Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1420 (3d611fddcf*) started at 2025-12-28T15:30:08.516 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.98s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.02s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:585 Precompilation failed after 12.7s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_EYRUuW/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_EYRUuW/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:24 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001410998013958999 Iteration 10: d = 1.4448144718201621e-5 Iteration 20: d = 1.9546157286776092e-7 Iteration 30: d = 3.10705618191636e-9 Iteration 40: d = 5.240464019543295e-11 Iteration 50: d = 9.07869401361786e-13 Iteration 60: d = 1.5958230340482917e-14 Converged after 65 iterations. d = 2.1205922151491456e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013619183794484322 Iteration 10: d = 1.1655114351188826e-5 Iteration 20: d = 1.5167144285517928e-7 Iteration 30: d = 2.401083600152706e-9 Iteration 40: d = 4.053451931206394e-11 Iteration 50: d = 7.045102573109e-13 Iteration 60: d = 1.2447588262602345e-14 Converged after 65 iterations. d = 1.5986772672464659e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013309739218602145 Iteration 10: d = 1.53208431901809e-5 Iteration 20: d = 2.4160317447850365e-7 Iteration 30: d = 4.111491614979678e-9 Iteration 40: d = 7.131318374429373e-11 Iteration 50: d = 1.2470676482583994e-12 Iteration 60: d = 2.1909916122800716e-14 Converged after 66 iterations. d = 1.8928321766844236e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013450907210411334 Iteration 10: d = 1.4337343650260604e-5 Iteration 20: d = 2.0788142622648588e-7 Iteration 30: d = 3.50675585934364e-9 Iteration 40: d = 6.135850584315176e-11 Iteration 50: d = 1.0857088004820972e-12 Iteration 60: d = 1.929205410345152e-14 Converged after 66 iterations. d = 1.6984984364098885e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 48%|███████████████▉ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013276429428487793 Iteration 10: d = 1.5529817830106852e-5 Iteration 20: d = 2.245014381002013e-7 Iteration 30: d = 3.4464708359785605e-9 Iteration 40: d = 5.305173456025524e-11 Iteration 50: d = 8.159971746557211e-13 Iteration 60: d = 1.2533786275938106e-14 Converged after 65 iterations. d = 1.5466883522546155e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015283812213533492 Iteration 10: d = 1.999134938512692e-5 Iteration 20: d = 2.5134967052720247e-7 Iteration 30: d = 3.5687602446415584e-9 Iteration 40: d = 5.289719069452122e-11 Iteration 50: d = 7.979017298922035e-13 Iteration 60: d = 1.2117940336426736e-14 Converged after 65 iterations. d = 1.4572634936631461e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015236452792841894 Iteration 10: d = 1.589821783474216e-5 Iteration 20: d = 1.8063752853771673e-7 Iteration 30: d = 2.461274345657212e-9 Iteration 40: d = 3.58760035864434e-11 Iteration 50: d = 5.378739765776142e-13 Iteration 60: d = 8.178783146543913e-15 Converged after 64 iterations. d = 1.5253730542826322e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013400484642906547 Iteration 10: d = 1.4968980067198538e-5 Iteration 20: d = 2.0265565184786012e-7 Iteration 30: d = 3.0063677321139997e-9 Iteration 40: d = 4.5764581195605526e-11 Iteration 50: d = 7.041911075829955e-13 Iteration 60: d = 1.0868605537214731e-14 Converged after 64 iterations. d = 2.1103122950355612e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012220854128750062 Iteration 10: d = 1.2074456872167402e-5 Iteration 20: d = 1.3389610516827504e-7 Iteration 30: d = 1.7728970333990462e-9 Iteration 40: d = 2.5587044195402216e-11 Iteration 50: d = 3.841706501181273e-13 Iteration 60: d = 5.860567107109942e-15 Converged after 63 iterations. d = 1.701448335030425e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011699514958787925 Iteration 10: d = 8.330798180916062e-6 Iteration 20: d = 9.766958233257276e-8 Iteration 30: d = 1.4312155940449566e-9 Iteration 40: d = 2.1872940484403415e-11 Iteration 50: d = 3.3838400930138957e-13 Iteration 60: d = 5.267735475620233e-15 Converged after 63 iterations. d = 1.5019849298264963e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004213972869374195 Iteration 10: d = 3.51398601846428e-5 Iteration 20: d = 3.916138883285398e-7 Iteration 30: d = 5.387232475866456e-9 Iteration 40: d = 7.618976570833328e-11 Iteration 50: d = 1.0819108609118805e-12 Iteration 60: d = 1.541536269679131e-14 Converged after 65 iterations. d = 1.8258238104836635e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0026490392821106688 Iteration 10: d = 2.1745005003110294e-5 Iteration 20: d = 2.461100276794585e-7 Iteration 30: d = 3.34757446269864e-9 Iteration 40: d = 4.911516882185255e-11 Iteration 50: d = 7.458722403853631e-13 Iteration 60: d = 1.1472478609577001e-14 Converged after 64 iterations. d = 2.1945710255385454e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023118246307946523 Iteration 10: d = 1.2221403343676865e-5 Iteration 20: d = 1.1203181480266408e-7 Iteration 30: d = 1.838513519140001e-9 Iteration 40: d = 3.194113184625128e-11 Iteration 50: d = 5.520931243516893e-13 Iteration 60: d = 9.49497164343571e-15 Converged after 64 iterations. d = 1.8284026278863306e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002204887156612436 Iteration 10: d = 2.1304151304227476e-5 Iteration 20: d = 3.0951149445390906e-7 Iteration 30: d = 5.0997217420924495e-9 Iteration 40: d = 8.698832325808742e-11 Iteration 50: d = 1.5084072625412018e-12 Iteration 60: d = 2.6360414929446974e-14 Converged after 67 iterations. d = 1.5552736619697291e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013276429428487793 Iteration 10: d = 1.5529817830106852e-5 Iteration 20: d = 2.245014381002013e-7 Iteration 30: d = 3.4464708359785605e-9 Iteration 40: d = 5.305173456025524e-11 Iteration 50: d = 8.159971746557211e-13 Iteration 60: d = 1.2533786275938106e-14 Converged after 65 iterations. d = 1.5466883522546155e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318378655023386 Iteration 10: d = 1.3741599424105036e-5 Iteration 20: d = 1.6596876020196733e-7 Iteration 30: d = 2.261566788206367e-9 Iteration 40: d = 3.157762105933045e-11 Iteration 50: d = 4.447450512452201e-13 Iteration 60: d = 6.2930121856866e-15 Converged after 63 iterations. d = 1.770296185826407e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014134066061733286 Iteration 10: d = 1.0417079203810664e-5 Iteration 20: d = 1.095975146493958e-7 Iteration 30: d = 1.4259443808141912e-9 Iteration 40: d = 1.9373855242187264e-11 Iteration 50: d = 2.6760721044638904e-13 Iteration 60: d = 3.735174929534636e-15 Converged after 62 iterations. d = 1.5936294987370484e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.717070495804 Iteration 2: convergence error = 4827.201516387381 Iteration 3: convergence error = 1100.8847328103266 Iteration 4: convergence error = 319.788282017048 Iteration 5: convergence error = 94.90878618041347 Iteration 6: convergence error = 28.363592351031684 Iteration 7: convergence error = 8.540777935362257 Iteration 8: convergence error = 2.5616938137857233 Iteration 9: convergence error = 0.7665543548557707 Iteration 10: convergence error = 0.2290735701419635 Iteration 11: convergence error = 0.06840300817339084 Iteration 12: convergence error = 0.020416782220081586 Iteration 13: convergence error = 0.00609245769737754 Iteration 14: convergence error = 0.0018177610818383982 Iteration 15: convergence error = 0.0005423081977369293 Iteration 16: convergence error = 0.00016178395821953018 Iteration 17: convergence error = 4.826287408832286e-5 Iteration 18: convergence error = 1.4397397308130166e-5 Iteration 19: convergence error = 4.294882273825351e-6 Iteration 20: convergence error = 1.281199502045638e-6 Iteration 21: convergence error = 3.82191501557827e-7 Iteration 22: convergence error = 1.1387578524590936e-7 Iteration 23: convergence error = 3.305717655166518e-8 Iteration 24: convergence error = 9.53514245338738e-9 Iteration 25: convergence error = 2.7525857149157673e-9 Iteration 26: convergence error = 7.844391802791506e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.52562448522076e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318378655023386 Iteration 10: d = 1.3741599424105036e-5 Iteration 20: d = 1.6596876020196733e-7 Iteration 30: d = 2.261566788206367e-9 Iteration 40: d = 3.157762105933045e-11 Iteration 50: d = 4.447450512452201e-13 Iteration 60: d = 6.2930121856866e-15 Converged after 63 iterations. d = 1.770296185826407e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.833391072556 Iteration 2: convergence error = 4823.1877896099 Iteration 3: convergence error = 1100.789461015272 Iteration 4: convergence error = 320.61095075479875 Iteration 5: convergence error = 95.258144135355 Iteration 6: convergence error = 28.581729333959174 Iteration 7: convergence error = 8.617224707598325 Iteration 8: convergence error = 2.5875291992697385 Iteration 9: convergence error = 0.7751027361859997 Iteration 10: convergence error = 0.2318634607927379 Iteration 11: convergence error = 0.06930478644380855 Iteration 12: convergence error = 0.02070617009462694 Iteration 13: convergence error = 0.006184799932498208 Iteration 14: convergence error = 0.001847090918545291 Iteration 15: convergence error = 0.0005515877041943895 Iteration 16: convergence error = 0.00016470998980366858 Iteration 17: convergence error = 4.918279091725708e-5 Iteration 18: convergence error = 1.4685867654407048e-5 Iteration 19: convergence error = 4.385115744298673e-6 Iteration 20: convergence error = 1.3093695088173263e-6 Iteration 21: convergence error = 3.909683528036112e-7 Iteration 22: convergence error = 1.1660949894576333e-7 Iteration 23: convergence error = 3.391255631868262e-8 Iteration 24: convergence error = 9.80389813776128e-9 Iteration 25: convergence error = 2.823753675329499e-9 Iteration 26: convergence error = 8.064944267971441e-10 Iteration 27: convergence error = 2.3169377527665347e-10 Iteration 28: convergence error = 6.843947630841285e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 7:15:31 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:38 Bin 1 ray tracing: 17%|█████▎ | ETA: 0:00:23 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:17 Bin 1 ray tracing: 34%|██████████▍ | ETA: 0:00:13 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:10 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▌| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:08 Bin 3 ray tracing: 29%|████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 3 ray tracing: 74%|██████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███ | ETA: 0:00:09 Bin 4 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 4 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 4 ray tracing: 39%|███████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 5 ray tracing: 31%|█████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 51%|███████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 6 ray tracing: 29%|████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 39%|███████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 7 ray tracing: 40%|███████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 7 ray tracing: 60%|██████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 8 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 8 ray tracing: 33%|█████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 47%|██████████████ | ETA: 0:00:05 Bin 8 ray tracing: 61%|██████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 15%|████▍ | ETA: 0:00:06 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 44%|█████████████ | ETA: 0:00:04 Bin 9 ray tracing: 58%|█████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:06 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:06 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 44%|████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 73%|█████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 93%|███████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 5 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 6 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 6 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 9 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 33%|██████████▋ | ETA: 0:00:02 Bin 10 progress: 71%|██████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318378655023386 Iteration 10: d = 1.3741599424105036e-5 Iteration 20: d = 1.6596876020196733e-7 Iteration 30: d = 2.261566788206367e-9 Iteration 40: d = 3.157762105933045e-11 Iteration 50: d = 4.447450512452201e-13 Iteration 60: d = 6.2930121856866e-15 Converged after 63 iterations. d = 1.770296185826407e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013935572065787848 Iteration 10: d = 1.038560249811204e-5 Iteration 20: d = 1.107369154200026e-7 Iteration 30: d = 1.4498084576356988e-9 Iteration 40: d = 1.974957628714029e-11 Iteration 50: d = 2.730842539541773e-13 Iteration 60: d = 3.784267594783484e-15 Converged after 62 iterations. d = 1.637756479577107e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014590443581203908 Iteration 10: d = 1.653168439148398e-5 Iteration 20: d = 1.9914777397049343e-7 Iteration 30: d = 2.5816262430865687e-9 Iteration 40: d = 3.390927385918885e-11 Iteration 50: d = 4.474290725598718e-13 Iteration 60: d = 5.906605564929658e-15 Converged after 63 iterations. d = 1.5899419124097393e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015823310145274502 Iteration 10: d = 1.084620184248147e-5 Iteration 20: d = 1.0310006527712287e-7 Iteration 30: d = 1.2991719430955404e-9 Iteration 40: d = 1.7081264079723138e-11 Iteration 50: d = 2.2698265533131516e-13 Iteration 60: d = 3.0254238995587868e-15 Converged after 61 iterations. d = 1.922055742955751e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014870044697151905 Iteration 10: d = 1.4446794154377964e-5 Iteration 20: d = 1.6821708575856813e-7 Iteration 30: d = 2.2114517979443722e-9 Iteration 40: d = 3.00067073367931e-11 Iteration 50: d = 4.1280859808671497e-13 Iteration 60: d = 5.6868136872676666e-15 Converged after 63 iterations. d = 1.583248019568079e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001360755165091682 Iteration 10: d = 1.4991705527559764e-5 Iteration 20: d = 1.740587820571042e-7 Iteration 30: d = 2.2929908230595416e-9 Iteration 40: d = 3.130059278202711e-11 Iteration 50: d = 4.3331364809607417e-13 Iteration 60: d = 6.0603141992499314e-15 Converged after 63 iterations. d = 1.6655155177509888e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013806384059731806 Iteration 10: d = 1.2441799718869265e-5 Iteration 20: d = 1.3493407195563885e-7 Iteration 30: d = 1.7949107083968892e-9 Iteration 40: d = 2.501794009313251e-11 Iteration 50: d = 3.5312831370144815e-13 Iteration 60: d = 5.055886892422581e-15 Converged after 62 iterations. d = 2.1111455124295173e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011335350836481962 Iteration 10: d = 8.977602350617766e-6 Iteration 20: d = 9.152527195125679e-8 Iteration 30: d = 1.1143240382033171e-9 Iteration 40: d = 1.4501719079485333e-11 Iteration 50: d = 1.9551060179805135e-13 Iteration 60: d = 2.6917687479200347e-15 Converged after 61 iterations. d = 1.7683927772630877e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014251427971536791 Iteration 10: d = 9.60806499723072e-6 Iteration 20: d = 8.499579457020196e-8 Iteration 30: d = 1.0418995777026784e-9 Iteration 40: d = 1.406251922296402e-11 Iteration 50: d = 1.9515326589874044e-13 Iteration 60: d = 2.7557639851378315e-15 Converged after 61 iterations. d = 1.8248274310206994e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012969247812497982 Iteration 10: d = 1.2022382042429879e-5 Iteration 20: d = 1.3288930303487407e-7 Iteration 30: d = 1.7078209246153384e-9 Iteration 40: d = 2.2347538976747895e-11 Iteration 50: d = 2.937094822087504e-13 Iteration 60: d = 3.882755749302939e-15 Converged after 62 iterations. d = 1.6133609463313224e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.89764726697 Iteration 2: convergence error = 4809.509881980386 Iteration 3: convergence error = 1092.783084838017 Iteration 4: convergence error = 320.4693700081077 Iteration 5: convergence error = 95.70309974744373 Iteration 6: convergence error = 29.034471580701847 Iteration 7: convergence error = 8.805821750906944 Iteration 8: convergence error = 2.659437889161609 Iteration 9: convergence error = 0.8011630474579761 Iteration 10: convergence error = 0.24100409507559561 Iteration 11: convergence error = 0.07243864974952885 Iteration 12: convergence error = 0.021762710418215647 Iteration 13: convergence error = 0.006536418047517145 Iteration 14: convergence error = 0.00196291024576567 Iteration 15: convergence error = 0.0005894175230878318 Iteration 16: convergence error = 0.00017697980683806236 Iteration 17: convergence error = 5.3138793191465084e-5 Iteration 18: convergence error = 1.595483286109811e-5 Iteration 19: convergence error = 4.790366574525251e-6 Iteration 20: convergence error = 1.438276058252086e-6 Iteration 21: convergence error = 4.318326318752952e-7 Iteration 22: convergence error = 1.295231868425617e-7 Iteration 23: convergence error = 3.792615643760655e-8 Iteration 24: convergence error = 1.1001702659996226e-8 Iteration 25: convergence error = 3.188233677065e-9 Iteration 26: convergence error = 9.217728802468628e-10 Iteration 27: convergence error = 2.651177055668086e-10 Iteration 28: convergence error = 7.594280759803951e-11 Iteration 29: convergence error = 2.1827872842550278e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2216345913648 K, F = -7468.581738632575, relative_change = 0.03277836540863524 Iter 2: T = 936.5142521318103 K, F = -6331.081214797328, relative_change = 0.031748031021378 Iter 3: T = 907.8467472556234 K, F = -5365.328476989148, relative_change = 0.03061085809525089 Iter 5: T = 856.4948533630095 K, F = -3849.620504883235, relative_change = 0.028020268901356435 Iter 10: T = 760.8455950146138 K, F = -1667.2417298970897, relative_change = 0.02012736535822397 Iter 15: T = 704.7034345354023 K, F = -713.9747331059866, relative_change = 0.012099931119029697 Iter 20: T = 675.7673137095165 K, F = -302.6508153458631, relative_change = 0.0062113898176849175 Iter 25: T = 662.25458125867 K, F = -127.42107747097833, relative_change = 0.0028733928378354675 Iter 30: T = 656.3013668180052 K, F = -53.450882186141826, relative_change = 0.0012577790144753934 Iter 35: T = 653.753622321677 K, F = -22.383224268187, relative_change = 0.0005365146025282753 Iter 40: T = 652.6775445686708 K, F = -9.366165072102364, relative_change = 0.0002262668843221111 Iter 45: T = 652.2256323499367 K, F = -3.917963902487205, relative_change = 9.496219129994801e-5 Iter 50: T = 652.0363053348443 K, F = -1.638701000326296, relative_change = 3.977316245826783e-5 Iter 55: T = 651.9570682786735 K, F = -0.6853526462673915, relative_change = 1.664392510832208e-5 Iter 60: T = 651.9239201962804 K, F = -0.28662761684474924, relative_change = 6.96249374904098e-6 Iter 65: T = 651.910055487516 K, F = -0.11987195928430866, relative_change = 2.9121139392125336e-6 Iter 70: T = 651.9042567884903 K, F = -0.05013203656714016, relative_change = 1.2179360878933482e-6 Iter 75: T = 651.9018316486904 K, F = -0.02096584291112885, relative_change = 5.093650828691803e-7 Iter 80: T = 651.9008174167111 K, F = -0.008768170526007701, relative_change = 2.1302425129351169e-7 Iter 85: T = 651.9003932511142 K, F = -0.003666954438207193, relative_change = 8.908958160297e-8 Iter 90: T = 651.9002158597038 K, F = -0.0015335642797521531, relative_change = 3.725837867637821e-8 Iter 95: T = 651.9001416724465 K, F = -0.0006413549211841119, relative_change = 1.5581907965654667e-8 Iter 100: T = 651.9001106464405 K, F = -0.0002682222922967825, relative_change = 6.5165415932476246e-9 Iter 105: T = 651.9000976709926 K, F = -0.00011217376612437935, relative_change = 2.725295782211997e-9 Iter 110: T = 651.9000922445052 K, F = -4.6912409305488456e-5, relative_change = 1.1397513045854616e-9 Iter 115: T = 651.9000899750832 K, F = -1.9619329763131965e-5, relative_change = 4.76657613503268e-10 Iter 120: T = 651.9000890259838 K, F = -8.205037440700558e-6, relative_change = 1.9934389398194634e-10 Iter 125: T = 651.9000886290592 K, F = -3.431443632739839e-6, relative_change = 8.336797274314985e-11 Iter 130: T = 651.9000884630605 K, F = -1.4350703376742047e-6, relative_change = 3.486547288706101e-11 Iter 135: T = 651.9000883936378 K, F = -6.001627597673753e-7, relative_change = 1.4581137864653487e-11 Iter 140: T = 651.9000883646046 K, F = -2.509956674168201e-7, relative_change = 6.098016531765382e-12 Iter 145: T = 651.9000883524625 K, F = -1.0497000402232004e-7, relative_change = 2.5502783634162978e-12 Iter 150: T = 651.9000883473844 K, F = -4.3898814583442913e-8, relative_change = 1.0665351312373502e-12 Iter 155: T = 651.9000883452608 K, F = -1.8359006204171635e-8, relative_change = 4.4603767271297335e-13 Converged in 160 iterations to T = 651.9000883443726 K Iter 1: T = 970.4944972901804 K, F = -6722.856859411265, relative_change = 0.029505502709819564 Iter 2: T = 943.1561719635795 K, F = -5693.870453925675, relative_change = 0.028169479994925393 Iter 3: T = 917.9393471890093 K, F = -4820.622424040069, relative_change = 0.02673663760485253 Iter 5: T = 873.6495014647725 K, F = -3451.2263695721945, relative_change = 0.02362733204244363 Iter 10: T = 795.1993710742057 K, F = -1485.0954386852347, relative_change = 0.015322569543274628 Iter 15: T = 752.5829300074664 K, F = -632.0206116080242, relative_change = 0.00836025806291111 Iter 20: T = 731.9416964323934 K, F = -266.73847917825407, relative_change = 0.004013063457284401 Iter 25: T = 722.6630421124491 K, F = -112.0298645141522, relative_change = 0.001789601967617259 Iter 30: T = 718.6537448614924 K, F = -46.94027282939285, relative_change = 0.0007698476672182807 Iter 35: T = 716.9531063860588 K, F = -19.646753591084998, relative_change = 0.00032586421673514007 Iter 40: T = 716.2375908962773 K, F = -8.219293507137918, relative_change = 0.0001369754707834474 Iter 45: T = 715.9375956415518 K, F = -3.43789616198161, relative_change = 5.740727510795313e-5 Iter 50: T = 715.8120008426836 K, F = -1.4378549927232576, relative_change = 2.402990029420136e-5 Iter 55: T = 715.7594522566109 K, F = -0.6013431404061348, relative_change = 1.005335524264115e-5 Iter 60: T = 715.7374717246905 K, F = -0.25149150906893336, relative_change = 4.205091907750762e-6 Iter 65: T = 715.7282784889148 K, F = -0.10517721190378726, relative_change = 1.7587348858708077e-6 Iter 70: T = 715.7244336428827 K, F = -0.04398644644081939, relative_change = 7.35544088804203e-7 Iter 75: T = 715.7228256604842 K, F = -0.018395671260674984, relative_change = 3.0761684757029764e-7 Iter 80: T = 715.7221531792164 K, F = -0.0076932918662419025, relative_change = 1.286496559273492e-7 Iter 85: T = 715.7218719388502 K, F = -0.003217426963931125, relative_change = 5.3802930328252e-8 Iter 90: T = 715.7217543206534 K, F = -0.0013455664554469227, relative_change = 2.2501046864404404e-8 Iter 95: T = 715.7217051312983 K, F = -0.0005627319739978098, relative_change = 9.410209812399003e-9 Iter 100: T = 715.721684559719 K, F = -0.000235341233454478, relative_change = 3.935462688647659e-9 Iter 105: T = 715.7216759564383 K, F = -9.842251406633196e-5, relative_change = 1.6458575843811256e-9 Iter 110: T = 715.7216723584435 K, F = -4.116147139132664e-5, relative_change = 6.883173239155332e-10 Iter 115: T = 715.721670853719 K, F = -1.721421938372103e-5, relative_change = 2.8786253594905606e-10 Iter 120: T = 715.7216702244253 K, F = -7.199192282203448e-6, relative_change = 1.2038755343010966e-10 Iter 125: T = 715.7216699612471 K, F = -3.0107888818742268e-6, relative_change = 5.034752425129606e-11 Iter 130: T = 715.7216698511828 K, F = -1.2591467615230556e-6, relative_change = 2.1055917450670065e-11 Iter 135: T = 715.7216698051527 K, F = -5.265911358076636e-7, relative_change = 8.8058515719042e-12 Iter 140: T = 715.7216697859022 K, F = -2.2022550139055852e-7, relative_change = 3.6826922178767855e-12 Iter 145: T = 715.7216697778515 K, F = -9.210008844462436e-8, relative_change = 1.540131714344176e-12 Iter 150: T = 715.7216697744847 K, F = -3.85176592843095e-8, relative_change = 6.441065326779237e-13 Iter 155: T = 715.7216697730767 K, F = -1.6109998113300605e-8, relative_change = 2.6939734187144933e-13 Converged in 157 iterations to T = 715.7216697727786 K Iter 1: T = 974.4655047353644 K, F = -5818.05903562282, relative_change = 0.025534495264635512 Iter 2: T = 951.1198740181187 K, F = -4922.21631989043, relative_change = 0.0239573700698474 Iter 3: T = 929.8879546222175 K, F = -4162.510057750454, relative_change = 0.022323074068681226 Iter 5: T = 893.4100928464294 K, F = -2972.7179463547864, relative_change = 0.018967704111560856 Iter 10: T = 832.0001862071705 K, F = -1271.0650312846165, relative_change = 0.011131236749574544 Iter 15: T = 800.849908163757 K, F = -538.1767254451872, relative_change = 0.005613655695222102 Iter 20: T = 786.4519041060978 K, F = -226.43100559483412, relative_change = 0.0025708408160792355 Iter 25: T = 780.1427477526753 K, F = -94.95303430626103, relative_change = 0.0011198593070716506 Iter 30: T = 777.4494305872904 K, F = -39.756999704693854, relative_change = 0.0004766429625184791 Iter 35: T = 776.3131167714303 K, F = -16.635107695597746, relative_change = 0.00020082832830271114 