Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1404 (db0ee4186e*) started at 2025-12-23T15:29:02.805 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 8.16s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.9s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 12.8s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_d7bdF3/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_d7bdF3/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:06 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015138541405326997 Iteration 10: d = 1.8600660315070385e-5 Iteration 20: d = 2.641398878262157e-7 Iteration 30: d = 4.145153218914066e-9 Iteration 40: d = 6.779596166816123e-11 Iteration 50: d = 1.134479208694287e-12 Iteration 60: d = 1.925816129112315e-14 Converged after 66 iterations. d = 1.6593213381812588e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▋ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013355217871293687 Iteration 10: d = 1.7837353222047523e-5 Iteration 20: d = 2.779286993652208e-7 Iteration 30: d = 4.690200695193109e-9 Iteration 40: d = 8.133473128911351e-11 Iteration 50: d = 1.428161259468403e-12 Iteration 60: d = 2.524478570439243e-14 Converged after 67 iterations. d = 1.5046879840116002e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 48%|███████████████▊ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012092736867680691 Iteration 10: d = 1.1977777490425793e-5 Iteration 20: d = 1.845197793771281e-7 Iteration 30: d = 3.162171126271406e-9 Iteration 40: d = 5.504739435622029e-11 Iteration 50: d = 9.601359519444804e-13 Iteration 60: d = 1.6723617146178165e-14 Converged after 65 iterations. d = 2.2184842269032813e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013426346956357232 Iteration 10: d = 1.5055490066973034e-5 Iteration 20: d = 2.1195182759248957e-7 Iteration 30: d = 3.331254038869002e-9 Iteration 40: d = 5.5259495623073e-11 Iteration 50: d = 9.481999146461854e-13 Iteration 60: d = 1.6627022479235903e-14 Converged after 65 iterations. d = 2.216391441611643e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014300658161041182 Iteration 10: d = 1.96409944500584e-5 Iteration 20: d = 2.397889883784325e-7 Iteration 30: d = 3.2939253320320793e-9 Iteration 40: d = 4.825527250040589e-11 Iteration 50: d = 7.299755903760568e-13 Iteration 60: d = 1.1221322884651815e-14 Converged after 64 iterations. d = 2.11783307537781e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014267332122667568 Iteration 10: d = 1.8630191193949656e-5 Iteration 20: d = 2.2477023251640985e-7 Iteration 30: d = 3.082444548863004e-9 Iteration 40: d = 4.5487356818236685e-11 Iteration 50: d = 6.95615877314175e-13 Iteration 60: d = 1.0815841279106455e-14 Converged after 64 iterations. d = 2.065508558946355e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016435128958735537 Iteration 10: d = 2.64683290046227e-5 Iteration 20: d = 3.588446847532419e-7 Iteration 30: d = 5.258429786539412e-9 Iteration 40: d = 7.99318100874088e-11 Iteration 50: d = 1.2353983772196407e-12 Iteration 60: d = 1.926426005072909e-14 Converged after 66 iterations. d = 1.5775912731649776e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014335766671496498 Iteration 10: d = 2.009023357352711e-5 Iteration 20: d = 2.786106432713519e-7 Iteration 30: d = 4.2260656540031235e-9 Iteration 40: d = 6.604386955821356e-11 Iteration 50: d = 1.0420145069817542e-12 Iteration 60: d = 1.6493820945674653e-14 Converged after 65 iterations. d = 2.0833006422730175e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001352959369730408 Iteration 10: d = 1.8189875815283318e-5 Iteration 20: d = 2.467878872402797e-7 Iteration 30: d = 3.6818851179577955e-9 Iteration 40: d = 5.659605188291156e-11 Iteration 50: d = 8.782857164512729e-13 Iteration 60: d = 1.3662710438665416e-14 Converged after 65 iterations. d = 1.7076921427018294e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001599638491307584 Iteration 10: d = 2.2151598885398946e-5 Iteration 20: d = 2.9318321410569557e-7 Iteration 30: d = 4.294019403137075e-9 Iteration 40: d = 6.55458211167705e-11 Iteration 50: d = 1.0169372034853488e-12 Iteration 60: d = 1.59337787966293e-14 Converged after 65 iterations. d = 1.966806245090551e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004338153164170868 Iteration 10: d = 3.8000057577630674e-5 Iteration 20: d = 4.3377735831917224e-7 Iteration 30: d = 6.108222672113752e-9 Iteration 40: d = 8.815364708162425e-11 Iteration 50: d = 1.2707523568038774e-12 Iteration 60: d = 1.8281283447234632e-14 Converged after 65 iterations. d = 2.189830907892589e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0037829895587473484 Iteration 10: d = 4.092814271547427e-5 Iteration 20: d = 5.821780155910019e-7 Iteration 30: d = 9.158616802137069e-9 Iteration 40: d = 1.4619336442420315e-10 Iteration 50: d = 2.3386461390783015e-12 Iteration 60: d = 3.7430258862491606e-14 Converged after 67 iterations. d = 2.0918280790762288e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029772361602325615 Iteration 10: d = 3.1974054206169876e-5 Iteration 20: d = 4.10889625712762e-7 Iteration 30: d = 6.075481317627628e-9 Iteration 40: d = 9.506415122186936e-11 Iteration 50: d = 1.5317813371064728e-12 Iteration 60: d = 2.505716593536789e-14 Converged after 66 iterations. d = 2.1590501723694126e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00238245437186229 Iteration 10: d = 2.5603018445676016e-5 Iteration 20: d = 3.335087595563093e-7 Iteration 30: d = 4.911853379806009e-9 Iteration 40: d = 7.768660662087685e-11 Iteration 50: d = 1.286497549213937e-12 Iteration 60: d = 2.188214047605249e-14 Converged after 66 iterations. d = 1.9000265745955952e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014300658161041182 Iteration 10: d = 1.96409944500584e-5 Iteration 20: d = 2.397889883784325e-7 Iteration 30: d = 3.2939253320320793e-9 Iteration 40: d = 4.825527250040589e-11 Iteration 50: d = 7.299755903760568e-13 Iteration 60: d = 1.1221322884651815e-14 Converged after 64 iterations. d = 2.11783307537781e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013144411122910432 Iteration 10: d = 7.298976376181562e-6 Iteration 20: d = 6.199405466418354e-8 Iteration 30: d = 7.661545416021266e-10 Iteration 40: d = 1.0174400620247759e-11 Iteration 50: d = 1.3813616618734073e-13 Converged after 60 iterations. d = 1.8889501907153963e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001450056946134488 Iteration 10: d = 1.1902579987917126e-5 Iteration 20: d = 1.2651916185348638e-7 Iteration 30: d = 1.7231253656748493e-9 Iteration 40: d = 2.426792239538227e-11 Iteration 50: d = 3.4209198151971333e-13 Iteration 60: d = 4.7999282716992515e-15 Converged after 62 iterations. d = 2.0788038097098537e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.615565020793 Iteration 2: convergence error = 4835.820209409172 Iteration 3: convergence error = 1098.621394864359 Iteration 4: convergence error = 320.72922627949356 Iteration 5: convergence error = 95.01488683496177 Iteration 6: convergence error = 28.314430193527414 Iteration 7: convergence error = 8.463177392427724 Iteration 8: convergence error = 2.536777812349328 Iteration 9: convergence error = 0.7586274171142122 Iteration 10: convergence error = 0.2265654838863611 Iteration 11: convergence error = 0.06761252247451921 Iteration 12: convergence error = 0.020168408717609054 Iteration 13: convergence error = 0.006014623407054387 Iteration 14: convergence error = 0.0017934267418695526 Iteration 15: convergence error = 0.0005347163430542423 Iteration 16: convergence error = 0.00015942002869451244 Iteration 17: convergence error = 4.75281008220918e-5 Iteration 18: convergence error = 1.4169391306495527e-5 Iteration 19: convergence error = 4.224228405291797e-6 Iteration 20: convergence error = 1.2593479823408416e-6 Iteration 21: convergence error = 3.7543304642895237e-7 Iteration 22: convergence error = 1.1178099157405086e-7 Iteration 23: convergence error = 3.241484591853805e-8 Iteration 24: convergence error = 9.346194929094054e-9 Iteration 25: convergence error = 2.685737854335457e-9 Iteration 26: convergence error = 7.70114638726227e-10 Iteration 27: convergence error = 2.2305357560981065e-10 Iteration 28: convergence error = 6.116351869422942e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013144411122910432 Iteration 10: d = 7.298976376181562e-6 Iteration 20: d = 6.199405466418354e-8 Iteration 30: d = 7.661545416021266e-10 Iteration 40: d = 1.0174400620247759e-11 Iteration 50: d = 1.3813616618734073e-13 Converged after 60 iterations. d = 1.8889501907153963e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.658217761384 Iteration 2: convergence error = 4825.50803603306 Iteration 3: convergence error = 1100.5503166164572 Iteration 4: convergence error = 321.3720186501823 Iteration 5: convergence error = 95.32102354233325 Iteration 6: convergence error = 28.43387169884204 Iteration 7: convergence error = 8.491556986611386 Iteration 8: convergence error = 2.535725036635313 Iteration 9: convergence error = 0.7588188939964766 Iteration 10: convergence error = 0.22677130016722913 Iteration 11: convergence error = 0.06771787944717289 Iteration 12: convergence error = 0.02021287069533173 Iteration 13: convergence error = 0.006031757576920427 Iteration 14: convergence error = 0.0017996889582718723 Iteration 15: convergence error = 0.0005369269222228468 Iteration 16: convergence error = 0.00016018144287954783 Iteration 17: convergence error = 4.77856196994253e-5 Iteration 18: convergence error = 1.4255266705731628e-5 Iteration 19: convergence error = 4.252543703842093e-6 Iteration 20: convergence error = 1.2685891306318808e-6 Iteration 21: convergence error = 3.784300588449696e-7 Iteration 22: convergence error = 1.127605173678603e-7 Iteration 23: convergence error = 3.272748472227249e-8 Iteration 24: convergence error = 9.439418136025779e-9 Iteration 25: convergence error = 2.715069058467634e-9 Iteration 26: convergence error = 7.767084753140807e-10 Iteration 27: convergence error = 2.2532731236424297e-10 Iteration 28: convergence error = 6.343725544866174e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:41:17 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:36 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:22 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:16 Bin 1 ray tracing: 34%|██████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:10 Bin 1 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 2 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 2 ray tracing: 41%|████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 2 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 40%|███████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 47%|██████████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 55%|████████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 62%|██████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▍ | ETA: 0:00:10 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:09 Bin 5 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 53%|███████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 7 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 7 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 12%|███▌ | ETA: 0:00:08 Bin 8 ray tracing: 23%|██████▉ | ETA: 0:00:07 Bin 8 ray tracing: 32%|█████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 41%|████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 50%|███████████████ | ETA: 0:00:05 Bin 8 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 13%|████ | ETA: 0:00:07 Bin 9 ray tracing: 26%|███████▋ | ETA: 0:00:07 Bin 9 ray tracing: 36%|██████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 46%|█████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 57%|█████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 66%|███████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 10 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 10 ray tracing: 32%|█████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 59%|█████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 73%|█████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 88%|█████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 2 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 4 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 27%|████████▊ | ETA: 0:00:03 Bin 6 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 27%|████████▊ | ETA: 0:00:03 Bin 8 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 8 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 56%|█████████████████▊ | ETA: 0:00:02 Bin 10 progress: 96%|██████████████████████████████▋ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013144411122910432 Iteration 10: d = 7.298976376181562e-6 Iteration 20: d = 6.199405466418354e-8 Iteration 30: d = 7.661545416021266e-10 Iteration 40: d = 1.0174400620247759e-11 Iteration 50: d = 1.3813616618734073e-13 Converged after 60 iterations. d = 1.8889501907153963e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014490444047884125 Iteration 10: d = 1.1703831114804563e-5 Iteration 20: d = 1.2214935027145586e-7 Iteration 30: d = 1.6564286698130647e-9 Iteration 40: d = 2.3312433488437896e-11 Iteration 50: d = 3.2856794990006363e-13 Iteration 60: d = 4.598041826743804e-15 Converged after 62 iterations. d = 1.9845294939282493e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001295113738281395 Iteration 10: d = 1.4580743236732666e-5 Iteration 20: d = 1.8590928325686197e-7 Iteration 30: d = 2.5860992929649134e-9 Iteration 40: d = 3.6778426941929786e-11 Iteration 50: d = 5.267776625451861e-13 Iteration 60: d = 7.594985018714726e-15 Converged after 63 iterations. d = 2.1432166620685984e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013149806698695018 Iteration 10: d = 1.0514681171243403e-5 Iteration 20: d = 9.549606127458972e-8 Iteration 30: d = 1.0955606717266415e-9 Iteration 40: d = 1.3767541819315057e-11 Iteration 50: d = 1.812202461837145e-13 Iteration 60: d = 2.451803436433138e-15 Converged after 61 iterations. d = 1.6052859696009234e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016124434338412534 Iteration 10: d = 2.0706578914917643e-5 Iteration 20: d = 2.801664880649836e-7 Iteration 30: d = 3.926267812003258e-9 Iteration 40: d = 5.527992686225601e-11 Iteration 50: d = 7.795684960133532e-13 Iteration 60: d = 1.098311052595988e-14 Converged after 64 iterations. d = 2.0194826744270686e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017913854297130387 Iteration 10: d = 2.6284366817655194e-5 Iteration 20: d = 3.3263718540151617e-7 Iteration 30: d = 4.444910928177396e-9 Iteration 40: d = 6.02139182136449e-11 Iteration 50: d = 8.203646564852335e-13 Iteration 60: d = 1.1178095891711664e-14 Converged after 64 iterations. d = 1.9959369337237303e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014537579400509353 Iteration 10: d = 1.1464754142635007e-5 Iteration 20: d = 1.0396275096672558e-7 Iteration 30: d = 1.3187033893269633e-9 Iteration 40: d = 1.8346674022182214e-11 Iteration 50: d = 2.588212127796051e-13 Iteration 60: d = 3.667911791474297e-15 Converged after 62 iterations. d = 1.5411016196405033e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013714051699099633 Iteration 10: d = 1.4946869848064043e-5 Iteration 20: d = 1.708758117532134e-7 Iteration 30: d = 2.207212430394545e-9 Iteration 40: d = 3.012030132870591e-11 Iteration 50: d = 4.2157939881257174e-13 Iteration 60: d = 5.938922044248172e-15 Converged after 63 iterations. d = 1.6842262906446398e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011486207847769547 Iteration 10: d = 8.175163554556099e-6 Iteration 20: d = 7.648440904698936e-8 Iteration 30: d = 9.682925763308322e-10 Iteration 40: d = 1.2941771159802178e-11 Iteration 50: d = 1.7585461911390322e-13 Iteration 60: d = 2.39333914221014e-15 Converged after 61 iterations. d = 1.5880143326677323e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002142983192630196 Iteration 10: d = 3.293264965086054e-5 Iteration 20: d = 4.1517170129502974e-7 Iteration 30: d = 5.431583054008024e-9 Iteration 40: d = 7.197822187949713e-11 Iteration 50: d = 9.60312095573007e-13 Iteration 60: d = 1.2898698406109955e-14 Converged after 65 iterations. d = 1.5242980764546537e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8653.840003937876 Iteration 2: convergence error = 4811.4264863430635 Iteration 3: convergence error = 1102.310820456705 Iteration 4: convergence error = 318.6822071963418 Iteration 5: convergence error = 94.9486628829643 Iteration 6: convergence error = 28.901242105240954 Iteration 7: convergence error = 8.74680561968762 Iteration 8: convergence error = 2.637109041320855 Iteration 9: convergence error = 0.7932542810142422 Iteration 10: convergence error = 0.2382970181379278 Iteration 11: convergence error = 0.0715308467572413 Iteration 12: convergence error = 0.021462432182488556 Iteration 13: convergence error = 0.006438080760972298 Iteration 14: convergence error = 0.0019309541307848122 Iteration 15: convergence error = 0.0005790977102151373 Iteration 16: convergence error = 0.00017366454585499014 Iteration 17: convergence error = 5.20785006301594e-5 Iteration 18: convergence error = 1.561704630148597e-5 Iteration 19: convergence error = 4.683121687776293e-6 Iteration 20: convergence error = 1.4043275768926833e-6 Iteration 21: convergence error = 4.211167379253311e-7 Iteration 22: convergence error = 1.2616533240361605e-7 Iteration 23: convergence error = 3.6971869121771306e-8 Iteration 24: convergence error = 1.0733856470324099e-8 Iteration 25: convergence error = 3.1081981433089823e-9 Iteration 26: convergence error = 8.974438969744369e-10 Iteration 27: convergence error = 2.594333636807278e-10 Iteration 28: convergence error = 7.344169716816396e-11 Iteration 29: convergence error = 2.091837814077735e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.4406252325786 K, F = -7418.684512718128, relative_change = 0.03255937476742142 Iter 2: T = 936.9609114399065 K, F = -6288.4104903385105, relative_change = 0.03150551361779392 Iter 3: T = 908.5291898389057 K, F = -5328.816098679273, relative_change = 0.03034461870699317 Iter 5: T = 857.6690703877347 K, F = -3822.8446518942396, relative_change = 0.02770880864580418 Iter 10: T = 763.2808565655458 K, F = -1654.8631662823009, relative_change = 0.01975427506514647 Iter 15: T = 708.2097778674646 K, F = -708.3197713970607, relative_change = 0.011783257466004043 Iter 20: T = 679.9731356553283 K, F = -300.13975980325205, relative_change = 0.006013669590035757 Iter 25: T = 666.8317242005851 K, F = -126.33604451274903, relative_change = 0.0027726401084053865 Iter 30: T = 661.052467224467 K, F = -52.99000601925374, relative_change = 0.0012117006554844235 Iter 35: T = 658.5812387136575 K, F = -22.189150009737844, relative_change = 0.0005164826233068441 Iter 40: T = 657.5378621410173 K, F = -9.284761222298918, relative_change = 0.00021775026602771785 Iter 45: T = 657.0997519560979 K, F = -3.883877390074853, relative_change = 9.137568244301605e-5 Iter 50: T = 656.9162194083777 K, F = -1.6244381497709108, relative_change = 3.8268878354955074e-5 Iter 55: T = 656.8394095852813 K, F = -0.6793864434701168, relative_change = 1.6014049945197066e-5 Iter 60: T = 656.80727728732 K, F = -0.2841322505378523, relative_change = 6.69893835216196e-6 Iter 65: T = 656.7938375119194 K, F = -0.11882832721891334, relative_change = 2.8018684606211582e-6 Iter 70: T = 656.7882165461286 K, F = -0.04969557016360382, relative_change = 1.1718260072836158e-6 Iter 75: T = 656.7858657401684 K, F = -0.020783306221824782, relative_change = 4.900805784603736e-7 Iter 80: T = 656.7848825961321 K, F = -0.00869183128972778, relative_change = 2.0495911569718953e-7 Iter 85: T = 656.7844714319966 K, F = -0.0036350284187965376, relative_change = 8.57166235758282e-8 Iter 90: T = 656.7842994779725 K, F = -0.0015202124317098553, relative_change = 3.58477635328338e-8 Iter 95: T = 656.7842275646983 K, F = -0.0006357710179356602, relative_change = 1.4991971199247646e-8 Iter 100: T = 656.7841974896999 K, F = -0.00026588703704627514, relative_change = 6.269822873706809e-9 Iter 105: T = 656.7841849119749 K, F = -0.0001111971344077145, relative_change = 2.622115045968061e-9 Iter 110: T = 656.78417965182 K, F = -4.650397067490486e-5, relative_change = 1.0965998944403312e-9 Iter 115: T = 656.7841774519601 K, F = -1.9448515713782477e-5, relative_change = 4.5861117468761885e-10 Iter 120: T = 656.7841765319525 K, F = -8.133601152815473e-6, relative_change = 1.917966624757306e-10 Iter 125: T = 656.7841761471943 K, F = -3.401568055338977e-6, relative_change = 8.021162948122808e-11 Iter 130: T = 656.7841759862839 K, F = -1.422577470822084e-6, relative_change = 3.3545487044401326e-11 Iter 135: T = 656.7841759189893 K, F = -5.949388990345028e-7, relative_change = 1.4029123579452488e-11 Iter 140: T = 656.7841758908457 K, F = -2.4880943766403263e-7, relative_change = 5.867120733069573e-12 Iter 145: T = 656.7841758790759 K, F = -1.0405479161645914e-7, relative_change = 2.453693200113296e-12 Iter 150: T = 656.7841758741536 K, F = -4.351675597646931e-8, relative_change = 1.0261590703851127e-12 Iter 155: T = 656.7841758720949 K, F = -1.819862771590408e-8, relative_change = 4.2913784542242707e-13 Converged in 159 iterations to T = 656.784175871352 K Iter 1: T = 970.3073435057878 K, F = -6765.5000272143325, relative_change = 0.029692656494212183 Iter 2: T = 942.7782878547031 K, F = -5730.27873367422, relative_change = 0.028371480268942765 Iter 3: T = 917.368294998188 K, F = -4851.714305453325, relative_change = 0.026952246550284494 Iter 5: T = 872.6906198837928 K, F = -3473.90736315834, relative_change = 0.023864131379318622 Iter 10: T = 793.343671966332 K, F = -1495.3576910045285, relative_change = 0.015558381858898742 Iter 15: T = 750.0750663012072 K, F = -636.5765124666896, relative_change = 0.008527918450058273 Iter 20: T = 729.0587558005282 K, F = -268.7129008219396, relative_change = 0.004105559297690809 Iter 25: T = 719.5961637392031 K, F = -112.87047305361484, relative_change = 0.0018336363440810265 Iter 30: T = 715.5041413249279 K, F = -47.29469319652705, relative_change = 0.0007893446146875347 Iter 35: T = 713.767794299888 K, F = -19.795499835079376, relative_change = 0.00033421950553184205 Iter 40: T = 713.0371427110114 K, F = -8.2815941898973, relative_change = 0.00014050594456448945 Iter 45: T = 712.7307813638399 K, F = -3.4639674828096023, relative_change = 5.8890163757758134e-5 Iter 50: T = 712.6025178486096 K, F = -1.4487612135798278, relative_change = 2.465118716532107e-5 Iter 55: T = 712.5488520612171 K, F = -0.6059047571613645, relative_change = 1.0313382011373861e-5 Iter 60: T = 712.526404107583 K, F = -0.2533993200385552, relative_change = 4.313872723550488e-6 Iter 65: T = 712.5170153563793 K, F = -0.10597509669346328, relative_change = 1.8042343610924268e-6 Iter 70: T = 712.5130887374974 K, F = -0.04432013409083113, relative_change = 7.545735690612109e-7 Iter 75: T = 712.5114465556736 K, F = -0.01853522389238682, relative_change = 3.155753882186964e-7 Iter 80: T = 712.5107597716154 K, F = -0.007751654526453544, relative_change = 1.3197804499324793e-7 Iter 85: T = 712.5104725496195 K, F = -0.003241834940544086, relative_change = 5.519490804792654e-8 Iter 90: T = 712.5103524298281 K, F = -0.001355774164930823, relative_change = 2.3083189552937374e-8 Iter 95: T = 712.5103021942755 K, F = -0.0005670009609702875, relative_change = 9.653669018641741e-9 Iter 100: T = 712.5102811851636 K, F = -0.00023712657565289064, relative_change = 4.037280279605235e-9 Iter 105: T = 712.5102723989015 K, F = -9.916916734808989e-5, relative_change = 1.688438953261547e-9 Iter 110: T = 712.5102687243817 K, F = -4.14737305796109e-5, relative_change = 7.061253597229421e-10 Iter 115: T = 712.5102671876535 K, F = -1.7344809890240676e-5, relative_change = 2.9531006923357357e-10 Iter 120: T = 712.5102665449754 K, F = -7.253804230944461e-6, relative_change = 1.2350215726790052e-10 Iter 125: T = 712.5102662761998 K, F = -3.033628238169328e-6, relative_change = 5.1650088768227415e-11 Iter 130: T = 712.5102661637947 K, F = -1.2686995344290963e-6, relative_change = 2.160068356372983e-11 Iter 135: T = 712.5102661167854 K, F = -5.305844650305147e-7, relative_change = 9.033649674753404e-12 Iter 140: T = 712.5102660971255 K, F = -2.21895603225164e-7, relative_change = 3.77796048750177e-12 Iter 145: T = 712.5102660889037 K, F = -9.279933865791179e-8, relative_change = 1.5799872987090775e-12 Iter 150: T = 712.5102660854652 K, F = -3.881017685003485e-8, relative_change = 6.607761151311734e-13 Iter 155: T = 712.5102660840271 K, F = -1.6230463084632163e-8, relative_change = 2.763373737096638e-13 Converged in 157 iterations to T = 712.5102660837227 K Iter 1: T = 974.3592829888905 K, F = -5842.261761599865, relative_change = 0.025640717011109416 Iter 2: T = 950.9081866853744 K, F = -4942.836287623907, relative_change = 0.024068222793114765 Iter 3: T = 929.5724333201696 K, F = -4180.074803993513, relative_change = 0.022437238067721244 Iter 5: T = 892.895456752757 K, F = -2985.451593678484, relative_change = 0.019083862030763947 Iter 10: T = 831.0737422402088 K, F = -1276.7056075619557, relative_change = 0.01122625025367776 Iter 15: T = 799.6653221720252 K, F = -540.6259417856545, relative_change = 0.005671370836977498 Iter 20: T = 785.1335466340627 K, F = -227.47602972300754, relative_change = 0.002599792245060299 Iter 25: T = 778.762481897159 K, F = -95.39421446830788, relative_change = 0.0011329991612110072 Iter 30: T = 776.042086497451 K, F = -39.94227459454131, relative_change = 0.0004823358417140193 Iter 35: T = 774.8942283731509 K, F = -16.712729687539692, relative_change = 0.00020324510031774785 Iter 40: T = 774.4123755091512 K, F = -6.990940521516711, relative_change = 8.526948881263978e-5 Iter 45: T = 774.210541079758 K, F = -2.923953900203367, relative_change = 3.5708155423784e-5 Iter 50: T = 774.1260757690061 K, F = -1.222877805179548, relative_change = 1.4941890018354456e-5 Iter 55: T = 774.0907416064545 K, F = -0.511430040347278, relative_change = 6.25033198634314e-6 Iter 60: T = 774.0759627296665 K, F = -0.21388753923710058, relative_change = 2.614218073220177e-6 Iter 65: T = 774.0697817280992 K, F = -0.08945056613607671, relative_change = 1.093341753153941e-6 Iter 70: T = 774.067196707163 K, F = -0.03740933749745001, relative_change = 4.5725636797378683e-7 Iter 75: T = 774.0661156113946 K, F = -0.01564503912916948, relative_change = 1.912314362800881e-7 Iter 80: T = 774.0656634826346 K, F = -0.006542943505656873, relative_change = 7.997550874784922e-8 Iter 85: T = 774.0654743967079 K, F = -0.0027363373417055303, relative_change = 3.344675455966219e-8 Iter 90: T = 774.0653953186663 K, F = -0.001144368995524614, relative_change = 1.3987839493666767e-8 Iter 95: T = 774.0653622472764 K, F = -0.00047858878746664946, relative_change = 5.849882800487415e-9 Iter 100: T = 774.0653484164246 K, F = -0.0002001515461795833, relative_change = 2.4464910540280443e-9 Iter 105: T = 774.065342632197 K, F = -8.370576790428519e-5, relative_change = 1.0231518244209534e-9 Iter 110: T = 774.0653402131638 K, F = -3.500675107848128e-5, relative_change = 4.2789430958795443e-10 Iter 115: T = 774.0653392014954 K, F = -1.4640240729946186e-5, relative_change = 1.789505036979719e-10 Iter 120: T = 774.0653387784034 K, F = -6.122723584578438e-6, relative_change = 7.4839238816202e-11 Iter 125: T = 774.0653386014613 K, F = -2.5605960606300826e-6, relative_change = 3.1298662703728877e-11 Iter 130: T = 774.065338527462 K, F = -1.0708703332973357e-6, relative_change = 1.3089455963745901e-11 Iter 135: T = 774.0653384965148 K, F = -4.4785127695234905e-7, relative_change = 5.474173097167462e-12 Iter 140: T = 774.0653384835722 K, F = -1.8729746953383142e-7, relative_change = 2.289373329352716e-12 Iter 145: T = 774.0653384781593 K, F = -7.832766557580584e-8, relative_change = 9.57414261772973e-13 Iter 150: T = 774.0653384758957 K, F = -3.275725857232459e-8, relative_change = 4.0039833057213577e-13 Converged in 154 iterations to T = 774.0653384750786 K Iter 1: T = 970.3931847230781 K, F = -6745.941024198662, relative_change = 0.029606815276921893 Iter 2: T = 942.9516395165133 K, F = -5713.579018694783, relative_change = 0.028278790121960565 Iter 3: T = 917.630307798237 K, F = -4837.452649552737, relative_change = 0.02685326654849385 Iter 5: T = 873.130748262391 K, F = -3463.502864720832, relative_change = 0.023755314047255487 Iter 10: T = 794.1963182344762 K, F = -1490.648599173885, relative_change = 0.01544971781311573 Iter 15: T = 751.2283563615741 K, F = -634.4851560856343, relative_change = 0.008450472340500996 Iter 20: T = 730.3852414394712 K, F = -267.80630101790837, relative_change = 0.004062766757001839 Iter 25: T = 721.00766703887 K, F = -112.48442722177582, relative_change = 0.0018132475957377738 Iter 30: T = 716.9538993027006 K, F = -47.13191464721673, relative_change = 0.0007803137624245865 Iter 35: T = 715.23406859933 K, F = -19.727181167082506, relative_change = 0.00033034875627631225 Iter 40: T = 714.5104185866751 K, F = -8.252979267087566, relative_change = 0.00013887026953765647 Iter 45: T = 714.2070021498688 K, F = -3.4519927588961403, relative_change = 5.8203118391771204e-5 Iter 50: T = 714.0799731850501 K, F = -1.4437519036930944, relative_change = 2.436333172722462e-5 Iter 55: T = 714.0268242195461 K, F = -0.6038095697220794, relative_change = 1.0192905445951704e-5 Iter 60: T = 714.0045924977392 K, F = -0.25252304664083924, relative_change = 4.26347188354324e-6 Iter 65: T = 713.9952941931472 K, F = -0.1056086215244223, relative_change = 1.7831533107436208e-6 Iter 70: T = 713.9914054028962 K, F = -0.04416686854496377, relative_change = 7.457567292593761e-7 Iter 75: T = 713.9897790419436 K, F = -0.01847112619095126, relative_change = 3.118879943159009e-7 Iter 80: T = 713.9890988744477 K, F = -0.007724848065815082, relative_change = 1.3043591778365668e-7 Iter 85: T = 713.9888144195919 K, F = -0.0032306241514140632, relative_change = 5.454996938777772e-8 Iter 90: T = 713.9886954570543 K, F = -0.0013510856782792402, relative_change = 2.281346804907583e-8 Iter 95: T = 713.9886457054793 K, F = -0.000565040179385079, relative_change = 9.540868179317535e-9 Iter 100: T = 713.9886248987727 K, F = -0.00023630655302075976, relative_change = 3.990105601954843e-9 Iter 105: T = 713.988616197159 K, F = -9.882622288548415e-5, relative_change = 1.6687099168248449e-9 Iter 110: T = 713.98861255804 K, F = -4.133030581054964e-5, relative_change = 6.978744186655431e-10 Iter 115: T = 713.988611036117 K, F = -1.728482763685424e-5, relative_change = 2.918594219098485e-10 Iter 120: T = 713.9886103996307 K, F = -7.228721524921156e-6, relative_change = 1.220590993841857e-10 Iter 125: T = 713.9886101334446 K, F = -3.0231379894996024e-6, relative_change = 5.1046578526408407e-11 Iter 130: T = 713.9886100221223 K, F = -1.264313184812238e-6, relative_change = 2.1348301844827022e-11 Iter 135: T = 713.988609975566 K, F = -5.28750343953277e-7, relative_change = 8.928105854129341e-12 Iter 140: T = 713.9886099560955 K, F = -2.21129223154648e-7, relative_change = 3.733832298361344e-12 Iter 145: T = 713.9886099479527 K, F = -9.247772492226858e-8, relative_change = 1.5615137216441386e-12 Iter 150: T = 713.9886099445474 K, F = -3.8675127433940304e-8, relative_change = 6.530409590695122e-13 Iter 155: T = 713.9886099431233 K, F = -1.6174802941471e-8, relative_change = 2.731163289326166e-13 Converged in 157 iterations to T = 713.9886099428219 K Iter 1: T = 969.3933830252904 K, F = -6973.746792096527, relative_change = 0.03060661697470958 Iter 2: T = 940.9295628581937 K, F = -5908.129370697029, relative_change = 0.029362507177701846 Iter 3: T = 914.5690951216537 K, F = -5003.648478128743, relative_change = 0.028015346501035255 Iter 5: T = 867.9703696233684 K, F = -3584.841963955049, relative_change = 0.025044704463012133 Iter 10: T = 784.1032513130217 K, F = -1545.726463316871, relative_change = 0.016771066136242206 Iter 15: T = 737.4643538726876 K, F = -659.0318409227652, relative_change = 0.009414459641301843 Iter 20: T = 714.4719532073638 K, F = -278.47654380333046, relative_change = 0.0046037024623724445 Iter 25: T = 704.02911280337 K, F = -117.03521172578051, relative_change = 0.002073095965045258 Iter 30: T = 699.4936971949502 K, F = -49.05225862709723, relative_change = 0.0008958494920266776 Iter 35: T = 697.5654604672658 K, F = -20.533432792503586, relative_change = 0.00037995203929366335 Iter 40: T = 696.7533792769011 K, F = -8.590723569376186, relative_change = 0.00015984629204742208 Iter 45: T = 696.4127530764409 K, F = -3.593340264031255, relative_change = 6.701650099424115e-5 Iter 50: T = 696.2701225732469 K, F = -1.5028824597586001, relative_change = 2.8056394359196493e-5 Iter 55: T = 696.2104418446153 K, F = -0.6285417118946267, relative_change = 1.1738650481101844e-5 Iter 60: T = 696.1854772331483 K, F = -0.26286685543962546, relative_change = 4.91014186566679e-6 Iter 65: T = 696.1750357865084 K, F = -0.10993461889120615, relative_change = 2.0536370787816053e-6 Iter 70: T = 696.1706688829966 K, F = -0.04597606857540326, relative_change = 8.588830338342711e-7 Iter 75: T = 696.1688425627905 K, F = -0.019227758095790914, relative_change = 3.5919994875120653e-7 Iter 80: T = 696.1680787687964 K, F = -0.008041281061472283, relative_change = 1.502225490248072e-7 Iter 85: T = 696.167759340139 K, F = -0.0033629602959974747, relative_change = 6.282501105301526e-8 Iter 90: T = 696.1676257511047 K, F = -0.001406430248555024, relative_change = 2.6274195607466675e-8 Iter 95: T = 696.1675698825482 K, F = -0.0005881859440353132, relative_change = 1.0988186913520693e-8 Iter 100: T = 696.1675465176457 K, F = -0.00024598638924899774, relative_change = 4.595391784812308e-9 Iter 105: T = 696.1675367461636 K, F = -0.00010287444505241439, relative_change = 1.921847841650283e-9 Iter 110: T = 696.1675326596129 K, F = -4.3023320929314046e-5, relative_change = 8.037397308667239e-10 Iter 115: T = 696.1675309505688 K, F = -1.7992867832994364e-5, relative_change = 3.3613358072476814e-10 Iter 120: T = 696.167530235826 K, F = -7.52483262533854e-6, relative_change = 1.4057508622584521e-10 Iter 125: T = 696.167529936912 K, F = -3.146975153245357e-6, relative_change = 5.879018530362554e-11 Iter 130: T = 696.1675298119027 K, F = -1.3161026688468525e-6, relative_change = 2.4586759055425013e-11 Iter 135: T = 696.1675297596222 K, F = -5.504097717601297e-7, relative_change = 1.0282474737866467e-11 Iter 140: T = 696.1675297377578 K, F = -2.3018762385085267e-7, relative_change = 4.300247831721502e-12 Iter 145: T = 696.167529728614 K, F = -9.626837893517148e-8, relative_change = 1.798436774660984e-12 Iter 150: T = 696.1675297247898 K, F = -4.0259521716379254e-8, relative_change = 7.521078591720196e-13 Iter 155: T = 696.1675297231905 K, F = -1.683506967165016e-8, relative_change = 3.1450418857668024e-13 Converged in 157 iterations to T = 696.167529722852 K Iter 1: T = 963.5503587719062 K, F = -8305.085426381094, relative_change = 0.03644964122809385 Iter 2: T = 928.9776525166067 K, F = -7047.16480075326, relative_change = 0.035880539030014154 Iter 3: T = 896.2482904169299 K, F = -5978.856913430524, relative_change = 0.035231592504957145 Iter 5: T = 836.2005885431212 K, F = -4301.176457611351, relative_change = 0.03366488968870895 Iter 10: T = 716.400412943452 K, F = -1879.6893609757415, relative_change = 