Package evaluation to test GaussianMixtures on Julia 1.14.0-DEV.1455 (9d9110fde9*) started at 2026-01-01T17:50:10.089 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 10.0s ################################################################################ # Installation # Installing GaussianMixtures... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [cc18c42c] + GaussianMixtures v0.3.13 Updating `~/.julia/environments/v1.14/Manifest.toml` [1520ce14] + AbstractTrees v0.4.5 [66dad0bd] + AliasTables v1.1.3 [7d9fca2a] + Arpack v0.5.4 [aaaa29a8] + Clustering v0.15.8 [34da2185] + Compat v4.18.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.122 [ffbed154] + DocStringExtensions v0.9.5 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.15.0 [cc18c42c] + GaussianMixtures v0.3.13 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.6 ⌅ [033835bb] + JLD2 v0.5.15 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [b8a86587] + NearestNeighbors v0.4.26 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.37 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.5.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 [2913bbd2] + StatsBase v0.34.9 [4c63d2b9] + StatsFuns v1.5.2 [3bb67fe8] + TranscodingStreams v0.11.3 ⌅ [68821587] + Arpack_jll v3.5.2+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.39s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 14.28s ################################################################################ # Testing # Testing GaussianMixtures Status `/tmp/jl_ixc0Qe/Project.toml` [7d9fca2a] Arpack v0.5.4 [aaaa29a8] Clustering v0.15.8 [34da2185] Compat v4.18.1 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.122 [5789e2e9] FileIO v1.17.1 [cc18c42c] GaussianMixtures v0.3.13 ⌅ [033835bb] JLD2 v0.5.15 [90014a1f] PDMats v0.11.37 ⌅ [ce6b1742] RDatasets v0.7.7 [6e75b9c4] ScikitLearnBase v0.5.0 [276daf66] SpecialFunctions v2.6.1 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.9 [8ba89e20] Distributed v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_ixc0Qe/Manifest.toml` [1520ce14] AbstractTrees v0.4.5 [66dad0bd] AliasTables v1.1.3 [7d9fca2a] Arpack v0.5.4 [336ed68f] CSV v0.10.15 ⌅ [324d7699] CategoricalArrays v0.10.8 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [34da2185] Compat v4.18.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.8.1 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.122 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.1 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.15.0 [cc18c42c] GaussianMixtures v0.3.13 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [842dd82b] InlineStrings v1.4.5 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.6 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.5.15 [692b3bcd] JLLWrappers v1.7.1 [b964fa9f] LaTeXStrings v1.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [e1d29d7a] Missings v1.2.0 [78c3b35d] Mocking v0.8.1 [b8a86587] NearestNeighbors v0.4.26 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.37 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [08abe8d2] PrettyTables v3.1.2 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 ⌅ [df47a6cb] RData v0.8.3 ⌅ [ce6b1742] RDatasets v0.7.7 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.9 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.9 [4c63d2b9] StatsFuns v1.5.2 [892a3eda] StringManipulation v0.4.2 [dc5dba14] TZJData v1.5.0+2025b [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [f269a46b] TimeZones v1.22.2 [3bb67fe8] TranscodingStreams v0.11.3 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 ⌅ [68821587] Arpack_jll v3.5.2+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... (100000, -4.8078820225487575e6, [24528.034315483612, 75471.96568451638], [-27728.855225542728 10789.264514197424 -1828.954154642531; 28119.139296379846 -10786.358199885963 1869.3238134100611], [[37947.96136582599 -6389.503129540468 2926.1151583909377; -6389.503129540468 27802.23619636026 865.7611578406137; 2926.115158390938 865.7611578406137 22501.071280828055], [61620.23036081015 6390.193002744738 -2693.0020625083694; 6390.193002744738 71999.41405297701 -434.9004485060437; -2693.0020625083694 -434.9004485060438 77718.18054149138]]) Test Summary: | Pass Total Time data.jl | 8 8 4m13.3s [ Info: Initializing GMM, 2 Gaussians diag covariance 1 dimensions using 272 data points K-means converged with 3 iterations (objv = 8855.79069767458) ┌ Info: K-means with 272 data points using 3 iterations └ 68.0 data points per parameter [ Info: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points K-means converged with 4 iterations (objv = 1106.6856860227313) ┌ Info: K-means with 272 data points using 4 iterations └ 11.3 data points per parameter ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:698 [inlined] └ @ Core ./broadcast.jl:698 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:230 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:230 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:698 [inlined] └ @ Core ./broadcast.jl:698 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:698 [inlined] └ @ Core ./broadcast.jl:698 History[Thu Jan 1 17:58:04 2026: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points , Thu Jan 1 17:58:05 2026: K-means with 272 data points using 4 iterations 11.3 data points per parameter , Thu Jan 1 17:58:05 2026: EM with 272 data points 0 iterations avll -2.087381 5.8 data points per parameter , Thu Jan 1 17:58:08 2026: GMM converted to Variational GMM , Thu Jan 1 17:58:17 2026: iteration 1, lowerbound -3.785827 , Thu Jan 1 17:58:17 2026: iteration 2, lowerbound -3.687223 , Thu Jan 1 17:58:17 2026: iteration 3, lowerbound -3.577413 , Thu Jan 1 17:58:17 2026: iteration 4, lowerbound -3.422995 , Thu Jan 1 17:58:17 2026: iteration 5, lowerbound -3.222689 , Thu Jan 1 17:58:17 2026: iteration 6, lowerbound -2.998199 , Thu Jan 1 17:58:18 2026: dropping number of Gaussions to 7 , Thu Jan 1 17:58:18 2026: iteration 7, lowerbound -2.777937 , Thu Jan 1 17:58:18 2026: iteration 8, lowerbound -2.592920 , Thu Jan 1 17:58:18 2026: dropping number of Gaussions to 6 , Thu Jan 1 17:58:18 2026: iteration 9, lowerbound -2.454842 , Thu Jan 1 17:58:18 2026: iteration 10, lowerbound -2.368631 , Thu Jan 1 17:58:18 2026: iteration 11, lowerbound -2.338602 , Thu Jan 1 17:58:18 2026: dropping number of Gaussions to 3 , Thu Jan 1 17:58:18 2026: iteration 12, lowerbound -2.318383 , Thu Jan 1 17:58:18 2026: dropping number of Gaussions to 2 , Thu Jan 1 17:58:18 2026: iteration 13, lowerbound -2.302954 , Thu Jan 1 17:58:18 2026: iteration 14, lowerbound -2.299267 , Thu Jan 1 17:58:18 2026: iteration 15, lowerbound -2.299259 , Thu Jan 1 17:58:18 2026: iteration 16, lowerbound -2.299256 , Thu Jan 1 17:58:18 2026: iteration 17, lowerbound -2.299254 , Thu Jan 1 17:58:18 2026: iteration 18, lowerbound -2.299254 , Thu Jan 1 17:58:18 2026: iteration 19, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 20, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 21, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 22, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 23, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 24, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 25, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 26, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 27, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 28, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 29, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 30, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 31, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 32, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 33, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 34, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 35, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 36, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 37, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 38, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 39, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 40, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: iteration 41, lowerbound -2.299253 , Thu Jan 1 17:58:18 2026: 42 variational Bayes EM-like iterations using 272 data points, final lowerbound -2.299253 ] α = [95.95490777398398, 178.04509222601598] β = [95.95490777398398, 178.04509222601598] m = [2.0002292577753518 53.85198717246119; 4.250300733269895 79.2868669443616] ν = [97.95490777398398, 180.04509222601598] W = LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}[[0.37587636119486834 -0.00895312382734637; 0.0 0.012748664777409468], [0.18404155547484552 -0.007644049042327526; 0.0 0.00858170516633324]] Test Summary: | Pass Total Time bayes.jl | 3 3 1m00.2s Kind: diag, size256 nx: 100000 sum(zeroth order stats): 99999.99999999999 avll from stats: -0.9848835047296335 avll from llpg: -0.9848835047296335 avll direct: -0.9848835047296335 sum posterior: 100000.0 Kind: full, size16 nx: 100000 sum(zeroth order stats): 100000.0 avll from stats: -1.0037468539621472 avll from llpg: -1.0037468539621472 avll direct: -1.0037468539621472 sum posterior: 100000.0 kind diag, method split ┌ Info: 0: avll = └ tll[1] = -1.411613571474501 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.411706609094281 │ -1.4116235740855663 │ -1.4109510739322957 │ -1.4032579744519305 │ ⋮ │ -1.3726742205828244 │ -1.372659617462684 └ -1.3726384475655249 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.3727494395733575 │ -1.372547231335119 │ -1.3713986123714672 │ -1.3625693455936596 │ ⋮ │ -1.3198970694159116 │ -1.3198970250869373 └ -1.3198969867459212 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.320109239891651 │ -1.3199264781925684 │ -1.3194786340623574 │ -1.3149205267737178 │ ⋮ │ -1.2501400708739459 │ -1.2501370666172378 └ -1.250135800890329 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 1 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 8 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 9 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 8 │ 9 │ 10 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 2 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.2504520049206866 │ -1.2501317670639955 │ -1.2491313195458489 │ -1.2366079627768691 │ ⋮ │ -1.1684196177888693 │ -1.1576579916446033 └ -1.1713702498811656 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 19 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 17 │ 18 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 19 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 19 │ 20 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 19 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 19 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 19 │ 20 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 19 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 19 │ 20 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 19 │ 20 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 18 │ 19 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 15 │ 16 │ 17 │ 18 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.1592614096520157 │ -1.1491874391127035 │ -1.1540205035762825 │ -1.1335356277189135 │ ⋮ │ -1.0584795664769353 │ -1.074306853261265 └ -1.057250767973776 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.411613571474501 │ -1.411706609094281 │ -1.4116235740855663 │ -1.4109510739322957 │ ⋮ │ -1.0584795664769353 │ -1.074306853261265 └ -1.057250767973776 