Iter 40: T = 775.8361312795865 K, F = -6.958453709598175, relative_change = 8.425237490901488e-5 Iter 45: T = 775.6363394065902 K, F = -2.9103632460234725, relative_change = 3.5281660663097956e-5 Iter 50: T = 775.5527295404721 K, F = -1.2171932810313573, relative_change = 1.4763327377129192e-5 Iter 55: T = 775.5177533494016 K, F = -0.5090525731355865, relative_change = 6.175620382928716e-6 Iter 60: T = 775.5031242180751 K, F = -0.21289323107685487, relative_change = 2.5829667382159484e-6 Iter 65: T = 775.4970058484115 K, F = -0.0890347305727085, relative_change = 1.0802710132641219e-6 Iter 70: T = 775.4944470220333 K, F = -0.037235429395240494, relative_change = 4.517898433156739e-7 Iter 75: T = 775.4933768813427 K, F = -0.015572308558692627, relative_change = 1.8894523797551312e-7 Iter 80: T = 775.492929334162 K, F = -0.006512526687550535, relative_change = 7.90193876084488e-8 Iter 85: T = 775.4927421643127 K, F = -0.0027236166582521593, relative_change = 3.3046892252298474e-8 Iter 90: T = 775.4926638875987 K, F = -0.0011390490504163964, relative_change = 1.3820612095126739e-8 Iter 95: T = 775.4926311513337 K, F = -0.0004763639228217986, relative_change = 5.7799462755874746e-9 Iter 100: T = 775.4926174606353 K, F = -0.0001992210816721407, relative_change = 2.417242764727754e-9 Iter 105: T = 775.4926117350215 K, F = -8.331663247040932e-5, relative_change = 1.010919790264568e-9 Iter 110: T = 775.4926093405013 K, F = -3.484401019893113e-5, relative_change = 4.2277872923681333e-10 Iter 115: T = 775.4926083390844 K, F = -1.4572181491256941e-5, relative_change = 1.7681111834680206e-10 Iter 120: T = 775.49260792028 K, F = -6.094260000644169e-6, relative_change = 7.394451747854207e-11 Iter 125: T = 775.4926077451311 K, F = -2.548693997073137e-6, relative_change = 3.092450075920147e-11 Iter 130: T = 775.4926076718816 K, F = -1.0658949567421416e-6, relative_change = 1.2933003903834034e-11 Iter 135: T = 775.4926076412478 K, F = -4.457707644123232e-7, relative_change = 5.4087459566042945e-12 Iter 140: T = 775.4926076284362 K, F = -1.8642396115708948e-7, relative_change = 2.2619694396764293e-12 Iter 145: T = 775.4926076230784 K, F = -7.796455492314891e-8, relative_change = 9.459805463061419e-13 Iter 150: T = 775.4926076208376 K, F = -3.2604750566100904e-8, relative_change = 3.956087453269362e-13 Converged in 154 iterations to T = 775.4926076200288 K Iter 1: T = 970.4435957229518 K, F = -6734.454829924182, relative_change = 0.02955640427704812 Iter 2: T = 943.0534190462846 K, F = -5703.77231977328, relative_change = 0.028224388101878703 Iter 3: T = 917.7841058726857 K, F = -4829.078034844659, relative_change = 0.02679520869470357 Iter 5: T = 873.3889635897515 K, F = -3457.39390273395, relative_change = 0.023691572446922538 Iter 10: T = 794.6958568367477 K, F = -1487.8848346547566, relative_change = 0.015386303468554066 Iter 15: T = 751.9032488492837 K, F = -633.2583469821141, relative_change = 0.008405424046914687 Iter 20: T = 731.1609249097486 K, F = -267.2746828071629, relative_change = 0.0040379281621861106 Iter 25: T = 721.8327611981133 K, F = -112.25810388375227, relative_change = 0.0018014261892272986 Iter 30: T = 717.801211851759 K, F = -47.03649398397663, relative_change = 0.0007750803533348961 Iter 35: T = 716.0909710284461 K, F = -19.68713467125885, relative_change = 0.00032810614714414105 Iter 40: T = 715.3713858254924 K, F = -8.236206332095708, relative_change = 0.00013792269355101085 Iter 45: T = 715.0696789825685 K, F = -3.4449737088645502, relative_change = 5.780511668834894e-5 Iter 50: T = 714.9433666887079 K, F = -1.4408156796421896, relative_change = 2.4196581433361086e-5 Iter 55: T = 714.8905177414904 K, F = -0.6025814702890081, relative_change = 1.0123115691437226e-5 Iter 60: T = 714.8684115430875 K, F = -0.2520094170851697, relative_change = 4.23427573399142e-6 Iter 65: T = 714.8591657430121 K, F = -0.10539381136025783, relative_change = 1.7709415154991374e-6 Iter 70: T = 714.8552989123745 K, F = -0.04407703164569832, relative_change = 7.406493278678484e-7 Iter 75: T = 714.8536817354736 K, F = -0.018433555200115914, relative_change = 3.0975196859425065e-7 Iter 80: T = 714.8530054089068 K, F = -0.007709135406465117, relative_change = 1.295425976635202e-7 Iter 85: T = 714.8527225603821 K, F = -0.0032240529268742213, relative_change = 5.417637075085505e-8 Iter 90: T = 714.8526042696325 K, F = -0.0013483375122991248, relative_change = 2.2657224360612393e-8 Iter 95: T = 714.8525547990077 K, F = -0.0005638908647087604, relative_change = 9.475525177998285e-9 Iter 100: T = 714.852534109798 K, F = -0.00023582589533155396, relative_change = 3.962778361214702e-9 Iter 105: T = 714.8525254573226 K, F = -9.862520509151818e-5, relative_change = 1.6572813201041488e-9 Iter 110: T = 714.8525218387541 K, F = -4.124623927936888e-5, relative_change = 6.930948682566545e-10 Iter 115: T = 714.8525203254254 K, F = -1.7249668359586856e-5, relative_change = 2.898605290699267e-10 Iter 120: T = 714.8525196925334 K, F = -7.214017407886075e-6, relative_change = 1.212231370362384e-10 Iter 125: T = 714.8525194278503 K, F = -3.0169877680563673e-6, relative_change = 5.069695588600664e-11 Iter 130: T = 714.8525193171567 K, F = -1.2617405620307665e-6, relative_change = 2.120207656699498e-11 Iter 135: T = 714.8525192708634 K, F = -5.27675501293956e-7, relative_change = 8.866970533470597e-12 Iter 140: T = 714.8525192515029 K, F = -2.2067922034185727e-7, relative_change = 3.708256569756431e-12 Iter 145: T = 714.8525192434062 K, F = -9.229175312874816e-8, relative_change = 1.5508551252007496e-12 Iter 150: T = 714.85251924002 K, F = -3.859729369448672e-8, relative_change = 6.485824433611046e-13 Iter 155: T = 714.8525192386039 K, F = -1.6141171177430635e-8, relative_change = 2.7123353061828586e-13 Converged in 157 iterations to T = 714.8525192383042 K Iter 1: T = 969.267254987402 K, F = -7002.4851855081315, relative_change = 0.030732745012597956 Iter 2: T = 940.6739995531228 K, F = -5932.67979293178, relative_change = 0.02949986733499094 Iter 3: T = 914.1814266014401 K, F = -5024.628416566341, relative_change = 0.02816339450677743 Iter 5: T = 867.3140041967572 K, F = -3600.1738113928577, relative_change = 0.025210842433100827 Iter 10: T = 782.8040505476727 K, F = -1552.7114411928421, relative_change = 0.01694683547082206 Iter 15: T = 735.6741919721339 K, F = -662.1590295502218, relative_change = 0.009546436435352648 Iter 20: T = 712.3884965795315 K, F = -279.8408393552522, relative_change = 0.004679186283850388 Iter 25: T = 701.7985287604214 K, F = -117.61830481250911, relative_change = 0.0021097246340756595 Iter 30: T = 697.1961887512587 K, F = -49.29856673515965, relative_change = 0.000912212755097187 Iter 35: T = 695.2389147362586 K, F = -20.636892417009033, relative_change = 0.0003869919194445602 Iter 40: T = 694.4144977321611 K, F = -8.63407213279968, relative_change = 0.000162825925451623 Iter 45: T = 694.0686782872947 K, F = -3.6114833600935055, relative_change = 6.826890569643959e-5 Iter 50: T = 693.9238698654212 K, F = -1.5104726138178064, relative_change = 2.858127057760411e-5 Iter 55: T = 693.8632772447878 K, F = -0.6317164419710939, relative_change = 1.1958353806953746e-5 Iter 60: T = 693.8379310834605 K, F = -0.2641946419559545, relative_change = 5.002058353191866e-6 Iter 65: T = 693.8273300356071 K, F = -0.11048992845062294, relative_change = 2.0920835888893935e-6 Iter 70: T = 693.8228963792753 K, F = -0.04620830800457121, relative_change = 8.749628621078362e-7 Iter 75: T = 693.8210421412481 K, F = -0.01932488380856945, relative_change = 3.6592490664726414e-7 Iter 80: T = 693.8202666715137 K, F = -0.008081900265300423, relative_change = 1.5303503848946807e-7 Iter 85: T = 693.819942359892 K, F = -0.0033799477461690097, relative_change = 6.400123332106607e-8 Iter 90: T = 693.8198067287382 K, F = -0.0014135346051671327, relative_change = 2.6766106776600547e-8 Iter 95: T = 693.8197500061419 K, F = -0.0005911570694714374, relative_change = 1.1193910176872563e-8 Iter 100: T = 693.8197262840697 K, F = -0.0002472289482963186, relative_change = 4.681427718230485e-9 Iter 105: T = 693.8197163632151 K, F = -0.00010339409964488233, relative_change = 1.9578291307176e-9 Iter 110: T = 693.819712214195 K, F = -4.324064721694665e-5, relative_change = 8.187875464218912e-10 Iter 115: T = 693.8197104790252 K, F = -1.8083753960174143e-5, relative_change = 3.4242671339224003e-10 Iter 120: T = 693.8197097533565 K, F = -7.562841498054418e-6, relative_change = 1.432069346157034e-10 Iter 125: T = 693.8197094498731 K, F = -3.1628703429653626e-6, relative_change = 5.989084492419836e-11 Iter 130: T = 693.8197093229528 K, F = -1.3227499511270224e-6, relative_change = 2.5047062849614905e-11 Iter 135: T = 693.8197092698732 K, F = -5.531899960331543e-7, relative_change = 1.0474984022234841e-11 Iter 140: T = 693.8197092476747 K, F = -2.3135200222235142e-7, relative_change = 4.380788778788914e-12 Iter 145: T = 693.819709238391 K, F = -9.675395229447048e-8, relative_change = 1.832094057844928e-12 Iter 150: T = 693.8197092345085 K, F = -4.046453028205832e-8, relative_change = 7.66220125660512e-13 Iter 155: T = 693.8197092328847 K, F = -1.6922681922437732e-8, relative_change = 3.204411216165e-13 Converged in 158 iterations to T = 693.8197092324093 K Iter 1: T = 963.5977573112721 K, F = -8294.285624098933, relative_change = 0.036402242688727986 Iter 2: T = 929.0755436256512 K, F = -7037.910957690247, relative_change = 0.035826374048387365 Iter 3: T = 896.3999656935841 K, F = -5970.918734593869, relative_change = 0.0351699903804948 Iter 5: T = 836.4702570982608 K, F = -4295.313516679433, relative_change = 0.03358656007989619 Iter 10: T = 717.0237500231092 K, F = -1876.880203917846, relative_change = 0.027832343370356533 Iter 15: T = 637.6542812777597 K, F = -812.6290939958018, relative_change = 0.01990108596501086 Iter 20: T = 591.2374448960884 K, F = -347.89186017965636, relative_change = 0.011907085148369866 Iter 25: T = 567.3898189766084 K, F = -147.4356402850257, relative_change = 0.006090658336942022 Iter 30: T = 556.2764448690834 K, F = -62.06450586166568, relative_change = 0.002811780469833098 Iter 35: T = 551.3856742171358 K, F = -26.03323548091779, relative_change = 0.0012295812122561096 Iter 40: T = 549.2936882408585 K, F = -10.901417973279154, relative_change = 0.0005242521108184241 Iter 45: T = 548.4103060402284 K, F = -4.561593460511829, relative_change = 0.00022105276787808892 Iter 50: T = 548.0393544329257 K, F = -1.9081514313474455, relative_change = 9.276630287363348e-5 Iter 55: T = 547.8839518919706 K, F = -0.798088645912291, relative_change = 3.885212210643323e-5 Iter 60: T = 547.8189140005695 K, F = -0.3337836742478737, relative_change = 1.625826240090136e-5 Iter 65: T = 547.7917062005209 K, F = -0.1395946761201096, relative_change = 6.801122223406968e-6 Iter 70: T = 547.7803261426493 K, F = -0.05838057304384722, relative_change = 2.8446119542859323e-6 Iter 75: T = 547.7755666162083 K, F = -0.02441552498625088, relative_change = 1.1897034175015153e-6 Iter 80: T = 547.7735760816227 K, F = -0.010210876746110431, relative_change = 4.975573996772414e-7 Iter 85: T = 547.7727436086283 K, F = -0.0042703128039000005, relative_change = 2.0808605963461358e-7 Iter 90: T = 547.7723954571408 K, F = -0.0017858961977210985, relative_change = 8.702435728919666e-8 Iter 95: T = 547.7722498557966 K, F = -0.0007468831855159397, relative_change = 3.639467485521553e-8 Iter 100: T = 547.7721889635347 K, F = -0.000312355479532872, relative_change = 1.5220696293169723e-8 Iter 105: T = 547.7721634976564 K, F = -0.0001306307933882367, relative_change = 6.365478447005563e-9 Iter 110: T = 547.7721528475207 K, F = -5.4631357824269644e-5, relative_change = 2.6621193512693294e-9 Iter 115: T = 547.7721483935067 K, F = -2.2847486384008908e-5, relative_change = 1.113330153369089e-9 Iter 120: T = 547.7721465307847 K, F = -9.555091753155054e-6, relative_change = 4.656079780690824e-10 Iter 125: T = 547.7721457517721 K, F = -3.996053353827467e-6, relative_change = 1.9472281198292427e-10 Iter 130: T = 547.7721454259797 K, F = -1.6711975887595543e-6, relative_change = 8.143542289596805e-11 Iter 135: T = 547.7721452897295 K, F = -6.989148908786991e-7, relative_change = 3.40572713587042e-11 Iter 140: T = 547.772145232748 K, F = -2.922945328553972e-7, relative_change = 1.4243156580247596e-11 Iter 145: T = 547.7721452089177 K, F = -1.2224130502280772e-7, relative_change = 5.9566699088265905e-12 Iter 150: T = 547.7721451989515 K, F = -5.112278247954016e-8, relative_change = 2.4911509249751867e-12 Iter 155: T = 547.7721451947837 K, F = -2.1380849424268433e-8, relative_change = 1.0418627515680949e-12 Iter 160: T = 547.7721451930406 K, F = -8.942036999748382e-9, relative_change = 4.357345720207031e-13 Converged in 164 iterations to T = 547.7721451924115 K Iter 1: T = 966.928456975592 K, F = -7535.382537270311, relative_change = 0.03307154302440801 Iter 2: T = 935.9157720244958 K, F = -6388.215086392737, relative_change = 0.03207340183998646 Iter 3: T = 906.9314851195359 K, F = -5414.224872064329, relative_change = 0.03096890529183364 Iter 5: T = 854.9166900564924 K, F = -3885.494540783002, relative_change = 0.02844142553508546 Iter 10: T = 757.5513423544995 K, F = -1683.8607102317687, relative_change = 0.02064055432571349 Iter 15: T = 699.9291723112694 K, F = -721.5906176300458, relative_change = 0.012543483683657767 Iter 20: T = 670.0132505448199 K, F = -306.04262478615397, relative_change = 0.00649218084368026 Iter 25: T = 655.9756228701924 K, F = -128.88952212117198, relative_change = 0.003017631366620326 Iter 30: T = 649.7752944274978 K, F = -54.07524178632605, relative_change = 0.001324006283563207 Iter 35: T = 647.118603669837 K, F = -22.646262804243065, relative_change = 0.0005653572371202415 Iter 40: T = 645.9959171513631 K, F = -9.476518037423906, relative_change = 0.0002385387623360639 Iter 45: T = 645.5243243785396 K, F = -3.9641763460798867, relative_change = 0.00010013178944536968 Iter 50: T = 645.3267334068021 K, F = -1.6580384151696808, relative_change = 4.1941735497197384e-5 Iter 55: T = 645.2440344093249 K, F = -0.6934416807631406, relative_change = 1.755200390326013e-5 Iter 60: T = 645.209437475366 K, F = -0.2900108797276606, relative_change = 7.342465554387717e-6 Iter 65: T = 645.1949666599032 K, F = -0.12128693832670956, relative_change = 3.0710581082901543e-6 Iter 70: T = 645.1889144483815 K, F = -0.05072380786443326, relative_change = 1.2844146345007552e-6 Iter 75: T = 645.1863832811292 K, F = -0.021213330512684037, relative_change = 5.371682889374192e-7 Iter 80: T = 645.1853247062413 K, F = -0.00887167310762288, relative_change = 2.2465207370453121e-7 Iter 85: T = 645.1848819957421 K, F = -0.0037102405079226797, relative_change = 9.39525089507565e-8 Iter 90: T = 645.1846968486028 K, F = -0.0015516670412216715, relative_change = 3.9292118784494285e-8 Iter 95: T = 645.1846194178017 K, F = -0.0006489257135587345, relative_change = 1.6432443372905663e-8 Iter 100: T = 645.1845870353061 K, F = -0.00027138848746949273, relative_change = 6.87224581317262e-9 Iter 105: T = 645.184573492558 K, F = -0.00011349790691744799, relative_change = 2.8740555682331945e-9 Iter 110: T = 645.1845678288188 K, F = -4.746618104001232e-5, relative_change = 1.2019644355350379e-9 Iter 115: T = 645.1845654601752 K, F = -1.985092327205784e-5, relative_change = 5.026758774312405e-10 Iter 120: T = 645.1845644695803 K, F = -8.301893298423568e-6, relative_change = 2.102250596326262e-10 Iter 125: T = 645.1845640553017 K, F = -3.471951015909802e-6, relative_change = 8.791863317866755e-11 Iter 130: T = 645.1845638820454 K, F = -1.4520116562999341e-6, relative_change = 3.676862944195216e-11 Iter 135: T = 645.1845638095875 K, F = -6.072476086971257e-7, relative_change = 1.5377054460107207e-11 Iter 140: T = 645.1845637792848 K, F = -2.53958101048557e-7, relative_change = 6.43086526048397e-12 Iter 145: T = 645.184563766612 K, F = -1.0620962165308612e-7, relative_change = 2.689497848116519e-12 Iter 150: T = 645.1845637613119 K, F = -4.4418074662821994e-8, relative_change = 1.1247786628787007e-12 Iter 155: T = 645.1845637590953 K, F = -1.8576550020465987e-8, relative_change = 4.704055106366311e-13 Converged in 160 iterations to T = 645.1845637581685 K Iter 1: T = 965.2201723655304 K, F = -7924.616810671026, relative_change = 0.03477982763446963 Iter 2: T = 932.4169556231627 K, F = -6721.29681263267, relative_change = 0.03398521672208172 Iter 3: T = 901.5609255460878 K, F = -5699.472140298407, relative_change = 0.03309252356576132 Iter 5: T = 845.5772399817184 K, F = -4095.158923197404, relative_change = 0.030994531469131812 Iter 10: T = 737.5255159152064 K, F = -1781.8335265126766, relative_change = 0.023981694394362745 Iter 15: T = 670.0547713242925 K, F = -767.1247233654294, relative_change = 0.015676058854209248 Iter 20: T = 633.1926658993092 K, F = -326.61447195120394, relative_change = 0.008612047116163118 Iter 25: T = 615.2629030034979 K, F = -137.88437702249607, relative_change = 0.004152149255808216 Iter 30: T = 607.1834678115987 K, F = -57.920034316934064, relative_change = 0.0018558617992702026 Iter 35: T = 603.6881876315318 K, F = -24.270072146565624, relative_change = 0.0007991947405681481 Iter 40: T = 602.2047873148952 K, F = -10.1585001295946, relative_change = 0.00033844249084545553 Iter 45: T = 601.5805269314399 K, F = -4.2499025123564875, relative_change = 0.0001422906610447662 Iter 50: T = 601.3187667067177 K, F = -1.7776228813552608, relative_change = 5.963984691502969e-5 Iter 55: T = 601.2091747168415 K, F = -0.7434691849619564, relative_change = 2.496529243953301e-5 Iter 60: T = 601.1633208789502 K, F = -0.31093575541885465, relative_change = 1.0444846031448071e-5 Iter 65: T = 601.1441405525555 K, F = -0.1300384570070273, relative_change = 4.3688703044203414e-6 Iter 70: T = 601.1361184629776 K, F = -0.05438388247143178, relative_change = 1.8272381131753773e-6 Iter 75: T = 601.1327634159571 K, F = -0.022744032287821736, relative_change = 7.641945564020328e-7 Iter 80: T = 601.1313602753985 K, F = -0.009511833470866593, relative_change = 3.1959909509466083e-7 Iter 85: T = 601.1307734617922 K, F = -0.0039779636717838796, relative_change = 1.336608238993223e-7 Iter 90: T = 601.1305280487275 K, F = -0.001663632144821181, relative_change = 5.5898669190539545e-8 Iter 95: T = 601.1304254139469 K, F = -0.0006957508711720739, relative_change = 2.337751138156773e-8 Iter 100: T = 601.1303824908374 K, F = -0.0002909713300522365, relative_change = 9.776757995219066e-9 Iter 105: T = 601.1303645398772 K, F = -0.00012168768656795059, relative_change = 4.088757581381608e-9 Iter 110: T = 601.1303570325707 K, F = -5.089124456808536e-5, relative_change = 1.7099673787421407e-9 Iter 115: T = 601.1303538929253 K, F = -2.12833260744838e-5, relative_change = 7.151287910590549e-10 Iter 120: T = 601.130352579888 K, F = -8.900940694722692e-6, relative_change = 2.990753889793153e-10 Iter 125: T = 601.1303520307603 K, F = -3.7224792681089802e-6, relative_change = 1.2507688547785123e-10 Iter 130: T = 601.1303518011085 K, F = -1.5567859441012466e-6, relative_change = 5.230866945753531e-11 Iter 135: T = 601.1303517050654 K, F = -6.510669835479987e-7, relative_change = 2.187612740985625e-11 Iter 140: T = 601.130351664899 K, F = -2.7228432358805676e-7, relative_change = 9.148869021054571e-12 Iter 145: T = 601.1303516481009 K, F = -1.1387231857451496e-7, relative_change = 3.826158311915155e-12 Iter 150: T = 601.1303516410758 K, F = -4.762313532413742e-8, relative_change = 1.6001575918629524e-12 Iter 155: T = 601.1303516381378 K, F = -1.9917107352274144e-8, relative_change = 6.692232739720343e-13 Iter 160: T = 601.130351636909 K, F = -8.32952412599397e-9, relative_change = 2.7987555158929756e-13 Converged in 162 iterations to T = 601.130351636649 K Iter 1: T = 980.0567548758281 K, F = -4544.087372466229, relative_change = 0.019943245124171876 Iter 2: T = 962.1609018974242 K, F = -3838.492380598797, relative_change = 0.018260016972865355 Iter 3: T = 946.1921475648937 K, F = -3240.949226854221, relative_change = 0.016596760792336664 Iter 5: T = 919.5146107044176 K, F = -2307.26848549021, relative_change = 0.013419300428157751 Iter 10: T = 877.1250244753522 K, F = -979.6069860852103, relative_change = 0.007060288907709001 Iter 15: T = 857.040394520543 K, F = -412.8240332191623, relative_change = 0.003313700030913936 Iter 20: T = 848.1224520295033 K, F = -173.254431406911, relative_change = 0.001460922409295282 Iter 25: T = 844.2918280339279 K, F = -72.56800806355723, relative_change = 0.0006251785685946388 Iter 30: T = 842.6712737027744 K, F = -30.368590671574253, relative_change = 0.0002640269547083984 Iter 35: T = 841.9902279134197 K, F = -12.703996010591172, relative_change = 0.00011087520104174912 Iter 40: T = 841.7048223210859 K, F = -5.313575149474308, relative_change = 4.644956815990132e-5 Iter 45: T = 841.5853597567725 K, F = -2.222307832579105, relative_change = 1.9439832990219626e-5 Iter 50: T = 841.5353811242268 K, F = -0.9294144445514243, relative_change = 8.132433593681177e-6 Iter 55: T = 841.5144763197234 K, F = -0.3886955037566572, relative_change = 3.4015118718048858e-6 Iter 60: T = 841.505733130875 K, F = -0.16255767599578208, relative_change = 1.4226282873299273e-6 Iter 65: T = 841.5020765286861 K, F = -0.06798366189285843, relative_change = 5.949733279980762e-7 Iter 70: T = 841.500547277156 K, F = -0.028431596863287778, relative_change = 2.4882725796492923e-7 Iter 75: T = 841.4999077229602 K, F = -0.011890436421354122, relative_change = 1.040629343260529e-7 Iter 80: T = 841.499640253243 K, F = -0.004972723048516814, relative_change = 4.3520432456578215e-8 Iter 85: T = 841.4995283941231 K, F = -0.0020796522591688404, relative_change = 1.820077693418089e-8 Iter 90: T = 841.4994816132876 K, F = -0.0008697354273698998, relative_change = 7.611784434417157e-9 Iter 95: T = 841.4994620489807 K, F = -0.00036373374729348207, relative_change = 3.183339548184497e-9 Iter 100: T = 841.4994538669534 K, F = -0.00015211779978963058, relative_change = 1.3313107020569346e-9 Iter 105: T = 841.4994504451319 K, F = -6.36174809935941e-5, relative_change = 5.567700495377993e-10 Iter 110: T = 841.4994490140851 K, F = -2.6605589885209113e-5, relative_change = 2.328478821694419e-10 Iter 115: T = 841.4994484156043 K, F = -1.1126776408243444e-5, relative_change = 9.737977402433177e-11 Iter 120: T = 841.4994481653124 K, F = -4.653348298022664e-6, relative_change = 4.072536283051124e-11 Iter 125: T = 841.4994480606374 K, F = -1.9460854023822804e-6, relative_change = 1.703182935861417e-11 Iter 130: T = 841.499448016861 K, F = -8.138758087472553e-7, relative_change = 7.122911399547025e-12 Iter 135: T = 841.4994479985534 K, F = -3.403757959929976e-7, relative_change = 2.9789147331843873e-12 Iter 140: T = 841.4994479908968 K, F = -1.423478024342728e-7, relative_change = 1.2458052861519265e-12 Iter 145: T = 841.4994479876947 K, F = -5.9532111018612e-8, relative_change = 5.210155501933987e-13 Converged in 150 iterations to T = 841.4994479863556 K Iter 1: T = 976.5013150589359 K, F = -5354.197716841502, relative_change = 0.023498684941064052 Iter 2: T = 955.1629828299286 K, F = -4527.247654045482, relative_change = 0.021851821292958984 Iter 3: T = 935.8928261499552 K, F = -3826.2835880235166, relative_change = 0.02017473146088672 Iter 5: T = 903.1340085061734 K, F = -2729.343867816873, relative_change = 0.016823211715493138 Iter 10: T = 849.2205771936284 K, F = -1163.7543403835043, relative_change = 0.009453603018781521 Iter 15: T = 822.6243791278354 K, F = -491.7716098404255, relative_change = 0.00462607749542843 Iter 20: T = 810.5399915407754 K, F = -206.68173828288462, relative_change = 0.0020839490641213505 Iter 25: T = 805.2906066404611 K, F = -86.62627121101465, relative_change = 0.000900696912865634 Iter 30: T = 803.0586261371299 K, F = -36.26222082198326, relative_change = 0.00038203731780267263 Iter 35: T = 802.1185862591739 K, F = -15.171325762060638, relative_change = 0.00016072885032214612 Iter 40: T = 801.7242815159884 K, F = -6.345889927347478, relative_change = 6.738745280423016e-5 Iter 45: T = 801.5591730416241 K, F = -2.6541127942834333, relative_change = 2.821185714197753e-5 Iter 50: T = 801.4900866795501 K, F = -1.1100141996956663, relative_change = 1.180372407669813e-5 Iter 55: T = 801.4611876309401 K, F = -0.4642268866507485, relative_change = 4.937366435073798e-6 Iter 60: T = 801.4491006001657 K, F = -0.19414622369156254, relative_change = 2.0650244711079815e-6 Iter 65: T = 801.4440454665089 K, F = -0.08119444348290161, relative_change = 8.636456838140316e-7 Iter 70: T = 801.4419313154781 K, F = -0.033956516383254254, relative_change = 3.6119179947152893e-7 Iter 75: T = 801.4410471463633 K, F = -0.014201026001813166, relative_change = 1.5105557416093458e-7 Iter 80: T = 801.4406773752474 K, F = -0.005939039600150853, relative_change = 6.317339376906452e-8 Iter 85: T = 801.4405227323703 K, F = -0.002483777452272684, relative_change = 2.6419893744660453e-8 Iter 90: T = 801.4404580588406 K, F = -0.0010387454227755999, relative_change = 1.1049119645022106e-8 Iter 95: T = 801.4404310115925 K, F = -0.0004344157463442855, relative_change = 4.6208745887749575e-9 Iter 100: T = 801.4404197001095 K, F = -0.0001816778534362573, relative_change = 1.9325050709295584e-9 Iter 105: T = 801.440414969512 K, F = -7.59798500566955e-5, relative_change = 8.081967442502973e-10 Iter 110: T = 801.4404129911195 K, F = -3.1775678217771386e-5, relative_change = 3.379975080843617e-10 Iter 115: T = 801.4404121637322 K, F = -1.3288969269886763e-5, relative_change = 1.4135460743045718e-10 Iter 120: T = 801.4404118177089 K, F = -5.557604206618549e-6, relative_change = 5.911616969989768e-11 Iter 125: T = 801.4404116729978 K, F = -2.3242564408665345e-6, relative_change = 2.4723088077924005e-11 Iter 130: T = 801.440411612478 K, F = -9.720329563478458e-7, relative_change = 1.0339502982774775e-11 Iter 135: T = 801.4404115871679 K, F = -4.06516994511108e-7, relative_change = 4.324116430908461e-12 Iter 140: T = 801.4404115765828 K, F = -1.7000938234978946e-7, relative_change = 1.8083877761559726e-12 Iter 145: T = 801.440411572156 K, F = -7.110032607116068e-8, relative_change = 7.562933220157743e-13 Iter 150: T = 801.4404115703047 K, F = -2.9734928297386887e-8, relative_change = 3.162900783277914e-13 Converged in 153 iterations to T = 801.4404115697627 K Iter 1: T = 980.7043434141642 K, F = -4396.533707990616, relative_change = 0.019295656585835774 Iter 2: T = 963.4269661689915 K, F = -3713.185015688576, relative_change = 0.01761731490351551 Iter 3: T = 948.0430655732879 K, F = -3134.589556964403, relative_change = 0.015967894958220576 Iter 5: T = 922.4205328745377 K, F = -2230.7817944658514, relative_change = 0.012841763203247298 Iter 10: T = 881.9454221406421 K, F = -946.4668825862927, relative_change = 0.006683670280547085 Iter 15: T = 862.890622326212 K, F = -398.68929049787954, relative_change = 0.003116804134289934 Iter 20: T = 854.4593877000316 K, F = -167.28686751303533, relative_change = 0.0013697251396715259 Iter 25: T = 850.8438040057043 K, F = -70.06173799223366, relative_change = 0.0005853043496584078 Iter 30: T = 849.3153403328303 K, F = -29.31853285715326, relative_change = 0.0002470324396991411 Iter 35: T = 848.6731971511377 K, F = -12.264511551996257, relative_change = 0.00010371098546285801 Iter 40: T = 848.404130051021 K, F = -5.129718100136069, relative_change = 4.344336677517516e-5 Iter 45: T = 848.2915125657332 K, F = -2.1454062054355845, relative_change = 1.8180841024146232e-5 Iter 50: T = 848.2443987527557 K, F = -0.8972514425944627, relative_change = 7.605599353060793e-6 Iter 55: T = 848.2246924221638 K, F = -0.37524423324049627, relative_change = 3.181129462427363e-6 Iter 60: T = 848.2164505145344 K, F = -0.15693213822433694, relative_change = 1.3304522779254775e-6 Iter 65: T = 848.2130035655283 K, F = -0.0656309850523642, relative_change = 5.564225663611422e-7 Iter 70: T = 848.2115619954558 K, F = -0.02744767760629019, relative_change = 2.327045798264861e-7 Iter 75: T = 848.2109591110411 K, F = -0.01147894934113669, relative_change = 9.732018721211749e-8 Iter 80: T = 848.2107069771251 K, F = -0.004800634184274788, relative_change = 4.070052623288917e-8 Iter 85: T = 848.210601531631 K, F = -0.0020076826308552675, relative_change = 1.7021456918906105e-8 Iter 90: T = 848.2105574330524 K, F = -0.0008396368702769941, relative_change = 7.118578471077584e-9 Iter 95: T = 848.2105389904976 K, F = -0.0003511461685761219, relative_change = 2.9770748559187017e-9 Iter 100: T = 848.2105312776006 K, F = -0.00014685352142906893, relative_change = 1.245048313785717e-9 Iter 105: T = 848.2105280519748 K, F = -6.14158971568024e-5, relative_change = 5.206940891518297e-10 Iter 110: T = 848.2105267029796 K, F = -2.568486132936698e-5, relative_change = 2.1776048540027432e-10 Iter 115: T = 848.2105261388136 K, F = -1.0741714556061766e-5, relative_change = 9.107002577009949e-11 Iter 120: T = 848.2105259028727 K, F = -4.492314065851488e-6, relative_change = 3.808657883721586e-11 Iter 125: T = 848.2105258041994 K, F = -1.8787382316531875e-6, relative_change = 1.5928252291599586e-11 Iter 130: T = 848.2105257629331 K, F = -7.857114201481608e-7, relative_change = 6.661390884879892e-12 Iter 135: T = 848.2105257456751 K, F = -3.2859559628839463e-7, relative_change = 2.7858876096346894e-12 Iter 140: T = 848.2105257384575 K, F = -1.3742260995819322e-7, relative_change = 1.1650915310675553e-12 Iter 145: T = 848.2105257354391 K, F = -5.747173825731977e-8, relative_change = 4.872548668726317e-13 Converged in 150 iterations to T = 848.2105257341767 K Iter 1: T = 967.3733125410154 K, F = -7434.021773521718, relative_change = 0.032626687458984685 Iter 2: T = 936.8236530736707 K, F = -6301.525968249895, relative_change = 0.03158001060324825 Iter 3: T = 908.3195332607264 K, F = -5340.038159321768, relative_change = 0.030426345149830173 Iter 5: T = 857.308559779364 K, F = -3831.0730777991894, relative_change = 0.0278042621257765 Iter 10: T = 762.5345938273991 K, F = -1658.6648974455527, relative_change = 0.01986804315561263 Iter 15: T = 707.1373323859435 K, F = -710.054970377868, relative_change = 0.011879312991090657 Iter 20: T = 678.6885154144757 K, F = -300.90961585525974, relative_change = 0.006073403980053275 Iter 25: T = 665.4347659864641 K, F = -126.66851920903326, relative_change = 0.002803008680243286 Iter 30: T = 659.6029547289725 K, F = -53.13118730858989, relative_change = 0.0012255737084801716 Iter 35: T = 657.1086253107135 K, F = -22.248593509045914, relative_change = 0.0005225106866137866 Iter 40: T = 656.0553788270666 K, F = -9.309693202624631, relative_change = 0.00022031254131361062 Iter 45: T = 655.6131034164787 K, F = -3.894316991806755, relative_change = 9.2454604618998e-5 Iter 50: T = 655.4278222867027 K, F = -1.6288063575089193, relative_change = 3.872139138883147e-5 Iter 55: T = 655.3502800197534 K, F = -0.681213673034812, relative_change = 1.620352349466345e-5 Iter 60: T = 655.3178412006946 K, F = -0.28489648854952176, relative_change = 6.778218242482799e-6 Iter 65: T = 655.3042731987431 K, F = -0.11914795271647521, relative_change = 2.835031220539642e-6 Iter 70: T = 655.2985986008193 K, F = -0.04982924346817946, relative_change = 1.1856962876246804e-6 Iter 75: T = 655.2962253641662 K, F = -0.020839210363825966, relative_change = 4.958815084481862e-7 Iter 80: T = 655.2952328391546 K, F = -0.008715211132798828, relative_change = 2.0738517113587913e-7 Iter 85: T = 655.2948177517497 K, F = -0.0036448061612747717, relative_change = 8.6731235489938e-8 Iter 90: T = 655.2946441569616 K, F = -0.0015243016020240474, relative_change = 3.6272087484571515e-8 Iter 95: T = 655.2945715574992 K, F = -0.0006374811570848404, relative_change = 1.5169428717671285e-8 Iter 100: T = 655.2945411955286 K, F = -0.00026660223669733307, relative_change = 6.344037737798539e-9 Iter 105: T = 655.2945284977884 K, F = -0.00011149624013001569, relative_change = 2.6531526105163306e-9 Iter 110: T = 655.2945231874415 K, F = -4.6629058683245184e-5, relative_change = 1.1095801383102932e-9 Iter 115: T = 655.2945209665911 K, F = -1.9500829559759847e-5, relative_change = 4.6403968083953415e-10 Iter 120: T = 655.2945200378049 K, F = -8.155480192673092e-6, relative_change = 1.9406694672355705e-10 Iter 125: T = 655.2945196493754 K, F = -3.410718974639071e-6, relative_change = 8.116110931186574e-11 Iter 130: T = 655.2945194869295 K, F = -1.4264035981814693e-6, relative_change = 3.3942549753379e-11 Iter 135: T = 655.2945194189928 K, F = -5.965388685247319e-7, relative_change = 1.4195176078168779e-11 Iter 140: T = 655.2945193905807 K, F = -2.4947981486223014e-7, relative_change = 5.936595396386185e-12 Iter 145: T = 655.2945193786984 K, F = -1.0433468533577184e-7, relative_change = 2.4827371827386648e-12 Iter 150: T = 655.2945193737291 K, F = -4.3633971769097e-8, relative_change = 1.0383093963142026e-12 Iter 155: T = 655.294519371651 K, F = -1.824784373605226e-8, relative_change = 4.342237675306292e-13 Converged in 159 iterations to T = 655.2945193709008 K Iter 1: T = 973.57597585319 K, F = -6020.73903758669, relative_change = 0.02642402414681 Iter 2: T = 949.3448949200034 K, F = -5094.929512775808, relative_change = 0.024888741643354265 Iter 3: T = 927.2388444936868 K, F = -4309.668260050971, relative_change = 0.0232855841376588 Iter 5: T = 889.0774622420187 K, F = -3079.462773251355, relative_change = 0.019954123966991647 Iter 10: T = 824.150618787188 K, F = -1318.4351402995503, relative_change = 0.011952440914260388 Iter 15: T = 790.7675458887973 K, F = -558.7804387913505, relative_change = 0.006119066583554685 Iter 20: T = 775.202749738965 K, F = -235.2318114216697, relative_change = 0.0028262748923183647 Iter 25: T = 768.3511979629692 K, F = -98.67060132753335, relative_change = 0.0012362134975711823 Iter 30: T = 765.420144853092 K, F = -41.318610439983466, relative_change = 0.0005271360164368339 Iter 35: T = 764.1823834034415 K, F = -17.289427999874945, relative_change = 0.0002222789699423892 Iter 40: T = 763.6626082048821 K, F = -7.232316937869234, relative_change = 9.328269838218423e-5 Iter 45: T = 763.4448569705935 K, F = -3.0249345468211137, relative_change = 3.9068716376667506e-5 Iter 50: T = 763.3537250063158 K, F = -1.2651151019299314, relative_change = 1.6348955515748203e-5 Iter 55: T = 763.3156010075387 K, F = -0.5290952298263765, relative_change = 6.839070572912037e-6 Iter 60: T = 763.2996550794829 K, F = -0.22127551572455395, relative_change = 2.8604858032386446e-6 Iter 65: T = 763.2929859491735 K, F = -0.09254033819629648, relative_change = 1.1963426447908041e-6 Iter 70: T = 763.2901967775281 K, F = -0.038701522679678524, relative_change = 5.003341077353312e-7 Iter 75: T = 763.2890303018439 K, F = -0.016185447386871554, relative_change = 2.0924733032385693e-7 Iter 80: T = 763.2885424658946 K, F = -0.006768948862430957, relative_change = 8.751001778138725e-8 Iter 85: T = 763.2883384467444 K, F = -0.0028308555082882103, relative_change = 3.659778440729981e-8 Iter 90: T = 763.2882531234416 K, F = -0.0011838976246882904, relative_change = 1.5305639218290097e-8 Iter 95: T = 763.2882174402073 K, F = -0.0004951201332702437, relative_change = 6.401002635939359e-9 Iter 100: T = 763.2882025170509 K, F = -0.0002070651547336766, relative_change = 2.676976021732256e-9 Iter 105: T = 763.2881962760083 K, F = -8.659712109648776e-5, relative_change = 1.119543392268106e-9 Iter 110: T = 763.2881936659297 K, F = -3.621594961000785e-5, relative_change = 4.682064164181961e-10 Iter 115: T = 763.2881925743636 K, F = -1.5145942561023418e-5, relative_change = 1.9580951526666533e-10 Iter 120: T = 763.2881921178576 K, F = -6.33421343865237e-6, relative_change = 8.188986994719951e-11 Iter 125: T = 763.2881919269414 K, F = -2.6490426690006785e-6, relative_change = 3.4247308210937074e-11 Iter 130: T = 763.288191847098 K, F = -1.1078626889204912e-6, relative_change = 1.4322651509447728e-11 Iter 135: T = 763.2881918137065 K, F = -4.6332062786369477e-7, relative_change = 5.98989383592163e-12 Iter 140: T = 763.2881917997419 K, F = -1.9376757576239356e-7, relative_change = 2.5050626671066187e-12 Iter 145: T = 763.2881917939015 K, F = -8.103446436091843e-8, relative_change = 1.0476283796616057e-12 Iter 150: T = 763.2881917914591 K, F = -3.3889721140489826e-8, relative_change = 4.381325146792583e-13 Converged in 154 iterations to T = 763.2881917905775 K Iter 1: T = 970.0298433113778 K, F = -6828.728710481496, relative_change = 0.02997015668862224 Iter 2: T = 942.2175572608737 K, F = -5784.269343222871, relative_change = 0.02867157772750745 Iter 3: T = 916.5202347996844 K, F = -4897.827965400174, relative_change = 0.027273236699063615 Iter 5: T = 871.264066950373 K, F = -3507.55936691788, relative_change = 0.02421830632655915 Iter 10: T = 790.5697173580506 K, F = -1510.605901136135, relative_change = 0.015915635698214883 Iter 15: T = 746.311179238784 K, F = -643.3575347650068, relative_change = 0.008784813459626136 Iter 20: T = 724.7210746996083 K, F = -271.6555257200502, relative_change = 0.004248330251095047 Iter 25: T = 714.9758003892033 K, F = -114.12423984489429, relative_change = 0.0019018673516350841 Iter 30: T = 710.7563532499813 K, F = -47.82350372528721, relative_change = 0.0008196090665216922 Iter 35: T = 708.9649463357226 K, F = -20.017471749689673, relative_change = 0.0003471992902269179 Iter 40: T = 708.2109456250964 K, F = -8.374571110719906, relative_change = 0.0001459922999723899 Iter 45: T = 707.894762013432 K, F = -3.5028772128997208, relative_change = 6.119489664475916e-5 Iter 50: T = 707.7623805996141 K, F = -1.4650382323476823, relative_change = 2.561685970090096e-5 Iter 55: T = 707.7069908841036 K, F = -0.6127127898239932, relative_change = 1.0717554272200495e-5 Iter 60: T = 707.6838216525113 K, F = -0.25624665868526847, relative_change = 4.482957789279167e-6 Iter 65: T = 707.6741311998926 K, F = -0.10716591187622715, relative_change = 1.874957447790513e-6 Iter 70: T = 707.6700783963664 K, F = -0.044818151448438925, relative_change = 7.841525041089021e-7 Iter 75: T = 707.668383440954 K, F = -0.018743501439332233, relative_change = 3.279459486978663e-7 Iter 80: T = 707.6676745860599 K, F = -0.00783875881381535, relative_change = 1.3715161300283034e-7 Iter 85: T = 707.6673781337258 K, F = -0.0032782630164372994, relative_change = 5.73585650482662e-8 Iter 90: T = 707.6672541536878 K, F = -0.0013710088243605867, relative_change = 2.3988058320685028e-8 Iter 95: T = 707.6672023037323 K, F = -0.0005733722777304662, relative_change = 1.003209621359063e-8 Iter 100: T = 707.6671806194578 K, F = -0.00023979113663119556, relative_change = 4.1955431021645264e-9 Iter 105: T = 707.6671715508345 K, F = -0.00010028351807955804, relative_change = 1.7546263557581246e-9 Iter 110: T = 707.6671677582278 K, F = -4.1939764751974806e-5, relative_change = 7.338057127936249e-10 Iter 115: T = 707.6671661721143 K, F = -1.75397097735841e-5, relative_change = 3.068863033939373e-10 Iter 120: T = 707.6671655087828 K, F = -7.335316478451759e-6, relative_change = 1.2834352434572976e-10 Iter 125: T = 707.6671652313695 K, F = -3.067715835913809e-6, relative_change = 5.367477517348141e-11 Iter 130: T = 707.667165115352 K, F = -1.2829548428072712e-6, relative_change = 2.244742227848744e-11 Iter 135: T = 707.6671650668321 K, F = -5.365462619755235e-7, relative_change = 9.387766518801362e-12 Iter 140: T = 707.6671650465405 K, F = -2.2439004643270977e-7, relative_change = 3.926075931616413e-12 Iter 145: T = 707.6671650380543 K, F = -9.384302424031432e-8, relative_change = 1.6419393137008673e-12 Iter 150: T = 707.6671650345054 K, F = -3.9245795613318535e-8, relative_change = 6.866702691880297e-13 Iter 155: T = 707.6671650330211 K, F = -1.6413914227797477e-8, relative_change = 2.8718864594806525e-13 Converged in 157 iterations to T = 707.667165032707 K Iter 1: T = 973.374952767911 K, F = -6066.542338789807, relative_change = 0.0266250472320889 Iter 2: T = 948.9430599823229 K, F = -5133.972033780328, relative_change = 0.025100186434952966 Iter 3: T = 926.6380110534344 K, F = -4342.94520806755, relative_change = 0.02350514996052972 Iter 5: T = 888.0910516054731 K, F = -3103.62066032728, relative_change = 0.020181417160019973 Iter 10: T = 822.3473329489307 K, F = -1329.1833783872557, relative_change = 0.012146369760814894 Iter 15: T = 788.4363294783108 K, F = -563.4669171996862, relative_change = 0.006240624993243376 Iter 20: T = 772.5923815784331 K, F = -237.23685425321935, relative_change = 0.0028883582390468437 Iter 25: T = 765.6102446917289 K, F = -99.51826550576767, relative_change = 0.0012646382597892671 Iter 30: T = 762.6217859128052 K, F = -41.67481996509265, relative_change = 0.0005394994689639157 Iter 35: T = 761.3594962176859 K, F = -17.438706166964025, relative_change = 0.00022753643309961915 Iter 40: T = 760.8293694712157 K, F = -7.294801217077246, relative_change = 9.549691662386249e-5 Iter 45: T = 760.6072725464337 K, F = -3.051075776205769, relative_change = 3.9997458141424534e-5 Iter 50: T = 760.5143202539745 K, F = -1.276049351474613, relative_change = 1.6737845312539187e-5 Iter 55: T = 760.4754344624807 K, F = -0.5336683568294234, relative_change = 7.001792804018846e-6 Iter 60: T = 760.4591698543851 K, F = -0.2231881033642612, relative_change = 2.928552861566675e-6 Iter 65: T = 760.4523674326656 K, F = -0.09334021416461635, relative_change = 1.2248116692802296e-6 Iter 70: T = 760.4495225142297 K, F = -0.03903604193321153, relative_change = 5.122406429370249e-7 Iter 75: T = 760.4483327240944 K, F = -0.016325347606982787, relative_change = 2.1422686408264266e-7 Iter 80: T = 760.4478351376796 K, F = -0.006827456854377467, relative_change = 8.959253202252627e-8 Iter 85: T = 760.4476270407538 K, F = -0.002855324259547931, relative_change = 3.746871916124582e-8 Iter 90: T = 760.4475400120738 K, F = -0.0011941307501208698, relative_change = 1.5669874953186637e-8 Iter 95: T = 760.4475036156299 K, F = -0.0004993997474082024, relative_change = 6.553330425525606e-9 Iter 100: T = 760.4474883942006 K, F = -0.00020885493998423765, relative_change = 2.7406813284608568e-9 Iter 105: T = 760.4474820284167 K, F = -8.734562843148996e-5, relative_change = 1.1461856852610053e-9 Iter 110: T = 760.44747936617 K, F = -3.652898454908904e-5, relative_change = 4.793485448217801e-10 Iter 115: T = 760.4474782527866 K, F = -1.527685852931171e-5, relative_change = 2.004692998427265e-10 Iter 120: T = 760.4474777871563 K, F = -6.388966272030672e-6, relative_change = 8.383867642351116e-11 Iter 125: T = 760.4474775924242 K, F = -2.671942549770101e-6, relative_change = 3.5062343043847185e-11 Iter 130: T = 760.4474775109849 K, F = -1.1174392625656893e-6, relative_change = 1.4663503441752776e-11 Iter 135: T = 760.4474774769259 K, F = -4.673257284482091e-7, relative_change = 6.132442861589888e-12 Iter 140: T = 760.4474774626821 K, F = -1.9544073026622755e-7, relative_change = 2.5646546687505013e-12 Iter 145: T = 760.4474774567252 K, F = -8.173611720785345e-8, relative_change = 1.072575375280929e-12 Iter 150: T = 760.447477454234 K, F = -3.418315908110259e-8, relative_change = 4.485656516694728e-13 Converged in 155 iterations to T = 760.447477453192 K Iter 1: T = 964.3558557575377 K, F = -8121.552171979506, relative_change = 0.03564414424246231 Iter 2: T = 930.6391213351334 K, F = -6889.934796841993, relative_change = 0.03496295918265418 Iter 3: T = 898.8189154790051 K, F = -5844.015651528929, relative_change = 0.034191777593099326 Iter 5: T = 840.7552371523935 K, F = -4201.6609612585635, relative_change = 0.03235415492905133 Iter 10: T = 726.7995500080251 K, F = -1832.2067734059456, relative_change = 0.02593862575993103 Iter 15: T = 653.3637237731857 K, F = -791.0478839059732, relative_change = 0.017731917173220407 Iter 20: T = 611.8888362593945 K, F = -337.6864164608601, relative_change = 0.010146947589897426 Iter 25: T = 591.1913302649966 K, F = -142.8125579892707, relative_change = 0.0050270654348034145 Iter 30: T = 581.7213830745768 K, F = -60.04763932240339, relative_change = 0.002279709839192312 Iter 35: T = 577.5932436437575 K, F = -25.17293431353194, relative_change = 0.0009884006551789204 Iter 40: T = 575.8351976659737 K, F = -10.538494088001187, relative_change = 0.0004198173983346779 Iter 45: T = 575.0942502603755 K, F = -4.409250688947465, relative_change = 0.00017672795464825826 Iter 50: T = 574.7833642848834 K, F = -1.8443401274484614, relative_change = 7.411376279757477e-5 Iter 55: T = 574.6531698569323 K, F = -0.7713844669887043, relative_change = 3.103108909528436e-5 Iter 60: T = 574.5986897483222 K, F = -0.3226125954856979, relative_change = 1.2983849114522714e-5 Iter 65: T = 574.5759000460456 K, F = -0.13492225977557595, relative_change = 5.431099404818414e-6 Iter 70: T = 574.5663681632279 K, F = -0.05642641863375722, relative_change = 2.2715428432089294e-6 Iter 75: T = 574.5623816485611 K, F = -0.023598257814315543, relative_change = 9.50019966942767e-7 Iter 80: T = 574.5607144112314 K, F = -0.009869082975420551, relative_change = 3.973155765606299e-7 Iter 85: T = 574.5600171475468 K, F = -0.004127370063975566, relative_change = 1.6616314761122555e-7 Iter 90: T = 574.5597255426509 K, F = -0.0017261157494155022, relative_change = 6.949159262455944e-8 Iter 95: T = 574.5596035898443 K, F = -0.0007218822724046059, relative_change = 2.9062245394849637e-8 Iter 100: T = 574.5595525876968 K, F = -0.00030189979644967835, relative_change = 1.2154183600887391e-8 Iter 105: T = 574.5595312579848 K, F = -0.0001262581015532005, relative_change = 5.0830256815173985e-9 Iter 110: T = 574.5595223376437 K, F = -5.280264636414733e-5, relative_change = 2.1257822195802965e-9 Iter 115: T = 574.5595186070502 K, F = -2.208269693193543e-5, relative_change = 8.890275238417068e-10 Iter 120: T = 574.5595170468716 K, F = -9.235247847905192e-6, relative_change = 3.718019432924041e-10 Iter 125: T = 574.5595163943863 K, F = -3.862291171441434e-6, relative_change = 1.554920230097209e-10 Iter 130: T = 574.5595161215091 K, F = -1.6152567682281571e-6, relative_change = 6.502864025295749e-11 Iter 135: T = 574.5595160073887 K, F = -6.755201413799483e-7, relative_change = 2.7195772934076422e-11 Iter 140: T = 574.559515959662 K, F = -2.825104874482065e-7, relative_change = 1.1373592881302018e-11 Iter 145: T = 574.5595159397022 K, F = -1.1814937428411554e-7, relative_change = 4.756576984621545e-12 Iter 150: T = 574.5595159313548 K, F = -4.9411917280028916e-8, relative_change = 1.9892749321827296e-12 Iter 155: T = 574.5595159278638 K, F = -2.0664388811209022e-8, relative_change = 8.319278610307846e-13 Iter 160: T = 574.5595159264038 K, F = -8.641938609166289e-9, relative_change = 3.4791590344400793e-13 Converged in 163 iterations to T = 574.5595159259764 K Iter 1: T = 963.588170914257 K, F = -8296.469893777807, relative_change = 0.03641182908574294 Iter 2: T = 929.0557463130548 K, F = -7039.782537331114, relative_change = 0.035837327235387045 Iter 3: T = 896.3692933829617 K, F = -5972.524202001447, relative_change = 0.03518244525133049 Iter 5: T = 836.4157332445898 K, F = -4296.499230026342, relative_change = 0.03360239002609576 Iter 10: T = 716.897797942484 K, F = -1877.4482023728358, relative_change = 0.02785745569293198 Iter 15: T = 637.4484926361381 K, F = -812.9059755363177, relative_change = 0.01993113776251396 Iter 20: T = 590.9625417665331 K, F = -348.02439509661696, relative_change = 0.011932565755244668 Iter 25: T = 567.0693962142062 K, F = -147.49631120068634, relative_change = 0.00610655462055011 Iter 30: T = 555.9317704424913 K, F = -62.09114544001785, relative_change = 0.0028198769098834297 Iter 35: T = 551.0296211207026 K, F = -26.044635613349865, relative_change = 0.0012332831754481388 Iter 40: T = 548.932627028109 K, F = -10.906234288238938, relative_change = 0.0005258613215515074 Iter 45: T = 548.047103909908 K, F = -4.563616472568495, relative_change = 0.00022173689429842632 Iter 50: T = 547.6752485962153 K, F = -1.908999033318412, relative_change = 9.305439584268974e-5 Iter 55: T = 547.5194666374197 K, F = -0.7984433964899854, relative_change = 3.8972955527849463e-5 Iter 60: T = 547.4542698093692 K, F = -0.33393208308756595, relative_change = 1.630885770426671e-5 Iter 65: T = 547.426995494624 K, F = -0.13965675085651225, relative_change = 6.82229252336422e-6 Iter 70: T = 547.4155876115486 K, F = -0.05840653490769254, relative_change = 2.8534675060278817e-6 Iter 75: T = 547.4108164468819 K, F = -0.024426382804064728, relative_change = 1.1934072437740636e-6 Iter 80: T = 547.4088210448075 K, F = -0.010215417660112247, relative_change = 4.991064415706986e-7 Iter 85: T = 547.4079865361286 K, F = -0.004272211876459736, relative_change = 2.087338975249016e-7 Iter 90: T = 547.4076375332861 K, F = -0.0017866904147410267, relative_change = 8.729529263119113e-8 Iter 95: T = 547.4074915758938 K, F = -0.0007472153362177714, relative_change = 3.650798353022946e-8 Iter 100: T = 547.4074305347281 K, F = -0.0003124943884721676, relative_change = 1.5268083363973318e-8 Iter 105: T = 547.4074050065764 K, F = -0.00013068888738623774, relative_change = 6.385296325247367e-9 Iter 110: T = 547.4073943303972 K, F = -5.465565376105985e-5, relative_change = 2.6704074424298644e-9 Iter 115: T = 547.4073898654913 K, F = -2.2857646316182256e-5, relative_change = 1.1167962874668058e-9 Iter 120: T = 547.4073879982143 K, F = -9.559340402087724e-6, relative_change = 4.670575394063864e-10 Iter 125: T = 547.4073872172969 K, F = -3.997830617802345e-6, relative_change = 1.9532905676087217e-10 Iter 130: T = 547.4073868907078 K, F = -1.6719404278831007e-6, relative_change = 8.168894054993904e-11 Iter 135: T = 547.4073867541243 K, F = -6.992251008752781e-7, relative_change = 3.4163273291140186e-11 Iter 140: T = 547.4073866970035 K, F = -2.92424257225532e-7, relative_change = 1.4287487404287938e-11 Iter 145: T = 547.4073866731148 K, F = -1.2229476417657814e-7, relative_change = 5.975170868942829e-12 Iter 150: T = 547.4073866631245 K, F = -5.114555218233008e-8, relative_change = 2.4989084002088152e-12 Iter 155: T = 547.4073866589463 K, F = -2.138961716080523e-8, relative_change = 1.0450702303844795e-12 Iter 160: T = 547.4073866571989 K, F = -8.945626961409658e-9, relative_change = 4.3707226545255886e-13 Converged in 164 iterations to T = 547.4073866565682 K Iter 1: T = 969.2962197681935 K, F = -6995.88553265217, relative_change = 0.030703780231806463 Iter 2: T = 940.7326979844637 K, F = -5927.041745706342, relative_change = 0.029468310307204957 Iter 3: T = 914.2704826965003 K, F = -5019.8101862098865, relative_change = 0.028129366976038184 Iter 5: T = 867.4648434324985 K, F = -3596.6524259241182, relative_change = 0.02517261932829297 Iter 10: T = 783.1029360299048 K, F = -1551.1066225214083, relative_change = 0.01690628177874524 Iter 15: T = 736.0864110736899 K, F = -661.4402504886212, relative_change = 0.009515906538267522 Iter 20: T = 712.8685454786001 K, F = -279.527152161842, relative_change = 0.00466169372497956 Iter 25: T = 702.3126419025568 K, F = -117.48420964281236, relative_change = 