0.027956805311623045 Iter 15: T = 636.6349501206405 K, F = -813.9991184268522, relative_change = 0.020050373516780896 Iter 20: T = 589.8745854958629 K, F = -348.5480849717664, relative_change = 0.012033972466369466 Iter 25: T = 565.8002918116272 K, F = -147.7362202910459, relative_change = 0.006169963644616991 Iter 30: T = 554.566007966956 K, F = -62.196534794608255, relative_change = 0.0028522159739329976 Iter 35: T = 549.6184705275117 K, F = -26.089746659591782, relative_change = 0.0012480793122143904 Iter 40: T = 547.501492006367 K, F = -10.925294829534153, relative_change = 0.0005322949525134032 Iter 45: T = 546.6074243077641 K, F = -4.571622911484281, relative_change = 0.0002244723793248054 Iter 50: T = 546.2319619655451 K, F = -1.912353640141497, relative_change = 9.420639944117318e-5 Iter 55: T = 546.0746655626665 K, F = -0.7998474267312916, relative_change = 3.94561456011397e-5 Iter 60: T = 546.0088343317726 K, F = -0.3345194570161133, relative_change = 1.65111806892944e-5 Iter 65: T = 545.9812945191726 K, F = -0.13990243121158874, relative_change = 6.90694969276636e-6 Iter 70: T = 545.969775569688 K, F = -0.05850928723904339, relative_change = 2.888879719426327e-6 Iter 75: T = 545.9649579501174 K, F = -0.02446935608337092, relative_change = 1.2082183793576101e-6 Iter 80: T = 545.962943119067 K, F = -0.01023338977814986, relative_change = 5.05300867112805e-7 Iter 85: T = 545.9621004847868 K, F = -0.004279728062602101, relative_change = 2.113245208177492e-7 Iter 90: T = 545.9617480836907 K, F = -0.001789833778262695, relative_change = 8.837872928250932e-8 Iter 95: T = 545.9616007051031 K, F = -0.0007485299300871995, relative_change = 3.696109095333937e-8 Iter 100: T = 545.9615390695756 K, F = -0.00031304416830263415, relative_change = 1.5457578555970552e-8 Iter 105: T = 545.9615132928544 K, F = -0.00013091881177595965, relative_change = 6.464545509124966e-9 Iter 110: T = 545.9615025127206 K, F = -5.475181107317262e-5, relative_change = 2.7035504131187193e-9 Iter 115: T = 545.9614980043395 K, F = -2.2897861429949096e-5, relative_change = 1.1306571225465927e-9 Iter 120: T = 545.9614961188807 K, F = -9.576159033547471e-6, relative_change = 4.728543156338249e-10 Iter 125: T = 545.9614953303594 K, F = -4.004864055523472e-6, relative_change = 1.9775332245090678e-10 Iter 130: T = 545.9614950005903 K, F = -1.6748816192291294e-6, relative_change = 8.270278373373392e-11 Iter 135: T = 545.961494862677 K, F = -7.004553918277256e-7, relative_change = 3.458728676107034e-11 Iter 140: T = 545.9614948049999 K, F = -2.9293879505454257e-7, relative_change = 1.4464815648933821e-11 Iter 145: T = 545.9614947808788 K, F = -1.225106739111137e-7, relative_change = 6.049367115044289e-12 Iter 150: T = 545.961494770791 K, F = -5.123521287786481e-8, relative_change = 2.5299070035953575e-12 Iter 155: T = 545.9614947665721 K, F = -2.1426806051660918e-8, relative_change = 1.058018961021826e-12 Iter 160: T = 545.9614947648078 K, F = -8.960936825896937e-9, relative_change = 4.424757029864768e-13 Converged in 164 iterations to T = 545.961494764171 K Iter 1: T = 966.9252953574348 K, F = -7536.102914974886, relative_change = 0.03307470464256513 Iter 2: T = 935.909314866967 K, F = -6388.831264165981, relative_change = 0.03207691497925125 Iter 3: T = 906.921604765645 K, F = -5414.75226166463, relative_change = 0.030972776572313804 Iter 5: T = 854.8996325389129 K, F = -3885.881576778835, relative_change = 0.028445993617283706 Iter 10: T = 757.5156016915879 K, F = -1684.0402258912477, relative_change = 0.02064617632575757 Iter 15: T = 699.8771738928144 K, F = -721.6730364880665, relative_change = 0.012548394760006859 Iter 20: T = 669.9504021758001 K, F = -306.07939643668374, relative_change = 0.006495315284089063 Iter 25: T = 655.9069304598675 K, F = -128.90546074149168, relative_change = 0.0030192491947095565 Iter 30: T = 649.7038426553984 K, F = -54.08202280347327, relative_change = 0.0013247508606907521 Iter 35: T = 647.045933680426 K, F = -22.649120412827795, relative_change = 0.0005656818515192586 Iter 40: T = 645.9227256722928 K, F = -9.477717043023825, relative_change = 0.0002386769414792742 Iter 45: T = 645.4509126427328 K, F = -3.9646784794324947, relative_change = 0.00010019000947802518 Iter 50: T = 645.2532291739254 K, F = -1.6582485355672794, relative_change = 4.196615996592044e-5 Iter 55: T = 645.1704914257233 K, F = -0.6935295770515522, relative_change = 1.7562231873365532e-5 Iter 60: T = 645.1358782739443 K, F = -0.29004764275752426, relative_change = 7.346745354677364e-6 Iter 65: T = 645.121400673929 K, F = -0.12130231372192207, relative_change = 3.07284838159388e-6 Iter 70: T = 645.1153456246648 K, F = -0.05073023815299266, relative_change = 1.2851634198464802e-6 Iter 75: T = 645.1128132705715 K, F = -0.02121601975625509, relative_change = 5.374814524489505e-7 Iter 80: T = 645.1117541993214 K, F = -0.008872797784557018, relative_change = 2.2478304460881484e-7 Iter 85: T = 645.1113112812357 K, F = -0.0037107108624238605, relative_change = 9.400728294479834e-8 Iter 90: T = 645.1111260472807 K, F = -0.0015518637478171837, relative_change = 3.931502595502143e-8 Iter 95: T = 645.1110485801723 K, F = -0.0006490079786664049, relative_change = 1.6442023437968272e-8 Iter 100: T = 645.1110161824927 K, F = -0.00027142289238291095, relative_change = 6.876252329551258e-9 Iter 105: T = 645.1110026333944 K, F = -0.00011351229581907374, relative_change = 2.8757311505879404e-9 Iter 110: T = 645.1109969669994 K, F = -4.747219853218354e-5, relative_change = 1.2026651811578982e-9 Iter 115: T = 645.1109945972453 K, F = -1.985344022120694e-5, relative_change = 5.029689467962461e-10 Iter 120: T = 645.1109936061858 K, F = -8.302945949945073e-6, relative_change = 2.1034762558854146e-10 Iter 125: T = 645.110993191713 K, F = -3.472391919723261e-6, relative_change = 8.796990876059936e-11 Iter 130: T = 645.1109930183753 K, F = -1.4521959990632105e-6, relative_change = 3.6790072277815904e-11 Iter 135: T = 645.1109929458836 K, F = -6.073258613237265e-7, relative_change = 1.5386051442542206e-11 Iter 140: T = 645.1109929155666 K, F = -2.539913325216858e-7, relative_change = 6.434640705889206e-12 Iter 145: T = 645.1109929028877 K, F = -1.0622211765731748e-7, relative_change = 2.691041286415265e-12 Iter 150: T = 645.1109928975851 K, F = -4.44222363338298e-8, relative_change = 1.125397183283093e-12 Iter 155: T = 645.1109928953676 K, F = -1.8579056515477532e-8, relative_change = 4.706835944455784e-13 Converged in 160 iterations to T = 645.1109928944402 K Iter 1: T = 965.2131920218886 K, F = -7926.207288609823, relative_change = 0.0347868079781114 Iter 2: T = 932.4026180753135 K, F = -6722.658452269572, relative_change = 0.03399308486226231 Iter 3: T = 901.5388478404321 K, F = -5700.638897778948, relative_change = 0.03310133373347995 Iter 5: T = 845.5385620948696 K, F = -4096.017900817018, relative_change = 0.031005323651308994 Iter 10: T = 737.4405823731348 K, F = -1782.2380763761373, relative_change = 0.02399671333768061 Iter 15: T = 669.9246523784145 K, F = -767.3153070076722, relative_change = 0.015691173230346304 Iter 20: T = 633.0288344607075 K, F = -326.70183864909734, relative_change = 0.008622893040055571 Iter 25: T = 615.0794031436765 K, F = -137.9229785131724, relative_change = 0.004158168718117332 Iter 30: T = 606.9902523509581 K, F = -57.93662903387498, relative_change = 0.0018587364610526012 Iter 35: T = 603.4905878926658 K, F = -24.27709978434107, relative_change = 0.0008004693937204753 Iter 40: T = 602.0052922892817 K, F = -10.161455194799267, relative_change = 0.00033898908223260895 Iter 45: T = 601.3802280258457 K, F = -4.25114121353017, relative_change = 0.00014252168230881985 Iter 50: T = 601.1181296069758 K, F = -1.778141424908295, relative_change = 5.9736892796989555e-5 Iter 55: T = 601.0083958275485 K, F = -0.743686134512147, relative_change = 2.5005953767996224e-5 Iter 60: T = 600.9624826296924 K, F = -0.31102650180245905, relative_change = 1.0461864331026314e-5 Iter 65: T = 600.9432774674143 K, F = -0.13007641093797484, relative_change = 4.375989879298461e-6 Iter 70: T = 600.9352449892771 K, F = -0.05439975573265854, relative_change = 1.8302160101132408e-6 Iter 75: T = 600.9318855973053 K, F = -0.022750670758808822, relative_change = 7.654400194546952e-7 Iter 80: T = 600.930480639578 K, F = -0.009514609772439675, relative_change = 3.201199750041359e-7 Iter 85: T = 600.929893066 K, F = -0.00397912475692791, relative_change = 1.3387866427363934e-7 Iter 90: T = 600.9296473351042 K, F = -0.0016641177244892114, relative_change = 5.598977300124156e-8 Iter 95: T = 600.9295445674026 K, F = -0.0006959539459970299, relative_change = 2.3415612133847833e-8 Iter 100: T = 600.929501588704 K, F = -0.0002910562595018207, relative_change = 9.792692234090848e-9 Iter 105: T = 600.9294836144957 K, F = -0.0001217232057379447, relative_change = 4.095421494535206e-9 Iter 110: T = 600.9294760974665 K, F = -5.090609831343018e-5, relative_change = 1.7127542804011672e-9 Iter 115: T = 600.9294729537551 K, F = -2.128953852181814e-5, relative_change = 7.162943212556718e-10 Iter 120: T = 600.9294716390173 K, F = -8.903538792182086e-6, relative_change = 2.9956282686980266e-10 Iter 125: T = 600.9294710891784 K, F = -3.723566905033948e-6, relative_change = 1.252807741961325e-10 Iter 130: T = 600.9294708592291 K, F = -1.5572400198782255e-6, relative_change = 5.2393911706330936e-11 Iter 135: T = 600.9294707630615 K, F = -6.512564561522716e-7, relative_change = 2.1911762382324247e-11 Iter 140: T = 600.9294707228432 K, F = -2.72363720521529e-7, relative_change = 9.163777297187731e-12 Iter 145: T = 600.9294707060234 K, F = -1.1390561127644361e-7, relative_change = 3.832396079689885e-12 Iter 150: T = 600.929470698989 K, F = -4.763593114409659e-8, relative_change = 1.6027283795187502e-12 Iter 155: T = 600.9294706960472 K, F = -1.9921867988603736e-8, relative_change = 6.702785572201925e-13 Iter 160: T = 600.9294706948169 K, F = -8.331593137622662e-9, relative_change = 2.803195077329297e-13 Converged in 162 iterations to T = 600.9294706945566 K Iter 1: T = 980.0793978130408 K, F = -4538.9281576833255, relative_change = 0.019920602186959197 Iter 2: T = 962.205213905569 K, F = -3834.1102643203294, relative_change = 0.018237485603060755 Iter 3: T = 946.2569928157113 K, F = -3237.2290511896435, relative_change = 0.016574656694203785 Iter 5: T = 919.616606647017 K, F = -2304.592144169437, relative_change = 0.013398897890397776 Iter 10: T = 877.2948410052737 K, F = -978.4462824264134, relative_change = 0.007046847049587577 Iter 15: T = 857.2469322256695 K, F = -412.32864467477333, relative_change = 0.0033066292913192566 Iter 20: T = 848.3464077074747 K, F = -173.04520692656106, relative_change = 0.0014576373430970986 Iter 25: T = 844.5234928618804 K, F = -72.48012254795216, relative_change = 0.0006237402362862793 Iter 30: T = 842.9062425239134 K, F = -30.33176631028315, relative_change = 0.00026341356323477397 Iter 35: T = 842.2265929325096 K, F = -12.688583284685755, relative_change = 0.00011061655324734105 Iter 40: T = 841.9417738043261 K, F = -5.307127193036166, relative_change = 4.634102436784424e-5 Iter 45: T = 841.8225569561512 K, F = -2.2196108396709553, relative_change = 1.939437298346076e-5 Iter 50: T = 841.7726811638895 K, F = -0.9282864632859291, relative_change = 8.113410167200345e-6 Iter 55: T = 841.7518193822276 K, F = -0.388223756862746, relative_change = 3.3935540334237274e-6 Iter 60: T = 841.7430941884611 K, F = -0.16236038377136963, relative_change = 1.4192998718895273e-6 Iter 65: T = 841.7394451124528 K, F = -0.0679011515722423, relative_change = 5.935812832749708e-7 Iter 70: T = 841.7379190085354 K, F = -0.028397090001076597, relative_change = 2.482450774700456e-7 Iter 75: T = 841.7372807707218 K, F = -0.011876005231036268, relative_change = 1.0381945762628137e-7 Iter 80: T = 841.7370138515336 K, F = -0.004966687750990406, relative_change = 4.341860726773418e-8 Iter 85: T = 841.7369022226517 K, F = -0.002077128224976077, relative_change = 1.815819236335737e-8 Iter 90: T = 841.7368555381046 K, F = -0.0008686798469217383, relative_change = 7.593975055700224e-9 Iter 95: T = 841.7368360140667 K, F = -0.0003632922897254254, relative_change = 3.175891440971741e-9 Iter 100: T = 841.7368278488802 K, F = -0.00015193317333661582, relative_change = 1.3281957826581057e-9 Iter 105: T = 841.7368244341018 K, F = -6.354026395238854e-5, relative_change = 5.554673175534827e-10 Iter 110: T = 841.7368230060007 K, F = -2.657330008282166e-5, relative_change = 2.3230309282074e-10 Iter 115: T = 841.7368224087518 K, F = -1.1113270649065754e-5, relative_change = 9.71519210563744e-11 Iter 120: T = 841.7368221589751 K, F = -4.64770213093324e-6, relative_change = 4.063009040402377e-11 Iter 125: T = 841.7368220545155 K, F = -1.94372624973127e-6, relative_change = 1.6992004020288147e-11 Iter 130: T = 841.7368220108292 K, F = -8.128884203539855e-7, relative_change = 7.106249304408752e-12 Iter 135: T = 841.7368219925592 K, F = -3.3996038606431966e-7, relative_change = 2.971924801430619e-12 Iter 140: T = 841.7368219849185 K, F = -1.4217721289178087e-7, relative_change = 1.2429094757225133e-12 Iter 145: T = 841.736821981723 K, F = -5.946246606214345e-8, relative_change = 5.198193227775306e-13 Converged in 150 iterations to T = 841.7368219803865 K Iter 1: T = 976.4502216050915 K, F = -5365.8394089023805, relative_change = 0.023549778394908495 Iter 2: T = 955.0618361038385 K, F = -4537.155043234955, relative_change = 0.021904225149434457 Iter 3: T = 935.7430940373536 K, F = -3834.7123982934613, relative_change = 0.02022773954123787 Iter 5: T = 902.8931402734167 K, F = -2735.4364365019146, relative_change = 0.016875193549618306 Iter 10: T = 848.8002917698733 K, F = -1166.4297991133822, relative_change = 0.009492619726568927 Iter 15: T = 822.098192943097 K, F = -492.9245225008704, relative_change = 0.004648387538004319 Iter 20: T = 809.9609707919037 K, F = -207.17134539284947, relative_change = 0.0020947736156131263 Iter 25: T = 804.6876100225553 K, F = -86.8324790235832, relative_change = 0.0009055323016487662 Iter 30: T = 802.4452373937033 K, F = -36.348724913410486, relative_change = 0.0003841175638610022 Iter 35: T = 801.5007845572933 K, F = -15.207550194056811, relative_change = 0.00016160930523646065 Iter 40: T = 801.1046223407914 K, F = -6.361047776714323, relative_change = 6.775752529231706e-5 Iter 45: T = 800.9387349466726 K, F = -2.660453455218824, relative_change = 2.8366952247336863e-5 Iter 50: T = 800.8693224621054 K, F = -1.1126661968435005, relative_change = 1.1868643917290227e-5 Iter 55: T = 800.8402869605512 K, F = -0.4653360285131446, relative_change = 4.96452670448164e-6 Iter 60: T = 800.8281428522165 K, F = -0.19461008793375034, relative_change = 2.0763849727875914e-6 Iter 65: T = 800.8230638460637 K, F = -0.08138843842484933, relative_change = 8.683970878781278e-7 Iter 70: T = 800.8209397109241 K, F = -0.03403764762699657, relative_change = 3.6317894703753986e-7 Iter 75: T = 800.8200513662752 K, F = -0.014234956100415586, relative_change = 1.5188663239966496e-7 Iter 80: T = 800.8196798488904 K, F = -0.005953229580269781, relative_change = 6.352095389320579e-8 Iter 85: T = 800.8195244757007 K, F = -0.002489711869238409, relative_change = 2.6565247789252902e-8 Iter 90: T = 800.8194594967455 K, F = -0.0010412272673688827, relative_change = 1.1109908496013624e-8 Iter 95: T = 800.8194323217648 K, F = -0.0004354536856763236, relative_change = 4.64629724496573e-9 Iter 100: T = 800.8194209568622 K, F = -0.00018211193209438648, relative_change = 1.9431371311630505e-9 Iter 105: T = 800.8194162039241 K, F = -7.616138315924559e-5, relative_change = 8.126431588392375e-10 Iter 110: T = 800.8194142161886 K, F = -3.1851600342247544e-5, relative_change = 3.3985708174425195e-10 Iter 115: T = 800.8194133848939 K, F = -1.3320720485543447e-5, relative_change = 1.4213229993715833e-10 Iter 120: T = 800.8194130372366 K, F = -5.570884969219314e-6, relative_change = 5.944143155443079e-11 Iter 125: T = 800.819412891842 K, F = -2.329811099821555e-6, relative_change = 2.4859121649377237e-11 Iter 130: T = 800.8194128310364 K, F = -9.743557771724198e-7, relative_change = 1.0396391709660257e-11 Iter 135: T = 800.8194128056066 K, F = -4.0748404106505376e-7, relative_change = 4.347861229172384e-12 Iter 140: T = 800.8194127949716 K, F = -1.7041553812546795e-7, relative_change = 1.8183365149086426e-12 Iter 145: T = 800.8194127905239 K, F = -7.126813950097954e-8, relative_change = 7.604321873058965e-13 Iter 150: T = 800.8194127886638 K, F = -2.9803092105318285e-8, relative_change = 3.17999469006279e-13 Converged in 153 iterations to T = 800.8194127881192 K Iter 1: T = 980.7407394228123 K, F = -4388.240842798591, relative_change = 0.019259260577187614 Iter 2: T = 963.4980445653683 K, F = -3706.1437537639745, relative_change = 0.01758129765017385 Iter 3: T = 948.1468672222253 K, F = -3128.6141924772564, relative_change = 0.01593275402034457 Iter 5: T = 922.5831699862424 K, F = -2226.486537066792, relative_change = 0.01280966823266378 Iter 10: T = 882.2141304229414 K, F = -944.6077415366011, relative_change = 0.006662974483770092 Iter 15: T = 863.2159823924874 K, F = -397.8969076486128, relative_change = 0.003106056968973879 Iter 20: T = 854.8114160894711 K, F = -166.95245971717645, relative_change = 0.0013647640233952164 Iter 25: T = 851.2075927977281 K, F = -69.92131817056587, relative_change = 0.0005831385005294641 Iter 30: T = 849.6841612455694 K, F = -29.259705528128407, relative_change = 0.0002461099568515448 Iter 35: T = 849.0441430526859 K, F = -12.23989117792543, relative_change = 0.00010332221203822392 Iter 40: T = 848.7759682780219 K, F = -5.119418386055817, relative_change = 4.3280251428947384e-5 Iter 