Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1441 (812f3beb0a*) started at 2025-12-30T15:31:40.917 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.95s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.16 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.35s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 10.73s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_RTYx3N/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.16 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_RTYx3N/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.16 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:20 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013069031364516628 Iteration 10: d = 1.2903204051274033e-5 Iteration 20: d = 1.9935390541346256e-7 Iteration 30: d = 3.4120910061816484e-9 Iteration 40: d = 5.989926003953888e-11 Iteration 50: d = 1.0640307859036993e-12 Iteration 60: d = 1.9010848027522885e-14 Converged after 66 iterations. d = 1.6733834726882015e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012970586382922559 Iteration 10: d = 9.719340950151097e-6 Iteration 20: d = 1.3828375793653375e-7 Iteration 30: d = 2.3369147604575612e-9 Iteration 40: d = 4.089900887870853e-11 Iteration 50: d = 7.256370607171011e-13 Iteration 60: d = 1.296431303919231e-14 Converged after 65 iterations. d = 1.7251554941019355e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012514254651655916 Iteration 10: d = 8.820552834908716e-6 Iteration 20: d = 1.2645563256619885e-7 Iteration 30: d = 2.129789567290345e-9 Iteration 40: d = 3.6668422273594054e-11 Iteration 50: d = 6.347189415613892e-13 Iteration 60: d = 1.1027981657108213e-14 Converged after 64 iterations. d = 2.1963665659141873e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012158253621675013 Iteration 10: d = 9.232940153681147e-6 Iteration 20: d = 1.5392365195856286e-7 Iteration 30: d = 2.85049692446545e-9 Iteration 40: d = 5.249942263835163e-11 Iteration 50: d = 9.625689558359083e-13 Iteration 60: d = 1.7587198613640677e-14 Converged after 66 iterations. d = 1.5697281077521565e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013182427493631343 Iteration 10: d = 9.074800299947589e-6 Iteration 20: d = 1.0210146841835258e-7 Iteration 30: d = 1.4072745979677101e-9 Iteration 40: d = 2.0641229213814454e-11 Iteration 50: d = 3.123713540260389e-13 Iteration 60: d = 4.824382466906777e-15 Converged after 62 iterations. d = 2.139424118595746e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012908268232813258 Iteration 10: d = 1.3454880039765879e-5 Iteration 20: d = 2.003924261296056e-7 Iteration 30: d = 3.11976411334063e-9 Iteration 40: d = 4.8570067988654404e-11 Iteration 50: d = 7.558180489744765e-13 Iteration 60: d = 1.1745441412658006e-14 Converged after 64 iterations. d = 2.1969036155241243e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001368927405966006 Iteration 10: d = 1.4869033727954075e-5 Iteration 20: d = 2.2803627082116225e-7 Iteration 30: d = 3.606120546363624e-9 Iteration 40: d = 5.680687783032217e-11 Iteration 50: d = 8.924856594087282e-13 Iteration 60: d = 1.4024325769106595e-14 Converged after 65 iterations. d = 1.7264932613012193e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001670497502978092 Iteration 10: d = 1.762308033542768e-5 Iteration 20: d = 2.5203172587603474e-7 Iteration 30: d = 3.895147320385173e-9 Iteration 40: d = 6.073548356034645e-11 Iteration 50: d = 9.488802524872823e-13 Iteration 60: d = 1.480601481031606e-14 Converged after 65 iterations. d = 1.869902263941543e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013639353464691957 Iteration 10: d = 8.076352721450789e-6 Iteration 20: d = 8.787204508708166e-8 Iteration 30: d = 1.2968341140317555e-9 Iteration 40: d = 1.9976269551289308e-11 Iteration 50: d = 3.1020890244358687e-13 Iteration 60: d = 4.806561027672092e-15 Converged after 62 iterations. d = 2.091684010025256e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013683420142087189 Iteration 10: d = 1.4612029810530617e-5 Iteration 20: d = 1.9991211886712775e-7 Iteration 30: d = 2.997815098769236e-9 Iteration 40: d = 4.582055188809122e-11 Iteration 50: d = 7.051367945294511e-13 Iteration 60: d = 1.0899098757110598e-14 Converged after 64 iterations. d = 2.0408281607109502e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004824786708802904 Iteration 10: d = 5.794828546953876e-5 Iteration 20: d = 7.043549234809629e-7 Iteration 30: d = 9.5231900031761e-9 Iteration 40: d = 1.3298683223330927e-10 Iteration 50: d = 1.8832157496711267e-12 Iteration 60: d = 2.6821931414825482e-14 Converged after 66 iterations. d = 2.08455357299991e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0032868287669462534 Iteration 10: d = 4.601269948230874e-5 Iteration 20: d = 6.820873734282018e-7 Iteration 30: d = 1.042852349066051e-8 Iteration 40: d = 1.59938828010112e-10 Iteration 50: d = 2.456000571877177e-12 Iteration 60: d = 3.7774998923552135e-14 Converged after 67 iterations. d = 2.043919175009029e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0028792873491535146 Iteration 10: d = 2.9180030025555256e-5 Iteration 20: d = 4.540382349321452e-7 Iteration 30: d = 7.6339841173073e-9 Iteration 40: d = 1.3024474875589202e-10 Iteration 50: d = 2.2392814156851403e-12 Iteration 60: d = 3.869399741444243e-14 Converged after 68 iterations. d = 1.5567959847372909e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018500224669591903 Iteration 10: d = 2.5947383355334602e-5 Iteration 20: d = 4.628039021662387e-7 Iteration 30: d = 8.393028491533972e-9 Iteration 40: d = 1.519938729398312e-10 Iteration 50: d = 2.7512720242383757e-12 Iteration 60: d = 4.980272420561622e-14 Converged after 68 iterations. d = 2.0046798529057073e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013182427493631343 Iteration 10: d = 9.074800299947589e-6 Iteration 20: d = 1.0210146841835258e-7 Iteration 30: d = 1.4072745979677101e-9 Iteration 40: d = 2.0641229213814454e-11 Iteration 50: d = 3.123713540260389e-13 Iteration 60: d = 4.824382466906777e-15 Converged after 62 iterations. d = 2.139424118595746e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495322469365377 Iteration 10: d = 7.803711545897193e-6 Iteration 20: d = 4.281877698192121e-8 Iteration 30: d = 3.7141739947143065e-10 Iteration 40: d = 4.563807640763491e-12 Iteration 50: d = 6.256749757195042e-14 Converged after 58 iterations. d = 2.0731360895836498e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012020779065049056 Iteration 10: d = 9.151573245694791e-6 Iteration 20: d = 9.918448723935783e-8 Iteration 30: d = 1.3547665314052958e-9 Iteration 40: d = 1.9099206509099948e-11 Iteration 50: d = 2.7036221347211936e-13 Iteration 60: d = 3.812190116567643e-15 Converged after 62 iterations. d = 1.640806909111406e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.677853914172 Iteration 2: convergence error = 4830.160227001129 Iteration 3: convergence error = 1095.8325006520367 Iteration 4: convergence error = 320.2784703753787 Iteration 5: convergence error = 94.98242763629128 Iteration 6: convergence error = 28.307018173847837 Iteration 7: convergence error = 8.461222529827182 Iteration 8: convergence error = 2.5343817265697908 Iteration 9: convergence error = 0.7573188758576634 Iteration 10: convergence error = 0.22599073130527358 Iteration 11: convergence error = 0.06738506512169806 Iteration 12: convergence error = 0.020083719676676992 Iteration 13: convergence error = 0.005984322797303321 Iteration 14: convergence error = 0.001782884416570596 Iteration 15: convergence error = 0.0005311233071552124 Iteration 16: convergence error = 0.00015821468218746304 Iteration 17: convergence error = 4.712877716883668e-5 Iteration 18: convergence error = 1.4038433164387243e-5 Iteration 19: convergence error = 4.18164927395992e-6 Iteration 20: convergence error = 1.2455802789190784e-6 Iteration 21: convergence error = 3.7101676753081847e-7 Iteration 22: convergence error = 1.103753675124608e-7 Iteration 23: convergence error = 3.19680566462921e-8 Iteration 24: convergence error = 9.208861229126342e-9 Iteration 25: convergence error = 2.638444129843265e-9 Iteration 26: convergence error = 7.617018127348274e-10 Iteration 27: convergence error = 2.1577761799562722e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495322469365377 Iteration 10: d = 7.803711545897193e-6 Iteration 20: d = 4.281877698192121e-8 Iteration 30: d = 3.7141739947143065e-10 Iteration 40: d = 4.563807640763491e-12 Iteration 50: d = 6.256749757195042e-14 Converged after 58 iterations. d = 2.0731360895836498e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.825319527194 Iteration 2: convergence error = 4821.833957574522 Iteration 3: convergence error = 1091.0344753995041 Iteration 4: convergence error = 320.0512317207506 Iteration 5: convergence error = 94.96764027462746 Iteration 6: convergence error = 28.46360517750145 Iteration 7: convergence error = 8.567997949061237 Iteration 8: convergence error = 2.5687877221732833 Iteration 9: convergence error = 0.7683250801344457 Iteration 10: convergence error = 0.22949220360624167 Iteration 11: convergence error = 0.06849408618745656 Iteration 12: convergence error = 0.020433675663753093 Iteration 13: convergence error = 0.006094398528830425 Iteration 14: convergence error = 0.0018174099818679679 Iteration 15: convergence error = 0.0005419250423983613 Iteration 16: convergence error = 0.0001615864530322142 Iteration 17: convergence error = 4.8179113491642056e-5 Iteration 18: convergence error = 1.4365002016347717e-5 Iteration 19: convergence error = 4.283006546756951e-6 Iteration 20: convergence error = 1.2769937711709645e-6 Iteration 21: convergence error = 3.807426764979027e-7 Iteration 22: convergence error = 1.1338443073327653e-7 Iteration 23: convergence error = 3.289892447355669e-8 Iteration 24: convergence error = 9.484438123763539e-9 Iteration 25: convergence error = 2.7330315788276494e-9 Iteration 26: convergence error = 7.819380698492751e-10 Iteration 27: convergence error = 2.2669155441690236e-10 Iteration 28: convergence error = 6.411937647499144e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 7:20:49 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:39 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:23 Bin 1 ray tracing: 26%|███████▋ | ETA: 0:00:17 Bin 1 ray tracing: 34%|██████████▏ | ETA: 0:00:13 Bin 1 ray tracing: 42%|████████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 51%|███████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 76%|███████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:06 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 48%|██████████████▌ | ETA: 0:00:05 Bin 3 ray tracing: 58%|█████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 4 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 4 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 4 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:08 Bin 4 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 4 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 5 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:09 Bin 6 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 7 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 7 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 8 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 58%|█████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:09 Bin 9 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|███ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 39%|███████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:06 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▋| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 27%|████████▊ | ETA: 0:00:03 Bin 2 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 2 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 4 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 4 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 5 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 27%|████████▊ | ETA: 0:00:03 Bin 6 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 6 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 27%|████████▊ | ETA: 0:00:03 Bin 8 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 8 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 80%|█████████████████████████▋ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495322469365377 Iteration 10: d = 7.803711545897193e-6 Iteration 20: d = 4.281877698192121e-8 Iteration 30: d = 3.7141739947143065e-10 Iteration 40: d = 4.563807640763491e-12 Iteration 50: d = 6.256749757195042e-14 Converged after 58 iterations. d = 2.0731360895836498e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001223569352888815 Iteration 10: d = 9.401159864623132e-6 Iteration 20: d = 1.0242648395430972e-7 Iteration 30: d = 1.401730797716557e-9 Iteration 40: d = 1.9782968596140666e-11 Iteration 50: d = 2.8029113461431804e-13 Iteration 60: d = 3.951783374052142e-15 Converged after 62 iterations. d = 1.7148060122007258e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016098737497740783 Iteration 10: d = 2.7723886029839174e-5 Iteration 20: d = 3.78454530940593e-7 Iteration 30: d = 5.267319071144477e-9 Iteration 40: d = 7.363854355257362e-11 Iteration 50: d = 1.031955555575983e-12 Iteration 60: d = 1.4474311370442266e-14 Converged after 65 iterations. d = 1.720460433330452e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015504407419630367 Iteration 10: d = 1.4850130957828449e-5 Iteration 20: d = 1.6802464185675026e-7 Iteration 30: d = 2.1260051379680685e-9 Iteration 40: d = 2.7367036385105153e-11 Iteration 50: d = 3.5421154607551e-13 Iteration 60: d = 4.611555804956533e-15 Converged after 62 iterations. d = 1.9172764112647145e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011594954769402956 Iteration 10: d = 1.016518956444697e-5 Iteration 20: d = 1.1756452207323806e-7 Iteration 30: d = 1.5282588760023687e-9 Iteration 40: d = 2.0383168203456915e-11 Iteration 50: d = 2.752084903036762e-13 Iteration 60: d = 3.7502892723893435e-15 Converged after 62 iterations. d = 1.5636592892785273e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013600694176351448 Iteration 10: d = 1.4846489282668422e-5 Iteration 20: d = 1.6853962680128178e-7 Iteration 30: d = 2.2146020877461857e-9 Iteration 40: d = 2.999927932941984e-11 Iteration 50: d = 4.089777961114518e-13 Iteration 60: d = 5.570668071120836e-15 Converged after 63 iterations. d = 1.5216747488879381e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017924710219225986 Iteration 10: d = 1.723770958494163e-5 Iteration 20: d = 1.7787867671071498e-7 Iteration 30: d = 2.1875818346353122e-9 Iteration 40: d = 2.9022251837012414e-11 Iteration 50: d = 3.9979324658569203e-13 Iteration 60: d = 5.576149379947758e-15 Converged after 63 iterations. d = 1.5476930268758424e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001096996754096707 Iteration 10: d = 6.305677809914121e-6 Iteration 20: d = 5.791055468388794e-8 Iteration 30: d = 7.266672668206029e-10 Iteration 40: d = 9.688285848803605e-12 Iteration 50: d = 1.3142894788783823e-13 Converged after 60 iterations. d = 1.7895723564013475e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015761483544206368 Iteration 10: d = 1.0989873628312936e-5 Iteration 20: d = 1.0150905810351093e-7 Iteration 30: d = 1.3229968781291915e-9 Iteration 40: d = 1.84451900185541e-11 Iteration 50: d = 2.599339127127175e-13 Iteration 60: d = 3.660625176584019e-15 Converged after 62 iterations. d = 1.5674944558490012e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014949448510370275 Iteration 10: d = 1.500477785149596e-5 Iteration 20: d = 1.5596285834611716e-7 Iteration 30: d = 1.946013605834982e-9 Iteration 40: d = 2.5574909277525967e-11 Iteration 50: d = 3.421149360158076e-13 Iteration 60: d = 4.6316993574640205e-15 Converged after 62 iterations. d = 1.9211296706035517e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8653.215452812774 Iteration 2: convergence error = 4831.91713549214 Iteration 3: convergence error = 1100.1517635572252 Iteration 4: convergence error = 323.1863982096511 Iteration 5: convergence error = 96.455516879083 Iteration 6: convergence error = 28.897999558682613 Iteration 7: convergence error = 8.660350813340756 Iteration 8: convergence error = 2.593774047914394 Iteration 9: convergence error = 0.7764172329407302 Iteration 10: convergence error = 0.23233774672394247 Iteration 11: convergence error = 0.06951408202212406 Iteration 12: convergence error = 0.020796543504047804 Iteration 13: convergence error = 0.006221475004849708 Iteration 14: convergence error = 0.0018611791838338831 Iteration 15: convergence error = 0.0005567749615238426 Iteration 16: convergence error = 0.00016655962099321187 Iteration 17: convergence error = 4.982635300621041e-5 Iteration 18: convergence error = 1.4905556781741325e-5 Iteration 19: convergence error = 4.458997636902495e-6 Iteration 20: convergence error = 1.3339074484974844e-6 Iteration 21: convergence error = 3.990367076767143e-7 Iteration 22: convergence error = 1.1920906217710581e-7 Iteration 23: convergence error = 3.455647856753785e-8 Iteration 24: convergence error = 9.956465873983689e-9 Iteration 25: convergence error = 2.864908310584724e-9 Iteration 26: convergence error = 8.235474524553865e-10 Iteration 27: convergence error = 2.369233698118478e-10 Iteration 28: convergence error = 7.003109203651547e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3807265738104 K, F = -7432.332479096789, relative_change = 0.03261927342618959 Iter 2: T = 936.8387726419811 K, F = -6300.081365297267, relative_change = 0.031571803213405206 Iter 3: T = 908.3426303061415 K, F = -5338.802082335352, relative_change = 0.030417338786563684 Iter 5: T = 857.3482856521279 K, F = -3830.166692299204, relative_change = 0.027793736335152943 Iter 10: T = 762.6168882892462 K, F = -1658.2460261057631, relative_change = 0.01985547305612558 Iter 15: T = 707.2556846563988 K, F = -709.8637203288342, relative_change = 0.011868678088784838 Iter 20: T = 678.8303585502607 K, F = -300.8247360639365, relative_change = 0.006066780192385468 Iter 25: T = 665.5890592174768 K, F = -126.63185473691999, relative_change = 0.0027996381915294704 Iter 30: T = 659.7630755579861 K, F = -53.115616489014215, relative_change = 0.001224033323301318 Iter 35: T = 657.2713083876839 K, F = -22.24203718341712, relative_change = 0.0005218412341725181 Iter 40: T = 656.2191567526925 K, F = -9.306943267639923, relative_change = 0.0002200279614354896 Iter 45: T = 655.777343404082 K, F = -3.8931655191629604, relative_change = 9.233476953866695e-5 Iter 50: T = 655.5922562541089 K, F = -1.6283245487609586, relative_change = 3.867113035229482e-5 Iter 55: T = 655.5147952418669 K, F = -0.6810121311925132, relative_change = 1.6182478362297848e-5 Iter 60: T = 655.482390427286 K, F = -0.2848121936991894, relative_change = 6.769412474243659e-6 Iter 65: T = 655.4688366504022 K, F = -0.1191126982650309, relative_change = 2.8313477656428678e-6 Iter 70: T = 655.4631680022699 K, F = -0.04981449940247029, relative_change = 1.1841556868121134e-6 Iter 75: T = 655.4607972540125 K, F = -0.020833044178934113, relative_change = 4.952371870092149e-7 Iter 80: T = 655.4598057696991 K, F = -0.008712632353669758, relative_change = 2.071157040588071e-7 Iter 85: T = 655.4593911175303 K, F = -0.003643727683790121, relative_change = 8.661854041233924e-8 Iter 90: T = 655.4592177047638 K, F = -0.001523850568661056, relative_change = 3.622495690666573e-8 Iter 95: T = 655.4591451814252 K, F = -0.0006372925311693423, relative_change = 1.5149718164392524e-8 Iter 100: T = 655.4591148512905 K, F = -0.0002665233510452114, relative_change = 6.335794544312877e-9 Iter 105: T = 655.4591021668643 K, F = -0.00011146324772515204, relative_change = 2.6497051726452485e-9 Iter 110: T = 655.4590968620856 K, F = -4.6615261581839373e-5, relative_change = 1.1081383955503014e-9 Iter 115: T = 655.4590946435637 K, F = -1.9495058520668795e-5, relative_change = 4.634367047464329e-10 Iter 120: T = 655.4590937157515 K, F = -8.153066601956915e-6, relative_change = 1.9381477316660768e-10 Iter 125: T = 655.4590933277293 K, F = -3.4097102762364884e-6, relative_change = 8.105566382305714e-11 Iter 130: T = 655.4590931654537 K, F = -1.4259817104345096e-6, relative_change = 3.38984502820062e-11 Iter 135: T = 655.4590930975882 K, F = -5.963624239435639e-7, relative_change = 1.4176733011472566e-11 Iter 140: T = 655.4590930692059 K, F = -2.4940481252455626e-7, relative_change = 5.9288534919506115e-12 Iter 145: T = 655.4590930573362 K, F = -1.0430439895126042e-7, relative_change = 2.479525129213053e-12 Iter 150: T = 655.4590930523722 K, F = -4.362216299291788e-8, relative_change = 1.0369864590851036e-12 Iter 155: T = 655.4590930502961 K, F = -1.8242828747627726e-8, relative_change = 4.336686924500966e-13 Converged in 159 iterations to T = 655.4590930495468 K Iter 1: T = 970.3749112842304 K, F = -6750.104644622646, relative_change = 0.02962508871576963 Iter 2: T = 942.9147413902434 K, F = -5717.133904953936, relative_change = 0.02829851593921068 Iter 3: T = 917.5745446607982 K, F = -4840.488478021824, relative_change = 0.02687432449309608 Iter 5: T = 873.037101657586 K, F = -3465.7175106561153, relative_change = 0.02377844931105023 Iter 10: T = 794.0150247211466 K, F = -1491.650742157762, relative_change = 0.015472777616817937 Iter 15: T = 750.9832801580415 K, F = -634.9301085425925, relative_change = 0.008466880542675666 Iter 20: T = 730.1034623567741 K, F = -267.9991507772785, relative_change = 0.004071823476949898 Iter 25: T = 720.7078832214934 K, F = -112.56653713414617, relative_change = 0.0018175603405445318 Iter 30: T = 716.646016687201 K, F = -47.16653498772891, relative_change = 0.0007822235312613876 Iter 35: T = 714.9226898714703 K, F = -19.74171109659399, relative_change = 0.00033116721819443246 Iter 40: T = 714.1975578861399 K, F = -8.259064992896661, relative_change = 0.00013921611312597655 Iter 45: T = 713.893518138444 K, F = -3.4545394923145154, relative_change = 5.834838285336802e-5 Iter 50: T = 713.7662278753628 K, F = -1.444817260562024, relative_change = 2.4424193519055617e-5 Iter 55: T = 713.712969522655 K, F = -0.6042551641705391, relative_change = 1.0218377932254056e-5 Iter 60: T = 713.6906920346987 K, F = -0.25270940822046667, relative_change = 4.274128170116988e-6 Iter 65: T = 713.6813745868117 K, F = -0.10568656167716384, relative_change = 1.787610489920871e-6 Iter 70: T = 713.677477790021 K, F = -0.04419946431278565, relative_change = 7.476208785335876e-7 Iter 75: T = 713.6758480805355 K, F = -0.018484758177045202, relative_change = 3.1266762195116835e-7 Iter 80: T = 713.6751665126252 K, F = -0.007730549132118791, relative_change = 1.3076197052412343e-7 Iter 85: T = 713.6748814720964 K, F = -0.003233008407669602, relative_change = 5.4686329106565116e-8 Iter 90: T = 713.6747622646226 K, F = -0.0013520828034210286, relative_change = 2.2870495416679496e-8 Iter 95: T = 713.6747124106124 K, F = -0.0005654571889719406, relative_change = 9.564717720800348e-9 Iter 100: T = 713.6746915610662 K, F = -0.00023648095145256676, relative_change = 4.000079768574953e-9 Iter 105: T = 713.6746828415364 K, F = -9.889915965144436e-5, relative_change = 1.6728812542125237e-9 Iter 110: T = 713.6746791949247 K, F = -4.136080786187879e-5, relative_change = 6.996189053410471e-10 Iter 115: T = 713.6746776698682 K, F = -1.7297584402831134e-5, relative_change = 2.9258899459821795e-10 Iter 120: T = 713.6746770320714 K, F = -7.2340559043038155e-6, relative_change = 1.2236420436642783e-10 Iter 125: T = 713.6746767653372 K, F = -3.025369333720107e-6, relative_change = 5.1174184577943095e-11 Iter 130: T = 713.6746766537857 K, F = -1.2652463413642678e-6, relative_change = 2.1401667933914917e-11 Iter 135: T = 713.6746766071335 K, F = -5.291416143027305e-7, relative_change = 8.950441311402221e-12 Iter 140: T = 713.674676587623 K, F = -2.212935299450436e-7, relative_change = 3.743184620309927e-12 Iter 145: T = 713.6746765794636 K, F = -9.254890687149242e-8, relative_change = 1.5654666674292552e-12 Iter 150: T = 713.6746765760511 K, F = -3.870441633857524e-8, relative_change = 6.546860001907457e-13 Iter 155: T = 713.674676574624 K, F = -1.6186977758181342e-8, relative_change = 2.738030624484364e-13 Converged in 157 iterations to T = 713.6746765743219 K Iter 1: T = 974.4818751181193 K, F = -5814.32902833988, relative_change = 0.02551812488188069 Iter 2: T = 951.1524917690211 K, F = -4919.038574202754, relative_change = 0.023940294781029568 Iter 3: T = 929.936561590724 K, F = -4159.803254800862, relative_change = 0.022305498184458584 Iter 5: T = 893.4893406227148 K, F = -2970.7558127680477, relative_change = 0.018949841253427222 Iter 10: T = 832.1427077302699 K, F = -1270.1961131341343, relative_change = 0.011116664756638134 Iter 15: T = 801.0320166126738 K, F = -537.7995254576111, relative_change = 0.005604821433068964 Iter 20: T = 786.6545011948457 K, F = -226.27008936064968, relative_change = 0.002566414233732668 Iter 25: T = 780.3548205672699 K, F = -94.88510563680103, relative_change = 0.001117851341569069 Iter 30: T = 777.6656467330486 K, F = -39.72847395848338, relative_change = 0.00047577321376003276 Iter 35: T = 776.5310991116637 K, F = -16.623156868099397, relative_change = 0.00020045913579505538 Iter 40: T = 776.0548582490605 K, F = -6.953452014626417, relative_change = 8.409700464949569e-5 Iter 45: T = 775.8553788465576 K, F = -2.9082708245360602, relative_change = 3.521651221733929e-5 Iter 50: T = 775.7718998451123 K, F = -1.216318090964353, relative_change = 1.4736051568674169e-5 Iter 55: T = 775.7369784157626 K, F = -0.5086865381706784, relative_change = 6.164208069387186e-6 Iter 60: T = 775.7223721921392 K, F = -0.2127401473784063, relative_change = 2.5781930546218236e-6 Iter 65: T = 775.7162634037476 K, F = -0.0889707085292023, relative_change = 1.0782744412262917e-6 Iter 70: T = 775.713708584546 K, F = -0.03720865450446431, relative_change = 4.509548249573562e-7 Iter 75: T = 775.712640119735 K, F = -0.015561110962526215, relative_change = 1.8859601843413463e-7 Iter 80: T = 775.7121932734327 K, F = -0.0065078437156903535, relative_change = 7.887333896493599e-8 Iter 85: T = 775.7120063967001 K, F = -0.0027216581846342125, relative_change = 3.298581283593065e-8 Iter 90: T = 775.7119282425709 K, F = -0.0011382299928802686, relative_change = 1.379506792290429e-8 Iter 95: T = 775.7118955575726 K, F = -0.00047602138251834347, relative_change = 5.769263385316617e-9 Iter 100: T = 775.7118818883145 K, F = -0.00019907782930539408, relative_change = 2.4127750768796597e-9 Iter 105: T = 775.7118761716672 K, F = -8.3256724201064e-5, relative_change = 1.0090513689261575e-9 Iter 110: T = 775.711873780897 K, F = -3.48189576969693e-5, relative_change = 4.219973555460493e-10 Iter 115: T = 775.7118727810483 K, F = -1.4561703117754732e-5, relative_change = 1.7648432497982507e-10 Iter 120: T = 775.7118723628997 K, F = -6.089878208048738e-6, relative_change = 7.380785330012881e-11 Iter 125: T = 775.7118721880249 K, F = -2.5468596213107375e-6, relative_change = 3.086732362874676e-11 Iter 130: T = 775.7118721148902 K, F = -1.0651268731454167e-6, relative_change = 1.2909080515750115e-11 Iter 135: T = 775.7118720843044 K, F = -4.45449335306769e-7, relative_change = 5.398738386217495e-12 Iter 140: T = 775.7118720715131 K, F = -1.8629297515726506e-7, relative_change = 2.2578258769889537e-12 Iter 145: T = 775.7118720661636 K, F = -7.790909872795737e-8, relative_change = 9.442394648437455e-13 Iter 150: T = 775.7118720639263 K, F = -3.258072145406743e-8, relative_change = 3.9487047716795984e-13 Converged in 154 iterations to T = 775.7118720631189 K Iter 1: T = 970.3208454494657 K, F = -6762.423596503667, relative_change = 0.02967915455053432 Iter 2: T = 942.8055575285948 K, F = -5727.651989383021, relative_change = 0.028356896638786922 Iter 3: T = 917.4095170591551 K, F = -4849.47099835518, relative_change = 0.026936668188519378 Iter 5: T = 872.7598837161992 K, F = -3472.270675670812, relative_change = 0.02384699239810069 Iter 10: T = 793.4779535864312 K, F = -1494.6167580394688, relative_change = 0.015541232992314663 Iter 15: T = 750.256808121422 K, F = -636.2473694949624, relative_change = 0.008515674937173298 Iter 20: T = 729.267871413868 K, F = -268.5701888824671, relative_change = 0.004098786561409197 Iter 25: T = 719.8187259591938 K, F = -112.8096968186956, relative_change = 0.0018304075339070618 Iter 30: T = 715.7327561083318 K, F = -47.26906510060195, relative_change = 0.0007879140770128963 Iter 35: T = 713.9990226673824 K, F = -19.784743375432235, relative_change = 0.00033360628385508 Iter 40: T = 713.269479100887 K, F = -8.277088853979151, relative_change = 0.0001402468002955385 Iter 45: T = 712.9635838088926 K, F = -3.4620820890298445, relative_change = 5.878131102671378e-5 Iter 50: T = 712.8355156733285 K, F = -1.4479725073263516, relative_change = 2.4605580085208867e-5 Iter 55: T = 712.7819316784667 K, F = -0.605574873647064, relative_change = 1.0294293940115312e-5 Iter 60: T = 712.7595179458793 K, F = -0.253261352312098, relative_change = 4.305887300449057e-6 Iter 65: T = 712.7501435088521 K, F = -0.10591739580539294, relative_change = 1.800894313228121e-6 Iter 70: T = 712.7462228767716 K, F = -0.04429600269117062, relative_change = 7.531766426867185e-7 Iter 75: T = 712.744583198777 K, F = -0.018525131819162488, relative_change = 3.1499116322035305e-7 Iter 80: T = 712.7438974618636 K, F = -0.007747433895661349, relative_change = 1.3173371273569973e-7 Iter 85: T = 712.7436106777985 K, F = -0.003240069822084579, relative_change = 5.509272497377233e-8 Iter 90: T = 712.7434907411554 K, F = -0.0013550359699499026, relative_change = 2.304045527760332e-8 Iter 95: T = 712.7434405821975 K, F = -0.0005666922383601447, relative_change = 9.635797010939795e-9 Iter 100: T = 712.7434196051188 K, F = -0.00023699746648064846, relative_change = 4.029806029680897e-9 Iter 105: T = 712.7434108322531 K, F = -9.911517019600691e-5, relative_change = 1.6853130956493685e-9 Iter 110: T = 712.7434071633359 K, F = -4.14511485590241e-5, relative_change = 7.04818092630961e-10 Iter 115: T = 712.7434056289508 K, F = -1.733536540426961e-5, relative_change = 2.9476334744099276e-10 Iter 120: T = 712.7434049872527 K, F = -7.249857943758542e-6, relative_change = 1.2327357141303375e-10 Iter 125: T = 712.7434047188868 K, F = -3.031976829825922e-6, relative_change = 5.155447400814573e-11 Iter 130: T = 712.743404606653 K, F = -1.268009900523559e-6, relative_change = 2.1560713414613088e-11 Iter 135: T = 712.7434045597155 K, F = -5.30297858847284e-7, relative_change = 9.016964424215652e-12 Iter 140: T = 712.7434045400855 K, F = -2.2177516101340444e-7, relative_change = 3.770972678716163e-12 Iter 145: T = 712.7434045318762 K, F = -9.274917267543259e-8, relative_change = 1.577068390136912e-12 Iter 150: T = 712.743404528443 K, F = -3.8789510159453755e-8, relative_change = 6.595607117364159e-13 Iter 155: T = 712.7434045270071 K, F = -1.6221636589541788e-8, relative_change = 2.758259676559154e-13 Converged in 157 iterations to T = 712.7434045267032 K Iter 1: T = 969.4032277465755 K, F = -6971.503662986976, relative_change = 0.030596772253424512 Iter 2: T = 940.949505981492 K, F = -5906.213195721032, relative_change = 0.02935179185572289 Iter 3: T = 914.599339880112 K, F = -5002.011053298216, relative_change = 0.028003804597245153 Iter 5: T = 868.021550033593 K, F = -3583.6454942728374, relative_change = 0.025031770164304273 Iter 10: T = 784.2044072716712 K, F = -1545.181616698628, relative_change = 0.016757436195867916 Iter 15: T = 737.6035537625546 K, F = -658.7880530506467, relative_change = 0.009404263164131604 Iter 20: T = 714.6338212344398 K, F = -278.3702367240451, relative_change = 0.004597885120482292 Iter 25: T = 704.202334090588 K, F = -116.98978923474958, relative_change = 0.0020702768660166597 Iter 30: T = 699.6720786643046 K, F = -49.03307404033538, relative_change = 0.0008945908983321176 Iter 35: T = 697.7460800305511 K, F = -20.525374964361234, relative_change = 0.00037941071139755236 Iter 40: T = 696.9349494915238 K, F = -8.587347508051959, relative_change = 0.00015961720187893628 Iter 45: T = 696.594723478054 K, F = -3.591927264063795, relative_change = 6.692021423823999e-5 Iter 50: T = 696.4522607986569 K, F = -1.502291334798361, relative_change = 2.801604193513202e-5 Iter 55: T = 696.3926503368164 K, F = -0.6282944628310128, relative_change = 1.1721759863153468e-5 Iter 60: T = 696.3677151259263 K, F = -0.2627634470584564, relative_change = 4.903075424866613e-6 Iter 65: T = 696.3572859774376 K, F = -0.10989137124408171, relative_change = 2.0506813569524117e-6 Iter 70: T = 696.3529242175932 K, F = -0.045957981710719964, relative_change = 8.576468365696854e-7 Iter 75: T = 696.3511000486063 K, F = -0.019220193922555917, relative_change = 3.5868294248370876e-7 Iter 80: T = 696.350337154291 K, F = -0.008038117628379915, relative_change = 1.5000632841074163e-7 Iter 85: T = 696.3500181018925 K, F = -0.0033616373103967367, relative_change = 6.273458460307244e-8 Iter 90: T = 696.3498846702145 K, F = -0.0014058769613611855, relative_change = 2.6236378137459612e-8 Iter 95: T = 696.349828867466 K, F = -0.0005879545505714789, relative_change = 1.0972371143348152e-8 Iter 100: T = 696.3498055300856 K, F = -0.00024588961831151224, relative_change = 4.588777449358628e-9 Iter 105: T = 696.3497957701135 K, F = -0.00010283397549437634, relative_change = 1.919081669678088e-9 Iter 110: T = 696.3497916883764 K, F = -4.300639596710454e-5, relative_change = 8.025828826116824e-10 Iter 115: T = 696.3497899813452 K, F = -1.7985789086627513e-5, relative_change = 3.3564976313546134e-10 Iter 120: T = 696.3497892674444 K, F = -7.5218713594393805e-6, relative_change = 1.4037273206610502e-10 Iter 125: T = 696.3497889688825 K, F = -3.145736810372668e-6, relative_change = 5.870556012370338e-11 Iter 130: T = 696.3497888440204 K, F = -1.3155840246081851e-6, relative_change = 2.455135371328282e-11 Iter 135: T = 696.3497887918016 K, F = -5.501936093388338e-7, relative_change = 1.0267681627185515e-11 Iter 140: T = 696.349788769963 K, F = -2.300967478774396e-7, relative_change = 4.2940523315931905e-12 Iter 145: T = 696.3497887608298 K, F = -9.622897312322465e-8, relative_change = 1.7958195856488193e-12 Iter 150: T = 696.3497887570103 K, F = -4.0244015231394314e-8, relative_change = 7.510315076004095e-13 Iter 155: T = 696.3497887554129 K, F = -1.6830146165602855e-8, relative_change = 3.1408322393650186e-13 Converged in 157 iterations to T = 696.3497887550749 K Iter 1: T = 963.5677218450428 K, F = -8301.129233650365, relative_change = 0.036432278154957205 Iter 2: T = 929.0135138717945 K, F = -7043.774898639783, relative_change = 0.03586069478031466 Iter 3: T = 896.3038582039527 K, F = -5975.948940702401, relative_change = 0.03520902029887572 Iter 5: T = 836.2993980094661 K, F = -4299.028636938438, relative_change = 0.03363617823537866 Iter 10: T = 716.6289247871946 K, F = -1878.6600834851658, relative_change = 0.027911125566429027 Iter 15: T = 637.0088883677136 K, F = -813.4969514885406, relative_change = 0.019995481942776876 Iter 20: T = 590.3748911375584 K, F = -348.3074262911116, relative_change = 0.011987227488422297 Iter 25: T = 566.3840987671451 K, F = -147.6259360069314, relative_change = 0.0061407053265822836 Iter 30: T = 555.1943992927804 K, F = -62.14807832875163, relative_change = 0.002837285467626896 Iter 35: T = 550.2678048709641 K, F = -26.06900312322911, relative_change = 0.0012412462211234927 Iter 40: T = 548.1600491039738 K, F = -10.916529754218546, relative_change = 0.0005293234255109943 Iter 45: T = 547.2699249911878 K, F = -4.567941039061999, relative_change = 0.00022320886128790845 Iter 50: T = 546.8961274551343 K, F = -1.9108109640154527, relative_change = 9.367427779629433e-5 Iter 55: T = 546.7395300456315 K, F = -0.7992017558649429, relative_change = 3.923295325809517e-5 Iter 60: T = 546.6739916257048 K, F = -0.33424934116904503, relative_change = 1.641772445628697e-5 Iter 65: T = 546.6465743549007 K, F = -0.1397894500309634, relative_change = 6.867845121590393e-6 Iter 70: T = 546.6351066686946 K, F = -0.05846203444626094, relative_change = 2.8725222105105024e-6 Iter 75: T = 546.6303104906349 K, F = -0.024449593925784496, relative_change = 1.2013768596594936e-6 Iter 80: T = 546.6283046271345 K, F = -0.010225124925184292, relative_change = 5.024395544736345e-7 Iter 85: T = 546.6274657432704 K, F = -0.004276271587910191, relative_change = 2.101278669152719e-7 Iter 90: T = 546.6271149106569 K, F = -0.0017883882374107318, relative_change = 8.787827107717855e-8 Iter 95: T = 546.6269681880298 K, F = -0.0007479253862477664, relative_change = 3.6751792733791164e-8 Iter 100: T = 546.6269068268332 K, F = -0.0003127913403838112, relative_change = 1.537004742138735e-8 Iter 105: T = 546.6268811648407 K, F = -0.0001308130759433701, relative_change = 6.427938917673267e-9 Iter 110: T = 546.6268704326877 K, F = -5.4707591081781803e-5, relative_change = 2.6882410962420107e-9 Iter 115: T = 546.6268659443729 K, F = -2.2879367498757075e-5, relative_change = 1.1242545532400656e-9 Iter 120: T = 546.626864067306 K, F = -9.568424872347103e-6, relative_change = 4.701766955105284e-10 Iter 125: T = 546.6268632822943 K, F = -4.001629400812723e-6, relative_change = 1.9663350303696924e-10 Iter 130: T = 546.6268629539929 K, F = -1.6735291834824029e-6, relative_change = 8.223447844941375e-11 Iter 135: T = 546.6268628166935 K, F = -6.998900043686529e-7, relative_change = 3.439144660165072e-11 Iter 140: T = 546.6268627592731 K, F = -2.927022666743273e-7, relative_change = 1.4382909195320103e-11 Iter 145: T = 546.6268627352591 K, F = -1.2241099595078353e-7, relative_change = 6.015075522445464e-12 Iter 150: T = 546.6268627252164 K, F = -5.119372681328116e-8, relative_change = 2.515575751120183e-12 Iter 155: T = 546.6268627210163 K, F = -2.1409541278716304e-8, relative_change = 1.0520297356304857e-12 Iter 160: T = 546.6268627192599 K, F = -8.953869617966959e-9, relative_change = 4.3997846402099646e-13 Converged in 164 iterations to T = 546.6268627186258 K Iter 1: T = 966.9151080495574 K, F = -7538.424102765408, relative_change = 0.03308489195044264 Iter 2: T = 935.8885082727751 K, F = -6390.8167078059805, relative_change = 0.032088235583957875 Iter 3: T = 906.889766988954 K, F = -5416.4516201560145, relative_change = 0.0309852520118445 Iter 5: T = 854.8446644896243 K, F = -3887.128701998443, relative_change = 0.028460716651958998 Iter 10: T = 757.4004072015796 K, F = -1684.6187014307561, relative_change = 0.020664304372707075 Iter 15: T = 699.7095499162912 K, F = -721.9386476759939, relative_change = 0.01256423819096223 Iter 20: T = 669.7477752919392 K, F = -306.19791020846986, relative_change = 0.006505431013697758 Iter 25: T = 655.6854454284326 K, F = -128.956833190341, relative_change = 0.003024471551824913 Iter 30: T = 649.4734522158359 K, F = -54.103879618407944, relative_change = 0.0013271546248254972 Iter 35: T = 646.8116113799656 K, F = -22.65833128074862, relative_change = 0.0005667298763551678 Iter 40: T = 645.6867201879837 K, F = -9.481581794304086, relative_change = 0.0002391230655319027 Iter 45: T = 645.214196238966 K, F = -3.9662970084251663, relative_change = 0.00010037797991557282 Iter 50: T = 645.0162142171629 K, F = -1.658925818422294, relative_change = 4.204501762870516e-5 Iter 55: T = 644.9333513928871 K, F = -0.6938128940310122, relative_change = 1.7595254295611268e-5 Iter 60: T = 644.8986858946514 K, F = -0.29016614141611724, relative_change = 7.360563293667001e-6 Iter 65: T = 644.8841863960445 K, F = -0.12135187339484949, relative_change = 3.078628533062662e-6 Iter 70: T = 644.8781221873593 K, F = -0.050750964970588064, relative_change = 1.2875809799078716e-6 Iter 75: T = 644.8755860024824 K, F = -0.02122468802369981, relative_change = 5.384925454646713e-7 Iter 80: T = 644.8745253291171 K, F = -0.0088764229705533, relative_change = 2.252059029143542e-7 Iter 85: T = 644.8740817410014 K, F = -0.0037122269602440916, relative_change = 9.418412857185752e-8 Iter 90: T = 644.8738962268309 K, F = -0.001552497799389152, relative_change = 3.9388985150670394e-8 Iter 95: T = 644.8738186425327 K, F = -0.000649273146569429, relative_change = 1.6472954092296108e-8 Iter 100: T = 644.8737861958429 K, F = -0.0002715337886507463, relative_change = 6.8891879020131955e-9 Iter 105: T = 644.873772626248 K, F = -0.00011355867446727341, relative_change = 2.8811409753884222e-9 Iter 110: T = 644.873766951281 K, F = -4.749159459899177e-5, relative_change = 1.2049276337578628e-9 Iter 115: T = 644.873764577942 K, F = -1.9861551820710144e-5, relative_change = 5.039151298139113e-10 Iter 120: T = 644.8737635853832 K, F = -8.30633816428783e-6, relative_change = 2.1074332674465426e-10 Iter 125: T = 644.8737631702834 K, F = -3.4738098407260942e-6, relative_change = 8.813537687449331e-11 Iter 130: T = 644.8737629966837 K, F = -1.452789236466856e-6, relative_change = 3.685927926686898e-11 Iter 135: T = 644.8737629240821 K, F = -6.075734782506892e-7, relative_change = 1.5414982407532283e-11 Iter 140: T = 644.8737628937193 K, F = -2.540946270612743e-7, relative_change = 6.446733353393536e-12 Iter 145: T = 644.8737628810213 K, F = -1.0626576296690615e-7, relative_change = 2.696109895867996e-12 Iter 150: T = 644.8737628757108 K, F = -4.4441992697041854e-8, relative_change = 1.1275550371251804e-12 Iter 155: T = 644.8737628734898 K, F = -1.8585955441352553e-8, relative_change = 4.715514855709829e-13 Converged in 160 iterations to T = 644.873762872561 K Iter 1: T = 965.2946320102027 K, F = -7907.6511098030205, relative_change = 0.034705367989797266 Iter 2: T = 932.5698741753341 K, F = -6706.7724493042015, relative_change = 0.03390131546336275 Iter 3: T = 901.7963617057859 K, F = -5687.026888354855, relative_change = 0.03299861310313191 Iter 5: T = 845.9895528726937 K, F = -4085.9973246847303, relative_change = 0.030879598363442517 Iter 10: T = 738.4298472656815 K, F = -1777.5204122444493, relative_change = 0.023822241343342786 Iter 15: T = 671.438284784867 K, F = -765.0942680814586, relative_change = 0.0155161990653103 Iter 20: T = 634.932590260471 K, F = -325.68443488893575, relative_change = 0.008497715523340414 Iter 25: T = 617.2102789975851 K, F = -137.47370604093658, relative_change = 0.004088832821381165 Iter 30: T = 609.2331785613505 K, F = -57.743547914989854, relative_change = 0.0018256586127179814 Iter 35: T = 605.7840468475241 K, F = -24.195344797638935, relative_change = 0.0007858094025337142 Iter 40: T = 604.3205900146797 K, F = -10.12708016658435, relative_change = 0.00033270396960886206 Iter 45: T = 603.7047874765233 K, F = -4.236732335958893, relative_change = 0.00013986546710934134 Iter 50: T = 603.4465852865275 K, F = -1.772109671176763, relative_change = 5.862112974201754e-5 Iter 55: T = 603.3384849848101 K, F = -0.7411625670833941, relative_change = 2.4538466775475447e-5 Iter 60: T = 603.2932556335404 K, F = -0.3099709378138416, relative_change = 1.026620469385395e-5 Iter 65: T = 603.2743365878323 K, F = -0.1296349303296088, relative_change = 4.2941362509097186e-6 Iter 70: T = 603.266423788719 K, F = -0.05421511782093985, relative_change = 1.7959792206249094e-6 Iter 75: T = 603.263114451733 K, F = -0.02267345202510368, relative_change = 7.51120976229299e-7 Iter 80: T = 603.2617304282614 K, F = -0.009482315809172193, relative_change = 3.1413143862836784e-7 Iter 85: T = 603.2611516097551 K, F = -0.003965619006963184, relative_change = 1.3137416210510763e-7 Iter 90: T = 603.2609095403551 K, F = -0.0016584694545940248, relative_change = 5.494235599372282e-8 Iter 95: T = 603.2608083039383 K, F = -0.0006935917716767159, relative_change = 2.2977569092182533e-8 Iter 100: T = 603.2607659656419 K, F = -0.000290068369697305, relative_change = 9.609497265365428e-9 Iter 105: T = 603.2607482592574 K, F = -0.00012131005730148248, relative_change = 4.018807110938679e-9 Iter 110: T = 603.2607408542353 K, F = -5.0733313927853185e-5, relative_change = 1.6807132007475635e-9 Iter 115: T = 603.2607377573667 K, F = -2.121727756099201e-5, relative_change = 7.028943428168366e-10 Iter 120: T = 603.2607364622193 K, F = -8.873319489510756e-6, relative_change = 2.939588322302367e-10 Iter 125: T = 603.2607359205731 K, F = -3.7109280972003056e-6, relative_change = 1.2293709202018204e-10 Iter 130: T = 603.2607356940503 K, F = -1.5519548339781863e-6, relative_change = 5.141377293754906e-11 Iter 135: T = 603.2607355993156 K, F = -6.490452185148321e-7, relative_change = 2.1501826461234146e-11 Iter 140: T = 603.2607355596965 K, F = -2.7143832720399885e-7, relative_change = 8.992316161958757e-12 Iter 145: T = 603.2607355431273 K, F = -1.1351855389030163e-7, relative_change = 3.760687510412827e-12 Iter 150: T = 603.2607355361978 K, F = -4.747440290886473e-8, relative_change = 1.5727507792775967e-12 Iter 155: T = 603.2607355332999 K, F = -1.985418851546683e-8, relative_change = 6.577374026226721e-13 Iter 160: T = 603.2607355320879 K, F = -8.302259824066738e-9, relative_change = 2.750405441339719e-13 Converged in 162 iterations to T = 603.2607355318314 K Iter 1: T = 980.1255772989285 K, F = -4528.406117895781, relative_change = 0.019874422701071495 Iter 2: T = 962.2955768025881 K, F = -3825.1732569281658, relative_change = 0.018191546990822396 Iter 3: T = 946.3892136591282 K, F = -3229.6421761245992, relative_change = 0.016529602262448092 Iter 5: T = 919.8245356997958 K, F = -2299.1342858981366, relative_change = 0.013357334955328539 Iter 10: T = 877.6408873436728 K, F = -976.0795118052012, relative_change = 0.007019495373254425 Iter 15: T = 857.6677068163441 K, F = -411.31858248098274, relative_change = 0.0032922516132081426 Iter 20: T = 848.8026136647754 K, F = -172.61863046639724, relative_change = 0.0014509597936860226 Iter 25: T = 844.9953775574365 K, F = -72.30094098621804, relative_change = 0.0006208170018347919 Iter 30: T = 843.3848462340446 K, F = -30.256689200451294, relative_change = 0.0002621670054385056 Iter 35: T = 842.7080358494521 K, F = -12.65716009982491, relative_change = 0.00011009093450888663 Iter 40: T = 842.4244092931334 K, F = -5.293981237037165, relative_change = 4.612044660050368e-5 Iter 45: T = 842.3056921041189 K, F = -2.2141122716212465, relative_change = 1.9301991695199426e-5 Iter 50: T = 842.2560254350581 K, F = -0.9259867612588556, relative_change = 8.074751904848897e-6 Iter 55: T = 842.235251139188 K, F = -0.38726197035368115, relative_change = 3.3773826077671494e-6 Iter 60: T = 842.2265625379188 K, F = -0.16195814902959604, relative_change = 1.412536074998888e-6 Iter 65: T = 842.222928766186 K, F = -0.06773293147396009, relative_change = 5.907524578065949e-7 Iter 70: T = 842.2214090628491 K, F = -0.028326738217739456, relative_change = 2.470620070210611e-7 Iter 75: T = 842.220773501861 K, F = -0.011846583253068532, relative_change = 1.0332467961851486e-7 Iter 80: T = 842.2205077021576 K, F = -0.0049543831253184845, relative_change = 4.321168453478787e-8 Iter 85: T = 842.2203965414586 K, F = -0.0020719822816648303, relative_change = 1.8071654677744165e-8 Iter 90: T = 842.2203500527113 K, F = -0.0008665277509873892, relative_change = 7.557783934087333e-9 Iter 95: T = 842.2203306105591 K, F = -0.0003623922560265225, relative_change = 3.160755865405976e-9 Iter 100: T = 842.2203224796186 K, F = -0.00015155677240530352, relative_change = 1.321865937738154e-9 Iter 105: T = 842.220319079162 K, F = -6.338285218876472e-5, relative_change = 5.528201321917364e-10 Iter 110: T = 842.2203176570504 K, F = -2.650746393229042e-5, relative_change = 2.3119596747217694e-10 Iter 115: T = 842.2203170623063 K, F = -1.1085738341298779e-5, relative_change = 9.668891811469096e-11 Iter 120: T = 842.2203168135774 K, F = -4.636189538498314e-6, relative_change = 4.0436472292729316e-11 Iter 125: T = 842.2203167095558 K, F = -1.9389096663768868e-6, relative_change = 1.691101418473385e-11 Iter 130: T = 842.2203166660528 K, F = -8.108739490975125e-7, relative_change = 7.0723773760000075e-12 Iter 135: T = 842.2203166478594 K, F = -3.391179721479176e-7, relative_change = 2.9577596825375278e-12 Iter 140: T = 842.2203166402506 K, F = -1.418238479988787e-7, relative_change = 1.236976197382093e-12 Iter 145: T = 842.2203166370685 K, F = -5.931369173595158e-8, relative_change = 5.173292495781881e-13 Converged in 150 iterations to T = 842.2203166357377 K Iter 1: T = 976.4055651322341 K, F = -5376.0144287222165, relative_change = 0.02359443486776592 Iter 2: T = 954.9734186602778 K, F = -4545.81447829684, relative_change = 0.02195004538821297 Iter 3: T = 935.6121851288408 K, F = -3842.079712375921, relative_change = 0.02027410727159161 Iter 5: T = 902.6824862831977 K, F = -2740.762080620151, relative_change = 0.016920701689106893 Iter 10: T = 848.4324744914114 K, F = -1168.7689133107606, relative_change = 0.009526842166998476 Iter 15: T = 821.637489825035 K, F = -493.93265440691175, relative_change = 0.004667981315005909 Iter 20: T = 809.4538895237501 K, F = -207.59950850919455, relative_change = 0.0021042868331451413 Iter 25: T = 804.1594742648938 K, F = -87.01281681187076, relative_change = 0.0009097832904512706 Iter 30: T = 801.9079740733187 K, F = -36.42437811674436, relative_change = 0.00038594665525251644 Iter 35: T = 800.9596449571235 K, F = -15.239230995824803, relative_change = 0.00016238350741817531 Iter 40: T = 800.5618511068856 K, F = -6.374304427702565, relative_change = 6.808294607579964e-5 Iter 45: T = 800.3952794875892 K, F = -2.665998837138529, relative_change = 2.850333557671877e-5 Iter 50: T = 800.325580526059 K, F = -1.1149855681304743, relative_change = 1.1925731626171752e-5 Iter 55: T = 800.2964251593484 K, F = -0.4663060568958274, relative_change = 4.9884103197918236e-6 Iter 60: T = 800.2842309119861 K, F = -0.1950157723168663, relative_change = 2.0863749350817555e-6 Iter 65: T = 800.2791309353461 K, F = -0.08155810169118827, relative_change = 8.725752804118947e-7 Iter 70: T = 800.2769980297925 K, F = -0.034108603041281715, relative_change = 3.6492636443321576e-7 Iter 75: T = 800.2761060171982 K, F = -0.014264630536191314, relative_change = 1.5261743148218451e-7 Iter 80: T = 800.2757329658257 K, F = -0.005965639790465271, relative_change = 6.382658425013008e-8 Iter 85: T = 800.2755769511024 K, F = -0.002494901970301666, relative_change = 2.6693066327504304e-8 Iter 90: T = 800.2755117038497 K, F = -0.0010433978263097998, relative_change = 1.1163363742087155e-8 Iter 95: T = 800.2754844166637 K, F = -0.0004363614355892276, relative_change = 4.66865283451703e-9 Iter 100: T = 800.2754730048358 K, F = -0.0001824915634319746, relative_change = 1.9524865014421843e-9 Iter 105: T = 800.2754682322728 K, F = -7.632015096148415e-5, relative_change = 8.165531927564873e-10 Iter 110: T = 800.2754662363301 K, F = -3.191799967783293e-5, relative_change = 3.4149231263942935e-10 Iter 115: T = 800.2754654016029 K, F = -1.3348489533049346e-5, relative_change = 1.428161736178014e-10 Iter 120: T = 800.2754650525101 K, F = -5.582497615064241e-6, relative_change = 5.972742820795604e-11 Iter 125: T = 800.2754649065153 K, F = -2.33466481425193e-6, relative_change = 2.4978698571712526e-11 Iter 130: T = 800.2754648454585 K, F = -9.763849132538027e-7, relative_change = 1.0446392260727371e-11 Iter 135: T = 800.2754648199237 K, F = -4.083340339189334e-7, relative_change = 4.368786770941793e-12 Iter 140: T = 800.2754648092449 K, F = -1.7077060354697693e-7, relative_change = 1.8270834456999827e-12 Iter 145: T = 800.2754648047788 K, F = -7.141801527943414e-8, relative_change = 7.641050083270003e-13 Iter 150: T = 800.2754648029111 K, F = -2.986878733235443e-8, relative_change = 3.1956768756820766e-13 Converged in 153 iterations to T = 800.2754648023642 K Iter 1: T = 980.6812086729778 K, F = -4401.804980776748, relative_change = 0.019318791327022133 Iter 2: T = 963.3817816545901 K, F = -3717.660792409372, relative_change = 0.017640214644060237 Iter 3: T = 947.9770727682545 K, F = -3138.387861888963, relative_change = 0.01599024309955108 Iter 5: T = 922.3171167518938 K, F = -2233.5122213343766, relative_change = 0.012862183985373494 Iter 10: T = 881.7744996985491 K, F = -947.6488129342575, relative_change = 0.006696850900163711 Iter 15: T = 862.6836232920476 K, F = -399.1930707212806, relative_change = 0.0031236526459335672 Iter 20: T = 854.2354002169928 K, F = -167.49948386444535, relative_change = 0.0013728874552791034 Iter 25: T = 850.6123236212295 K, F = -70.15101823086097, relative_change = 0.0005866850831592708 Iter 30: T = 849.0806536061339 K, F = -29.355936076087435, relative_change = 0.0002476205572281538 Iter 35: T = 848.4371563929357 K, F = -12.280165566957194, relative_change = 0.00010395884900139108 Iter 40: T = 848.1675207004506 K, F = -5.136266825730484, relative_change = 4.354736243400925e-5 Iter 45: T = 848.0546650150939 K, F = -2.148145316463167, relative_change = 1.8224392256647035e-5 Iter 50: T = 848.0074515124945 K, F = -0.8983970338200998, relative_change = 7.623823334224616e-6 Iter 55: T = 847.9877034779938 K, F = -0.3757233440724076, relative_change = 3.188752757854054e-6 Iter 60: T = 847.9794441271013 K, F = -0.15713251000334716, relative_change = 1.33364074757393e-6 Iter 65: T = 847.9759898827311 K, F = -0.06571478325635494, relative_change = 5.577560777969366e-7 Iter 70: T = 847.9745452615831 K, F = -0.027482723072990378, relative_change = 2.3326227990529986e-7 Iter 75: T = 847.9739411011606 K, F = -0.011493605782889604, relative_change = 9.755342572901714e-8 Iter 80: T = 847.9736884336008 K, F = -0.004806763686826754, relative_change = 4.079806967747409e-8 Iter 85: T = 847.9735827649303 K, F = -0.00201024606424971, relative_change = 1.706225082037476e-8 Iter 90: T = 847.9735385730164 K, F = -0.000840708926195255, relative_change = 7.1356389549054565e-9 Iter 95: T = 847.9735200914278 K, F = -0.00035159451651689544, relative_change = 2.984209766980422e-9 Iter 100: T = 847.9735123622062 K, F = -0.00014704102569473854, relative_change = 1.2480322173838813e-9 Iter 105: T = 847.9735091297533 K, F = -6.149431126956095e-5, relative_change = 5.219419728649607e-10 Iter 110: T = 847.973507777903 K, F = -2.5717654129175926e-5, relative_change = 2.1828235748001335e-10 Iter 115: T = 847.973507212543 K, F = -1.0755430818853995e-5, relative_change = 9.12882952120408e-11 Iter 120: T = 847.9735069761027 K, F = -4.498048871370841e-6, relative_change = 3.817784900565946e-11 Iter 125: T = 847.9735068772206 K, F = -1.8811383526440295e-6, relative_change = 1.596643746647103e-11 Iter 130: T = 847.9735068358669 K, F = -7.867140434658637e-7, relative_change = 6.6773507457619034e-12 Iter 135: T = 847.9735068185722 K, F = -3.2901017044117964e-7, relative_change = 2.792522042054188e-12 Iter 140: T = 847.9735068113395 K, F = -1.3759768924259674e-7, relative_change = 1.1678805541057691e-12 Iter 145: T = 847.9735068083147 K, F = -5.7546217790971355e-8, relative_change = 4.884319576258315e-13 Converged in 150 iterations to T = 847.9735068070496 K Iter 1: T = 967.3825680763894 K, F = -7431.912890982449, relative_change = 0.032617431923610614 Iter 2: T = 936.8425279933001 K, F = -6299.722554691685, relative_change = 0.03156976473518349 Iter 3: T = 908.3483669816818 K, F = -5338.495066359312, relative_change = 0.03041510196238881 Iter 5: T = 857.3581520969152 K, F = -3829.941566739848, relative_change = 0.027791122402356774 Iter 10: T = 762.6373248487942 K, F = -1658.1419918059337, relative_change = 0.019852352399706345 Iter 15: T = 707.2850722323925 K, F = -709.8162225034486, relative_change = 0.011866038707297764 Iter 20: T = 678.8655761248586 K, F = -300.80365685355065, relative_change = 0.006065136688465754 Iter 25: T = 665.6273661877865 K, F = -126.62274971167832, relative_change = 0.002798802016826223 Iter 30: T = 659.8028284800328 K, F = -53.111749795057555, relative_change = 0.0012236511995268988 Iter 35: T = 657.3116970330334 K, F = -22.240409067036172, relative_change = 0.0005216751679672713 Iter 40: T = 656.2598170378845 K, F = -9.306260385307986, relative_change = 0.00021995736869640732 Iter 45: T = 655.8181183293234 K, F = -3.8928795781539964, relative_change = 9.230504347481365e-5 Iter 50: T = 655.6330793066254 K, F = -1.628204903022176, relative_change = 3.86586627235199e-5 Iter 55: T = 655.5556384540206 K, F = -0.680962083084408, relative_change = 1.6177257963773346e-5 Iter 60: T = 655.5232420760901 K, F = -0.28479126108600117, relative_change = 6.767228140111244e-6 Iter 65: T = 655.5096918285033 K, F = -0.11910394366477994, relative_change = 2.830434058337595e-6 Iter 70: T = 655.5040246565379 K, F = -0.04981083806511705, relative_change = 1.1837735297727575e-6 Iter 75: T = 655.5016545256615 K, F = -0.020831512952468934, relative_change = 4.950773584438986e-7 Iter 80: T = 655.5006632995495 K, F = -0.00871199197421385, relative_change = 2.0704886080115458e-7 Iter 85: T = 655.5002487553649 K, F = -0.003643459869724197, relative_change = 8.659058559713558e-8 Iter 90: T = 655.5000753877586 K, F = -0.0015237385661644454, relative_change = 3.621326585177568e-8 Iter 95: T = 655.5000028833065 K, F = -0.0006372456886336586, relative_change = 1.5144828778634047e-8 Iter 100: T = 655.4999725610703 K, F = -0.0002665037607936793, relative_change = 6.3337497404597954e-9 Iter 105: T = 655.4999598799476 K, F = -0.00011145505650833609, relative_change = 2.6488500505596105e-9 Iter 110: T = 655.4999545765503 K, F = -4.661183481446951e-5, relative_change = 1.1077807470466177e-9 Iter 115: T = 655.4999523586063 K, F = -1.9493626804811814e-5, relative_change = 4.6328716512262456e-10 Iter 120: T = 655.4999514310356 K, F = -8.152467903088656e-6, relative_change = 1.9375223537615827e-10 Iter 125: T = 655.4999510431144 K, F = -3.409459129077863e-6, relative_change = 8.102949160872666e-11 Iter 130: T = 655.4999508808811 K, F = -1.4258769528430193e-6, relative_change = 3.388751128771023e-11 Iter 135: T = 655.4999508130334 K, F = -5.963194408264982e-7, relative_change = 1.4172177866929888e-11 Iter 140: T = 655.4999507846585 K, F = -2.493882149123827e-7, relative_change = 5.926981242610827e-12 Iter 145: T = 655.4999507727919 K, F = -1.0429799818245655e-7, relative_change = 2.4787549770134095e-12 Iter 150: T = 655.499950767829 K, F = -4.361811878350608e-8, relative_change = 1.0366318712784382e-12 Iter 155: T = 655.4999507657534 K, F = -1.8241361032789172e-8, relative_change = 4.3352571705869673e-13 Converged in 159 iterations to T = 655.4999507650043 K Iter 1: T = 973.5592455935188 K, F = -6024.551043167372, relative_change = 0.026440754406481262 Iter 2: T = 949.3114619920016 K, F = -5098.178688842405, relative_change = 0.02490632564095763 Iter 3: T = 927.1888703789879 K, F = -4312.437458140669, relative_change = 0.023303828615523582 Iter 5: T = 888.9954710844218 K, F = -3081.4728344880386, relative_change = 0.01997297815297584 Iter 10: T = 824.0009611306778 K, F = -1319.3290503631235, relative_change = 0.01196845920335336 Iter 15: T = 790.5742925635504 K, F = -559.1700354859847, relative_change = 0.006129074800612829 Iter 20: T = 774.986492581928 K, F = -235.3984469780865, relative_change = 0.00283137680857406 Iter 25: T = 768.1241918708984 K, F = -98.74103862158012, relative_change = 0.001238547257706464 Iter 30: T = 765.1884159964947 K, F = -41.34820788439886, relative_change = 0.0005281506751640666 Iter 35: T = 763.9486370801512 K, F = -17.301831144594455, relative_change = 0.0002227103690058972 Iter 40: T = 763.4280105442308 K, F = -7.23750853127355, relative_change = 9.346437148920066e-5 Iter 45: T = 763.2099019245314 K, F = -3.0271065154662535, relative_change = 3.9144915754792184e-5 Iter 50: T = 763.118620260872 K, F = -1.2660235822698458, relative_change = 1.638086187338487e-5 Iter 55: T = 763.0804336145726 K, F = -0.5294751911563852, relative_change = 6.852420999849338e-6 Iter 60: T = 763.0644614793188 K, F = -0.22143442429113747, relative_change = 2.866070302479384e-6 Iter 65: T = 763.0577813875765 K, F = -0.09260679639154756, relative_change = 1.1986783574689706e-6 Iter 70: T = 763.0549876315067 K, F = -0.03872931641896993, relative_change = 5.013109671225283e-7 Iter 75: T = 763.0538192385227 K, F = -0.01619707108144197, relative_change = 2.0965587094085393e-7 Iter 80: T = 763.0533306007289 K, F = -0.006773810032356553, relative_change = 8.768087543710219e-8 Iter 85: T = 763.0531262462367 K, F = -0.0028328885087263167, relative_change = 3.666923932001762e-8 Iter 90: T = 763.0530407826897 K, F = -0.001184747850428991, relative_change = 1.5335522557455536e-8 Iter 95: T = 763.0530050408034 K, F = -0.0004954757082883399, relative_change = 6.41350021690339e-9 Iter 100: T = 763.0529900931181 K, F = -0.00020721385955901894, relative_change = 2.6822026487821988e-9 Iter 105: T = 763.0529838418172 K, F = -8.66593110857572e-5, relative_change = 1.1217292284262201e-9 Iter 110: T = 763.0529812274485 K, F = -3.624195862161894e-5, relative_change = 4.691205646007197e-10 Iter 115: T = 763.0529801340883 K, F = -1.5156821211004257e-5, relative_change = 1.961918407005069e-10 Iter 120: T = 763.0529796768319 K, F = -6.338762864155356e-6, relative_change = 8.204976098338853e-11 Iter 125: T = 763.0529794856019 K, F = -2.650946511528751e-6, relative_change = 3.4314192307176705e-11 Iter 130: T = 763.0529794056272 K, F = -1.1086579273511532e-6, relative_change = 1.4350610687745955e-11 Iter 135: T = 763.0529793721809 K, F = -4.636535053670343e-7, relative_change = 6.0015905598735275e-12 Iter 140: T = 763.0529793581932 K, F = -1.9390668881680284e-7, relative_change = 2.509953100170328e-12 Iter 145: T = 763.0529793523434 K, F = -8.109381288701201e-8, relative_change = 1.0496887359059485e-12 Iter 150: T = 763.0529793498969 K, F = -3.391523317741729e-8, relative_change = 4.390031369237029e-13 Converged in 154 iterations to T = 763.0529793490139 K Iter 1: T = 970.0807436575845 K, F = -6817.131018179539, relative_change = 0.029919256342415403 Iter 2: T = 942.3204472536219 K, F = -5774.365546821663, relative_change = 0.02861648021101367 Iter 3: T = 916.6759098570125 K, F = -4889.368467893289, relative_change = 0.027214242746562516 Iter 5: T = 871.5261614068165 K, F = -3501.384788751334, relative_change = 0.024153066005967304 Iter 10: T = 791.0805579544331 K, F = -1507.8061175440644, relative_change = 0.015849413661550547 Iter 15: T = 747.0056958520802 K, F = -642.1113821356147, relative_change = 0.008736928947981653 Iter 20: T = 725.5224652290253 K, F = -271.11439947808645, relative_change = 0.004221621615578065 Iter 25: T = 715.829962269731 K, F = -113.89359408459434, relative_change = 0.0018890788752799234 Iter 30: T = 711.6343296824136 K, F = -47.72620464961398, relative_change = 0.0008139316176415009 Iter 35: T = 709.8532182202628 K, F = -19.976626431248615, relative_change = 0.0003447634105751032 Iter 40: T = 709.1035844421496 K, F = -8.357461712436274, relative_change = 0.0001449625212815658 Iter 45: T = 708.78923803808 K, F = -3.495717027358191, relative_change = 6.076227248781714e-5 Iter 50: T = 708.6576268878567 K, F = -1.4620429094551077, relative_change = 2.543558686760758e-5 Iter 55: T = 708.6025596428941 K, F = -0.6114599615265015, relative_change = 1.0641683473538282e-5 Iter 60: T = 708.5795253313751 K, F = -0.25572268494254363, relative_change = 4.451217153295767e-6 Iter 65: T = 708.569891314274 K, F = -0.10694677525426632, relative_change = 1.8616812868138945e-6 Iter 70: T = 708.5658621145625 K, F = -0.04472650509994458, relative_change = 7.785999317616282e-7 Iter 75: T = 708.5641770308634 K, F = -0.018705173701247357, relative_change = 3.256237400613003e-7 Iter 80: T = 708.5634723044932 K, F = -0.00782272967325115, relative_change = 1.3618042775581645e-7 Iter 85: T = 708.5631775787667 K, F = -0.00327155943336932, relative_change = 5.695240203599684e-8 Iter 90: T = 708.5630543208184 K, F = -0.0013682053060071198, relative_change = 2.3818195811394864e-8 Iter 95: T = 708.5630027728497 K, F = -0.0005721998127534711, relative_change = 9.96105763089192e-9 Iter 100: T = 708.5629812148696 K, F = -0.00023930079795897452, relative_change = 4.165833912826975e-9 Iter 105: T = 708.5629721990642 K, F = -0.00010007845214288213, relative_change = 1.7422016085726636e-9 Iter 110: T = 708.5629684285466 K, F = -4.185400315881438e-5, relative_change = 7.286095249736164e-10 Iter 115: T = 708.5629668516711 K, F = -1.750384446741471e-5, relative_change = 3.047132167824867e-10 Iter 120: T = 708.5629661922029 K, F = -7.320317147341271e-6, relative_change = 1.274347129781209e-10 Iter 125: T = 708.5629659164055 K, F = -3.0614442793064356e-6, relative_change = 5.329472287913338e-11 Iter 130: T = 708.5629658010636 K, F = -1.2803313796938554e-6, relative_change = 2.2288469069437085e-11 Iter 135: T = 708.5629657528264 K, F = -5.354511311006505e-7, relative_change = 9.321325843356169e-12 Iter 140: T = 708.562965732653 K, F = -2.2393184695435053e-7, relative_change = 3.898286120263415e-12 Iter 145: T = 708.5629657242162 K, F = -9.365102093816802e-8, relative_change = 1.6303106505743157e-12 Iter 150: T = 708.5629657206878 K, F = -3.916530499914472e-8, relative_change = 6.818037137765776e-13 Iter 155: T = 708.5629657192121 K, F = -1.637863134007489e-8, relative_change = 2.85125104339034e-13 Converged in 157 iterations to T = 708.5629657188998 K Iter 1: T = 973.502838439586 K, F = -6037.403466847999, relative_change = 0.026497161560413984 Iter 2: T = 949.1987273182543 K, F = -5109.133710159322, relative_change = 0.024965629438008008 Iter 3: T = 927.0203385129876 K, F = -4321.774383040758, relative_change = 0.02336537983771503 Iter 5: T = 888.7188943823214 K, F = -3088.2505445852726, relative_change = 0.0200366296059409 Iter 10: T = 823.4958179204914 K, F = -1322.3437509069986, relative_change = 0.012022627721792845 Iter 15: T = 789.9217092228524 K, F = -560.4841697828697, relative_change = 0.0061629623407677995 Iter 20: T = 774.2560465096165 K, F = -235.96058277185898, relative_change = 0.0028486644828904697 Iter 25: T = 767.3573470196503 K, F = -98.97866895269819, relative_change = 0.0012464579797732793 Iter 30: T = 764.4055752648449 K, F = -41.448061840981396, relative_change = 0.000531590610160698 Iter 35: T = 763.1589626133373 K, F = -17.34367657624279, relative_change = 0.00022417301682036832 Iter 40: T = 762.635452241516 K, F = -7.255023893292712, relative_change = 9.40803478723108e-5 Iter 45: T = 762.416132987768 K, F = -3.034434303979965, relative_change = 3.9403278712600656e-5 Iter 50: T = 762.3243442176986 K, F = -1.2690886162790302, relative_change = 1.6489044697421787e-5 Iter 55: T = 762.2859453524006 K, F = -0.5307571064450799, relative_change = 6.897687528165926e-6 Iter 60: T = 762.2698844399379 K, F = -0.22197055082586103, relative_change = 2.885005361577688e-6 Iter 65: T = 762.2631672161871 K, F = -0.09283101340503697, relative_change = 1.2065979349572734e-6 Iter 70: T = 762.2603579303122 K, F = -0.038823087088496244, relative_change = 5.04623153143867e-7 Iter 75: T = 762.2591830424462 K, F = -0.01623628717304537, relative_change = 2.110410884207447e-7 Iter 80: T = 762.2586916883921 K, F = -0.0067902106849853094, relative_change = 8.826019374609542e-8 Iter 85: T = 762.2584861979232 K, F = -0.002839747459977837, relative_change = 3.691151782106959e-8 Iter 90: T = 762.2584002592964 K, F = -0.0011876163457602562, relative_change = 1.5436846430884554e-8 Iter 95: T = 762.2583643187262 K, F = -0.0004966753482932296, relative_change = 6.455875103250673e-9 Iter 100: T = 762.2583492879487 K, F = -0.00020771556389731494, relative_change = 2.6999243429917744e-9 Iter 105: T = 762.2583430018976 K, F = -8.686912912714284e-5, relative_change = 1.1291406440287607e-9 Iter 110: T = 762.258340372996 K, F = -3.6329706557203245e-5, relative_change = 4.722201010318902e-10 Iter 115: T = 762.2583392735579 K, F = -1.5193517133749168e-5, relative_change = 1.9748808688841142e-10 Iter 120: T = 762.2583388137598 K, F = -6.354109863382362e-6, relative_change = 8.259187081934449e-11 Iter 125: T = 762.2583386214667 K, F = -2.6573636972004877e-6, relative_change = 3.454089466214887e-11 Iter 130: T = 762.2583385410475 K, F = -1.1113410355312325e-6, relative_change = 1.4445412083310242e-11 Iter 135: T = 762.2583385074153 K, F = -4.647769895615994e-7, relative_change = 6.041255499270557e-12 Iter 140: T = 762.2583384933498 K, F = -1.9437559561907847e-7, relative_change = 2.5265292009583906e-12 Iter 145: T = 762.2583384874674 K, F = -8.129032713632967e-8, relative_change = 1.0566263970474728e-12 Iter 150: T = 762.2583384850074 K, F = -3.399629922018477e-8, relative_change = 4.418900553602261e-13 Converged in 154 iterations to T = 762.2583384841195 K Iter 1: T = 964.3133346419554 K, F = -8131.240648612956, relative_change = 0.03568666535804461 Iter 2: T = 930.5515262998089 K, F = -6898.23311113324, relative_change = 0.03501124284948533 Iter 3: T = 898.6835843007143 K, F = -5851.1304955397, relative_change = 0.034246294910516575 Iter 5: T = 840.5162854264144 K, F = -4206.907906640587, relative_change = 0.032422276797111196 Iter 10: T = 726.2606313006028 K, F = -1834.699988891153, relative_change = 0.026040226043252186 Iter 15: T = 652.5106537915094 K, F = -792.2426887384385, relative_change = 0.017843616404655368 Iter 20: T = 610.7833595087499 K, F = -338.24549716962485, relative_change = 0.010233918597891885 Iter 25: T = 589.9297786733745 K, F = -143.06358044331887, relative_change = 0.005078066588846903 Iter 30: T = 580.3799767176145 K, F = -60.156560903150634, relative_change = 0.0023047963550441005 Iter 35: T = 576.215156501954 K, F = -25.219270130198883, relative_change = 0.0009996798140622762 Iter 40: T = 574.4411247340403 K, F = -10.558017341967926, relative_change = 0.00042468374603473163 Iter 45: T = 573.6933730904863 K, F = -4.417441546236686, relative_change = 0.00017879014008566606 Iter 50: T = 573.3796202686199 K, F = -1.8477702363608923, relative_change = 7.498098853629854e-5 Iter 55: T = 573.2482231434502 K, F = -0.7728197865957014, relative_change = 3.139461707345995e-5 Iter 60: T = 573.1932393944747 K, F = -0.32321300470671116, relative_change = 1.3136028819308365e-5 Iter 65: T = 573.1702389485079 K, F = -0.13517338283546013, relative_change = 5.494768681376425e-6 Iter 70: T = 573.1606189099867 K, F = -0.056531445627593935, relative_change = 2.298174628177733e-6 Iter 75: T = 573.1565955240224 K, F = -0.023642182115039295, relative_change = 9.611584904657607e-7 Iter 80: T = 573.1549128660582 K, F = -0.009887452775539818, relative_change = 4.0197397884580456e-7 Iter 85: T = 573.1542091531721 K, F = -0.004135052557183938, relative_change = 1.681113713501249e-7 Iter 90: T = 573.1539148511242 K, F = -0.001729328664002161, relative_change = 7.030636730709789e-8 Iter 95: T = 573.1537917703331 K, F = -0.0007232259518455963, relative_change = 2.940299461853039e-8 Iter 100: T = 573.1537402964484 K, F = -0.00030246173889986183, relative_change = 1.2296689106589211e-8 Iter 105: T = 573.1537187694503 K, F = -0.00012649311349943737, relative_change = 5.142623244249438e-9 Iter 110: T = 573.1537097666017 K, F = -5.29009308293249e-5, relative_change = 2.1507066222302226e-9 Iter 115: T = 573.1537060015027 K, F = -2.2123800459905585e-5, relative_change = 8.994511986876588e-10 Iter 120: T = 573.1537044268933 K, F = -9.252437812801162e-6, relative_change = 3.7616124794824364e-10 Iter 125: T = 573.153703768373 K, F = -3.86948074299065e-6, relative_change = 1.5731515764884026e-10 Iter 130: T = 573.1537034929718 K, F = -1.6182630874772563e-6, relative_change = 6.579107901423518e-11 Iter 135: T = 573.1537033777958 K, F = -6.767766563831046e-7, relative_change = 2.7514603071804184e-11 Iter 140: T = 573.1537033296278 K, F = -2.830368789896731e-7, relative_change = 1.1506968081343875e-11 Iter 145: T = 573.1537033094833 K, F = -1.1836932983788628e-7, relative_change = 4.8123485015259626e-12 Iter 150: T = 573.1537033010586 K, F = -4.950267101788697e-8, relative_change = 2.0125492392108146e-12 Iter 155: T = 573.1537032975353 K, F = -2.070237087314908e-8, relative_change = 8.416624779050984e-13 Iter 160: T = 573.1537032960618 K, F = -8.658360250990427e-9, relative_change = 3.520088104007722e-13 Converged in 163 iterations to T = 573.1537032956304 K Iter 1: T = 963.4960560702493 K, F = -8317.458348608807, relative_change = 0.03650394392975067 Iter 2: T = 928.8654833244278 K, F = -7057.766856722242, relative_change = 0.035942620135952605 Iter 3: T = 896.0744585735792 K, F = -5987.951936817376, relative_change = 0.03530223195880723 Iter 5: T = 835.891382499987 K, F = -4307.89449902109, relative_change = 0.03375481646390367 Iter 10: T = 715.6844692406537 K, F = -1882.9100902372084, relative_change = 0.028100319185770817 Iter 15: T = 635.4614354241797 K, F = -815.5718796176106, relative_change = 0.020223590343939706 Iter 20: T = 588.3018763590295 K, F = -349.3027779476856, relative_change = 0.012182170315468942 Iter 25: T = 563.9628696624086 K, F = -148.082462420041, relative_change = 0.006263051459495955 Iter 30: T = 552.5869137807676 K, F = -62.348776262592224, relative_change = 0.002899816344409677 Iter 35: T = 547.5727435549481 K, F = -26.154943254496647, relative_change = 0.0012698860493050585 Iter 40: T = 545.4264042753867 K, F = -10.952847986813024, relative_change = 0.000541782409120421 Iter 45: T = 544.5197788301967 K, F = -4.583197790264657, relative_change = 0.0002285073129283709 Iter 50: T = 544.1390145726747 K, F = -1.9172035769129012, relative_change = 9.59058237080281e-5 Iter 55: T = 543.9794919772071 K, F = -0.8018773435293752, relative_change = 4.016897449876652e-5 Iter 60: T = 543.912728167281 K, F = -0.33536867564688594, relative_change = 1.6809664385367835e-5 Iter 65: T = 543.8847980658118 K, F = -0.14025763416253656, relative_change = 7.031843965221694e-6 Iter 70: T = 543.8731158450402 K, F = -0.05865784602950652, relative_change = 2.941123340341649e-6 Iter 75: T = 543.8682299351008 K, F = -0.024531486661442947, relative_change = 1.2300692702203988e-6 Iter 80: T = 543.866186542739 K, F = -0.01025937379413347, relative_change = 5.144395178201121e-7 Iter 85: T = 543.8653319635212 K, F = -0.004290594934432512, relative_change = 2.1514647438195544e-7 Iter 90: T = 543.8649745668648 K, F = -0.001794378442362854, relative_change = 8.99771265464592e-8 Iter 95: T = 543.8648250990663 K, F = -0.00075043056425525, relative_change = 3.762956163298197e-8 Iter 100: T = 543.8647625898044 K, F = -0.00031383903590573303, relative_change = 1.5737141274732475e-8 Iter 105: T = 543.864736447677 K, F = -0.000131251234944868, relative_change = 6.581462033637963e-9 Iter 110: T = 543.8647255147258 K, F = -5.4890834812526546e-5, relative_change = 2.7524463296623407e-9 Iter 115: T = 543.8647209424348 K, F = -2.295600250901142e-5, relative_change = 1.1511059650379803e-9 Iter 120: T = 543.864719030248 K, F = -9.600474247750679e-6, relative_change = 4.814062620190238e-10 Iter 125: T = 543.8647182305486 K, F = -4.015032801590879e-6, relative_change = 2.0132984022963532e-10 Iter 130: T = 543.8647178961048 K, F = -1.67913422793875e-6, relative_change = 8.419852178811273e-11 Iter 135: T = 543.8647177562364 K, F = -7.022335325734819e-7, relative_change = 3.521280459972972e-11 Iter 140: T = 543.8647176977419 K, F = -2.936823226273866e-7, relative_change = 1.4726409045819934e-11 Iter 145: T = 543.8647176732786 K, F = -1.228213963866409e-7, relative_change = 6.158757214170589e-12 Iter 150: T = 543.8647176630478 K, F = -5.136531699978519e-8, relative_change = 2.5756629216546344e-12 Iter 155: T = 543.8647176587692 K, F = -2.1481236511800006e-8, relative_change = 1.07715531857889e-12 Iter 160: T = 543.8647176569799 K, F = -8.983834010045655e-9, relative_change = 4.504854541304658e-13 Converged in 165 iterations to T = 543.8647176562316 K Iter 1: T = 969.4927352144546 K, F = -6951.109301287155, relative_change = 0.03050726478554547 Iter 2: T = 941.1307977500229 K, F = -5888.791933448293, relative_change = 0.029254409480601106 Iter 3: T = 914.8742294883393 K, F = -4987.124576423228, relative_change = 0.027898957641653625 Iter 5: T = 868.4865395874544 K, F = -3572.7688272137448, relative_change = 0.02491439308165442 Iter 10: T = 785.1224521040295 K, F = -1540.230254904128, relative_change = 0.016634101934083326 Iter 15: T = 738.8656725903592 K, F = -656.5735249871009, relative_change = 0.009312242165845525 Iter 20: T = 716.1005709265269 K, F = -277.40488730749234, relative_change = 0.004545478661233011 Iter 25: T = 705.7714566582108 K, F = -116.57740040326055, relative_change = 0.0020449048795412768 Iter 30: T = 701.2877042823458 K, F = -48.858915012453124, relative_change = 0.0008832686082794089 Iter 35: T = 699.3818698765334 K, F = -20.452228638821936, relative_change = 0.000374541898099257 Iter 40: T = 698.579303312677 K, F = -8.556701307525469, relative_change = 0.00015755689269720744 Iter 45: T = 698.2426822239909 K, F = -3.579100857852564, relative_change = 6.605429580992299e-5 Iter 50: T = 698.1017312876608 K, F = -1.496925458280697, relative_change = 2.7653153155376928e-5 Iter 55: T = 698.0427537779625 K, F = -0.6260500878455021, relative_change = 1.156986372906086e-5 Iter 60: T = 698.0180834018755 K, F = -0.26182476989573916, relative_change = 4.839527588854814e-6 Iter 65: T = 698.0077650326305 K, F = -0.1094987960174168, relative_change = 2.0241008584017454e-6 Iter 70: T = 698.0034496058665 K, F = -0.045793800451677136, relative_change = 8.4652984892035e-7 Iter 75: T = 698.0016448146054 K, F = -0.01915153107637546, relative_change = 3.5403356202364466e-7 Iter 80: T = 698.000890024405 K, F = -0.008009401955285544, relative_change = 1.480618803586667e-7 Iter 85: T = 698.000574361265 K, F = -0.0033496280653296795, relative_change = 6.19213894480933e-8 Iter 90: T = 698.0004423470189 K, F = -0.0014008545502293135, relative_change = 2.5896289553095774e-8 Iter 95: T = 698.0003871370579 K, F = -0.0005858541162711006, relative_change = 1.0830141888589745e-8 Iter 100: T = 698.0003640475885 K, F = -0.0002450111907914554, relative_change = 4.529295441955217e-9 Iter 105: T = 698.0003543912958 K, F = -0.00010246660669510632, relative_change = 1.8942055819010107e-9 Iter 110: T = 698.0003503529188 K, F = -4.285275935389521e-5, relative_change = 7.921794311536622e-10 Iter 115: T = 698.0003486640212 K, F = -1.7921536129783533e-5, relative_change = 3.312989099021174e-10 Iter 120: T = 698.0003479577041 K, F = -7.4950014129493425e-6, relative_change = 1.3855317935952202e-10 Iter 125: T = 698.0003476623139 K, F = -3.134498889889592e-6, relative_change = 5.7944590513058706e-11 Iter 130: T = 698.0003475387781 K, F = -1.310885465510836e-6, relative_change = 2.423313079406691e-11 Iter 135: T = 698.0003474871139 K, F = -5.482272283918732e-7, relative_change = 1.0134571238070555e-11 Iter 140: T = 698.0003474655074 K, F = -2.2927443754650056e-7, relative_change = 4.238385108200266e-12 Iter 145: T = 698.0003474564712 K, F = -9.588500748947126e-8, relative_change = 1.7725377160097515e-12 Iter 150: T = 698.0003474526924 K, F = -4.0101409415349565e-8, relative_change = 7.413177775836645e-13 Iter 155: T = 698.0003474511119 K, F = -1.6770927091513954e-8, relative_change = 3.100286643509846e-13 Converged in 157 iterations to T = 698.0003474507774 K Iter 1: T = 966.4614877554773 K, F = -7641.781918275842, relative_change = 0.03353851224452268 Iter 2: T = 934.9613202474378 K, F = -6479.235264524193, relative_change = 0.032593298240156346 Iter 3: T = 905.4697967324092 K, F = -5492.14140967807, relative_change = 0.031543041274930586 Iter 5: T = 852.3882919298303 K, F = -3942.6994119875344, relative_change = 0.029122300694958372 Iter 10: T = 752.2214447792503 K, F = -1710.4451952949566, relative_change = 0.0214920217593667 Iter 15: T = 692.1256733173033 K, F = -733.8333915263582, relative_change = 0.01330044363924117 Iter 20: T = 660.5366448299916 K, F = -311.52122544166156, relative_change = 0.006982023286592505 Iter 25: T = 645.5895035691134 K, F = -131.26899818258678, relative_change = 0.003272551357419633 Iter 30: T = 638.9575608107883 K, F = -55.088653593859796, relative_change = 0.001441810386111862 Iter 35: T = 636.1098599857285 K, F = -23.073537929620443, relative_change = 0.0006168117557717539 Iter 40: T = 634.905319392833 K, F = -9.655834267884746, relative_change = 0.0002604590669221193 Iter 45: T = 634.3991388593497 K, F = -4.0392793532275695, relative_change = 0.0001093707761768973 Iter 50: T = 634.1870199090491 K, F = -1.689466888133143, relative_change = 4.581823041064713e-5 Iter 55: T = 634.098234065427 K, F = -0.706588862357068, relative_change = 1.9175419150913653e-5 Iter 60: T = 634.0610895988303 K, F = -0.29550978667152306, relative_change = 8.021785851038541e-6 Iter 65: T = 634.0455530350097 K, F = -0.12358675162102145, relative_change = 3.3552259877478894e-6 Iter 70: T = 634.0390550553448 K, F = -0.0516856355706356, relative_change = 1.403268934989807e-6 Iter 75: T = 634.0363374521315 K, F = -0.02161558155115345, relative_change = 5.868766583157158e-7 Iter 80: T = 634.0352009056792 K, F = -0.009039899857655243, relative_change = 2.454410715247954e-7 Iter 85: T = 634.0347255862224 K, F = -0.003780595041415813, relative_change = 1.026467797749192e-7 Iter 90: T = 634.0345268015718 K, F = -0.0015810901648203868, relative_change = 4.292817782077349e-8 Iter 95: T = 634.034443667391 K, F = -0.0006612308180821147, relative_change = 1.7953088628758192e-8 Iter 100: T = 634.0344088996721 K, F = -0.0002765346298144178, relative_change = 7.508198163712767e-9 Iter 105: T = 634.034394359395 K, F = -0.00011565008558184209, relative_change = 3.140018505416181e-9 Iter 110: T = 634.0343882784771 K, F = -4.8366247812237084e-5, relative_change = 1.313193322241159e-9 Iter 115: T = 634.0343857353644 K, F = -2.022734101508883e-5, relative_change = 5.491931017281583e-10 Iter 120: T = 634.0343846718043 K, F = -8.459314804365459e-6, relative_change = 2.296790947234091e-10 Iter 125: T = 634.0343842270108 K, F = -3.537786737339843e-6, relative_change = 9.605454775737811e-11 Iter 130: T = 634.0343840409929 K, F = -1.4795436490411262e-6, relative_change = 4.0171131514083176e-11 Iter 135: T = 634.034383963198 K, F = -6.187631053644616e-7, relative_change = 1.6800054606221114e-11 Iter 140: T = 634.0343839306632 K, F = -2.587740938753136e-7, relative_change = 7.02598275681297e-12 Iter 145: T = 634.0343839170567 K, F = -1.0822157275880429e-7, relative_change = 2.9383269894187964e-12 Iter 150: T = 634.0343839113664 K, F = -4.525949121036987e-8, relative_change = 1.228841728745399e-12 Iter 155: T = 634.0343839089866 K, F = -1.8927376443933497e-8, relative_change = 5.138977343400795e-13 Converged in 160 iterations to T = 634.0343839079914 K Iter 1: T = 966.4249381645823 K, F = -7650.109777328923, relative_change = 0.033575061835417766 Iter 2: T = 934.8865531209602 K, F = -6486.360336491083, relative_change = 0.032634076168935745 Iter 3: T = 905.3551891588654 K, F = -5498.241741163871, relative_change = 0.03158817918977373 Iter 5: T = 852.1896245641667 K, F = -3947.180226760877, relative_change = 0.029176121780287376 Iter 10: T = 751.7998705808045 K, F = -1712.5319991313838, relative_change = 0.021560505967713254 Iter 15: T = 691.5041314842553 K, F = -734.7976970527582, relative_change = 0.013362498385165998 Iter 20: T = 659.7778519402818 K, F = -311.9542150217631, relative_change = 0.007022788392861478 Iter 25: T = 644.7553441608986 K, F = -131.45748706673373, relative_change = 0.003293957185288735 Iter 30: T = 638.0874374247844 K, F = -55.16902804181095, relative_change = 0.00145174678584841 Iter 35: T = 635.2237787425279 K, F = -23.107444600681625, relative_change = 0.000621160566847795 Iter 40: T = 634.0123916695363 K, F = -9.670067537311951, relative_change = 0.0002623133403662357 Iter 45: T = 633.5033166746088 K, F = -4.045241302227591, relative_change = 0.00011015260713770538 Iter 50: T = 633.289981698488 K, F = -1.6919619053607646, relative_change = 4.614632239776538e-5 Iter 55: T = 633.2006863261076 K, F = -0.707632599275513, relative_change = 1.93128279326405e-5 Iter 60: T = 633.1633285980506 K, F = -0.29594634085373994, relative_change = 8.079286318517474e-6 Iter 65: T = 633.1477028158993 K, F = -0.12376933270613233, relative_change = 3.379279403445534e-6 Iter 70: T = 633.1411675188417 K, F = -0.05176199472177817, relative_change = 1.4133294162969656e-6 Iter 75: T = 633.1384343081357 K, F = -0.02164751613367155, relative_change = 5.910842564086762e-7 Iter 80: T = 633.1372912342837 K, F = -0.009053255328826615, relative_change = 2.472007715829513e-7 Iter 85: T = 633.1368131849625 K, F = -0.0037861804691695644, relative_change = 1.0338271305381849e-7 Iter 90: T = 633.1366132586452 K, F = -0.0015834260587121451, relative_change = 4.3235954890560934e-8 Iter 95: T = 633.1365296470047 K, F = -0.0006622077171550278, relative_change = 1.8081804850304053e-8 Iter 100: T = 633.1364946796065 K, F = -0.00027694318023502307, relative_change = 7.56202884175911e-9 Iter 105: T = 633.1364800558209 K, F = -0.00011582094696160894, relative_change = 3.162531162433834e-9 Iter 110: T = 633.1364739399788 K, F = -4.843770312984441e-5, relative_change = 1.3226083592680148e-9 Iter 115: T = 633.1364713822605 K, F = -2.0257226148290286e-5, relative_change = 5.531306280728437e-10 Iter 120: T = 633.1364703125922 K, F = -8.471814630095498e-6, relative_change = 2.313258562969321e-10 Iter 125: T = 633.1364698652442 K, F = -3.543014297779923e-6, relative_change = 9.674324272296053e-11 Iter 130: T = 633.1364696781579 K, F = -1.4817318998994189e-6, relative_change = 4.045920704689552e-11 Iter 135: T = 633.136469599916 K, F = -6.196763526200577e-7, relative_change = 1.6920479250782725e-11 Iter 140: T = 633.1364695671945 K, F = -2.591567596077482e-7, relative_change = 7.076365841913241e-12 Iter 145: T = 633.1364695535099 K, F = -1.0838213448938205e-7, relative_change = 2.95941203931577e-12 Iter 150: T = 633.1364695477868 K, F = -4.532658925970878e-8, relative_change = 1.2376583520341832e-12 Iter 155: T = 633.1364695453933 K, F = -1.895619528013981e-8, relative_change = 5.176055334155313e-13 Converged in 160 iterations to T = 633.1364695443924 K Iter 1: T = 976.4207577689095 K, F = -5372.552772003783, relative_change = 0.02357924223109045 Iter 2: T = 955.0035007011058 K, F = -4542.868417304042, relative_change = 0.02193445489293101 Iter 3: T = 935.6567260827021 K, F = -3839.5732266925193, relative_change = 0.020258328481728653 Iter 5: T = 902.7541669189551 K, F = -2738.950168817538, relative_change = 0.016905211422450238 Iter 10: T = 848.5576605558427 K, F = -1167.9730445654527, relative_change = 0.009515186578230615 Iter 15: T = 821.7943110356517 K, F = -493.5896274057508, relative_change = 0.004661305363421729 Iter 20: T = 809.6265101155558 K, F = -207.4538175050485, relative_change = 0.0021010448193476508 Iter 25: T = 804.3392682618903 K, F = -86.9514524205906, relative_change = 0.0009083344489234078 Iter 30: T = 802.0908780687873 K, F = -36.39863507800711, relative_change = 0.0003853232284169092 Iter 35: T = 801.1438697348068 K, F = -15.228450720316934, relative_change = 0.000162119623652782 Iter 40: T = 800.7466318443079 K, F = -6.369793477519439, relative_change = 6.797202679940248e-5 Iter 45: T = 800.5802933676152 K, F = -2.664111863270417, relative_change = 2.8456849330068488e-5 Iter 50: T = 800.5106920203083 K, F = -1.1141963359393645, relative_change = 1.1906273258002962e-5 Iter 55: T = 800.4815774965092 K, F = -0.4659759770605021, relative_change = 4.980269575286465e-6 Iter 60: T = 800.4694003335492 K, F = -0.19487772662682967, relative_change = 2.0829698496676437e-6 Iter 65: T = 800.4643075024064 K, F = -0.08150036892127133, relative_change = 8.711511405076936e-7 Iter 70: T = 800.4621775852894 K, F = -0.034084458434816556, relative_change = 3.643307559320972e-7 Iter 75: T = 800.4612868225132 K, F = -0.014254532962140187, relative_change = 1.5236833807824153e-7 Iter 80: T = 800.4609142938327 K, F = -0.0059614168608022045, relative_change = 6.372240990388334e-8 Iter 85: T = 800.4607584977061 K, F = -0.002493135891221021, relative_change = 2.6649499295092335e-8 Iter 90: T = 800.4606933418733 K, F = -0.0010426592317445138, relative_change = 1.1145143482958358e-8 Iter 95: T = 800.4606660929203 K, F = -0.0004360525488885658, relative_change = 4.661032927347205e-9 Iter 100: T = 800.4606546970817 K, F = -0.00018236238375379799, relative_change = 1.949299769417203e-9 Iter 105: T = 800.4606499312058 K, F = -7.626612862321469e-5, relative_change = 8.152204862307179e-10 Iter 110: T = 800.4606479380594 K, F = -3.1895406494397704e-5, relative_change = 3.4093495459319017e-10 Iter 115: T = 800.4606471045018 K, F = -1.33390392184074e-5, relative_change = 1.425830629746503e-10 Iter 120: T = 800.4606467558981 K, F = -5.578546176332466e-6, relative_change = 5.962994705935685e-11 Iter 125: T = 800.4606466101079 K, F = -2.3330146842193145e-6, relative_change = 2.493795656286936e-11 Iter 130: T = 800.4606465491366 K, F = -9.756941449223788e-7, relative_change = 1.0429346363795651e-11 Iter 135: T = 800.4606465236377 K, F = -4.0804541645567127e-7, relative_change = 4.361660878224757e-12 Iter 140: T = 800.4606465129738 K, F = -1.7064859714199798e-7, relative_change = 1.824089378556373e-12 Iter 145: T = 800.4606465085142 K, F = -7.13700204491019e-8, relative_change = 7.628852415568533e-13 Iter 150: T = 800.460646506649 K, F = -2.9848695959344695e-8, relative_change = 3.1905735046823743e-13 Converged in 153 iterations to T = 800.4606465061029 K Iter 1: T = 965.2457770839186 K, F = -7918.782751229893, relative_change = 0.03475422291608139 Iter 2: T = 932.4695445767113 K, F = -6716.302201397993, relative_change = 0.033956359390897035 Iter 3: T = 901.6418998355236 K, F = -5695.1924201781, relative_change = 0.03306021619738975 Iter 5: T = 845.7190783980029 K, F = -4092.0082516137345, relative_change = 0.030954970313934557 Iter 10: T = 737.8368335148369 K, F = -1780.349898525, relative_change = 0.02392670726960769 Iter 15: T = 670.5314458509015 K, F = -766.4259864618618, relative_change = 0.015620806421958967 Iter 20: T = 633.7925587947673 K, F = -326.29426423297485, relative_change = 0.00857245174748221 Iter 25: T = 615.9346160358234 K, F = -137.74293337843974, relative_change = 0.0041301931068186805 Iter 30: T = 607.8906382467848 K, F = -57.859236314199386, relative_change = 0.0018453811941558965 Iter 35: T = 604.4113542581282 K, F = -24.244326718894015, relative_change = 0.0007945485258029493 Iter 40: T = 602.934868105774 K, F = -10.147674702072994, relative_change = 0.00033645030612107924 Iter 45: T = 602.3135401866316 K, F = -4.245364778021909, relative_change = 0.00014144868151599183 Iter 50: T = 602.0530136283375 K, F = -1.7757233107432926, relative_change = 5.928615965559099e-5 Iter 55: T = 601.9439388542033 K, F = -0.742674439636136, relative_change = 2.481710178512975e-5 Iter 60: T = 601.8983015469727 K, F = -0.31060332699546495, relative_change = 1.0382822835784492e-5 Iter 65: T = 601.8792118156649 K, F = -0.129899421592505, relative_change = 4.342923044324438e-6 Iter 70: T = 601.8712276209255 K, F = -0.05432573447267386, relative_change = 1.8163851861206731e-6 Iter 75: T = 601.8678884231846 K, F = -0.022719713798386776, relative_change = 7.596554750391313e-7 Iter 80: T = 601.8664919111948 K, F = -0.009501663134447225, relative_change = 3.177007519632079e-7 Iter 85: T = 601.8659078697721 K, F = -0.003973710306956091, relative_change = 1.328669062670841e-7 Iter 90: T = 601.8656636160741 K, F = -0.0016618533359286647, relative_change = 5.556664199983282e-8 Iter 95: T = 601.8655614661557 K, F = -0.0006950069515384016, relative_change = 2.3238653396410714e-8 Iter 100: T = 601.8655187458215 K, F = -0.00029066021436829903, relative_change = 9.718685900126167e-9 Iter 105: T = 601.8655008796644 K, F = -0.0001215575743955255, relative_change = 4.064471134653425e-9 Iter 110: T = 601.8654934078235 K, F = -5.083682921053212e-5, relative_change = 1.6998104654809628e-9 Iter 115: T = 601.8654902830103 K, F = -2.126056865237036e-5, relative_change = 7.108810394331219e-10 Iter 120: T = 601.8654889761762 K, F = -8.891424042367646e-6, relative_change = 2.9729895441506765e-10 Iter 125: T = 601.8654884296424 K, F = -3.7184987505267664e-6, relative_change = 1.2433394133909141e-10 Iter 130: T = 601.8654882010756 K, F = -1.5551203906838396e-6, relative_change = 5.199793270139196e-11 Iter 135: T = 601.8654881054861 K, F = -6.503698347648523e-7, relative_change = 2.174615362725612e-11 Iter 140: T = 601.8654880655095 K, F = -2.7199232432995046e-7, relative_change = 9.094497555106541e-12 Iter 145: T = 601.8654880487908 K, F = -1.1375068620367301e-7, relative_change = 3.80343577803638e-12 Iter 150: T = 601.8654880417988 K, F = -4.757144034250871e-8, relative_change = 1.5906270481521352e-12 Iter 155: T = 601.8654880388747 K, F = -1.9894943137366283e-8, relative_change = 6.652191829516224e-13 Iter 160: T = 601.8654880376519 K, F = -8.320913014170372e-9, relative_change = 2.7822300966295904e-13 Converged in 162 iterations to T = 601.8654880373931 K Iter 1: T = 964.6010771384265 K, F = -8065.678247078241, relative_change = 0.03539892286157351 Iter 2: T = 931.1440438429528 K, F = -6842.0815954869495, relative_change = 0.034684839244350604 Iter 3: T = 899.5985793356308 K, F = -5802.991043421462, relative_change = 0.0338781789089578 Iter 5: T = 842.1300997726719 K, F = -4171.415258265367, relative_change = 0.031963575497340385 Iter 10: T = 729.8865022765231 K, F = -1817.8563223925364, relative_change = 0.025362784647350395 Iter 15: T = 658.222645932542 K, F = -784.1913762652815, relative_change = 0.017108357079202774 Iter 20: T = 618.1531733761263 K, F = -334.4900503847887, relative_change = 0.009668379545427559 Iter 25: T = 598.3156972747718 K, F = -141.38174571994557, relative_change = 0.004749209179017685 Iter 30: T = 589.2829615077761 K, F = -59.42789808522284, relative_change = 0.002143778101525408 Iter 35: T = 585.354993939304 K, F = -24.90952384241449, relative_change = 0.0009274414933239735 Iter 40: T = 583.6840530304893 K, F = -10.427551669520277, relative_change = 0.00039354672915191646 Iter 45: T = 582.980156912636 K, F = -4.362713393490369, relative_change = 0.0001656008021505649 Iter 50: T = 582.6848774798441 K, F = -1.824852970115621, relative_change = 6.943534432451056e-5 Iter 55: T = 582.5612295249526 K, F = -0.7632303661097375, relative_change = 2.907013605120934e-5 Iter 60: T = 582.5094906756971 K, F = -0.3192016928993553, relative_change = 1.2162986725069778e-5 Iter 65: T = 582.4878480044895 K, F = -0.13349564651883997, relative_change = 5.087670416280426e-6 Iter 70: T = 582.4787959294143 K, F = -0.05582976865284622, relative_change = 2.1278931984771905e-6 Iter 75: T = 582.475010094559 K, F = -0.023348727594857233, relative_change = 8.899398520205125e-7 Iter 80: T = 582.4734267871563 K, F = -0.009764725745719682, relative_change = 3.721886347184062e-7 Iter 85: T = 582.4727646245349 K, F = -0.004083726499625739, relative_change = 1.5565463447135618e-7 Iter 90: T = 582.4724876994218 K, F = -0.001707863467533044, relative_change = 6.509678488694253e-8 Iter 95: T = 582.4723718858929 K, F = -0.0007142489465069568, relative_change = 2.722428046716269e-8 Iter 100: T = 582.4723234512677 K, F = -0.000298707448006974, relative_change = 1.1385524054786648e-8 Iter 105: T = 582.4723031953248 K, F = -0.00012492302466343697, relative_change = 4.761563018522116e-9 Iter 110: T = 582.4722947240467 K, F = -5.224430058037299e-5, relative_change = 1.991342648538964e-9 Iter 115: T = 582.472291181257 K, F = -2.1849191230882692e-5, relative_change = 8.328033318605108e-10 Iter 120: T = 582.4722896996201 K, F = -9.137593357244622e-6, relative_change = 3.482883281510806e-10 Iter 125: T = 582.4722890799816 K, F = -3.8214502874889256e-6, relative_change = 1.4565832451141905e-10 Iter 130: T = 582.4722888208415 K, F = -1.5981760109196053e-6, relative_change = 6.091604574318014e-11 Iter 135: T = 582.472288712466 K, F = -6.683765399473351e-7, relative_change = 2.5475827217390584e-11 Iter 140: T = 582.472288667142 K, F = -2.7952270331699225e-7, relative_change = 1.065428193551021e-11 Iter 145: T = 582.472288648187 K, F = -1.1689947965187741e-7, relative_change = 4.4557382986743296e-12 Iter 150: T = 582.4722886402599 K, F = -4.888890353660358e-8, relative_change = 1.863448498924567e-12 Iter 155: T = 582.4722886369445 K, F = -2.0445461546003685e-8, relative_change = 7.792988157369452e-13 Iter 160: T = 582.472288635558 K, F = -8.55020437784404e-9, relative_change = 3.2589942423386447e-13 Converged in 163 iterations to T = 582.472288635152 K Iter 1: T = 964.3588009647497 K, F = -8120.881103714637, relative_change = 0.03564119903525031 Iter 2: T = 930.6451881082107 K, F = -6889.360024396745, relative_change = 0.03495961546968999 Iter 3: T = 898.8282876204661 K, F = -5843.522858231179, relative_change = 0.03418800300512069 Iter 5: T = 840.7717819839816 K, F = -4201.297559820594, relative_change = 0.032349440847859234 Iter 10: T = 726.8368377534167 K, F = -1832.034135506929, relative_change = 0.025931607881793186 Iter 15: T = 653.422694118394 K, F = -790.9651917700978, relative_change = 0.01772422054601539 Iter 20: T = 611.9651911478077 K, F = -337.64774615270096, relative_change = 0.010140968938610908 Iter 25: T = 591.2784164983773 K, F = -142.79520395876736, relative_change = 0.005023565219686083 Iter 30: T = 581.8139541145191 K, F = -60.040111420141095, relative_change = 0.0022779897012439043 Iter 35: T = 577.6883327223667 K, F = -25.16973236853492, relative_change = 0.000987627594989671 Iter 40: T = 575.9313838513455 K, F = -10.537145060154375, relative_change = 0.00041948392797841504 Iter 45: T = 575.1909033703117 K, F = -4.408684728809575, relative_change = 0.00017658665325051635 Iter 50: T = 574.8802141161251 K, F = -1.844103121518709, relative_change = 7.405434234417927e-5 Iter 55: T = 574.7501022149249 K, F = -0.7712852930088008, relative_change = 3.100618129536692e-5 Iter 60: T = 574.695656664855 K, F = -0.32257111005914807, relative_change = 1.2973422300322691e-5 Iter 65: T = 574.6728814232326 K, F = -0.13490490837893912, relative_change = 5.426737022591128e-6 Iter 70: T = 574.663355589409 K, F = -0.05641916177643563, relative_change = 2.2697181342263467e-6 Iter 75: T = 574.6593716047444 K, F = -0.023595222858207393, relative_change = 9.492567978665211e-7 Iter 80: T = 574.657705425534 K, F = -0.009867813711972317, relative_change = 3.9699640071506605e-7 Iter 85: T = 574.6570086043747 K, F = -0.004126839241319347, relative_change = 1.6602966281150757e-7 Iter 90: T = 574.6567171845496 K, F = -0.001725893753449892, relative_change = 6.943576742586429e-8 Iter 95: T = 574.6565953091421 K, F = -0.0007217894315176832, relative_change = 2.9038898600682868e-8 Iter 100: T = 574.6565443393636 K, F = -0.0003018609686818996, relative_change = 1.2144419660108903e-8 Iter 105: T = 574.6565230231888 K, F = -0.00012624186294341033, relative_change = 5.078942268370698e-9 Iter 110: T = 574.6565141085091 K, F = -5.279585524547992e-5, relative_change = 2.1240744896608167e-9 Iter 115: T = 574.6565103802835 K, F = -2.2079857238233025e-5, relative_change = 8.883133481903473e-10 Iter 120: T = 574.656508821095 K, F = -9.234060590612714e-6, relative_change = 3.715032800300507e-10 Iter 125: T = 574.6565081690237 K, F = -3.861793948900516e-6, relative_change = 1.553670904028594e-10 Iter 130: T = 574.6565078963197 K, F = -1.6150480510179754e-6, relative_change = 6.497636084023221e-11 Iter 135: T = 574.6565077822715 K, F = -6.754318991331054e-7, relative_change = 2.7173870656591888e-11 Iter 140: T = 574.6565077345753 K, F = -2.824726858530191e-7, relative_change = 1.1364396976623314e-11 Iter 145: T = 574.6565077146282 K, F = -1.1813394540372002e-7, relative_change = 4.752746440422357e-12 Iter 150: T = 574.6565077062861 K, F = -4.940500397676573e-8, relative_change = 1.987654403680485e-12 Iter 155: T = 574.6565077027973 K, F = -2.0661587329939834e-8, relative_change = 8.312537544554076e-13 Iter 160: T = 574.6565077013383 K, F = -8.641314386270693e-9, relative_change = 3.4765601076036887e-13 Converged in 163 iterations to T = 574.6565077009111 K Iter 1: T = 980.0097323295943 K, F = -4554.801504355613, relative_change = 0.019990267670405786 Iter 2: T = 962.0688690161494 K, F = -3847.59288548469, relative_change = 0.018306821576962763 Iter 3: T = 946.0574538520492 K, F = -3248.675212244105, relative_change = 0.0166426912664518 Iter 5: T = 919.3027049740392 K, F = -2312.826899797195, relative_change = 0.013461719213702296 Iter 10: T = 876.7720686990518 K, F = -982.0178760358261, relative_change = 0.007088268276172388 Iter 15: T = 856.6110109529725 K, F = -413.8530801629537, relative_change = 0.0033284282051452138 Iter 20: T = 847.6568013327966 K, F = -173.68906150794555, relative_change = 0.00146776753801255 Iter 25: T = 843.8101223791435 K, F = -72.75057962590253, relative_change = 0.0006281761187668905 Iter 30: T = 842.1826865870805 K, F = -30.445089503845182, relative_change = 0.00026530537953432337 Iter 35: T = 841.4987327254958 K, F = -12.736014485661947, relative_change = 0.00011141428831719414 Iter 40: T = 841.2121055958874 K, F = -5.326970187843822, relative_change = 4.667580363012071e-5 Iter 45: T = 841.0921312296626 K, F = -2.227910591767266, relative_change = 1.9534584790280887e-5 Iter 50: T = 841.0419383905733 K, F = -0.9317577243959976, relative_change = 8.172084002201698e-6 Iter 55: T = 841.0209439734703 K, F = -0.3896755157015027, relative_change = 3.4180983595930535e-6 Iter 60: T = 841.012163302512 K, F = -0.1629675329502145, relative_change = 1.4295656917392806e-6 Iter 65: T = 841.0084910239735 K, F = -0.0681550697094262, relative_change = 5.978747623051814e-7 Iter 70: T = 841.0069552162524 K, F = -0.028503281789701518, relative_change = 2.5004069499802e-7 Iter 75: T = 841.0063129201523 K, F = -0.01192041593927784, relative_change = 1.0457041215412229e-7 Iter 80: T = 841.0060443037331 K, F = -0.00498526084484241, relative_change = 4.373266643398778e-8 Iter 85: T = 841.0059319650479 K, F = -0.002084895716232271, relative_change = 1.82895358406472e-8 Iter 90: T = 841.0058849836522 K, F = -0.0008719283030078628, relative_change = 7.648904482770644e-9 Iter 95: T = 841.0058653354687 K, F = -0.0003646508318504438, relative_change = 3.1988635797518347e-9 Iter 100: T = 841.0058571183632 K, F = -0.0001525013336489689, relative_change = 1.3378030218440415e-9 Iter 105: T = 841.0058536818715 K, F = -6.377787963729453e-5, relative_change = 5.594852171061004e-10 Iter 110: T = 841.0058522446897 K, F = -2.667267223377401e-5, relative_change = 2.3398341277259267e-10 Iter 115: T = 841.005851643643 K, F = -1.1154830023007989e-5, relative_change = 9.785465751939442e-11 Iter 120: T = 841.0058513922783 K, F = -4.665086460464707e-6, relative_change = 4.092401565915372e-11 Iter 125: T = 841.0058512871543 K, F = -1.9509936386441495e-6, relative_change = 1.7114901287027273e-11 Iter 130: T = 841.0058512431902 K, F = -8.159274513808157e-7, relative_change = 7.1576439382646405e-12 Iter 135: T = 841.005851224804 K, F = -3.412313309691939e-7, relative_change = 2.993418549380222e-12 Iter 140: T = 841.0058512171146 K, F = -1.427063809344986e-7, relative_change = 1.2518777997598646e-12 Iter 145: T = 841.0058512138988 K, F = -5.968055805105621e-8, relative_change = 5.235418711728808e-13 Converged in 150 iterations to T = 841.0058512125539 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 1 ray tracing: 17%|█████ | ETA: 0:00:11 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 1 ray tracing: 32%|█████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 41%|████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 2 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 2 ray tracing: 23%|██████▊ | ETA: 0:00:11 Bin 2 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 2 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 2 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▎ | ETA: 0:00:14 Bin 3 ray tracing: 14%|████▍ | ETA: 0:00:13 Bin 3 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 3 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 4 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 5 ray tracing: 29%|████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 51%|███████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 66%|███████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 7 ray tracing: 33%|█████████▊ | ETA: 0:00:09 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 56%|█████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 8 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 8 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 8 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 8 ray tracing: 51%|███████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 9 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 9 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 9 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 9 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|█▉ | ETA: 0:00:14 Bin 10 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 10 ray tracing: 20%|█████▊ | ETA: 0:00:12 Bin 10 ray tracing: 27%|███████▊ | ETA: 0:00:11 Bin 10 ray tracing: 33%|█████████▋ | ETA: 0:00:10 Bin 10 ray tracing: 41%|███████████▊ | ETA: 0:00:09 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:08 Bin 10 ray tracing: 56%|████████████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 63%|██████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 86%|█████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2086977392393 K, F = -7471.529412695485, relative_change = 0.0327913022607607 Iter 2: T = 936.4878556487421 K, F = -6333.602137443864, relative_change = 0.031762371618766806 Iter 3: T = 907.8063994962647 K, F = -5367.48573798394, relative_change = 0.030626618358663767 Iter 5: T = 856.4253639090933 K, F = -3851.20283206769, relative_change = 0.028038751572951756 Iter 10: T = 760.7010585475808 K, F = -1667.9739236485518, relative_change = 0.020149675665185093 Iter 15: T = 704.494720092954 K, F = -714.3096901329366, relative_change = 0.012119020844162547 Iter 20: T = 675.5164336447608 K, F = -302.7997454879111, relative_change = 0.006223381491080777 Iter 25: T = 661.9812275446824 K, F = -127.48548513559501, relative_change = 0.002879524993582168 Iter 30: T = 656.0174619664951 K, F = -53.47825185137126, relative_change = 0.0012605883334626726 Iter 35: T = 653.4650718122781 K, F = -22.39475192083621, relative_change = 0.0005377368622290572 Iter 40: T = 652.3870077267275 K, F = -9.371000736111512, relative_change = 0.00022678670255176436 Iter 45: T = 651.9342569861253 K, F = -3.919988832467654, relative_change = 9.518112747660133e-5 Iter 50: T = 651.7445779085227 K, F = -1.6395483070017653, relative_change = 3.9864995985182366e-5 Iter 55: T = 651.6651933725933 K, F = -0.6857070801084716, relative_change = 1.6682378680108714e-5 Iter 60: T = 651.6319835698137 K, F = -0.2867758593267332, relative_change = 6.978583845135934e-6 Iter 65: T = 651.6180930413913 K, F = -0.11993395851286137, relative_change = 2.9188444713569867e-6 Iter 70: T = 651.6122835429717 K, F = -0.05015796581410492, relative_change = 1.220751132552006e-6 Iter 75: T = 651.6098538865082 K, F = -0.02097668690691179, relative_change = 5.105424128964904e-7 Iter 80: T = 651.6088377655664 K, F = -0.00877270562962107, relative_change = 2.1351663264258125e-7 Iter 85: T = 651.6084128099757 K, F = -0.0036688510750627623, relative_change = 8.929550273350654e-8 Iter 90: T = 651.6082350881793 K, F = -0.0015343574776165436, relative_change = 3.734449762283172e-8 Iter 95: T = 651.6081607627502 K, F = -0.0006416866456253056, relative_change = 1.5617923968478308e-8 Iter 100: T = 651.6081296789591 K, F = -0.0002683610228011446, relative_change = 6.531603907740644e-9 Iter 105: T = 651.608116679345 K, F = -0.00011223178483649177, relative_change = 2.7315950222078883e-9 Iter 110: T = 651.6081112427509 K, F = -4.693667295885273e-5, relative_change = 1.1423857109031008e-9 Iter 115: T = 651.6081089691022 K, F = -1.9629477302773868e-5, relative_change = 4.777593583459251e-10 Iter 120: T = 651.6081080182352 K, F = -8.209282227611414e-6, relative_change = 1.9980468029267835e-10 Iter 125: T = 651.6081076205712 K, F = -3.433220007120763e-6, relative_change = 8.356070712042315e-11 Iter 130: T = 651.6081074542634 K, F = -1.4358136541381405e-6, relative_change = 3.494608680186204e-11 Iter 135: T = 651.6081073847114 K, F = -6.004741096576893e-7, relative_change = 1.4614863362354853e-11 Iter 140: T = 651.6081073556239 K, F = -2.5112420670714286e-7, relative_change = 6.112080287486327e-12 Iter 145: T = 651.6081073434592 K, F = -1.0502270791912238e-7, relative_change = 2.5561343977346573e-12 Iter 150: T = 651.6081073383718 K, F = -4.392123958973926e-8, relative_change = 1.068993492313192e-12 Iter 155: T = 651.6081073362443 K, F = -1.83685197607808e-8, relative_change = 4.470690780000993e-13 Converged in 160 iterations to T = 651.6081073353544 K Iter 1: T = 970.3793758250044 K, F = -6749.08739476041, relative_change = 0.029620624174995603 Iter 2: T = 942.9237564924359 K, F = -5716.265376989071, relative_change = 0.02829369627649605 Iter 3: T = 917.5881692709949 K, F = -4839.746762715144, relative_change = 0.026869179026400212 Iter 5: T = 873.0599835425136 K, F = -3465.17642098719, relative_change = 0.02377279547920294 Iter 10: T = 794.0593287343562 K, F = -1491.4058848267434, relative_change = 0.015467140092388892 Iter 15: T = 751.043178252866 K, F = -634.8213861986541, relative_change = 0.008462867831927292 Iter 20: T = 730.1723358993144 K, F = -267.95202690337766, relative_change = 0.0040696081345727615 Iter 25: T = 720.7811602914549 K, F = -112.54647269754075, relative_change = 0.0018165052924307655 Iter 30: T = 716.7212746603791 K, F = -47.15807504747519, relative_change = 0.0007817563108328017 Iter 35: T = 714.9988029921533 K, F = -19.738160498570977, relative_change = 0.00033096697888074537 Iter 40: T = 714.2740335013517 K, F = -8.257577854945337, relative_change = 0.00013913150057304227 Iter 45: T = 713.9701462180224 K, F = -3.4539171594547775, relative_change = 5.831284295190547e-5 Iter 50: T = 713.8429198697011 K, F = -1.444556924390597, relative_change = 2.4409303257775292e-5 Iter 55: T = 713.7896882736337 K, F = -0.6041462763667356, relative_change = 1.0212145906603309e-5 Iter 60: T = 713.767421980304 K, F = -0.25266386792219625, relative_change = 4.271521032749347e-6 Iter 65: T = 713.7581092149624 K, F = -0.10566751580951039, relative_change = 1.7865200087437518e-6 Iter 70: T = 713.7542143766115 K, F = -0.04419149903936481, relative_change = 7.471648008972936e-7 Iter 75: T = 713.7525854861939 K, F = -0.01848142699333566, relative_change = 3.1247688039641726e-7 Iter 80: T = 713.7519042608321 K, F = -0.0077291559915161345, relative_change = 1.3068219938807319e-7 Iter 85: T = 713.7516193635618 K, F = -0.0032324257793308053, relative_change = 5.465296772968322e-8 Iter 90: T = 713.7515002160005 K, F = -0.0013518391400330065, relative_change = 2.2856543246422472e-8 Iter 95: T = 713.7514503870465 K, F = -0.0005653552864408606, relative_change = 9.558882759492044e-9 Iter 100: T = 713.7514295479791 K, F = -0.0002364383347551735, relative_change = 3.997639520050946e-9 Iter 105: T = 713.7514208328316 K, F = -9.88813363489438e-5, relative_change = 1.671860704710287e-9 Iter 110: T = 713.7514171880528 K, F = -4.1353356427742405e-5, relative_change = 6.991921413395574e-10 Iter 115: T = 713.7514156637626 K, F = -1.7294466980399825e-5, relative_change = 2.92410497450979e-10 Iter 120: T = 713.7514150262864 K, F = -7.232752877173176e-6, relative_change = 1.2228956683918083e-10 Iter 125: T = 713.7514147596862 K, F = -3.0248248250597243e-6, relative_change = 5.1142977585507754e-11 Iter 130: T = 713.7514146481908 K, F = -1.2650173257799935e-6, relative_change = 2.1388594886477516e-11 Iter 135: T = 713.751414601562 K, F = -5.290459154094762e-7, relative_change = 8.944975324809494e-12 Iter 140: T = 713.7514145820614 K, F = -2.2125376031301158e-7, relative_change = 3.7409029521508255e-12 Iter 145: T = 713.751414573906 K, F = -9.253120392127556e-8, relative_change = 1.5644943319575502e-12 Iter 150: T = 713.7514145704952 K, F = -3.8696950865890756e-8, relative_change = 6.542783161733312e-13 Iter 155: T = 713.7514145690689 K, F = -1.6183413831249993e-8, relative_change = 2.73625092277757e-13 Converged in 157 iterations to T = 713.751414568767 K Iter 1: T = 974.3930709898915 K, F = -5834.563133431128, relative_change = 0.025606929010108533 Iter 2: T = 950.9755300633117 K, F = -4936.27716946385, relative_change = 0.024032950996654565 Iter 3: T = 929.6728212450084 K, F = -4174.487413264349, relative_change = 0.02240090112190894 Iter 5: T = 893.0592368794737 K, F = -2981.400772753367, relative_change = 0.019046866007289494 Iter 10: T = 831.3687488614402 K, F = -1274.9109360878517, relative_change = 0.011195940561820569 Iter 15: T = 800.0426817730926 K, F = -539.8465526251293, relative_change = 0.005652938112574785 Iter 20: T = 785.5536138330062 K, F = -227.14345008950048, relative_change = 0.002590539848851162 Iter 25: T = 779.2023215396672 K, F = -95.25380159527079, relative_change = 0.0011287985530701653 Iter 30: T = 776.4905760224498 K, F = -39.88330645578995, relative_change = 0.0004805156594469228 Iter 35: T = 775.3464059113167 K, F = -16.688024397929436, relative_change = 0.00020247233976433226 Iter 40: T = 774.8661080598789 K, F = -6.980600674988739, relative_change = 8.494425925930806e-5 Iter 45: T = 774.6649261892883 K, F = -2.9196282825182958, relative_change = 3.557177915683128e-5 Iter 50: T = 774.5807341788465 K, F = -1.2210685400641288, relative_change = 1.4884792443457032e-5 Iter 55: T = 774.5455143825089 K, F = -0.5106733420334475, relative_change = 6.2264419978264195e-6 Iter 60: T = 774.530783347073 K, F = -0.21357107160939626, relative_change = 2.6042250521606176e-6 Iter 65: T = 774.5246223554363 K, F = -0.08931821430880993, relative_change = 1.089162212587324e-6 Iter 70: T = 774.5220457032605 K, F = -0.037353986158760066, relative_change = 4.5550837476725214e-7 Iter 75: T = 774.5209681074718 K, F = -0.015621890498938695, relative_change = 1.9050039424910426e-7 Iter 80: T = 774.5205174424565 K, F = -0.0065332624629509395, relative_change = 7.966977639464217e-8 Iter 85: T = 774.5203289686873 K, F = -0.002732288611723588, relative_change = 3.3318893306815634e-8 Iter 90: T = 774.5202501466575 K, F = -0.0011426757666500587, relative_change = 1.3934366317612884e-8 Iter 95: T = 774.5202171823349 K, F = -0.00047788065918286105, relative_change = 5.827519673463797e-9 Iter 100: T = 774.5202033962601 K, F = -0.00019985539998934598, relative_change = 2.4371385441281286e-9 Iter 105: T = 774.5201976307587 K, F = -8.358191567292561e-5, relative_change = 1.0192404884183781e-9 Iter 110: T = 774.5201952195571 K, F = -3.495495561789408e-5, relative_change = 4.262585545912756e-10 Iter 115: T = 774.5201942111637 K, F = -1.4618578893288436e-5, relative_change = 1.7826640708618195e-10 Iter 120: T = 774.5201937894417 K, F = -6.113665277474034e-6, relative_change = 7.455315280123646e-11 Iter 125: T = 774.5201936130724 K, F = -2.556806922737742e-6, relative_change = 3.117900780455402e-11 Iter 130: T = 774.5201935393128 K, F = -1.0692875503925947e-6, relative_change = 1.3039437822869081e-11 Iter 135: T = 774.5201935084655 K, F = -4.4718932734610917e-7, relative_change = 5.453254765703628e-12 Iter 140: T = 774.5201934955649 K, F = -1.8702021342686947e-7, relative_change = 2.2806198803678573e-12 Iter 145: T = 774.5201934901696 K, F = -7.821400782592747e-8, relative_change = 9.537815079369693e-13 Iter 150: T = 774.5201934879133 K, F = -3.2711013453479154e-8, relative_change = 3.9889478375376435e-13 Converged in 154 iterations to T = 774.5201934870988 K Iter 1: T = 970.2722080573768 K, F = -6773.505672557208, relative_change = 0.029727791942623136 Iter 2: T = 942.7073196545033 K, F = -5737.114269986276, relative_change = 0.028409438273061846 Iter 3: T = 917.2610071037261 K, F = -4857.552119809506, relative_change = 0.02699280255944458 Iter 5: T = 872.5103146671809 K, F = -3478.166726644965, relative_change = 0.023908771864702104 Iter 10: T = 792.9939406530286 K, F = -1497.2862076655636, relative_change = 0.0156031080011573 Iter 15: T = 749.6015287242473 K, F = -637.4333662652422, relative_change = 0.008559888582451587 Iter 20: T = 728.513751979626 K, F = -269.0844721798329, relative_change = 0.004123257732262814 Iter 25: T = 719.0160373733288 K, F = -113.02872528149008, relative_change = 0.001842077211848253 Iter 30: T = 714.9082019175972 K, F = -47.36142745798976, relative_change = 0.0007930850707984881 Iter 35: T = 713.1650258626803 K, F = -19.823509583587004, relative_change = 0.00033582303916607925 Iter 40: T = 712.4314789897625 K, F = -8.29332613948093, relative_change = 0.0001411836129754233 Iter 45: T = 712.1238998074183 K, F = -3.468877086235813, relative_change = 5.9174820393031076e-5 Iter 50: T = 711.9951257470684 K, F = -1.450815023218061, relative_change = 2.4770453236899145e-5 Iter 55: T = 711.9412462274947 K, F = -0.6067637820570827, relative_change = 1.0363298934722356e-5 Iter 60: T = 711.9187088506633 K, F = -0.2537585915146498, relative_change = 4.334755303803557e-6 Iter 65: T = 711.9092826949877 K, F = -0.10612535129144396, relative_change = 1.812968882499942e-6 Iter 70: T = 711.9053404319505 K, F = -0.044382972880486427, relative_change = 7.582266561375453e-7 Iter 75: T = 711.9036917073513 K, F = -0.018561503916101785, relative_change = 3.171031888783658e-7 Iter 80: T = 711.903002186991 K, F = -0.0077626451634590365, relative_change = 1.3261699579570281e-7 Iter 85: T = 711.9027138206346 K, F = -0.003246431359598012, relative_change = 5.546212601631009e-8 Iter 90: T = 711.9025932222569 K, F = -0.001357696443520906, relative_change = 2.3194943504228217e-8 Iter 95: T = 711.9025427865533 K, F = -0.000567804879632483, relative_change = 9.700405867435191e-9 Iter 100: T = 711.902521693736 K, F = -0.00023746278333725002, relative_change = 4.056826181588952e-9 Iter 105: T = 711.9025128724674 K, F = -9.930977302297084e-5, relative_change = 1.6966132772200078e-9 Iter 110: T = 711.9025091833073 K, F = -4.153253237448862e-5, relative_change = 7.095439397025235e-10 Iter 115: T = 711.9025076404565 K, F = -1.7369401562161713e-5, relative_change = 2.9673976127277e-10 Iter 120: T = 711.9025069952179 K, F = -7.2640913791888195e-6, relative_change = 1.241001161330517e-10 Iter 125: T = 711.9025067253714 K, F = -3.0379300888228045e-6, relative_change = 5.1900156238052456e-11 Iter 130: T = 711.9025066125183 K, F = -1.2704978551436596e-6, relative_change = 2.1705251702281695e-11 Iter 135: T = 711.9025065653219 K, F = -5.313381198357447e-7, relative_change = 9.077408188452372e-12 Iter 140: T = 711.9025065455837 K, F = -2.222114454664137e-7, relative_change = 3.796271939860988e-12 Iter 145: T = 711.9025065373289 K, F = -9.293083214068076e-8, relative_change = 1.5876351899092315e-12 Iter 150: T = 711.9025065338767 K, F = -3.886449562173766e-8, relative_change = 6.63963073042989e-13 Iter 155: T = 711.902506532433 K, F = -1.6253683621236803e-8, relative_change = 2.776787798962968e-13 Converged in 157 iterations to T = 711.9025065321274 K Iter 1: T = 969.256100362942 K, F = -7005.026777302136, relative_change = 0.030743899637057984 Iter 2: T = 940.651392713125 K, F = -5934.851083845099, relative_change = 0.02951202230154224 Iter 3: T = 914.1471255013914 K, F = -5026.4840085416845, relative_change = 0.028176503449686276 Iter 5: T = 867.255897369118 K, F = -3601.5300099144292, relative_change = 0.02522557372050609 Iter 10: T = 782.6888622774802 K, F = -1553.3295920442376, relative_change = 0.016962483343215498 Iter 15: T = 735.5152638220634 K, F = -662.4359397641149, relative_change = 0.00955822945471158 Iter 20: T = 712.2033700319614 K, F = -279.9617046680079, relative_change = 0.004685948285968751 Iter 25: T = 701.6002391421051 K, F = -117.6699767044754, relative_change = 0.0021130103561378217 Iter 30: T = 696.9919067572619 K, F = -49.320396839888794, relative_change = 0.0009136815338667199 Iter 35: T = 695.0320317985954 K, F = -20.64606254194613, relative_change = 0.0003876240018082315 Iter 40: T = 694.2065096668823 K, F = -8.637914428747653, relative_change = 0.00016309348680464074 Iter 45: T = 693.8602249434588 K, F = -3.6130915320359405, relative_change = 6.838137325067244e-5 Iter 50: T = 693.7152213896186 K, F = -1.511145394891821, relative_change = 2.8628406140707384e-5 Iter 55: T = 693.6545470664736 K, F = -0.6319978463519793, relative_change = 1.1978084044119425e-5 Iter 60: T = 693.6291667193665 K, F = -0.26431233550702943, relative_change = 5.010312852091628e-6 Iter 65: T = 693.6185513716692 K, F = -0.11053915050236135, relative_change = 2.0955362574863704e-6 Iter 70: T = 693.614111734457 K, F = -0.046228893464697274, relative_change = 8.764069035587822e-7 Iter 75: T = 693.6122549950641 K, F = -0.019333492929323404, relative_change = 3.665288384817019e-7 Iter 80: T = 693.611478479213 K, F = -0.008085500708725823, relative_change = 1.5328761287497295e-7 Iter 85: T = 693.6111537300901 K, F = -0.003381453495567399, relative_change = 6.410686344642702e-8 Iter 90: T = 693.6110179159676 K, F = -0.0014141643281754268, relative_change = 2.6810282652821088e-8 Iter 95: T = 693.6109611168515 K, F = -0.0005914204268137047, relative_change = 1.1212385064196564e-8 Iter 100: T = 693.6109373627779 K, F = -0.0002473390889385918, relative_change = 4.6891541669223586e-9 Iter 105: T = 693.6109274285398 K, F = -0.00010344015981755827, relative_change = 1.96106038715054e-9 Iter 110: T = 693.6109232739226 K, F = -4.325991060127876e-5, relative_change = 8.201389054388686e-10 Iter 115: T = 693.6109215364121 K, F = -1.8091811342380026e-5, relative_change = 3.4299189070152403e-10 Iter 120: T = 693.6109208097644 K, F = -7.566211202458817e-6, relative_change = 1.4344329871733447e-10 Iter 125: T = 693.6109205058716 K, F = -3.1642789701802343e-6, relative_change = 5.998968338920516e-11 Iter 130: T = 693.6109203787802 K, F = -1.3233404448920183e-6, relative_change = 2.5088424605601715e-11 Iter 135: T = 693.610920325629 K, F = -5.534375300264571e-7, relative_change = 1.0492293048730907e-11 Iter 140: T = 693.6109203034005 K, F = -2.3145446748085163e-7, relative_change = 4.3880076230130256e-12 Iter 145: T = 693.6109202941042 K, F = -9.679647472449204e-8, relative_change = 1.8351068079258483e-12 Iter 150: T = 693.6109202902164 K, F = -4.0481426100136275e-8, relative_change = 7.67463286698528e-13 Iter 155: T = 693.6109202885906 K, F = -1.6930629564981814e-8, relative_change = 3.2097773877381964e-13 Converged in 158 iterations to T = 693.6109202881145 K Iter 1: T = 963.5520862526113 K, F = -8304.691818259182, relative_change = 0.036447913747388754 Iter 2: T = 928.9812205151115 K, F = -7046.827532445131, relative_change = 0.03587856456411262 Iter 3: T = 896.2538192567839 K, F = -5978.567591730547, relative_change = 0.03522934644489428 Iter 5: T = 836.210420516231 K, F = -4300.962762054122, relative_change = 0.03366203222228768 Iter 10: T = 716.4231568070782 K, F = -1879.5869448105743, relative_change = 0.02795225605367815 Iter 15: T = 636.6721817046117 K, F = -813.949141505993, relative_change = 0.02004490161733296 Iter 20: T = 589.9244169956554 K, F = -348.524127394513, relative_change = 0.012029307968553341 Iter 25: T = 565.8584554599574 K, F = -147.7252387720093, relative_change = 0.006167041843953052 Iter 30: T = 554.628622701642 K, F = -62.191709004872074, relative_change = 0.0028507243212430537 Iter 35: T = 549.6831766778704 K, F = -26.087680641652685, relative_change = 0.0012473964950592534 Iter 40: T = 547.5671192787491 K, F = -10.924421812379412, relative_change = 0.0005319979848808113 Iter 45: T = 546.6734454677146 K, F = -4.571256184604823, relative_change = 0.000224346100919208 Iter 50: T = 546.2981494112759 K, F = -1.9121999833736407, relative_change = 9.415321724302322e-5 Iter 55: T = 546.14092282664 K, F = -0.7997831151261448, relative_change = 3.943383876930955e-5 Iter 60: T = 546.0751208429967 K, F = -0.3344925522796964, relative_change = 1.6501840229966777e-5 Iter 65: T = 546.0475932704335 K, F = -0.1398911777789314, relative_change = 6.903041391252131e-6 Iter 70: T = 546.0360794413642 K, F = -0.058504580647787185, relative_change = 2.8872448693287946e-6 Iter 75: T = 546.0312639634724 K, F = -0.024467387683611397, relative_change = 1.2075346040087594e-6 Iter 80: T = 546.0292500281431 K, F = -0.010232566561904965, relative_change = 5.050148933497943e-7 Iter 85: T = 546.0284077684722 K, F = -0.0042793837826274606, relative_change = 2.1120492130916025e-7 Iter 90: T = 546.0280555240436 K, F = -0.0017896897964456426, relative_change = 8.832871103186828e-8 Iter 95: T = 546.0279082109763 K, F = -0.0007484697151229347, relative_change = 3.6940172665763324e-8 Iter 100: T = 546.0278466028502 K, F = -0.0003130189854666787, relative_change = 1.5448830257797677e-8 Iter 105: T = 546.0278208375887 K, F = -0.00013090827986136921, relative_change = 6.460886857164478e-9 Iter 110: T = 546.0278100622475 K, F = -5.4747406555616385e-5, relative_change = 2.702020323585739e-9 Iter 115: T = 546.0278055558707 K, F = -2.2896019461732253e-5, relative_change = 1.1300172234232175e-9 Iter 120: T = 546.0278036712502 K, F = -9.575389036509119e-6, relative_change = 4.725867187578007e-10 Iter 125: T = 546.0278028830794 K, F = -4.0045421407231e-6, relative_change = 1.976414155290608e-10 Iter 130: T = 546.0278025534569 K, F = -1.6747473310652072e-6, relative_change = 8.265599973353482e-11 Iter 135: T = 546.0278024156048 K, F = -7.003993259258046e-7, relative_change = 3.456772582515631e-11 Iter 140: T = 546.0278023579534 K, F = -2.929151959873977e-7, relative_change = 1.4456627548320357e-11 Iter 145: T = 546.0278023338429 K, F = -1.2250048242457012e-7, relative_change = 6.045926853689275e-12 Iter 150: T = 546.0278023237597 K, F = -5.123144630747589e-8, relative_change = 2.528492711868821e-12 Iter 155: T = 546.0278023195427 K, F = -2.142588140241486e-8, relative_change = 1.0574596049508391e-12 Iter 160: T = 546.0278023177791 K, F = -8.96021631890953e-9, relative_change = 4.4222529897630824e-13 Converged in 164 iterations to T = 546.0278023171426 K Iter 1: T = 966.926486885958 K, F = -7535.831424067459, relative_change = 0.033073513114042025 Iter 2: T = 935.9117484032428 K, F = -6388.599043279386, relative_change = 0.03207559096100458 Iter 3: T = 906.9253284298497 K, F = -5414.553502531566, relative_change = 0.03097131756583532 Iter 5: T = 854.9060611539227 K, F = -3885.7357129308803, relative_change = 0.028444271964091706 Iter 10: T = 757.5290719274701 K, F = -1683.9725705355572, relative_change = 0.02064405732246075 Iter 15: T = 699.8967719975464 K, F = -721.6419743097492, relative_change = 0.012546543579397594 Iter 20: T = 669.9740900650024 K, F = -306.0655376970364, relative_change = 0.0064941337224163394 Iter 25: T = 655.9328212860011 K, F = -128.89945364162327, relative_change = 0.003018639316601783 Iter 30: T = 649.7307736559991 K, F = -54.07946709795789, relative_change = 0.0013244701703734138 Iter 35: T = 647.0733239070247 K, F = -22.648043403259692, relative_change = 0.0005655594776454244 Iter 40: T = 645.9503124833767 K, F = -9.477265147120296, relative_change = 0.00023862485022661036 Iter 45: T = 645.4785824835278 K, F = -3.9644892292013476, relative_change = 0.00010016806145868845 Iter 50: T = 645.2809338831698 K, F = -1.6581693427797974, relative_change = 4.195695232740668e-5 Iter 55: T = 645.1982107427614 K, F = -0.6934964496035996, relative_change = 1.7558376089444225e-5 Iter 60: T = 645.1636037045869 K, F = -0.29003378704816973, relative_change = 7.345131937086908e-6 Iter 65: T = 645.1491286621331 K, F = -0.12129651884987114, relative_change = 3.0721734765759107e-6 Iter 70: T = 645.143074682608 K, F = -0.05072781462598824, relative_change = 1.284881139507899e-6 Iter 75: T = 645.1405427759162 K, F = -0.021215006199758857, relative_change = 5.373633946880257e-7 Iter 80: T = 645.1394838917789 K, F = -0.008872373902551134, relative_change = 2.247336706354639e-7 Iter 85: T = 645.1390410519468 K, F = -0.00371053358986545, relative_change = 9.398663401970212e-8 Iter 90: T = 645.1388558507186 K, F = -0.001551789611858756, relative_change = 3.930639034275862e-8 Iter 95: T = 645.138778397297 K, F = -0.0006489769739479456, relative_change = 1.6438411913106388e-8 Iter 100: T = 645.1387460053413 K, F = -0.0002714099264507497, relative_change = 6.874741961465653e-9 Iter 105: T = 645.1387324586368 K, F = -0.00011350687381361801, relative_change = 2.8750995092084637e-9 Iter 110: T = 645.1387267932429 K, F = -4.746993006915501e-5, relative_change = 1.202400997972275e-9 Iter 115: T = 645.1387244239074 K, F = -1.9852492074867722e-5, relative_change = 5.028584762115381e-10 Iter 120: T = 645.138723433023 K, F = -8.302549117933378e-6, relative_change = 2.1030141772129474e-10 Iter 125: T = 645.1387230186234 K, F = -3.472225809042495e-6, relative_change = 8.795058025564675e-11 Iter 130: T = 645.1387228453165 K, F = -1.4521267295841689e-6, relative_change = 3.6781993930926485e-11 Iter 135: T = 645.1387227728375 K, F = -6.072968019577019e-7, relative_change = 1.5382670699976616e-11 Iter 140: T = 645.1387227425259 K, F = -2.5398036668233814e-7, relative_change = 6.433256907023501e-12 Iter 145: T = 645.1387227298492 K, F = -1.0621661117315995e-7, relative_change = 2.690439251113206e-12 Iter 150: T = 645.1387227245476 K, F = -4.442139728277894e-8, relative_change = 1.1251824881582913e-12 Iter 155: T = 645.1387227223305 K, F = -1.8577502702843418e-8, relative_change = 4.70563331950802e-13 Converged in 160 iterations to T = 645.1387227214032 K Iter 1: T = 965.117234534308 K, F = -7948.0712934342155, relative_change = 0.034882765465692064 Iter 2: T = 932.2054886947867 K, F = -6741.377162589019, relative_change = 0.03410129325418376 Iter 3: T = 901.2352392904531 K, F = -5716.679079375908, relative_change = 0.033222556378311084 Iter 5: T = 845.0064303593675 K, F = -4107.827990529687, relative_change = 0.031153988332345072 Iter 10: T = 736.2702986693057 K, F = -1787.8030123017102, relative_change = 0.024204417470968766 Iter 15: T = 668.1285691783505 K, F = -769.9393554846046, relative_change = 0.01590121334531783 Iter 20: T = 630.7639883887538 K, F = -327.9060082531257, relative_change = 0.008774266254558823 Iter 25: T = 612.5402470368061 K, F = -138.455440275906, relative_change = 0.004242417164726863 Iter 30: T = 604.3153544929446 K, F = -58.16563528782268, relative_change = 0.0018990297848608018 Iter 35: T = 600.7543808801153 K, F = -24.37410154066715, relative_change = 0.0008183481355145337 Iter 40: T = 599.2425712476421 K, F = -10.202247523572812, relative_change = 0.0003466580786139453 Iter 45: T = 598.6062591950692 K, F = -4.26824119588911, relative_change = 0.0001457634621219546 Iter 50: T = 598.3394284580227 K, F = -1.7852999215780077, relative_change = 6.109875198544078e-5 Iter 55: T = 598.2277105697276 K, F = -0.7466811459167726, relative_change = 2.557657317107083e-5 Iter 60: T = 598.1809667171597 K, F = -0.3122792689915493, relative_change = 1.070069234839755e-5 Iter 65: T = 598.1614140116272 K, F = -0.13060037122920903, relative_change = 4.475903547834923e-6 Iter 70: T = 598.1532361598825 K, F = -0.05461888884730731, relative_change = 1.8720068627374613e-6 Iter 75: T = 598.1498159662317 K, F = -0.022842316009781538, relative_change = 7.829184612506038e-7 Iter 80: T = 598.1483855796941 K, F = -0.009552937116048932, relative_change = 3.2742984448024114e-7 Iter 85: T = 598.1477873713399 K, F = -0.003995153745232793, relative_change = 1.369357698224763e-7 Iter 90: T = 598.1475371928286 K, F = -0.0016708212445141757, relative_change = 5.726829642635453e-8 Iter 95: T = 598.1474325650768 K, F = -0.0006987574395996288, relative_change = 2.395030685517466e-8 Iter 100: T = 598.147388808482 K, F = -0.00029222871318662635, relative_change = 1.0016308082988042e-8 Iter 105: T = 598.147370508948 K, F = -0.0001222135384332801, relative_change = 4.188940292044903e-9 Iter 110: T = 598.1473628558639 K, F = -5.1111161309458364e-5, relative_change = 1.751864963317311e-9 Iter 115: T = 598.1473596552526 K, F = -2.1375297620473965e-5, relative_change = 7.326508530890811e-10 Iter 120: T = 598.1473583167187 K, F = -8.939404691821196e-6, relative_change = 3.0640333807919463e-10 Iter 125: T = 598.1473577569278 K, F = -3.7385654658161904e-6, relative_change = 1.2814152429028098e-10 Iter 130: T = 598.1473575228166 K, F = -1.5635124407387124e-6, relative_change = 5.359030612365396e-11 Iter 135: T = 598.1473574249085 K, F = -6.538789849575011e-7, relative_change = 2.2412085817781102e-11 Iter 140: T = 598.1473573839622 K, F = -2.7346059994215466e-7, relative_change = 9.373022496022357e-12 Iter 145: T = 598.147357366838 K, F = -1.1436493746463938e-7, relative_change = 3.919925327396747e-12 Iter 150: T = 598.1473573596766 K, F = -4.782930812519126e-8, relative_change = 1.6393775966559399e-12 Iter 155: T = 598.1473573566815 K, F = -2.000323656714542e-8, relative_change = 6.856226689237247e-13 Iter 160: T = 598.1473573554289 K, F = -8.366296821993302e-9, relative_change = 2.8675973195166224e-13 Converged in 162 iterations to T = 598.1473573551638 K Iter 1: T = 980.0688999490665 K, F = -4541.320105975921, relative_change = 0.019931100050933515 Iter 2: T = 962.1846700852884 K, F = -3836.1419225173718, relative_change = 0.018247931206374798 Iter 3: T = 946.2269299996589 K, F = -3238.9538111165953, relative_change = 0.0165849036902813 Iter 5: T = 919.5693221706653 K, F = -2305.832948778222, relative_change = 0.013408355145521881 Iter 10: T = 877.2161211644284 K, F = -978.9843974722346, relative_change = 0.007053076537288227 Iter 15: T = 857.1511940418371 K, F = -412.5583092255897, relative_change = 0.003309905749934124 Iter 20: T = 848.2425977897791 K, F = -173.14220371637913, relative_change = 0.0014591594924464753 Iter 25: T = 844.416110540234 K, F = -72.52086626867283, relative_change = 0.0006244066750375238 Iter 30: T = 842.7973291625607 K, F = -30.348838056705773, relative_change = 0.0002636977693901256 Iter 35: T = 842.1170325903404 K, F = -12.69572860832048, relative_change = 0.00011073639338238745 Iter 40: T = 841.8319417027113 K, F = -5.3101164580971725, relative_change = 4.639131621186063e-5 Iter 45: T = 841.7126109931824 K, F = -2.2208611622859933, relative_change = 1.9415436053489523e-5 Iter 50: T = 841.6626875462237 K, F = -0.9288093939980211, relative_change = 8.122224323662615e-6 Iter 55: T = 841.6418058284047 K, F = -0.3884424581320708, relative_change = 3.3972411515961707e-6 Iter 60: T = 841.6330722959806 K, F = -0.16245184819908398, relative_change = 1.4208420319172436e-6 Iter 65: T = 841.6294197324503 K, F = -0.06793940325256997, relative_change = 5.942262615501545e-7 Iter 70: T = 841.6278921699753 K, F = -0.028413087338020615, relative_change = 2.485148200666339e-7 Iter 75: T = 841.6272533221695 K, F = -0.011882695512875463, relative_change = 1.0393226806972655e-7 Iter 80: T = 841.6269861478743 K, F = -0.004969485708639532, relative_change = 4.346578610389342e-8 Iter 85: T = 841.6268744123034 K, F = -0.0020782983659821674, relative_change = 1.817792315631936e-8 Iter 90: T = 841.6268276831375 K, F = -0.0008691692127589246, relative_change = 7.602226703717231e-9 Iter 95: T = 841.6268081404396 K, F = -0.0003634969477106509, relative_change = 3.179342373792603e-9 Iter 100: T = 841.6267999674495 K, F = -0.00015201876433468264, relative_change = 1.3296390092185878e-9 Iter 105: T = 841.6267965494073 K, F = -6.357606216012002e-5, relative_change = 5.560709186472e-10 Iter 110: T = 841.6267951199413 K, F = -2.6588270034988426e-5, relative_change = 2.3255551477729113e-10 Iter 115: T = 841.6267945221215 K, F = -1.1119532089320927e-5, relative_change = 9.72574941678172e-11 Iter 120: T = 841.626794272106 K, F = -4.650320691856891e-6, relative_change = 4.0674241917141305e-11 Iter 125: T = 841.6267941675467 K, F = -1.944819393306929e-6, relative_change = 1.701045148860886e-11 Iter 130: T = 841.6267941238187 K, F = -8.13348167483241e-7, relative_change = 7.113986829501811e-12 Iter 135: T = 841.6267941055312 K, F = -3.401523815949048e-7, relative_change = 2.975158314339029e-12 Iter 140: T = 841.6267940978831 K, F = -1.4225643996113035e-7, relative_change = 1.2442524381351554e-12 Iter 145: T = 841.6267940946846 K, F = -5.9492357262769247e-8, relative_change = 5.203526152923111e-13 Converged in 150 iterations to T = 841.6267940933469 K Iter 1: T = 976.4431813985518 K, F = -5367.443526659417, relative_change = 0.0235568186014482 Iter 2: T = 955.0478977134 K, F = -4538.520211394243, relative_change = 0.021911447683527888 Iter 3: T = 935.7224584372785 K, F = -3835.8738491435993, relative_change = 0.020235047187047762 Iter 5: T = 902.8599382795535 K, F = -2736.2759979189877, relative_change = 0.01688236336128628 Iter 10: T = 848.7423342850836 K, F = -1166.7985216713466, relative_change = 0.0094980074573779 Iter 15: T = 822.0256120640082 K, F = -493.0834280089763, relative_change = 0.004651470680146156 Iter 20: T = 809.8810906961709 K, F = -207.23883157390213, relative_change = 0.002096270143059331 Iter 25: T = 804.6044167962209 K, F = -86.86090297301367, relative_change = 0.0009062009405161601 Iter 30: T = 802.3606079601736 K, F = -36.36064889886151, relative_change = 0.00038440524577850154 Iter 35: T = 801.4155452167105 K, F = -15.21254350647504, relative_change = 0.00016173106984392467 Iter 40: T = 801.0191262768564 K, F = -6.363137196700943, relative_change = 6.780870614832513e-5 Iter 45: T = 800.8531312264772 K, F = -2.6613274787174244, relative_change = 2.838840197041843e-5 Iter 50: T = 800.7836736676184 K, F = -1.1130317594856423, relative_change = 1.1877622385245738e-5 Iter 55: T = 800.7546193064966 K, F = -0.4654889173995862, relative_change = 4.968282996626222e-6 Iter 60: T = 800.7424673092974 K, F = -0.19467402898067276, relative_change = 2.077956142166163e-6 Iter 65: T = 800.7373850036529 K, F = -0.0814151795232072, relative_change = 8.690542121930894e-7 Iter 70: T = 800.7352594885783 K, F = -0.03404883110300594, relative_change = 3.6345377167083883e-7 Iter 75: T = 800.7343705668158 K, F = -0.014239633168011245, relative_change = 1.5200156862910085e-7 Iter 80: T = 800.7339988080738 K, F = -0.005955185585725498, relative_change = 6.356902181295937e-8 Iter 85: T = 800.7338433339455 K, F = -0.0024905298945679943, relative_change = 2.6585350410453662e-8 Iter 90: T = 800.7337783127763 K, F = -0.0010415693736318676, relative_change = 1.1118315640774497e-8 Iter 95: T = 800.7337511201413 K, F = -0.00043559675545123966, relative_change = 4.649813180854821e-9 Iter 100: T = 800.7337397478556 K, F = -0.0001821717661333322, relative_change = 1.9446075436172465e-9 Iter 105: T = 800.7337349918298 K, F = -7.618640947903987e-5, relative_change = 8.132581350468997e-10 Iter 110: T = 800.733733002803 K, F = -3.1862066287469126e-5, relative_change = 3.4011426829713686e-10 Iter 115: T = 800.7337321709681 K, F = -1.332509607532284e-5, relative_change = 1.4223984355485002e-10 Iter 120: T = 800.7337318230849 K, F = -5.572715397361705e-6, relative_change = 5.948641296508574e-11 Iter 125: T = 800.733731677596 K, F = -2.3305755768587844e-6, relative_change = 2.487792242125525e-11 Iter 130: T = 800.7337316167507 K, F = -9.746722657855145e-7, relative_change = 1.0404219997798012e-11 Iter 135: T = 800.7337315913044 K, F = -4.0761833475233544e-7, relative_change = 4.351155746822403e-12 Iter 140: T = 800.7337315806626 K, F = -1.7047143996418157e-7, relative_change = 1.8197115352204484e-12 Iter 145: T = 800.733731576212 K, F = -7.129152190810117e-8, relative_change = 7.610072679053116e-13 Iter 150: T = 800.7337315743507 K, F = -2.981508895327778e-8, relative_change = 3.182636417298949e-13 Converged in 153 iterations to T = 800.7337315738058 K Iter 1: T = 980.8669640793879 K, F = -4359.48043472721, relative_change = 0.019133035920612083 Iter 2: T = 963.7444871612519 K, F = -3681.7250988455785, relative_change = 0.017456472228327777 Iter 3: T = 948.5066764522651 K, F = -3107.8929815138404, relative_change = 0.015811048376391044 Iter 5: T = 923.1466515400025 K, F = -2211.593046827415, relative_change = 0.012698656501960852 Iter 10: T = 883.1442401207433 K, F = -938.1628483826241, relative_change = 0.006591578250170087 Iter 15: T = 864.3415808419752 K, F = -395.15049046974264, relative_change = 0.0030690390782216023 Iter 20: T = 856.0289551043567 K, F = -165.79349747434347, relative_change = 0.0013476889771361607 Iter 25: T = 852.4656587926327 K, F = -69.4346832420014, relative_change = 0.0005756867349492353 Iter 30: T = 850.9595648434566 K, F = -29.05583893146527, relative_change = 0.0002429365645578617 Iter 35: T = 850.3268674513603 K, F = -12.15456973150448, relative_change = 0.00010198489542859004 Iter 40: T = 850.0617667199731 K, F = -5.0837250365298114, relative_change = 4.271917658583456e-5 Iter 45: T = 849.9508108351905 K, F = -2.126168888637906, relative_change = 1.7877569055993945e-5 Iter 50: T = 849.9043924172901 K, F = -0.8892057348494752, relative_change = 7.478696107099433e-6 Iter 55: T = 849.8849769956873 K, F = -0.37187934657140775, relative_change = 3.128044533545984e-6 Iter 60: T = 849.8768567647995 K, F = -0.15552488920860785, relative_change = 1.3082493440897212e-6 Iter 65: T = 849.8734607051065 K, F = -0.06504245439612788, relative_change = 5.471366525034659e-7 Iter 70: T = 849.8720404180151 K, F = -0.027201546653863318, relative_change = 2.288210329868458e-7 Iter 75: T = 849.8714464344782 K, F = -0.011376014365066744, relative_change = 9.569602985174577e-8 Iter 80: T = 849.8711980230299 K, F = -0.004757585536110387, relative_change = 4.002128218992762e-8 Iter 85: T = 849.8710941343188 K, F = -0.0019896791710527495, relative_change = 1.673738860060645e-8 Iter 90: T = 849.8710506868056 K, F = -0.000832107603514709, relative_change = 6.999777607473027e-9 Iter 95: T = 849.8710325165343 K, F = -0.00034799733959145485, relative_change = 2.9273909081123067e-9 Iter 100: T = 849.8710249175095 K, F = -0.00014553664122596288, relative_change = 1.2242698721778875e-9 Iter 105: T = 849.8710217395065 K, F = -6.086516107761675e-5, relative_change = 5.120042875222687e-10 Iter 110: T = 849.8710204104277 K, F = -2.5454537627478402e-5, relative_change = 2.1412631246615433e-10 Iter 115: T = 849.8710198545912 K, F = -1.064539100048556e-5, relative_change = 8.955017608852295e-11 Iter 120: T = 849.8710196221336 K, F = -4.4520298723149665e-6, relative_change = 3.745095502064632e-11 Iter 125: T = 849.8710195249172 K, F = -1.8618935597736197e-6, relative_change = 1.5662449264302154e-11 Iter 130: T = 849.87101948426 K, F = -7.786674423027051e-7, relative_change = 6.550234436113962e-12 Iter 135: T = 849.8710194672567 K, F = -3.25645896470661e-7, relative_change = 2.7393683739191186e-12 Iter 140: T = 849.8710194601457 K, F = -1.3618768668344217e-7, relative_change = 1.1456254965162794e-12 Iter 145: T = 849.8710194571718 K, F = -5.695497318214393e-8, relative_change = 4.79111372114122e-13 Converged in 150 iterations to T = 849.871019455928 K Iter 1: T = 967.2993812239712 K, F = -7450.867094437072, relative_change = 0.03270061877602886 Iter 2: T = 936.6728633430345 K, F = -6315.931580307694, relative_change = 0.031661880980615786 Iter 3: T = 908.0891488042781 K, F = -5352.364674902546, relative_change = 0.030516219330556437 Iter 5: T = 856.9121755566304 K, F = -3840.112473818603, relative_change = 0.027909389497381643 Iter 10: T = 761.7126265173607 K, F = -1662.8436597687644, relative_change = 0.019993926073906824 Iter 15: T = 705.9540131061963 K, F = -711.9638485145566, relative_change = 0.0119861165510628 Iter 20: T = 677.2692862578494 K, F = -301.75718851412586, relative_change = 0.006140066588146238 Iter 25: T = 663.8903302238615 K, F = -127.0347417243236, relative_change = 0.0028369714129347066 Iter 30: T = 657.9998687966403 K, F = -53.2867396937401, relative_change = 0.0012411047376953972 Iter 35: T = 655.4797432919595 K, F = -22.31409570780978, relative_change = 0.0005292623039309629 Iter 40: T = 654.4154724279732 K, F = -9.337167774241726, relative_change = 0.00022318294380051744 Iter 45: T = 653.9685440589147 K, F = -3.9058214910432563, relative_change = 9.366337547920577e-5 Iter 50: T = 653.7813095001104 K, F = -1.6336201917481348, relative_change = 3.922838262320579e-5 Iter 55: T = 653.7029489666684 K, F = -0.6832273169016346, relative_change = 1.641581100501563e-5 Iter 60: T = 653.6701677076073 K, F = -0.28573869564611215, relative_change = 6.867044550625543e-6 Iter 65: T = 653.6564564526892 K, F = -0.11950018728804723, relative_change = 2.8721873422058775e-6 Iter 70: T = 653.6507219375836 K, F = -0.04997655453399369, relative_change = 1.201236803245528e-6 Iter 75: T = 653.6483236416109 K, F = -0.020900818023489975, relative_change = 5.023809793667901e-7 Iter 80: T = 653.647320636276 K, F = -0.008740976263979683, relative_change = 2.1010336976729808e-7 Iter 85: T = 653.646901165837 K, F = -0.0036555814596527236, relative_change = 8.786802601807198e-8 Iter 90: T = 653.6467257380049 K, F = -0.0015288079620086048, relative_change = 3.674750813620841e-8 Iter 95: T = 653.6466523719406 K, F = -0.0006393657721094903, relative_change = 1.5368255563731043e-8 Iter 100: T = 653.6466216893676 K, F = -0.0002673904054983911, relative_change = 6.427189544111541e-9 Iter 105: T = 653.6466088575477 K, F = -0.00011182586123154037, relative_change = 2.6879276835095795e-9 Iter 110: T = 653.646603491127 K, F = -4.67669107991342e-5, relative_change = 1.1241235054074874e-9 Iter 115: T = 653.6466012468258 K, F = -1.955848028878382e-5, relative_change = 4.701218747697717e-10 Iter 120: T = 653.6466003082321 K, F = -8.179588007140026e-6, relative_change = 1.9661053508617742e-10 Iter 125: T = 653.6465999157011 K, F = -3.4208016354009274e-6, relative_change = 8.222487994452833e-11 Iter 130: T = 653.64659975154 K, F = -1.430619929465582e-6, relative_change = 3.438742278121763e-11 Iter 135: T = 653.6465996828858 K, F = -5.983018383504124e-7, relative_change = 1.4381218835745764e-11 Iter 140: T = 653.6465996541738 K, F = -2.5021635413624566e-7, relative_change = 6.01438256614689e-12 Iter 145: T = 653.646599642166 K, F = -1.0464307675928097e-7, relative_change = 2.5152772238114374e-12 Iter 150: T = 653.6465996371444 K, F = -4.3763392243434396e-8, relative_change = 1.0519287769403246e-12 Iter 155: T = 653.6465996350443 K, F = -1.8302010629245302e-8, relative_change = 4.3992046023246037e-13 Converged in 159 iterations to T = 653.6465996342862 K Iter 1: T = 973.5989585593142 K, F = -6015.502406134111, relative_change = 0.026401041440685877 Iter 2: T = 949.3908194672491 K, F = -5090.466099249849, relative_change = 0.024864590167482385 Iter 3: T = 927.3074859307708 K, F = -4305.864242165747, relative_change = 0.02326052989312703 Iter 5: T = 889.1900646563026 K, F = -3076.7016558540813, relative_change = 0.01992824198924622 Iter 10: T = 824.3560824072271 K, F = -1317.2073395633222, relative_change = 0.011930471923184652 Iter 15: T = 791.0327976641169 K, F = -558.2453704646456, relative_change = 0.006105349814172865 Iter 20: T = 775.4995355046773 K, F = -235.00296972720847, relative_change = 0.0028192852397050257 Iter 25: T = 768.6627150095521 K, F = -98.57387241530951, relative_change = 0.001233016856389593 Iter 30: T = 765.738133661277 K, F = -41.277965970477986, relative_change = 0.0005257463207712329 Iter 35: T = 764.5031366763036 K, F = -17.272395583519742, relative_change = 0.0002216881399451683 Iter 40: T = 763.984528011055 K, F = -7.225187686356019, relative_change = 9.303388883099921e-5 Iter 45: T = 763.7672664748205 K, F = -3.021951937885016, relative_change = 3.896435857662851e-5 Iter 50: T = 763.676339631451 K, F = -1.2638675515730569, relative_change = 1.63052587298076e-5 Iter 55: T = 763.6383014733514 K, F = -0.5285734565119121, relative_change = 6.820786754117884e-6 Iter 60: T = 763.6223914548111 K, F = -0.22105729814511677, relative_change = 2.8528376641947548e-6 Iter 65: T = 763.6157373440254 K, F = -0.09244907599370922, relative_change = 1.1931438169658382e-6 Iter 70: T = 763.6129544540277 K, F = -0.03866335556158951, relative_change = 4.989962699398218e-7 Iter 75: T = 763.6117906054567 K, F = -0.01616948541081953, relative_change = 2.0868782185993965e-7 Iter 80: T = 763.6113038682067 K, F = -0.00676227336852786, relative_change = 8.727602314243196e-8 Iter 85: T = 763.6111003085474 K, F = -0.0028280637365208916, relative_change = 3.6499924794092916e-8 Iter 90: T = 763.6110151774094 K, F = -0.001182730072456395, relative_change = 1.5264713115700087e-8 Iter 95: T = 763.6109795745408 K, F = -0.0004946318483628476, relative_change = 6.383886835285314e-9 Iter 100: T = 763.6109646849942 K, F = -0.00020686094695265833, relative_change = 2.669817972612447e-9 Iter 105: T = 763.6109584580076 K, F = -8.651171734763707e-5, relative_change = 1.1165497895396218e-9 Iter 110: T = 763.6109558538076 K, F = -3.6180233134897044e-5, relative_change = 4.669544610457814e-10 Iter 115: T = 763.6109547647 K, F = -1.5131006162127925e-5, relative_change = 1.9528594105939318e-10 Iter 120: T = 763.610954309222 K, F = -6.327966935670837e-6, relative_change = 8.16709059723846e-11 Iter 125: T = 763.6109541187358 K, F = -2.6464301861039985e-6, relative_change = 3.415573332567886e-11 Iter 130: T = 763.6109540390722 K, F = -1.1067695219191265e-6, relative_change = 1.4284346082859483e-11 Iter 135: T = 763.610954005756 K, F = -4.6286373167614414e-7, relative_change = 5.973877670912624e-12 Iter 140: T = 763.6109539918227 K, F = -1.9357641845019202e-7, relative_change = 2.49836348099188e-12 Iter 145: T = 763.6109539859956 K, F = -8.095462755708382e-8, relative_change = 1.044828118696216e-12 Iter 150: T = 763.6109539835586 K, F = -3.385577418413277e-8, relative_change = 4.369542040497419e-13 Converged in 154 iterations to T = 763.610953982679 K Iter 1: T = 969.9265731110543 K, F = -6852.258923860533, relative_change = 0.030073426888945768 Iter 2: T = 942.0087539839861 K, F = -5804.3636806275235, relative_change = 0.02878343567546697 Iter 3: T = 916.2042243503058 K, F = -4914.9927362885755, relative_change = 0.027393088996834257 Iter 5: T = 870.7317158206736 K, F = -3520.0895183542852, relative_change = 0.024351053841081396 Iter 10: T = 789.5304582581579 K, F = -1516.2903209113397, relative_change = 0.016050964466291194 Iter 15: T = 744.8963090510259 K, F = -645.889105598634, relative_change = 0.00888304725526586 Iter 20: T = 723.087064577315 K, F = -272.7553381175492, relative_change = 0.004303261527472421 Iter 25: T = 713.2334129442964 K, F = -114.59314116217732, relative_change = 0.0019282044556670713 Iter 30: T = 708.9650187061015 K, F = -48.02133774615961, relative_change = 0.0008313087248743582 Iter 35: T = 707.1524434852191 K, F = -20.10052558264704, relative_change = 0.00035222033952496374 Iter 40: T = 706.3894625989391 K, F = -8.409361792345015, relative_change = 0.00014811521796937217 Iter 45: T = 706.0695006971084 K, F = -3.5174370679393805, relative_change = 6.208680750533227e-5 Iter 50: T = 705.9355351616115 K, F = -1.471129088502769, relative_change = 2.5990584896386306e-5 Iter 55: T = 705.8794822464472 K, F = -0.6152603652795902, relative_change = 1.087397635586236e-5 Iter 60: T = 705.8560355340628 K, F = -0.25731213883445386, relative_change = 4.548397384936284e-6 Iter 65: T = 705.8462290141775 K, F = -0.10761151778907407, relative_change = 1.9023289196048048e-6 Iter 70: T = 705.8421276661754 K, F = -0.04500451080329437, relative_change = 7.956002541870426e-7 Iter 75: T = 705.840412408226 K, F = -0.018821439433980736, relative_change = 3.327336523289751e-7 Iter 80: T = 705.8396950624535 K, F = -0.00787135346465695, relative_change = 1.3915390845741115e-7 Iter 85: T = 705.8393950591127 K, F = -0.003291894497047032, relative_change = 5.8195952517135655e-8 Iter 90: T = 705.8392695939978 K, F = -0.0013767096744967677, relative_change = 2.4338264401776884e-8 Iter 95: T = 705.8392171229647 K, F = -0.0005757564415385108, relative_change = 1.0178556688045712e-8 Iter 100: T = 705.839195178948 K, F = -0.00024078822300643843, relative_change = 4.256794650727344e-9 Iter 105: T = 705.8391860016973 K, F = -0.00010070050985500067, relative_change = 1.7802424589533047e-9 Iter 110: T = 705.8391821636615 K, F = -4.21141563529126e-5, relative_change = 7.445186852716251e-10 Iter 115: T = 705.839180558549 K, F = -1.761264321786804e-5, relative_change = 3.113666104293821e-10 Iter 120: T = 705.8391798872717 K, F = -7.3658173058710474e-6, relative_change = 1.302172280211315e-10 Iter 125: T = 705.8391796065356 K, F = -3.0804733524014694e-6, relative_change = 5.4458410390189604e-11 Iter 130: T = 705.8391794891285 K, F = -1.2882910808142967e-6, relative_change = 2.277516355785838e-11 Iter 135: T = 705.8391794400274 K, F = -5.387793097222371e-7, relative_change = 9.524855901992315e-12 Iter 140: T = 705.8391794194926 K, F = -2.253239725913403e-7, relative_change = 3.983409035511591e-12 Iter 145: T = 705.8391794109048 K, F = -9.423298263921964e-8, relative_change = 1.6659058075050332e-12 Iter 150: T = 705.8391794073132 K, F = -3.9409026375558653e-8, relative_change = 