e-12 Iter 140: T = 714.9523279115836 K, F = -2.2062808868739126e-7, relative_change = 3.705327891592789e-12 Iter 145: T = 714.9523279034921 K, F = -9.226956931840391e-8, relative_change = 1.5496168724172845e-12 Iter 150: T = 714.9523279001081 K, F = -3.8588676698481095e-8, relative_change = 6.480756867003436e-13 Iter 155: T = 714.9523278986929 K, F = -1.6137747027578087e-8, relative_change = 2.7102462125124724e-13 Converged in 157 iterations to T = 714.9523278983934 K Iter 1: T = 974.577448853651 K, F = -5792.552461784876, relative_change = 0.025422551146348935 Iter 2: T = 951.34288653098 K, F = -4900.486782464508, relative_change = 0.023840652531002808 Iter 3: T = 930.2202346325963 K, F = -4144.001387802339, relative_change = 0.022202985061891046 Iter 5: T = 893.9516576133923 K, F = -2959.3021395396513, relative_change = 0.01884576047027893 Iter 10: T = 832.9734120262884 K, F = -1265.125204658885, relative_change = 0.011031965949787455 Iter 15: T = 802.0927989572247 K, F = -535.5987370988908, relative_change = 0.005553564000874248 Iter 20: T = 787.8342283148261 K, F = -225.33135559640834, relative_change = 0.0025407563855407572 Iter 25: T = 781.5895253455969 K, F = -94.48886146432865, relative_change = 0.0011062181697874878 Iter 30: T = 778.9243842301229 K, F = -39.56208221283022, relative_change = 0.0004707353989060581 Iter 35: T = 777.8000798854902 K, F = -16.55344829193863, relative_change = 0.0001983208730462548 Iter 40: T = 777.3281573734766 K, F = -6.924277565725523, relative_change = 8.319717753342866e-5 Iter 45: T = 777.130490050703 K, F = -2.8960659460384948, relative_change = 3.48392110946124e-5 Iter 50: T = 777.0477699530361 K, F = -1.2112132034234167, relative_change = 1.4578087367583595e-5 Iter 55: T = 777.0131660938579 K, F = -0.5065514974312805, relative_change = 6.0981153707927675e-6 Iter 60: T = 776.9986927146999 K, F = -0.21184722758255803, relative_change = 2.550547017025663e-6 Iter 65: T = 776.9926394891934 K, F = -0.08859727526093664, relative_change = 1.0667116141441822e-6 Iter 70: T = 776.9901079080588 K, F = -0.037052479633780666, relative_change = 4.4611895098546405e-7 Iter 75: T = 776.9890491618605 K, F = -0.015495796658015926, relative_change = 1.865735699181016e-7 Iter 80: T = 776.9886063800287 K, F = -0.006480528474469782, relative_change = 7.802752189723549e-8 Iter 85: T = 776.9884212031117 K, F = -0.002710234619925034, relative_change = 3.2632081156628396e-8 Iter 90: T = 776.9883437598668 K, F = -0.0011334525234024673, relative_change = 1.3647132986684616e-8 Iter 95: T = 776.9883113721687 K, F = -0.00047402338792712495, relative_change = 5.707395205495268e-9 Iter 100: T = 776.9882978272451 K, F = -0.0001982422410893303, relative_change = 2.386901024395274e-9 Iter 105: T = 776.988292162596 K, F = -8.290727167137302e-5, relative_change = 9.982305358534417e-10 Iter 110: T = 776.9882897935721 K, F = -3.4672810120039976e-5, relative_change = 4.174719253253879e-10 Iter 115: T = 776.9882888028181 K, F = -1.4500582433019105e-5, relative_change = 1.745917357850766e-10 Iter 120: T = 776.9882883884729 K, F = -6.0643178448893664e-6, relative_change = 7.301636237514019e-11 Iter 125: T = 776.9882882151888 K, F = -2.536169156464041e-6, relative_change = 3.053630286310393e-11 Iter 130: T = 776.9882881427194 K, F = -1.0606578894067908e-6, relative_change = 1.277066652943842e-11 Iter 135: T = 776.9882881124117 K, F = -4.435795342150328e-7, relative_change = 5.340842102220259e-12 Iter 140: T = 776.9882880997368 K, F = -1.855098028524793e-7, relative_change = 2.2335984622900977e-12 Iter 145: T = 776.988288094436 K, F = -7.758427778004062e-8, relative_change = 9.341399801433691e-13 Iter 150: T = 776.988288092219 K, F = -3.2445617081933165e-8, relative_change = 3.9065579991601605e-13 Converged in 154 iterations to T = 776.9882880914189 K Iter 1: T = 970.3527265731097 K, F = -6755.159452154597, relative_change = 0.029647273426890285 Iter 2: T = 942.8699425662538 K, F = -5721.449730224253, relative_change = 0.028322467958547363 Iter 3: T = 917.5068365966446 K, F = -4844.174186537367, relative_change = 0.026899898728956487 Iter 5: T = 872.923377618993 K, F = -3468.406335405326, relative_change = 0.02380655769860133 Iter 10: T = 793.7947719061307 K, F = -1492.8676062487425, relative_change = 0.015500825438465243 Iter 15: T = 750.6854352811451 K, F = -635.4704768692606, relative_change = 0.008486857398642134 Iter 20: T = 729.7609382996528 K, F = -268.23338176996776, relative_change = 0.004082856900460143 Iter 25: T = 720.3434330308216 K, F = -112.66627239620205, relative_change = 0.0018228161039354502 Iter 30: T = 716.2717018801527 K, F = -47.20858807938662, relative_change = 0.0007845512418676269 Iter 35: T = 714.5441163051138 K, F = -19.759360746279338, relative_change = 0.0003321648621936891 Iter 40: T = 713.8171789989893 K, F = -8.266457428252632, relative_change = 0.00013963768262502453 Iter 45: T = 713.5123799294529 K, F = -3.4576330607549464, relative_change = 5.852545654139877e-5 Iter 50: T = 713.3847713487803 K, F = -1.4461113723967287, relative_change = 2.4498382869849386e-5 Iter 55: T = 713.331379738508 K, F = -0.6047964375424527, relative_change = 1.0249428467303966e-5 Iter 60: T = 713.3090464972951 K, F = -0.25293578576951453, relative_change = 4.287118016775339e-6 Iter 65: T = 713.2997057286437 K, F = -0.1057812373192909, relative_change = 1.7930437236345843e-6 Iter 70: T = 713.2957991781162 K, F = -0.044239059119956514, relative_change = 7.498932485265259e-7 Iter 75: T = 713.2941653893764 K, F = -0.01850131725609505, relative_change = 3.1361797641574673e-7 Iter 80: T = 713.2934821154514 K, F = -0.007737474347360829, relative_change = 1.311594240016054e-7 Iter 85: T = 713.293196361443 K, F = -0.0032359046172371064, relative_change = 5.4852549577776427e-8 Iter 90: T = 713.293076855583 K, F = -0.0013532940335677646, relative_change = 2.294001092851946e-8 Iter 95: T = 713.2930268767838 K, F = -0.0005659637395444284, relative_change = 9.59378995212782e-9 Iter 100: T = 713.2930059750494 K, F = -0.00023669279706972635, relative_change = 4.0122381283776705e-9 Iter 105: T = 713.2929972336938 K, F = -9.898775424055373e-5, relative_change = 1.677965995994412e-9 Iter 110: T = 713.2929935779545 K, F = -4.139786160606285e-5, relative_change = 7.017454462911004e-10 Iter 115: T = 713.2929920490806 K, F = -1.731308041108548e-5, relative_change = 2.9347833420352917e-10 Iter 120: T = 713.2929914096873 K, F = -7.240537628128152e-6, relative_change = 1.227361555803432e-10 Iter 125: T = 713.2929911422852 K, F = -3.0280798922754926e-6, relative_change = 5.132973606650137e-11 Iter 130: T = 713.2929910304546 K, F = -1.2663782754662734e-6, relative_change = 2.1466693416635515e-11 Iter 135: T = 713.2929909836857 K, F = -5.296150797917676e-7, relative_change = 8.977637069839934e-12 Iter 140: T = 713.2929909641264 K, F = -2.214920797882769e-7, relative_change = 3.754567387364817e-12 Iter 145: T = 713.2929909559464 K, F = -9.263087252797675e-8, relative_change = 1.5702089817754564e-12 Iter 150: T = 713.2929909525255 K, F = -3.8740428420780404e-8, relative_change = 6.566986470645115e-13 Iter 155: T = 713.2929909510949 K, F = -1.6202988839530974e-8, relative_change = 2.746608977539188e-13 Converged in 157 iterations to T = 713.292990950792 K Iter 1: T = 969.3675129530197 K, F = -6979.641312672188, relative_change = 0.03063248704698024 Iter 2: T = 940.8771530109224 K, F = -5913.16476489811, relative_change = 0.02939066923679556 Iter 3: T = 914.4896078791091 K, F = -5007.951412096776, relative_change = 0.028045685929741083 Iter 5: T = 867.8358418917278 K, F = -3587.986221529136, relative_change = 0.02507871633070121 Iter 10: T = 783.8372597031968 K, F = -1547.15846170912, relative_change = 0.016806944508861842 Iter 15: T = 737.0981996986928 K, F = -659.6726755741265, relative_change = 0.009441325840832385 Iter 20: T = 714.0460776597885 K, F = -278.75602289668774, relative_change = 0.0046190402416669395 Iter 25: T = 703.5733137268613 K, F = -117.15463514322123, relative_change = 0.002080531281882589 Iter 30: T = 699.024294721607 K, F = -49.10269994478905, relative_change = 0.0008991695509839429 Iter 35: T = 697.090157317592 K, F = -20.554619277060986, relative_change = 0.00038138011739019133 Iter 40: T = 696.2755696565351 K, F = -8.599600323959486, relative_change = 0.0001604506738591674 Iter 45: T = 695.9338883115817 K, F = -3.5970555076996193, relative_change = 6.727052639171834e-5 Iter 50: T = 695.7908153160901 K, F = -1.504436724443733, relative_change = 2.8162853408913645e-5 Iter 55: T = 695.730949318083 K, F = -0.6291918124839665, relative_change = 1.1783211949008348e-5 Iter 60: T = 695.7059071873009 K, F = -0.2631387507653754, relative_change = 4.928784835291698e-6 Iter 65: T = 695.6954333146036 K, F = -0.11004833147542015, relative_change = 2.0614349866719465e-6 Iter 70: T = 695.6910528489807 K, F = -0.04602362501040458, relative_change = 8.621444211418758e-7 Iter 75: T = 695.6892208567373 K, F = -0.01924764684818403, relative_change = 3.6056393645395845e-7 Iter 80: T = 695.6884546905943 K, F = -0.008049598788422707, relative_change = 1.5079299134365263e-7 Iter 85: T = 695.6881342698699 K, F = -0.003366438872155819, relative_change = 6.306357797846525e-8 Iter 90: T = 695.6880002659402 K, F = -0.0014078850330945247, relative_change = 2.6373967377939445e-8 Iter 95: T = 695.6879442238692 K, F = -0.0005887943510357596, relative_change = 1.1029912668571357e-8 Iter 100: T = 695.6879207864009 K, F = -0.0002462408320437204, relative_change = 4.612841994406422e-9 Iter 105: T = 695.687910984571 K, F = -0.00010298085685644942, relative_change = 1.9291457434195896e-9 Iter 110: T = 695.6879068853285 K, F = -4.3067824591958015e-5, relative_change = 8.067918189551078e-10 Iter 115: T = 695.6879051709764 K, F = -1.8011479669954866e-5, relative_change = 3.3740999814049987e-10 Iter 120: T = 695.6879044540137 K, F = -7.532616118077762e-6, relative_change = 1.4110889551756997e-10 Iter 125: T = 695.6879041541714 K, F = -3.150229317405717e-6, relative_change = 5.90134122793731e-11 Iter 130: T = 695.6879040287738 K, F = -1.317464053740558e-6, relative_change = 2.4680123762353714e-11 Iter 135: T = 695.687903976331 K, F = -5.509787812663092e-7, relative_change = 1.0321514638942576e-11 Iter 140: T = 695.6879039543987 K, F = -2.304251505158561e-7, relative_change = 4.316566527518232e-12 Iter 145: T = 695.6879039452265 K, F = -9.636699627169065e-8, relative_change = 1.8052480363307464e-12 Iter 150: T = 695.6879039413905 K, F = -4.0300903836332225e-8, relative_change = 7.549589623991982e-13 Iter 155: T = 695.6879039397862 K, F = -1.6853553774787144e-8, relative_change = 3.1571851396596553e-13 Converged in 158 iterations to T = 695.6879039393166 K Iter 1: T = 963.5364614889936 K, F = -8308.251935512435, relative_change = 0.03646353851100634 Iter 2: T = 928.9489478368914 K, F = -7049.878076868858, relative_change = 0.035896424302047335 Iter 3: T = 896.2038093712806 K, F = -5981.18447815882, relative_change = 0.03524966419506658 Iter 5: T = 836.12148191591 K, F = -4302.895644323478, relative_change = 0.033687884884787626 Iter 10: T = 716.2173713161635 K, F = -1880.5133750661723, relative_change = 0.027993439588532804 Iter 15: T = 636.335204053871 K, F = -814.4012990290137, relative_change = 0.02009447991325485 Iter 20: T = 589.4732538787888 K, F = -348.7409328778273, relative_change = 0.012071608829665896 Iter 25: T = 565.3317316106439 K, F = -147.82463864342637, relative_change = 0.006193556830128891 Iter 30: T = 554.0615155474451 K, F = -62.235396037163454, relative_change = 0.002864266251215536 Iter 35: T = 549.0970901582563 K, F = -26.106385277277965, relative_change = 0.0012535966366190264 Iter 40: T = 546.9726727221613 K, F = -10.93232590694027, relative_change = 0.0005346947565589827 Iter 45: T = 546.0754238355386 K, F = -4.574576491742608, relative_change = 0.00022549288192176136 Iter 50: T = 545.6986184725824 K, F = -1.9135911842044917, relative_change = 9.4636192193187e-5 Iter 55: T = 545.5407581711625 K, F = -0.8003653907313064, relative_change = 3.963641996399831e-5 Iter 60: T = 545.4746907190126 K, F = -0.3347361473235617, relative_change = 1.6586666562053176e-5 Iter 65: T = 545.4470520471342 K, F = -0.1399930662165557, relative_change = 6.938535070842524e-6 Iter 70: T = 545.4354917414879 K, F = -0.058547194072279235, relative_change = 2.902091951521265e-6 Iter 75: T = 545.4306568241717 K, F = -0.024485209557536636, relative_change = 1.213744391173439e-6 Iter 80: T = 545.4286347586293 K, F = -0.010240019957821228, relative_change = 5.076119984723296e-7 Iter 85: T = 545.4277890987338 K, F = -0.00428250089469967, relative_change = 2.122910788081616e-7 Iter 90: T = 545.4274354322779 K, F = -0.0017909934123338245, relative_change = 8.878295807069718e-8 Iter 95: T = 545.4272875244997 K, F = -0.0007490149031436633, relative_change = 3.7130144720769996e-8 Iter 100: T = 545.427225667658 K, F = -0.0003132469897323409, relative_change = 1.5528278934298895e-8 Iter 105: T = 545.4271997983807 K, F = -0.0001310036342339338, relative_change = 6.494113271048061e-9 Iter 110: T = 545.4271889795385 K, F = -5.478728484453743e-5, relative_change = 2.715916007012732e-9 Iter 115: T = 545.4271844549693 K, F = -2.2912695866295074e-5, relative_change = 1.1358285065832856e-9 Iter 120: T = 545.4271825627404 K, F = -9.582362691495927e-6, relative_change = 4.750170363495951e-10 Iter 125: T = 545.4271817713878 K, F = -4.007458894367266e-6, relative_change = 1.9865781767305478e-10 Iter 130: T = 545.4271814404347 K, F = -1.6759673881205917e-6, relative_change = 8.308108293887251e-11 Iter 135: T = 545.427181302026 K, F = -7.009093435372815e-7, relative_change = 3.4745489551980094e-11 Iter 140: T = 545.4271812441419 K, F = -2.9312847066309544e-7, relative_change = 1.4530969395497413e-11 Iter 145: T = 545.4271812199341 K, F = -1.2258976214707396e-7, relative_change = 6.077021717839951e-12 Iter 150: T = 545.4271812098101 K, F = -5.126848270919915e-8, relative_change = 2.5414820735050582e-12 Iter 155: T = 545.4271812055762 K, F = -2.1441306369274216e-8, relative_change = 1.0628887942938178e-12 Iter 160: T = 545.4271812038054 K, F = -8.966979964109001e-9, relative_change = 4.445112792340818e-13 Converged in 164 iterations to T = 545.4271812031662 K Iter 1: T = 966.8769903901572 K, F = -7547.1092477189895, relative_change = 0.0331230096098428 Iter 2: T = 935.8106503998683 K, F = -6398.245699271508, relative_change = 0.03213060223695351 Iter 3: T = 906.7706201028126 K, F = -5422.81025978123, relative_change = 0.031031951051900368 Iter 5: T = 854.6389152960207 K, F = -3891.7953850882996, relative_change = 0.028515857653033164 Iter 10: T = 756.9689578157586 K, F = -1686.7837621214767, relative_change = 0.02073230943877037 Iter 15: T = 699.0813276796122 K, F = -722.9330592093273, relative_change = 0.012623778375033033 Iter 20: T = 668.9880064703069 K, F = -306.6417428215806, relative_change = 0.006543498697003377 Iter 25: T = 654.8547397122665 K, F = -129.14926082734073, relative_change = 0.003044140386708615 Iter 30: T = 648.6092311943644 K, F = -54.185758053532204, relative_change = 0.0013362115021585818 Iter 35: T = 645.9325893908272 K, F = -22.692838047571378, relative_change = 0.0005706793295276877 Iter 40: T = 644.8013614143789 K, F = -9.496060657540394, relative_change = 0.00024080440369507827 Iter 45: T = 644.3261609037507 K, F = -3.9723607030323573, relative_change = 0.00010108642047799724 Iter 50: T = 644.1270548296908 K, F = -1.6614632162954288, relative_change = 4.234222791787522e-5 Iter 55: T = 644.0437210901565 K, F = -0.6948743250682072, relative_change = 1.7719714758084555e-5 Iter 60: T = 644.0088585052479 K, F = -0.29061009023893447, relative_change = 7.412642795545358e-6 Iter 65: T = 643.9942765573813 K, F = -0.12153754608832823, relative_change = 3.1004138166764766e-6 Iter 70: T = 643.9881778630116 K, F = -0.05082861690701712, relative_change = 1.2966927228622692e-6 Iter 75: T = 643.9856272550365 K, F = -0.021257163235907206, relative_change = 5.42303338630339e-7 Iter 80: T = 643.984560549624 K, F = -0.008890004534273022, relative_change = 2.2679964894716012e-7 Iter 85: T = 643.9841144388105 K, F = -0.003717906938665416, relative_change = 9.485065685908616e-8 Iter 90: T = 643.9839278696135 K, F = -0.0015548732349068284, relative_change = 3.966773604600296e-8 Iter 95: T = 643.98384984409 K, F = -0.0006502665818342579, relative_change = 1.6589531177347468e-8 Iter 100: T = 643.9838172128743 K, F = -0.00027194925542611825, relative_change = 6.937941862552736e-9 Iter 105: T = 643.9838035661083 K, F = -0.00011373242686563145, relative_change = 2.9015304485932447e-9 Iter 110: T = 643.9837978588675 K, F = -4.7564259155363775e-5, relative_change = 1.213454736091065e-9 Iter 115: T = 643.9837954720313 K, F = -1.989194098400704e-5, relative_change = 5.074812653800187e-10 Iter 120: T = 643.9837944738279 K, F = -8.319046785054685e-6, relative_change = 2.122347147412659e-10 Iter 125: T = 643.9837940563673 K, F = -3.4791256792732206e-6, relative_change = 8.875911717373753e-11 Iter 130: T = 643.9837938817802 K, F = -1.4550109020405877e-6, relative_change = 3.712009717825335e-11 Iter 135: T = 643.9837938087659 K, F = -6.085034132130573e-7, relative_change = 1.5524080137325525e-11 Iter 140: T = 643.9837937782304 K, F = -2.544831180228968e-7, relative_change = 6.4923486588439796e-12 Iter 145: T = 643.9837937654602 K, F = -1.0642825470918993e-7, relative_change = 2.715187326207551e-12 Iter 150: T = 643.9837937601195 K, F = -4.451020502171943e-8, relative_change = 1.135540039596351e-12 Iter 155: T = 643.9837937578859 K, F = -1.861497278543567e-8, relative_change = 4.749033828061012e-13 Converged in 160 iterations to T = 643.9837937569519 K Iter 1: T = 965.1854649904551 K, F = -7932.524919097158, relative_change = 0.03481453500954488 Iter 2: T = 932.3456637726505 K, F = -6728.067149767234, relative_change = 0.034024342894688475 Iter 3: T = 901.4511409387798 K, F = -5705.273539219199, relative_change = 0.033136339915883634 Iter 5: T = 845.3848851473093 K, F = -4099.430079529611, relative_change = 0.031048221739107654 Iter 10: T = 737.1029486865386 K, F = -1783.8453688122656, relative_change = 0.024056491456799254 Iter 15: T = 669.4070850147144 K, F = -768.0727362254903, relative_change = 0.015751429116445684 Iter 20: T = 632.3768411913771 K, F = -327.04917863454426, relative_change = 0.008666194364924563 Iter 25: T = 614.3489045371194 K, F = -138.07648521308715, relative_change = 0.004182223410704143 Iter 30: T = 606.2209515191719 K, F = -58.002631097148495, relative_change = 0.0018702297074307845 Iter 35: T = 602.7037719538897 K, F = -24.305052752694515, relative_change = 0.0008055667776859115 Iter 40: T = 601.2109037089373 K, F = -10.173209564799707, relative_change = 0.00034117513996204075 Iter 45: T = 600.5826273481392 K, F = -4.256068464998279, relative_change = 0.0001434456767548863 Iter 50: T = 600.3191775595276 K, F = -1.7802040766424665, relative_change = 6.012504525786434e-5 Iter 55: T = 600.2088772058977 K, F = -0.7445491139836136, relative_change = 2.516858729513711e-5 Iter 60: T = 600.162726811651 K, F = -0.3113874721072105, relative_change = 1.052993281181454e-5 Iter 65: T = 600.1434224075269 K, F = -0.1302273838785243, relative_change = 4.404466243207923e-6 Iter 70: T = 600.1353484176551 K, F = -0.05446289631729495, relative_change = 1.8421267949053864e-6 Iter 75: T = 600.131971663649 K, F = -0.02277707723763328, relative_change = 7.704215369227621e-7 Iter 80: T = 600.1305594446789 K, F = -0.009525653335458795, relative_change = 3.2220335495807627e-7 Iter 85: T = 600.1299688343215 K, F = -0.003983743317275079, relative_change = 1.3474996737884888e-7 Iter 90: T = 600.1297218334014 K, F = -0.0016660492643433833, relative_change = 5.635416392354115e-8 Iter 95: T = 600.1296185345591 K, F = -0.0006967617398869752, relative_change = 2.3568005054354013e-8 Iter 100: T = 600.1295753337307 K, F = -0.0002913940869562204, relative_change = 9.856424764319499e-9 Iter 105: T = 600.1295572666252 K, F = -0.00012186448895945556, relative_change = 4.122075199185232e-9 Iter 110: T = 600.1295497107452 K, F = -5.096518459735133e-5, relative_change = 1.7239011777527716e-9 Iter 115: T = 600.1295465507859 K, F = -2.131424896667511e-5, relative_change = 7.209560822347602e-10 Iter 120: T = 600.1295452292532 K, F = -8.91387248158626e-6, relative_change = 3.0151241356371055e-10 Iter 125: T = 600.1295446765724 K, F = -3.727887754156889e-6, relative_change = 1.260960869140283e-10 Iter 130: T = 600.1295444454347 K, F = -1.559047397570179e-6, relative_change = 5.273489693684165e-11 Iter 135: T = 600.1295443487702 K, F = -6.520120311437339e-7, relative_change = 2.2054356617958658e-11 Iter 140: T = 600.129544308344 K, F = -2.7268020763582257e-7, relative_change = 9.223428796611266e-12 Iter 145: T = 600.1295442914371 K, F = -1.1403755983963038e-7, relative_change = 3.857329149704752e-12 Iter 150: T = 600.1295442843665 K, F = -4.7691774585079116e-8, relative_change = 1.613177908902975e-12 Iter 155: T = 600.1295442814095 K, F = -1.9944495610602075e-8, relative_change = 6.746240835847694e-13 Iter 160: T = 600.1295442801729 K, F = -8.34137514615918e-9, relative_change = 2.821476498447152e-13 Converged in 162 iterations to T = 600.1295442799112 K Iter 1: T = 980.1647406021721 K, F = -4519.482721997812, relative_change = 0.019835259397827914 Iter 2: T = 962.3722001861513 K, F = -3817.5942504306954, relative_change = 0.01815260198514155 Iter 3: T = 946.501315536735 K, F = -3223.2083063437885, relative_change = 0.016491420519364936 Iter 5: T = 920.0007808934125 K, F = -2294.5061256909908, relative_change = 0.013322136494951748 Iter 10: T = 877.934054977017 K, F = -974.0727978770856, relative_change = 0.006996364847945333 Iter 15: T = 858.0240779045885 K, F = -410.4622605613592, relative_change = 0.003280103236979115 Iter 20: T = 849.1889366144209 K, F = -172.257000928203, relative_change = 0.00144532004243994 Iter 25: T = 845.3949512768122 K, F = -72.14904370762238, relative_change = 0.0006183485667434357 Iter 30: T = 843.7900978620291 K, F = -30.193044877765587, relative_change = 0.0002611144772539802 Iter 35: T = 843.1156866393866 K, F = -12.630522175702417, relative_change = 0.00010964714549207915 Iter 40: T = 842.8330677999097 K, F = -5.282837226093321, relative_change = 4.593421178257293e-5 Iter 45: T = 842.7147728167057 K, F = -2.2094510622049297, relative_change = 1.9223994245583967e-5 Iter 50: T = 842.6652828535484 K, F = -0.9240372738457112, relative_change = 8.042112850725557e-6 Iter 55: T = 842.6445824817258 K, F = -0.38644665149853374, relative_change = 3.363729137137793e-6 Iter 60: T = 842.6359248004928 K, F = -0.16161716945846893, relative_change = 1.406825430716411e-6 Iter 65: T = 842.6323039606086 K, F = -0.06759032913636975, relative_change = 5.883640932618633e-7 Iter 70: T = 842.6307896656512 K, F = -0.028267100111838417, relative_change = 2.460631461066966e-7 Iter 75: T = 842.6301563665339 K, F = -0.011821641865848775, relative_change = 1.0290694084172421e-7 Iter 80: T = 842.6298915127759 K, F = -0.004943952336370128, relative_change = 4.303698063084511e-8 Iter 85: T = 842.6297807476831 K, F = -0.0020676199986757737, relative_change = 1.7998591303932954e-8 Iter 90: T = 842.6297344243831 K, F = -0.0008647033898554479, relative_change = 7.527227922369497e-9 Iter 95: T = 842.6297150514232 K, F = -0.0003616292892620887, relative_change = 3.1479769983472662e-9 Iter 100: T = 842.6297069494194 K, F = -0.00015123768576130736, relative_change = 1.3165216203232726e-9 Iter 105: T = 842.6297035610646 K, F = -6.324940671076362e-5, relative_change = 5.505850779350889e-10 Iter 110: T = 842.6297021440142 K, F = -2.645165788406345e-5, relative_change = 2.302612623834335e-10 Iter 115: T = 842.6297015513869 K, F = -1.1062400864902955e-5, relative_change = 9.62980244126264e-11 Iter 120: T = 842.629701303543 K, F = -4.626428175447117e-6, relative_change = 4.0272984087916566e-11 Iter 125: T = 842.6297011998917 K, F = -1.9348253055273545e-6, relative_change = 1.684262369003666e-11 Iter 130: T = 842.6297011565434 K, F = -8.091686747313531e-7, relative_change = 7.043800520217741e-12 Iter 135: T = 842.6297011384146 K, F = -3.38401003441291e-7, relative_change = 2.945775384986966e-12 Iter 140: T = 842.629701130833 K, F = -1.4152292204805406e-7, relative_change = 1.2319547990665856e-12 Iter 145: T = 842.6297011276623 K, F = -5.9186777479069974e-8, relative_change = 5.152199622699585e-13 Converged in 150 iterations to T = 842.6297011263364 K Iter 1: T = 976.4594427573514 K, F = -5363.738360588365, relative_change = 0.023540557242648523 Iter 2: T = 955.0800919112419 K, F = -4535.366975178692, relative_change = 0.021894765834552226 Iter 3: T = 935.7701207952948 K, F = -3833.1911622897933, relative_change = 0.020218169428393454 Iter 5: T = 902.9366231163731 K, F = -2734.3368147056062, relative_change = 0.01686580528022471 Iter 10: T = 848.8761866961954 K, F = -1165.9468773923102, relative_change = 0.009485567213190077 Iter 15: T = 822.1932298954227 K, F = -492.7164069803909, relative_change = 0.004644352599729401 Iter 20: T = 810.0655611315518 K, F = -207.08296142862534, relative_change = 0.002092815325122283 Iter 25: T = 804.7965363689509 K, F = -86.79525360125062, relative_change = 0.0009046573982831341 Iter 30: T = 802.5560432944453 K, F = -36.33310872241897, relative_change = 0.0003837411457781193 Iter 35: T = 801.6123886282688 K, F = -15.201010736123992, relative_change = 0.00016144998370476595 Iter 40: T = 801.2165623773036 K, F = -6.358311383688918, relative_change = 6.76905585704652e-5 Iter 45: T = 801.0508158691023 K, F = -2.6593087972877028, relative_change = 2.833888677312401e-5 Iter 50: T = 800.9814623715964 K, F = -1.1121874406873313, relative_change = 1.1856896224061496e-5 Iter 55: T = 800.9524515508515 K, F = -0.46513579882270395, relative_change = 4.959611862168457e-6 Iter 60: T = 800.9403177663763 K, F = -0.1945263480590501, relative_change = 2.0743292091483567e-6 Iter 65: T = 800.9352430781437 K, F = -0.08135341716120281, relative_change = 8.675372873819785e-7 Iter 70: T = 800.9331207488724 K, F = -0.03402300127095548, relative_change = 3.628193584572423e-7 Iter 75: T = 800.9322331594701 K, F = -0.01422883080934445, relative_change = 1.5173624643388725e-7 Iter 80: T = 800.9318619579406 K, F = -0.005950667908461993, relative_change = 6.345806038243768e-8 Iter 85: T = 800.9317067168457 K, F = -0.002488640547539611, relative_change = 2.6538944922872256e-8 Iter 90: T = 800.9316417931341 K, F = -0.0010407792268909422, relative_change = 1.1098908304372513e-8 Iter 95: T = 800.9316146412569 K, F = -0.00043526630742440897, relative_change = 4.641696806611234e-9 Iter 100: T = 800.9316032860166 K, F = -0.000182033569902873, relative_change = 1.9412131900357707e-9 Iter 105: T = 800.9315985371194 K, F = -7.612861403838433e-5, relative_change = 8.11838574397376e-10 Iter 110: T = 800.9315965510738 K, F = -3.183789451777219e-5, relative_change = 3.395205801231479e-10 Iter 115: T = 800.9315957204859 K, F = -1.3314989238177866e-5, relative_change = 1.4199157831487182e-10 Iter 120: T = 800.9315953731241 K, F = -5.568487687290791e-6, relative_change = 5.938257575987789e-11 Iter 125: T = 800.9315952278531 K, F = -2.3288070881699596e-6, relative_change = 2.4834492097099464e-11 Iter 130: T = 800.9315951670991 K, F = -9.739350015358639e-7, relative_change = 1.0386081883009637e-11 Iter 135: T = 800.931595141691 K, F = -4.0730990846782333e-7, relative_change = 4.343569185906457e-12 Iter 140: T = 800.931595131065 K, F = -1.703411734998994e-7, relative_change = 1.8165251003475038e-12 Iter 145: T = 800.9315951266212 K, F = -7.123888601245909e-8, relative_change = 7.596943352390468e-13 Iter 150: T = 800.9315951247628 K, F = -2.9793628342211775e-8, relative_change = 3.177204465842903e-13 Converged in 153 iterations to T = 800.9315951242187 K Iter 1: T = 980.7831497074603 K, F = -4378.577619098975, relative_change = 0.019216850292539733 Iter 2: T = 963.5808579680966 K, F = -3697.93913088759, relative_change = 0.017539342661519703 Iter 3: T = 948.2677916060342 K, F = -3121.6517345313187, relative_change = 0.015891833296017326 Iter 5: T = 922.7725911098445 K, F = -2221.481972343888, relative_change = 0.012772318055575183 Iter 10: T = 882.5269488281879 K, F = -942.4418385034478, relative_change = 0.0066389206155958716 Iter 15: T = 863.5946532468882 K, F = -396.9738543657229, relative_change = 0.0030935754225205033 Iter 20: T = 855.2210726338245 K, F = -166.56292214610917, relative_change = 0.0013590044434922768 Iter 25: T = 851.6309107520025 K, F = -69.75775233267888, relative_change = 0.0005806244969494397 Iter 30: T = 850.1133241860966 K, F = -29.19118203978823, relative_change = 0.00024503926596021214 Iter 35: T = 849.4757741431845 K, F = -12.211212882416126, relative_change = 0.00010287099150686828 Iter 40: T = 849.2086357765302 K, F = -5.1074210958762745, relative_change = 4.3090938003456425e-5 Iter 45: T = 849.0968262869148 K, F = -2.136080128739957, relative_change = 1.803325218874651e-5 Iter 50: T = 849.0500506286228 K, F = -0.8933509552961354, relative_change = 7.5438410974531186e-6 Iter 55: T = 849.0304857605918 K, F = -0.37361296601735317, relative_change = 3.1552953247086312e-6 Iter 60: T = 849.022303021684 K, F = -0.15624991634110286, relative_change = 1.319647066220037e-6 Iter 65: T = 849.0188808190368 K, F = -0.06534567058731966, relative_change = 5.519035111991573e-7 Iter 70: T = 849.017449598413 K, F = -0.027328355491680112, relative_change = 2.3081462434494422e-7 Iter 75: T = 849.0168510423009 K, F = -0.011429047372017553, relative_change = 9.65297795396065e-8 Iter 80: T = 849.0166007185397 K, F = -0.004779764578777268, relative_change = 4.0369967306251727e-8 Iter 85: T = 849.0164960300754 K, F = -0.001998954712531642, relative_change = 1.6883213061832358e-8 Iter 90: T = 849.0164522480957 K, F = -0.0008359867486693595, relative_change = 7.060763193695426e-9 Iter 95: T = 849.0164339379465 K, F = -0.00034961964713886573, relative_change = 2.952895836834241e-9 Iter 100: T = 849.0164262804229 K, F = -0.0001462151127922251, relative_change = 1.2349363656218369e-9 Iter 105: T = 849.0164230779551 K, F = -6.114890633979186e-5, relative_change = 5.164651455731216e-10 Iter 110: T = 849.0164217386448 K, F = -2.5573202777406934e-5, relative_change = 2.1599189233268545e-10 Iter 115: T = 849.0164211785293 K, F = -1.0695020217221796e-5, relative_change = 9.033040103021693e-11 Iter 120: T = 849.0164209442822 K, F = -4.472784043363376e-6, relative_change = 3.777724293019425e-11 Iter 125: T = 849.0164208463173 K, F = -1.8705722855116846e-6, relative_change = 1.5798899075384075e-11 Iter 130: T = 849.0164208053473 K, F = -7.822970164994558e-7, relative_change = 6.6072996532758094e-12 Iter 135: T = 849.0164207882129 K, F = -3.271633459700496e-7, relative_change = 2.763229588006077e-12 Iter 140: T = 849.0164207810473 K, F = -1.3682316790664117e-7, relative_change = 1.1556118084638938e-12 Iter 145: T = 849.0164207780505 K, F = -5.72201839244002e-8, relative_change = 4.832830670295749e-13 Converged in 150 iterations to T = 849.0164207767972 K Iter 1: T = 967.2787340918316 K, F = -7455.5715631355715, relative_change = 0.032721265908168456 Iter 2: T = 936.6307450265429 K, F = -6319.954800423908, relative_change = 0.03168475433719086 Iter 3: T = 908.0247871378538 K, F = -5355.807348817274, relative_change = 0.030541339840257413 Iter 5: T = 856.801395768766 K, F = -3842.6373019100542, relative_change = 0.027938802955527742 Iter 10: T = 761.482634671123 K, F = -1664.0112863265958, relative_change = 0.020029256994629305 Iter 15: T = 705.6225196634274 K, F = -712.4975268832399, relative_change = 0.012016191130227265 Iter 20: T = 676.8713640064126 K, F = -301.9942756871828, relative_change = 0.006158884562293203 Iter 25: T = 663.4570940152566 K, F = -127.13721844919486, relative_change = 0.002846572400911527 Iter 30: T = 657.5500761078955 K, F = -53.330274233893974, relative_change = 0.0012454983151548396 Iter 35: T = 655.022665574953 K, F = -22.332429344740877, relative_change = 0.0005311728725507802 Iter 40: T = 653.955280769983 K, F = -9.344858000722954, relative_change = 0.0002239953188733197 Iter 45: T = 653.5070380266044 K, F = -3.909041688450454, relative_change = 9.400549886045707e-5 Iter 50: T = 653.3192516423123 K, F = -1.6349676293975046, relative_change = 3.937188190554503e-5 Iter 55: T = 653.240659953035 K, F = -0.6837909563378651, relative_change = 1.6475897673539354e-5 Iter 60: T = 653.2077819559777 K, F = -0.28597443825949037, relative_change = 6.892186395212017e-6 Iter 65: T = 653.1940302325445 K, F = -0.11959878149005959, relative_change = 2.8827042162361604e-6 Iter 70: T = 653.1882787910055 K, F = -0.050017788477590475, relative_change = 1.205635479985926e-6 Iter 75: T = 653.1858734158432 K, F = -0.020918062668458026, relative_change = 5.04220627502019e-7 Iter 80: T = 653.1848674498449 K, F = -0.008748188201327944, relative_change = 2.1087274466312384e-7 Iter 85: T = 653.1844467412102 K, F = -0.0036585975805872306, relative_change = 8.818978987464413e-8 Iter 90: T = 653.1842707955481 K, F = -0.0015300693398395127, relative_change = 3.688207397853074e-8 Iter 95: T = 653.1841972129208 K, F = -0.000639893295575733, relative_change = 1.542453267263605e-8 Iter 100: T = 653.1841664397786 K, F = -0.00026761102163003203, relative_change = 6.450725302338849e-9 Iter 105: T = 653.1841535700814 K, F = -0.0001119181260564317, relative_change = 2.6977706331718836e-9 Iter 110: T = 653.1841481878201 K, F = -4.680549713004245e-5, relative_change = 1.1282399467491134e-9 Iter 115: T = 653.1841459368941 K, F = -1.957461831614271e-5, relative_change = 4.718434381248822e-10 Iter 120: T = 653.1841449955299 K, F = -8.186339068683157e-6, relative_change = 1.973305602154208e-10 Iter 125: T = 653.1841446018402 K, F = -3.4236240630258763e-6, relative_change = 8.252598024518654e-11 Iter 130: T = 653.1841444371945 K, F = -1.4318008095259849e-6, relative_change = 3.451335873581711e-11 Iter 135: T = 653.1841443683377 K, F = -5.987959406650312e-7, relative_change = 1.4433892607546122e-11 Iter 140: T = 653.1841443395409 K, F = -2.504236512046454e-7, relative_change = 6.03642717521051e-12 Iter 145: T = 653.1841443274977 K, F = -1.0473046418990606e-7, relative_change = 2.5245132283740467e-12 Iter 150: T = 653.1841443224612 K, F = -4.3799428139923435e-8, relative_change = 1.0557791049031887e-12 Iter 155: T = 653.1841443203549 K, F = -1.8318567274189235e-8, relative_change = 4.415665085480974e-13 Converged in 159 iterations to T = 653.1841443195946 K Iter 1: T = 973.5529995984864 