45: T = 848.6637246120816 K, F = -2.1410981846398403, relative_change = 1.8112531972920256e-5 Iter 50: T = 848.6167672466847 K, F = -0.8954496792723518, relative_change = 7.577015530673205e-6 Iter 55: T = 848.5971263639227 K, F = -0.3744906972292884, relative_change = 3.1691725381423996e-6 Iter 60: T = 848.5889118307839 K, F = -0.15661699747950975, relative_change = 1.3254512545800372e-6 Iter 65: T = 848.5854763307161 K, F = -0.06549918890707862, relative_change = 5.543309921207917e-7 Iter 70: T = 848.584039548831 K, F = -0.027392558793807087, relative_change = 2.3182984336843775e-7 Iter 75: T = 848.5834386669119 K, F = -0.011455897978552843, relative_change = 9.695435932277858e-8 Iter 80: T = 848.5831873704668 K, F = -0.004790993828483359, relative_change = 4.054753219558769e-8 Iter 85: T = 848.5830822752135 K, F = -0.0020036509189897966, relative_change = 1.6957472909010873e-8 Iter 90: T = 848.5830383231097 K, F = -0.0008379507560130062, relative_change = 7.091819544873253e-9 Iter 95: T = 848.5830199418126 K, F = -0.0003504410144241632, relative_change = 2.965883942348139e-9 Iter 100: T = 848.5830122545342 K, F = -0.00014655861782042479, relative_change = 1.240368142037369e-9 Iter 105: T = 848.5830090396224 K, F = -6.129256128795113e-5, relative_change = 5.187367543953291e-10 Iter 110: T = 848.583007695108 K, F = -2.5633279910897144e-5, relative_change = 2.1694189713052016e-10 Iter 115: T = 848.5830071328161 K, F = -1.0720144500098172e-5, relative_change = 9.072769855383445e-11 Iter 120: T = 848.5830068976588 K, F = -4.483292303625319e-6, relative_change = 3.794340581743219e-11 Iter 125: T = 848.5830067993134 K, F = -1.874969155490902e-6, relative_change = 1.5868408924327406e-11 Iter 130: T = 848.5830067581841 K, F = -7.841347113846098e-7, relative_change = 6.636359973412004e-12 Iter 135: T = 848.5830067409833 K, F = -3.279342490891679e-7, relative_change = 2.775402865323311e-12 Iter 140: T = 848.5830067337896 K, F = -1.3714561286626292e-7, relative_change = 1.1607031836049964e-12 Iter 145: T = 848.5830067307813 K, F = -5.7357608218566725e-8, relative_change = 4.854341095788662e-13 Converged in 150 iterations to T = 848.583006729523 K Iter 1: T = 967.2508065209345 K, F = -7461.934886730453, relative_change = 0.032749193479065554 Iter 2: T = 936.5737706830348 K, F = -6325.396728007334, relative_change = 0.031715699414343865 Iter 3: T = 907.9377160284971 K, F = -5360.464086550714, relative_change = 0.03057533271901655 Iter 5: T = 856.6514981350368 K, F = -3846.052663166268, relative_change = 0.027978625607558223 Iter 10: T = 761.1712398584659 K, F = -1665.5910542183274, relative_change = 0.02007716838567289 Iter 15: T = 705.1734227381656 K, F = -713.2197904846648, relative_change = 0.012057043813455286 Iter 20: T = 676.3320316251911 K, F = -302.31523016704324, relative_change = 0.006184479403441878 Iter 25: T = 662.8697512553392 K, F = -127.27597011036748, relative_change = 0.0028596407054909735 Iter 30: T = 656.9402140854922 K, F = -53.389224678092994, relative_change = 0.001251480781187832 Iter 35: T = 654.4028927141566 K, F = -22.357256115541773, relative_change = 0.0005337748038756603 Iter 40: T = 653.3312711815126 K, F = -9.355272030063556, relative_change = 0.0002251017401010846 Iter 45: T = 652.881240070551 K, F = -3.913402482664041, relative_change = 9.44714707123187e-5 Iter 50: T = 652.6927028471404 K, F = -1.6367923367415569, relative_change = 3.956733031031686e-5 Iter 55: T = 652.6137966343564 K, F = -0.6845542409738491, relative_change = 1.6557737145954375e-5 Iter 60: T = 652.580787009797 K, F = -0.2862936828109059, relative_change = 6.926430261529061e-6 Iter 65: T = 652.5669802224133 K, F = -0.11973229858841761, relative_change = 2.8970284938716595e-6 Iter 70: T = 652.5612057497158 K, F = -0.05007362783496122, relative_change = 1.211626603449501e-6 Iter 75: T = 652.5587907421656 K, F = -0.020941415514362793, relative_change = 5.067262812550393e-7 Iter 80: T = 652.5577807477033 K, F = -0.008757954667703072, relative_change = 2.1192065547762478e-7 Iter 85: T = 652.5573583543022 K, F = -0.003662682039880072, relative_change = 8.862804161586408e-8 Iter 90: T = 652.557181704048 K, F = -0.001531777512304211, relative_change = 3.706535664266241e-8 Iter 95: T = 652.5571078267513 K, F = -0.0006406076728097676, relative_change = 1.5501183734805396e-8 Iter 100: T = 652.5570769303748 K, F = -0.0002679097831584376, relative_change = 6.482781717274623e-9 Iter 105: T = 652.5570640091396 K, F = -0.00011204307166906569, relative_change = 2.7111770106921693e-9 Iter 110: T = 652.5570586053245 K, F = -4.685775081858523e-5, relative_change = 1.133846652972795e-9 Iter 115: T = 652.5570563453845 K, F = -1.9596471608263055e-5, relative_change = 4.741882339912856e-10 Iter 120: T = 652.5570554002505 K, F = -8.195479078487722e-6, relative_change = 1.9831119884356576e-10 Iter 125: T = 652.5570550049842 K, F = -3.427447208159684e-6, relative_change = 8.293611151634559e-11 Iter 130: T = 652.5570548396792 K, F = -1.4334005648541925e-6, relative_change = 3.468490162436328e-11 Iter 135: T = 652.5570547705465 K, F = -5.994648730744956e-7, relative_change = 1.4505631342801083e-11 Iter 140: T = 652.5570547416344 K, F = -2.5070224629608617e-7, relative_change = 6.066401094861709e-12 Iter 145: T = 652.5570547295431 K, F = -1.0484665263765791e-7, relative_change = 2.5370408833856274e-12 Iter 150: T = 652.5570547244864 K, F = -4.384888840913703e-8, relative_change = 1.061039334975798e-12 Iter 155: T = 652.5570547223716 K, F = -1.833887697255676e-8, relative_change = 4.4375742540853574e-13 Converged in 159 iterations to T = 652.5570547216082 K Iter 1: T = 973.5665859163748 K, F = -6022.878543622165, relative_change = 0.026433414083625185 Iter 2: T = 949.326130755854 K, F = -5096.7531245311175, relative_change = 0.024898610440398712 Iter 3: T = 927.21079697026 K, F = -4311.222478899089, relative_change = 0.02329582328886889 Iter 5: T = 889.0314466272661 K, F = -3080.590918564389, relative_change = 0.019964704576416203 Iter 10: T = 824.0666321123142 K, F = -1318.9368377576952, relative_change = 0.011961428557430723 Iter 15: T = 790.6590985120179 K, F = -558.9990920319324, relative_change = 0.0061246813420841985 Iter 20: T = 775.0813964112865 K, F = -235.32533119013496, relative_change = 0.002829136932187852 Iter 25: T = 768.2238143749647 K, F = -98.71013214971546, relative_change = 0.0012375226279454869 Iter 30: T = 765.2901118020476 K, F = -41.33522107411855, relative_change = 0.0005277051833469952 Iter 35: T = 764.0512185673427 K, F = -17.29638886618493, relative_change = 0.0002225209590473944 Iter 40: T = 763.5309657762091 K, F = -7.235230551323178, relative_change = 9.338460584150088e-5 Iter 45: T = 763.3130140522641 K, F = -3.0261534935335037, relative_change = 3.911145949639739e-5 Iter 50: T = 763.2217981081827 K, F = -1.265624956908561, relative_change = 1.63668529919255e-5 Iter 55: T = 763.1836389648042 K, F = -0.52930847073025, relative_change = 6.8465593279361046e-6 Iter 60: T = 763.1676783347876 K, F = -0.22136469797383374, relative_change = 2.8636183579665548e-6 Iter 65: T = 763.1610030552308 K, F = -0.09257763569126165, relative_change = 1.1976528334529056e-6 Iter 70: T = 763.158211311772 K, F = -0.038717121010907185, relative_change = 5.0088206473698e-7 Iter 75: T = 763.157043760503 K, F = -0.016191970807953426, relative_change = 2.0947649606180542e-7 Iter 80: T = 763.1565554747274 K, F = -0.006771677035873891, relative_change = 8.76058582374287e-8 Iter 85: T = 763.1563512674539 K, F = -0.0028319964639106354, relative_change = 3.663786614668999e-8 Iter 90: T = 763.1562658654755 K, F = -0.0011843747872112287, relative_change = 1.5322401914868165e-8 Iter 95: T = 763.1562301493382 K, F = -0.0004953196874001309, relative_change = 6.408012986924647e-9 Iter 100: T = 763.1562152124212 K, F = -0.0002071486112519283, relative_change = 2.6799078425355303e-9 Iter 105: T = 763.1562089656238 K, F = -8.663202257763736e-5, relative_change = 1.1207695014972305e-9 Iter 110: T = 763.1562063531385 K, F = -3.623054593848707e-5, relative_change = 4.687191914040098e-10 Iter 115: T = 763.1562052605659 K, F = -1.5152045806154923e-5, relative_change = 1.9602394948300765e-10 Iter 120: T = 763.1562048036391 K, F = -6.336767531478493e-6, relative_change = 8.197957014573804e-11 Iter 125: T = 763.1562046125468 K, F = -2.650112987057085e-6, relative_change = 3.428484991698881e-11 Iter 130: T = 763.1562045326297 K, F = -1.1083073229167795e-6, relative_change = 1.4338313284236003e-11 Iter 135: T = 763.1562044992074 K, F = -4.635079898784866e-7, relative_change = 5.996462021490259e-12 Iter 140: T = 763.1562044852299 K, F = -1.9384433769253917e-7, relative_change = 2.5077889368430057e-12 Iter 145: T = 763.1562044793843 K, F = -8.10688897123768e-8, relative_change = 1.0487985729700454e-12 Iter 150: T = 763.1562044769396 K, F = -3.390402047998009e-8, relative_change = 4.386206401006616e-13 Converged in 154 iterations to T = 763.1562044760572 K Iter 1: T = 969.9866845681922 K, F = -6838.562471170894, relative_change = 0.03001331543180782 Iter 2: T = 942.1303026816913 K, F = -5792.667047131378, relative_change = 0.028718313694070616 Iter 3: T = 916.3881945792357 K, F = -4905.001224365833, relative_change = 0.027323299154249688 Iter 5: T = 871.0416835802678 K, F = -3512.7955295471324, relative_change = 0.024273721677867656 Iter 10: T = 790.1358518556472 K, F = -1512.9808803659407, relative_change = 0.015972033185630154 Iter 15: T = 745.7208223104292 K, F = -644.4149924228135, relative_change = 0.008825689861454634 Iter 20: T = 724.0395130999358 K, F = -272.11484273855086, relative_change = 0.0042711651196777785 Iter 25: T = 714.2491609892587 K, F = -114.32004756038391, relative_change = 0.0019128098946286274 Iter 30: T = 710.0093614399971 K, F = -47.9061126918022, relative_change = 0.0008244688495670817 Iter 35: T = 708.2091538996212 K, F = -20.052151503429712, relative_change = 0.0003492847002556947 Iter 40: T = 707.4514199511292 K, F = -8.389098079735472, relative_change = 0.00014687397846454314 Iter 45: T = 707.1336656698783 K, F = -3.508956705360406, relative_change = 6.156531292584806e-5 Iter 50: T = 707.0006257294848 K, F = -1.4675814753596925, relative_change = 2.5772068901309398e-5 Iter 55: T = 706.9449603201332 K, F = -0.6137765316980585, relative_change = 1.0782516613890284e-5 Iter 60: T = 706.9216757392675 K, F = -0.2566915505153245, relative_change = 4.510134919372896e-6 Iter 65: T = 706.9119370373122 K, F = -0.10735197484915704, relative_change = 1.886324840862164e-6 Iter 70: T = 706.9078640537815 K, F = -0.04489596588780431, relative_change = 7.889067622629621e-7 Iter 75: T = 706.9061606585781 K, F = -0.01877604448484993, relative_change = 3.299342849405796e-7 Iter 80: T = 706.9054482740149 K, F = -0.007852368724553194, relative_change = 1.3798316748168474e-7 Iter 85: T = 706.9051503455229 K, F = -0.003283954845993531, relative_change = 5.770633253009161e-8 Iter 90: T = 706.9050257481366 K, F = -0.0013733892170059159, relative_change = 2.4133499111464224e-8 Iter 95: T = 706.9049736399985 K, F = -0.0005743677875127418, relative_change = 1.0092921353062785e-8 Iter 100: T = 706.9049518477486 K, F = -0.00024020747031094913, relative_change = 4.220980902505905e-9 Iter 105: T = 706.9049427339689 K, F = -0.00010045763405652774, relative_change = 1.7652647536014239e-9 Iter 110: T = 706.9049389224772 K, F = -4.20125828262119e-5, relative_change = 7.382548302201705e-10 Iter 115: T = 706.904937328466 K, F = -1.7570164531410803e-5, relative_change = 3.0874700148744194e-10 Iter 120: T = 706.9049366618314 K, F = -7.348053759126394e-6, relative_change = 1.2912170350079313e-10 Iter 125: T = 706.9049363830368 K, F = -3.0730453496330412e-6, relative_change = 5.4000265135792954e-11 Iter 130: T = 706.9049362664415 K, F = -1.2851839763516892e-6, relative_change = 2.2583550722429253e-11 Iter 135: T = 706.9049362176801 K, F = -5.374798009993853e-7, relative_change = 9.444719647528182e-12 Iter 140: T = 706.9049361972874 K, F = -2.2478066030728883e-7, relative_change = 3.949897866176046e-12 Iter 145: T = 706.9049361887589 K, F = -9.400593081743125e-8, relative_change = 1.6518940066168708e-12 Iter 150: T = 706.9049361851921 K, F = -3.93143365640114e-8, relative_change = 6.908406350647699e-13 Iter 155: T = 706.9049361837006 K, F = -1.6441271122324963e-8, relative_change = 2.889098272086985e-13 Converged in 157 iterations to T = 706.9049361833848 K Iter 1: T = 973.449311660029 K, F = -6049.599594487166, relative_change = 0.02655068833997095 Iter 2: T = 949.0917302201983 K, F = -5119.529629288833, relative_change = 0.025021930929606983 Iter 3: T = 926.8603541811352 K, F = -4330.635089692605, relative_change = 0.0234238433769781 Iter 5: T = 888.4562434083152 K, F = -3094.6830977671716, relative_change = 0.02009714988415026 Iter 10: T = 823.0156643145198 K, F = -1325.2056884457704, relative_change = 0.012074262140342398 Iter 15: T = 789.30099237605 K, F = -561.7320352369529, relative_change = 0.006195326595109126 Iter 20: T = 773.561006425885 K, F = -236.49446264122832, relative_change = 0.002865193426706286 Iter 25: T = 766.6275395777228 K, F = -99.20437491798758, relative_change = 0.0012540256344337058 Iter 30: T = 763.6604840789055 K, F = -41.54290901859422, relative_change = 0.0005348821694658647 Iter 35: T = 762.407341022912 K, F = -17.383424553718285, relative_change = 0.0002255727235332925 Iter 40: T = 761.8810746568743 K, F = -7.27166144600663, relative_change = 9.466984373125821e-5 Iter 45: T = 761.6605984079557 K, F = -3.0413948716879746, relative_change = 3.965053942188962e-5 Iter 50: T = 761.5683249944435 K, F = -1.2720000548085657, relative_change = 1.6592579557307988e-5 Iter 55: T = 761.5297233097796 K, F = -0.5319747828791277, relative_change = 6.941009369383759e-6 Iter 60: T = 761.5135775520835 K, F = -0.22247981131242123, relative_change = 2.903126980065482e-6 Iter 65: T = 761.506824840887 K, F = -0.09304399461054436, relative_change = 1.214177295731009e-6 Iter 70: T = 761.5040007130117 K, F = -0.03891215878981824, relative_change = 5.077930518924135e-7 Iter 75: T = 761.5028196179167 K, F = -0.016273538093868223, relative_change = 2.1236679882626631e-7 Iter 80: T = 761.5023256679029 K, F = -0.00680578947856969, relative_change = 8.881462533853656e-8 Iter 85: T = 761.5021190917689 K, F = -0.002846262698921964, relative_change = 3.7143388363323866e-8 Iter 90: T = 761.5020326991033 K, F = -0.0011903410976156215, relative_change = 1.553381758211667e-8 Iter 95: T = 761.5019965686486 K, F = -0.0004978148710994557, relative_change = 6.496429602996161e-9 Iter 100: T = 761.5019814584589 K, F = -0.00020819212462697134, relative_change = 2.7168847052074863e-9 Iter 105: T = 761.5019751391969 K, F = -8.706843290939847e-5, relative_change = 1.136233675736641e-9 Iter 110: T = 761.501972496406 K, F = -3.641305695456509e-5, relative_change = 4.751864809028461e-10 Iter 115: T = 761.5019713911593 K, F = -1.5228376101239505e-5, relative_change = 1.987286733011264e-10 Iter 120: T = 761.5019709289319 K, F = -6.36868895920184e-6, relative_change = 8.311070745648518e-11 Iter 125: T = 761.5019707356229 K, F = -2.6634616437926084e-6, relative_change = 3.475788866192435e-11 Iter 130: T = 761.5019706547788 K, F = -1.1138927189513481e-6, relative_change = 1.453618046891755e-11 Iter 135: T = 761.5019706209688 K, F = -4.6584294854934427e-7, relative_change = 6.079200497954931e-12 Iter 140: T = 761.501970606829 K, F = -1.9482107582735608e-7, relative_change = 2.542394137283011e-12 Iter 145: T = 761.5019706009157 K, F = -8.147737817765233e-8, relative_change = 1.0632710435870918e-12 Iter 150: T = 761.5019705984425 K, F = -3.407453619264089e-8, relative_change = 4.446690414959001e-13 Converged in 154 iterations to T = 761.5019705975499 K Iter 1: T = 964.3660931789796 K, F = -8119.219565765684, relative_change = 0.03563390682102048 Iter 2: T = 930.6602089370173 K, F = -6887.936914808111, relative_change = 0.03495133692522583 Iter 3: T = 898.8514918197782 K, F = -5842.302729369307, relative_change = 0.03417865813084499 Iter 5: T = 840.8127429434855 K, F = -4200.397807027943, relative_change = 0.03233777139657163 Iter 10: T = 726.9291383191598 K, F = -1831.6067208809147, relative_change = 0.025914242693769816 Iter 15: T = 653.5686372102186 K, F = -790.7604857797711, relative_change = 0.017705186273249632 Iter 20: T = 612.1541232355945 K, F = -337.55203007788936, relative_change = 0.01012619111097217 Iter 25: T = 591.4938752473382 K, F = -142.75225431942175, relative_change = 0.005014916679874653 Iter 30: T = 582.0429674716362 K, F = -60.021481772081714, relative_change = 0.002273740336314566 Iter 35: T = 577.9235681553671 K, F = -25.16180862318136, relative_change = 0.0009857180382177586 Iter 40: T = 576.1693300846662 K, F = -10.533806714931305, relative_change = 0.0004186602487034383 Iter 45: T = 575.4300032820563 K, F = -4.407284195468101, relative_change = 0.00017623764194484398 Iter 50: T = 575.1198000823343 K, F = -1.84351662468932, relative_change = 7.390757627087729e-5 Iter 55: T = 574.9898920854356 K, F = -0.7710398765341456, relative_change = 3.094466025292513e-5 Iter 60: T = 574.93553192128 K, F = -0.3224684500425504, relative_change = 1.2947668616031549e-5 Iter 65: T = 574.9127924084592 K, F = -0.13486197054818944, relative_change = 5.4159621734185285e-6 Iter 70: T = 574.9032815202412 K, F = -0.05640120393024689, relative_change = 2.265211202308579e-6 Iter 75: T = 574.899303786601 K, F = -0.023587712543891082, relative_change = 9.47371811917641e-7 Iter 80: T = 574.8976402217476 K, F = -0.009864672786092488, relative_change = 3.96208053771691e-7 Iter 85: T = 574.8969444939619 K, F = -0.00412552566509411, relative_change = 1.6569996264695207e-7 Iter 90: T = 574.8966535314017 K, F = -0.0017253443986257055, relative_change = 6.929788213184629e-8 Iter 95: T = 574.8965318472284 K, F = -0.0007215596844569738, relative_change = 2.8981233191630456e-8 Iter 100: T = 574.8964809574265 K, F = -0.0003017648862183586, relative_change = 1.2120303296582757e-8 Iter 105: T = 574.8964596746989 K, F = -0.0001262016811254818, relative_change = 5.068856554316497e-9 Iter 110: T = 574.8964507740072 K, F = -5.27790504140091e-5, relative_change = 2.119856510271844e-9 Iter 115: T = 574.8964470516315 K, F = -2.2072829462094212e-5, relative_change = 8.86549346960509e-10 Iter 120: T = 574.8964454948896 K, F = -9.23112093192957e-6, relative_change = 3.707655311465585e-10 Iter 125: T = 574.8964448438414 K, F = -3.860564771918096e-6, relative_change = 1.5505856400951333e-10 Iter 130: T = 574.8964445715653 K, F = -1.6145343311735338e-6, relative_change = 6.484734495878679e-11 Iter 135: T = 574.8964444576964 K, F = -6.752182696856401e-7, relative_change = 2.7119963479651322e-11 Iter 140: T = 574.8964444100749 K, F = -2.8238423149806735e-7, relative_change = 1.134188808611858e-11 Iter 145: T = 574.896444390159 K, F = -1.1809636774051668e-7, relative_change = 4.743309424202479e-12 Iter 150: T = 574.89644438183 K, F = -4.93892118869077e-8, relative_change = 1.9837046532032177e-12 Iter 155: T = 574.8964443783467 K, F = -2.0655401833380438e-8, relative_change = 8.296187601791352e-13 Iter 160: T = 574.8964443768899 K, F = -8.638072701572241e-9, relative_change = 3.4694590901256864e-13 Converged in 163 iterations to T = 574.8964443764634 K Iter 1: T = 963.5597715454182 K, F = -8302.940716982508, relative_change = 0.036440228454581766 Iter 2: T = 928.9970937353031 K, F = -7045.327081904029, relative_change = 0.03586978081772897 Iter 3: T = 896.2784153763522 K, F = -5977.2804517736095, relative_change = 0.035219354914659586 Iter 5: T = 836.2541580681454 K, F = -4300.0120780958305, relative_change = 0.03364932225441381 Iter 10: T = 716.5243170220849 K, F = -1879.1313424530172, relative_change = 0.027932029184284998 Iter 15: T = 636.8377445876946 K, F = -813.7268435158455, relative_change = 0.020020586529517076 Iter 20: T = 590.1459614317229 K, F = -348.4175815233299, relative_change = 0.0120085932587597 Iter 25: T = 566.1170027016193 K, F = -147.67640824895952, relative_change = 0.006154072300285812 Iter 30: T = 554.9069310443243 K, F = -62.170252626463395, relative_change = 0.002844104808989505 Iter 35: T = 549.9707685782531 K, F = -26.078495175056936, relative_change = 0.0012443667510137015 Iter 40: T = 547.8587996206768 K, F = -10.920540484253994, relative_change = 0.0005306803801488121 Iter 45: T = 546.9668740379457 K, F = -4.569625777071984, relative_change = 0.00022378583510110657 Iter 50: T = 546.592316012623 K, F = -1.9115168533775388, relative_change = 9.391726361300113e-5 Iter 55: T = 546.4353993024645 K, F = -0.7994971979282518, relative_change = 3.933487042254185e-5 Iter 60: T = 546.369727126631 K, F = -0.3343729390112151, relative_change = 1.6460399649035635e-5 Iter 65: T = 546.3422538788546 K, F = -0.13984114720458524, relative_change = 6.885701542038048e-6 Iter 70: T = 546.3307627756438 K, F = -0.05848365606080441, relative_change = 2.8799915792159184e-6 Iter 75: T = 546.3259568031293 K, F = -0.024458636560600405, relative_change = 1.2045009188679348e-6 Iter 80: T = 546.3239468432639 K, F = -0.010228906700908563, relative_change = 5.037461223144544e-7 Iter 85: T = 546.3231062462147 K, F = -0.004277853178596469, relative_change = 2.1067429776981318e-7 Iter 90: T = 546.3227546971204 K, F = -0.0017890496784424281, relative_change = 8.81067964726045e-8 Iter 95: T = 546.3226076748514 K, F = -0.0007482020094793373, relative_change = 3.684736506941769e-8 Iter 100: T = 546.3225461883408 K, F = -0.000312907027832654, relative_change = 1.541001697284173e-8 Iter 105: T = 546.3225204739404 K, F = -0.0001308614576185918, relative_change = 6.4446546593903924e-9 Iter 110: T = 546.3225097198698 K, F = -5.472782485813066e-5, relative_change = 2.6952318195299847e-9 Iter 115: T = 546.3225052223888 K, F = -2.288783044432363e-5, relative_change = 1.1271782036136298e-9 Iter 120: T = 546.3225033414885 K, F = -9.571964379784248e-6, relative_change = 4.713994110429458e-10 Iter 125: T = 546.3225025548735 K, F = -4.00310921849778e-6, relative_change = 1.9714483527137023e-10 Iter 130: T = 546.3225022259018 K, F = -1.6741484912263793e-6, relative_change = 8.244834488744565e-11 Iter 135: T = 546.3225020883218 K, F = -7.001486306001947e-7, relative_change = 3.4480869612181267e-11 Iter 140: T = 546.3225020307842 K, F = -2.928105539978798e-7, relative_change = 1.44203131981831e-11 Iter 145: T = 546.3225020067213 K, F = -1.2245649200215425e-7, relative_change = 6.030728551556731e-12 Iter 150: T = 546.3225019966578 K, F = -5.1211991231037146e-8, relative_change = 2.522084478140531e-12 Iter 155: T = 546.3225019924492 K, F = -2.141774738118052e-8, relative_change = 1.0547796898796252e-12 Iter 160: T = 546.3225019906891 K, F = -8.956795999326417e-9, relative_change = 4.411036482263695e-13 Converged in 164 iterations to T = 546.3225019900539 K Iter 1: T = 969.3726589187166 K, F = -6978.468799493088, relative_change = 0.03062734108128341 Iter 2: T = 940.8875785120094 K, F = -5912.163140035588, relative_change = 0.029385066872507793 Iter 3: T = 914.5054202679886 K, F = -5007.095480215671, relative_change = 0.02803964984397346 Iter 5: T = 867.8626056519263 K, F = -3587.360760514166, relative_change = 0.02507194818091825 Iter 10: T = 783.8901895964156 K, F = -1546.8735864241642, relative_change = 0.016799800630564535 Iter 15: T = 737.1710755079325 K, F = -659.5451796318359, relative_change = 0.009435973426201118 Iter 20: T = 714.1308507841575 K, F = -278.7004157432255, relative_change = 0.004615983423681265 Iter 25: T = 703.6640494486901 K, F = -117.13087280889181, relative_change = 0.0020790491243005173 Iter 30: T = 699.1177413988631 K, F = -49.09266315090592, relative_change = 0.0008985076668494057 Iter 35: T = 697.1847799769099 K, F = -20.55040355944205, relative_change = 0.0003810954050387915 Iter 40: T = 696.3706918577521 K, F = -8.597834007310574, relative_change = 0.0001603301776159652 Iter 45: T = 696.0292208061985 K, F = -3.596316238884311, relative_change = 6.721988069616836e-5 Iter 50: T = 695.8862360011002 K, F = -1.504127452607666, relative_change = 2.8141628327598458e-5 Iter 55: T = 695.8264069280488 K, F = -0.6290624536522463, relative_change = 1.1774327574782608e-5 Iter 60: T = 695.8013802471995 K, F = -0.2630846482670192, relative_change = 4.9250679197891415e-6 Iter 65: T = 695.7909128371568 K, F = -0.11002570462196692, relative_change = 2.059880289504616e-6 Iter 70: T = 695.7865350745222 K, F = -0.04601416209441089, relative_change = 8.614941864467714e-7 Iter 75: T = 695.784704212741 K, F = -0.019243689327692715, relative_change = 3.6029199324591683e-7 Iter 80: T = 695.7839385193776 K, F = -0.008047943702957916, relative_change = 1.5067926016456157e-7 Iter 85: T = 695.7836182963766 K, F = -0.0033657466946896974, relative_change = 6.301601400924995e-8 Iter 90: T = 695.7834843751374 K, F = -0.001407595554847707, relative_change = 2.6354075495012973e-8 Iter 95: T = 695.7834283676485 K, F = -0.0005886732881623669, relative_change = 1.1021593646260753e-8 Iter 100: T = 695.7834049446429 K, F = -0.0002461902012559358, relative_change = 4.609362862898895e-9 Iter 105: T = 695.7833951488615 K, F = -0.00010295968299700586, relative_change = 1.927690738999559e-9 Iter 110: T = 695.7833910521485 K, F = -4.305896826517497e-5, relative_change = 8.061832968631767e-10 Iter 115: T = 695.7833893388541 K, F = -1.800777398763831e-5, relative_change = 3.3715547207996275e-10 Iter 120: T = 695.7833886223341 K, F = -7.5310666719508035e-6, relative_change = 1.4100245556389624e-10 Iter 125: T = 695.7833883226768 K, F = -3.1495816072979466e-6, relative_change = 5.896890319568489e-11 Iter 130: T = 695.7833881973565 K, F = -1.3171921267041142e-6, relative_change = 2.4661489924999278e-11 Iter 135: T = 695.7833881449462 K, F = -5.508667190179395e-7, relative_change = 1.0313752846324233e-11 Iter 140: T = 695.7833881230275 K, F = -2.303786132973329e-7, relative_change = 4.313326612324521e-12 Iter 145: T = 695.7833881138608 K, F = -9.634685949055921e-8, relative_change = 1.8038804346141046e-12 Iter 150: T = 695.7833881100272 K, F = -4.029284328410654e-8, relative_change = 7.543937813998067e-13 Iter 155: T = 695.7833881084239 K, F = -1.6850114636923763e-8, relative_change = 3.154808810209403e-13 Converged in 158 iterations to T = 695.7833881079546 K Iter 1: T = 966.5400327418959 K, F = -7623.885368404807, relative_change = 0.03345996725810414 Iter 2: T = 935.121963967666 K, F = -6463.923963024094, relative_change = 0.03250570872383064 Iter 3: T = 905.7159889730008 K, F = -5479.032705548135, relative_change = 0.031446138715315305 Iter 5: T = 852.8148476747645 K, F = -3933.071826569295, relative_change = 0.029006901014065244 Iter 10: T = 753.1252167730406 K, F = -1705.9636582678652, relative_change = 0.02134577148609413 Iter 15: T = 693.455968236884 K, F = -731.764141711389, relative_change = 0.013168515739181767 Iter 20: T = 662.1586795609968 K, F = -310.59284401126786, relative_change = 0.006895666571069251 Iter 25: T = 647.371351906423 K, F = -130.86507723904776, relative_change = 0.0032273029273416137 Iter 30: T = 640.8155689080684 K, F = -54.91646602241009, relative_change = 0.0014208291147884986 Iter 35: T = 638.0016400089283 K, F = -23.00090897466526, relative_change = 0.0006076334916292856 Iter 40: T = 636.8115846542482 K, F = -9.625348062263129, relative_change = 0.00025654641144840493 Iter 45: T = 636.3115272476641 K, F = -4.026509794405625, relative_change = 0.00010772120311073448 Iter 50: T = 636.1019806230648 K, F = -1.6841230103507754, relative_change = 4.512602045011594e-5 Iter 55: T = 636.0142725901119 K, F = -0.7043533758398732, relative_change = 1.888551809146036e-5 Iter 60: T = 635.9775792332757 K, F = -0.29457477218045947, relative_change = 7.900473841490717e-6 Iter 65: T = 635.9622313913519 K, F = -0.12319569861303753, relative_change = 3.3044792687111105e-6 Iter 70: T = 635.9558123483579 K, F = -0.051522089248642544, relative_change = 1.3820438488557003e-6 Iter 75: T = 635.9531277593131 K, F = -0.021547183950921256, relative_change = 5.77999688582984e-7 Iter 80: T = 635.9520050201144 K, F = -0.009011295063370617, relative_change = 2.4172854937774383e-7 Iter 85: T = 635.9515354750745 K, F = -0.0037686321584658455, relative_change = 1.0109414692458182e-7 Iter 90: T = 635.9513391053641 K, F = -0.0015760871402493715, relative_change = 4.227884613291438e-8 Iter 95: T = 635.951256981142 K, F = -0.0006591384930631494, relative_change = 1.7681530005745363e-8 Iter 100: T = 635.9512226358003 K, F = -0.00027565959406183893, relative_change = 7.394629032161313e-9 Iter 105: T = 635.9512082721662 K, F = -0.00011528413548972383, relative_change = 3.0925225360312728e-9 Iter 110: T = 635.9512022651226 K, F = -4.821320137254892e-5, relative_change = 1.2933298918423449e-9 Iter 115: T = 635.9511997529052 K, F = -2.0163336850398395e-5, relative_change = 5.408860232462091e-10 Iter 120: T = 635.9511987022657 K, F = -8.432547327630324e-6, relative_change = 2.2620497091295616e-10 Iter 125: T = 635.9511982628759 K, F = -3.526592140312701e-6, relative_change = 9.460162441443184e-11 Iter 130: T = 635.9511980791178 K, F = -1.4748633029859626e-6, relative_change = 3.9563538649319853e-11 Iter 135: T = 635.9511980022679 K, F = -6.168044121013239e-7, relative_change = 1.654591660249194e-11 Iter 140: T = 635.9511979701284 K, F = -2.579546999892379e-7, relative_change = 6.919692645727338e-12 Iter 145: T = 635.9511979566873 K, F = -1.0787980914139794e-7, relative_change = 2.8939000609194615e-12 Iter 150: T = 635.9511979510661 K, F = -4.5116676339329587e-8, relative_change = 1.2102649555231881e-12 Iter 155: T = 635.9511979487152 K, F = -1.88670912781852e-8, relative_change = 5.061139525284884e-13 Converged in 160 iterations to T = 635.951197947732 K Iter 1: T = 966.4888215238132 K, F = -7635.553893159401, relative_change = 0.03351117847618686 Iter 2: T = 935.0172292404638 K, F = -6473.906838067979, relative_change = 0.03256281043554092 Iter 3: T = 905.5554873375513 K, F = -5487.579423334122, relative_change = 0.031509303766354094 Iter 5: T = 852.5367927354025 K, F = -3939.3487391358117, relative_change = 0.029082100962436706 Iter 10: T = 752.5362971496664 K, F = -1708.8851503186406, relative_change = 0.021440984144098275 Iter 15: T = 692.5894506843296 K, F = -733.1128203977596, relative_change = 0.013254312767664339 Iter 20: T = 661.1024423207671 K, F = -311.19782186077714, relative_change = 0.006951779377667992 Iter 25: T = 646.2112465835661 K, F = -131.12825738764874, relative_change = 0.0032566893446493287 Iter 30: T = 639.6059805129291 K, F = -55.028649431299925, relative_change = 0.0014344518201776844 Iter 35: T = 636.7701123946656 K, F = -23.04822657093443, relative_change = 0.0006135920538968822 Iter 40: T = 635.570647643921 K, F = -9.645209475002279, relative_change = 0.00025908639320065184 Iter 45: T = 635.0666128598034 K, F = -4.03482896528592, relative_change = 0.00010879203483670268 Iter 50: T = 634.8553953592663 K, F = -1.6876044555884642, relative_change = 4.5575369260496905e-5 Iter 55: T = 634.7669872288635 K, F = -0.7058097556305369, relative_change = 1.907370695099991e-5 Iter 60: T = 634.7300008519986 K, F = -0.2951839172549136, relative_change = 7.979223234749807e-6 Iter 65: T = 634.7145304251728 K, F = -0.12345046254654518, relative_change = 3.3374213549898713e-6 Iter 70: T = 634.7080601086351 K, F = -0.051628636699633135, relative_change = 1.395822048482186e-6 Iter 75: T = 634.7053540751448 K, F = -0.021591743741422476, relative_change = 5.837621456363503e-7 Iter 80: T = 634.7042223674064 K, F = -0.009029930565524202, relative_change = 2.4413852136696474e-7 Iter 85: T = 634.7037490715782 K, F = -0.003776425759297375, relative_change = 1.0210203361745323e-7 Iter 90: T = 634.7035511332368 K, F = -0.0015793465208949753, relative_change = 4.270035776498914e-8 Iter 95: T = 634.7034683529931 K, F = -0.0006605016041042466, relative_change = 1.785781140454315e-8 Iter 100: T = 634.7034337332954 K, F = -0.0002762296647673135, relative_change = 7.468352094989009e-9 Iter 105: T = 634.7034192549222 K, F = -0.00011552254618690805, relative_change = 3.1233544169126805e-9 Iter 110: T = 634.7034131998934 K, F = -4.831290834916846e-5, relative_change = 1.3062241745942672e-9 Iter 115: T = 634.703410667608 K, F = -2.0205035867137955e-5, relative_change = 5.462785764992552e-10 Iter 120: T = 634.703409608576 K, F = -8.449988193659497e-6, relative_change = 2.2846025064697627e-10 Iter 125: T = 634.703409165676 K, F = -3.533885927775593e-6, relative_change = 9.55448042052258e-11 Iter 130: T = 634.7034089804499 K, F = -1.4779128642006256e-6, relative_change = 3.995796647785684e-11 Iter 135: T = 634.7034089029863 K, F = -6.180810523948033e-7, relative_change = 1.671090534819794e-11 Iter 140: T = 634.7034088705901 K, F = -2.584897451085588e-7, relative_change = 6.988723644418508e-12 Iter 145: T = 634.7034088570415 K, F = -1.0810240413938743e-7, relative_change = 2.9227381054784772e-12 Iter 150: T = 634.7034088513753 K, F = -4.520978902355921e-8, relative_change = 1.222325943417857e-12 Iter 155: T = 634.7034088490057 K, F = -1.8907130527878735e-8, relative_change = 5.111874366009886e-13 Converged in 160 iterations to T = 634.7034088480146 K Iter 1: T = 976.481204020274 K, F = -5358.780036131145, relative_change = 0.02351879597972592 Iter 2: T = 955.1231721677091 K, F = -4531.147296999373, relative_change = 0.021872445434312267 Iter 3: T = 935.833895601237 K, F = -3829.601217134943, relative_change = 0.020195590609213148 Iter 5: T = 903.0392188163416 K, F = -2731.7418871276404, relative_change = 0.016843661485379764 Iter 10: T = 849.0552174843173 K, F = -1164.8073302312296, relative_change = 0.009468942876494713 Iter 15: T = 822.4173830206018 K, F = -492.22534294377124, relative_change = 0.0046348453012911035 Iter 20: T = 810.3122280986461 K, F = -206.87441919238202, relative_change = 0.0020882021442778565 Iter 25: T = 805.0534203881407 K, F = -86.70742141448237, relative_change = 0.0009025965886321522 Iter 30: T = 802.8173558954418 K, F = -36.29626306994578, relative_change = 0.00038285454482114487 Iter 35: T = 801.875581818982 K, F = -15.18558124410314, relative_change = 0.0001610747311948494 Iter 40: T = 801.4805471364618 K, F = -6.3518550225054655, relative_change = 6.753283211319141e-5 Iter 45: T = 801.3151325680482 K, F = -2.656608044460943, relative_change = 2.8272784503439315e-5 Iter 50: T = 801.2459180490496 K, F = -1.1110578440397687, relative_change = 1.1829227065848554e-5 Iter 55: T = 801.216965378332 K, F = -0.464663368843812, relative_change = 4.948036018138824e-6 Iter 60: T = 801.2048559177151 K, F = -0.1943287688473645, relative_change = 2.0694873055289994e-6 Iter 65: T = 801.1997914028542 K, F = -0.08127078658770437, relative_change = 8.655122147080438e-7 Iter 70: T = 801.1976733283559 K, F = -0.03398844407527524, relative_change = 3.619724260069484e-7 Iter 75: T = 801.1967875183765 K, F = -0.014214378561836716, relative_change = 1.5138204519401875e-7 Iter 80: T = 801.1964170610272 K, F = -0.005944623801078075, relative_change = 6.33099284757451e-8 Iter 85: T = 801.1962621311583 K, F = -0.002486112829960141, relative_change = 2.6476994277239082e-8 Iter 90: T = 801.1961973376051 K, F = -0.001039722103529983, relative_change = 1.1072999766222564e-8 Iter 95: T = 801.1961702401619 K, F = -0.00043482420603724314, relative_change = 4.630861545395307e-9 Iter 100: T = 801.1961589076866 K, F = -0.0001818486786299145, relative_change = 1.936681762350373e-9 Iter 105: T = 