0.0021012282269177907 Iter 30: T = 697.7258056533472 K, F = -49.241917154488725, relative_change = 0.0009084154179325244 Iter 35: T = 695.775260190407 K, F = -20.6130961905873, relative_change = 0.00038535788790765416 Iter 40: T = 694.9537019780462 K, F = -8.624101558249851, relative_change = 0.00016213426213498568 Iter 45: T = 694.6090861115413 K, F = -3.607310244795835, relative_change = 6.797817418387951e-5 Iter 50: T = 694.4647824509889 K, F = -1.5087267874434818, relative_change = 2.8459424704010363e-5 Iter 55: T = 694.4044011751257 K, F = -0.6309862149736312, relative_change = 1.1907351092593483e-5 Iter 60: T = 694.379143444067 K, F = -0.2638892345301109, relative_change = 4.980720475555339e-6 Iter 65: T = 694.3685793863968 K, F = -0.11036220030722926, relative_change = 2.0831584454903543e-6 Iter 70: T = 694.3641612011289 K, F = -0.046154890025977835, relative_change = 8.712300177295233e-7 Iter 75: T = 694.3623134335176 K, F = -0.019302543677261474, relative_change = 3.643637440832812e-7 Iter 80: T = 694.361540669829 K, F = -0.008072557338974273, relative_change = 1.5238213423270944e-7 Iter 85: T = 694.3612174899151 K, F = -0.0033760404193924343, relative_change = 6.372817965483049e-8 Iter 90: T = 694.3610823320563 K, F = -0.0014119005143554686, relative_change = 2.6651912253155878e-8 Iter 95: T = 694.3610258073977 K, F = -0.0005904736721039638, relative_change = 1.1146152605041007e-8 Iter 100: T = 694.3610021681056 K, F = -0.0002469431432513547, relative_change = 4.661454922771254e-9 Iter 105: T = 694.3609922818706 K, F = -0.00010327457317715893, relative_change = 1.9494762795563493e-9 Iter 110: T = 694.3609881473288 K, F = -4.319065900126873e-5, relative_change = 8.152942686480173e-10 Iter 115: T = 694.3609864182141 K, F = -1.8062850118738538e-5, relative_change = 3.4096581743344313e-10 Iter 120: T = 694.3609856950777 K, F = -7.5540997117595765e-6, relative_change = 1.4259597898634673e-10 Iter 125: T = 694.3609853926533 K, F = -3.159214805759092e-6, relative_change = 5.963534321479252e-11 Iter 130: T = 694.3609852661759 K, F = -1.3212215038693742e-6, relative_change = 2.4940215451862274e-11 Iter 135: T = 694.3609852132814 K, F = -5.52550117660644e-7, relative_change = 1.0430286630249147e-11 Iter 140: T = 694.3609851911604 K, F = -2.3108189894927023e-7, relative_change = 4.362048553483492e-12 Iter 145: T = 694.3609851819091 K, F = -9.664116118468513e-8, relative_change = 1.824259880571199e-12 Iter 150: T = 694.3609851780401 K, F = -4.041666767928831e-8, relative_change = 7.629306648619252e-13 Iter 155: T = 694.360985176422 K, F = -1.6901786081824355e-8, relative_change = 3.190488388410951e-13 Converged in 158 iterations to T = 694.3609851759483 K Iter 1: T = 966.4778725911278 K, F = -7638.048617886873, relative_change = 0.03352212740887218 Iter 2: T = 934.9948347004248 K, F = -6476.041206495796, relative_change = 0.032575021926055076 Iter 3: T = 905.5211647054166 K, F = -5489.406774607926, relative_change = 0.03152281585004875 Iter 5: T = 852.4773161493217 K, F = -3940.6908659294704, relative_change = 0.029098198348197858 Iter 10: T = 752.4102219765277 K, F = -1709.5099891716966, relative_change = 0.021461409694957734 Iter 15: T = 692.4037851031974 K, F = -733.4013951595748, relative_change = 0.013272762824518999 Iter 20: T = 660.8759748521016 K, F = -311.32732389158394, relative_change = 0.006963869261150667 Iter 25: T = 645.9624119657467 K, F = -131.18461048716856, relative_change = 0.0032630281699366583 Iter 30: T = 639.346482518736 K, F = -55.05267430560258, relative_change = 0.0014373920189581202 Iter 35: T = 636.5058849853755 K, F = -23.058360708102573, relative_change = 0.0006148784323737762 Iter 40: T = 635.304391553104 K, F = -9.649463383055666, relative_change = 0.00025963480557931134 Iter 45: T = 634.7994991839053 K, F = -4.036610785656662, relative_change = 0.00010902325134647959 Iter 50: T = 634.5879214063465 K, F = -1.6883501243283876, relative_change = 4.567239568523865e-5 Iter 55: T = 634.4993623180321 K, F = -0.7061216891586026, relative_change = 1.911434230440396e-5 Iter 60: T = 634.4623127586689 K, F = -0.2953143866328286, relative_change = 7.996227540150288e-6 Iter 65: T = 634.4468158993969 K, F = -0.12350502903183486, relative_change = 3.344534528912851e-6 Iter 70: T = 634.44033452696 K, F = -0.05165145751615624, relative_change = 1.3987971724849022e-6 Iter 75: T = 634.4376238694921 K, F = -0.021601287759665022, relative_change = 5.850064321915458e-7 Iter 80: T = 634.4364902279041 K, F = -0.009033922001747186, relative_change = 2.446589063325687e-7 Iter 85: T = 634.4360161233087 K, F = -0.003778095028118933, relative_change = 1.0231966648375682e-7 Iter 90: T = 634.4358178467298 K, F = -0.0015800446280710978, relative_change = 4.279137468045626e-8 Iter 95: T = 634.435734925031 K, F = -0.0006607935632750306, relative_change = 1.7895875879486406e-8 Iter 100: T = 634.4357002461749 K, F = -0.00027635176457463384, relative_change = 7.484271094333151e-9 Iter 105: T = 634.435685743061 K, F = -0.00011557360892627822, relative_change = 3.1300119108246172e-9 Iter 110: T = 634.4356796776852 K, F = -4.8334263633709185e-5, relative_change = 1.3090084247260057e-9 Iter 115: T = 634.4356771410726 K, F = -2.021396637191808e-5, relative_change = 5.474429688673256e-10 Iter 120: T = 634.4356760802309 K, F = -8.453721634549272e-6, relative_change = 2.2894717549680356e-10 Iter 125: T = 634.4356756365743 K, F = -3.5354472304183204e-6, relative_change = 9.574844017918686e-11 Iter 130: T = 634.4356754510318 K, F = -1.4785671777484133e-6, relative_change = 4.004316623612012e-11 Iter 135: T = 634.4356753734356 K, F = -6.183542595183944e-7, relative_change = 1.6746525145264394e-11 Iter 140: T = 634.435675340984 K, F = -2.586026684459064e-7, relative_change = 7.003584149625575e-12 Iter 145: T = 634.4356753274124 K, F = -1.0815057910340542e-7, relative_change = 2.9289785995267807e-12 Iter 150: T = 634.4356753217365 K, F = -4.5230312717414733e-8, relative_change = 1.2249459882982996e-12 Iter 155: T = 634.4356753193629 K, F = -1.8916455846174074e-8, relative_change = 5.123032610182235e-13 Converged in 160 iterations to T = 634.4356753183702 K Iter 1: T = 966.5288542276018 K, F = -7626.432403520238, relative_change = 0.03347114577239827 Iter 2: T = 935.0991037237602 K, F = -6466.103027397113, relative_change = 0.03251817094375167 Iter 3: T = 905.6809591758222 K, F = -5480.898260484759, relative_change = 0.031459921660483656 Iter 5: T = 852.7541719200893 K, F = -3934.441884085467, relative_change = 0.02902330292421604 Iter 10: T = 752.9967738655192 K, F = -1706.6012210015547, relative_change = 0.021366509410146495 Iter 15: T = 693.2670878774311 K, F = -732.0583852362745, relative_change = 0.01318717390002361 Iter 20: T = 661.9285436601513 K, F = -310.7247965623822, relative_change = 0.006907854248639033 Iter 25: T = 647.1186481092261 K, F = -130.92246901884724, relative_change = 0.003233680894275253 Iter 30: T = 640.552118627546 K, F = -54.94092744809808, relative_change = 0.0014237846572595456 Iter 35: T = 637.7334261259683 K, F = -23.011226025365612, relative_change = 0.0006089260254917475 Iter 40: T = 636.5413279343142 K, F = -9.629678523486652, relative_change = 0.00025709734503363314 Iter 45: T = 636.0404070511157 K, F = -4.028323639843864, relative_change = 0.00010795346415947166 Iter 50: T = 635.8304976908393 K, F = -1.6848820740175898, relative_change = 4.522348194497947e-5 Iter 55: T = 635.7426376726751 K, F = -0.7046709115759451, relative_change = 1.8926335083809707e-5 Iter 60: T = 635.7058807038776 K, F = -0.29470758451750456, relative_change = 7.917554055510837e-6 Iter 65: T = 635.6905062499304 K, F = -0.12325124496191453, relative_change = 3.3116241789378205e-6 Iter 70: T = 635.6840760759408 K, F = -0.05154531985719146, relative_change = 1.3850322436709168e-6 Iter 75: T = 635.6813868315132 K, F = -0.021556899351155956, relative_change = 5.792495249042734e-7 Iter 80: T = 635.680262145331 K, F = -0.009015358173988242, relative_change = 2.422512552797536e-7 Iter 85: T = 635.679791786031 K, F = -0.003770331401838911, relative_change = 1.0131275041055325e-7 Iter 90: T = 635.679595075786 K, F = -0.001576797783311934, relative_change = 4.237026897631841e-8 Iter 95: T = 635.679512809148 K, F = -0.0006594356921383326, relative_change = 1.7719764169902153e-8 Iter 100: T = 635.6794784042462 K, F = -0.0002757838868969742, relative_change = 7.410619041659775e-9 Iter 105: T = 635.6794640157035 K, F = -0.0001153361158336419, relative_change = 3.099209739599768e-9 Iter 110: T = 635.6794579982428 K, F = -4.8234941296243505e-5, relative_change = 1.296126590627251e-9 Iter 115: T = 635.6794554816687 K, F = -2.0172428593423497e-5, relative_change = 5.420556320301261e-10 Iter 120: T = 635.6794544292075 K, F = -8.436350771523493e-6, relative_change = 2.2669414663455638e-10 Iter 125: T = 635.6794539890556 K, F = -3.528182267065194e-6, relative_change = 9.480618960746969e-11 Iter 130: T = 635.6794538049787 K, F = -1.4755283416767462e-6, relative_change = 3.964909104353725e-11 Iter 135: T = 635.6794537279956 K, F = -6.17083081466685e-7, relative_change = 1.6581710158683043e-11 Iter 140: T = 635.6794536958004 K, F = -2.580710214972193e-7, relative_change = 6.934655978062234e-12 Iter 145: T = 635.679453682336 K, F = -1.0792834870265722e-7, relative_change = 2.9001550203760777e-12 Iter 150: T = 635.679453676705 K, F = -4.5137062310018905e-8, relative_change = 1.212883171497342e-12 Iter 155: T = 635.67945367435 K, F = -1.8876817553525882e-8, relative_change = 5.072411267097237e-13 Converged in 160 iterations to T = 635.6794536733653 K Iter 1: T = 976.4731858371299 K, F = -5360.606986787809, relative_change = 0.023526814162870103 Iter 2: T = 955.1072991118618 K, F = -4532.702079346116, relative_change = 0.02188066916241131 Iter 3: T = 935.8103981025706 K, F = -3830.9239625980626, relative_change = 0.02020390905528104 Iter 5: T = 903.0014196565163 K, F = -2732.6980009060794, relative_change = 0.0168518186802236 Iter 10: T = 848.989263956714 K, F = -1165.227190676078, relative_change = 0.009475065183130085 Iter 15: T = 822.334812064836 K, F = -492.4062689845783, relative_change = 0.004638345945381717 Iter 20: T = 810.2213668016636 K, F = -206.95125278968064, relative_change = 0.002089900576991191 Iter 25: T = 804.9587970519776 K, F = -86.73978137342549, relative_change = 0.0009033552806798666 Iter 30: T = 802.7211019462675 K, F = -36.30983805072015, relative_change = 0.0003831809424115775 Iter 35: T = 801.778635440729 K, F = -15.19126589816587, relative_change = 0.00016121287726864945 Iter 40: T = 801.3833093058386 K, F = -6.354233724263573, relative_change = 6.759089757466533e-5 Iter 45: T = 801.2177725187597 K, F = -2.6576030761566436, relative_change = 2.8297119373401233e-5 Iter 50: T = 801.148506828574 K, F = -1.11147401850333, relative_change = 1.1839413174915357e-5 Iter 55: T = 801.1195327473166 K, F = -0.464837425030022, relative_change = 4.9522975419848175e-6 Iter 60: T = 801.1074143307821 K, F = -0.19440156245733176, relative_change = 2.071269800642602e-6 Iter 65: T = 801.102346070139 K, F = -0.0813012299594853, relative_change = 8.66257723536738e-7 Iter 70: T = 801.1002264290557 K, F = -0.03400117589450724, relative_change = 3.6228421511321593e-7 Iter 75: T = 801.0993399639021 K, F = -0.014219703165190056, relative_change = 1.515124405708294e-7 Iter 80: T = 801.0989692325496 K, F = -0.0059468506161979295, relative_change = 6.336446165027207e-8 Iter 85: T = 801.098814188089 K, F = -0.002487044112514547, relative_change = 2.649980076495043e-8 Iter 90: T = 801.0987493466122 K, F = -0.0010401115770865, relative_change = 1.10825377199917e-8 Iter 95: T = 801.0987222291266 K, F = -0.00043498708758660243, relative_change = 4.634850422831462e-9 Iter 100: T = 801.0987108882694 K, F = -0.0001819167958574397, relative_change = 1.938349939786992e-9 Iter 105: T = 801.0987061453873 K, F = -7.60797775687383e-5, relative_change = 8.106411270673991e-10 Iter 110: T = 801.0987041618573 K, F = -3.181747250624589e-5, relative_change = 3.390198144791111e-10 Iter 115: T = 801.0987033323214 K, F = -1.3306447306904445e-5, relative_change = 1.4178213931727115e-10 Iter 120: T = 801.0987029853995 K, F = -5.564915108502433e-6, relative_change = 5.929498329880503e-11 Iter 125: T = 801.0987028403126 K, F = -2.3273137162993507e-6, relative_change = 2.4797867598591897e-11 Iter 130: T = 801.0987027796355 K, F = -9.7330785375771e-7, relative_change = 1.037073735690259e-11 Iter 135: T = 801.0987027542596 K, F = -4.070490329244336e-7, relative_change = 4.337166905804107e-12 Iter 140: T = 801.0987027436472 K, F = -1.7023206921873424e-7, relative_change = 1.8138475644178308e-12 Iter 145: T = 801.098702739209 K, F = -7.119404754618586e-8, relative_change = 7.585829763966197e-13 Iter 150: T = 801.0987027373528 K, F = -2.9775119037012132e-8, relative_change = 3.1725824279419765e-13 Converged in 153 iterations to T = 801.0987027368094 K Iter 1: T = 965.1938748228274 K, F = -7930.608730791305, relative_change = 0.03480612517717254 Iter 2: T = 932.3629390276385 K, F = -6726.4266398965965, relative_change = 0.03401486131603917 Iter 3: T = 901.477744965631 K, F = -5703.8677989024445, relative_change = 0.03312572043481015 Iter 5: T = 845.4315037400982 K, F = -4098.39510721775, relative_change = 0.031035205364913377 Iter 10: T = 737.2054003475141 K, F = -1783.3578038597639, relative_change = 0.02403833989994486 Iter 15: T = 669.5641881461281 K, F = -767.8429340687038, relative_change = 0.015733115918828814 Iter 20: T = 632.5748039104066 K, F = -326.9437759036092, relative_change = 0.008653023513059967 Iter 25: T = 614.5707428263345 K, F = -138.02989568903112, relative_change = 0.004174902936442795 Iter 30: T = 606.4545944937958 K, F = -57.9825977086488, relative_change = 0.0018667310524923876 Iter 35: T = 602.9427443697467 K, F = -24.29656794327791, relative_change = 0.0008040148873468329 Iter 40: T = 601.4521804748508 K, F = -10.16964159490069, relative_change = 0.0003405095610986198 Iter 45: T = 600.8248815845947 K, F = -4.254572815458133, relative_change = 0.00014316434575858145 Iter 50: T = 600.5618430357239 K, F = -1.7795779640889051, relative_change = 6.000686228157931e-5 Iter 55: T = 600.4517150991278 K, F = -0.7442871584629813, relative_change = 2.5119069136359067e-5 Iter 60: T = 600.4056368874764 K, F = -0.31127790030388275, relative_change = 1.050920749251989e-5 Iter 65: T = 600.3863626842383 K, F = -0.13018155633826062, relative_change = 4.3957958253815645e-6 Iter 70: T = 600.3783013270588 K, F = -0.05444373011427878, relative_change = 1.8385002253983193e-6 Iter 75: T = 600.3749298566015 K, F = -0.022769061601736307, relative_change = 7.689047752752693e-7 Iter 80: T = 600.3735198473455 K, F = -0.009522301082935225, relative_change = 3.2156901190398617e-7 Iter 85: T = 600.3729301611295 K, F = -0.003982341362718134, relative_change = 1.344846748965927e-7 Iter 90: T = 600.3726835466985 K, F = -0.0016654629495422846, relative_change = 5.62432149697021e-8 Iter 95: T = 600.3725804094909 K, F = -0.0006965165351941471, relative_change = 2.3521604770250105e-8 Iter 100: T = 600.3725372762602 K, F = -0.00029129154052098816, relative_change = 9.837019634742759e-9 Iter 105: T = 600.3725192374247 K, F = -0.00012182160195661762, relative_change = 4.113959710819355e-9 Iter 110: T = 600.3725116933678 K, F = -5.094724878473844e-5, relative_change = 1.7205071846863466e-9 Iter 115: T = 600.3725085383529 K, F = -2.1306747208904575e-5, relative_change = 7.195366471557514e-10 Iter 120: T = 600.372507218888 K, F = -8.910736339240444e-6, relative_change = 3.009188288315142e-10 Iter 125: T = 600.372506667072 K, F = -3.7265761127502905e-6, relative_change = 1.258478403596232e-10 Iter 130: T = 600.3725064362961 K, F = -1.5584995160522475e-6, relative_change = 5.263109962642811e-11 Iter 135: T = 600.3725063397828 K, F = -6.517831309116318e-7, relative_change = 2.2010955133937872e-11 Iter 140: T = 600.3725062994198 K, F = -2.725835588912595e-7, relative_change = 9.205246657018022e-12 Iter 145: T = 600.3725062825395 K, F = -1.1399774269005292e-7, relative_change = 3.849745539364328e-12 Iter 150: T = 600.37250627548 K, F = -4.7675354053478e-8, relative_change = 1.6100141747041962e-12 Iter 155: T = 600.3725062725275 K, F = -1.99384621590859e-8, relative_change = 6.733291726092858e-13 Iter 160: T = 600.3725062712928 K, F = -8.338181145539636e-9, relative_change = 2.815834324157785e-13 Converged in 162 iterations to T = 600.3725062710315 K Iter 1: T = 964.526600324989 K, F = -8082.647859865711, relative_change = 0.035473399675011 Iter 2: T = 930.990736201957 K, F = -6856.614566985622, relative_change = 0.03476924753732282 Iter 3: T = 899.3619292508517 K, F = -5815.449462088965, relative_change = 0.03397327784392055 Iter 5: T = 841.7131090852238 K, F = -4180.598794726342, relative_change = 0.032081789579297505 Iter 10: T = 728.9527155365283 K, F = -1822.2097132470203, relative_change = 0.025535878181616394 Iter 15: T = 656.7577302518907 K, F = -786.2677413931167, relative_change = 0.017294111133820688 Iter 20: T = 616.270223384145 K, F = -335.45590669928254, relative_change = 0.009809721466326495 Iter 25: T = 596.1785145260227 K, F = -141.81334389721303, relative_change = 0.004830785350876888 Iter 30: T = 587.017027757966 K, F = -59.6146483592873, relative_change = 0.002183557188069863 Iter 35: T = 583.0302280847596 K, F = -24.988858876972806, relative_change = 0.0009452531768966364 Iter 40: T = 581.3337092401861 K, F = -10.460958200740079, relative_change = 0.0004012175502971829 Iter 45: T = 580.6189374597611 K, F = -4.37672514910872, relative_change = 0.00016884889405757936 Iter 50: T = 580.3190778008868 K, F = -1.8307200495813225, relative_change = 7.080083870598717e-5 Iter 55: T = 580.1935087141443 K, F = -0.7656853125313581, relative_change = 2.964245168793561e-5 Iter 60: T = 580.1409654369401 K, F = -0.3202286022164546, relative_change = 1.2402555038824171e-5 Iter 65: T = 580.1189861713518 K, F = -0.1339251510105545, relative_change = 5.187899102022974e-6 Iter 70: T = 580.1097932982087 K, F = -0.05600939933992563, relative_change = 2.1698167431341144e-6 Iter 75: T = 580.105948574623 K, F = -0.023423852479232177, relative_change = 9.07473953085025e-7 Iter 80: T = 580.1043406383233 K, F = -0.009796144076931357, relative_change = 3.7952181053510915e-7 Iter 85: T = 580.1036681754409 K, F = -0.004096866056688908, relative_change = 1.5872149207032133e-7 Iter 90: T = 580.1033869426074 K, F = -0.00171335859364935, relative_change = 6.637938764592172e-8 Iter 95: T = 580.1032693275334 K, F = -0.0007165470743948354, relative_change = 2.7760681334335598e-8 Iter 100: T = 580.1032201394797 K, F = -0.00029966855261676084, relative_change = 1.160985349135828e-8 Iter 105: T = 580.1031995684438 K, F = -0.00012532496925371506, relative_change = 4.855380268575699e-9 Iter 110: T = 580.10319096539 K, F = -5.2412398766132906e-5, relative_change = 2.0305781543851955e-9 Iter 115: T = 580.1031873674901 K, F = -2.1919491273614256e-5, relative_change = 8.492120661813014e-10 Iter 120: T = 580.1031858628054 K, F = -9.166992530618145e-6, relative_change = 3.5515061305728703e-10 Iter 125: T = 580.1031852335283 K, F = -3.833745359782537e-6, relative_change = 1.485282132952954e-10 Iter 130: T = 580.1031849703571 K, F = -1.6033185666342042e-6, relative_change = 6.211629104474536e-11 Iter 135: T = 580.1031848602958 K, F = -6.705269271489733e-7, relative_change = 2.5977773016863532e-11 Iter 140: T = 580.1031848142668 K, F = -2.8042260930005725e-7, relative_change = 1.0864224240657377e-11 Iter 145: T = 580.103184795017 K, F = -1.1727641313630244e-7, relative_change = 4.5435610696095e-12 Iter 150: T = 580.1031847869664 K, F = -4.9046241623607045e-8, relative_change = 1.900165498815252e-12 Iter 155: T = 580.1031847835995 K, F = -2.0511661869004882e-8, relative_change = 7.946694979613814e-13 Iter 160: T = 580.1031847821915 K, F = -8.578666332859086e-9, relative_change = 3.323574906571353e-13 Converged in 163 iterations to T = 580.1031847817793 K Iter 1: T = 964.3364685197306 K, F = -8125.9695725558795, relative_change = 0.03566353148026941 Iter 2: T = 930.5991844659812 K, F = -6893.7183387522655, relative_change = 0.03498497169306113 Iter 3: T = 898.7572171485364 K, F = -5847.259575510257, relative_change = 0.034216629295368645 Iter 5: T = 840.646308901374 K, F = -4204.053186126256, relative_change = 0.03238520009026925 Iter 10: T = 726.5539682396595 K, F = -1833.34335974685, relative_change = 0.025984884638445938 Iter 15: T = 652.9751649165761 K, F = -791.5924279636815, relative_change = 0.017782710854921422 Iter 20: T = 611.3855243212619 K, F = -337.9411439483042, relative_change = 0.010186449004908924 Iter 25: T = 590.6171229482609 K, F = -142.9268994968554, relative_change = 0.0050502102328346685 Iter 30: T = 581.1109222168686 K, F = -60.09724598463033, relative_change = 0.002291089084174368 Iter 35: T = 576.9661345887372 K, F = -25.194035685760593, relative_change = 0.0009935157598502226 Iter 40: T = 575.2008341194868 K, F = -10.547384698755781, relative_change = 0.00042202407525400795 Iter 45: T = 574.4567990640533 K, F = -4.412980634581757, relative_change = 0.00017766302706882637 Iter 50: T = 574.1446121924586 K, F = -1.8459021180046966, relative_change = 7.450698863801097e-5 Iter 55: T = 574.0138720190454 K, F = -0.772038075949582, relative_change = 3.1195922231374596e-5 Iter 60: T = 573.9591633755383 K, F = -0.3228860066638303, relative_change = 1.3052851177124263e-5 Iter 65: T = 573.9362780450996 K, F = -0.13503661481581433, relative_change = 5.459968600732168e-6 Iter 70: T = 573.9267061603173 K, F = -0.05647424524062364, relative_change = 2.28361833460219e-6 Iter 75: T = 573.9227029147545 K, F = -0.02361825981561319, relative_change = 9.550704400627972e-7 Iter 80: T = 573.9210286800852 K, F = -0.009877448111296039, relative_change = 3.994278074269144e-7 Iter 85: T = 573.9203284899808 K, F = -0.004130868474788163, relative_change = 1.6704651877364252e-7 Iter 90: T = 573.9200356612125 K, F = -0.0017275788282239413, relative_change = 6.986103090365522e-8 Iter 95: T = 573.9199131965664 K, F = -0.0007224941501556836, relative_change = 2.9216749246727574e-8 Iter 100: T = 573.9198619803612 K, F = -0.00030215569105240814, relative_change = 1.2218799014094442e-8 Iter 105: T = 573.9198405611278 K, F = -0.0001263651204331251, relative_change = 5.110048657139591e-9 Iter 110: T = 573.9198316033477 K, F = -5.2847403379907565e-5, relative_change = 2.137083570342755e-9 Iter 115: T = 573.9198278570968 K, F = -2.2101414611008785e-5, relative_change = 8.937538742406672e-10 Iter 120: T = 573.9198262903701 K, F = -9.243075711595772e-6, relative_change = 3.737785558029109e-10 Iter 125: T = 573.9198256351461 K, F = -3.865564630556317e-6, relative_change = 1.5631865603057493e-10 Iter 130: T = 573.9198253611238 K, F = -1.6166258998140393e-6, relative_change = 6.537435347477811e-11 Iter 135: T = 573.9198252465243 K, F = -6.760923424997678e-7, relative_change = 2.734033880520698e-11 Iter 140: T = 573.9198251985973 K, F = -2.8274937829975144e-7, relative_change = 1.1434035436886978e-11 Iter 145: T = 573.9198251785538 K, F = -1.1824911722024822e-7, relative_change = 4.7818481689758545e-12 Iter 150: T = 573.9198251701712 K, F = -4.945271298018028e-8, relative_change = 1.999806599749521e-12 Iter 155: T = 573.9198251666656 K, F = -2.0681546364365033e-8, relative_change = 8.363361769507287e-13 Iter 160: T = 573.9198251651995 K, F = -8.649453042686162e-9, relative_change = 3.4977319215293896e-13 Converged in 163 iterations to T = 573.9198251647703 K Iter 1: T = 980.0536753334507 K, F = -4544.789049126331, relative_change = 0.019946324666549324 Iter 2: T = 962.1548750159195 K, F = -3839.088372490399, relative_change = 0.018263081674012666 Iter 3: T = 946.1833275980312 K, F = -3241.4551949895745, relative_change = 0.01659976770124882 Iter 5: T = 919.5007365944176 K, F = -2307.6324912233213, relative_change = 0.013422076447045834 Iter 10: T = 877.1019214529589 K, F = -979.7648581444911, relative_change = 0.007062118623511118 Iter 15: T = 857.0122931710633 K, F = -412.8914149429531, relative_change = 0.003314662754866864 Iter 20: T = 848.0919794572291 K, F = -173.2828901238857, relative_change = 0.0014613697491528208 Iter 25: T = 844.2603058869706 K, F = -72.5799623391677, relative_change = 0.0006253744433181557 Iter 30: T = 842.6393017135092 K, F = -30.37359957393841, relative_change = 0.0002641104896232721 Iter 35: T = 841.9580658275758 K, F = -12.706092474497959, relative_change = 0.00011091042545836311 Iter 40: T = 841.6725803858938 K, F = -5.314452211443503, relative_change = 4.646435045987077e-5 Iter 45: T = 841.5530843662995 K, F = -2.2226746822158354, relative_change = 1.944602408355632e-5 Iter 50: T = 841.5030917316037 K, F = -0.9295678745267254, relative_change = 8.135024352273823e-6 Iter 55: T = 841.4821810693517 K, F = -0.3887596715937929, relative_change = 3.4025956326744763e-6 Iter 60: T = 841.4734354303935 K, F = -0.1625845120306122, relative_change = 1.4230815771336853e-6 Iter 65: T = 841.4697778034815 K, F = -0.06799488509006268, relative_change = 5.951629075988328e-7 Iter 70: T = 841.4682481233901 K, F = -0.02843629054558572, relative_change = 2.489065438768475e-7 Iter 75: T = 841.4676083899632 K, F = -0.01189239937660802, relative_change = 1.0409609289647835e-7 Iter 80: T = 841.4673408452891 K, F = -0.0049735439813998195, relative_change = 4.353429982302084e-8 Iter 85: T = 841.467228954821 K, F = -0.0020799955814700954, relative_change = 1.820657642559987e-8 Iter 90: T = 841.4671821608753 K, F = -0.0008698790060288619, relative_change = 7.614209827545065e-9 Iter 95: T = 841.4671625910858 K, F = -0.0003637937913549827, relative_change = 3.184353857106475e-9 Iter 100: T = 841.4671544067655 K, F = -0.0001521429086801529, relative_change = 1.3317348784829439e-9 Iter 105: T = 841.4671509839851 K, F = -6.362798311121409e-5, relative_change = 5.569474563941696e-10 Iter 110: T = 841.4671495525373 K, F = -2.6609981839564867e-5, relative_change = 2.329220744648721e-10 Iter 115: T = 841.4671489538887 K, F = -1.1128611107080744e-5, relative_change = 9.741078402016695e-11 Iter 120: T = 841.4671487035268 K, F = -4.654119535540957e-6, relative_change = 4.073836610521933e-11 Iter 125: T = 841.4671485988225 K, F = -1.946408275221856e-6, relative_change = 1.703727038974251e-11 Iter 130: T = 841.4671485550339 K, F = -8.140127978339962e-7, relative_change = 7.1252040578506325e-12 Iter 135: T = 841.4671485367209 K, F = -3.4042947172352456e-7, relative_change = 2.979841914085501e-12 Iter 140: T = 841.4671485290622 K, F = -1.4237225509639018e-7, relative_change = 1.246210591020827e-12 Iter 145: T = 841.4671485258593 K, F = -5.9544640329534104e-8, relative_change = 5.212052121271594e-13 Converged in 150 iterations to T = 841.4671485245198 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:09 Bin 1 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 1 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 2 ray tracing: 19%|█████▌ | ETA: 0:00:09 Bin 2 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 17%|█████▎ | ETA: 0:00:09 Bin 3 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 66%|████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 11%|███▎ | ETA: 0:00:09 Bin 4 ray tracing: 21%|██████▍ | ETA: 0:00:08 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 60%|██████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 5 ray tracing: 20%|██████▏ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 5 ray tracing: 40%|███████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 50%|███████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 60%|██████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 6 ray tracing: 43%|█████████████ | ETA: 0:00:08 Bin 6 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 58%|█████████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 7 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 61%|██████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 8 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 8 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 52%|███████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:10 Bin 9 ray tracing: 19%|█████▊ | ETA: 0:00:10 Bin 9 ray tracing: 26%|███████▉ | ETA: 0:00:10 Bin 9 ray tracing: 33%|█████████▉ | ETA: 0:00:09 Bin 9 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 9 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:11 Bin 10 ray tracing: 28%|████████▏ | ETA: 0:00:11 Bin 10 ray tracing: 35%|██████████ | ETA: 0:00:10 Bin 10 ray tracing: 41%|████████████ | ETA: 0:00:09 Bin 10 ray tracing: 48%|██████████████ | ETA: 0:00:08 Bin 10 ray tracing: 55%|████████████████ | ETA: 0:00:07 Bin 10 ray tracing: 63%|██████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 70%|████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▍| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2407100304963 K, F = -7464.235381681034, relative_change = 0.03275928996950373 Iter 2: T = 936.5531717879273 K, F = -6327.36413571642, relative_change = 0.03172688858557386 Iter 3: T = 907.9062335586601 K, F = -5362.147647379394, relative_change = 0.03058762608702586 Iter 5: T = 856.5972908090396 K, F = -3847.287468560241, relative_change = 0.027993033119303325 Iter 10: T = 761.0585766692911 K, F = -1666.1622978866699, relative_change = 0.020094524234420343 Iter 15: T = 705.0108605049942 K, F = -713.481020723959, relative_change = 0.012071862369744958 Iter 20: T = 676.1367381197236 K, F = -302.4313389226969, relative_change = 0.0061937728386154516 Iter 25: T = 662.6570312621833 K, F = -127.32617208545216, relative_change = 0.0028643885604731005 Iter 30: T = 656.719317279701 K, F = -53.41055519313714, relative_change = 0.001253654899230197 Iter 35: T = 654.1783966469025 K, F = -22.36623968781309, relative_change = 0.0005347205067481348 Iter 40: T = 653.1052363722699 K, F = -9.359040403902734, relative_change = 0.00022550390441514992 Iter 45: T = 652.6545557213902 K, F = -3.9149804698771726, relative_change = 9.464084713194146e-5 Iter 50: T = 652.4657457875314 K, F = -1.637452622979837, relative_change = 3.963837468548027e-5 Iter 55: T = 652.3867253367868 K, F = -0.6848304424676562, relative_change = 1.6587485448763614e-5 Iter 60: T = 652.3536679037405 K, F = -0.2864092044126858, relative_change = 6.938877784085156e-6 Iter 65: T = 652.3398411165338 K, F = -0.11978061299723752, relative_change = 2.902235321171088e-6 Iter 70: T = 652.3340582786665 K, F = -0.050093833829491896, relative_change = 1.213804357573942e-6 Iter 75: T = 652.3316397725267 K, F = -0.020949865960249003, relative_change = 5.076370784466417e-7 Iter 80: T = 652.3306283148818 K, F = -0.00876148875583227, relative_change = 2.1230156777455745e-7 Iter 85: T = 652.3302053095548 K, F = -0.0036641600383899298, relative_change = 8.878734471309663e-8 Iter 90: T = 652.3300284033849 K, F = -0.0015323956279266748, relative_change = 3.7131979252697994e-8 Iter 95: T = 652.3299544190612 K, F = -0.0006408661768654289, relative_change = 1.552904615428997e-8 Iter 100: T = 652.3299234779246 K, F = -0.00026801789276259536, relative_change = 6.494434122169999e-9 Iter 105: T = 652.3299105379701 K, F = -0.00011208828433773022, relative_change = 2.716050185099128e-9 Iter 110: T = 652.3299051263264 K, F = -4.687665863434276e-5, relative_change = 1.135884656827588e-9 Iter 115: T = 652.3299028631122 K, F = -1.960437722869912e-5, relative_change = 4.750405066681732e-10 Iter 120: T = 652.3299019166092 K, F = -8.19878534841223e-6, relative_change = 1.986676305726734e-10 Iter 125: T = 652.3299015207704 K, F = -3.42883125886706e-6, relative_change = 8.308520772928367e-11 Iter 130: T = 652.3299013552257 K, F = -1.433978296494498e-6, relative_change = 3.474722895137377e-11 Iter 135: T = 652.329901285993 K, F = -5.997058508122599e-7, relative_change = 1.4531681939065778e-11 Iter 140: T = 652.3299012570391 K, F = -2.508044129601039e-7, relative_change = 6.0773293338461614e-12 Iter 145: T = 652.32990124493 K, F = -1.0488883650516811e-7, relative_change = 2.541598034176487e-12 Iter 150: T = 652.329901239866 K, F = -4.386544338874643e-8, relative_change = 1.0629188806355502e-12 Iter 155: T = 652.3299012377481 K, F = -1.834449903093116e-8, relative_change = 4.445119636264984e-13 Converged in 159 iterations to T = 652.3299012369837 K Iter 1: T = 970.3104039030524 K, F = -6764.802712786414, relative_change = 0.02968959609694763 Iter 2: T = 942.7844689991591 K, F = -5729.683345080826, relative_change = 0.02836817454823815 Iter 3: T = 917.3776388647851 K, F = -4851.205826603821, relative_change = 0.026948715183381558 Iter 5: T = 872.7063206474046 K, F = -3473.5363804590224, relative_change = 0.023860245840737558 Iter 10: T = 793.3741142474983 K, F = -1495.189740672559, relative_change = 0.015554492961647766 Iter 15: T = 750.1162717280898 K, F = -636.5019014128048, relative_change = 0.008525141252020295 Iter 20: T = 729.1061702067715 K, F = -268.6805495250244, relative_change = 0.0041040227851803415 Iter 25: T = 719.6466284436874 K, F = -112.85669548823023, relative_change = 0.0018329037698251488 Iter 30: T = 715.5559790939255 K, F = -47.28888343167505, relative_change = 0.0007890200317424565 Iter 35: T = 713.820224991499 K, F = -19.79306138911218, relative_change = 0.0003340803657086294 Iter 40: T = 713.089824773158 K, F = -8.280572846850852, relative_change = 0.0001404471443679265 Iter 45: T = 712.7835691576341 K, F = -3.4635400707080013, relative_change = 5.8865464843828644e-5 Iter 50: T = 712.6553499673068 K, F = -1.4485824166131995, relative_change = 2.4640838809228288e-5 Iter 55: T = 712.6017027358303 K, F = -0.6058299737061462, relative_change = 1.0309050879742011e-5 Iter 60: T = 712.5792625457788 K, F = -0.2533680432290541, relative_change = 4.3120608104392295e-6 Iter 65: T = 712.5698770419715 K, F = -0.10596201610061051, relative_change = 1.8034764955467178e-6 Iter 70: T = 712.56595178129 K, F = -0.044314663586496605, relative_change = 7.542566028387862e-7 Iter 75: T = 712.5643101674993 K, F = -0.018532936054730498, relative_change = 3.154428260510115e-7 Iter 80: T = 712.5636236210025 K, F = -0.007750697725198985, relative_change = 1.3192260538623562e-7 Iter 85: T = 712.5633364983581 K, F = -0.0032414347951046363, relative_change = 5.517172245559477e-8 Iter 90: T = 712.5632164201168 K, F = -0.0013556068198369298, relative_change = 2.3073493054018096e-8 Iter 95: T = 712.5631662019408 K, F = -0.0005669309749968265, relative_change = 9.649613819832515e-9 Iter 100: T = 712.5631452000961 K, F = -0.00023709730516807692, relative_change = 4.03558432076111e-9 Iter 105: T = 712.5631364168732 K, F = -9.915692610018567e-5, relative_change = 1.6877296832412844e-9 Iter 110: T = 712.5631327436245 K, F = -4.146861133957902e-5, relative_change = 7.058287378497232e-10 Iter 115: T = 712.5631312074279 K, F = -1.7342668240272197e-5, relative_change = 2.951860061188188e-10 Iter 120: T = 712.5631305649722 K, F = -7.2529117762787365e-6, relative_change = 1.2345032722189387e-10 Iter 125: T = 712.5631302962895 K, F = -3.033254565965038e-6, relative_change = 5.162840538232157e-11 Iter 130: T = 712.5631301839231 K, F = -1.2685428355529993e-6, relative_change = 2.1591608084204806e-11 Iter 135: T = 712.5631301369302 K, F = -5.305197667837547e-7, relative_change = 9.029868419005158e-12 Iter 140: T = 712.5631301172772 K, F = -2.218703918366316e-7, relative_change = 3.77641055066967e-12 Iter 145: T = 712.5631301090581 K, F = -9.27886809609646e-8, relative_change = 1.5793371566268567e-12 Iter 150: T = 712.5631301056208 K, F = -3.8805917479400875e-8, relative_change = 6.605075828096339e-13 Iter 155: T = 712.5631301041832 K, F = -1.622835887893359e-8, relative_change = 2.762195766118538e-13 Converged in 157 iterations to T = 712.563130103879 K Iter 1: T = 974.4412991797174 K, F = -5823.574294502458, relative_change = 0.025558700820282693 Iter 2: T = 951.0716416283364 K, F = -4926.915045388666, relative_change = 0.02398262221752461 Iter 3: T = 929.8160738312977 K, F = -4166.512480905045, relative_change = 0.02234907116003043 Iter 5: T = 893.2928835879987 K, F = -2975.619347869511, relative_change = 0.018994135452437205 Iter 10: T = 831.7893253928341 K, F = -1272.3500157776632, relative_change = 0.011152817825890622 Iter 15: T = 800.5804174624909 K, F = -538.7345880531224, relative_change = 0.005626747686887611 Iter 20: T = 786.1520563568564 K, F = -226.6690066201941, relative_change = 0.0025774032166018335 Iter 25: T = 779.828857217437 K, F = -95.05350607886965, relative_change = 0.0011228366377940056 Iter 30: T = 777.1293991176451 K, F = -39.79919203009727, relative_change = 0.0004779326925899725 Iter 35: T = 775.9904674644545 K, F = -16.652784217421658, relative_change = 0.00020137581375127521 Iter 40: T = 775.5123782689807 K, F = -6.965851756057658, relative_change = 8.448278092265798e-5 Iter 45: T = 775.3121232425609 K, F = -2.913458166186287, relative_change = 3.537827300086095e-5 Iter 50: T = 775.2283194041274 K, F = -1.2184877833682295, relative_change = 1.4803776327727113e-5 Iter 55: T = 775.1932620431543 K, F = -0.5095939791876429, relative_change = 6.192544412675469e-6 Iter 60: T = 775.1785989571399 K, F = -0.2131196587534, relative_change = 2.5900459337235498e-6 Iter 65: T = 775.1724663857393 K, F = -0.08912942624108489, relative_change = 1.083231856015247e-6 Iter 70: T = 775.169901619766 K, F = -0.037275032415166276, relative_change = 4.530281448736327e-7 Iter 75: T = 775.1688289950205 K, F = -0.0155888710445643, relative_change = 1.8946311780260917e-7 Iter 80: T = 775.1683804089705 K, F = -0.006519453322327062, relative_change = 7.923597242019489e-8 Iter 85: T = 775.1681928046523 K, F = -0.0027265134618230658, relative_change = 3.3137470846668126e-8 Iter 90: T = 775.168114346238 K, F = -0.001140260531245274, relative_change = 1.385849321846557e-8 Iter 95: T = 775.1680815339837 K, F = -0.0004768705790879624, relative_change = 5.795788626543377e-9 Iter 100: T = 775.1680678115056 K, F = -0.0001994329730752309, relative_change = 2.423868246897401e-9 Iter 105: T = 775.1680620726011 K, F = -8.340525106331764e-5, relative_change = 1.0136906835699469e-9 Iter 110: T = 775.1680596725226 K, F = -3.488107158389209e-5, relative_change = 4.2393755031001507e-10 Iter 115: T = 775.1680586687812 K, F = -1.4587680592814678e-5, relative_change = 1.7729574616066767e-10 Iter 120: T = 775.1680582490046 K, F = -6.100743997650149e-6, relative_change = 7.414721998507422e-11 Iter 125: T = 775.168058073449 K, F = -2.551403666117835e-6, relative_change = 3.100924890131799e-11 Iter 130: T = 775.1680580000294 K, F = -1.0670270171875273e-6, relative_change = 1.2968432559190309e-11 Iter 135: T = 775.1680579693245 K, F = -4.462431323348781e-7, relative_change = 5.423549614546501e-12 Iter 140: T = 775.1680579564834 K, F = -1.8662439071892578e-7, relative_change = 2.2681954501629588e-12 Iter 145: T = 775.168057951113 K, F = -7.804824420087897e-8, relative_change = 9.485827212269523e-13 Iter 150: T = 775.1680579488672 K, F = -3.2641602532024194e-8, relative_change = 3.967194966714512e-13 Converged in 154 iterations to T = 775.1680579480565 K Iter 1: T = 970.2947041454604 K, F = -6768.379917488078, relative_change = 0.029705295854539637 Iter 2: T = 942.7527592332125 K, F = -5732.73768314326, relative_change = 0.02838513370688148 Iter 3: T = 917.3297030148206 K, F = -4853.814329010031, relative_change = 0.026966832999852208 Iter 5: T = 872.6257687896448 K, F = -3475.4395458203403, relative_change = 0.023880183259484575 Iter 10: T = 793.2179116900503 K, F = -1496.0513705694214, relative_change = 0.015574454564315542 Iter 15: T = 749.9048193656886 K, F = -636.8846937517459, relative_change = 0.008539400902176114 Iter 20: T = 728.8628389386831 K, F = -268.8465339279976, relative_change = 0.0041119136465888415 Iter 25: T = 719.3876340177845 K, F = -112.92738531604299, relative_change = 0.0018366663444383659 Iter 30: T = 715.2899336041163 K, F = -47.31869242262411, relative_change = 0.0007906872026098085 Iter 35: T = 713.5511345964012 K, F = -19.80557272725683, relative_change = 0.00033479505130854697 Iter 40: T = 712.8194434698413 K, F = -8.285813230468332, relative_change = 0.00014074917171766325 Iter 45: T = 712.5126448688451 K, F = -3.465733070566641, relative_change = 5.899233135554098e-5 Iter 50: T = 712.38419804724 K, F = -1.4494998025584176, relative_change = 2.4693993451384103e-5 Iter 55: T = 712.3304555214618 K, F = -0.6062136787616818, relative_change = 1.0331297882374163e-5 Iter 60: T = 712.3079754613515 K, F = -0.25352852084431493, relative_change = 4.321367765378117e-6 Iter 65: T = 712.2985732804619 K, F = -0.10602913108103951, relative_change = 1.8073692988613405e-6 Iter 70: T = 712.2946410447098 K, F = -0.044342732106431915, relative_change = 7.558847112989074e-7 Iter 75: T = 712.2929965137711 K, F = -0.018544674685205043, relative_change = 3.16123736468097e-7 Iter 80: T = 712.2923087472723 K, F = -0.0077556069667056304, relative_change = 1.322073730388329e-7 Iter 85: T = 712.2920211144058 K, F = -0.0032434878994960226, relative_change = 5.529081617414216e-8 Iter 90: T = 712.291900822783 K, F = -0.001356465452351241, relative_change = 2.3123299546958123e-8 Iter 95: T = 712.2918505153682 K, F = -0.0005672900657122115, relative_change = 9.670443510199009e-9 Iter 100: T = 712.2918294762027 K, F = -0.00023724748181841449, relative_change = 4.044295559149967e-9 Iter 105: T = 712.2918206773719 K, F = -9.921973080517787e-5, relative_change = 1.6913728112102761e-9 Iter 110: T = 712.2918169975956 K, F = -4.149487557481013e-5, relative_change = 7.073523129775487e-10 Iter 115: T = 712.2918154586692 K, F = -1.735365272614864e-5, relative_change = 2.9582319143453794e-10 Iter 120: T = 712.2918148150718 K, F = -7.257503882085459e-6, relative_change = 1.2371677613716962e-10 Iter 125: T = 712.2918145459116 K, F = -3.035173997467666e-6, relative_change = 5.173981974498673e-11 Iter 130: T = 712.2918144333456 K, F = -1.269345645593667e-6, relative_change = 2.1638204268127933e-11 Iter 135: T = 712.2918143862693 K, F = -5.308561016326152e-7, relative_change = 9.049365559016701e-12 Iter 140: T = 712.2918143665813 K, F = -2.2200994798105e-7, relative_change = 3.784545700999736e-12 Iter 145: T = 712.2918143583477 K, F = -9.284686541821685e-8, relative_change = 1.5827363079205135e-12 Iter 150: T = 712.2918143549042 K, F = -3.8829616855196036e-8, relative_change = 6.619183549595372e-13 Iter 155: T = 712.2918143534641 K, F = -1.6238691946668382e-8, relative_change = 2.7681674790202154e-13 Converged in 157 iterations to T = 712.2918143531593 K Iter 1: T = 969.3774845413528 K, F = -6977.369276785078, relative_change = 0.030622515458647206 Iter 2: T = 940.8973548517918 K, F = -5911.223870096403, relative_change = 0.02937981348208855 Iter 3: T = 914.5202478089086 K, F = -5006.292835900209, relative_change = 0.028033990006314843 Iter 5: T = 867.8877014960307 K, F = -3586.774243634703, relative_change = 0.025065602554402412 Iter 10: T = 783.9398155231954 K, F = -1546.6064577265345, relative_change = 0.01679310467555793 Iter 15: T = 737.2393957555793 K, F = -659.4256312306995, relative_change = 0.009430957957274385 Iter 20: T = 714.2103196863344 K, F = -278.6482766881103, relative_change = 0.004613119558771026 Iter 25: T = 703.7491050990129 K, F = -117.10859293178719, relative_change = 0.0020776606591181896 Iter 30: T = 699.2053369733615 K, F = -49.083252614720976, relative_change = 0.0008978876511574516 Iter 35: T = 697.273477312803 K, F = -20.546450904220382, relative_change = 0.0003808287079634345 Iter 40: T = 696.4598572021729 K, F = -8.59617791269449, relative_change = 0.00016021730678974423 Iter 45: T = 696.1185831683707 K, F = -3.595623102628048, relative_change = 6.717244020729908e-5 Iter 50: T = 695.9756809861087 K, F = -1.5038374803464551, relative_change = 2.8121746545261425e-5 Iter 55: T = 695.9158865068697 K, F = -0.6289411672535394, relative_change = 1.1766005482708797e-5 Iter 60: T = 695.8908743005644 K, F = -0.2630339219538285, relative_change = 4.921586244689352e-6 Iter 65: T = 695.8804129451736 K, F = -0.11000448976587907, relative_change = 2.0584239879922635e-6 Iter 70: T = 695.8760377148809 K, F = -0.04600528970024087, relative_change = 8.60885104691946e-7 Iter 75: T = 695.8742079121926 K, F = -0.01923997876872241, relative_change = 3.6003726110364253e-7 Iter 80: T = 695.8734426617613 K, F = -0.008046391901056715, relative_change = 1.5057272696144724e-7 Iter 85: T = 695.873122624001 K, F = -0.0033650977126833403, relative_change = 6.297146035271225e-8 Iter 90: T = 695.8729887802317 K, F = -0.0014073241432732697, relative_change = 2.6335442597187784e-8 Iter 95: T = 695.8729328051417 K, F = -0.0005885597802354203, relative_change = 1.1013801132899583e-8 Iter 100: T = 695.8729093956857 K, F = -0.0002461427301794217, relative_change = 4.606103926476892e-9 Iter 105: T = 695.8728996055709 K, F = -0.00010293982950038139, relative_change = 1.9263278028447788e-9 Iter 110: T = 695.8728955112277 K, F = -4.3050664668364824e-5, relative_change = 8.056132889207299e-10 Iter 115: T = 695.8728937989246 K, F = -1.800430150411536e-5, relative_change = 3.3691709131812515e-10 Iter 120: T = 695.872893082819 K, F = -7.52961368610805e-6, relative_change = 1.4090274780847345e-10 Iter 125: T = 695.8728927833351 K, F = -3.1489752203572863e-6, relative_change = 5.89272279741135e-11 Iter 130: T = 695.8728926580874 K, F = -1.3169390474798703e-6, relative_change = 2.464407056736205e-11 Iter 135: T = 695.8728926057072 K, F = -5.507584497355111e-7, relative_change = 1.030642240557045e-11 Iter 140: T = 695.8728925838012 K, F = -2.303337728326582e-7, relative_change = 4.310269154432221e-12 Iter 145: T = 695.8728925746399 K, F = -9.632898967382175e-8, relative_change = 1.8026182951310944e-12 Iter 150: T = 695.8728925708085 K, F = -4.028642786035874e-8, relative_change = 7.538857425409164e-13 Iter 155: T = 695.8728925692062 K, F = -1.6849187822742806e-8, relative_change = 3.153012850165855e-13 Converged in 158 iterations to T = 695.872892568737 K Iter 1: T = 963.5684827834515 K, F = -8300.95585311011, relative_change = 0.03643151721654853 Iter 2: T = 929.0150854516226 K, F = -7043.626336542315, relative_change = 0.03585982516988812 Iter 3: T = 896.3062933098236 K, F = -5975.8214998919, relative_change = 0.035208031230083044 Iter 5: T = 836.3037277025842 K, F = -4298.934511212804, relative_change = 0.033634920421000664 Iter 10: T = 716.638934828336 K, F = -1878.6149812443412, relative_change = 0.02790912594497833 Iter 15: T = 637.0252620441303 K, F = -813.4749518806875, relative_change = 0.019993081739357186 Iter 20: T = 590.3967889126317 K, F = -348.2968865605943, relative_change = 0.011985185891206234 Iter 25: T = 566.4096435436688 K, F = -147.6211074499745, relative_change = 0.006139428592829414 Iter 30: T = 555.2218901938356 K, F = -62.14595715131912, relative_change = 0.0028366342847785317 Iter 35: T = 550.2962096554667 K, F = -26.06809516048993, relative_change = 0.0012409482757827163 Iter 40: T = 548.1888562791793 K, F = -10.916146115369488, relative_change = 0.0005291938717237203 Iter 45: T = 547.2989042146482 K, F = -4.5677798900268005, relative_change = 0.0002231537766161064 Iter 50: T = 546.9251793076727 K, F = -1.9107434443386118, relative_change = 9.365107975587598e-5 Iter 55: T = 546.7686123921978 K, F = -0.7991734963072474, relative_change = 3.922322318942407e-5 Iter 60: T = 546.7030867462718 K, F = -0.3342375188234685, relative_change = 1.6413650247220042e-5 Iter 65: T = 546.6756748213934 K, F = -0.1397845051087448, relative_change = 6.8661403668379565e-6 Iter 70: T = 546.6642093715625 K, F = -0.05845996630208056, relative_change = 2.8718091091206472e-6 Iter 75: T = 546.6594141288947 K, F = -0.024448728982802398, relative_change = 1.2010786054651672e-6 Iter 80: T = 546.6574086566061 K, F = -0.01022476319238852, relative_change = 5.023148163539235e-7 Iter 85: T = 546.6565699363548 K, F = -0.004276120305731518, relative_change = 2.1007569909927663e-7 Iter 90: T = 546.6562191721669 K, F = -0.0017883249697393244, relative_change = 8.785645375294697e-8 Iter 95: T = 546.6560724781563 K, F = -0.000747898927591889, relative_change = 3.674266847565725e-8 Iter 100: T = 546.6560111289274 K, F = -0.00031278027591646884, relative_change = 1.536623158564593e-8 Iter 105: T = 546.65598547194 K, F = -0.00013080844869500785, relative_change = 6.4263430910251236e-9 Iter 110: T = 546.6559747418802 K, F = -5.4705656076708964e-5, relative_change = 2.6875737104781193e-9 Iter 115: T = 546.6559702544407 K, F = -2.2878559044203772e-5, relative_change = 1.1239754832230168e-9 Iter 120: T = 546.6559683777399 K, F = -9.568086654754282e-6, relative_change = 4.70059979576951e-10 Iter 125: T = 546.6559675928812 K, F = -4.001488077276516e-6, relative_change = 1.9658469708824466e-10 Iter 130: T = 546.655967264644 K, F = -1.6734704390009014e-6, relative_change = 8.221408484152308e-11 Iter 135: T = 546.6559671273712 K, F = -6.998655614487426e-7, relative_change = 3.4382923877488745e-11 Iter 140: T = 546.6559670699621 K, F = -2.9269202453385823e-7, relative_change = 1.4379343917559457e-11 Iter 145: T = 546.6559670459529 K, F = -1.224074043515433e-7, relative_change = 6.01361847285673e-12 Iter 150: T = 546.655967035912 K, F = -5.119234619543889e-8, relative_change = 2.5149723614150596e-12 Iter 155: T = 546.6559670317127 K, F = -2.140871535605271e-8, relative_change = 1.0517651840040313e-12 Iter 160: T = 546.6559670299565 K, F = -8.95313120863328e-9, relative_change = 4.3984851667160707e-13 Converged in 164 iterations to T = 546.6559670293226 K Iter 1: T = 966.9297239202645 K, F = -7535.093862721519, relative_change = 0.03307027607973557 Iter 2: T = 935.9183595606643 K, F = -6387.968167820833, relative_change = 0.032071994057509615 Iter 3: T = 906.9354443795677 K, F = -5414.013533546974, relative_change = 0.030967354027226918 Iter 5: T = 854.9235252262333 K, F = -3885.3394461719176, relative_change = 0.028439595141347387 Iter 10: T = 757.5656632883474 K, F = -1683.7887753151363, relative_change = 0.020638301973996458 Iter 15: T = 699.9500063456431 K, F = -721.5575919554179, relative_change = 0.012541516469469185 Iter 20: T = 670.0384306968286 K, F = -306.02789059409326, relative_change = 0.006490925448602383 Iter 25: T = 656.0031437491147 K, F = -128.8831357224505, relative_change = 0.0030169834477311707 Iter 30: T = 649.8039204696535 K, F = -54.07252474646129, relative_change = 0.0013237081011167608 Iter 35: T = 647.1477176146828 K, F = -22.645117813446184, relative_change = 0.0005652272402198882 Iter 40: T = 646.0252399536798 K, F = -9.476037619027075, relative_change = 0.0002384834267369461 Iter 45: T = 645.5537353936842 K, F = -3.9639751511033907, relative_change = 0.00010010847456168717 Iter 50: T = 645.3561814669611 K, F = -1.6579542240801854, relative_change = 4.1931954449374674e-5 Iter 55: T = 645.273497989112 K, F = -0.6934064624617836, relative_change = 1.754790800200096e-5 Iter 60: T = 645.2389075503727 K, F = -0.2899961495103105, relative_change = 7.340751662438525e-6 Iter 65: T = 645.2244394521157 K, F = -0.12128077771153739, relative_change = 3.07034117422189e-6 Iter 70: T = 645.2183883771065 K, F = -0.05072123137616408, relative_change = 1.2841147754344614e-6 Iter 75: T = 645.2158576851828 K, F = -0.02121225298700019, relative_change = 5.370428792894784e-7 Iter 80: T = 645.2147993090873 K, F = -0.008871222473222584, relative_change = 2.245996250425196e-7 Iter 85: T = 645.2143566817263 K, F = -0.003710052046926704, relative_change = 9.393057413883996e-8 Iter 90: T = 645.2141715693563 K, F = -0.001551588224082745, relative_change = 3.9282945345779873e-8 Iter 95: T = 645.2140941530963 K, F = -0.0006488927507266595, relative_change = 1.6428606912515395e-8 Iter 100: T = 645.214061776682 K, F = -0.0002713747031007907, relative_change = 6.87064138621109e-9 Iter 105: T = 645.2140482364771 K, F = -0.00011349214161365806, relative_change = 2.8733845645124922e-9 Iter 110: T = 645.2140425738015 K, F = -4.74637687573054e-5, relative_change = 1.2016837842726352e-9 Iter 115: T = 645.2140402056029 K, F = -1.9849916159830894e-5, relative_change = 5.025585496011164e-10 Iter 120: T = 645.2140392151939 K, F = -8.301471460137044e-6, relative_change = 2.1017597522622154e-10 Iter 125: T = 645.2140388009931 K, F = -3.4717752248059064e-6, relative_change = 8.789812136003652e-11 Iter 130: T = 645.2140386277694 K, F = -1.4519372801280461e-6, relative_change = 3.676002942446261e-11 Iter 135: T = 645.2140385553251 K, F = -6.072184658978408e-7, relative_change = 1.5373507513661582e-11 Iter 140: T = 645.2140385250281 K, F = -2.539458872075073e-7, relative_change = 6.429381227970893e-12 Iter 145: T = 645.2140385123574 K, F = -1.0620293083851706e-7, relative_change = 2.688837127708787e-12 Iter 150: T = 645.2140385070584 K, F = -4.441504108942951e-8, relative_change = 1.1244963822724076e-12 Iter 155: T = 645.2140385048424 K, F = -1.8575525173591956e-8, relative_change = 4.702936290162968e-13 Converged in 160 iterations to T = 645.2140385039156 K Iter 1: T = 965.2156993127917 K, F = -7925.635999992506, relative_change = 0.03478430068720831 Iter 2: T = 932.4077680611533 K, F = -6722.169360207926, relative_change = 0.03399025862819755 Iter 3: T = 901.5467781241257 K, F = -5700.219805488011, relative_change = 0.03309816905665631 Iter 5: T = 845.5524554151242 K, F = -4095.7093598909196, relative_change = 0.0310014468270578 Iter 10: T = 737.4710929867379 K, F = -1782.092760729833, relative_change = 0.02399131723573836 Iter 15: T = 669.9713985082361 K, F = -767.2468460260881, relative_change = 0.015685741704917665 Iter 20: T = 633.0876958591557 K, F = -326.67045358641553, relative_change = 0.008618994711453876 Iter 25: T = 615.1453337027285 K, F = -137.90911108785377, relative_change = 0.004156004894499632 Iter 30: T = 607.0596751252909 K, F = -57.930667337301266, relative_change = 0.0018577030375742536 Iter 35: T = 603.5615866293001 K, F = -24.27457506358779, relative_change = 0.0008000111502078038 Iter 40: T = 602.0769723128344 K, F = -10.160393565712013, relative_change = 0.0003387925776600347 Iter 45: T = 601.4521970172591 K, F = -4.250696200174537, relative_change = 0.00014243862760946808 Iter 50: T = 601.1902201682103 K, F = -1.7779551338306132, relative_change = 5.970200364859757e-5 Iter 55: T = 601.0805373575926 K, F = -0.7436081935600092, relative_change = 2.4991335522787984e-5 Iter 60: T = 601.0346454977574 K, F = -0.31099390039600916, relative_change = 1.0455746041568325e-5 Iter 65: T = 601.0154492631922 K, F = -0.13006277566710037, relative_change = 4.373430303551903e-6 Iter 70: T = 601.007420519413 K, F = -0.05439405312855816, relative_change = 1.8291454190201673e-6 Iter 75: T = 601.0040626893137 K, F = -0.02274828583131966, relative_change = 7.649922599288483e-7 Iter 80: T = 601.0026583848012 K, F = -0.00951361236210263, relative_change = 3.1993271215928483e-7 Iter 85: T = 601.0020710844088 K, F = -0.003978707627579514, relative_change = 1.3380034795067795e-7 Iter 90: T = 601.0018254677634 K, F = -0.0016639432763041473, relative_change = 5.5957020058226946e-8 Iter 95: T = 601.0017227478427 K, F = -0.0006958809902408714, relative_change = 2.3401914457755804e-8 Iter 100: T = 601.0016797891265 K, F = -0.0002910257473006106, relative_change = 9.786963656882731e-9 Iter 105: T = 601.0016618232751 K, F = -0.00012171044454106772, relative_change = 4.093025713233254e-9 Iter 110: T = 601.0016543097411 K, F = -5.090076205527261e-5, relative_change = 1.7117523570078735e-9 Iter 115: T = 601.0016511674912 K, F = -2.1287307150896773e-5, relative_change = 7.158753155278095e-10 Iter 120: T = 601.0016498533647 K, F = -8.902605945437791e-6, relative_change = 2.99387605082153e-10 Iter 125: T = 601.0016493037814 K, F = -3.723176196013256e-6, relative_change = 1.252074747897136e-10 Iter 130: T = 601.001649073939 K, F = -1.5570768222561426e-6, relative_change = 5.236326379933594e-11 Iter 135: T = 601.0016489778162 K, F = -6.511876214365664e-7, relative_change = 2.1898925436897997e-11 Iter 140: T = 601.0016489376166 K, F = -2.723342200083856e-7, relative_change = 9.158384747274464e-12 Iter 145: T = 601.0016489208045 K, F = -1.1389347948087547e-7, relative_change = 3.8301477698926906e-12 Iter 150: T = 601.0016489137736 K, F = -4.7631759814148467e-8, relative_change = 1.601818466429593e-12 Iter 155: T = 601.0016489108332 K, F = -1.992026221753207e-8, relative_change = 6.699026868083034e-13 Iter 160: T = 601.0016489096034 K, F = -8.330990342031441e-9, relative_change = 2.801646259979143e-13 Converged in 162 iterations to T = 601.0016489093432 K Iter 1: T = 980.1629766593499 K, F = -4519.88463804779, relative_change = 0.019837023340650097 Iter 2: T = 962.368749220456 K, F = -3817.935610767835, relative_change = 0.01815435581900997 Iter 3: T = 946.4962669863071 K, F = -3223.498086273128, relative_change = 0.01649313971074609 Iter 5: T = 919.992844511777 K, F = -2294.7145720235594, relative_change = 0.013323720878738217 Iter 10: T = 877.9208564689598 K, F = -974.1631724955946, relative_change = 0.006997405373086666 Iter 15: T = 858.0080360362861 K, F = -410.50082441632264, relative_change = 0.003280649526072618 Iter 20: T = 849.1715475878175 K, F = -172.2732863007462, relative_change = 0.00144557360353524 Iter 25: T = 845.3769663279448 K, F = -72.15588407271412, relative_change = 0.0006184595371844788 Iter 30: T = 843.7718575746778 K, F = -30.195910948939314, relative_change = 0.00026116179273580396 Iter 35: T = 843.0973384626848 K, F = -12.63172174911285, relative_change = 0.00010966709532487968 Iter 40: T = 842.8146743069769 K, F = -5.283339068808558, relative_change = 4.594258361867288e-5 Iter 45: T = 842.6963603375799 K, F = -2.209660968062824, relative_change = 1.9227500464565454e-5 Iter 50: T = 842.6468624281387 K, F = -0.9241250641035175, relative_change = 8.04358007228164e-6 Iter 55: T = 842.6261587320292 K, F = -0.38648336732893473, relative_change = 3.3643429005384007e-6 Iter 60: T = 842.6174996603551 K, F = -0.16163252461749789, relative_change = 1.4070821408423167e-6 Iter 65: T = 842.6138782389393 K, F = -0.06759675087319494, relative_change = 5.884714571967549e-7 Iter 70: T = 842.6123637007728 K, F = -0.028269785764121647, relative_change = 2.461080478137868e-7 Iter 75: T = 842.6117302999415 K, F = -0.011822765035738092, relative_change = 1.0292571939143311e-7 Iter 80: T = 842.6114654036454 K, F = -0.004944422059467879, relative_change = 4.3044834068824934e-8 Iter 85: T = 842.6113546207627 K, F = -0.002067816444505377, relative_change = 1.8001875727254334e-8 Iter 90: T = 842.6113082900226 K, F = -0.000864785547991298, relative_change = 7.528601526820264e-9 Iter 95: T = 842.6112889139512 K, F = -0.00036166364595890954, relative_change = 3.1485514317403225e-9 Iter 100: T = 842.6112808106462 K, F = -0.00015125205527777297, relative_change = 1.3167618651348845e-9 Iter 105: T = 842.6112774217473 K, F = -6.325541746465824e-5, relative_change = 5.506855620750985e-10 Iter 110: T = 842.6112760044692 K, F = -2.645417043556364e-5, relative_change = 2.303032754521942e-10 Iter 115: T = 842.6112754117466 K, F = -1.1063450112036577e-5, relative_change = 9.631558144467088e-11 Iter 120: T = 842.6112751638631 K, F = -4.626869008372836e-6, relative_change = 4.028034427968624e-11 Iter 125: T = 842.6112750601951 K, F = -1.9350116886585056e-6, relative_change = 1.6845719407442376e-11 Iter 130: T = 842.61127501684 K, F = -8.09246295307986e-7, relative_change = 7.0450923400164324e-12 Iter 135: T = 842.6112749987083 K, F = -3.3843572677660916e-7, relative_change = 2.94633532506768e-12 Iter 140: T = 842.6112749911254 K, F = -1.4153757299517622e-7, relative_change = 1.232190097451388e-12 Iter 145: T = 842.6112749879542 K, F = -5.919317702662852e-8, relative_change = 5.153207379971922e-13 Converged in 150 iterations to T = 842.6112749866279 K Iter 1: T = 976.501039901051 K, F = -5354.260411827335, relative_change = 0.02349896009894902 Iter 2: T = 955.1624381605099 K, F = -4527.301008414819, relative_change = 0.02185210344753281 Iter 3: T = 935.8920199180727 K, F = -3826.3289790888048, relative_change = 0.020175016806093113 Iter 5: T = 903.132711767518 K, F = -2729.376676534724, relative_change = 0.016823491412063917 Iter 10: T = 849.218315365877 K, F = -1163.7687464010621, relative_change = 0.00945381274363197 Iter 15: T = 822.6215480489243 K, F = -491.77781719062835, relative_change = 0.004626197336139566 Iter 20: T = 810.5368765782245 K, F = -206.6843742264853, relative_change = 0.0020840071880779635 Iter 25: T = 805.2873628814476 K, F = -86.6273813641916, relative_change = 0.0009007228727046345 Iter 30: T = 803.0553265578916 K, F = -36.262686525654836, relative_change = 0.00038204848521150516 Iter 35: T = 802.1152629771926 K, F = -15.171520779090446, relative_change = 0.0001607335767253491 Iter 40: T = 801.7209482573852 K, F = -6.345971530635019, relative_change = 6.738943937712118e-5 Iter 45: T = 801.5558355994193 K, F = -2.654146929625264, relative_change = 2.8212689697709656e-5 Iter 50: T = 801.486747485737 K, F = -1.1100284768844804, relative_change = 1.180407256777129e-5 Iter 55: T = 801.4578477042373 K, F = -0.4642328577830228, relative_change = 4.937512231827258e-6 Iter 60: T = 801.4457603668992 K, F = -0.19414872093289026, relative_change = 2.065085454437134e-6 Iter 65: T = 801.4407051050231 K, F = -0.08119548786419695, relative_change = 8.636711893881106e-7 Iter 70: T = 801.4385909003677 K, F = -0.033956953158108205, relative_change = 3.6120246650314745e-7 Iter 75: T = 801.437706708826 K, F = -0.014201208667634191, relative_change = 1.5106003530323472e-7 Iter 80: T = 801.437336928331 K, F = -0.0059391159938968485, relative_change = 6.31752594880528e-8 Iter 85: T = 801.4371822815311 K, F = -0.0024838093981581766, relative_change = 2.6420673981329135e-8 Iter 90: T = 801.437117606361 K, F = -0.0010387587821722999, relative_change = 1.1049445941549173e-8 Iter 95: T = 801.4370905584269 K, F = -0.00043442133210169764, relative_change = 4.621011036076366e-9 Iter 100: T = 801.4370792466569 K, F = -0.00018168018965791788, relative_change = 1.932562136862111e-9 Iter 105: T = 801.4370745159395 K, F = -7.598082435267273e-5, relative_change = 8.082205807625733e-10 Iter 110: T = 801.4370725374969 K, F = -3.177608772753082e-5, relative_change = 3.3800749857834793e-10 Iter 115: T = 801.4370717100886 K, F = -1.328914062437292e-5, relative_change = 1.4135878655975253e-10 Iter 120: T = 801.4370713640566 K, F = -5.557677249523607e-6, relative_change = 5.911793214510566e-11 Iter 125: T = 801.4370712193419 K, F = -2.3242874895856858e-6, relative_change = 2.472383048601042e-11 Iter 130: T = 801.4370711588203 K, F = -9.720442950555963e-7, relative_change = 1.0339795955608306e-11 Iter 135: T = 801.4370711335096 K, F = -4.065204106673548e-7, relative_change = 4.324224852821323e-12 Iter 140: T = 801.4370711229243 K, F = -1.7001126928484211e-7, relative_change = 1.8084379939018926e-12 Iter 145: T = 801.4370711184974 K, F = -7.110109412344912e-8, relative_change = 7.563140994423815e-13 Iter 150: T = 801.437071116646 K, F = -2.9734869233521977e-8, relative_change = 3.1629472266051493e-13 Converged in 153 iterations to T = 801.437071116104 K Iter 1: T = 980.8922301147031 K, F = -4353.723544546437, relative_change = 0.019107769885296878 Iter 2: T = 963.7938050061583 K, F = -3676.8374865441256, relative_change = 0.01743150224214271 Iter 3: T = 948.5786641199068 K, F = -3103.745628041279, relative_change = 0.015786717871831883 Iter 5: T = 923.2593380617666 K, F = -2208.6123898181354, relative_change = 0.012676490736134482 Iter 10: T = 883.3300840047364 K, F = -936.8733083914258, relative_change = 0.006577357264226687 Iter 15: T = 864.5663726699937 K, F = -394.6010520891908, relative_change = 0.0030616763589325765 Iter 20: T = 856.2720490563628 K, F = -165.56165866730527, relative_change = 0.0013442952495194053 Iter 25: T = 852.7168169716346 K, F = -69.33734052603259, relative_change = 0.0005742061492211925 Iter 30: T = 851.2141723112087 K, F = -29.015059709028193, relative_change = 0.0002423061339563514 Iter 35: T = 850.582931268656 K, F = -12.137503094374972, relative_change = 0.00010171923800939004 Iter 40: T = 850.3184420462865 K, F = -5.076585406078941, relative_change = 4.2607722075653685e-5 Iter 45: T = 850.2077423319424 K, F = -2.1231826314780404, relative_change = 1.7830895421308166e-5 Iter 50: T = 850.1614311229603 K, F = -0.8879567801909437, relative_change = 7.459165771094234e-6 Iter 55: T = 850.1420605506038 K, F = -0.3713570072251796, relative_change = 3.119874812390586e-6 Iter 60: T = 850.1339590785153 K, F = -0.15530643862934612, relative_change = 1.3048323365041955e-6 Iter 65: T = 850.1305708643799 K, F = -0.0649510953996566, relative_change = 5.45707560932282e-7 Iter 70: T = 850.1291538584652 K, F = -0.027163339166079714, relative_change = 2.2822335962779684e-7 Iter 75: T = 850.128561247168 K, F = -0.011360035526958301, relative_change = 9.544607393885921e-8 Iter 80: T = 850.1283134096088 K, F = -0.004750902994594908, relative_change = 3.9916747341727655e-8 Iter 85: T = 850.1282097609053 K, F = -0.001986884448290871, relative_change = 1.669367079262492e-8 Iter 90: T = 850.1281664137664 K, F = -0.0008309388199858603, relative_change = 6.981494313477008e-9 Iter 95: T = 850.1281482854729 K, F = -0.000347508543103503, relative_change = 2.9197446376744658e-9 Iter 100: T = 850.1281407040035 K, F = -0.00014533222218160446, relative_change = 1.2210721227866004e-9 Iter 105: T = 850.1281375333425 K, F = -6.077966995987616e-5, relative_change = 5.106669451827628e-10 Iter 110: T = 850.1281362073341 K, F = -2.5418784626696223e-5, relative_change = 2.1356702332446859e-10 Iter 115: T = 850.1281356527816 K, F = -1.0630437742742416e-5, relative_change = 8.931626691625879e-11 Iter 120: T = 850.1281354208611 K, F = -4.445776844219651e-6, relative_change = 3.7353136474112985e-11 Iter 125: T = 850.1281353238692 K, F = -1.859276615334693e-6, relative_change = 1.562152479239893e-11 Iter 130: T = 850.128135283306 K, F = -7.775703954049362e-7, relative_change = 6.533097395099874e-12 Iter 135: T = 850.128135266342 K, F = -3.2519013037912714e-7, relative_change = 2.7322269552038888e-12 Iter 140: T = 850.1281352592475 K, F = -1.3599709469680477e-7, relative_change = 1.1426390079600036e-12 Iter 145: T = 850.1281352562805 K, F = -5.687868132042695e-8, relative_change = 4.77891091306179e-13 Converged in 150 iterations to T = 850.1281352550396 K Iter 1: T = 967.3315582091259 K, F = -7443.535537761344, relative_change = 0.032668441790874095 Iter 2: T = 936.7384958005969 K, F = -6309.661784693913, relative_change = 0.03162624246971493 Iter 3: T = 908.1894331440442 K, F = -5346.999696868588, relative_change = 0.03047708916046292 Iter 5: T = 857.0847479574168 K, F = -3836.178030544104, relative_change = 0.027863597951770427 Iter 10: T = 762.0706701756379 K, F = -1661.0245295677205, relative_change = 0.01993901818942445 Iter 15: T = 706.4697285380641 K, F = -711.1326549459634, relative_change = 0.011939463418350456 Iter 20: T = 677.8880495810264 K, F = -301.38803938650983, relative_change = 0.006110915801804928 Iter 25: T = 664.5638243004252 K, F = -126.8752142894741, relative_change = 0.002822110558335933 Iter 30: T = 658.6990100743465 K, F = -53.2189754130705, relative_change = 0.0012343068341076427 Iter 35: T = 656.1901670055797 K, F = -22.285559544115298, relative_change = 0.0005263067252436923 Iter 40: T = 655.1307182589189 K, F = -9.325198235509028, relative_change = 0.00022192632559670775 Iter 45: T = 654.6858251856468 K, F = -3.900809421507001, relative_change = 9.313418078875783e-5 Iter 50: T = 654.4994451074907 K, F = -1.6315229827393627, relative_change = 3.9006421685963856e-5 Iter 55: T = 654.421442507247 K, F = -0.6823500459347223, relative_change = 1.6322871046854363e-5 Iter 60: T = 654.3888110416285 K, F = -0.28537177664454405, relative_change = 6.828156117188254e-6 Iter 65: T = 654.3751624498851 K, F = -0.11934673146345048, relative_change = 2.8559202641272848e-6 Iter 70: T = 654.3694541443765 K, F = -0.04991237644143376, relative_change = 1.194433109756749e-6 Iter 75: T = 654.367066810114 K, F = -0.020873977798190724, relative_change = 4.995354873001722e-7 Iter 80: T = 654.3660683891924 K, F = -0.008729751329988766, relative_change = 2.089133324365597e-7 Iter 85: T = 654.3656508360264 K, F = -0.0036508870529400883, relative_change = 8.737033495182122e-8 Iter 90: T = 654.3654762100235 K, F = -0.0015268447037975474, relative_change = 3.653936721342281e-8 Iter 95: T = 654.3654031792944 K, F = -0.0006385447141606937, relative_change = 1.5281208450682633e-8 Iter 100: T = 654.3653726369628 K, F = -0.00026704703087077064, relative_change = 6.390785423808678e-9 Iter 105: T = 654.3653598637933 K, F = -0.00011168225824548239, relative_change = 2.6727030519576133e-9 Iter 110: T = 654.365354521901 K, F = -4.670685469931879e-5, relative_change = 1.1177563913479739e-9 Iter 115: T = 654.3653522878578 K, F = -1.9533363987189745e-5, relative_change = 4.674590686240049e-10 Iter 120: T = 654.3653513535543 K, F = -8.169085744025306e-6, relative_change = 1.954969580188526e-10 Iter 125: T = 654.3653509628175 K, F = -3.4164100344291626e-6, relative_change = 8.175918234953702e-11 Iter 130: T = 654.3653507994067 K, F = -1.4287841094140497e-6, relative_change = 3.419268164575297e-11 Iter 135: T = 654.3653507310662 K, F = -5.975344219977252e-7, relative_change = 1.429978408864393e-11 Iter 140: T = 654.3653507024854 K, F = -2.498959117414046e-7, relative_change = 5.9803376202711944e-12 Iter 145: T = 654.3653506905326 K, F = -1.0450968240816039e-7, relative_change = 2.501054063218254e-12 Iter 150: T = 654.3653506855338 K, F = -4.370790107621758e-8, relative_change = 1.0459875206438832e-12 Iter 155: T = 654.3653506834432 K, F = -1.8278789482018e-8, relative_change = 4.3743545720985435e-13 Converged in 159 iterations to T = 654.3653506826886 K Iter 1: T = 973.6190499981407 K, F = -6010.92455268558, relative_change = 0.026380950001859287 Iter 2: T = 949.4309638124157 K, F = -5086.564236323565, relative_change = 0.024843480810868693 Iter 3: T = 927.3674835730728 K, F = -4302.538859499813, relative_change = 0.023238635646290213 Iter 5: T = 889.2884725306175 K, F = -3074.288030160755, relative_change = 0.019905633452009033 Iter 10: T = 824.535580700712 K, F = -1316.1341709355465, relative_change = 0.011911300411526394 Iter 15: T = 791.2644679698726 K, F = -557.7777365940285, relative_change = 0.0060933886214769376 Iter 20: T = 775.7587095911744 K, F = -234.80298205622674, relative_change = 0.002813192800798111 Iter 25: T = 768.9347343237282 K, F = -98.48934269757319, relative_change = 0.0012302311331685689 Iter 30: T = 766.0157954676039 K, F = -41.24244803889618, relative_change = 0.0005245353805328658 Iter 35: T = 764.7832085889057 K, F = -17.257511590565183, relative_change = 0.0002211733289194379 Iter 40: T = 764.2656169034458 K, F = -7.218957717967928, relative_change = 9.281709603324096e-5 Iter 45: T = 764.0487822801771 K, F = -3.0193455582138506, relative_change = 3.887343017363937e-5 Iter 50: T = 763.9580342580587 K, F = -1.2627773690280553, relative_change = 1.626718522815492e-5 Iter 55: T = 763.9200709344133 K, F = -0.5281175005416494, relative_change = 6.80485587723062e-6 Iter 60: T = 763.9041922211602 K, F = -0.22086660690632287, relative_change = 2.8461737665571832e-6 Iter 65: T = 763.8975512041284 K, F = -0.09236932576243262, relative_change = 1.1903566478787838e-6 Iter 70: T = 763.894773790359 K, F = -0.03863000290808405, relative_change = 4.978305992371472e-7 Iter 75: T = 763.8936122320582 K, F = -0.01615553690543836, relative_change = 2.082003168719476e-7 Iter 80: T = 763.8931264526348 K, F = -0.006756439931774327, relative_change = 8.707214140318403e-8 Iter 85: T = 763.8929232935513 K, F = -0.002825624122325121, relative_change = 3.641465877834527e-8 Iter 90: T = 763.8928383299392 K, F = -0.0011817097977248059, relative_change = 1.5229053824644997e-8 Iter 95: T = 763.8928027971319 K, F = -0.0004942051572890405, relative_change = 6.368973687198733e-9 Iter 100: T = 763.8927879368858 K, F = -0.0002066824988673499, relative_change = 2.66358110472586e-9 Iter 105: T = 763.8927817221532 K, F = -8.643709156741508e-5, relative_change = 1.113941499770187e-9 Iter 110: T = 763.8927791230777 K, F = -3.6149024645326655e-5, relative_change = 4.658636547200494e-10 Iter 115: T = 763.8927780361133 K, F = -1.5117953778731597e-5, relative_change = 1.948297448150892e-10 Iter 120: T = 763.8927775815318 K, F = -6.322509520706454e-6, relative_change = 8.148013534300455e-11 Iter 125: T = 763.8927773914204 K, F = -2.644149646569005e-6, relative_change = 3.4075974202853433e-11 Iter 130: T = 763.8927773119135 K, F = -1.1058137638908505e-6, relative_change = 1.4250963957003388e-11 Iter 135: T = 763.8927772786628 K, F = -4.6246508655922725e-7, relative_change = 5.9599305927470736e-12 Iter 140: T = 763.8927772647569 K, F = -1.9340762469344241e-7, relative_change = 2.4925038730102606e-12 Iter 145: T = 763.8927772589415 K, F = -8.088713276954707e-8, relative_change = 1.0424174953374251e-12 Iter 150: T = 763.8927772565094 K, F = -3.3829474110902424e-8, relative_change = 4.359708950529191e-13 Converged in 154 iterations to T = 763.8927772556314 K Iter 1: T = 970.0182600162907 K, F = -6831.367975285647, relative_change = 0.02998173998370933 Iter 2: T = 942.1941403796661 K, F = -5786.523168592815, relative_change = 0.02868411944756312 Iter 3: T = 916.484800581967 K, F = -4899.753147523553, relative_change = 0.027286669164955 Iter 5: T = 871.2043955696125 K, F = -3508.9646281109663, relative_change = 0.024233170342824305 Iter 10: T = 790.4533380107634 K, F = -1511.2432250094882, relative_change = 0.015930749764674613 Iter 15: T = 746.1528673678462 K, F = -643.641268308344, relative_change = 0.008795759334199361 Iter 20: T = 724.5383375719489 K, F = -271.7787564511136, relative_change = 0.00425444178977567 Iter 25: T = 714.7809950379582 K, F = -114.1767704658523, relative_change = 0.001904795217993592 Iter 30: T = 710.5561000387029 K, F = -47.84566518655226, relative_change = 0.000820909219368153 Iter 35: T = 708.7623375779468 K, F = -20.02677515755967, relative_change = 0.00034775717520808 Iter 40: T = 708.0073376730996 K, F = -8.378468186517308, relative_change = 0.00014622815931368227 Iter 45: T = 707.6907336803164 K, F = -3.5045081237795, relative_change = 6.129398634728144e-5 Iter 50: T = 707.5581760164697 K, F = -1.4657204930753198, relative_change = 2.565837938898133e-5 Iter 55: T = 707.5027125136085 K, F = -0.6129981534415744, relative_change = 1.0734932181336939e-5 Iter 60: T = 707.4795124096952 K, F = -0.2563660071149347, relative_change = 4.490227868147919e-6 Iter 65: T = 707.4698090435286 K, F = -0.10721582585731548, relative_change = 1.8779983067219955e-6 Iter 70: T = 707.4657508389869 K, F = -0.04483902625220815, relative_change = 7.85424301968327e-7 Iter 75: T = 707.4640536247325 K, F = -0.01875223156271244, relative_change = 3.28477842745583e-7 Iter 80: T = 707.4633438251511 K, F = -0.007842409861197552, relative_change = 1.373740597198563e-7 Iter 85: T = 707.4630469777354 K, F = -0.003279789929552024, relative_change = 5.745159532893186e-8 Iter 90: T = 707.4629228324693 K, F = -0.0013716473992171352, relative_change = 2.4026964788923164e-8 Iter 95: T = 707.4628709134132 K, F = -0.0005736393376395421, relative_change = 1.0048367379762412e-8 Iter 100: T = 707.4628492002399 K, F = -0.0002399028240587242, relative_change = 4.20234789643501e-9 Iter 105: T = 707.4628401195308 K, F = -0.0001003302269780848, relative_change = 1.7574722002986525e-9 Iter 110: T = 707.4628363218698 K, F = -4.195929843142654e-5, relative_change = 7.349958695703895e-10 Iter 115: T = 707.4628347336426 K, F = -1.7547881206558813e-5, relative_change = 3.073840799666312e-10 Iter 120: T = 707.4628340694269 K, F = -7.33873383340633e-6, relative_change = 1.2855169983382894e-10 Iter 125: T = 707.4628337916439 K, F = -3.0691447168162966e-6, relative_change = 5.376183141080019e-11 Iter 130: T = 707.4628336754719 K, F = -1.2835535445621105e-6, relative_change = 2.248384996163219e-11 Iter 135: T = 707.4628336268872 K, F = -5.367968457514749e-7, relative_change = 9.403004490800041e-12 Iter 140: T = 707.4628336065687 K, F = -2.2449524395007359e-7, relative_change = 3.9324556469017654e-12 Iter 145: T = 707.4628335980711 K, F = -9.388688093636688e-8, relative_change = 1.6446049752904017e-12 Iter 150: T = 707.4628335945174 K, F = -3.926505165452454e-8, relative_change = 6.878010927999303e-13 Iter 155: T = 707.4628335930312 K, F = -1.6421260129462212e-8, relative_change = 2.8764919913221406e-13 Converged in 157 iterations to T = 