6.966958284670544e-13 Iter 155: T = 705.8391794058111 K, F = -1.6480052211775842e-8, relative_change = 2.9134400630868296e-13 Converged in 157 iterations to T = 705.8391794054934 K Iter 1: T = 973.5096384708395 K, F = -6035.854073258407, relative_change = 0.026490361529160563 Iter 2: T = 949.2123188758292 K, F = -5107.8130359510815, relative_change = 0.024958478719507942 Iter 3: T = 927.0406588196466 K, F = -4320.648759868993, relative_change = 0.02335795650275675 Iter 5: T = 888.7522477418177 K, F = -3087.4334198828956, relative_change = 0.02002894943317247 Iter 10: T = 823.5567603514903 K, F = -1321.9802532613073, relative_change = 0.012016084297982529 Iter 15: T = 790.0004632255233 K, F = -560.325699587793, relative_change = 0.0061588652740859305 Iter 20: T = 774.3442120064495 K, F = -235.89279014105864, relative_change = 0.0028465733257248714 Iter 25: T = 767.4499134627658 K, F = -98.95000998221168, relative_change = 0.0012455008461780906 Iter 30: T = 764.5000760302734 K, F = -41.436018913689956, relative_change = 0.0005311743600058748 Iter 35: T = 763.2542898085167 K, F = -17.33862974985817, relative_change = 0.0002239960203831197 Iter 40: T = 762.7311281993245 K, F = -7.2529114214298875, relative_change = 9.400580647298576e-5 Iter 45: T = 762.511955357748 K, F = -3.033550521527671, relative_change = 3.937201306741254e-5 Iter 50: T = 762.420227916618 K, F = -1.268718951555397, relative_change = 1.6475952968687493e-5 Iter 55: T = 762.3818547169232 K, F = -0.5306024983750504, relative_change = 6.892209597656305e-6 Iter 60: T = 762.3658045411171 K, F = -0.22190589015890327, relative_change = 2.882713933318736e-6 Iter 65: T = 762.3590918080882 K, F = -0.09280397123928175, relative_change = 1.2056395461600778e-6 Iter 70: T = 762.3562844003787 K, F = -0.03881177767824684, relative_change = 5.04222328428534e-7 Iter 75: T = 762.3551102979999 K, F = -0.016231557433648902, relative_change = 2.1087345610648734e-7 Iter 80: T = 762.3546192724486 K, F = -0.006788232649252435, relative_change = 8.819008744145054e-8 Iter 85: T = 762.3544139193641 K, F = -0.0028389202215788334, relative_change = 3.688219844726784e-8 Iter 90: T = 762.3543280381932 K, F = -0.0011872703865007939, relative_change = 1.542458472748925e-8 Iter 95: T = 762.3542921216517 K, F = -0.0004965306631264932, relative_change = 6.4507470987533005e-9 Iter 100: T = 762.3542771009232 K, F = -0.0002076550537751798, relative_change = 2.6977797361174626e-9 Iter 105: T = 762.3542708190749 K, F = -8.68438236392155e-5, relative_change = 1.1282437511303086e-9 Iter 110: T = 762.3542681919308 K, F = -3.6319124198991304e-5, relative_change = 4.718450187845446e-10 Iter 115: T = 762.3542670932278 K, F = -1.5189090569411867e-5, relative_change = 1.9733121137379807e-10 Iter 120: T = 762.3542666337371 K, F = -6.352259546593686e-6, relative_change = 8.252627562914131e-11 Iter 125: T = 762.3542664415726 K, F = -2.6565889142959875e-6, relative_change = 3.451344952603414e-11 Iter 130: T = 762.3542663612071 K, F = -1.1110171405093183e-6, relative_change = 1.443393586957534e-11 Iter 135: T = 762.3542663275973 K, F = -4.6464073522045624e-7, relative_change = 6.036445641961641e-12 Iter 140: T = 762.3542663135413 K, F = -1.9431919429102607e-7, relative_change = 2.5245252185518913e-12 Iter 145: T = 762.3542663076629 K, F = -8.126659678531212e-8, relative_change = 1.055786453656653e-12 Iter 150: T = 762.3542663052045 K, F = -3.39880006361426e-8, relative_change = 4.415599038047768e-13 Converged in 154 iterations to T = 762.3542663043172 K Iter 1: T = 964.2820540310919 K, F = -8138.367965553744, relative_change = 0.0357179459689081 Iter 2: T = 930.4870791745401 K, F = -6904.337874088366, relative_change = 0.0350467736232102 Iter 3: T = 898.5840019299831 K, F = -5856.364753311715, relative_change = 0.03428642692476629 Iter 5: T = 840.340396300695 K, F = -4210.7682651316, relative_change = 0.032472465696131735 Iter 10: T = 725.8634808490467 K, F = -1836.5350467465887, relative_change = 0.0261153045219796 Iter 15: T = 651.8810631226562 K, F = -793.1227807734278, relative_change = 0.017926486341574496 Iter 20: T = 609.9663743002238 K, F = -338.6577255686309, relative_change = 0.010298690554772163 Iter 25: T = 588.996595491528 K, F = -143.24881811876833, relative_change = 0.0051161519946994315 Iter 30: T = 579.387238329569 K, F = -60.236976567602134, relative_change = 0.0023235575071771566 Iter 35: T = 575.1950373978304 K, F = -25.253487542501542, relative_change = 0.0010081209460198822 Iter 40: T = 573.4090679837773 K, F = -10.57243614387837, relative_change = 0.00042832677061613474 Iter 45: T = 572.6562342549107 K, F = -4.423491143379154, relative_change = 0.00018033413028920777 Iter 50: T = 572.3403400219793 K, F = -1.8503036933419112, relative_change = 7.563033044596362e-5 Iter 55: T = 572.2080445047503 K, F = -0.7738799134321726, relative_change = 3.1666817866443005e-5 Iter 60: T = 572.1526845408744 K, F = -0.3236564683972154, relative_change = 1.3249978361595324e-5 Iter 65: T = 572.1295266703435 K, F = -0.1353588631976605, relative_change = 5.542443336886894e-6 Iter 70: T = 572.1198407797631 K, F = -0.056609018974733, relative_change = 2.318116167353303e-6 Iter 75: T = 572.1157898510171 K, F = -0.0236746247824616, relative_change = 9.694988801164363e-7 Iter 80: T = 572.1140956738668 K, F = -0.00990102078532945, relative_change = 4.0546213430340645e-7 Iter 85: T = 572.113387143438 K, F = -0.004140726877704781, relative_change = 1.6957017794725572e-7 Iter 90: T = 572.113090826622 K, F = -0.001731701735635638, relative_change = 7.091646085699048e-8 Iter 95: T = 572.1129669032283 K, F = -0.0007242183995709306, relative_change = 2.9658143600441803e-8 Iter 100: T = 572.1129150769567 K, F = -0.00030287679240953436, relative_change = 1.2403395552930644e-8 Iter 105: T = 572.1128934025861 K, F = -0.00012666669356370397, relative_change = 5.187249160047445e-9 Iter 110: T = 572.1128843381045 K, F = -5.297352384397991e-5, relative_change = 2.16936970612322e-9 Iter 115: T = 572.11288054723 K, F = -2.2154160565612813e-5, relative_change = 9.072563579743407e-10 Iter 120: T = 572.1128789618409 K, F = -9.265134341296388e-6, relative_change = 3.7942544131295846e-10 Iter 125: T = 572.1128782988122 K, F = -3.874789446689508e-6, relative_change = 1.5868023600734838e-10 Iter 130: T = 572.1128780215258 K, F = -1.6204832052335583e-6, relative_change = 6.636196923304706e-11 Iter 135: T = 572.1128779055613 K, F = -6.777053895845597e-7, relative_change = 2.7753366471699385e-11 Iter 140: T = 572.1128778570635 K, F = -2.8342457347729777e-7, relative_change = 1.16067928319074e-11 Iter 145: T = 572.1128778367812 K, F = -1.185316901852751e-7, relative_change = 4.8541054692236245e-12 Iter 150: T = 572.1128778282989 K, F = -4.9571613369714385e-8, relative_change = 2.0300549095101567e-12 Iter 155: T = 572.1128778247515 K, F = -2.073230775945234e-8, relative_change = 8.49028714072629e-13 Iter 160: T = 572.1128778232679 K, F = -8.670208662131529e-9, relative_change = 3.5506207011062813e-13 Converged in 163 iterations to T = 572.1128778228335 K Iter 1: T = 963.5185859385375 K, F = -8312.32489668791, relative_change = 0.03648141406146249 Iter 2: T = 928.9120241288596 K, F = -7053.368090354288, relative_change = 0.03591685963791622 Iter 3: T = 896.1465885747718 K, F = -5984.178393810171, relative_change = 0.03527291573689709 Iter 5: T = 836.01970359983 K, F = -4305.107081764064, relative_change = 0.03371748203673452 Iter 10: T = 715.9817453527506 K, F = -1881.5735188708566, relative_change = 0.02804065597634329 Iter 15: T = 635.9490635562175 K, F = -814.9189363136095, relative_change = 0.02015143793588122 Iter 20: T = 588.9558657530912 K, F = -348.98928347253565, relative_change = 0.012120311960411785 Iter 25: T = 564.7273488646706 K, F = -147.93856218249363, relative_change = 0.006224135333208972 Iter 30: T = 553.4105876952851 K, F = -62.285483324264874, relative_change = 0.0028798985099552634 Iter 35: T = 548.4242741455591 K, F = -26.127833903379052, relative_change = 0.0012607571962618771 Iter 40: T = 546.2902127328081 K, F = -10.941390259372659, relative_change = 0.0005378099231263994 Iter 45: T = 545.3888392039753 K, F = -4.578384324644349, relative_change = 0.0002268177027701813 Iter 50: T = 545.0102924302563 K, F = -1.9151866805515585, relative_change = 9.519417142828861e-5 Iter 55: T = 544.8517009416324 K, F = -0.801033176657917, relative_change = 3.987046509462627e-5 Iter 60: T = 544.7853271870757 K, F = -0.3350155163407662, relative_change = 1.6684668378684042e-5 Iter 65: T = 544.7575603262817 K, F = -0.14010991795173156, relative_change = 6.9795418538016e-6 Iter 70: T = 544.7459463948171 K, F = -0.058596065712059386, relative_change = 2.9192451971892787e-6 Iter 75: T = 544.7410890477993 K, F = -0.024505648759028942, relative_change = 1.2209187340197153e-6 Iter 80: T = 544.7390576014078 K, F = -0.010248567963110689, relative_change = 5.106125081420579e-7 Iter 85: T = 544.7382080182452 K, F = -0.004286075787889948, relative_change = 2.1354594769486636e-7 Iter 90: T = 544.7378527110176 K, F = -0.001792488478559895, relative_change = 8.93077627337138e-8 Iter 95: T = 544.7377041170463 K, F = -0.0007496401575557143, relative_change = 3.7349624877191224e-8 Iter 100: T = 544.7376419732301 K, F = -0.0003135084787391773, relative_change = 1.5620068266520868e-8 Iter 105: T = 544.7376159839365 K, F = -0.00013111299188756087, relative_change = 6.53250067534859e-9 Iter 110: T = 544.7376051149022 K, F = -5.483301940639729e-5, relative_change = 2.7319700753745123e-9 Iter 115: T = 544.7376005693421 K, F = -2.293182393561799e-5, relative_change = 1.1425425762238963e-9 Iter 120: T = 544.7375986683345 K, F = -9.590362425593302e-6, relative_change = 4.778249477874417e-10 Iter 125: T = 544.7375978733104 K, F = -4.01080422338107e-6, relative_change = 1.9983210716046366e-10 Iter 130: T = 544.7375975408218 K, F = -1.6773656520696623e-6, relative_change = 8.357214539460157e-11 Iter 135: T = 544.7375974017712 K, F = -7.014945443140075e-7, relative_change = 3.495087910607853e-11 Iter 140: T = 544.7375973436185 K, F = -2.9337400611617603e-7, relative_change = 1.461690544702782e-11 Iter 145: T = 544.7375973192983 K, F = -1.2269144986087888e-7, relative_change = 6.112911453532911e-12 Iter 150: T = 544.7375973091273 K, F = -5.131124292123701e-8, relative_change = 2.556503203212484e-12 Iter 155: T = 544.7375973048737 K, F = -2.1458761989556763e-8, relative_change = 1.0691495789631333e-12 Iter 160: T = 544.7375973030948 K, F = -8.974264387173747e-9, relative_change = 4.471288229893828e-13 Converged in 165 iterations to T = 544.7375973023508 K Iter 1: T = 969.3355418328113 K, F = -6986.925962824083, relative_change = 0.030664458167188748 Iter 2: T = 940.8123769684084 K, F = -5919.387772300821, relative_change = 0.02942548130492721 Iter 3: T = 914.3913553712237 K, F = -5013.26930541235, relative_change = 0.02808319941784951 Iter 5: T = 867.6695172986055 K, F = -3591.8723244356424, relative_change = 0.02512079538357435 Iter 10: T = 783.5081916442534 K, F = -1548.9286637857986, relative_change = 0.016851407618370107 Iter 15: T = 736.6449650143413 K, F = -660.4650545634702, relative_change = 0.009474672383439967 Iter 20: T = 713.5187278820251 K, F = -279.1016620653566, relative_change = 0.004638097702031739 Iter 25: T = 703.0088036254381 K, F = -117.30234663384927, relative_change = 0.002089775027210159 Iter 30: T = 698.4428856351931 K, F = -49.16509301402918, relative_change = 0.0009032982187497395 Iter 35: T = 696.5014169143456 K, F = -20.580826446495383, relative_change = 0.0003831562158173777 Iter 40: T = 695.6837148709697 K, F = -8.610580777928533, relative_change = 0.0001612023802355919 Iter 45: T = 695.3407224327015 K, F = -3.6016512476650133, relative_change = 6.758647989880079e-5 Iter 50: T = 695.1970996019438 K, F = -1.506359346815667, relative_change = 2.8295266976169083e-5 Iter 55: T = 695.1370033894236 K, F = -0.6299959863144109, relative_change = 1.1838637625952706e-5 Iter 60: T = 695.1118649334446 K, F = -0.2634750851512521, relative_change = 4.951973048573699e-6 Iter 65: T = 695.10135076822 K, F = -0.11018899390313225, relative_change = 2.071134067413068e-6 Iter 70: T = 695.0969534503502 K, F = -0.046082452306485444, relative_change = 8.662009537013753e-7 Iter 75: T = 695.0951144100457 K, F = -0.01927224922995352, relative_change = 3.622604725147663e-7 Iter 80: T = 695.0943452962754 K, F = -0.008059887816998845, relative_change = 1.515025109877992e-7 Iter 85: T = 695.0940236428106 K, F = -0.0033707418704299608, relative_change = 6.336030897381117e-8 Iter 90: T = 695.0938891233327 K, F = -0.0014096845983546658, relative_change = 2.649806405789001e-8 Iter 95: T = 695.0938328656529 K, F = -0.0005895469497145811, relative_change = 1.1081811404236469e-8 Iter 100: T = 695.0938093380147 K, F = -0.00024655557874508904, relative_change = 4.63454669040019e-9 Iter 105: T = 695.0937994984744 K, F = -0.00010311248773897663, relative_change = 1.9382229087228363e-9 Iter 110: T = 695.093795383461 K, F = -4.312287391949887e-5, relative_change = 8.105879928740343e-10 Iter 115: T = 695.0937936625133 K, F = -1.8034500552932542e-5, relative_change = 3.389975771396211e-10 Iter 120: T = 695.0937929427924 K, F = -7.542245122560409e-6, relative_change = 1.4177286628155874e-10 Iter 125: T = 695.0937926417965 K, F = -3.1542568139641958e-6, relative_change = 5.929110273652818e-11 Iter 130: T = 695.0937925159164 K, F = -1.319147681644317e-6, relative_change = 2.479624374217233e-11 Iter 135: T = 695.0937924632718 K, F = -5.516826999674151e-7, relative_change = 1.0370073716547688e-11 Iter 140: T = 695.0937924412552 K, F = -2.3071926114059949e-7, relative_change = 4.336869266260408e-12 Iter 145: T = 695.0937924320476 K, F = -9.64882721499194e-8, relative_change = 1.813706493334082e-12 Iter 150: T = 695.0937924281968 K, F = -4.035185041662004e-8, relative_change = 7.585006083110881e-13 Iter 155: T = 695.0937924265866 K, F = -1.687578499165454e-8, relative_change = 3.172170061565784e-13 Converged in 158 iterations to T = 695.093792426115 K Iter 1: T = 966.4509481307998 K, F = -7644.183381784383, relative_change = 0.03354905186920019 Iter 2: T = 934.9397609511003 K, F = -6481.289872272213, relative_change = 0.03260505589098436 Iter 3: T = 905.4367509220885 K, F = -5493.900504965647, relative_change = 0.03155605447670632 Iter 5: T = 852.3310147384321 K, F = -3943.991471540309, relative_change = 0.029137812866342924 Iter 10: T = 752.0999441116452 K, F = -1711.04686540481, relative_change = 0.021511742118355125 Iter 15: T = 691.9466068229173 K, F = -734.1113709019055, relative_change = 0.013318294416716735 Iter 20: T = 660.318098209409 K, F = -311.64602002962795, relative_change = 0.006993740279248678 Iter 25: T = 645.349289748972 K, F = -131.32331691179778, relative_change = 0.00327870093898122 Iter 30: T = 638.7070108123157 K, F = -55.11181435644652, relative_change = 0.0014446642632083137 Iter 35: T = 635.8547243094806 K, F = -23.08330819742706, relative_change = 0.000618060656769212 Iter 40: T = 634.6482164276409 K, F = -9.65993555381533, relative_change = 0.00026099155528843635 Iter 45: T = 634.1412042137393 K, F = -4.0409972659701, relative_change = 0.00010959528852880619 Iter 50: T = 633.9287358606325 K, F = -1.6901858160101637, relative_change = 4.5912445230678196e-5 Iter 55: T = 633.839803613954 K, F = -0.7068896100960691, relative_change = 1.9214877281395582e-5 Iter 60: T = 633.8025978710028 K, F = -0.2956355775915154, relative_change = 8.03829758674849e-6 Iter 65: T = 633.7870356721269 K, F = -0.12363936144522042, relative_change = 3.362133120987805e-6 Iter 70: T = 633.7805269700793 K, F = -0.0517076380760596, relative_change = 1.4061578829680001e-6 Iter 75: T = 633.7778048823758 K, F = -0.021624783339978693, relative_change = 5.88084903747109e-7 Iter 80: T = 633.7766664604103 K, F = -0.009043748168836463, relative_change = 2.459463834304894e-7 Iter 85: T = 633.7761903565836 K, F = -0.0037822044545484657, relative_change = 1.0285810889476703e-7 Iter 90: T = 633.7759912438987 K, F = -0.0015817632413816507, relative_change = 4.301655847499175e-8 Iter 95: T = 633.7759079725297 K, F = -0.0006615123067060802, relative_change = 1.799005052044198e-8 Iter 100: T = 633.7758731474372 K, F = -0.00027665235284862755, relative_change = 7.523656107261269e-9 Iter 105: T = 633.7758585831656 K, F = -0.00011569931928745447, relative_change = 3.1464832177931673e-9 Iter 110: T = 633.775852492213 K, F = -4.8386837814662353e-5, relative_change = 1.315896939150752e-9 Iter 115: T = 633.7758499449037 K, F = -2.023595331623884e-5, relative_change = 5.503238223829669e-10 Iter 120: T = 633.7758488795885 K, F = -8.462917029883332e-6, relative_change = 2.301519880424702e-10 Iter 125: T = 633.7758484340609 K, F = -3.5392923214416783e-6, relative_change = 9.625229266613139e-11 Iter 130: T = 633.775848247736 K, F = -1.4801738861813796e-6, relative_change = 4.025384663080808e-11 Iter 135: T = 633.7758481698128 K, F = -6.190269306038942e-7, relative_change = 1.6834653936329417e-11 Iter 140: T = 633.7758481372242 K, F = -2.5888412130692373e-7, relative_change = 7.040444247923163e-12 Iter 145: T = 633.7758481235953 K, F = -1.0826740559632952e-7, relative_change = 2.9443699721644425e-12 Iter 150: T = 633.7758481178955 K, F = -4.527845998136826e-8, relative_change = 1.2313635597565107e-12 Iter 155: T = 633.7758481155117 K, F = -1.8934851020446786e-8, relative_change = 5.149398978235636e-13 Converged in 160 iterations to T = 633.7758481145149 K Iter 1: T = 966.5270295310049 K, F = -7626.848162375557, relative_change = 0.03347297046899509 Iter 2: T = 935.0953721090351 K, F = -6466.458722687979, relative_change = 0.03252020529340154 Iter 3: T = 905.6752409151287 K, F = -5481.202781987426, relative_change = 0.031462171743564075 Iter 5: T = 852.744266670899 K, F = -3934.6655263610833, relative_change = 0.029025980933482968 Iter 10: T = 752.9758020942937 K, F = -1706.7052997826945, relative_change = 0.02136989691183347 Iter 15: T = 693.2362424315068 K, F = -732.1064232452968, relative_change = 0.01319022320756122 Iter 20: T = 661.8909556798448 K, F = -310.74634097889253, relative_change = 0.006909846880451598 Iter 25: T = 647.0773707900735 K, F = -130.93184017262757, relative_change = 0.00323472391445136 Iter 30: T = 640.5090842421329 K, F = -54.94492173419624, relative_change = 0.001424268049661947 Iter 35: T = 637.6896128291866 K, F = -23.012910713456083, relative_change = 0.0006091374367952174 Iter 40: T = 636.4971805964273 K, F = -9.630385656251216, relative_change = 0.00025718745976039835 Iter 45: T = 635.9961185171456 K, F = -4.028619828422172, relative_change = 0.00010799145485595102 Iter 50: T = 635.7861498418296 K, F = -1.6850060240800255, relative_change = 4.523942368682293e-5 Iter 55: T = 635.698264970774 K, F = -0.7047227630821533, relative_change = 1.8933011516464116e-5 Iter 60: T = 635.6614976000251 K, F = -0.2947292719073882, relative_change = 7.920347867033773e-6 Iter 65: T = 635.6461187944263 K, F = -0.12326031531931742, relative_change = 3.312792872635306e-6 Iter 70: T = 635.6396868002736 K, F = -0.0515491132645462, relative_change = 1.3855210557794384e-6 Iter 75: T = 635.6369967945883 K, F = -0.021558485811115358, relative_change = 5.79453960749177e-7 Iter 80: T = 635.6358717900313 K, F = -0.009016021652566542, relative_change = 2.4233675432869025e-7 Iter 85: T = 635.635401297582 K, F = -0.0037706088772498925, relative_change = 1.0134850741302088e-7 Iter 90: T = 635.6352045316521 K, F = -0.0015769138290805396, relative_change = 4.2385223087232066e-8 Iter 95: T = 635.635122241726 K, F = -0.0006594842244433963, relative_change = 1.772601818115183e-8 Iter 100: T = 635.6350878270847 K, F = -0.0002758041834278746, relative_change = 7.413234538286781e-9 Iter 105: T = 635.6350734344688 K, F = -0.00011534460485879139, relative_change = 3.100303592557995e-9 Iter 110: T = 635.6350674153045 K, F = -4.8238490617191765e-5, relative_change = 1.2965840290987454e-9 Iter 115: T = 635.6350648980181 K, F = -2.017391219194531e-5, relative_change = 5.422469175763222e-10 Iter 120: T = 635.635063845259 K, F = -8.436971031200446e-6, relative_change = 2.2677413919004335e-10 Iter 125: T = 635.6350634049825 K, F = -3.528442522271469e-6, relative_change = 9.483966643352624e-11 Iter 130: T = 635.6350632208537 K, F = -1.475636859982199e-6, relative_change = 3.966308275886136e-11 Iter 135: T = 635.6350631438488 K, F = -6.17129794433513e-7, relative_change = 1.6587597387604398e-11 Iter 140: T = 635.6350631116444 K, F = -2.580910635763267e-7, relative_change = 6.9371316886509836e-12 Iter 145: T = 635.635063098176 K, F = -1.0793670274233946e-7, relative_change = 2.9011896447026036e-12 Iter 150: T = 635.6350630925435 K, F = -4.5141021642880474e-8, relative_change = 1.2133283787607715e-12 Iter 155: T = 635.6350630901879 K, F = -1.8878694052482103e-8, relative_change = 5.074332483973712e-13 Converged in 160 iterations to T = 635.6350630892027 K Iter 1: T = 976.4405022330205 K, F = -5368.05397707427, relative_change = 0.023559497766979503 Iter 2: T = 955.0425933463277 K, F = -4539.039730390341, relative_change = 0.021914196346585344 Iter 3: T = 935.7146052679235 K, F = -3836.3158441817864, relative_change = 0.020237828357667062 Iter 5: T = 902.8473023898993 K, F = -2736.5954987218697, relative_change = 0.016885092306506522 Iter 10: T = 848.7202755088867 K, F = -1166.938844219738, relative_change = 0.00950005850866505 Iter 15: T = 821.9979863313058 K, F = -493.1439026909765, relative_change = 0.004652644552294453 Iter 20: T = 809.8506860122365 K, F = -207.2645150391633, relative_change = 0.002096839969229126 Iter 25: T = 804.5727506885058 K, F = -86.87172043131659, relative_change = 0.0009064555435963667 Iter 30: T = 802.3283950282996 K, F = -36.36518688499848, relative_change = 0.0003845147903632534 Iter 35: T = 801.383100065815 K, F = -15.21444384452297, relative_change = 0.00016177743610982308 Iter 40: T = 800.986583379506 K, F = -6.363932381442733, relative_change = 6.782819515632399e-5 Iter 45: T = 800.8205473393492 K, F = -2.6616601118265457, relative_change = 2.839656975655497e-5 Iter 50: T = 800.751072618587 K, F = -1.1131708841764447, relative_change = 1.188104127509852e-5 Iter 55: T = 800.7220110767387 K, F = -0.4655471033786498, relative_change = 4.969713346636256e-6 Iter 60: T = 800.7098560758765 K, F = -0.19469836346535496, relative_change = 2.0785544242432456e-6 Iter 65: T = 800.7047725139599 K, F = -0.08142535657113126, relative_change = 8.693044371424538e-7 Iter 70: T = 800.702646473479 K, F = -0.03405308728189238, relative_change = 3.635584216017487e-7 Iter 75: T = 800.701757331982 K, F = -0.014241413152989213, relative_change = 1.5204533495352956e-7 Iter 80: T = 800.7013854813439 K, F = -0.005955929998749054, relative_change = 6.358732551694585e-8 Iter 85: T = 800.7012299687834 K, F = -0.002490841217386075, relative_change = 2.6593005256777333e-8 Iter 90: T = 800.7011649315415 K, F = -0.0010416995718992572, relative_change = 1.1121516984477749e-8 Iter 95: T = 800.7011377321846 K, F = -0.0004356512086541864, relative_change = 4.6511520506387764e-9 Iter 100: T = 800.7011263570878 K, F = -0.00018219454012691205, relative_change = 1.9451674858512872e-9 Iter 105: T = 800.7011215998863 K, F = -7.619593339835973e-5, relative_change = 8.134923049286499e-10 Iter 110: T = 800.7011196103676 K, F = -3.18660491505085e-5, relative_change = 3.4021219929896617e-10 Iter 115: T = 800.7011187783272 K, F = -1.3326761387433272e-5, relative_change = 1.4228079553159698e-10 Iter 120: T = 800.701118430358 K, F = -5.57340977735965e-6, relative_change = 5.950351743634353e-11 Iter 125: T = 800.701118284833 K, F = -2.330864828814505e-6, relative_change = 2.48850634788328e-11 Iter 130: T = 800.7011182239728 K, F = -9.747949935023925e-7, relative_change = 1.0407225250068231e-11 Iter 135: T = 800.7011181985205 K, F = -4.0767176923139914e-7, relative_change = 4.3524350857437255e-12 Iter 140: T = 800.7011181878759 K, F = -1.7049306666461206e-7, relative_change = 1.820238881571585e-12 Iter 145: T = 800.7011181834242 K, F = -7.1301261450607e-8, relative_change = 7.612352275664133e-13 Iter 150: T = 800.7011181815625 K, F = -2.981929680956341e-8, relative_change = 3.1836041510534136e-13 Converged in 153 iterations to T = 800.7011181810175 K Iter 1: T = 965.1619883230817 K, F = -7937.874100090278, relative_change = 0.03483801167691834 Iter 2: T = 932.2974360645508 K, F = -6732.646792204432, relative_change = 0.03405081494727265 Iter 3: T = 901.3768654660224 K, F = -5709.197841515402, relative_change = 0.033165993386243174 Iter 5: T = 845.2547130116423 K, F = -4102.319423861719, relative_change = 0.031084581144392064 Iter 10: T = 736.8167412616759 K, F = -1785.2067201023776, relative_change = 0.024107257003345737 Iter 15: T = 668.9679617740073 K, F = -768.7145591033703, relative_change = 0.015802723616090673 Iter 20: T = 631.8232515340881 K, F = -327.3436574894431, relative_change = 0.00870313450155903 Iter 25: T = 613.7283660971488 K, F = -138.2066809312501, relative_change = 0.0042027729053223245 Iter 30: T = 605.5672937357008 K, F = -58.0586226737443, relative_change = 0.001880055356918942 Iter 35: T = 602.0351577588194 K, F = -24.32876862556074, relative_change = 0.0008099260434044204 Iter 40: T = 600.535821844774 K, F = -10.183182683131403, relative_change = 0.0003430449272693715 Iter 45: T = 599.904801849678 K, F = -4.260249127522346, relative_change = 0.00014423604137712715 Iter 50: T = 599.6401977377402 K, F = -1.781954205386811, relative_change = 6.045707125861836e-5 Iter 55: T = 599.5294134160409 K, F = -0.745281341614674, relative_change = 2.5307705737810317e-5 Iter 60: T = 599.4830604071791 K, F = -0.3116937515021698, relative_change = 1.0588159585547663e-5 Iter 65: T = 599.4636712298325 K, F = -0.13035548286414858, relative_change = 4.42882538919119e-6 Iter 70: T = 599.4555617802467 K, F = -0.05451647046606806, relative_change = 1.8523154827604218e-6 Iter 75: T = 599.4521701954209 K, F = -0.022799482869285903, relative_change = 7.746828130898938e-7 Iter 80: T = 599.4507517738248 K, F = -0.009535023689306532, relative_change = 3.239855144903145e-7 Iter 85: T = 599.4501585694201 K, F = -0.003987662119180946, relative_change = 1.354952952594146e-7 Iter 90: T = 599.4499104836322 K, F = -0.001667688155235214, relative_change = 5.666587024358524e-8 Iter 95: T = 599.4498067310842 K, F = -0.0006974471433053853, relative_change = 2.3698364569409526e-8 Iter 100: T = 599.4497633405106 K, F = -0.0002916807318769643, relative_change = 9.910942743620435e-9 Iter 105: T = 599.4497451940512 K, F = -0.00012198436672555824, relative_change = 4.144875256913041e-9 Iter 110: T = 599.4497376049845 K, F = -5.101531853446417e-5, relative_change = 1.7334364225358915e-9 Iter 115: T = 599.4497344311462 K, F = -2.1335215694473497e-5, relative_change = 7.249438396570959e-10 Iter 120: T = 599.4497331038091 K, F = -8.922641770992001e-6, relative_change = 3.031801668268588e-10 Iter 125: T = 599.4497325487008 K, F = -3.7315552629535453e-6, relative_change = 1.2679356418989267e-10 Iter 130: T = 599.449732316548 K, F = -1.560581002701955e-6, relative_change = 5.3026583813162404e-11 Iter 135: T = 599.4497322194588 K, F = -6.526539189644076e-7, relative_change = 2.2176361048687464e-11 Iter 140: T = 599.449732178855 K, F = -2.729473048690423e-7, relative_change = 9.274406858076553e-12 Iter 145: T = 599.449732161874 K, F = -1.1415003481340946e-7, relative_change = 3.878674919958938e-12 Iter 150: T = 599.4497321547723 K, F = -4.773838635507843e-8, relative_change = 1.622090454793669e-12 Iter 155: T = 599.4497321518024 K, F = -1.9965665731813687e-8, relative_change = 6.784082638875094e-13 Iter 160: T = 599.4497321505603 K, F = -8.35000663057528e-9, relative_change = 2.8372274572980474e-13 Converged in 162 iterations to T = 599.4497321502973 K Iter 1: T = 964.6140745097796 K, F = -8062.716783651732, relative_change = 0.035385925490220356 Iter 2: T = 931.1707945273992 K, F = -6839.545421997833, relative_change = 0.03467011405507057 Iter 3: T = 899.6398656605619 K, F = -5800.816967587243, relative_change = 0.03386159558713427 Iter 5: T = 842.202820166016 K, F = -4169.812807019007, relative_change = 0.03194298175274499 Iter 10: T = 730.0491296370049 K, F = -1817.0970328397807, relative_change = 0.02533273537168707 Iter 15: T = 658.4773472671535 K, F = -783.8295493839667, relative_change = 0.017076255497682016 Iter 20: T = 618.4800661904261 K, F = -334.3219222925587, relative_change = 0.009644056849349726 Iter 25: T = 598.6863604235593 K, F = -141.3066813274629, relative_change = 0.004735212040392511 Iter 30: T = 589.6757499094991 K, F = -59.395434417255835, relative_change = 0.002136963413929929 Iter 35: T = 585.7578827704319 K, F = -24.895736049787352, relative_change = 0.000924392385758199 Iter 40: T = 584.0913312314274 K, F = -10.421746520923868, relative_change = 0.0003922340247602716 Iter 45: T = 583.3893011075703 K, F = -4.360278645948978, relative_change = 0.00016504503569960926 Iter 50: T = 583.0948074647467 K, F = -1.8238334996724062, relative_change = 6.920171457250982e-5 Iter 55: T = 582.9714890907389 K, F = -0.7628037954080744, relative_change = 2.8972217943137417e-5 Iter 60: T = 582.9198882436217 K, F = -0.3190232580980916, relative_change = 1.2121999148491758e-5 Iter 65: T = 582.8983033158922 K, F = -0.1334210163307021, relative_change = 5.070522434930244e-6 Iter 70: T = 582.8892753949633 K, F = -0.05579855625765193, relative_change = 2.1207205727544132e-6 Iter 75: T = 582.8854996625586 K, F = -0.023335673995541872, relative_change = 8.86939975709585e-7 Iter 80: T = 582.8839205802785 K, F = -0.009759266538573008, relative_change = 3.7093401586557874e-7 Iter 85: T = 582.8832601846814 K, F = -0.004081443388003814, relative_change = 1.5512993181680068e-7 Iter 90: T = 582.8829839985636 K, F = -0.00170690864241263, relative_change = 6.487734692749441e-8 Iter 95: T = 582.8828684940925 K, F = -0.0007138496269148975, relative_change = 2.7132508700959893e-8 Iter 100: T = 582.8828201887189 K, F = -0.00029854044802535284, relative_change = 1.1347143984058104e-8 Iter 105: T = 582.8827999868306 K, F = -0.00012485318232580145, relative_change = 4.7455119728620395e-9 Iter 110: T = 582.8827915381588 K, F = -5.221509185576734e-5, relative_change = 1.984629915305435e-9 Iter 115: T = 582.8827880048233 K, F = -2.183697514990257e-5, relative_change = 8.299959619476986e-10 Iter 120: T = 582.8827865271402 K, F = -9.132483563933924e-6, relative_change = 3.471142188912021e-10 Iter 125: T = 582.8827859091554 K, F = -3.819313504960231e-6, relative_change = 1.4516730540882992e-10 Iter 130: T = 582.8827856507069 K, F = -1.5972824161658572e-6, relative_change = 6.071069696688745e-11 Iter 135: T = 582.8827855426205 K, F = -6.680025204097717e-7, relative_change = 2.5389936191037926e-11 Iter 140: T = 582.8827854974176 K, F = -2.793664394817874e-7, relative_change = 1.0618367234045457e-11 Iter 145: T = 582.882785478513 K, F = -1.1683366724080102e-7, relative_change = 4.440700846371798e-12 Iter 150: T = 582.882785470607 K, F = -4.886117038749305e-8, relative_change = 1.857151674108323e-12 Iter 155: T = 582.8827854673006 K, F = -2.043354091485483e-8, relative_change = 7.76653207814318e-13 Iter 160: T = 582.8827854659179 K, F = -8.545579799346115e-9, relative_change = 3.2480674747103684e-13 Converged in 163 iterations to T = 582.882785465513 K Iter 1: T = 964.3263145253583 K, F = -8128.283169832556, relative_change = 0.035673685474641746 Iter 2: T = 930.5782666468854 K, F = -6895.699970140076, relative_change = 0.0349965020866237 Iter 3: T = 898.7248994797096 K, F = -5848.9585987261635, relative_change = 0.034229648712892975 Iter 5: T = 840.5892445564216 K, F = -4205.306163400315, relative_change = 0.03240146962812076 Iter 10: T = 726.4252555399412 K, F = -1833.9387628120853, relative_change = 0.026009156087480296 Iter 15: T = 652.7713959740983 K, F = -791.8777777631698, relative_change = 0.01780940394190081 Iter 20: T = 611.1214333988758 K, F = -338.07467801581544, relative_change = 0.010207239485930572 Iter 25: T = 590.315723337047 K, F = -142.98685930101678, relative_change = 0.005062404853934769 Iter 30: T = 580.7904310466786 K, F = -60.123264311968775, relative_change = 0.0022970881328335537 Iter 35: T = 576.6368731740621 K, F = -25.205104243360747, relative_change = 0.0009962131530173951 Iter 40: T = 574.867750427913 K, F = -10.552048396054953, relative_change = 0.0004231878849075922 Iter 45: T = 574.1220884230472 K, F = -4.41493726684836, relative_change = 0.0001781562137815967 Iter 50: T = 573.8092160604483 K, F = -1.8467215038980114, relative_change = 7.471439298404035e-5 Iter 55: T = 573.6781883095935 K, F = -0.7723809459534772, relative_change = 3.1282863183483054e-5 Iter 60: T = 573.623359240289 K, F = -0.32302943281847635, relative_change = 1.308924633832838e-5 Iter 65: T = 573.6004235187563 K, F = -0.13509660326676656, relative_change = 5.47519569286191e-6 Iter 70: T = 573.5908305549884 K, F = -0.056499334163013976, relative_change = 2.2899875714403585e-6 Iter 75: T = 573.5868184930974 K, F = -0.0236287524832709, relative_change = 9.577343207666096e-7 Iter 80: T = 573.5851405711867 K, F = -0.00988183630200179, relative_change = 4.005419073554269e-7 Iter 85: T = 573.5844388390078 K, F = -0.0041327036737844325, relative_change = 1.6751245446358789e-7 Iter 90: T = 573.5841453653213 K, F = -0.0017283463317183112, relative_change = 7.00558918049831e-8 Iter 95: T = 573.5840226309618 K, F = -0.0007228151286850504, relative_change = 2.9298242549343267e-8 Iter 100: T = 573.5839713019592 K, F = -0.00030228992863789994, relative_change = 1.2252880537873765e-8 Iter 105: T = 573.5839498355524 K, F = -0.00012642125960210526, relative_change = 5.1243019386464394e-9 Iter 110: T = 573.583940858044 K, F = -5.287088176703092e-5, relative_change = 2.1430444766783497e-9 Iter 115: T = 573.5839371035426 K, F = -2.211123462508846e-5, relative_change = 8.962468400152599e-10 Iter 120: T = 573.5839355333651 K, F = -9.247182058413905e-6, relative_change = 3.748211236250468e-10 Iter 125: T = 573.5839348766981 K, F = -3.8672818280516275e-6, relative_change = 1.5675466524927388e-10 Iter 130: T = 573.5839346020722 K, F = -1.6173436260813467e-6, relative_change = 6.55566805186944e-11 Iter 135: T = 573.5839344872204 K, F = -6.763930276432184e-7, relative_change = 2.7416611377748104e-11 Iter 140: T = 573.5839344391879 K, F = -2.828753309924714e-7, relative_change = 1.1465941700030743e-11 Iter 145: T = 573.5839344191003 K, F = -1.1830229407205906e-7, relative_change = 4.795212089640957e-12 Iter 150: T = 573.5839344106994 K, F = -4.9476116814606286e-8, relative_change = 2.005442712462712e-12 Iter 155: T = 573.583934407186 K, F = -2.0691456659172047e-8, relative_change = 8.386982172443752e-13 Iter 160: T = 573.5839344057165 K, F = -8.653159189186965e-9, relative_change = 3.507432707679558e-13 Converged in 163 iterations to T = 573.5839344052863 K Iter 1: T = 980.1381725125751 K, F = -4525.536286485267, relative_change = 0.019861827487424915 Iter 2: T = 962.3202205034237 K, F = -3822.7357737095226, relative_change = 0.018179020579797752 Iter 3: T = 946.4252694982555 K, F = -3227.5729641075804, relative_change = 0.016517319979884596 Iter 5: T = 919.8812267489592 K, F = -2297.6457876465247, relative_change = 0.013346009893662305 Iter 10: T = 877.7352025570541 K, F = -975.434090822485, relative_change = 0.007012049873069198 Iter 15: T = 857.7823658356442 K, F = -411.04315503725195, relative_change = 0.003288340123504253 Iter 20: T = 848.9269150488119 K, F = -172.5023140916158, relative_change = 0.0014491436849192216 Iter 25: T = 845.123945067978 K, F = -72.25208360746403, relative_change = 0.0006200220699207171 Iter 30: T = 843.5152418265645 K, F = -30.236218097051548, relative_change = 0.0002618280416060567 Iter 35: T = 842.8392038968656 K, F = -12.648592038533138, relative_change = 0.00010994801187202994 Iter 40: T = 842.5559017957504 K, F = -5.290396775108874, relative_change = 4.606046923472874e-5 Iter 45: T = 842.4373205449473 K, F = -2.212612997085795, relative_change = 1.9276872381702464e-5 Iter 50: T = 842.3877107702017 K, F = -0.9253597100179441, relative_change = 8.06424039051005e-6 Iter 55: T = 842.3669602757998 K, F = -0.38699972361078416, relative_change = 3.372985461281288e-6 Iter 60: T = 842.3582816299163 K, F = -0.16184847318557294, relative_change = 1.4106969423893923e-6 Iter 65: T = 842.3546520218769 K, F = -0.06768706353084308, relative_change = 5.899832767607608e-7 Iter 70: T = 842.3531340598869 K, F = -0.02830755566044907, relative_change = 2.467403203921324e-7 Iter 75: T = 842.352499227158 K, F = -0.011838560874380955, relative_change = 1.0319014540977124e-7 Iter 80: T = 842.3522337320225 K, F = -0.004951028066845664, relative_change = 4.315542051616325e-8 Iter 85: T = 842.3521226986976 K, F = -0.002070579156745689, relative_change = 1.8048124368419145e-8 Iter 90: T = 842.3520762632197 K, F = -0.0008659409478657398, relative_change = 7.547943276611865e-9 Iter 95: T = 842.3520568433456 K, F = -0.00036214684989044343, relative_change = 3.1566404008987174e-9 Iter 100: T = 842.3520487217218 K, F = -0.00015145413629413795, relative_change = 1.3201447633777137e-9 Iter 105: T = 842.3520453251617 K, F = -6.33399294194259e-5, relative_change = 5.52100324145182e-10 Iter 110: T = 842.3520439046797 K, F = -2.6489515702943223e-5, relative_change = 2.3089495769130604e-10 Iter 115: T = 842.352043310617 K, F = -1.1078227770688898e-5, relative_change = 9.656299381542815e-11 Iter 120: T = 842.352043062173 K, F = -4.633047437474502e-6, relative_change = 4.038379973224486e-11 Iter 125: T = 842.3520429582708 K, F = -1.9375943760557846e-6, relative_change = 1.688897520409767e-11 Iter 130: T = 842.3520429148177 K, F = -8.103286706084845e-7, relative_change = 7.063202183883444e-12 Iter 135: T = 842.3520428966449 K, F = -3.3888641870483127e-7, relative_change = 2.953891895658681e-12 Iter 140: T = 842.3520428890449 K, F = -1.4172463957962123e-7, relative_change = 1.2353379810478857e-12 Iter 145: T = 842.3520428858666 K, F = -5.9271678232164504e-8, relative_change = 5.1663955921244e-13 Converged in 150 iterations to T = 842.3520428845372 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495322469365377 Iteration 10: d = 7.803711545897193e-6 Iteration 20: d = 4.281877698192121e-8 Iteration 30: d = 3.7141739947143065e-10 Iteration 40: d = 4.563807640763491e-12 Iteration 50: d = 6.256749757195042e-14 Converged after 58 iterations. d = 2.0731360895836498e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.825319527194 Iteration 2: convergence error = 4821.833957574522 Iteration 3: convergence error = 1091.0344753995041 Iteration 4: convergence error = 320.0512317207506 Iteration 5: convergence error = 94.96764027462746 Iteration 6: convergence error = 28.46360517750145 Iteration 7: convergence error = 8.567997949061237 Iteration 8: convergence error = 2.5687877221732833 Iteration 9: convergence error = 0.7683250801344457 Iteration 10: convergence error = 0.22949220360624167 Iteration 11: convergence error = 0.06849408618745656 Iteration 12: convergence error = 0.020433675663753093 Iteration 13: convergence error = 0.006094398528830425 Iteration 14: convergence error = 0.0018174099818679679 Iteration 15: convergence error = 0.0005419250423983613 Iteration 16: convergence error = 0.0001615864530322142 Iteration 17: convergence error = 4.8179113491642056e-5 Iteration 18: convergence error = 1.4365002016347717e-5 Iteration 19: convergence error = 4.283006546756951e-6 Iteration 20: convergence error = 1.2769937711709645e-6 Iteration 21: convergence error = 3.807426764979027e-7 Iteration 22: convergence error = 1.1338443073327653e-7 Iteration 23: convergence error = 3.289892447355669e-8 Iteration 24: convergence error = 9.484438123763539e-9 Iteration 25: convergence error = 2.7330315788276494e-9 Iteration 26: convergence error = 7.819380698492751e-10 Iteration 27: convergence error = 2.2669155441690236e-10 Iteration 28: convergence error = 6.411937647499144e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016467553559387743 Iteration 10: d = 1.846754390848999e-5 Iteration 20: d = 2.0722073298036415e-7 Iteration 30: d = 2.551422751177466e-9 Iteration 40: d = 3.208379852084569e-11 Iteration 50: d = 4.073266103634864e-13 Iteration 60: d = 5.2093456744863326e-15 Converged after 62 iterations. d = 2.1875287175841534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12270.726229175509 Iteration 2: convergence error = 8337.86624500581 Iteration 3: convergence error = 1954.1178334605693 Iteration 4: convergence error = 480.3196705402345 Iteration 5: convergence error = 122.26431789946673 Iteration 6: convergence error = 32.59693709622047 Iteration 7: convergence error = 8.86788214969124 Iteration 8: convergence error = 2.4264060484463243 Iteration 9: convergence error = 0.6647412693746446 Iteration 10: convergence error = 0.18214265653182338 Iteration 11: convergence error = 0.049906037740356624 Iteration 12: convergence error = 0.013673304167468814 Iteration 13: convergence error = 0.0037461148067450267 Iteration 14: convergence error = 0.0010263186518386647 Iteration 15: convergence error = 0.000281177373835817 Iteration 16: convergence error = 7.70330718751211e-5 Iteration 17: convergence error = 2.110442483171937e-5 Iteration 18: convergence error = 5.78188860345108e-6 Iteration 19: convergence error = 1.584035089763347e-6 Iteration 20: convergence error = 4.3397199078754056e-7 Iteration 21: convergence error = 1.1975407687714323e-7 Iteration 22: convergence error = 3.2132675187313e-8 Iteration 23: convergence error = 8.580400390201248e-9 Iteration 24: convergence error = 2.2853328118799254e-9 Iteration 25: convergence error = 6.102709448896348e-10 Iteration 26: convergence error = 1.6189005691558123e-10 Iteration 27: convergence error = 4.388311936054379e-11 Iteration 28: convergence error = 1.2732925824820995e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016467553559387743 Iteration 10: d = 1.846754390848999e-5 Iteration 20: d = 2.0722073298036415e-7 Iteration 30: d = 2.551422751177466e-9 Iteration 40: d = 3.208379852084569e-11 Iteration 50: d = 4.073266103634864e-13 Iteration 60: d = 5.2093456744863326e-15 Converged after 62 iterations. d = 2.1875287175841534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.377214325588 Iteration 2: convergence error = 5736.378580752826 Iteration 3: convergence error = 2012.0918500311723 Iteration 4: convergence error = 894.2475707848125 Iteration 5: convergence error = 410.5520321845934 Iteration 6: convergence error = 193.54965184751381 Iteration 7: convergence error = 91.3327448666314 Iteration 8: convergence error = 43.12150978540649 Iteration 9: convergence error = 20.360184229831248 Iteration 10: convergence error = 9.611431376121345 Iteration 11: convergence error = 4.536173159449845 Iteration 12: convergence error = 2.140412600480431 Iteration 13: convergence error = 1.0097935794578916 Iteration 14: convergence error = 0.47633786820642854 Iteration 15: convergence error = 0.22467830775713082 Iteration 16: convergence error = 0.10587777899445427 Iteration 17: convergence error = 0.049451415450675995 Iteration 18: convergence error = 0.02257249510012116 Iteration 19: convergence error = 0.010264154248488921 Iteration 20: convergence error = 0.004657172398765397 Iteration 21: convergence error = 0.002110469740728149 Iteration 22: convergence error = 0.0009557000576023711 Iteration 23: convergence error = 0.00043259360290903714 Iteration 24: convergence error = 0.00019576262002374278 Iteration 25: convergence error = 8.857568082021317e-5 Iteration 26: convergence error = 4.00737626478076e-5 Iteration 27: convergence error = 1.8129336694983067e-5 Iteration 28: convergence error = 8.201422588172136e-6 Iteration 29: convergence error = 3.7101162888575345e-6 Iteration 30: convergence error = 1.6783415048848838e-6 Iteration 31: convergence error = 7.592270776513033e-7 Iteration 32: convergence error = 3.43447936757002e-7 Iteration 33: convergence error = 1.5536124919890426e-7 Iteration 34: convergence error = 7.027574611129239e-8 Iteration 35: convergence error = 3.179457053192891e-8 Iteration 36: convergence error = 1.4378656487679109e-8 Iteration 37: convergence error = 6.505615601781756e-9 Iteration 38: convergence error = 2.9408511181827635e-9 Iteration 39: convergence error = 1.3337739801499993e-9 Iteration 40: convergence error = 5.975380190648139e-10 Iteration 41: convergence error = 2.764863893389702e-10 Iteration 42: convergence error = 1.2641976354643703e-10 Iteration 43: convergence error = 5.638867150992155e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016467553559387743 Iteration 10: d = 1.846754390848999e-5 Iteration 20: d = 2.0722073298036415e-7 Iteration 30: d = 2.551422751177466e-9 Iteration 40: d = 3.208379852084569e-11 Iteration 50: d = 4.073266103634864e-13 Iteration 60: d = 5.2093456744863326e-15 Converged after 62 iterations. d = 2.1875287175841534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.879851944215 Iteration 2: convergence error = 7356.033360926191 Iteration 3: convergence error = 1729.881797651129 Iteration 4: convergence error = 505.5406122819936 Iteration 5: convergence error = 156.96498228250948 Iteration 6: convergence error = 48.73060009913024 Iteration 7: convergence error = 15.103486398930727 Iteration 8: convergence error = 4.673480812175512 Iteration 9: convergence error = 1.444463401558096 Iteration 10: convergence error = 0.44613486470552743 Iteration 11: convergence error = 0.1377356924635933 Iteration 12: convergence error = 0.04251324257438682 Iteration 13: convergence error = 0.013120299109232292 Iteration 14: convergence error = 0.004048836652145837 Iteration 15: convergence error = 0.0012493901176640065 Iteration 16: convergence error = 0.0003855273976114404 Iteration 17: convergence error = 0.00011896148316736799 Iteration 18: convergence error = 3.6707427625515265e-5 Iteration 19: convergence error = 1.1326612366246991e-5 Iteration 20: convergence error = 3.4949775908899028e-6 Iteration 21: convergence error = 1.0784247024275828e-6 Iteration 22: convergence error = 3.325908437545877e-7 Iteration 23: convergence error = 1.013850123854354e-7 Iteration 24: convergence error = 3.015338734257966e-8 Iteration 25: convergence error = 8.937604434322566e-9 Iteration 26: convergence error = 2.6420821086503565e-9 Iteration 27: convergence error = 7.735252438578755e-10 Iteration 28: convergence error = 2.3010215954855084e-10 Iteration 29: convergence error = 7.275957614183426e-11 Iteration 30: convergence error = 2.319211489520967e-11 Iteration 31: convergence error = 7.275957614183426e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016467553559387743 Iteration 10: d = 1.846754390848999e-5 Iteration 20: d = 2.0722073298036415e-7 Iteration 30: d = 2.551422751177466e-9 Iteration 40: d = 3.208379852084569e-11 Iteration 50: d = 4.073266103634864e-13 Iteration 60: d = 5.2093456744863326e-15 Converged after 62 iterations. d = 2.1875287175841534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.762214689146 Iteration 2: convergence error = 5525.288162222134 Iteration 3: convergence error = 934.3602446591976 Iteration 4: convergence error = 170.1853250585864 Iteration 5: convergence error = 30.873767121303217 Iteration 6: convergence error = 5.6139100227862855 Iteration 7: convergence error = 1.0247950572552327 Iteration 8: convergence error = 0.18739092939404145 Iteration 9: convergence error = 0.03422558419697452 Iteration 10: convergence error = 0.006247424531920842 Iteration 11: convergence error = 0.0011400501716707367 Iteration 12: convergence error = 0.00020800887023142423 Iteration 13: convergence error = 3.794950362134841e-5 Iteration 14: convergence error = 6.923285582161043e-6 Iteration 15: convergence error = 1.2630266610358376e-6 Iteration 16: convergence error = 2.304191184521187e-7 Iteration 17: convergence error = 4.202456693747081e-8 Iteration 18: convergence error = 7.663402357138693e-9 Iteration 19: convergence error = 1.406078808940947e-9 Iteration 20: convergence error = 2.546585164964199e-10 Iteration 21: convergence error = 4.5929482439532876e-11 Iteration 22: convergence error = 8.185452315956354e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016467553559387743 Iteration 10: d = 1.846754390848999e-5 Iteration 20: d = 2.0722073298036415e-7 Iteration 30: d = 2.551422751177466e-9 Iteration 40: d = 3.208379852084569e-11 Iteration 50: d = 4.073266103634864e-13 Iteration 60: d = 5.2093456744863326e-15 Converged after 62 iterations. d = 2.1875287175841534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.491583889771 Iteration 2: convergence error = 2716.9505855410425 Iteration 3: convergence error = 204.91796594317037 Iteration 4: convergence error = 19.407269313699768 Iteration 5: convergence error = 1.6031072849444479 Iteration 6: convergence error = 0.13046521622269805 Iteration 7: convergence error = 0.010630547012309305 Iteration 8: convergence error = 0.0008681851083297826 Iteration 9: convergence error = 7.10111869339798e-5 Iteration 10: convergence error = 5.813137748309419e-6 Iteration 11: convergence error = 4.7609219586973226e-7 Iteration 12: convergence error = 3.900109577384642e-8 Iteration 13: convergence error = 3.1960316198891094e-9 Iteration 14: convergence error = 2.6098793624978165e-10 Iteration 15: convergence error = 2.1117322505639352e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014495322469365377 Iteration 10: d = 7.803711545897193e-6 Iteration 20: d = 4.281877698192121e-8 Iteration 30: d = 3.7141739947143065e-10 Iteration 40: d = 4.563807640763491e-12 Iteration 50: d = 6.256749757195042e-14 Converged after 58 iterations. d = 2.0731360895836498e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.378506745156 Iteration 2: convergence error = 3609.554454899656 Iteration 3: convergence error = 589.6921531063883 Iteration 4: convergence error = 104.66230558066718 Iteration 5: convergence error = 18.624684029111222 Iteration 6: convergence error = 3.2841522205199 Iteration 7: convergence error = 0.5769265920741873 Iteration 8: convergence error = 0.10118823429047552 Iteration 9: convergence error = 0.01773586924718984 Iteration 10: convergence error = 0.0031078170300133934 Iteration 11: convergence error = 0.0005445133265311597 Iteration 12: convergence error = 9.53983135332237e-5 Iteration 13: convergence error = 1.6713363720555208e-5 Iteration 14: convergence error = 2.9280811304488452e-6 Iteration 15: convergence error = 5.129847977514146e-7 Iteration 16: convergence error = 8.987103683466557e-8 Iteration 17: convergence error = 1.5757450455566868e-8 Iteration 18: convergence error = 2.736442183959298e-9 Iteration 19: convergence error = 4.877165338257328e-10 Iteration 20: convergence error = 8.481038094032556e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m16.4s Testing RayTraceHeatTransfer tests passed Testing completed after 516.9s PkgEval succeeded after 571.02s