801.1961541683099 K, F = -7.605129108689823e-5, relative_change = 8.099434854802047e-10 Iter 110: T = 801.1961521862459 K, F = -3.1805558320829874e-5, relative_change = 3.387280439198824e-10 Iter 115: T = 801.196151357323 K, F = -1.3301462998049907e-5, relative_change = 1.4166009976457433e-10 Iter 120: T = 801.1961510106576 K, F = -5.5628310411393045e-6, relative_change = 5.924394948136436e-11 Iter 125: T = 801.196150865678 K, F = -2.326442545497187e-6, relative_change = 2.477652902563297e-11 Iter 130: T = 801.1961508050458 K, F = -9.729477972175715e-7, relative_change = 1.0361858879141565e-11 Iter 135: T = 801.1961507796887 K, F = -4.068968029180553e-7, relative_change = 4.333436246943137e-12 Iter 140: T = 801.1961507690839 K, F = -1.7016777520417747e-7, relative_change = 1.8122806566421537e-12 Iter 145: T = 801.196150764649 K, F = -7.11665297803421e-8, relative_change = 7.579209704652398e-13 Iter 150: T = 801.1961507627942 K, F = -2.9763197240129102e-8, relative_change = 3.1697697507890487e-13 Converged in 153 iterations to T = 801.1961507622512 K Iter 1: T = 965.1899618497871 K, F = -7931.500305420747, relative_change = 0.03481003815021289 Iter 2: T = 932.354901162186 K, F = -6727.189944451833, relative_change = 0.034019272874194255 Iter 3: T = 901.4653666944624 K, F = -5704.521867733816, relative_change = 0.03313066132780516 Iter 5: T = 845.4098135579303 K, F = -4098.876661469365, relative_change = 0.03104126114914139 Iter 10: T = 737.1577359143421 K, F = -1783.584654237738, relative_change = 0.02404678334680001 Iter 15: T = 669.4911034374151 K, F = -767.9498503297216, relative_change = 0.015741632755994252 Iter 20: T = 632.4827172904681 K, F = -326.99281265331183, relative_change = 0.008659147675546148 Iter 25: T = 614.4675542345478 K, F = -138.05156989363323, relative_change = 0.004178306383605173 Iter 30: T = 606.3459172299747 K, F = -57.991917386541026, relative_change = 0.0018683575486768203 Iter 35: T = 602.8315892394523 K, F = -24.300515101597817, relative_change = 0.0008047363270160966 Iter 40: T = 601.3399539803219 K, F = -10.17130141815191, relative_change = 0.00034081897002530704 Iter 45: T = 600.7122006369264 K, F = -4.25526859192356, relative_change = 0.00014329512791147545 Iter 50: T = 600.4489708919142 K, F = -1.7798692315558688, relative_change = 6.0061801793979585e-5 Iter 55: T = 600.3387627942245 K, F = -0.744409020093451, relative_change = 2.5142088533055335e-5 Iter 60: T = 600.2926510230553 K, F = -0.3113288730683256, relative_change = 1.0518842021802486e-5 Iter 65: T = 600.2733627786632 K, F = -0.1302028752930157, relative_change = 4.399826420954983e-6 Iter 70: T = 600.2652955482268 K, F = -0.05445264622397816, relative_change = 1.8401860996031047e-6 Iter 75: T = 600.2619216213147 K, F = -0.02277279047189068, relative_change = 7.696098683987935e-7 Iter 80: T = 600.260510584707 K, F = -0.009523860549275509, relative_change = 3.218638973401718e-7 Iter 85: T = 600.2599204688345 K, F = -0.003982993550404157, relative_change = 1.3460800070344613e-7 Iter 90: T = 600.2596736747149 K, F = -0.0016657357024315589, relative_change = 5.629479150978437e-8 Iter 95: T = 600.2595704623593 K, F = -0.0006966306044715043, relative_change = 2.3543174757321332e-8 Iter 100: T = 600.2595272977009 K, F = -0.00029133924552832147, relative_change = 9.84604046301339e-9 Iter 105: T = 600.2595092457218 K, F = -0.00012184155295447141, relative_change = 4.1177323365963785e-9 Iter 110: T = 600.2595016961682 K, F = -5.095559260553939e-5, relative_change = 1.7220849445721188e-9 Iter 115: T = 600.2594985388545 K, F = -2.131023735540971e-5, relative_change = 7.201965075373865e-10 Iter 120: T = 600.2594972184282 K, F = -8.912196225396851e-6, relative_change = 3.0119479929725594e-10 Iter 125: T = 600.2594966662101 K, F = -3.7271860902077236e-6, relative_change = 1.259632354257966e-10 Iter 130: T = 600.2594964352659 K, F = -1.5587535713290634e-6, relative_change = 5.2679323941357887e-11 Iter 135: T = 600.2594963386822 K, F = -6.518883709505374e-7, relative_change = 2.203108902193803e-11 Iter 140: T = 600.2594962982898 K, F = -2.726275819542323e-7, relative_change = 9.213667243420376e-12 Iter 145: T = 600.2594962813973 K, F = -1.140162153023816e-7, relative_change = 3.8532692134848746e-12 Iter 150: T = 600.2594962743326 K, F = -4.7683231807482684e-8, relative_change = 1.6114929674366518e-12 Iter 155: T = 600.2594962713781 K, F = -1.9941214401963947e-8, relative_change = 6.739292945035165e-13 Iter 160: T = 600.2594962701424 K, F = -8.339538504209543e-9, relative_change = 2.8184137572526213e-13 Converged in 162 iterations to T = 600.259496269881 K Iter 1: T = 964.606085202729 K, F = -8064.53715486302, relative_change = 0.035393914797271026 Iter 2: T = 931.1543513835071 K, F = -6841.104371244626, relative_change = 0.03467916523892897 Iter 3: T = 899.614487970387 K, F = -5802.15333838159, relative_change = 0.03387178867419594 Iter 5: T = 842.1581217249657 K, F = -4170.79780423182, relative_change = 0.031955639165472526 Iter 10: T = 729.9491765030779 K, F = -1817.5637421447086, relative_change = 0.025351200707823908 Iter 15: T = 658.3208190675261 K, F = -784.0519408309035, relative_change = 0.017095976897719245 Iter 20: T = 618.2791894238793 K, F = -334.4252533583187, relative_change = 0.009658995734265995 Iter 25: T = 598.4585993796404 K, F = -141.35281345387696, relative_change = 0.0047438075999706305 Iter 30: T = 589.4344006981103 K, F = -59.41538496273465, relative_change = 0.002141147900303515 Iter 35: T = 585.510330738704 K, F = -24.90420921968517, relative_change = 0.0009262645791249075 Iter 40: T = 583.8410836901081 K, F = -10.425314003158233, relative_change = 0.00039304002810718785 Iter 45: T = 583.137907672595 K, F = -4.361774885925223, relative_change = 0.00016538627480119138 Iter 50: T = 582.8429314839257 K, F = -1.824460000235262, relative_change = 6.934516212959536e-5 Iter 55: T = 582.7194107179448 K, F = -0.763065938032036, relative_change = 2.9032339111445748e-5 Iter 60: T = 582.6677251253097 K, F = -0.31913291250559833, relative_change = 1.214716527542958e-5 Iter 65: T = 582.64610473799 K, F = -0.13346687918011882, relative_change = 5.0810511903578694e-6 Iter 70: T = 582.6370619842862 K, F = -0.055817737361282704, relative_change = 2.125124520545407e-6 Iter 75: T = 582.6332800480867 K, F = -0.023343695887078464, relative_change = 8.88781881127793e-7 Iter 80: T = 582.631698371209 K, F = -0.009762621411659567, relative_change = 3.717043440379277e-7 Iter 85: T = 582.6310368905033 K, F = -0.004082846439741772, relative_change = 1.5545209598331717e-7 Iter 90: T = 582.6307602505774 K, F = -0.0017074954159041478, relative_change = 6.501208047496345e-8 Iter 95: T = 582.6306445563175 K, F = -0.0007140950228639031, relative_change = 2.7188855999325702e-8 Iter 100: T = 582.6305961715719 K, F = -0.0002986430746677593, relative_change = 1.1370709083081287e-8 Iter 105: T = 582.6305759364893 K, F = -0.00012489610158838982, relative_change = 4.755367165886215e-9 Iter 110: T = 582.6305674739355 K, F = -5.22330417899175e-5, relative_change = 1.9887514976004382e-9 Iter 115: T = 582.6305639347942 K, F = -2.184448185515997e-5, relative_change = 8.31719650462895e-10 Iter 120: T = 582.630562454683 K, F = -9.135623372291679e-6, relative_change = 3.4783510180015403e-10 Iter 125: T = 582.6305618356828 K, F = -3.820626517547776e-6, relative_change = 1.4546878370930362e-10 Iter 130: T = 582.6305615768096 K, F = -1.5978318161358196e-6, relative_change = 6.083678953947418e-11 Iter 135: T = 582.6305614685457 K, F = -6.682319931283764e-7, relative_change = 2.5442658454363445e-11 Iter 140: T = 582.6305614232683 K, F = -2.7946209124607435e-7, relative_change = 1.0640404252211093e-11 Iter 145: T = 582.630561404333 K, F = -1.1687462464493592e-7, relative_change = 4.449953293110343e-12 Iter 150: T = 582.6305613964139 K, F = -4.887798549235711e-8, relative_change = 1.8610092068929973e-12 Iter 155: T = 582.630561393102 K, F = -2.044142033419405e-8, relative_change = 7.78298677036982e-13 Iter 160: T = 582.630561391717 K, F = -8.549147556546899e-9, relative_change = 3.2550527920016197e-13 Converged in 163 iterations to T = 582.6305613913115 K Iter 1: T = 964.3166430012288 K, F = -8130.486835805435, relative_change = 0.03568335699877114 Iter 2: T = 930.55834208545 K, F = -6897.587453437227, relative_change = 0.035007485519189335 Iter 3: T = 898.6941152241546 K, F = -5850.576911485218, relative_change = 0.03424205170186894 Iter 5: T = 840.5348829604452 K, F = -4206.4996423507655, relative_change = 0.03241697235007132 Iter 10: T = 726.3026009557257 K, F = -1834.50595201374, relative_change = 0.02603230216102205 Iter 15: T = 652.5771408308958 K, F = -792.1496631904622, relative_change = 0.01783488653334952 Iter 20: T = 610.8695808406862 K, F = -338.20194513077934, relative_change = 0.010227107564615066 Iter 25: T = 590.0282206132205 K, F = -143.0440175425716, relative_change = 0.005074066826708955 Iter 30: T = 580.4846769860147 K, F = -60.14807016488998, relative_change = 0.0023028274155387097 Iter 35: T = 576.3227328467975 K, F = -25.21565767048559, relative_change = 0.0009987942307493882 Iter 40: T = 574.5499547683704 K, F = -10.55649517255107, relative_change = 0.0004243016020845737 Iter 45: T = 573.8027367992751 K, F = -4.416802914111566, relative_change = 0.00017862818967356595 Iter 50: T = 573.4892088408369 K, F = -1.8475027917754336, relative_change = 7.491288033917285e-5 Iter 55: T = 573.3579060518025 K, F = -0.7727078746595161, relative_change = 3.1366066786479556e-5 Iter 60: T = 573.3029618072203 K, F = -0.32316619068619656, relative_change = 1.3124077065408017e-5 Iter 65: T = 573.2799778915535 K, F = -0.13515380270799035, relative_change = 5.489768269604066e-6 Iter 70: T = 573.2703647677924 K, F = -0.056523256643588066, relative_change = 2.296083038302564e-6 Iter 75: T = 573.2663442739416 K, F = -0.02363875732415091, relative_change = 9.602836999683535e-7 Iter 80: T = 573.2646628255427 K, F = -0.009886020476826463, relative_change = 4.016081200664809e-7 Iter 85: T = 573.2639596185197 K, F = -0.004134453550740547, relative_change = 1.6795836291582025e-7 Iter 90: T = 573.2636655280313 K, F = -0.00172907815145934, relative_change = 7.024237699412499e-8 Iter 95: T = 573.2635425357172 K, F = -0.0007231211851831953, relative_change = 2.9376233076537956e-8 Iter 100: T = 573.2634910988346 K, F = -0.0003024179240526115, relative_change = 1.2285497093065676e-8 Iter 105: T = 573.2634695873112 K, F = -0.00012647478928429212, relative_change = 5.1379425956813464e-9 Iter 110: T = 573.2634605909344 K, F = -5.289326799207128e-5, relative_change = 2.1487491418931144e-9 Iter 115: T = 573.263456828542 K, F = -2.212059629175256e-5, relative_change = 8.986325782021991e-10 Iter 120: T = 573.2634552550645 K, F = -9.251097683404819e-6, relative_change = 3.7581888668042884e-10 Iter 125: T = 573.2634545970176 K, F = -3.868920247451779e-6, relative_change = 1.5717197653281763e-10 Iter 130: T = 573.2634543218144 K, F = -1.618028555361306e-6, relative_change = 6.573119383409505e-11 Iter 135: T = 573.2634542067211 K, F = -6.766784997891406e-7, relative_change = 2.748955543963633e-11 Iter 140: T = 573.2634541585877 K, F = -2.8299519955199415e-7, relative_change = 1.1496467277694489e-11 Iter 145: T = 573.2634541384577 K, F = -1.1835176633168132e-7, relative_change = 4.807951552785967e-12 Iter 150: T = 573.2634541300392 K, F = -4.9496360343681545e-8, relative_change = 2.010752437115019e-12 Iter 155: T = 573.2634541265185 K, F = -2.070000720832965e-8, relative_change = 8.409222345775509e-13 Iter 160: T = 573.2634541250461 K, F = -8.657419670043964e-9, relative_change = 3.5170116712657416e-13 Converged in 163 iterations to T = 573.263454124615 K Iter 1: T = 980.0127788792574 K, F = -4554.107345116837, relative_change = 0.019987221120742586 Iter 2: T = 962.0748321639053 K, F = -3847.003264693199, relative_change = 0.0183037885851509 Iter 3: T = 946.0661817549534 K, F = -3248.174639995006, relative_change = 0.016639714369146442 Iter 5: T = 919.3164378827171 K, F = -2312.4667561240835, relative_change = 0.013458968936891469 Iter 10: T = 876.7949486019826 K, F = -981.8616577997507, relative_change = 0.007086452866218516 Iter 15: T = 856.6388494728326 K, F = -413.7863978691625, relative_change = 0.0033274721593893417 Iter 20: T = 847.6869934745528 K, F = -173.66089671355047, relative_change = 0.0014673231029482348 Iter 25: T = 843.8413565689548 K, F = -72.73874852078114, relative_change = 0.0006279814764714967 Iter 30: T = 842.2143674437781 K, F = -30.44013215632299, relative_change = 0.00026522236291237356 Iter 35: T = 841.5306023460525 K, F = -12.733939590204818, relative_change = 0.00011137928114294812 Iter 40: T = 841.2440545076176 K, F = -5.326102147384218, relative_change = 4.66611122671771e-5 Iter 45: T = 841.1241133630966 K, F = -2.2275475152661732, relative_change = 1.9528431742435497e-5 Iter 50: T = 841.0739344284477 K, F = -0.9316058724309024, relative_change = 8.169509157216328e-6 Iter 55: T = 841.052945828226 K, F = -0.38961200781648575, relative_change = 3.417021254447149e-6 Iter 60: T = 841.0441675902855 K, F = -0.16294097292003662, relative_change = 1.429115185547216e-6 Iter 65: T = 841.0404963293215 K, F = -0.0681439619391031, relative_change = 5.976863468420554e-7 Iter 70: T = 841.0389609471722 K, F = -0.028498636378391895, relative_change = 2.4996189592764993e-7 Iter 75: T = 841.0383188290531 K, F = -0.011918473170280608, relative_change = 1.0453745717606367e-7 Iter 80: T = 841.038050287068 K, F = -0.004984448356153859, relative_change = 4.3718884230419344e-8 Iter 85: T = 841.0379379795121 K, F = -0.002084555922918341, relative_change = 1.8283771943685908e-8 Iter 90: T = 841.0378910111351 K, F = -0.0008717861996470067, relative_change = 7.64649397075462e-9 Iter 95: T = 841.037871368396 K, F = -0.0003645914021710439, relative_change = 3.197855471481883e-9 Iter 100: T = 841.0378631535676 K, F = -0.00015247647726246427, relative_change = 1.3373813997223755e-9 Iter 105: T = 841.0378597180281 K, F = -6.376748385550357e-5, relative_change = 5.593088849194568e-10 Iter 110: T = 841.0378582812446 K, F = -2.666832446984735e-5, relative_change = 2.3390966745723103e-10 Iter 115: T = 841.0378576803644 K, F = -1.1153011716835692e-5, relative_change = 9.782381617771567e-11 Iter 120: T = 841.0378574290692 K, F = -4.664321538339067e-6, relative_change = 4.0911078101047646e-11 Iter 125: T = 841.0378573239745 K, F = -1.9506746851138956e-6, relative_change = 1.7109498945119783e-11 Iter 130: T = 841.0378572800228 K, F = -8.157947155584822e-7, relative_change = 7.15539035558878e-12 Iter 135: T = 841.0378572616414 K, F = -3.411744660120064e-7, relative_change = 2.99246420376511e-12 Iter 140: T = 841.0378572539543 K, F = -1.426817184402296e-7, relative_change = 1.2514709555305197e-12 Iter 145: T = 841.0378572507394 K, F = -5.967285221508689e-8, relative_change = 5.233946030267987e-13 Converged in 150 iterations to T = 841.037857249395 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:13 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:13 Bin 1 ray tracing: 22%|██████▊ | ETA: 0:00:12 Bin 1 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 1 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 47%|██████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 2 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 2 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 2 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 2 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 3 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 3 ray tracing: 33%|█████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 55%|████████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 68%|████████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 4 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 42%|████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 64%|███████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:02 Bin 4 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 5 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 5 ray tracing: 32%|█████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 42%|████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 64%|███████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 6 ray tracing: 33%|█████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 64%|███████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 65%|███████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 8 ray tracing: 21%|██████▍ | ETA: 0:00:08 Bin 8 ray tracing: 32%|█████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 54%|████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 65%|███████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 11%|███▍ | ETA: 0:00:08 Bin 9 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 9 ray tracing: 33%|█████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 54%|████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 64%|███████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 12%|███▍ | ETA: 0:00:08 Bin 10 ray tracing: 23%|██████▋ | ETA: 0:00:07 Bin 10 ray tracing: 34%|██████████ | ETA: 0:00:06 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 69%|████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 81%|███████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3124333114849 K, F = -7447.893163881321, relative_change = 0.0326875666885151 Iter 2: T = 936.699486958536 K, F = -6313.388323642152, relative_change = 0.031647423623150345 Iter 3: T = 908.1298302731415 K, F = -5350.188431427875, relative_change = 0.030500344115870312 Iter 5: T = 856.9821870334387 K, F = -3838.5164834282614, relative_change = 0.027890807965943544 Iter 10: T = 761.8579172080421 K, F = -1662.1056809154143, relative_change = 0.01997163117207618 Iter 15: T = 706.1633357137337 K, F = -711.626614094934, relative_change = 0.01196716083883662 Iter 20: T = 677.5204783616964 K, F = -301.60740015887455, relative_change = 0.006128216339398292 Iter 25: T = 664.1637673834915 K, F = -126.9700063358672, relative_change = 0.002830928490510522 Iter 30: T = 658.2837319841389 K, F = -53.25924031943415, relative_change = 0.0012383400891952273 Iter 35: T = 655.7681933654526 K, F = -22.302515276223595, relative_change = 0.0005280602190519414 Iter 40: T = 654.7058830102326 K, F = -9.33231030901953, relative_change = 0.00022267184143374562 Iter 45: T = 654.2597821361596 K, F = -3.9037874921877314, relative_change = 9.344813443974511e-5 Iter 50: T = 654.0728949878626 K, F = -1.632769100956272, relative_change = 3.913810330324067e-5 Iter 55: T = 653.9946799815316 K, F = -0.6828713020059423, relative_change = 1.6378008977566637e-5 Iter 60: T = 653.9619596249868 K, F = -0.28558979221212943, relative_change = 6.851227210916152e-6 Iter 65: T = 653.9482738474649 K, F = -0.1194379116866986, relative_change = 2.8655709277624997e-6 Iter 70: T = 653.9425499885768 K, F = -0.049950509714471625, relative_change = 1.1984694923686566e-6 Iter 75: T = 653.9401561493829 K, F = -0.0208899256946537, relative_change = 5.012236136229567e-7 Iter 80: T = 653.9391550079649 K, F = -0.008736420950201496, relative_change = 2.0961933804939348e-7 Iter 85: T = 653.938736317045 K, F = -0.003653676370743264, relative_change = 8.76655968485684e-8 Iter 90: T = 653.9385612152182 K, F = -0.001528011230882309, relative_change = 3.66628496133385e-8 Iter 95: T = 653.9384879854936 K, F = -0.0006390325692922083, relative_change = 1.5332850311296762e-8 Iter 100: T = 653.9384573599394 K, F = -0.00026725105644276326, relative_change = 6.4123826461372445e-9 Iter 105: T = 653.9384445519654 K, F = -0.00011176758464909176, relative_change = 2.681735281332216e-9 Iter 110: T = 653.9384391955174 K, F = -4.6742537716415455e-5, relative_change = 1.121533741783013e-9 Iter 115: T = 653.9384369553868 K, F = -1.9548286860071595e-5, relative_change = 4.690387971274512e-10 Iter 120: T = 653.9384360185376 K, F = -8.17532790881037e-6, relative_change = 1.9615764911132776e-10 Iter 125: T = 653.938435626736 K, F = -3.4190191866567687e-6, relative_change = 8.20354578207747e-11 Iter 130: T = 653.93843546288 K, F = -1.4298755431352284e-6, relative_change = 3.430822950790832e-11 Iter 135: T = 653.9384353943534 K, F = -5.979917866438811e-7, relative_change = 1.4348129505924299e-11 Iter 140: T = 653.9384353656947 K, F = -2.500871339461419e-7, relative_change = 6.000554968341549e-12 Iter 145: T = 653.9384353537093 K, F = -1.0459004157192808e-7, relative_change = 2.5095185175875715e-12 Iter 150: T = 653.9384353486969 K, F = -4.374113127258994e-8, relative_change = 1.049518455706027e-12 Iter 155: T = 653.9384353466005 K, F = -1.8292258763263902e-8, relative_change = 4.389018438789009e-13 Converged in 159 iterations to T = 653.9384353458439 K Iter 1: T = 970.261529602156 K, F = -6775.938768737128, relative_change = 0.02973847039784406 Iter 2: T = 942.6857491972812 K, F = -5739.191768823825, relative_change = 0.028420976781571308 Iter 3: T = 917.2283948130548 K, F = -4859.326410754199, relative_change = 0.027005133371225665 Iter 5: T = 872.4554977039061 K, F = -3479.46132678741, relative_change = 0.023922350735829313 Iter 10: T = 792.8875643136147 K, F = -1497.8724486404494, relative_change = 0.015616730126791037 Iter 15: T = 749.4574378789686 K, F = -637.6938813443845, relative_change = 0.008569636483918744 Iter 20: T = 728.3478740165907 K, F = -269.1974582493124, relative_change = 0.004128657997950759 Iter 25: T = 718.839447165306 K, F = -113.07684962178946, relative_change = 0.0018446537199971144 Iter 30: T = 714.7267877130457 K, F = -47.38172200730578, relative_change = 0.0007942270157236276 Iter 35: T = 712.9815281534479 K, F = -19.83202776157086, relative_change = 0.0003363126285711137 Iter 40: T = 712.2470979044479 K, F = -8.296894023051957, relative_change = 0.0001413905248411268 Iter 45: T = 711.939147143215 K, F = -3.4703701837147007, relative_change = 5.926173553855921e-5 Iter 50: T = 711.8102173070477 K, F = -1.4514396239207867, relative_change = 2.4806869349310943e-5 Iter 55: T = 711.7562725740131 K, F = -0.6070250272175539, relative_change = 1.0378540358192226e-5 Iter 60: T = 711.7337079125484 K, F = -0.2538678525574221, relative_change = 4.341131509545021e-6 Iter 65: T = 711.724270344086 K, F = -0.10617104647271647, relative_change = 1.8156358483741567e-6 Iter 70: T = 711.7203233077303 K, F = -0.04440208330989537, relative_change = 7.593420761750082e-7 Iter 75: T = 711.7186725868103 K, F = -0.018569496152739506, relative_change = 3.1756968187222335e-7 Iter 80: T = 711.717982231554 K, F = -0.007765987617265546, relative_change = 1.3281209066829824e-7 Iter 85: T = 711.7176935160321 K, F = -0.003247829213598896, relative_change = 5.5543717343142024e-8 Iter 90: T = 711.7175727716289 K, F = -0.0013582810419456859, relative_change = 2.3229066014098536e-8 Iter 95: T = 711.7175222748558 K, F = -0.000568049365280654, relative_change = 9.71467631168096e-9 Iter 100: T = 711.7175011564984 K, F = -0.00023756503088057102, relative_change = 4.0627942659190275e-9 Iter 105: T = 711.7174923245485 K, F = -9.935253276893707e-5, relative_change = 1.6991091777715858e-9 Iter 110: T = 711.7174886309216 K, F = -4.155041608100429e-5, relative_change = 7.105877734599633e-10 Iter 115: T = 711.7174870862026 K, F = -1.7376881022435064e-5, relative_change = 2.971763098337108e-10 Iter 120: T = 711.7174864401827 K, F = -7.267219194750929e-6, relative_change = 1.2428268281250865e-10 Iter 125: T = 711.7174861700095 K, F = -3.0392380254706808e-6, relative_change = 5.197650519015594e-11 Iter 130: T = 711.7174860570198 K, F = -1.2710452541586648e-6, relative_change = 2.1737188645961725e-11 Iter 135: T = 711.7174860097663 K, F = -5.315685568385575e-7, relative_change = 9.090790405855636e-12 Iter 140: T = 711.7174859900041 K, F = -2.2230809870738e-7, relative_change = 3.801873352253254e-12 Iter 145: T = 711.7174859817393 K, F = -9.297111358552712e-8, relative_change = 1.5899753600741606e-12 Iter 150: T = 711.7174859782829 K, F = -3.8880730079959847e-8, relative_change = 6.649312934537471e-13 Iter 155: T = 711.7174859768375 K, F = -1.6260658264322103e-8, relative_change = 2.7808687002465805e-13 Converged in 157 iterations to T = 711.7174859765316 K Iter 1: T = 974.4341238259242 K, F = -5825.209205689737, relative_change = 0.025565876174075783 Iter 2: T = 951.0573431730469 K, F = -4928.307919871307, relative_change = 0.023990108803961983 Iter 3: T = 929.794763704218 K, F = -4167.6989573124865, relative_change = 0.022356779663663354 Iter 5: T = 893.2581314174533 K, F = -2976.4794577156376, relative_change = 0.01900197496038223 Iter 10: T = 831.7267901681287 K, F = -1272.7309717217456, relative_change = 0.01115922315336169 Iter 15: T = 800.5004803016768 K, F = -538.8999868915408, relative_change = 0.005630635377834913 Iter 20: T = 786.0631060424835 K, F = -226.73957370255047, relative_change = 0.0025793524852119236 Iter 25: T = 779.7357368304232 K, F = -95.08329650368876, relative_change = 0.0011237211328388938 Iter 30: T = 777.0344550075021 K, F = -39.81170240582983, relative_change = 0.00047831586446726566 Iter 35: T = 775.8947458871139 K, F = -16.658025475657986, relative_change = 0.00020153847300073363 Iter 40: T = 775.4163288996923 K, F = -6.968045351760331, relative_change = 8.455123586515477e-5 Iter 45: T = 775.215936319221 K, F = -2.914375842058912, relative_change = 3.540697721192397e-5 Iter 50: T = 775.1320748719132 K, F = -1.2188716168361395, relative_change = 1.4815794021416727e-5 Iter 55: T = 775.0969934038308 K, F = -0.5097545117606282, relative_change = 6.197572675929652e-6 Iter 60: T = 775.0823202334166 K, F = -0.2131867969367408, relative_change = 2.592149219469138e-6 Iter 65: T = 775.0761834441589 K, F = -0.08915750449910664, relative_change = 1.0841115462316484e-6 Iter 70: T = 775.0736169141504 K, F = -0.0372867751265189, relative_change = 4.5339605426687256e-7 Iter 75: T = 775.0725435516507 K, F = -0.015593781993285094, relative_change = 1.8961698405729126e-7 Iter 80: T = 775.0720946570608 K, F = -0.0065215071418416315, relative_change = 7.930032151359167e-8 Iter 85: T = 775.071906923707 K, F = -0.0027273723928468163, relative_change = 3.3164382459380644e-8 Iter 90: T = 775.0718284113284 K, F = -0.0011406197437150434, relative_change = 1.386974795404387e-8 Iter 95: T = 775.0717955765058 K, F = -0.00047702080693345916, relative_change = 5.800495504267226e-9 Iter 100: T = 775.0717818445893 K, F = -0.0001994958000673952, relative_change = 2.4258367186597625e-9 Iter 105: T = 775.0717761017376 K, F = -8.343152786094432e-5, relative_change = 1.0145139439053569e-9 Iter 110: T = 775.0717737000084 K, F = -3.4892062289348935e-5, relative_change = 4.242818650692324e-10 Iter 115: T = 775.0717726955764 K, F = -1.4592277644998042e-5, relative_change = 1.7743975009808336e-10 Iter 120: T = 775.071772275511 K, F = -6.102663899221206e-6, relative_change = 7.420741205371937e-11 Iter 125: T = 775.0717720998347 K, F = -2.5522066507965846e-6, relative_change = 3.10344226576957e-11 Iter 130: T = 775.0717720263647 K, F = -1.0673622432566532e-6, relative_change = 1.2978953326802274e-11 Iter 135: T = 775.0717719956386 K, F = -4.4638438900790334e-7, relative_change = 5.427962426479755e-12 Iter 140: T = 775.0717719827887 K, F = -1.8668345502792505e-7, relative_change = 2.270040809153491e-12 Iter 145: T = 775.0717719774148 K, F = -7.807377844226693e-8, relative_change = 9.493645977791317e-13 Iter 150: T = 775.0717719751673 K, F = -3.2652931025722864e-8, relative_change = 3.9705439327361694e-13 Converged in 154 iterations to T = 775.071771974356 K Iter 1: T = 970.347060137245 K, F = -6756.450554956559, relative_change = 0.02965293986275507 Iter 2: T = 942.858499493883 K, F = -5722.552089737303, relative_change = 0.028328586515709173 Iter 3: T = 917.4895409143204 K, F = -4845.1156083379965, relative_change = 0.026906432506235468 Iter 5: T = 872.89432430052 K, F = -3469.0931439732594, relative_change = 0.023813740898393564 Iter 10: T = 793.7384874793838 K, F = -1493.178457510002, relative_change = 0.01550799864306132 Iter 15: T = 750.6093045160178 K, F = -635.608529448573, relative_change = 0.008491969889211606 Iter 20: T = 729.6733743115041 K, F = -268.29322745211823, relative_change = 0.004085681807015277 Iter 25: T = 720.2502567154093 K, F = -112.69175574283273, relative_change = 0.0018241620511922146 Iter 30: T = 716.1760002279949 K, F = -47.21933329050829, relative_change = 0.0007851474073880123 Iter 35: T = 714.4473243467701 K, F = -19.76387054595626, relative_change = 0.0003324203872125516 Iter 40: T = 713.7199248393763 K, F = -8.26834633481083, relative_change = 0.00013974566068694868 Iter 45: T = 713.4149313648246 K, F = -3.4584235271664854, relative_change = 5.8570811415776404e-5 Iter 50: T = 713.2872412866601 K, F = -1.4464420431721177, relative_change = 2.451738546918708e-5 Iter 55: T = 713.2338155589565 K, F = -0.6049347434712723, relative_change = 1.02573816536653e-5 Iter 60: T = 713.2114680434361 K, F = -0.2529936296659793, relative_change = 4.290445197244612e-6 Iter 65: T = 713.2021213040506 K, F = -0.10580542880010158, relative_change = 1.7944353762055818e-6 Iter 70: T = 713.1982122563074 K, F = -0.0442491763695696, relative_change = 7.504752867948064e-7 Iter 75: T = 713.1965774231701 K, F = -0.018505548424467833, relative_change = 3.138613974485915e-7 Iter 80: T = 713.19589371246 K, F = -0.007739243875522384, relative_change = 1.3126122658807136e-7 Iter 85: T = 713.1956077757818 K, F = -0.003236644656000376, relative_change = 5.489512481794452e-8 Iter 90: T = 713.1954881935269 K, F = -0.0013536035258107093, relative_change = 2.295781641788542e-8 Iter 95: T = 713.1954381827785 K, F = -0.0005660931735030905, relative_change = 9.601236435800824e-9 Iter 100: T = 713.1954172676826 K, F = -0.00023674692836372913, relative_change = 4.0153523455846775e-9 Iter 105: T = 713.1954085207391 K, F = -9.901039374538012e-5, relative_change = 1.6792684184972785e-9 Iter 110: T = 713.1954048626626 K, F = -4.140732866353414e-5, relative_change = 7.022901170950058e-10 Iter 115: T = 713.1954033328113 K, F = -1.7317038281228214e-5, relative_change = 2.937060988717756e-10 Iter 120: T = 713.1954026930093 K, F = -7.242191930045827e-6, relative_change = 1.228313937750715e-10 Iter 125: T = 713.1954024254366 K, F = -3.028772127655621e-6, relative_change = 5.136957237878842e-11 Iter 130: T = 713.1954023135344 K, F = -1.2666688036233609e-6, relative_change = 2.1483370849248043e-11 Iter 135: T = 713.1954022667355 K, F = -5.297373502077818e-7, relative_change = 8.984624803431418e-12 Iter 140: T = 713.1954022471637 K, F = -2.2154222678594238e-7, relative_change = 3.7574729916018625e-12 Iter 145: T = 713.1954022389785 K, F = -9.265242162381782e-8, relative_change = 1.571433928997221e-12 Iter 150: T = 713.1954022355553 K, F = -3.874787313229433e-8, relative_change = 6.571843611943536e-13 Iter 155: T = 713.1954022341237 K, F = -1.6203316799412448e-8, relative_change = 2.7481679739676755e-13 Converged in 157 iterations to T = 713.1954022338207 K Iter 1: T = 969.3390141688474 K, F = -6986.134787755205, relative_change = 0.030660985831152607 Iter 2: T = 940.8194125281942 K, F = -5918.711895595208, relative_change = 0.029421699966453014 Iter 3: T = 914.4020274719859 K, F = -5012.691727240957, relative_change = 0.028079124117155334 Iter 5: T = 867.6875853477335 K, F = -3591.450243322581, relative_change = 0.025116222774830985 Iter 10: T = 783.5439498104305 K, F = -1548.736378530833, relative_change = 0.016846571926511945 Iter 15: T = 736.6942292546388 K, F = -660.378973270884, relative_change = 0.009471042908344454 Iter 20: T = 713.5760582770082 K, F = -279.06410932431857, relative_change = 0.0046360223867586035 Iter 25: T = 703.0701796160832 K, F = -117.28629725269012, relative_change = 0.0020887681222703635 Iter 30: T = 698.5061017028697 K, F = -49.15831358985901, relative_change = 0.0009028484310754296 Iter 35: T = 696.565431326715 K, F = -20.57797882564778, relative_change = 0.00038296271188372025 Iter 40: T = 695.7480684356301 K, F = -8.609387656205111, relative_change = 0.00016112048063980246 Iter 45: T = 695.4052187757733 K, F = -3.601151879414635, relative_change = 6.755205590576645e-5 Iter 50: T = 695.2616558225774 K, F = -1.506150436491546, relative_change = 2.828084009489716e-5 Iter 55: T = 695.20158468069 K, F = -0.6299086055111782, relative_change = 1.1832598810216596e-5 Iter 60: T = 695.1764567146498 K, F = -0.2634385393539615, relative_change = 4.949446612044403e-6 Iter 65: T = 695.1659469373355 K, F = -0.11017370964718637, relative_change = 2.0700773184803795e-6 Iter 70: T = 695.1615514546983 K, F = -0.046076060181940104, relative_change = 8.657589801260933e-7 Iter 75: T = 695.1597131819373 K, F = -0.019269575954593554, relative_change = 3.6207562887521447e-7 Iter 80: T = 695.1589443891678 K, F = -0.008058769818498068, relative_change = 1.514252062818297e-7 Iter 85: T = 695.1586228699501 K, F = -0.003370274309950849, relative_change = 6.332797907354112e-8 Iter 90: T = 695.158488406616 K, F = -0.0014094890573627117, relative_change = 2.6484543251577843e-8 Iter 95: T = 695.1584321724164 K, F = -0.0005894651714084542, relative_change = 1.1076156823419316e-8 Iter 100: T = 695.1584086545978 K, F = -0.0002465213782304465, relative_change = 4.632181879196059e-9 Iter 105: T = 695.1583988191644 K, F = -0.00010309818432552298, relative_change = 1.9372339097280873e-9 Iter 110: T = 695.1583947058685 K, F = -4.3116892548655805e-5, relative_change = 8.101743908189913e-10 Iter 115: T = 695.158392985639 K, F = -1.8031999177159364e-5, relative_change = 3.3882460579083715e-10 Iter 120: T = 695.1583922662185 K, F = -7.541198137617222e-6, relative_change = 1.4170051105565556e-10 Iter 125: T = 695.1583919653482 K, F = -3.1538189232405145e-6, relative_change = 5.926084237090229e-11 Iter 130: T = 695.1583918395206 K, F = -1.3189647194433718e-6, relative_change = 2.478359167138334e-11 Iter 135: T = 695.1583917868982 K, F = -5.516078233069877e-7, relative_change = 1.0364813295595494e-11 Iter 140: T = 695.1583917648908 K, F = -2.3068948551419055e-7, relative_change = 4.3346982148243835e-12 Iter 145: T = 695.1583917556869 K, F = -9.647671939116975e-8, relative_change = 1.8128154493528198e-12 Iter 150: T = 695.1583917518378 K, F = -4.0348035579285124e-8, relative_change = 7.581470712590189e-13 Iter 155: T = 695.158391750228 K, F = -1.6873888508683876e-8, relative_change = 3.170634944200078e-13 Converged in 158 iterations to T = 695.1583917497568 K Iter 1: T = 963.5760026377422 K, F = -8299.242447156725, relative_change = 0.036423997362257744 Iter 2: T = 929.0306161273371 K, F = -7042.158198112375, relative_change = 0.03585123167849639 Iter 3: T = 896.330357148088 K, F = -5974.562092349161, relative_change = 0.035198257637148865 Iter 5: T = 836.3465123187037 K, F = -4298.004340835415, relative_change = 0.03362249237975683 Iter 10: T = 716.7378371291398 K, F = -1878.1692922670252, relative_change = 0.027889375359653377 Iter 15: T = 637.1870083126178 K, F = -813.2575798544362, relative_change = 0.01996938652661432 Iter 20: T = 590.6130633986219 K, F = -348.1927615646956, relative_change = 0.011965041611931088 Iter 25: T = 566.6619030066963 K, F = -147.57341096808864, relative_change = 0.006126836224561997 Iter 30: T = 555.4933469595984 K, F = -62.12500588232639, relative_change = 0.002830213191648464 Iter 35: T = 550.576680024656 K, F = -26.05912741692311, relative_change = 0.0012380106725703788 Iter 40: T = 548.47329514862 K, F = -10.912357073322081, relative_change = 