K, F = -6025.974199076954, relative_change = 0.02644700040151355 Iter 2: T = 949.2989798369516 K, F = -5099.391728113586, relative_change = 0.024912890999809624 Iter 3: T = 927.1702118598176 K, F = -4313.471311006956, relative_change = 0.02331064127018736 Iter 5: T = 888.9648560930877 K, F = -3082.2232840227284, relative_change = 0.019980019981353337 Iter 10: T = 823.9450691054319 K, F = -1319.6628071304754, relative_change = 0.011974445012738602 Iter 15: T = 790.5021089649487 K, F = -559.3155059264639, relative_change = 0.006132816221966214 Iter 20: T = 774.905710304082 K, F = -235.46066877348912, relative_change = 0.002833284523239071 Iter 25: T = 768.0393911566018 K, F = -98.76734042671512, relative_change = 0.0012394199986519986 Iter 30: T = 765.1018495847691 K, F = -41.35925988289309, relative_change = 0.0005285301396552456 Iter 35: T = 763.8613163775402 K, F = -17.306462627172422, relative_change = 0.00022287170818264924 Iter 40: T = 763.3403715395041 K, F = -7.23944713742345, relative_change = 9.353231614508622e-5 Iter 45: T = 763.1221292981302 K, F = -3.027917556366731, relative_change = 3.9173413977594445e-5 Iter 50: T = 763.0307916637313 K, F = -1.2663628205562132, relative_change = 1.639279472632366e-5 Iter 55: T = 762.9925815942801 K, F = -0.5296170736385288, relative_change = 6.857414010707586e-6 Iter 60: T = 762.9765996604675 K, F = -0.22149376281236177, relative_change = 2.8681588853886163e-6 Iter 65: T = 762.9699154703757 K, F = -0.09263161274405507, relative_change = 1.1995519058222323e-6 Iter 70: T = 762.9671200002441 K, F = -0.0387396949630362, relative_change = 5.016763091406991e-7 Iter 75: T = 762.9659508904044 K, F = -0.016201411521826747, relative_change = 2.0980866373537743e-7 Iter 80: T = 762.9654619528104 K, F = -0.006775625258202855, relative_change = 8.774477563092025e-8 Iter 85: T = 762.9652574729378 K, F = -0.0028336476587672577, relative_change = 3.6695963225740135e-8 Iter 90: T = 762.965171956955 K, F = -0.001185065337432789, relative_change = 1.5346698844174543e-8 Iter 95: T = 762.9651361931396 K, F = -0.0004956084857473675, relative_change = 6.418174283419411e-9 Iter 100: T = 762.965121236283 K, F = -0.0002072693891005395, relative_change = 2.6841574050616633e-9 Iter 105: T = 762.9651149811468 K, F = -8.668253458099517e-5, relative_change = 1.1225467358056597e-9 Iter 110: T = 762.965112365174 K, F = -3.625167148035846e-5, relative_change = 4.694624626379896e-10 Iter 115: T = 762.965111271143 K, F = -1.516088206032773e-5, relative_change = 1.9633481121702715e-10 Iter 120: T = 762.9651108136061 K, F = -6.340460993570218e-6, relative_change = 8.210955080333528e-11 Iter 125: T = 762.9651106222589 K, F = -2.6516591671299494e-6, relative_change = 3.43392292102047e-11 Iter 130: T = 762.9651105422349 K, F = -1.1089546320119936e-6, relative_change = 1.436106411542015e-11 Iter 135: T = 762.965110508768 K, F = -4.6377795426266744e-7, relative_change = 6.005967012186589e-12 Iter 140: T = 762.9651104947717 K, F = -1.9395580508341226e-7, relative_change = 2.511745451779403e-12 Iter 145: T = 762.9651104889183 K, F = -8.111375093822204e-8, relative_change = 1.0504305087216632e-12 Iter 150: T = 762.9651104864704 K, F = -3.392160796700239e-8, relative_change = 4.392879320932623e-13 Converged in 154 iterations to T = 762.9651104855869 K Iter 1: T = 970.0831342233364 K, F = -6816.586325498975, relative_change = 0.0299168657766636 Iter 2: T = 942.3252791222136 K, F = -5773.900415548268, relative_change = 0.028613893100353914 Iter 3: T = 916.6832199039895 K, F = -4888.971174823026, relative_change = 0.0272114733482582 Iter 5: T = 871.538466075767 K, F = -3501.0948177742766, relative_change = 0.024150005014003727 Iter 10: T = 791.1045273462296 K, F = -1507.674656066283, relative_change = 0.01584631123323707 Iter 15: T = 747.0382682450934 K, F = -642.0528819697846, relative_change = 0.008734688588953274 Iter 20: T = 725.5600387716563 K, F = -271.08900053324993, relative_change = 0.004220373092903566 Iter 25: T = 715.8700038958098 K, F = -113.88276920733288, relative_change = 0.001888481338601346 Iter 30: T = 711.6754847982193 K, F = -47.72163832240071, relative_change = 0.00081366639757135 Iter 35: T = 709.8948546581878 K, F = -19.974709564004183, relative_change = 0.0003446496299313712 Iter 40: T = 709.1454250274242 K, F = -8.356658776669036, relative_change = 0.00014491442193917322 Iter 45: T = 708.8311645080299 K, F = -3.4953810045280065, relative_change = 6.074206563406205e-5 Iter 50: T = 708.699589365283 K, F = -1.461902341118347, relative_change = 2.5427120100951007e-5 Iter 55: T = 708.644537194776 K, F = -0.6114011672385645, relative_change = 1.0638139763016992e-5 Iter 60: T = 708.6215091903235 K, F = -0.2556980952556939, relative_change = 4.449734639745433e-6 Iter 65: T = 708.6118778113943 K, F = -0.10693649134130712, relative_change = 1.8610611959493958e-6 Iter 70: T = 708.6078497150819 K, F = -0.044722204208146876, relative_change = 7.783405873236285e-7 Iter 75: T = 708.6061650928523 K, F = -0.01870337501096464, relative_change = 3.2551527649812524e-7 Iter 80: T = 708.6054605594766 K, F = -0.007821977438134287, relative_change = 1.3613506653427646e-7 Iter 85: T = 708.6051659144632 K, F = -0.003271244839378906, relative_change = 5.6933431349506215e-8 Iter 90: T = 708.6050426902702 K, F = -0.0013680737401428056, relative_change = 2.3810262049412355e-8 Iter 95: T = 708.6049911564185 K, F = -0.0005721447912727662, relative_change = 9.957739650798627e-9 Iter 100: T = 708.6049696043422 K, F = -0.00023927778638477282, relative_change = 4.164446277260213e-9 Iter 105: T = 708.6049605910058 K, F = -0.00010006882876845147, relative_change = 1.7416212886639912e-9 Iter 110: T = 708.6049568215208 K, F = -4.1849979831476425e-5, relative_change = 7.283668505737252e-10 Iter 115: T = 708.6049552450771 K, F = -1.7502161836491226e-5, relative_change = 3.046117269695142e-10 Iter 120: T = 708.6049545857896 K, F = -7.319614437895083e-6, relative_change = 1.2739228590072145e-10 Iter 125: T = 708.6049543100676 K, F = -3.0611501107280503e-6, relative_change = 5.327697437099998e-11 Iter 130: T = 708.6049541947573 K, F = -1.2802092042019098e-6, relative_change = 2.228106121800263e-11 Iter 135: T = 708.6049541465331 K, F = -5.353979808386811e-7, relative_change = 9.318192020314139e-12 Iter 140: T = 708.6049541263653 K, F = -2.2391052301173886e-7, relative_change = 3.896991254630334e-12 Iter 145: T = 708.6049541179309 K, F = -9.364243402920636e-8, relative_change = 1.6297748832271905e-12 Iter 150: T = 708.6049541144035 K, F = -3.916275348458953e-8, relative_change = 6.815977462611436e-13 Iter 155: T = 708.6049541129282 K, F = -1.6377680212009693e-8, relative_change = 2.850409873757932e-13 Converged in 157 iterations to T = 708.604954112616 K Iter 1: T = 973.5762273953663 K, F = -6020.68172346253, relative_change = 0.026423772604633647 Iter 2: T = 949.3453975756516 K, F = -5094.880661106348, relative_change = 0.0248884772839412 Iter 3: T = 927.2395958202961 K, F = -4309.626625115242, relative_change = 0.02328530986910269 Iter 5: T = 889.0786948494192 K, F = -3079.4325523350653, relative_change = 0.01995384057743199 Iter 10: T = 824.1528683327308 K, F = -1318.4217010691123, relative_change = 0.011952200243749687 Iter 15: T = 790.7704504332453 K, F = -558.7745817447367, relative_change = 0.0061189162570602605 Iter 20: T = 775.2059998364848 K, F = -235.22930635236486, relative_change = 0.0028261982730289417 Iter 25: T = 768.3546095095842 K, F = -98.66954244250925, relative_change = 0.0012361784526748003 Iter 30: T = 765.4236273322526 K, F = -41.318165503909505, relative_change = 0.0005271207803900717 Iter 35: T = 764.1858961828652 K, F = -17.289241544882746, relative_change = 0.0002222724921878603 Iter 40: T = 763.6661337703963 K, F = -7.232238893358446, relative_change = 9.327997045382925e-5 Iter 45: T = 763.4483879035976 K, F = -3.0249018959325653, relative_change = 3.906757220158432e-5 Iter 50: T = 763.357258187617 K, F = -1.2651014448811653, relative_change = 1.6348476425036836e-5 Iter 55: T = 763.3191351297265 K, F = -0.5290895179262317, relative_change = 6.838870109357413e-6 Iter 60: T = 763.3031895952697 K, F = -0.22127312687721334, relative_change = 2.8604019491238573e-6 Iter 65: T = 763.2965206295871 K, F = -0.09253933914103363, relative_change = 1.1963075728757152e-6 Iter 70: T = 763.2937315267937 K, F = -0.038701104861074476, relative_change = 5.003194396969408e-7 Iter 75: T = 763.292565079905 K, F = -0.016185272648311932, relative_change = 2.092411958600958e-7 Iter 80: T = 763.2920772559984 K, F = -0.006768875784687212, relative_change = 8.75074522595287e-8 Iter 85: T = 763.2918732418847 K, F = -0.0028308249460002877, relative_change = 3.659671146871375e-8 Iter 90: T = 763.2917879206882 K, F = -0.0011838848448326722, relative_change = 1.530519052350863e-8 Iter 95: T = 763.2917522383348 K, F = -0.0004951147889868945, relative_change = 6.4008149915722235e-9 Iter 100: T = 763.2917373155467 K, F = -0.00020706291849026393, relative_change = 2.6768975310845774e-9 Iter 105: T = 763.2917310746583 K, F = -8.659618740070041e-5, relative_change = 1.119510586291981e-9 Iter 110: T = 763.291728464644 K, F = -3.621556028854389e-5, relative_change = 4.681927115796642e-10 Iter 115: T = 763.2917273731049 K, F = -1.5145779682423921e-5, relative_change = 1.9580378296748454e-10 Iter 120: T = 763.2917269166102 K, F = -6.33414483952599e-6, relative_change = 8.188746640848204e-11 Iter 125: T = 763.2917267256987 K, F = -2.6490155849989705e-6, relative_change = 3.4246323771576906e-11 Iter 130: T = 763.2917266458572 K, F = -1.107850161385926e-6, relative_change = 1.4322224282469072e-11 Iter 135: T = 763.2917266124665 K, F = -4.6331546044164895e-7, relative_change = 5.989716092166761e-12 Iter 140: T = 763.2917265985021 K, F = -1.9376305604446031e-7, relative_change = 2.5049578398521303e-12 Iter 145: T = 763.2917265926621 K, F = -8.103616022658855e-8, relative_change = 1.0476309004536086e-12 Iter 150: T = 763.2917265902197 K, F = -3.389049629820562e-8, relative_change = 4.3813442116424955e-13 Converged in 154 iterations to T = 763.2917265893382 K Iter 1: T = 964.3069778838193 K, F = -8132.689042001095, relative_change = 0.03569302211618067 Iter 2: T = 930.5384300801996 K, F = -6899.473695908848, relative_change = 0.03501846256233164 Iter 3: T = 898.6633492447323 K, F = -5852.194170905955, relative_change = 0.034254448612853206 Iter 5: T = 840.4805489106784 K, F = -4207.6923670545275, relative_change = 0.032432470884330045 Iter 10: T = 726.1799713138074 K, F = -1835.0728405149307, relative_change = 0.026055460132783623 Iter 15: T = 652.3828499590516 K, F = -792.4214604205957, relative_change = 0.017860408800974666 Iter 20: T = 610.6175921092948 K, F = -338.32920415267387, relative_change = 0.010247026596815994 Iter 25: T = 589.7404934558011 K, F = -143.10118433822842, relative_change = 0.005085766942301215 Iter 30: T = 580.1786449834702 K, F = -60.17288287415969, relative_change = 0.002308587697435223 Iter 35: T = 576.008288024155 K, F = -25.226214674776816, relative_change = 0.0010013852291649024 Iter 40: T = 574.2318426444842 K, F = -10.560943581506613, relative_change = 0.0004254196911128258 Iter 45: T = 573.4830635429342 K, F = -4.418669268940512, relative_change = 0.0001791020348443856 Iter 50: T = 573.168877797885 K, F = -1.8482843799863689, relative_change = 7.511215675361768e-5 Iter 55: T = 573.0372990492607 K, F = -0.7730349297471035, relative_change = 3.144960167209739e-5 Iter 60: T = 572.9822392431406 K, F = -0.32330300154369707, relative_change = 1.3159046564982861e-5 Iter 65: T = 572.9592069716407 K, F = -0.13521102433343515, relative_change = 5.5043989222549945e-6 Iter 70: T = 572.9495736202342 K, F = -0.05654718840625156, relative_change = 2.3022028001454306e-6 Iter 75: T = 572.9455446661254 K, F = -0.023648766047722203, relative_change = 9.628432408375058e-7 Iter 80: T = 572.943859679403 K, F = -0.009890206274489943, relative_change = 4.026785826766406e-7 Iter 85: T = 572.943154992586 K, F = -0.004136204107267172, relative_change = 1.6840604879860013e-7 Iter 90: T = 572.9428602832256 K, F = -0.0017298102556709827, relative_change = 7.042960554300122e-8 Iter 95: T = 572.9427370320911 K, F = -0.0007234273599422969, relative_change = 2.9454534458035612e-8 Iter 100: T = 572.9426854869668 K, F = -0.00030254597097262304, relative_change = 1.2318243734584183e-8 Iter 105: T = 572.9426639301752 K, F = -0.00012652833988047174, relative_change = 5.1516376309968595e-9 Iter 110: T = 572.9426549148667 K, F = -5.291566341886211e-5, relative_change = 2.154476567200718e-9 Iter 115: T = 572.9426511445569 K, F = -2.2129962081007815e-5, relative_change = 9.010278460068222e-10 Iter 120: T = 572.9426495677682 K, F = -9.255014589204524e-6, relative_change = 3.768206171709012e-10 Iter 125: T = 572.9426489083364 K, F = -3.87055789435875e-6, relative_change = 1.5759089393994504e-10 Iter 130: T = 572.9426486325541 K, F = -1.6187138025536285e-6, relative_change = 6.59064048967541e-11 Iter 135: T = 572.9426485172187 K, F = -6.769652642901747e-7, relative_change = 2.7562838336042385e-11 Iter 140: T = 572.942648468984 K, F = -2.831148430693098e-7, relative_change = 1.152710347902904e-11 Iter 145: T = 572.9426484488116 K, F = -1.184013093680214e-7, relative_change = 4.820743874005803e-12 Iter 150: T = 572.9426484403754 K, F = -4.951638682415549e-8, relative_change = 2.016074144249744e-12 Iter 155: T = 572.9426484368472 K, F = -2.0708228021248942e-8, relative_change = 8.431415490058641e-13 Iter 160: T = 572.9426484353718 K, F = -8.660748007649488e-9, relative_change = 3.5262488337078664e-13 Converged in 163 iterations to T = 572.9426484349398 K Iter 1: T = 963.6017744117735 K, F = -8293.370323928426, relative_change = 0.03639822558822652 Iter 2: T = 929.0838393372998 K, F = -7037.126690472203, relative_change = 0.03582178446645663 Iter 3: T = 896.4128180465898 K, F = -5970.245982217446, relative_change = 0.03516477190477634 Iter 5: T = 836.4931023297183 K, F = -4294.816664099131, relative_change = 0.0335799285222979 Iter 10: T = 717.0765113866883 K, F = -1876.6422123462596, relative_change = 0.027821829308839925 Iter 15: T = 637.7404594364863 K, F = -812.5131001855068, relative_change = 0.019888514244177095 Iter 20: T = 591.3525303825082 K, F = -347.8363505650326, relative_change = 0.011896434959185057 Iter 25: T = 567.5239307125453 K, F = -147.41023484151708, relative_change = 0.006084018474858353 Iter 30: T = 556.4206889017186 K, F = -62.05335224113303, relative_change = 0.002808399872666551 Iter 35: T = 551.5346711346443 K, F = -26.02846272722013, relative_change = 0.0012280357758579052 Iter 40: T = 549.4447768271376 K, F = -10.899401648068526, relative_change = 0.0005235803789656968 Iter 45: T = 548.5622887502141 K, F = -4.560746548409475, relative_change = 0.00022076720361464342 Iter 50: T = 548.1917145552561 K, F = -1.9077965939814887, relative_change = 9.264605052257958e-5 Iter 55: T = 548.0364704681275 K, F = -0.7979401346268777, relative_change = 3.880168557366143e-5 Iter 60: T = 547.9714989521732 K, F = -0.33372154505998486, relative_change = 1.623714370018426e-5 Iter 65: T = 547.9443189300849 K, F = -0.13956868945035356, relative_change = 6.792285657512462e-6 Iter 70: T = 547.9329504926063 K, F = -0.05836970449540266, relative_change = 2.8409156141134506e-6 Iter 75: T = 547.928195826533 K, F = -0.02441097952208046, relative_change = 1.1881574269456204e-6 Iter 80: T = 547.9262073247129 K, F = -0.01020897575988558, relative_change = 4.969108240066292e-7 Iter 85: T = 547.9253757018631 K, F = -0.004269517786189225, relative_change = 2.0781564981240149e-7 Iter 90: T = 547.9250279059194 K, F = -0.0017855637121204915, relative_change = 8.691126798198793e-8 Iter 95: T = 547.9248824532683 K, F = -0.0007467441356850957, relative_change = 3.634737941449249e-8 Iter 100: T = 547.9248216231917 K, F = -0.0003122973277096819, relative_change = 1.5200916776678534e-8 Iter 105: T = 547.9247961833202 K, F = -0.00013060647396465064, relative_change = 6.35720643093499e-9 Iter 110: T = 547.9247855440608 K, F = -5.462118786725423e-5, relative_change = 2.658659929590244e-9 Iter 115: T = 547.9247810945952 K, F = -2.2843233300123833e-5, relative_change = 1.111883387320121e-9 Iter 120: T = 547.9247792337756 K, F = -9.553313366800209e-6, relative_change = 4.650029380076851e-10 Iter 125: T = 547.9247784555585 K, F = -3.9953094420341895e-6, relative_change = 1.9446976876258041e-10 Iter 130: T = 547.9247781300988 K, F = -1.6708865811232432e-6, relative_change = 8.13296022980837e-11 Iter 135: T = 547.9247779939876 K, F = -6.987839831218423e-7, relative_change = 3.401297499712873e-11 Iter 140: T = 547.9247779370644 K, F = -2.92239807242467e-7, relative_change = 1.4224632364086235e-11 Iter 145: T = 547.9247779132584 K, F = -1.2221772302534184e-7, relative_change = 5.9488890140431886e-12 Iter 150: T = 547.9247779033024 K, F = -5.111275308555818e-8, relative_change = 2.487888726837391e-12 Iter 155: T = 547.9247778991387 K, F = -2.137538274160633e-8, relative_change = 1.0404364966915986e-12 Iter 160: T = 547.9247778973975 K, F = -8.939630397053477e-9, relative_change = 4.3513221936674423e-13 Converged in 164 iterations to T = 547.9247778967689 K Iter 1: T = 969.2940997187416 K, F = -6996.3685879365, relative_change = 0.030705900281258483 Iter 2: T = 940.7284017985626 K, F = -5927.454414261864, relative_change = 0.029470619834029634 Iter 3: T = 914.2639649201407 K, F = -5020.162846424552, relative_change = 0.028131857003386912 Iter 5: T = 867.4538050778064 K, F = -3596.9101604466678, relative_change = 0.025175415609716797 Iter 10: T = 783.0810701281529 K, F = -1551.224070538145, relative_change = 0.01690924622809373 Iter 15: T = 736.0562617517753 K, F = -661.4928479775344, relative_change = 0.009518136623415921 Iter 20: T = 712.8334411160487 K, F = -279.5501044215338, relative_change = 0.004662970851587704 Iter 25: T = 702.2750498921475 K, F = -117.49402073948093, relative_change = 0.002101848381418616 Iter 30: T = 697.6870816127561 K, F = -49.246061817151144, relative_change = 0.0009086925514892611 Iter 35: T = 695.7360448903221 K, F = -20.614837176352903, relative_change = 0.00038547713459338983 Iter 40: T = 694.9142779608276 K, F = -8.62483102415886, relative_change = 0.00016218473643799598 Iter 45: T = 694.5695742236189 K, F = -3.607615557040059, relative_change = 6.799939017619631e-5 Iter 50: T = 694.425233711722 K, F = -1.5088545149640877, relative_change = 2.8468316310708572e-5 Iter 55: T = 694.3648370061495 K, F = -0.6310396395584181, relative_change = 1.1911072968994072e-5 Iter 60: T = 694.3395728190427 K, F = -0.2639115786255135, relative_change = 4.98227758648634e-6 Iter 65: T = 694.3290060608232 K, F = -0.11037154510117009, relative_change = 2.0838097489653055e-6 Iter 70: T = 694.3245867460565 K, F = -0.04615879816886792, relative_change = 8.715024182828274e-7 Iter 75: T = 694.3227385060585 K, F = -0.019304178115733817, relative_change = 3.644776683317338e-7 Iter 80: T = 694.3219655448092 K, F = -0.008073240882638055, relative_change = 1.5242977926936184e-7 Iter 85: T = 694.3216422822726 K, F = -0.003376326285487785, relative_change = 6.374810546824846e-8 Iter 90: T = 694.3215070898599 K, F = -0.0014120200677312233, relative_change = 2.666024549650069e-8 Iter 95: T = 694.3214505507506 K, F = -0.0005905236727697938, relative_change = 1.1149637707765639e-8 Iter 100: T = 694.3214269054149 K, F = -0.0002469640556111985, relative_change = 4.662912462856265e-9 Iter 105: T = 694.3214170166523 K, F = -0.00010328331835629534, relative_change = 1.9500858286192334e-9 Iter 110: T = 694.3214128810534 K, F = -4.319431785226868e-5, relative_change = 8.155492179165894e-10 Iter 115: T = 694.3214111514966 K, F = -1.806437911489045e-5, relative_change = 3.410724180066872e-10 Iter 120: T = 694.3214104281753 K, F = -7.55473980051935e-6, relative_change = 1.4264057278508436e-10 Iter 125: T = 694.3214101256737 K, F = -3.159481627879046e-6, relative_change = 5.96539764358885e-11 Iter 130: T = 694.321409999164 K, F = -1.3213334730810544e-6, relative_change = 2.494801528199438e-11 Iter 135: T = 694.321409946256 K, F = -5.525980882881143e-7, relative_change = 1.0433570205610555e-11 Iter 140: T = 694.3214099241292 K, F = -2.3110175018103973e-7, relative_change = 4.363417801514426e-12 Iter 145: T = 694.3214099148755 K, F = -9.664844402568207e-8, relative_change = 1.8248132731436597e-12 Iter 150: T = 694.3214099110055 K, F = -4.041884171801513e-8, relative_change = 7.631456418945026e-13 Iter 155: T = 694.3214099093872 K, F = -1.6903888289121483e-8, relative_change = 3.1916126565566576e-13 Converged in 158 iterations to T = 694.3214099089134 K Iter 1: T = 966.4481648174675 K, F = -7644.817562374769, relative_change = 0.03355183518253251 Iter 2: T = 934.934067427417 K, F = -6481.832456782811, relative_change = 0.032608161034691975 Iter 3: T = 905.4280237485841 K, F = -5494.365052060736, relative_change = 0.03155949141956312 Iter 5: T = 852.3158873677183 K, F = -3944.332686635481, relative_change = 0.029141910408935816 Iter 10: T = 752.0678491067706 K, F = -1711.205767302058, relative_change = 0.02151695368358887 Iter 15: T = 691.8992965691318 K, F = -734.1847924548289, relative_change = 0.013323014356671863 Iter 20: T = 660.2603487457039 K, F = -311.67898460024645, relative_change = 0.006996839670818663 Iter 25: T = 645.2858095072212 K, F = -131.3376661576908, relative_change = 0.0032803280418083 Iter 30: T = 638.6407963210502 K, F = -55.11793288707706, relative_change = 0.0014454194587197257 Iter 35: T = 635.7872966697272 K, F = -23.085889314247744, relative_change = 0.0006183911609682699 Iter 40: T = 634.580268321208 K, F = -9.661019042229864, relative_change = 0.00026113247438704285 Iter 45: T = 634.0730360745091 K, F = -4.04145110998944, relative_change = 0.00010965470468355713 Iter 50: T = 633.8604752814018 K, F = -1.6903757450569934, relative_change = 4.593737885719025e-5 Iter 55: T = 633.7715043013974 K, F = -0.70696906279829, relative_change = 1.9225319758692174e-5 Iter 60: T = 633.7342823467659 K, F = -0.295668809530604, relative_change = 8.042667372053552e-6 Iter 65: T = 633.7187133657062 K, F = -0.12365326011663141, relative_change = 3.3639610753461297e-6 Iter 70: T = 633.7122018268719 K, F = -0.05171345078485495, relative_change = 1.4069224354273169e-6 Iter 75: T = 633.709478552721 K, F = -0.021627214304469677, relative_change = 5.88404662717772e-7 Iter 80: T = 633.7083396345569 K, F = -0.009044764831309504, relative_change = 2.460801129146507e-7 Iter 85: T = 633.7078633232118 K, F = -0.00378262963502507, relative_change = 1.0291403657600209e-7 Iter 90: T = 633.7076641237398 K, F = -0.0015819410561729308, relative_change = 4.303994815045161e-8 Iter 95: T = 633.7075808160755 K, F = -0.0006615866706586315, relative_change = 1.7999832366014198e-8 Iter 100: T = 633.7075459758038 K, F = -0.00027668345179976406, relative_change = 7.5277469684848e-9 Iter 105: T = 633.707531405184 K, F = -0.0001157123240196345, relative_change = 3.1481940319943647e-9 Iter 110: T = 633.7075253115765 K, F = -4.8392275887931824e-5, relative_change = 1.316612404170483e-9 Iter 115: T = 633.707522763157 K, F = -2.0238228436941785e-5, relative_change = 5.506230616304495e-10 Iter 120: T = 633.7075216973776 K, F = -8.463869048902506e-6, relative_change = 2.3027714806081924e-10 Iter 125: T = 633.7075212516559 K, F = -3.539691592391314e-6, relative_change = 9.630466668738984e-11 Iter 130: T = 633.7075210652497 K, F = -1.480340818871273e-6, relative_change = 4.0275748783096115e-11 Iter 135: T = 633.7075209872924 K, F = -6.190959995211465e-7, relative_change = 1.6843793433291534e-11 Iter 140: T = 633.7075209546897 K, F = -2.589129131091994e-7, relative_change = 7.044263943014481e-12 Iter 145: T = 633.707520941055 K, F = -1.08280751753842e-7, relative_change = 2.9460029097062607e-12 Iter 150: T = 633.7075209353527 K, F = -4.528480845866767e-8, relative_change = 1.232067337265299e-12 Iter 155: T = 633.707520932968 K, F = -1.8938887458297415e-8, relative_change = 5.152717972347638e-13 Converged in 160 iterations to T = 633.7075209319706 K Iter 1: T = 966.4294024332306 K, F = -7649.092589470779, relative_change = 0.0335705975667694 Iter 2: T = 934.8956858715976 K, F = -6485.490053076734, relative_change = 0.03262909477116373 Iter 3: T = 905.3691892187014 K, F = -5497.496615545857, relative_change = 0.03158266435401163 Iter 5: T = 852.2138963765217 K, F = -3946.632901022388, relative_change = 0.02916954376845787 Iter 10: T = 751.8513976472642 K, F = -1712.2770634345943, relative_change = 0.021552126420611786 Iter 15: T = 691.5801343573644 K, F = -734.6798656355637, relative_change = 0.013354895997607058 Iter 20: T = 659.8706705029305 K, F = -311.90129472798475, relative_change = 0.007017789196298407 Iter 25: T = 644.8574027080372 K, F = -131.43444625200212, relative_change = 0.0032913305053393193 Iter 30: T = 638.1939068307057 K, F = -55.159202286553274, relative_change = 0.0014505271328665225 Iter 35: T = 635.3322056764282 K, F = -23.103299359299204, relative_change = 0.0006206266940997914 Iter 40: T = 634.1216585186172 K, F = -9.668327427399012, relative_change = 0.0002620856907154427 Iter 45: T = 633.6129386237474 K, F = -4.0445124098657095, relative_change = 0.00011005661909992851 Iter 50: T = 633.3997528350005 K, F = -1.6916568701230559, relative_change = 4.610604100119484e-5 Iter 55: T = 633.310519974221 K, F = -0.7075049941654389, relative_change = 1.9295957534437463e-5 Iter 60: T = 633.2731884102404 K, F = -0.2958929686164221, relative_change = 8.072226670698551e-6 Iter 65: T = 633.2575735738912 K, F = -0.12374701070596933, relative_change = 3.376326231372283e-6 Iter 70: T = 633.2510428551411 K, F = -0.051752659202092266, relative_change = 1.4120942344336752e-6 Iter 75: T = 633.2483115592505 K, F = -0.02164361187331787, relative_change = 5.905676658337653e-7 Iter 80: T = 633.247169286217 K, F = -0.009051622514154423, relative_change = 2.469847232438337e-7 Iter 85: T = 633.246691571811 K, F = -0.003785497605380106, relative_change = 1.0329235835794641e-7 Iter 90: T = 633.2464917855598 K, F = -0.001583140475787559, relative_change = 4.3198167329990845e-8 Iter 95: T = 633.2464082324968 K, F = -0.0006620882836866904, relative_change = 1.806600164045869e-8 Iter 100: T = 633.2463732895965 K, F = -0.0002768932334567542, relative_change = 7.555419794168602e-9 Iter 105: T = 633.246358676056 K, F = -0.0001158000569345119, relative_change = 3.1597671331074462e-9 Iter 110: T = 633.2463525644986 K, F = -4.842896636714222e-5, relative_change = 1.3214524007974685e-9 Iter 115: T = 633.2463500085722 K, F = -2.0253571809791815e-5, relative_change = 5.526471782235766e-10 Iter 120: T = 633.2463489396533 K, F = -8.47028519340709e-6, relative_change = 2.3112364043570964e-10 Iter 125: T = 633.2463484926186 K, F = -3.5423740175066776e-6, relative_change = 9.66586558502189e-11 Iter 130: T = 633.2463483056634 K, F = -1.4814626851378243e-6, relative_change = 4.042379244294055e-11 Iter 135: T = 633.2463482274766 K, F = -6.19565489912155e-7, relative_change = 1.6905715570831455e-11 Iter 140: T = 633.2463481947779 K, F = -2.5910921774841e-7, relative_change = 7.070159344629129e-12 Iter 145: T = 633.2463481811028 K, F = -1.0836241542966363e-7, relative_change = 2.956820875740887e-12 Iter 150: T = 633.2463481753837 K, F = -4.5317165187075403e-8, relative_change = 1.2365425736313366e-12 Iter 155: T = 633.2463481729919 K, F = -1.8952225677715262e-8, relative_change = 5.171381267835602e-13 Converged in 160 iterations to T = 633.2463481719917 K Iter 1: T = 976.5244207739283 K, F = -5348.933057701284, relative_change = 0.023475579226071696 Iter 2: T = 955.2087183994681 K, F = -4522.7673786526675, relative_change = 0.021828130378518128 Iter 3: T = 935.9605223737649 K, F = -3822.4720344665316, relative_change = 0.02015077506616066 Iter 5: T = 903.2428824089569 K, F = -2726.5889167581026, relative_change = 0.016799734352469883 Iter 10: T = 849.4104480921114 K, F = -1162.5447209495662, relative_change = 0.00943600710905839 Iter 15: T = 822.8620104777366 K, F = -491.2504215840774, relative_change = 0.004616025997742863 Iter 20: T = 810.8014362758327 K, F = -206.46042134161112, relative_change = 0.0020790748025273083 Iter 25: T = 805.5628543224916 K, F = -86.53306248069184, relative_change = 0.0008985200981905219 Iter 30: T = 803.3355555935141 K, F = -36.22312042559176, relative_change = 0.00038110092769808696 Iter 35: T = 802.3975036820444 K, F = -15.154952203081411, relative_change = 0.00016033254607520058 Iter 40: T = 802.0040356785581 K, F = -6.339038551118643, relative_change = 6.722088166762356e-5 Iter 45: T = 801.839278081836 K, F = -2.651246807235412, relative_change = 2.8142048786503492e-5 Iter 50: T = 801.7703386264989 K, F = -1.1088154941318338, relative_change = 1.1774503738555191e-5 Iter 55: T = 801.7415010450313 K, F = -0.46372555344649624, relative_change = 4.925141650120762e-6 Iter 60: T = 801.7294397256235 K, F = -0.19393655661956, relative_change = 2.0599111343100512e-6 Iter 65: T = 801.7243953456548 K, F = -0.08110675758800046, relative_change = 8.615070878239959e-7 Iter 70: T = 801.7222856921001 K, F = -0.03391984498705247, relative_change = 3.6029738905199805e-7 Iter 75: T = 801.7214034039106 K, F = -0.014185689565958226, relative_change = 1.506815168255214e-7 Iter 80: T = 801.7210344194249 K, F = -0.00593262571502029, relative_change = 6.301695777613158e-8 Iter 85: T = 801.7208801055266 K, F = -0.002481095084894358, relative_change = 2.6354470178983495e-8 Iter 90: T = 801.72081556958 K, F = -0.0010376236236608882, relative_change = 1.1021758696016322e-8 Iter 95: T = 801.720788579871 K, F = -0.00043394659724849127, relative_change = 4.609431916731319e-9 Iter 100: T = 801.7207772924514 K, F = -0.0001814816511314099, relative_change = 1.9277196235801332e-9 Iter 105: T = 801.7207725719176 K, F = -7.589779331929059e-5, relative_change = 8.061953853603191e-10 Iter 110: T = 801.7207705977338 K, F = -3.174136284589402e-5, relative_change = 3.3716053434882177e-10 Iter 115: T = 801.7207697721066 K, F = -1.3274616586400612e-5, relative_change = 1.4100455816032527e-10 Iter 120: T = 801.7207694268195 K, F = -5.5516038377501076e-6, relative_change = 5.896979718647979e-11 Iter 125: T = 801.7207692824162 K, F = -2.321745126154795e-6, relative_change = 2.4661853281834082e-11 Iter 130: T = 801.7207692220251 K, F = -9.70981426595685e-7, relative_change = 1.031388037425798e-11 Iter 135: T = 801.7207691967689 K, F = -4.060760545598896e-7, relative_change = 4.313388222979391e-12 Iter 140: T = 801.7207691862064 K, F = -1.6982671513510184e-7, relative_change = 1.8039195978962562e-12 Iter 145: T = 801.720769181789 K, F = -7.102327859165314e-8, relative_change = 7.544177255019427e-13 Iter 150: T = 801.7207691799416 K, F = -2.9702128534481176e-8, relative_change = 3.154995474178083e-13 Converged in 153 iterations to T = 801.7207691794007 K Iter 1: T = 965.1766473596447 K, F = -7934.5340246650385, relative_change = 0.03482335264035527 Iter 2: T = 932.3275503095274 K, F = -6729.787216804318, relative_change = 0.034034284957038606 Iter 3: T = 901.423245166505 K, F = -5706.747459951483, relative_change = 0.03314747604826474 Iter 5: T = 845.3359993134809 K, F = -4100.515267317171, relative_change = 0.03106187400003837 Iter 10: T = 736.9954872828921 K, F = -1784.3566324575233, relative_change = 0.024075542281754098 Iter 15: T = 669.2422506640672 K, F = -768.3137451447848, relative_change = 0.01577066515489171 Iter 20: T = 632.1690841305499 K, F = -327.1597409231226, relative_change = 0.00868003885757028 Iter 25: T = 614.1160537479366 K, F = -138.1253617778826, relative_change = 0.0041899219045584335 Iter 30: T = 605.9756900854385 K, F = -58.02364946922083, relative_change = 0.0018739099333161308 Iter 35: T = 602.4529066841828 K, F = -24.313955053029655, relative_change = 0.0008071993936694799 Iter 40: T = 600.9576152849006 K, F = -10.17695315423037, relative_change = 0.0003418753757221569 Iter 45: T = 600.3283110289863 K, F = -4.257637742775597, relative_change = 0.00014374166306598804 Iter 50: T = 600.0644287808085 K, F = -1.7808610135207656, relative_change = 6.024938583458614e-5 Iter 55: T = 599.9539471125546 K, F = -0.7448239662413267, relative_change = 2.522068565895243e-5 Iter 60: T = 599.9077208105626 K, F = -0.3115024384698128, relative_change = 1.0551738084167314e-5 Iter 65: T = 599.8883846469369 K, F = -0.13027546766158435, relative_change = 4.413588464454135e-6 Iter 70: T = 599.8802973724163 K, F = -0.05448300613737861, relative_change = 1.845942340936199e-6 Iter 75: T = 599.8769150621836 K, F = -0.022785487509638158, relative_change = 7.720173354890219e-7 Iter 80: T = 599.8755005194585 K, F = -0.009529170631458916, relative_change = 3.2287075305511147e-7 Iter 85: T = 599.8749089372658 K, F = -0.0039852142952435665, relative_change = 1.3502908402235412e-7 Iter 90: T = 599.8746615299102 K, F = -0.001666664445466981, relative_change = 5.647089432787108e-8 Iter 95: T = 599.8745580610914 K, F = -0.0006970190155756173, relative_change = 2.3616823172245413e-8 Iter 100: T = 599.8745147891767 K, F = -0.00029150168320124514, relative_change = 9.876841114848e-9 Iter 105: T = 599.8744966923421 K, F = -0.00012190948661078282, relative_change = 4.130613550365818e-9 Iter 110: T = 599.8744891240291 K, F = -5.0984003835630176e-5, relative_change = 1.7274720417568123e-9 Iter 115: T = 599.8744859588701 K, F = -2.1322119035327436e-5, relative_change = 7.224494480378562e-10 Iter 120: T = 599.8744846351628 K, F = -8.917164687649581e-6, relative_change = 3.0213698571240156e-10 Iter 125: T = 599.8744840815726 K, F = -3.7292654124776448e-6, relative_change = 1.2635731816847183e-10 Iter 130: T = 599.8744838500546 K, F = -1.5596238306381238e-6, relative_change = 5.2844156464114676e-11 Iter 135: T = 599.874483753231 K, F = -6.522528326891042e-7, relative_change = 2.2100041108739103e-11 Iter 140: T = 599.8744837127381 K, F = -2.727797874246818e-7, relative_change = 9.242496491432514e-12 Iter 145: T = 599.8744836958036 K, F = -1.1408069233720397e-7, relative_change = 3.865353840044483e-12 Iter 150: T = 599.8744836887214 K, F = -4.771029460393095e-8, relative_change = 1.6165502390379674e-12 Iter 155: T = 599.8744836857594 K, F = -1.995210663352509e-8, relative_change = 6.760298383451358e-13 Iter 160: T = 599.8744836845208 K, F = -8.344795798809201e-9, relative_change = 2.8274362494978855e-13 Converged in 162 iterations to T = 599.8744836842586 K Iter 1: T = 964.5347682519442 K, F = -8080.786789939254, relative_change = 0.03546523174805575 Iter 2: T = 931.0075514229059 K, F = -6855.020697751695, relative_change = 0.03475998785383416 Iter 3: T = 899.3878889514101 K, F = -5814.083084063993, relative_change = 0.033962842109250165 Iter 5: T = 841.7588650870284 K, F = -4179.591524744758, relative_change = 0.03206880755740665 Iter 10: T = 729.0552837216995 K, F = -1821.7320609788922, relative_change = 0.025516819152132386 Iter 15: T = 656.918843243384 K, F = -786.0397704883558, relative_change = 0.017273587798127044 Iter 20: T = 616.4775491649978 K, F = -335.3497746077378, relative_change = 0.009794054622506982 Iter 25: T = 596.4140103881749 K, F = -141.76588696965058, relative_change = 0.004821723160305773 Iter 30: T = 587.2668100241262 K, F = -59.594106091770755, relative_change = 0.0021791328917258094 Iter 35: T = 583.2865431580847 K, F = -24.980130491453007, relative_change = 0.00094327101221085 Iter 40: T = 581.5928654649763 K, F = -10.45728252714336, relative_change = 0.00040036369378316253 Iter 45: T = 580.8793019074378 K, F = -4.375183399314667, relative_change = 0.0001684873029967591 Iter 50: T = 580.5799511161774 K, F = -1.8300744696775229, relative_change = 7.064881935934412e-5 Iter 55: T = 580.4545954745687 K, F = -0.76541518250455, relative_change = 2.957873506155446e-5 Iter 60: T = 580.402141573368 K, F = -0.3201156059440262, relative_change = 1.2375883382906703e-5 Iter 65: T = 580.3801997052828 K, F = -0.13387789030254424, relative_change = 5.176740389742923e-6 Iter 70: T = 580.371022475616 K, F = -0.055989633593390986, relative_change = 2.165149282783715e-6 Iter 75: T = 580.3671842949124 K, F = -0.02341558607567662, relative_change = 9.055218335788488e-7 Iter 80: T = 580.365579095028 K, F = -0.009792686945401807, relative_change = 3.787053877943033e-7 Iter 85: T = 580.3649077765655 K, F = -0.004095420238967196, relative_change = 1.5838005029712652e-7 Iter 90: T = 580.3646270223451 K, F = -0.0017127539346943332, relative_change = 6.623659191287965e-8 Iter 95: T = 580.3645096074334 K, F = -0.0007162941999636074, relative_change = 2.7700962379928653e-8 Iter 100: T = 580.3644605030898 K, F = -0.0002995627965829417, relative_change = 1.1584878254841329e-8 Iter 105: T = 580.3644399670627 K, F = -0.0001252807404411027, relative_change = 4.8449353082004955e-9 Iter 110: T = 580.3644313786502 K, F = -5.23939026125797e-5, relative_change = 2.026209980022403e-9 Iter 115: T = 580.3644277868733 K, F = -2.191175648319499e-5, relative_change = 8.473852635586702e-10 Iter 120: T = 580.3644262847494 K, F = -9.163758286634405e-6, relative_change = 3.543866431953715e-10 Iter 125: T = 580.3644256565431 K, F = -3.8323933795325615e-6, relative_change = 1.4820873594588943e-10 Iter 130: T = 580.3644253938196 K, F = -1.6027517748540276e-6, relative_change = 6.198262849704379e-11 Iter 135: T = 580.3644252839456 K, F = -6.702897713539713e-7, relative_change = 2.592186923295248e-11 Iter 140: T = 580.364425237995 K, F = -2.803229142145369e-7, relative_change = 1.0840824727685019e-11 Iter 145: T = 580.3644252187779 K, F = -1.1723435022759077e-7, relative_change = 4.5337608116796504e-12 Iter 150: T = 580.3644252107412 K, F = -4.902864203515378e-8, relative_change = 1.8960666007187946e-12 Iter 155: T = 580.36442520738 K, F = -2.0504248354757948e-8, relative_change = 7.929532384661293e-13 Iter 160: T = 580.3644252059744 K, F = -8.575144649913824e-9, relative_change = 3.3162340812972185e-13 Converged in 163 iterations to T = 580.3644252055628 K Iter 1: T = 964.2968065181432 K, F = -8135.006597345875, relative_change = 0.035703193481856826 Iter 2: T = 930.517474412279 K, F = -6901.4587479541215, relative_change = 0.035030015527930385 Iter 3: T = 898.6309694919221 K, F = -5853.896160774676, relative_change = 0.034267497169246215 Iter 5: T = 840.4233597614667 K, F = -4208.947604625012, relative_change = 0.03244878778419615 Iter 10: T = 726.0508576123449 K, F = -1835.6695030832632, relative_change = 0.02607986054220476 Iter 15: T = 652.1782045006149 K, F = -792.707593505601, relative_change = 0.01788732915555989 Iter 20: T = 610.3520764356555 K, F = -338.46321138444057, relative_change = 0.010268058517454798 Iter 25: T = 589.4372460329449 K, F = -143.1613957661637, relative_change = 0.005098129708343476 Iter 30: T = 579.8560627030346 K, F = -60.199020492254284, relative_change = 0.002314676645800256 Iter 35: T = 575.6768173935152 K, F = -25.237336102253757, relative_change = 0.0010041245826782651 Iter 40: T = 573.8964969901897 K, F = -10.565629957739754, relative_change = 0.0004266018988818156 Iter 45: T = 573.1460682509504 K, F = -4.420635488909942, relative_change = 0.00017960307152698341 Iter 50: T = 572.8311874130666 K, F = -1.8491077938888247, relative_change = 7.532287181290688e-5 Iter 55: T = 572.6993170513281 K, F = -0.7733794875386506, relative_change = 3.153793209975382e-5 Iter 60: T = 572.6441351281147 K, F = -0.32344713411684833, relative_change = 1.3196023680664756e-5 Iter 65: T = 572.621051757582 K, F = -0.13527130831580575, relative_change = 5.519869545179844e-6 Iter 70: T = 572.6113970310132 K, F = -0.056572400940652995, relative_change = 2.3086739108042405e-6 Iter 75: T = 572.6073591366927 K, F = -0.023659310415330898, relative_change = 9.655497310339599e-7 Iter 80: T = 572.6056704109159 K, F = -0.009894616087980312, relative_change = 4.0381050323911093e-7 Iter 85: T = 572.6049641603552 K, F = -0.004138048349185519, relative_change = 1.6887943742822228e-7 Iter 90: T = 572.6046687970139 K, F = -0.0017305815409749958, relative_change = 7.062758337477777e-8 Iter 95: T = 572.604545272376 K, F = -0.0007237499205737796, relative_change = 2.953733132271753e-8 Iter 100: T = 572.604493612869 K, F = -0.00030268086894696955, relative_change = 1.235287037286248e-8 Iter 105: T = 572.6044720082414 K, F = -0.0001265847562997302, relative_change = 5.16611892940934e-9 Iter 110: T = 572.6044629729271 K, F = -5.2939256948381086e-5, relative_change = 2.1605328000786755e-9 Iter 115: T = 572.6044591942506 K, F = -2.213982915821866e-5, relative_change = 9.035606342933242e-10 Iter 120: T = 572.604457613963 K, F = -9.259141045103725e-6, relative_change = 3.7787985651845247e-10 Iter 125: T = 572.6044569530678 K, F = -3.872283028782952e-6, relative_change = 1.5803385608103467e-10 Iter 130: T = 572.6044566766735 K, F = -1.6194348645415246e-6, relative_change = 6.609164025495741e-11 Iter 135: T = 572.6044565610822 K, F = -6.772667562882084e-7, relative_change = 2.7640303315894164e-11 Iter 140: T = 572.6044565127405 K, F = -2.832414437436981e-7, relative_change = 1.1559521188904684e-11 Iter 145: T = 572.6044564925235 K, F = -1.1845500103024875e-7, relative_change = 4.834331715277173e-12 Iter 150: T = 572.6044564840684 K, F = -4.953883903091594e-8, relative_change = 2.0217566046101156e-12 Iter 155: T = 572.6044564805323 K, F = -2.0717633386624357e-8, relative_change = 8.455186466196806e-13 Iter 160: T = 572.6044564790536 K, F = -8.664273798419941e-9, relative_change = 3.536024081207133e-13 Converged in 163 iterations to T = 572.6044564786206 K Iter 1: T = 980.2101267044767 K, F = -4509.141455414382, relative_change = 0.01978987329552332 Iter 2: T = 962.4609865791712 K, F = -3808.8111897226563, relative_change = 0.018107484958331557 Iter 3: T = 946.6311949529907 K, F = -3215.752490905271, relative_change = 0.01644720341594684 Iter 5: T = 920.2049241380985 K, F = -2289.1431194135257, relative_change = 0.013281402171824259 Iter 10: T = 878.27345816991 K, F = -971.7477642545585, relative_change = 0.006969633957419621 Iter 15: T = 858.4365315813892 K, F = -409.47019348057347, relative_change = 0.003266075784745516 Iter 20: T = 849.6359913111213 K, F = -171.8380662958248, relative_change = 0.0014388107112000004 Iter 25: T = 845.8573098594477 K, F = -71.97308037340889, relative_change = 0.0006155000778918005 Iter 30: T = 844.2590134039337 K, F = -30.11931773956756, relative_change = 0.00025989999741761965 Iter 35: T = 843.5873726526195 K, F = -12.599664289782055, relative_change = 0.00010913508916393882 Iter 40: T = 843.3059174679114 K, F = -5.269927812567352, relative_change = 4.5719331982963445e-5 Iter 45: T = 843.1881100202565 K, F = -2.204051441444837, relative_change = 1.913400048540544e-5 Iter 50: T = 843.1388241047747 K, F = -0.9217789566794504, relative_change = 8.004453881992329e-6 Iter 55: T = 843.1182090951728 K, F = -0.3855021733165829, relative_change = 3.3479757681732358e-6 Iter 60: T = 843.1095871181724 K, F = -0.16122217338412437, relative_change = 1.4002364946390942e-6 Iter 65: T = 843.1059812110524 K, F = -0.06742513635626413, relative_change = 5.856084009644947e-7 Iter 70: T = 843.1044731613002 K, F = -0.028198014395841797, relative_change = 2.449106616002998e-7 Iter 75: T = 843.1038424740276 K, F = -0.011792749371664968, relative_change = 1.0242495436003682e-7 Iter 80: T = 843.1035787125788 K, F = -0.004931869148240731, relative_change = 4.283540749836022e-8 Iter 85: T = 843.1034684043035 K, F = -0.00206256666790261, relative_change = 1.7914290930007647e-8 Iter 90: T = 843.1034222720501 K, F = -0.0008625900275398557, relative_change = 7.491972488918365e-9 Iter 95: T = 843.1034029789881 K, F = -0.0003607454526926013, relative_change = 3.1332327238410343e-9 Iter 100: T = 843.1033949103987 K, F = -0.00015086805729147557, relative_change = 1.3103554101626471e-9 Iter 105: T = 843.1033915360183 K, F = -6.309482424327051e-5, relative_change = 5.480063000759202e-10 Iter 110: T = 843.103390124812 K, F = -2.6387007944217444e-5, relative_change = 2.291827718399407e-10 Iter 115: T = 843.1033895346287 K, F = -1.1035363657541097e-5, relative_change = 9.58469882251553e-11 Iter 120: T = 843.1033892878071 K, F = -4.615121327988803e-6, relative_change = 4.008435914984155e-11 Iter 125: T = 843.1033891845833 K, F = -1.9301002780469645e-6, relative_change = 1.676377006956373e-11 Iter 130: T = 843.1033891414138 K, F = -8.07189727947133e-7, relative_change = 7.0107979150237054e-12 Iter 135: T = 843.1033891233598 K, F = -3.3757577622139934e-7, relative_change = 2.9319941352026237e-12 Iter 140: T = 843.1033891158094 K, F = -1.411748005164526e-7, relative_change = 1.226165253335053e-12 Iter 145: T = 843.1033891126518 K, F = -5.9043996802898846e-8, relative_change = 5.128230890653478e-13 Converged in 150 iterations to T = 843.1033891113312 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012709643270606811 Iteration 10: d = 1.4655670189242579e-5 Iteration 20: d = 1.9416323924604646e-7 Iteration 30: d = 2.732857419086148e-9 Iteration 40: d = 3.8735071529844995e-11 Iteration 50: d = 5.497388374691451e-13 Iteration 60: d = 7.799477709814111e-15 Converged after 63 iterations. d = 2.1573896098056166e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.622632472528 Iteration 2: convergence error = 4814.137575698008 Iteration 3: convergence error = 1096.1558506395945 Iteration 4: convergence error = 321.19067212923414 Iteration 5: convergence error = 95.28360927143285 Iteration 6: convergence error = 28.416779308674904 Iteration 7: convergence error = 8.48555717255681 Iteration 8: convergence error = 2.543896185068661 Iteration 9: convergence error = 0.7608542303428294 Iteration 10: convergence error = 0.22725652747476488 Iteration 11: convergence error = 0.06782605687635623 Iteration 12: convergence error = 0.02023422157640198 Iteration 13: convergence error = 0.006034871800238761 Iteration 14: convergence error = 0.0017996481913087337 Iteration 15: convergence error = 0.0005366258346839459 Iteration 16: convergence error = 0.00016000552705008886 Iteration 17: convergence error = 4.770749205817992e-5 Iteration 18: convergence error = 1.4224309097699006e-5 Iteration 19: convergence error = 4.241026999807218e-6 Iteration 20: convergence error = 1.2644757134694373e-6 Iteration 21: convergence error = 3.770069270103704e-7 Iteration 22: convergence error = 1.1226620699744672e-7 Iteration 23: convergence error = 3.255900082876906e-8 Iteration 24: convergence error = 9.3916696641827e-9 Iteration 25: convergence error = 2.697561285458505e-9 Iteration 26: convergence error = 7.73070496506989e-10 Iteration 27: convergence error = 2.2237145458348095e-10 Iteration 28: convergence error = 6.639311322942376e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001795167213795472 Iteration 10: d = 1.8110291483655536e-5 Iteration 20: d = 1.9703248638996532e-7 Iteration 30: d = 2.435014558818747e-9 Iteration 40: d = 3.1076643780795334e-11 Iteration 50: d = 4.017408736307068e-13 Iteration 60: d = 5.225416358858748e-15 Converged after 62 iterations. d = 2.216030008577208e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12282.79269109749 Iteration 2: convergence error = 8326.865726311971 Iteration 3: convergence error = 1951.2353079547947 Iteration 4: convergence error = 480.17102093530616 Iteration 5: convergence error = 122.468003624537 Iteration 6: convergence error = 32.71299242654209 Iteration 7: convergence error = 8.915333631343401 Iteration 8: convergence error = 2.443607328083999 Iteration 9: convergence error = 0.6705890934229046 Iteration 10: convergence error = 0.18405268873152636 Iteration 11: convergence error = 0.05051314673823981 Iteration 12: convergence error = 0.013862517922689221 Iteration 13: convergence error = 0.003804214363299252 Iteration 14: convergence error = 0.001043951185693004 Iteration 15: convergence error = 0.00028647831231864984 Iteration 16: convergence error = 7.861431186029222e-5 Iteration 17: convergence error = 2.157301605620887e-5 Iteration 18: convergence error = 5.919969680689974e-6 Iteration 19: convergence error = 1.6245342067122692e-6 Iteration 20: convergence error = 4.457990598893957e-7 Iteration 21: convergence error = 1.2318469089223072e-7 Iteration 22: convergence error = 3.314585228508804e-8 Iteration 23: convergence error = 8.864617484505288e-9 Iteration 24: convergence error = 2.3694610717939213e-9 Iteration 25: convergence error = 6.350546755129471e-10 Iteration 26: convergence error = 1.6893864085432142e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.2732925824820995e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001795167213795472 Iteration 10: d = 1.8110291483655536e-5 Iteration 20: d = 1.9703248638996532e-7 Iteration 30: d = 2.435014558818747e-9 Iteration 40: d = 3.1076643780795334e-11 Iteration 50: d = 4.017408736307068e-13 Iteration 60: d = 5.225416358858748e-15 Converged after 62 iterations. d = 2.216030008577208e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.97200803211 Iteration 2: convergence error = 5718.104552042529 Iteration 3: convergence error = 2013.316384373793 Iteration 4: convergence error = 894.1454251530131 Iteration 5: convergence error = 410.1152983902107 Iteration 6: convergence error = 193.61028991534658 Iteration 7: convergence error = 91.47016074597605 Iteration 8: convergence error = 43.23196293974752 Iteration 9: convergence error = 20.432069778045843 Iteration 10: convergence error = 9.654142023781333 Iteration 11: convergence error = 4.560307308859137 Iteration 12: convergence error = 2.153625717261548 Iteration 13: convergence error = 1.0168724401341933 Iteration 14: convergence error = 0.48007085768495017 Iteration 15: convergence error = 0.22662327597026888 Iteration 16: convergence error = 0.1068859949259604 Iteration 17: convergence error = 0.04997831666287311 Iteration 18: convergence error = 0.022834942317786044 Iteration 19: convergence error = 0.010394427399660344 Iteration 20: convergence error = 0.004721376958968904 Iteration 21: convergence error = 0.0021418866663225344 Iteration 22: convergence error = 0.0009709764376566454 Iteration 23: convergence error = 0.00043998184855809086 Iteration 24: convergence error = 0.00019931959195673699 Iteration 25: convergence error = 9.028145359479822e-5 Iteration 26: convergence error = 4.088901914656162e-5 Iteration 27: convergence error = 1.8517824173613917e-5 Iteration 28: convergence error = 8.386062745557865e-6 Iteration 29: convergence error = 3.797674253291916e-6 Iteration 30: convergence error = 1.7197667148138862e-6 Iteration 31: convergence error = 7.787893991917372e-7 Iteration 32: convergence error = 3.5266884879092686e-7 Iteration 33: convergence error = 1.5969953892636113e-7 Iteration 34: convergence error = 7.232029020087793e-8 Iteration 35: convergence error = 3.2749539968790486e-8 Iteration 36: convergence error = 1.4832949091214687e-8 Iteration 37: convergence error = 6.71343514113687e-9 Iteration 38: convergence error = 3.041350282728672e-9 Iteration 39: convergence error = 1.3792487152386457e-9 Iteration 40: convergence error = 6.248228601180017e-10 Iteration 41: convergence error = 2.8330759960226715e-10 Iteration 42: convergence error = 1.291482476517558e-10 Iteration 43: convergence error = 5.729816621169448e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001795167213795472 Iteration 10: d = 1.8110291483655536e-5 Iteration 20: d = 1.9703248638996532e-7 Iteration 30: d = 2.435014558818747e-9 Iteration 40: d = 3.1076643780795334e-11 Iteration 50: d = 4.017408736307068e-13 Iteration 60: d = 5.225416358858748e-15 Converged after 62 iterations. d = 2.216030008577208e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.810521132806 Iteration 2: convergence error = 7337.775002208515 Iteration 3: convergence error = 1730.6579082521448 Iteration 4: convergence error = 504.89417077995904 Iteration 5: convergence error = 157.03287258609998 Iteration 6: convergence error = 48.822582769315886 Iteration 7: convergence error = 15.15154947113524 Iteration 8: convergence error = 4.693966135051596 Iteration 9: convergence error = 1.4524484022663273 Iteration 10: convergence error = 0.4490963228158762 Iteration 11: convergence error = 0.13879993622458642 Iteration 12: convergence error = 0.042887461082045775 Iteration 13: convergence error = 0.013249801486836077 Iteration 14: convergence error = 0.004093106607797381 Iteration 15: convergence error = 0.0012643769618989609 Iteration 16: convergence error = 0.0003905607140950451 Iteration 17: convergence error = 0.00012064071779605001 Iteration 18: convergence error = 3.726451768670813e-5 Iteration 19: convergence error = 1.151051401393488e-5 Iteration 20: convergence error = 3.5554462556319777e-6 Iteration 21: convergence error = 1.098218490369618e-6 Iteration 22: convergence error = 3.3905917007359676e-7 Iteration 23: convergence error = 1.0352368917665444e-7 Iteration 24: convergence error = 3.083187039010227e-8 Iteration 25: convergence error = 9.14405973162502e-9 Iteration 26: convergence error = 2.7134774427395314e-9 Iteration 27: convergence error = 8.080860425252467e-10 Iteration 28: convergence error = 2.3646862246096134e-10 Iteration 29: convergence error = 7.139533408917487e-11 Iteration 30: convergence error = 2.546585164964199e-11 Iteration 31: convergence error = 6.821210263296962e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001795167213795472 Iteration 10: d = 1.8110291483655536e-5 Iteration 20: d = 1.9703248638996532e-7 Iteration 30: d = 2.435014558818747e-9 Iteration 40: d = 3.1076643780795334e-11 Iteration 50: d = 4.017408736307068e-13 Iteration 60: d = 5.225416358858748e-15 Converged after 62 iterations. d = 2.216030008577208e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.756144081587 Iteration 2: convergence error = 5512.034957145026 Iteration 3: convergence error = 935.7557803872537 Iteration 4: convergence error = 170.3422402129204 Iteration 5: convergence error = 30.91768008935037 Iteration 6: convergence error = 5.627006561825283 Iteration 7: convergence error = 1.0276079066984494 Iteration 8: convergence error = 0.18815813627270472 Iteration 9: convergence error = 0.034410405757625995 Iteration 10: convergence error = 0.006289160780852399 Iteration 11: convergence error = 0.001149109600646625 Iteration 12: convergence error = 0.00020992347845094628 Iteration 13: convergence error = 3.834641347566503e-5 Iteration 14: convergence error = 7.004360213613836e-6 Iteration 15: convergence error = 1.2793884707207326e-6 Iteration 16: convergence error = 2.3370284907286987e-7 Iteration 17: convergence error = 4.267803888069466e-8 Iteration 18: convergence error = 7.787093636579812e-9 Iteration 19: convergence error = 1.4347278920467943e-9 Iteration 20: convergence error = 2.6193447411060333e-10 Iteration 21: convergence error = 4.547473508864641e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001795167213795472 Iteration 10: d = 1.8110291483655536e-5 Iteration 20: d = 1.9703248638996532e-7 Iteration 30: d = 2.435014558818747e-9 Iteration 40: d = 3.1076643780795334e-11 Iteration 50: d = 4.017408736307068e-13 Iteration 60: d = 5.225416358858748e-15 Converged after 62 iterations. d = 2.216030008577208e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4925059992383 Iteration 2: convergence error = 2712.1671406300406 Iteration 3: convergence error = 204.5194111211489 Iteration 4: convergence error = 19.362139989464332 Iteration 5: convergence error = 1.6016230569172123 Iteration 6: convergence error = 0.13052521815764873 Iteration 7: convergence error = 0.010650107950600549 Iteration 8: convergence error = 0.0008709813204661445 Iteration 9: convergence error = 7.1338180886377e-5 Iteration 10: convergence error = 5.8479751340071265e-6 Iteration 11: convergence error = 4.796081068525145e-7 Iteration 12: convergence error = 3.934375490841405e-8 Iteration 13: convergence error = 3.2285646190779916e-9 Iteration 14: convergence error = 2.6401780489357006e-10 Iteration 15: convergence error = 2.205524651799351e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012709643270606811 Iteration 10: d = 1.4655670189242579e-5 Iteration 20: d = 1.9416323924604646e-7 Iteration 30: d = 2.732857419086148e-9 Iteration 40: d = 3.8735071529844995e-11 Iteration 50: d = 5.497388374691451e-13 Iteration 60: d = 7.799477709814111e-15 Converged after 63 iterations. d = 2.1573896098056166e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.316790874166 Iteration 2: convergence error = 3603.2150947721525 Iteration 3: convergence error = 592.7642914187059 Iteration 4: convergence error = 105.11467438023192 Iteration 5: convergence error = 18.70398123345035 Iteration 6: convergence error = 3.2978963681903224 Iteration 7: convergence error = 0.5793109936169003 Iteration 8: convergence error = 0.10160298896084896 Iteration 9: convergence error = 0.017808170804983092 Iteration 10: convergence error = 0.003120438911309975 Iteration 11: convergence error = 0.0005467186674650293 Iteration 12: convergence error = 9.578381650499068e-5 Iteration 13: convergence error = 1.678077637734532e-5 Iteration 14: convergence error = 2.9398759124887874e-6 Iteration 15: convergence error = 5.150429842615267e-7 Iteration 16: convergence error = 9.022596714203246e-8 Iteration 17: convergence error = 1.581952346896287e-8 Iteration 18: convergence error = 2.7487203624332324e-9 Iteration 19: convergence error = 4.90899765281938e-10 Iteration 20: convergence error = 8.43556335894391e-11 Iteration 21: convergence error = 1.3642420526593924e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m01.6s Testing RayTraceHeatTransfer tests passed Testing completed after 506.24s PkgEval succeeded after 550.51s