707.4628335927166 K Iter 1: T = 973.4361765678825 K, F = -6052.59243772744, relative_change = 0.026563823432117432 Iter 2: T = 949.0654710472292 K, F = -5122.08075949449, relative_change = 0.02503575078396926 Iter 3: T = 926.82108646918 K, F = -4332.809527976144, relative_change = 0.023438198160874935 Iter 5: T = 888.3917613143908 K, F = -3096.261740695548, relative_change = 0.020112018892245453 Iter 10: T = 822.8977178916471 K, F = -1325.9081636004103, relative_change = 0.012086967543552056 Iter 15: T = 789.1484551752367 K, F = -562.0383774741665, relative_change = 0.0062032995935634334 Iter 20: T = 773.3901654240975 K, F = -236.625540103795, relative_change = 0.0028692681235839754 Iter 25: T = 766.448132833766 K, F = -99.25979297112285, relative_change = 0.0012558918237963327 Iter 30: T = 763.4773111086735 K, F = -41.56619763169461, relative_change = 0.0005356939915506046 Iter 35: T = 762.2225586915034 K, F = -17.393184311701873, relative_change = 0.00022591796596010857 Iter 40: T = 761.6956131101274 K, F = -7.275746666504987, relative_change = 9.481524885548084e-5 Iter 45: T = 761.4748517151469 K, F = -3.043103987856063, relative_change = 3.9711529479295755e-5 Iter 50: T = 761.3824588585622 K, F = -1.2727149377034692, relative_change = 1.6618117894558498e-5 Iter 55: T = 761.3438071878028 K, F = -0.5322737747191755, relative_change = 6.951695335640695e-6 Iter 60: T = 761.3276405194471 K, F = -0.2226048566425035, relative_change = 2.907596946275399e-6 Iter 65: T = 761.3208790621346 K, F = -0.09309629065036895, relative_change = 1.2160468582350906e-6 Iter 70: T = 761.3180512763494 K, F = -0.038934029720313346, relative_change = 5.085749548511134e-7 Iter 75: T = 761.3168686514412 K, F = -0.016282684795675517, relative_change = 2.1269380515246044e-7 Iter 80: T = 761.3163740616359 K, F = -0.006809614741052128, relative_change = 8.895138418725711e-8 Iter 85: T = 761.3161672179324 K, F = -0.00284786247118618, relative_change = 3.720058272193695e-8 Iter 90: T = 761.3160807133659 K, F = -0.0011910101407600626, relative_change = 1.5557736962943974e-8 Iter 95: T = 761.3160445361127 K, F = -0.0004980946724701951, relative_change = 6.506432972306743e-9 Iter 100: T = 761.3160294063516 K, F = -0.00020830914326075423, relative_change = 2.721068265329243e-9 Iter 105: T = 761.3160230789045 K, F = -8.711737116096074e-5, relative_change = 1.13798328625804e-9 Iter 110: T = 761.3160204326905 K, F = -3.643352523774457e-5, relative_change = 4.759182114156265e-10 Iter 115: T = 761.3160193260121 K, F = -1.523693472804677e-5, relative_change = 1.9903467276629523e-10 Iter 120: T = 761.316018863186 K, F = -6.372267169263424e-6, relative_change = 8.323866559264346e-11 Iter 125: T = 761.3160186696266 K, F = -2.664956541331698e-6, relative_change = 3.48113819993836e-11 Iter 130: T = 761.3160185886778 K, F = -1.1145181457727915e-6, relative_change = 1.4558555209307487e-11 Iter 135: T = 761.316018554824 K, F = -4.661052707133351e-7, relative_change = 6.0885678211733305e-12 Iter 140: T = 761.3160185406659 K, F = -1.9493040825935282e-7, relative_change = 2.546306780407767e-12 Iter 145: T = 761.3160185347449 K, F = -8.152193753385717e-8, relative_change = 1.064892153849813e-12 Iter 150: T = 761.3160185322687 K, F = -3.4092739298330343e-8, relative_change = 4.4534136063097625e-13 Converged in 154 iterations to T = 761.3160185313749 K Iter 1: T = 964.3216196992166 K, F = -8129.35289043487, relative_change = 0.035678380300783415 Iter 2: T = 930.5685947922901 K, F = -6896.616205711355, relative_change = 0.03500183363871328 Iter 3: T = 898.7099562125361 K, F = -5849.744170302689, relative_change = 0.03423566920057641 Iter 5: T = 840.5628569875595 K, F = -4205.885506651021, relative_change = 0.032408994319337164 Iter 10: T = 726.3657226376279 K, F = -1834.2140828118013, relative_change = 0.02602038843228974 Iter 15: T = 652.6771196721741 K, F = -792.0097470136078, relative_change = 0.017821766839703244 Iter 20: T = 610.9992150080874 K, F = -338.13644749036735, relative_change = 0.01021687600617566 Iter 25: T = 590.1762133187491 K, F = -143.01459970493954, relative_change = 0.005068060181481018 Iter 30: T = 580.642069500913 K, F = -60.13530285568807, relative_change = 0.0022998710492775575 Iter 35: T = 576.4844447038987 K, F = -25.210225851328655, relative_change = 0.000997464630618973 Iter 40: T = 574.7135493515252 K, F = -10.554206413647089, relative_change = 0.00042372787751412754 Iter 45: T = 573.9671328110011 K, F = -4.415842661366086, relative_change = 0.00017838505213311188 Iter 50: T = 573.6539425311373 K, F = -1.8471006606869405, relative_change = 7.481062956624816e-5 Iter 55: T = 573.5227814066537 K, F = -0.7725396034384502, relative_change = 3.132320438108455e-5 Iter 60: T = 573.4678964857188 K, F = -0.32309580097064655, relative_change = 1.3106133976034624e-5 Iter 65: T = 573.4449373935462 K, F = -0.13512436196839875, relative_change = 5.482261187850521e-6 Iter 70: T = 573.4353346536535 K, F = -0.05651094366314191, relative_change = 2.2929429502825734e-6 Iter 75: T = 573.4313185028781 K, F = -0.0236336077997282, relative_change = 9.589703837789248e-7 Iter 80: T = 573.4296388708782 K, F = -0.009883866868517888, relative_change = 4.010588591253848e-7 Iter 85: T = 573.4289364235077 K, F = -0.00413355288342071, relative_change = 1.677286525633143e-7 Iter 90: T = 573.4286426507174 K, F = -0.0017287014821924518, relative_change = 7.014630892122044e-8 Iter 95: T = 573.4285197912686 K, F = -0.00072296365657043, relative_change = 2.933605613500198e-8 Iter 100: T = 573.4284684099522 K, F = -0.0003023520442126948, relative_change = 1.226869462214029e-8 Iter 105: T = 573.4284469216672 K, F = -0.00012644723782345713, relative_change = 5.130915610241176e-9 Iter 110: T = 573.4284379350088 K, F = -5.2881744908750417e-5, relative_change = 2.145810342433092e-9 Iter 115: T = 573.4284341766809 K, F = -2.211577704452905e-5, relative_change = 8.974035307607135e-10 Iter 120: T = 573.4284326049033 K, F = -9.249082175366574e-6, relative_change = 3.753048826669138e-10 Iter 125: T = 573.428431947567 K, F = -3.868076707824741e-6, relative_change = 1.5695698831241186e-10 Iter 130: T = 573.4284316726612 K, F = -1.617676148146785e-6, relative_change = 6.56412982565296e-11 Iter 135: T = 573.4284315576923 K, F = -6.765322537183316e-7, relative_change = 2.7452006101314446e-11 Iter 140: T = 573.428431509611 K, F = -2.8293403542267725e-7, relative_change = 1.1480763595681014e-11 Iter 145: T = 573.4284314895027 K, F = -1.183265831983249e-7, relative_change = 4.801400181430994e-12 Iter 150: T = 573.4284314810933 K, F = -4.9486135966780864e-8, relative_change = 2.0080250422474257e-12 Iter 155: T = 573.4284314775762 K, F = -2.0695199831610722e-8, relative_change = 8.397600399695502e-13 Iter 160: T = 573.4284314761054 K, F = -8.654937488916659e-9, relative_change = 3.511959638395862e-13 Converged in 163 iterations to T = 573.4284314756748 K Iter 1: T = 963.543862438892 K, F = -8306.565622037966, relative_change = 0.036456137561107944 Iter 2: T = 928.9642345807669 K, F = -7048.433128627048, relative_change = 0.03588796442602855 Iter 3: T = 896.2274981488514 K, F = -5979.944936796891, relative_change = 0.0352400396197053 Iter 5: T = 836.1636121145059 K, F = -4301.980087873788, relative_change = 0.03367563723977158 Iter 10: T = 716.3148652676643 K, F = -1880.074528443086, relative_change = 0.027973922093040633 Iter 15: T = 636.4948825055435 K, F = -814.1870914629749, relative_change = 0.020070972162789025 Iter 20: T = 589.6870804467848 K, F = -348.6382072721882, relative_change = 0.012051541036305883 Iter 25: T = 565.581404415948 K, F = -147.77753536555048, relative_change = 0.006180972881688686 Iter 30: T = 554.3303514390908 K, F = -62.21469205830053, relative_change = 0.002857837780789442 Iter 35: T = 549.3749336187178 K, F = -26.09752047838188, relative_change = 0.0012506530388055519 Iter 40: T = 547.2544841075857 K, F = -10.928579800082838, relative_change = 0.0005334143632304858 Iter 45: T = 546.3589321099314 K, F = -4.573002835228835, relative_change = 0.00022494839261291032 Iter 50: T = 545.9828431397291 K, F = -1.9129318234945545, relative_change = 9.440687450285268e-5 Iter 55: T = 545.8252836337751 K, F = -0.8000894203428617, relative_change = 3.95402335356266e-5 Iter 60: T = 545.7593421872887 K, F = -0.33462069501796554, relative_change = 1.654639058552462e-5 Iter 65: T = 545.731756249184 K, F = -0.1399447759969602, relative_change = 6.921682478450764e-6 Iter 70: T = 545.7202180038561 K, F = -0.058526997356313504, relative_change = 2.8950424739909926e-6 Iter 75: T = 545.7153923135525 K, F = -0.024476762844743344, relative_change = 1.2107959491763198e-6 Iter 80: T = 545.7133741070535 K, F = -0.010236487405198613, relative_change = 5.063788782058107e-7 Iter 85: T = 545.7125300610904 K, F = -0.004281023532209882, relative_change = 2.1177536501273514e-7 Iter 90: T = 545.7121770696066 K, F = -0.00179037556114503, relative_change = 8.856727900448588e-8 Iter 95: T = 545.7120294441107 K, F = -0.0007487565102417548, relative_change = 3.70399449120483e-8 Iter 100: T = 545.711967705323 K, F = -0.00031313892647802377, relative_change = 1.549055624243437e-8 Iter 105: T = 545.7119418854172 K, F = -0.0001309584402875985, relative_change = 6.478337153644956e-9 Iter 110: T = 545.711931087223 K, F = -5.4768384060266406e-5, relative_change = 2.709318238275643e-9 Iter 115: T = 545.7119265712889 K, F = -2.2904791433020488e-5, relative_change = 1.1330692457525343e-9 Iter 120: T = 545.7119246826713 K, F = -9.579057065001173e-6, relative_change = 4.738630855571129e-10 Iter 125: T = 545.711923892829 K, F = -4.006075461943093e-6, relative_change = 1.9817517314806314e-10 Iter 130: T = 545.7119235625075 K, F = -1.6753889348908313e-6, relative_change = 8.287924088631675e-11 Iter 135: T = 545.7119234243631 K, F = -7.00667943248634e-7, relative_change = 3.466110233298981e-11 Iter 140: T = 545.7119233665895 K, F = -2.9302781609508166e-7, relative_change = 1.4495692607417078e-11 Iter 145: T = 545.7119233424278 K, F = -1.2254766978969656e-7, relative_change = 6.062268678358957e-12 Iter 150: T = 545.7119233323231 K, F = -5.125049729048925e-8, relative_change = 2.5352932865636995e-12 Iter 155: T = 545.7119233280972 K, F = -2.143326766068654e-8, relative_change = 1.060274972616682e-12 Iter 160: T = 545.71192332633 K, F = -8.963639858139416e-9, relative_change = 4.4341922826417395e-13 Converged in 164 iterations to T = 545.7119233256919 K Iter 1: T = 969.3371466175444 K, F = -6986.560311096093, relative_change = 0.030662853382455606 Iter 2: T = 940.8156285527857 K, F = -5919.075407039507, relative_change = 0.02942373369707653 Iter 3: T = 914.3962876513143 K, F = -5013.002369943842, relative_change = 0.028081315934463256 Iter 5: T = 867.6778677943175 K, F = -3591.6772537018132, relative_change = 0.025118682018969652 Iter 10: T = 783.5247183033207 K, F = -1548.8397958886153, relative_change = 0.01684917254046535 Iter 15: T = 736.6677343017307 K, F = -660.4252703148879, relative_change = 0.009472994739437496 Iter 20: T = 713.5452255511296 K, F = -279.0843061773995, relative_change = 0.004637138400980139 Iter 25: T = 703.0371713121693 K, F = -117.29492900412065, relative_change = 0.0020893095833651515 Iter 30: T = 698.4721038800301 K, F = -49.16195972480653, relative_change = 0.0009030903016899785 Iter 35: T = 696.5310041882706 K, F = -20.57951034249685, relative_change = 0.00038306676711870086 Iter 40: T = 695.7134589159411 K, F = -8.610029344669512, relative_change = 0.0001611645214486558 Iter 45: T = 695.3705324761706 K, F = -3.6014204511761623, relative_change = 6.757056710336642e-5 Iter 50: T = 695.2269373234816 K, F = -1.5062627932759924, relative_change = 2.8288598020706994e-5 Iter 55: T = 695.1668526997233 K, F = -0.6299556009192526, relative_change = 1.1835846128803577e-5 Iter 60: T = 695.141719092661 K, F = -0.26345819452381775, relative_change = 4.950805180372788e-6 Iter 65: T = 695.1312069557241 K, F = -0.11018192987265735, relative_change = 2.0706455756484875e-6 Iter 70: T = 695.1268104861805 K, F = -0.0460794980144934, relative_change = 8.659966474211668e-7 Iter 75: T = 695.1249718006687 K, F = -0.019271013703824336, relative_change = 3.621750268685995e-7 Iter 80: T = 695.1242028352794 K, F = -0.008059371106584723, relative_change = 1.5146677623761675e-7 Iter 85: T = 695.1238812438695 K, F = -0.0033705257753053885, relative_change = 6.33453641945907e-8 Iter 90: T = 695.1237467503438 K, F = -0.0014095942242733361, relative_change = 2.6491813951161672e-8 Iter 95: T = 695.1236905035177 K, F = -0.0005895091550250919, relative_change = 1.1079197548506994e-8 Iter 100: T = 695.1236669804183 K, F = -0.00024653977148536566, relative_change = 4.633453524259114e-9 Iter 105: T = 695.1236571427766 K, F = -0.00010310587797857096, relative_change = 1.937765752777485e-9 Iter 110: T = 695.1236530285571 K, F = -4.3120111222205715e-5, relative_change = 8.103968345461024e-10 Iter 115: T = 695.1236513079413 K, F = -1.80333451104131e-5, relative_change = 3.3891763151246743e-10 Iter 120: T = 695.1236505883592 K, F = -7.54175920780753e-6, relative_change = 1.4173938141234102e-10 Iter 125: T = 695.1236502874215 K, F = -3.1540543703467705e-6, relative_change = 5.927711346876545e-11 Iter 130: T = 695.1236501615656 K, F = -1.3190631873438718e-6, relative_change = 2.479039645960806e-11 Iter 135: T = 695.1236501089312 K, F = -5.516478072120634e-7, relative_change = 1.036763665532082e-11 Iter 140: T = 695.1236500869189 K, F = -2.3070605892350216e-7, relative_change = 4.335876191638781e-12 Iter 145: T = 695.1236500777131 K, F = -9.64861039953746e-8, relative_change = 1.8133542010815776e-12 Iter 150: T = 695.1236500738631 K, F = -4.035169132166061e-8, relative_change = 7.583673290852081e-13 Iter 155: T = 695.123650072253 K, F = -1.687513218051606e-8, relative_change = 3.171502482467017e-13 Converged in 158 iterations to T = 695.1236500717816 K Iter 1: T = 966.4364564052713 K, F = -7647.485335231247, relative_change = 0.033563543594728705 Iter 2: T = 934.9101162166601 K, F = -6484.114926077755, relative_change = 0.03262122406461744 Iter 3: T = 905.391309762235 K, F = -5496.319253741204, relative_change = 0.031573951273390896 Iter 5: T = 852.2522447444877 K, F = -3945.7680890051274, relative_change = 0.029159152237558956 Iter 10: T = 751.9327955795188 K, F = -1711.8742676780755, relative_change = 0.021538894280335404 Iter 15: T = 691.7001773134655 K, F = -734.4937082351156, relative_change = 0.013342896487111124 Iter 20: T = 660.0172545937141 K, F = -311.8176947709879, relative_change = 0.0070099013853091065 Iter 25: T = 645.0185672250961 K, F = -131.3980499375463, relative_change = 0.0032871869945237764 Iter 30: T = 638.3620306150494 K, F = -55.143681540107686, relative_change = 0.0014486033769396003 Iter 35: T = 635.5034177661126 K, F = -23.096751633893025, relative_change = 0.0006197846597488389 Iter 40: T = 634.2941956671974 K, F = -9.665578807603774, relative_change = 0.0002617266450665328 Iter 45: T = 633.7860359749327 K, F = -4.0433610787039775, relative_change = 0.00010990522958004455 Iter 50: T = 633.5730855415926 K, F = -1.6911750483773689, relative_change = 4.604251060826363e-5 Iter 55: T = 633.4839512978108 K, F = -0.707303434213119, relative_change = 1.9269350182624168e-5 Iter 60: T = 633.4466610096932 K, F = -0.2958086639709041, relative_change = 8.061092469608686e-6 Iter 65: T = 633.4310634411902 K, F = -0.12371175176942983, relative_change = 3.3716686048377472e-6 Iter 70: T = 633.4245399450725 K, F = -0.05173791319195964, relative_change = 1.4101461545940528e-6 Iter 75: T = 633.4218116699501 K, F = -0.021637444862868116, relative_change = 5.897529197529348e-7 Iter 80: T = 633.4206706602688 K, F = -0.009049043388920708, relative_change = 2.4664398047553025e-7 Iter 85: T = 633.4201934742173 K, F = -0.003784418981471027, relative_change = 1.031498545309979e-7 Iter 90: T = 633.4199939089311 K, F = -0.0015826893831722422, relative_change = 4.313857036514644e-8 Iter 95: T = 633.4199104482786 K, F = -0.0006618996314946002, relative_change = 1.804107744929062e-8 Iter 100: T = 633.4198755440253 K, F = -0.00027681433551696166, relative_change = 7.54499615757991e-9 Iter 105: T = 633.4198609466478 K, F = -0.00011576706267746317, relative_change = 3.1554078920075395e-9 Iter 110: T = 633.4198548418498 K, F = -4.8415168025117694e-5, relative_change = 1.319629320775839e-9 Iter 115: T = 633.4198522887503 K, F = -2.024780205550636e-5, relative_change = 5.518847682733961e-10 Iter 120: T = 633.4198512210136 K, F = -8.467872850248526e-6, relative_change = 2.3080480885886882e-10 Iter 125: T = 633.4198507744733 K, F = -3.541364644865652e-6, relative_change = 9.652530300772562e-11 Iter 130: T = 633.4198505877249 K, F = -1.48104132130511e-6, relative_change = 4.0368043633650276e-11 Iter 135: T = 633.4198505096244 K, F = -6.193905135454258e-7, relative_change = 1.6882434630328342e-11 Iter 140: T = 633.419850476962 K, F = -2.5903673694926965e-7, relative_change = 7.060441972933934e-12 Iter 145: T = 633.419850463302 K, F = -1.0833282987343651e-7, relative_change = 2.952776768931619e-12 Iter 150: T = 633.4198504575894 K, F = -4.530631397825502e-8, relative_change = 1.234892798083e-12 Iter 155: T = 633.4198504552002 K, F = -1.89471147660214e-8, relative_change = 5.164325568542586e-13 Converged in 160 iterations to T = 633.4198504542011 K Iter 1: T = 966.5589661833769 K, F = -7619.5713657530005, relative_change = 0.033441033816623104 Iter 2: T = 935.1606812311352 K, F = -6460.233234438204, relative_change = 0.032484603682508134 Iter 3: T = 905.7753139201807 K, F = -5475.873006133381, relative_change = 0.03142280027456754 Iter 5: T = 852.9175924189234 K, F = -3930.7514176221193, relative_change = 0.028979136969747053 Iter 10: T = 753.3426277940125 K, F = -1704.8839840334726, relative_change = 0.021310704484503895 Iter 15: T = 693.7755448181067 K, F = -731.2659608646654, relative_change = 0.013137002160591988 Iter 20: T = 662.5479335291003 K, F = -310.36948258594816, relative_change = 0.00687510063618978 Iter 25: T = 647.7986976592141 K, F = -130.7679414894, relative_change = 0.00321654648169161 Iter 30: T = 641.2610471793297 K, F = -54.87506807547562, relative_change = 0.0014158459725714565 Iter 35: T = 638.4551545822032 K, F = -22.98344924458366, relative_change = 0.000605454510876982 Iter 40: T = 637.2685452880467 K, F = -9.6180196565002, relative_change = 0.00025561768661758763 Iter 45: T = 636.7699444342463 K, F = -4.023440257836209, relative_change = 0.00010732968293176594 Iter 50: T = 636.5610096811032 K, F = -1.682838464680069, relative_change = 4.4961732159744574e-5 Iter 55: T = 636.4735580191191 K, F = -0.7038160181631397, relative_change = 1.8816714236692038e-5 Iter 60: T = 636.4369719636593 K, F = -0.2943500173345873, relative_change = 7.871682338423713e-6 Iter 65: T = 636.4216690111544 K, F = -0.12310169900119516, relative_change = 3.292435358960799e-6 Iter 70: T = 636.4152687440236 K, F = -0.051482776708731304, relative_change = 1.3770064242081803e-6 Iter 75: T = 636.4125920077191 K, F = -0.021530742841489314, relative_change = 5.758928868865021e-7 Iter 80: T = 636.4114725527089 K, F = -0.009004419170405453, relative_change = 2.408474438856016e-7 Iter 85: T = 636.4110043811696 K, F = -0.0037657565731344933, relative_change = 1.0072565529834719e-7 Iter 90: T = 636.410808585876 K, F = -0.0015748845352356877, relative_change = 4.21247380453858e-8 Iter 95: T = 636.4107267018823 K, F = -0.0006586355492477214, relative_change = 1.7617080080810673e-8 Iter 100: T = 636.410692457007 K, F = -0.00027544925744366067, relative_change = 7.367675302832469e-9 Iter 105: T = 636.4106781353894 K, F = -0.00011519617042249353, relative_change = 3.0812501678619954e-9 Iter 110: T = 636.4106721459174 K, F = -4.8176413657674555e-5, relative_change = 1.2886156612380221e-9 Iter 115: T = 636.4106696410487 K, F = -2.014795195026675e-5, relative_change = 5.389144799359446e-10 Iter 120: T = 636.4106685934826 K, F = -8.426114130322127e-6, relative_change = 2.2538047347041706e-10 Iter 125: T = 636.410668155378 K, F = -3.523901380475536e-6, relative_change = 9.425680116764565e-11 Iter 130: T = 636.4106679721574 K, F = -1.473737247348339e-6, relative_change = 3.9419309421287254e-11 Iter 135: T = 636.4106678955324 K, F = -6.163341974008141e-7, relative_change = 1.6485617427329517e-11 Iter 140: T = 636.4106678634869 K, F = -2.577587689400751e-7, relative_change = 6.8944940459644705e-12 Iter 145: T = 636.4106678500851 K, F = -1.077987308861772e-7, relative_change = 2.8833847685879335e-12 Iter 150: T = 636.4106678444804 K, F = -4.508303136363523e-8, relative_change = 1.2058743631999197e-12 Iter 155: T = 636.4106678421364 K, F = -1.88552047308832e-8, relative_change = 5.043362726623718e-13 Converged in 160 iterations to T = 636.4106678411559 K Iter 1: T = 976.5016113325577 K, F = -5354.130210614971, relative_change = 0.02349838866744236 Iter 2: T = 955.1635692969778 K, F = -4527.190205247282, relative_change = 0.02185151748644987 Iter 3: T = 935.893694250815 K, F = -3826.2347136439303, relative_change = 0.020174424219661008 Iter 5: T = 903.1354047519258 K, F = -2729.3085413691256, relative_change = 0.016822910557855952 Iter 10: T = 849.223012576035 K, F = -1163.7388288703337, relative_change = 0.009453377204329243 Iter 15: T = 822.6274274331149 K, F = -491.7649261539149, relative_change = 0.004625948461801593 Iter 20: T = 810.5433455071898 K, F = -206.67890006523015, relative_change = 0.002083886481764146 Iter 25: T = 805.2940992833369 K, F = -86.62507586848695, relative_change = 0.0009006689618299237 Iter 30: T = 803.0621788821442 K, F = -36.261719381866094, relative_change = 0.00038202529383060387 Iter 35: T = 802.1221645251326 K, F = -15.171115780131705, relative_change = 0.00016072376139597997 Iter 40: T = 801.7278705238583 K, F = -6.34580206211686, relative_change = 6.738531385817973e-5 Iter 45: T = 801.5627665540125 K, F = -2.654076039520982, relative_change = 2.821096072804e-5 Iter 50: T = 801.4936820779093 K, F = -1.1099988269314827, relative_change = 1.1803348855913192e-5 Iter 55: T = 801.4647838184075 K, F = -0.4642204573180737, relative_change = 4.93720945553302e-6 Iter 60: T = 801.4526971177128 K, F = -0.19414353482006197, relative_change = 2.064958810262406e-6 Iter 65: T = 801.4476421221107 K, F = -0.08119331895719561, relative_change = 8.636182219015536e-7 Iter 70: T = 801.4455280288179 K, F = -0.033956046090964254, relative_change = 3.611803142539531e-7 Iter 75: T = 801.4446438838502 K, F = -0.01420082931895339, relative_change = 1.5105077084358852e-7 Iter 80: T = 801.444274122833 K, F = -0.005938957343606055, relative_change = 6.317138494023742e-8 Iter 85: T = 801.4441194841792 K, F = -0.0024837430481551293, relative_change = 2.641905359020204e-8 Iter 90: T = 801.4440548124157 K, F = -0.0010387310331145816, relative_change = 1.1048768266714342e-8 Iter 95: T = 801.4440277659064 K, F = -0.0004344097267845459, relative_change = 4.6207276207665145e-9 Iter 100: T = 801.4440164547323 K, F = -0.00018167533520485613, relative_change = 1.932443598852184e-9 Iter 105: T = 801.4440117242641 K, F = -7.597879629894777e-5, relative_change = 8.081710294743717e-10 Iter 110: T = 801.4440097459257 K, F = -3.177524053898928e-5, relative_change = 3.37986785931243e-10 Iter 115: T = 801.444008918561 K, F = -1.3288785379206303e-5, relative_change = 1.4135011427571743e-10 Iter 120: T = 801.4440085725472 K, F = -5.5575300268451144e-6, relative_change = 5.91143195998407e-11 Iter 125: T = 801.4440084278401 K, F = -2.3242265920764282e-6, relative_change = 2.472232683240524e-11 Iter 130: T = 801.4440083673218 K, F = -9.720186029404942e-7, relative_change = 1.0339164726724865e-11 Iter 135: T = 801.4440083420124 K, F = -4.0650962085386766e-7, relative_change = 4.323960386070785e-12 Iter 140: T = 801.4440083314277 K, F = -1.7000766394659195e-7, relative_change = 1.808337039442369e-12 Iter 145: T = 801.444008327001 K, F = -7.10991323593646e-8, relative_change = 7.562670501809051e-13 Iter 150: T = 801.4440083251498 K, F = -2.973605695011372e-8, relative_change = 3.1629640654762833e-13 Converged in 153 iterations to T = 801.4440083246077 K Iter 1: T = 965.1846771365696 K, F = -7932.704432354428, relative_change = 0.03481532286343045 Iter 2: T = 932.3440453592833 K, F = -6728.220837156327, relative_change = 0.03402523118654883 Iter 3: T = 901.4486485267711 K, F = -5705.405233168323, relative_change = 0.03313733485647622 Iter 5: T = 845.3805174839496 K, F = -4099.527039676154, relative_change = 0.031049441370059525 Iter 10: T = 737.0933487685679 K, F = -1783.8910477892307, relative_change = 0.024058192849621785 Iter 15: T = 669.3923618084355 K, F = -768.0942676873821, relative_change = 0.015753146401818536 Iter 20: T = 632.3582862587557 K, F = -327.05905533531137, relative_change = 0.00866742990950247 Iter 25: T = 614.3281100033973 K, F = -138.0808511638588, relative_change = 0.004182910308641792 Iter 30: T = 606.1990494953728 K, F = -58.00450852032944, relative_change = 0.0018705580377973573 Iter 35: T = 602.6813698942582 K, F = -24.30584791926154, relative_change = 0.0008057124233087382 Iter 40: T = 601.1882854355596 K, F = -10.173543945243816, relative_change = 0.0003412376065123782 Iter 45: T = 600.5599173587435 K, F = -4.256208633717571, relative_change = 0.00014347208080395783 Iter 50: T = 600.2964289832736 K, F = -1.7802627545118344, relative_change = 6.013613726026035e-5 Iter 55: T = 600.1861124516113 K, F = -0.7445736638840463, relative_change = 2.517323480575614e-5 Iter 60: T = 600.1399552844046 K, F = -0.3113977409418125, relative_change = 1.0531877981571993e-5 Iter 65: T = 600.1206480465017 K, F = -0.13023167873836075, relative_change = 4.405280003449545e-6 Iter 70: T = 600.1125728712917 K, F = -0.05446469253241082, relative_change = 1.8424671658453564e-6 Iter 75: T = 600.1091956215249 K, F = -0.02277782844397369, relative_change = 7.705638922270391e-7 Iter 80: T = 600.1077831952152 K, F = -0.00952596750219259, relative_change = 3.222628911302635e-7 Iter 85: T = 600.1071924981447 K, F = -0.003983874705928092, relative_change = 1.3477486636986681e-7 Iter 90: T = 600.1069454609599 K, F = -0.0016661042118485403, relative_change = 5.636457699393205e-8 Iter 95: T = 600.1068421469513 K, F = -0.000696784719246335, relative_change = 2.3572359920475928e-8 Iter 100: T = 600.1067989397802 K, F = -0.0002914036980840584, relative_change = 9.858246052570898e-9 Iter 105: T = 600.106780870022 K, F = -0.00012186850785184111, relative_change = 4.1228368637456706e-9 Iter 110: T = 600.1067733130327 K, F = -5.0966865746460144e-5, relative_change = 1.724219728548875e-9 Iter 115: T = 600.1067701526096 K, F = -2.1314952471207516e-5, relative_change = 7.210893184651387e-10 Iter 120: T = 600.1067688308829 K, F = -8.914168676765755e-6, relative_change = 3.0156820156637466e-10 Iter 125: T = 600.1067682781209 K, F = -3.728011862769165e-6, relative_change = 1.261194261147321e-10 Iter 130: T = 600.1067680469491 K, F = -1.5590991355174388e-6, relative_change = 5.274465206288259e-11 Iter 135: T = 600.1067679502704 K, F = -6.520341650495531e-7, relative_change = 2.20584531230691e-11 Iter 140: T = 600.1067679098381 K, F = -2.7268803132196595e-7, relative_change = 9.225093531118725e-12 Iter 145: T = 600.1067678929289 K, F = -1.1404089383937333e-7, relative_change = 3.858027457536547e-12 Iter 150: T = 600.1067678858574 K, F = -4.769393063819294e-8, relative_change = 1.6134957187330136e-12 Iter 155: T = 600.1067678828999 K, F = -1.99464376682279e-8, relative_change = 6.747921874286341e-13 Iter 160: T = 600.1067678816631 K, F = -8.34272362304489e-9, relative_change = 2.822360973122268e-13 Converged in 162 iterations to T = 600.1067678814014 K Iter 1: T = 964.5968680001748 K, F = -8066.637303232806, relative_change = 0.03540313199982517 Iter 2: T = 931.1353805097076 K, F = -6842.902927158245, relative_change = 0.034689608271111595 Iter 3: T = 899.5852081347108 K, F = -5803.695114996728, relative_change = 0.03388355016402243 Iter 5: T = 842.1065463643178 K, F = -4171.93421864243, relative_change = 0.03197024700567198 Iter 10: T = 729.8338149981403 K, F = -1818.1022430931714, relative_change = 0.025372526006302156 Iter 15: T = 658.1401018861993 K, F = -784.3085859168177, relative_change = 0.01711877296665137 Iter 20: T = 618.0472023374458 K, F = -334.5445250274108, relative_change = 0.009676277990255682 Iter 25: T = 598.1955137998877 K, F = -141.40607116128928, relative_change = 0.004753757120763426 Iter 30: T = 589.1555912524381 K, F = -59.43841931953224, relative_change = 0.002145993002879883 Iter 35: T = 585.2243422329899 K, F = -24.913992576753607, relative_change = 0.0009284326534783073 Iter 40: T = 583.5519751753611 K, F = -10.42943320495535, relative_change = 0.00039397347141952103 Iter 45: T = 582.8474727557383 K, F = -4.363502538814076, relative_change = 0.0001657814791511907 Iter 50: T = 582.5519379988253 K, F = -1.8251834000462377, relative_change = 6.95112971064729e-5 Iter 55: T = 582.4281829536102 K, F = -0.7633686260848769, relative_change = 2.9101969276858044e-5 Iter 60: T = 582.3763992633607 K, F = -0.31925952717692196, relative_change = 1.2176311833575207e-5 Iter 65: T = 582.3547378295602 K, F = -0.13351983565762013, relative_change = 5.093245249531415e-6 Iter 70: T = 582.3456779060726 K, F = -0.055839885216622365, relative_change = 2.130225030183117e-6 Iter 75: T = 582.341888788625 K, F = -0.02335295852875191, relative_change = 8.909151165942191e-7 Iter 80: T = 582.3403041083518 K, F = -0.009766495184696578, relative_change = 3.725965133408836e-7 Iter 85: T = 582.3396413715707 K, F = -0.004084466502261852, relative_change = 1.5582521616583107e-7 Iter 90: T = 582.3393642063355 K, F = -0.0017081729462167239, relative_change = 6.516812454984355e-8 Iter 95: T = 582.3392482923845 K, F = -0.0007143783738768339, relative_change = 2.72541156124702e-8 Iter 100: T = 582.3391998157613 K, F = -0.000298761574841655, relative_change = 1.1398001431850908e-8 Iter 105: T = 582.3391795422544 K, F = -0.00012494566039195076, relative_change = 4.7667811794399506e-9 Iter 110: T = 582.3391710636309 K, F = -5.2253767440169074e-5, relative_change = 1.9935249585531533e-9 Iter 115: T = 582.3391675177693 K, F = -2.1853149839323738e-5, relative_change = 8.337159792446326e-10 Iter 120: T = 582.3391660348475 K, F = -9.13924836815072e-6, relative_change = 3.48669988134987e-10 Iter 125: T = 582.3391654146719 K, F = -3.82214317506957e-6, relative_change = 1.4581796758066793e-10 Iter 130: T = 582.3391651553071 K, F = -1.5984659779699761e-6, relative_change = 6.098281774712069e-11 Iter 135: T = 582.3391650468376 K, F = -6.684972933546085e-7, relative_change = 2.5503732455421093e-11 Iter 140: T = 582.3391650014744 K, F = -2.7957317094706724e-7, relative_change = 1.0665950972534173e-11 Iter 145: T = 582.3391649825029 K, F = -1.169208898588181e-7, relative_change = 4.460630019926905e-12 Iter 150: T = 582.3391649745688 K, F = -4.8897806748104955e-8, relative_change = 1.8654923424437076e-12 Iter 155: T = 582.3391649712507 K, F = -2.0449330673244503e-8, relative_change = 7.801591179046112e-13 Iter 160: T = 582.339164969863 K, F = -8.551394148348379e-9, relative_change = 3.262428595980702e-13 Converged in 163 iterations to T = 582.3391649694566 K Iter 1: T = 964.2608396899172 K, F = -8143.20167337044, relative_change = 0.03573916031008276 Iter 2: T = 930.4433676535242 K, F = -6908.478147939488, relative_change = 0.03507087568470363 Iter 3: T = 898.5164530879637 K, F = -5859.9147099778975, relative_change = 0.034313656989223056 Iter 5: T = 840.2210587520136 K, F = -4213.386556152835, relative_change = 0.03250653983868096 Iter 10: T = 725.5937989057717 K, F = -1837.7800214167182, relative_change = 0.026166385490752776 Iter 15: T = 651.4530922926403 K, F = -793.7202054576654, relative_change = 0.017983028836374055 Iter 20: T = 609.4104774599249 K, F = -338.93775507431593, relative_change = 0.01034300649729877 Iter 25: T = 588.3612164883523 K, F = -143.37472519557474, relative_change = 0.005142259813251168 Iter 30: T = 578.7110712385187 K, F = -60.29165465277998, relative_change = 0.0023364320940591444 Iter 35: T = 574.5001057739614 K, F = -25.27675745880926, relative_change = 0.0010139164934010424 Iter 40: T = 572.7059528344296 K, F = -10.582242566604645, relative_change = 0.0004308285749265407 Iter 45: T = 571.9496347704804 K, F = -4.4276056945744795, relative_change = 0.0001813945494307735 Iter 50: T = 571.6322722809696 K, F = -1.8520268141604315, relative_change = 7.60763194081011e-5 Iter 55: T = 571.4993607677118 K, F = -0.7746009588528423, relative_change = 3.1853777341570624e-5 Iter 60: T = 571.4437428439145 K, F = -0.3239580910471503, relative_change = 1.3328244478453542e-5 Iter 65: T = 571.42047703137 K, F = -0.1354850181430367, relative_change = 5.57518871932296e-6 Iter 70: T = 571.4107459876327 K, F = -0.05666178071152611, relative_change = 2.3318130497298024e-6 Iter 75: T = 571.4066761734571 K, F = -0.023696690761711048, relative_change = 9.752274949273831e-7 Iter 80: T = 571.4049740978727 K, F = -0.009910249110030467, relative_change = 4.078579820376384e-7 Iter 85: T = 571.4042622641681 K, F = -0.004144586286005059, relative_change = 1.705721628097987e-7 Iter 90: T = 571.4039645658729 K, F = -0.0017333157876648908, relative_change = 7.133550508449106e-8 Iter 95: T = 571.4038400647264 K, F = -0.0007248934163644472, relative_change = 2.983339331356625e-8 Iter 100: T = 571.4037879968313 K, F = -0.00030315909303407773, relative_change = 1.2476687163288693e-8 Iter 105: T = 571.4037662214107 K, F = -0.00012678475374355846, relative_change = 5.217900544229651e-9 Iter 110: T = 571.4037571146689 K, F = -5.3022898423238374e-5, relative_change = 2.182188499506262e-9 Iter 115: T = 571.4037533061205 K, F = -2.2174808534169976e-5, relative_change = 9.126172868048515e-10 Iter 120: T = 571.4037517133402 K, F = -9.273769901119167e-6, relative_change = 3.816674594906896e-10 Iter 125: T = 571.4037510472203 K, F = -3.878400816226257e-6, relative_change = 1.5961786958425472e-10 Iter 130: T = 571.4037507686411 K, F = -1.6219931177618996e-6, relative_change = 6.675408210911056e-11 Iter 135: T = 571.403750652136 K, F = -6.783366406915015e-7, relative_change = 2.7917344012393877e-11 Iter 140: T = 571.4037506034122 K, F = -2.836888525203918e-7, relative_change = 1.1675381833177507e-11 Iter 145: T = 571.4037505830353 K, F = -1.1864165755381961e-7, relative_change = 4.882767303651946e-12 Iter 150: T = 571.4037505745133 K, F = -4.96173774844344e-8, relative_change = 2.042032398116599e-12 Iter 155: T = 571.4037505709495 K, F = -2.0750090257148912e-8, relative_change = 8.539821876618256e-13 Iter 160: T = 571.4037505694589 K, F = -8.67764998746523e-9, relative_change = 3.57133796928815e-13 Converged in 163 iterations to T = 571.4037505690226 K Iter 1: T = 980.2751887901053 K, F = -4494.316997313879, relative_change = 0.0197248112098947 Iter 2: T = 962.5882416560593 K, F = -3796.2208352986954, relative_change = 0.018042838721518503 Iter 3: T = 946.8173152653579 K, F = -3205.065062479423, relative_change = 0.016383876000363996 Iter 5: T = 920.4973698879365 K, F = -2281.4561275322853, relative_change = 0.013223114930635197 Iter 10: T = 878.7593530981835 K, F = -968.4157700172415, relative_change = 0.006931454223620013 Iter 15: T = 859.0267817267569 K, F = -408.0486363229382, relative_change = 0.0032460624153148 Iter 20: T = 850.2756381049742 K, F = -171.23780340091704, relative_change = 0.0014295287796329667 Iter 25: T = 846.5187977537382 K, F = -71.7209621648744, relative_change = 0.000611439312984164 Iter 30: T = 844.9298578285188 K, F = -30.013683771677858, relative_change = 0.00025816884006965547 Iter 35: T = 844.2621701974714 K, F = -12.555452316282212, relative_change = 0.00010840522174061617 Iter 40: T = 843.9823753623277 K, F = -5.251431753829232, relative_change = 4.541305566438905e-5 Iter 45: T = 843.8652635426646 K, F = -2.196315102273844, relative_change = 1.9005730011924942e-5 Iter 50: T = 843.8162687662445 K, F = -0.9185433405279313, relative_change = 7.950777745881932e-6 Iter 55: T = 843.795775552838 K, F = -0.3841489673288344, relative_change = 3.3255221853763576e-6 Iter 60: T = 843.7872045191734 K, F = -0.16065624076753982, relative_change = 1.3908451616880086e-6 Iter 65: T = 843.7836199183391 K, F = -0.06718845557825737, relative_change = 5.816806625625024e-7 Iter 70: T = 843.7821207793354 K, F = -0.02809903149463744, relative_change = 2.432680046307648e-7 Iter 75: T = 843.7814938186801 K, F = -0.011751353509685591, relative_change = 1.0173797037240435e-7 Iter 80: T = 843.7812316157533 K, F = -0.0049145568985347055, relative_change = 4.2548101672032626e-8 Iter 85: T = 843.7811219592717 K, F = -0.0020553264740650334, relative_change = 1.779413601367512e-8 Iter 90: T = 843.7810760996065 K, F = -0.0008595620949130023, relative_change = 7.4417222665748165e-9 Iter 95: T = 843.7810569205442 K, F = -0.00035947913376155327, relative_change = 3.1122174644844556e-9 Iter 100: T = 843.7810488996307 K, F = -0.00015033846731915546, relative_change = 1.3015665745473813e-9 Iter 105: T = 843.7810455451889 K, F = -6.28733422523009e-5, relative_change = 5.443306940261594e-10 Iter 110: T = 843.7810441423213 K, F = -2.6294382244440584e-5, relative_change = 2.276455956798438e-10 Iter 115: T = 843.7810435556253 K, F = -1.0996624487669138e-5, relative_change = 9.520410546172312e-11 Iter 120: T = 843.781043310262 K, F = -4.598920764209424e-6, relative_change = 3.981550325220831e-11 Iter 125: T = 843.781043207648 K, F = -1.9233218597758395e-6, relative_change = 1.6651304019684173e-11 Iter 130: T = 843.7810431647337 K, F = -8.043525048240241e-7, relative_change = 6.963742460465588e-12 Iter 135: T = 843.7810431467865 K, F = -3.3638909768818337e-7, relative_change = 2.912313978009731e-12 Iter 140: T = 843.7810431392807 K, F = -1.406802234704685e-7, relative_change = 1.2179496424694104e-12 Iter 145: T = 843.7810431361418 K, F = -5.883336195999789e-8, relative_change = 5.093542674160171e-13 Converged in 150 iterations to T = 843.781043134829 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318378655023386 Iteration 10: d = 1.3741599424105036e-5 Iteration 20: d = 1.6596876020196733e-7 Iteration 30: d = 2.261566788206367e-9 Iteration 40: d = 3.157762105933045e-11 Iteration 50: d = 4.447450512452201e-13 Iteration 60: d = 6.2930121856866e-15 Converged after 63 iterations. d = 1.770296185826407e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.833391072556 Iteration 2: convergence error = 4823.1877896099 Iteration 3: convergence error = 1100.789461015272 Iteration 4: convergence error = 320.61095075479875 Iteration 5: convergence error = 95.258144135355 Iteration 6: convergence error = 28.581729333959174 Iteration 7: convergence error = 8.617224707598325 Iteration 8: convergence error = 2.5875291992697385 Iteration 9: convergence error = 0.7751027361859997 Iteration 10: convergence error = 0.2318634607927379 Iteration 11: convergence error = 0.06930478644380855 Iteration 12: convergence error = 0.02070617009462694 Iteration 13: convergence error = 0.006184799932498208 Iteration 14: convergence error = 0.001847090918545291 Iteration 15: convergence error = 0.0005515877041943895 Iteration 16: convergence error = 0.00016470998980366858 Iteration 17: convergence error = 4.918279091725708e-5 Iteration 18: convergence error = 1.4685867654407048e-5 Iteration 19: convergence error = 4.385115744298673e-6 Iteration 20: convergence error = 1.3093695088173263e-6 Iteration 21: convergence error = 3.909683528036112e-7 Iteration 22: convergence error = 1.1660949894576333e-7 Iteration 23: convergence error = 3.391255631868262e-8 Iteration 24: convergence error = 9.80389813776128e-9 Iteration 25: convergence error = 2.823753675329499e-9 Iteration 26: convergence error = 8.064944267971441e-10 Iteration 27: convergence error = 2.3169377527665347e-10 Iteration 28: convergence error = 6.843947630841285e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019100681442122637 Iteration 10: d = 1.741489667011547e-5 Iteration 20: d = 1.623015503088316e-7 Iteration 30: d = 1.848959807552123e-9 Iteration 40: d = 2.2904174713945676e-11 Iteration 50: d = 2.941552284126677e-13 Iteration 60: d = 3.821985711214678e-15 Converged after 62 iterations. d = 1.6123861323897167e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12277.922869898875 Iteration 2: convergence error = 8300.612887186244 Iteration 3: convergence error = 1955.386616528519 Iteration 4: convergence error = 482.10317928179916 Iteration 5: convergence error = 123.05878699002551 Iteration 6: convergence error = 32.891551411277305 Iteration 7: convergence error = 8.969894384168128 Iteration 8: convergence error = 2.4601892978516844 Iteration 9: convergence error = 0.6755818138456107 Iteration 10: convergence error = 0.1855434421136124 Iteration 11: convergence error = 0.050955227565737005 Iteration 12: convergence error = 0.013992876506108587 Iteration 13: convergence error = 0.00384246959038137 Iteration 14: convergence error = 0.0010551309258062247 Iteration 15: convergence error = 0.0002897335139095958 Iteration 16: convergence error = 7.955904220580123e-5 Iteration 17: convergence error = 2.1846389245183673e-5 Iteration 18: convergence error = 5.998872893542284e-6 Iteration 19: convergence error = 1.6472499737574253e-6 Iteration 20: convergence error = 4.5232081902213395e-7 Iteration 21: convergence error = 1.2505620361480396e-7 Iteration 22: convergence error = 3.368563739059027e-8 Iteration 23: convergence error = 9.018322089104913e-9 Iteration 24: convergence error = 2.4128894438035786e-9 Iteration 25: convergence error = 6.421032594516873e-10 Iteration 26: convergence error = 1.7212187231052667e-10 Iteration 27: convergence error = 4.615685611497611e-11 Iteration 28: convergence error = 1.318767317570746e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019100681442122637 Iteration 10: d = 1.741489667011547e-5 Iteration 20: d = 1.623015503088316e-7 Iteration 30: d = 1.848959807552123e-9 Iteration 40: d = 2.2904174713945676e-11 Iteration 50: d = 2.941552284126677e-13 Iteration 60: d = 3.821985711214678e-15 Converged after 62 iterations. d = 1.6123861323897167e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.146084255748 Iteration 2: convergence error = 5734.449686335011 Iteration 3: convergence error = 2014.3987315220133 Iteration 4: convergence error = 896.5389361501898 Iteration 5: convergence error = 411.40933543694337 Iteration 6: convergence error = 194.21957377623403 Iteration 7: convergence error = 91.76820943256462 Iteration 8: convergence error = 43.381531098590585 Iteration 9: convergence error = 20.50810634829304 Iteration 10: convergence error = 9.692982600124651 Iteration 11: convergence error = 4.580152503157024 Iteration 12: convergence error = 2.163744347321426 Iteration 13: convergence error = 1.0220153706950441 Iteration 14: convergence error = 0.4826754380642342 Iteration 15: convergence error = 0.22793751012750363 Iteration 16: convergence error = 0.1075480553986381 Iteration 17: convergence error = 0.050312806716647174 Iteration 18: convergence error = 0.022998820410521148 Iteration 19: convergence error = 0.010473959376213315 Iteration 20: convergence error = 0.004759721732625621 Iteration 21: convergence error = 0.0021602860551865888 Iteration 22: convergence error = 0.0009797733359846461 Iteration 23: convergence error = 0.00044417550816433504 Iteration 24: convergence error = 0.00020131386054345057 Iteration 25: convergence error = 9.122775145442574e-5 Iteration 26: convergence error = 4.133716038268176e-5 Iteration 27: convergence error = 1.8729663224803517e-5 Iteration 28: convergence error = 8.4860366769135e-6 Iteration 29: convergence error = 3.844774710159982e-6 Iteration 30: convergence error = 1.741925188980531e-6 Iteration 31: convergence error = 7.892008397902828e-7 Iteration 32: convergence error = 3.575555638235528e-7 Iteration 33: convergence error = 1.619914655748289e-7 Iteration 34: convergence error = 7.339031071751378e-8 Iteration 35: convergence error = 3.324930730741471e-8 Iteration 36: convergence error = 1.5065779734868556e-8 Iteration 37: convergence error = 6.822574505349621e-9 Iteration 38: convergence error = 3.0968294595368207e-9 Iteration 39: convergence error = 1.4006218407303095e-9 Iteration 40: convergence error = 6.343725544866174e-10 Iteration 41: convergence error = 2.864908310584724e-10 Iteration 42: convergence error = 1.3460521586239338e-10 Iteration 43: convergence error = 6.275513442233205e-11 Iteration 44: convergence error = 2.9103830456733704e-11 Iteration 45: convergence error = 1.318767317570746e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019100681442122637 Iteration 10: d = 1.741489667011547e-5 Iteration 20: d = 1.623015503088316e-7 Iteration 30: d = 1.848959807552123e-9 Iteration 40: d = 2.2904174713945676e-11 Iteration 50: d = 2.941552284126677e-13 Iteration 60: d = 3.821985711214678e-15 Converged after 62 iterations. d = 1.6123861323897167e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.857804594916 Iteration 2: convergence error = 7351.414809309172 Iteration 3: convergence error = 1733.2919033563303 Iteration 4: convergence error = 506.4668561260314 Iteration 5: convergence error = 157.52970165616716 Iteration 6: convergence error = 48.989224011173974 Iteration 7: convergence error = 15.208594637747865 Iteration 8: convergence error = 4.713546689356463 Iteration 9: convergence error = 1.4591463491610739 Iteration 10: convergence error = 0.45137500099917816 Iteration 11: convergence error = 0.13957048849306375 Iteration 12: convergence error = 0.043146474196873896 Iteration 13: convergence error = 0.013336375641756604 Iteration 14: convergence error = 0.00412189381358985 Iteration 15: convergence error = 0.0012739042053908634 Iteration 16: convergence error = 0.00039370046670228476 Iteration 17: convergence error = 0.00012167152408437687 Iteration 18: convergence error = 3.760178151424043e-5 Iteration 19: convergence error = 1.1620526947808685e-5 Iteration 20: convergence error = 3.591220320231514e-6 Iteration 21: convergence error = 1.1098368304374162e-6 Iteration 22: convergence error = 3.4282174965483136e-7 Iteration 23: convergence error = 1.0475605449755676e-7 Iteration 24: convergence error = 3.120612745988183e-8 Iteration 25: convergence error = 9.273662726627663e-9 Iteration 26: convergence error = 2.743490767898038e-9 Iteration 27: convergence error = 8.11269273981452e-10 Iteration 28: convergence error = 2.423803380224854e-10 Iteration 29: convergence error = 7.23048287909478e-11 Iteration 30: convergence error = 2.000888343900442e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019100681442122637 Iteration 10: d = 1.741489667011547e-5 Iteration 20: d = 1.623015503088316e-7 Iteration 30: d = 1.848959807552123e-9 Iteration 40: d = 2.2904174713945676e-11 Iteration 50: d = 2.941552284126677e-13 Iteration 60: d = 3.821985711214678e-15 Converged after 62 iterations. d = 1.6123861323897167e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.768320336754 Iteration 2: convergence error = 5519.525795670864 Iteration 3: convergence error = 936.6553460352591 Iteration 4: convergence error = 170.86493192815442 Iteration 5: convergence error = 31.044691619258174 Iteration 6: convergence error = 5.654282689468573 Iteration 7: convergence error = 1.0339902094474382 Iteration 8: convergence error = 0.18942598170679048 Iteration 9: convergence error = 0.034661290532312705 Iteration 10: convergence error = 0.006338602075629751 Iteration 11: convergence error = 0.0011588119164116506 Iteration 12: convergence error = 0.0002118196762239677 Iteration 13: convergence error = 3.871553508361103e-5 Iteration 14: convergence error = 7.076005203998648e-6 Iteration 15: convergence error = 1.2932446225022431e-6 Iteration 16: convergence error = 2.36345840676222e-7 Iteration 17: convergence error = 4.3192812881898135e-8 Iteration 18: convergence error = 7.887138053774834e-9 Iteration 19: convergence error = 1.4479155652225018e-9 Iteration 20: convergence error = 2.632987161632627e-10 Iteration 21: convergence error = 4.729372449219227e-11 Iteration 22: convergence error = 8.412825991399586e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019100681442122637 Iteration 10: d = 1.741489667011547e-5 Iteration 20: d = 1.623015503088316e-7 Iteration 30: d = 1.848959807552123e-9 Iteration 40: d = 2.2904174713945676e-11 Iteration 50: d = 2.941552284126677e-13 Iteration 60: d = 3.821985711214678e-15 Converged after 62 iterations. d = 1.6123861323897167e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.49448459803 Iteration 2: convergence error = 2713.869525727581 Iteration 3: convergence error = 204.97214891099156 Iteration 4: convergence error = 19.39826441852064 Iteration 5: convergence error = 1.605099004292354 Iteration 6: convergence error = 0.1308804866955498 Iteration 7: convergence error = 0.01068596242298499 Iteration 8: convergence error = 0.0008744998502660012 Iteration 9: convergence error = 7.167480682191801e-5 Iteration 10: convergence error = 5.879537684613077e-6 Iteration 11: convergence error = 4.825212674200897e-7 Iteration 12: convergence error = 3.960921440153283e-8 Iteration 13: convergence error = 3.2525312163103867e-9 Iteration 14: convergence error = 2.6629691999429693e-10 Iteration 15: convergence error = 2.4215296434704214e-11 Iteration 16: convergence error = 3.637978807091713e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318378655023386 Iteration 10: d = 1.3741599424105036e-5 Iteration 20: d = 1.6596876020196733e-7 Iteration 30: d = 2.261566788206367e-9 Iteration 40: d = 3.157762105933045e-11 Iteration 50: d = 4.447450512452201e-13 Iteration 60: d = 6.2930121856866e-15 Converged after 63 iterations. d = 1.770296185826407e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.385920248562 Iteration 2: convergence error = 3608.6683983060293 Iteration 3: convergence error = 595.4855045458855 Iteration 4: convergence error = 104.9456039719064 Iteration 5: convergence error = 18.705324814274718 Iteration 6: convergence error = 3.3037097607968917 Iteration 7: convergence error = 0.581313038828057 Iteration 8: convergence error = 0.10212737562960683 Iteration 9: convergence error = 0.0179307050366333 Iteration 10: convergence error = 0.0031473151891532325 Iteration 11: convergence error = 0.0005523798829472071 Iteration 12: convergence error = 9.694320669950685e-5 Iteration 13: convergence error = 1.7013336901072762e-5 Iteration 14: convergence error = 2.9858003927074606e-6 Iteration 15: convergence error = 5.239928668743232e-7 Iteration 16: convergence error = 9.19565081858309e-8 Iteration 17: convergence error = 1.6149670045706443e-8 Iteration 18: convergence error = 2.81397660728544e-9 Iteration 19: convergence error = 5.018137017032132e-10 Iteration 20: convergence error = 8.549250196665525e-11 Iteration 21: convergence error = 1.5688783605583012e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 7m55.6s Testing RayTraceHeatTransfer tests passed Testing completed after 501.56s PkgEval succeeded after 548.86s