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 7 │ 15 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 3 │ 4 │ ⋮ │ 26 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind diag, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 591443.4997464034) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 12 │ 17 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 14 │ 18 │ 23 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 1 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 9 │ 12 │ 15 │ 16 │ 17 │ 22 │ 24 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 14 │ 18 │ 20 │ 23 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 17 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 9 │ 12 │ 14 │ 27 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 15 │ 18 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 17 │ 20 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 14 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 12 │ 16 │ 18 │ 27 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 15 │ 17 │ 20 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 18 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 12 │ 15 │ 17 │ 23 │ 27 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 14 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 16 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 9 │ 17 │ 22 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 12 │ 14 │ 15 │ 18 │ 23 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 10 │ 17 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 9 │ 12 │ 14 │ 16 │ 22 │ 23 │ 24 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 18 │ 20 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 15 │ 17 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 10 │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 12 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 17 │ 20 │ 22 │ 23 │ 27 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 14 │ 15 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 9 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 10 │ 12 │ 17 │ 18 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 14 │ 20 │ 23 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 9 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 1 │ 10 │ 15 │ 17 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 12 │ 14 │ 18 │ 23 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 9 │ 20 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 16 │ 17 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 14 │ 15 │ 22 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 9 │ 18 │ 20 │ 23 │ 24 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 10 │ 12 │ 17 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 14 │ 15 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 18 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 17 │ 20 │ 23 │ 24 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 12 │ 14 │ 22 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 10 │ 15 │ 16 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 9 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 9 │ 12 │ 14 │ ⋮ │ 24 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 9 │ 10 │ 16 │ 17 │ 18 │ 23 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 9 │ 12 │ 14 │ ⋮ │ 24 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 9 │ 17 │ 18 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 9 │ 12 │ 14 │ 15 │ ⋮ │ 24 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 1 │ 9 │ 10 │ 17 │ 18 │ 23 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 9 │ 12 │ 14 │ 17 │ ⋮ │ 24 │ 27 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 1 │ 9 │ 15 │ 16 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 9 │ 14 │ 17 │ 18 │ ⋮ │ 27 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind full, method split ┌ Info: 0: avll = └ tll[1] = -1.4177817441054021 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.4178082485940497 │ -1.4177563036427316 │ -1.417716778031594 │ -1.4176440097165666 │ ⋮ │ -1.4120613911253954 │ -1.4120613491045175 └ -1.4120613163443223 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.4120859377155377 │ -1.412030515935595 │ -1.411984876417087 │ -1.411907193206387 │ ⋮ │ -1.405030120139789 │ -1.404985376509415 └ -1.4049476734571922 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.404954759100547 │ -1.4048086961296171 │ -1.404628935281529 │ -1.4038054220521259 │ ⋮ │ -1.344798403867765 │ -1.344792512261593 └ -1.3447867799537176 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.344840474251609 │ -1.3446377058842405 │ -1.3444246459736304 │ -1.3439438908605854 │ ⋮ │ -1.3250101957341391 │ -1.3250004018543105 └ -1.3249899474371067 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.325043406408397 │ -1.3247419099159257 │ -1.3243986085268944 │ -1.3234849295434115 │ ⋮ │ -1.286494266774871 │ -1.2864725305283269 └ -1.2864539207781014 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.4177817441054021 │ -1.4178082485940497 │ -1.4177563036427316 │ -1.417716778031594 │ ⋮ │ -1.286494266774871 │ -1.2864725305283269 └ -1.2864539207781014 kind full, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 673986.4635898861) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter Test Summary: | Broken Total Time train.jl | 1 1 13m03.8s [ Info: Initializing GMM, 2 Gaussians diag covariance 2 dimensions using 900 data points K-means converged with 2 iterations (objv = 7869.867369234184) ┌ Info: K-means with 900 data points using 2 iterations └ 150.0 data points per parameter Test Summary: | Pass Total Time ScikitLearnBase | 1 1 1.9s Testing GaussianMixtures tests passed Testing completed after 1236.12s PkgEval succeeded after 1287.53s