0.0005279165966461786 Iter 45: T = 547.5850398264012 K, F = -4.566188300973202, relative_change = 0.0002226107069896467 Iter 50: T = 547.2120311793435 K, F = -1.9100765883587385, relative_change = 9.342237668819522e-5 Iter 55: T = 547.0557649909867 K, F = -0.7988943920811636, relative_change = 3.912729750890376e-5 Iter 60: T = 546.9903653198808 K, F = -0.3341207560461834, relative_change = 1.6373483970388546e-5 Iter 65: T = 546.9630061154805 K, F = -0.13973566685812366, relative_change = 6.849333766447216e-6 Iter 70: T = 546.9515627203382 K, F = -0.05843954039703966, relative_change = 2.864778885994941e-6 Iter 75: T = 546.9467767023164 K, F = -0.024440186422054866, relative_change = 1.198138219436207e-6 Iter 80: T = 546.9447750880794 K, F = -0.01022119055584328, relative_change = 5.01085065836893e-7 Iter 85: T = 546.9439379813454 K, F = -0.004274626180708785, relative_change = 2.0956139473073898e-7 Iter 90: T = 546.9435878919555 K, F = -0.0017877001073633436, relative_change = 8.76413641002195e-8 Iter 95: T = 546.9434414801545 K, F = -0.0007476376029746656, relative_change = 3.665271519184758e-8 Iter 100: T = 546.9433802489493 K, F = -0.0003126709858333465, relative_change = 1.5328611957254542e-8 Iter 105: T = 546.9433546413208 K, F = -0.00013076274236603624, relative_change = 6.410610110300822e-9 Iter 110: T = 546.9433439319034 K, F = -5.468654071741352e-5, relative_change = 2.6809939678351107e-9 Iter 115: T = 546.943339453097 K, F = -2.2870564944321714e-5, relative_change = 1.1212237644357647e-9 Iter 120: T = 546.9433375800065 K, F = -9.564742544543314e-6, relative_change = 4.689091346283084e-10 Iter 125: T = 546.9433367966578 K, F = -4.000089398659146e-6, relative_change = 1.9610339352215912e-10 Iter 130: T = 546.9433364690519 K, F = -1.6728848602209911e-6, relative_change = 8.201276679132482e-11 Iter 135: T = 546.9433363320434 K, F = -6.996206147191764e-7, relative_change = 3.4298727754769424e-11 Iter 140: T = 546.9433362747448 K, F = -2.9258971984136295e-7, relative_change = 1.4344138721121834e-11 Iter 145: T = 546.9433362507817 K, F = -1.223642876746478e-7, relative_change = 5.998878970300677e-12 Iter 150: T = 546.94333624076 K, F = -5.117386711606109e-8, relative_change = 2.508786191887283e-12 Iter 155: T = 546.9433362365689 K, F = -2.140175059395233e-8, relative_change = 1.0492155351970707e-12 Iter 160: T = 546.9433362348161 K, F = -8.950133190133158e-9, relative_change = 4.38778068368271e-13 Converged in 164 iterations to T = 546.9433362341834 K Iter 1: T = 966.9231609007165 K, F = -7536.5892529685525, relative_change = 0.033076839099283474 Iter 2: T = 935.9049555030384 K, F = -6389.247255772005, relative_change = 0.03207928680577244 Iter 3: T = 906.9149342645939 K, F = -5415.108311556419, relative_change = 0.030975390255159756 Iter 5: T = 854.8881162802606 K, F = -3886.142872766475, relative_change = 0.028449077918872256 Iter 10: T = 757.4914699993107 K, F = -1684.1614232692311, relative_change = 0.02064997289923013 Iter 15: T = 699.8420626820373 K, F = -721.7286822628885, relative_change = 0.012551711885195476 Iter 20: T = 669.9079624761271 K, F = -306.1042239353588, relative_change = 0.006497432720913682 Iter 25: T = 655.8605430677106 K, F = -128.9162224201756, relative_change = 0.0030203421974749917 Iter 30: T = 649.6555911931588 K, F = -54.08660136535501, relative_change = 0.0013252539181451434 Iter 35: T = 646.9968592377089 K, F = -22.651049888371524, relative_change = 0.0005659011745562847 Iter 40: T = 645.8732989273303 K, F = -9.478526621116668, relative_change = 0.00023877030187220233 Iter 45: T = 645.4013370984219 K, F = -3.9650175241895154, relative_change = 0.00010022934583996515 Iter 50: T = 645.2035911410286 K, F = -1.6583904107254743, relative_change = 4.198266238202364e-5 Iter 55: T = 645.1208272138338 K, F = -0.6935889254187636, relative_change = 1.756914241581001e-5 Iter 60: T = 645.0862031057087 K, F = -0.29007246548903076, relative_change = 7.349637008562459e-6 Iter 65: T = 645.0717209222217 K, F = -0.12131269532787431, relative_change = 3.074057982719233e-6 Iter 70: T = 645.0656639558507 K, F = -0.05073457994210823, relative_change = 1.2856693379314403e-6 Iter 75: T = 645.0631307999577 K, F = -0.021217835558750564, relative_change = 5.376930419307956e-7 Iter 80: T = 645.0620713933778 K, F = -0.008873557177924707, relative_change = 2.2487153535721607e-7 Iter 85: T = 645.061628335052 K, F = -0.0037110284503967805, relative_change = 9.404429109646273e-8 Iter 90: T = 645.0614430424467 K, F = -0.001551996568637859, relative_change = 3.933050329354597e-8 Iter 95: T = 645.0613655508099 K, F = -0.000649063525745952, relative_change = 1.6448496248978104e-8 Iter 100: T = 645.0613331428722 K, F = -0.0002714461218415454, relative_change = 6.878959312575564e-9 Iter 105: T = 645.0613195894839 K, F = -0.00011352201156866748, relative_change = 2.8768632665755837e-9 Iter 110: T = 645.0613139212946 K, F = -4.747626057538534e-5, relative_change = 1.2031386152373177e-9 Iter 115: T = 645.0613115507903 K, F = -1.985513954871898e-5, relative_change = 5.031669560834925e-10 Iter 120: T = 645.061310559417 K, F = -8.303656963970507e-6, relative_change = 2.1043044392824065e-10 Iter 125: T = 645.0613101448128 K, F = -3.4726873884838305e-6, relative_change = 8.800449659584856e-11 Iter 130: T = 645.0613099714203 K, F = -1.452319279726666e-6, relative_change = 3.680453002945353e-11 Iter 135: T = 645.0613098989056 K, F = -6.073772724768389e-7, relative_change = 1.5392094140795832e-11 Iter 140: T = 645.061309868579 K, F = -2.5401215442144576e-7, relative_change = 6.437150634057496e-12 Iter 145: T = 645.0613098558962 K, F = -1.062312861566106e-7, relative_change = 2.6921026384005466e-12 Iter 150: T = 645.061309850592 K, F = -4.442722073561001e-8, relative_change = 1.1258701884442806e-12 Iter 155: T = 645.0613098483738 K, F = -1.8580156135872272e-8, relative_change = 4.708564601610101e-13 Converged in 160 iterations to T = 645.0613098474461 K Iter 1: T = 965.1766261603711 K, F = -7934.538854939702, relative_change = 0.034823373839628906 Iter 2: T = 932.3275067606514 K, F = -6729.791352184533, relative_change = 0.03403430886054377 Iter 3: T = 901.4231780976296 K, F = -5706.751003557929, relative_change = 0.03314750282376432 Iter 5: T = 845.3358817743373 K, F = -4100.517876352241, relative_change = 0.03106190682850555 Iter 10: T = 736.9952288735097 K, F = -1784.3578617028006, relative_change = 0.024075588107153257 Iter 15: T = 669.2418542309529 K, F = -768.3143246548068, relative_change = 0.015770711445041566 Iter 20: T = 632.1685844018978 K, F = -327.1600067959718, relative_change = 0.008680072185634692 Iter 25: T = 614.1154936144429 K, F = -138.12547932096575, relative_change = 0.00418994044172249 Iter 30: T = 605.9751000728863 K, F = -58.023700018162636, relative_change = 0.0018739187960332292 Iter 35: T = 602.4523031791817 K, F = -24.313976463351423, relative_change = 0.0008072033255649944 Iter 40: T = 600.9570059454313 K, F = -10.176962157758753, relative_change = 0.00034187706217186166 Iter 45: T = 600.3276992145156 K, F = -4.2576415169846795, relative_change = 0.0001437423759280745 Iter 50: T = 600.0638159250402 K, F = -1.7808625934973243, relative_change = 6.0249685301481515e-5 Iter 55: T = 599.9533338202067 K, F = -0.7448246272798662, relative_change = 2.5220811135022108e-5 Iter 60: T = 599.9071073354396 K, F = -0.3115027149710367, relative_change = 1.0551790600991637e-5 Iter 65: T = 599.8877710953415 K, F = -0.1302755833063767, relative_change = 4.413610434850546e-6 Iter 70: T = 599.8796837888334 K, F = -0.05448305450302876, relative_change = 1.8459515304872715e-6 Iter 75: T = 599.876301465222 K, F = -0.022785507738007638, relative_change = 7.720211789246775e-7 Iter 80: T = 599.8748869169015 K, F = -0.009529179090205175, relative_change = 3.2287236042908896e-7 Iter 85: T = 599.8742953323688 K, F = -0.003985217833359367, relative_change = 1.3502975627105952e-7 Iter 90: T = 599.8740479240346 K, F = -0.001666665924807964, relative_change = 5.647117545988034e-8 Iter 95: T = 599.8739444548065 K, F = -0.0006970196341269386, relative_change = 2.3616940740913334e-8 Iter 100: T = 599.8739011827208 K, F = -0.00029150194300126, relative_change = 9.876890321264844e-9 Iter 105: T = 599.8738830858144 K, F = -0.0001219095950764082, relative_change = 4.13063412278621e-9 Iter 110: T = 599.8738755174716 K, F = -5.098404921694e-5, relative_change = 1.7274806460569761e-9 Iter 115: T = 599.8738723523 K, F = -2.1322138565815774e-5, relative_change = 7.22453065144845e-10 Iter 120: T = 599.8738710285875 K, F = -8.917172768185821e-6, relative_change = 3.0213849547018933e-10 Iter 125: T = 599.8738704749951 K, F = -3.729268978125422e-6, relative_change = 1.2635795587868192e-10 Iter 130: T = 599.8738702434762 K, F = -1.5596250385052635e-6, relative_change = 5.2844413562228e-11 Iter 135: T = 599.8738701466522 K, F = -6.522543352094345e-7, relative_change = 2.210018242402953e-11 Iter 140: T = 599.8738701061592 K, F = -2.727804365720843e-7, relative_change = 9.242556295085689e-12 Iter 145: T = 599.8738700892245 K, F = -1.1408001560075931e-7, relative_change = 3.865346722536514e-12 Iter 150: T = 599.8738700821423 K, F = -4.7709863448819334e-8, relative_change = 1.6165422432121112e-12 Iter 155: T = 599.8738700791804 K, F = -1.9952325847061303e-8, relative_change = 6.760400313756056e-13 Iter 160: T = 599.8738700779418 K, F = -8.344996971221263e-9, relative_change = 2.8275159786146614e-13 Converged in 162 iterations to T = 599.8738700776796 K Iter 1: T = 980.1731172776507 K, F = -4517.574088521723, relative_change = 0.019826882722349247 Iter 2: T = 962.3885879921808 K, F = -3815.9731905762287, relative_change = 0.01814427367163974 Iter 3: T = 946.5252895067314 K, F = -3221.8321967964757, relative_change = 0.01648325705788423 Iter 5: T = 920.0384671190536 K, F = -2293.5162601398197, relative_change = 0.01331461377652175 Iter 10: T = 877.99672485035 K, F = -973.643635448047, relative_change = 0.006991425223106499 Iter 15: T = 858.1002461002029 K, F = -410.2791341918008, relative_change = 0.0032775101334420738 Iter 20: T = 849.2714998091423 K, F = -172.17966780487606, relative_change = 0.001444116509831363 Iter 25: T = 845.4803432500065 K, F = -72.11656147184459, relative_change = 0.0006178218555755121 Iter 30: T = 843.8767018837916 K, F = -30.17943503631986, relative_change = 0.00026088990084380855 Iter 35: T = 843.202802790808 K, F = -12.624825877783795, relative_change = 0.00010955245676396999 Iter 40: T = 842.9203990581191 K, F = -5.28045417479453, relative_change = 4.5894476256860505e-5 Iter 45: T = 842.8021941983636 K, F = -2.2084543029259938, relative_change = 1.9207352573587443e-5 Iter 50: T = 842.752741954523 K, F = -0.9236203929204705, relative_change = 8.03514893546552e-6 Iter 55: T = 842.7320573623786 K, F = -0.3862723026640308, relative_change = 3.360816014891889e-6 Iter 60: T = 842.723406281272 K, F = -0.16154425395139893, relative_change = 1.4056070005540204e-6 Iter 65: T = 842.7197882017928 K, F = -0.06755983487083439, relative_change = 5.8785450888967e-7 Iter 70: T = 842.7182750612965 K, F = -0.0282543470203227, relative_change = 2.4585002790687126e-7 Iter 75: T = 842.7176422449934 K, F = -0.01181630836810732, relative_change = 1.0281781159454977e-7 Iter 80: T = 842.7173775931549 K, F = -0.004941721802074639, relative_change = 4.299970558577154e-8 Iter 85: T = 842.7172669125074 K, F = -0.002066687164929526, relative_change = 1.7983002435412823e-8 Iter 90: T = 842.7172206245234 K, F = -0.0008643132712220503, relative_change = 7.520708499070656e-9 Iter 95: T = 842.7172012663331 K, F = -0.0003614661342654646, relative_change = 3.1452504733385976e-9 Iter 100: T = 842.7171931705062 K, F = -0.00015116945597148934, relative_change = 1.3153813860408117e-9 Iter 105: T = 842.7171897847346 K, F = -6.32208728168493e-5, relative_change = 5.501082237076677e-10 Iter 110: T = 842.7171883687645 K, F = -2.6439724264193387e-5, relative_change = 2.3006183272400824e-10 Iter 115: T = 842.717187776589 K, F = -1.1057409952774933e-5, relative_change = 9.621461941161167e-11 Iter 120: T = 842.7171875289339 K, F = -4.624339555059365e-6, relative_change = 4.0238091274801786e-11 Iter 125: T = 842.7171874253617 K, F = -1.9339533596784975e-6, relative_change = 1.6828044508183088e-11 Iter 130: T = 842.7171873820465 K, F = -8.088025853503211e-7, relative_change = 7.0376908728565615e-12 Iter 135: T = 842.7171873639317 K, F = -3.38250997211631e-7, relative_change = 2.9432472140571663e-12 Iter 140: T = 842.7171873563559 K, F = -1.4146230609135557e-7, relative_change = 1.230915922636011e-12 Iter 145: T = 842.7171873531876 K, F = -5.9163158816488703e-8, relative_change = 5.148005587787662e-13 Converged in 150 iterations to T = 842.7171873518623 K Iter 1: T = 976.4490524065725 K, F = -5366.105811897124, relative_change = 0.023550947593427473 Iter 2: T = 955.0595213150206 K, F = -4537.381762445768, relative_change = 0.021905424598277712 Iter 3: T = 935.7396670565237 K, F = -3834.905284972639, relative_change = 0.020228953093829546 Iter 5: T = 902.8876264811166 K, F = -2735.5758651786477, relative_change = 0.01687638415147359 Iter 10: T = 848.7906672846043 K, F = -1166.4910333552293, relative_change = 0.00949351429634564 Iter 15: T = 822.0861404106198 K, F = -492.95091189562964, relative_change = 0.0046488994174381055 Iter 20: T = 809.9477063671153 K, F = -207.18255274042096, relative_change = 0.002095022066428041 Iter 25: T = 804.6737955307693 K, F = -86.83719934071257, relative_change = 0.0009056433056674204 Iter 30: T = 802.43118445637 K, F = -36.350705106943074, relative_change = 0.000384165322928126 Iter 35: T = 801.4866303609593 K, F = -15.20837942347267, relative_change = 0.00016162951972291113 Iter 40: T = 801.0904255223963 K, F = -6.361394762434873, relative_change = 6.776602195732727e-5 Iter 45: T = 800.9245202548445 K, F = -2.660598602507978, relative_change = 2.8370513168458168e-5 Iter 50: T = 800.8551002869035 K, F = -1.1127269050807298, relative_change = 1.187013445437331e-5 Iter 55: T = 800.8260616542258 K, F = -0.46536141845592793, relative_change = 4.9651502955102155e-6 Iter 60: T = 800.8139162361576 K, F = -0.19462070649052854, relative_change = 2.076645806341955e-6 Iter 65: T = 800.8088366822132 K, F = -0.08139287926451844, relative_change = 8.685061786529428e-7 Iter 70: T = 800.8067123179724 K, F = -0.03403950484202023, relative_change = 3.632245713083658e-7 Iter 75: T = 800.8058238775093 K, F = -0.014235732810651491, relative_change = 1.5190571322805026e-7 Iter 80: T = 800.8054523200537 K, F = -0.00595355441045875, relative_change = 6.352893376686383e-8 Iter 85: T = 800.805296930106 K, F = -0.002489847718873728, relative_change = 2.6568585092903452e-8 Iter 90: T = 800.8052319441422 K, F = -0.0010412840799395306, relative_change = 1.1111304182746737e-8 Iter 95: T = 800.8052047662304 K, F = -0.0004354774433371622, relative_change = 4.646880916308176e-9 Iter 100: T = 800.8051934001021 K, F = -0.0001821218672809488, relative_change = 1.943381223643394e-9 Iter 105: T = 800.8051886466513 K, F = -7.616553810652071e-5, relative_change = 8.127452405255622e-10 Iter 110: T = 800.8051866587016 K, F = -3.1853338667953146e-5, relative_change = 3.3989978075140744e-10 Iter 115: T = 800.8051858273172 K, F = -1.3321450424763626e-5, relative_change = 1.4215018865841418e-10 Iter 120: T = 800.8051854796223 K, F = -5.571189089947914e-6, relative_change = 5.944890057562909e-11 Iter 125: T = 800.8051853342121 K, F = -2.3299380486063725e-6, relative_change = 2.4862242742513168e-11 Iter 130: T = 800.8051852733998 K, F = -9.74408492004919e-7, relative_change = 1.0397692969494305e-11 Iter 135: T = 800.8051852479674 K, F = -4.075086851296206e-7, relative_change = 4.348433152817225e-12 Iter 140: T = 800.8051852373312 K, F = -1.704234796617854e-7, relative_change = 1.8185504654727115e-12 Iter 145: T = 800.8051852328831 K, F = -7.127261558714792e-8, relative_change = 7.605339857636813e-13 Iter 150: T = 800.8051852310228 K, F = -2.980852176204252e-8, relative_change = 3.1808000420498587e-13 Converged in 153 iterations to T = 800.8051852304782 K Iter 1: T = 980.8610097455646 K, F = -4360.837135352886, relative_change = 0.019138990254435398 Iter 2: T = 963.7328640680199 K, F = -3682.8769504106817, relative_change = 0.017462357568874834 Iter 3: T = 948.4897097730521 K, F = -3108.870386954094, relative_change = 0.015816783740906 Iter 5: T = 923.12009016463 K, F = -2212.295510744558, relative_change = 0.012703882882408346 Iter 10: T = 883.1004269565842 K, F = -938.4667735416292, relative_change = 0.0065949330431177115 Iter 15: T = 864.2885801615829 K, F = -395.2799888988976, relative_change = 0.003070776491269316 Iter 20: T = 855.971636344284 K, F = -165.84814102961752, relative_change = 0.0013484899276261103 Iter 25: T = 852.4064372553323 K, F = -69.45762674304093, relative_change = 0.0005760361898071337 Iter 30: T = 850.8995294067372 K, F = -29.06545055316587, relative_change = 0.0002430853660464481 Iter 35: T = 850.266488366762 K, F = -12.15859232662908, relative_change = 0.00010204759971456324 Iter 40: T = 850.0012433395359 K, F = -5.08540784376462, relative_change = 4.274548381749876e-5 Iter 45: T = 849.8902270068598 K, F = -2.126872748103249, relative_change = 1.7888585718811386e-5 Iter 50: T = 849.8437832911113 K, F = -0.8895001129356157, relative_change = 7.4833059756710315e-6 Iter 55: T = 849.8243572865271 K, F = -0.372002461741365, relative_change = 3.1299728851666024e-6 Iter 60: T = 849.8162326291643 K, F = -0.1555763779221091, relative_change = 1.3090558824107194e-6 Iter 65: T = 849.8128347181711 K, F = -0.0650639876743182, relative_change = 5.474739702135191e-7 Iter 70: T = 849.8114136568271 K, F = -0.027210552138498212, relative_change = 2.289621056530228e-7 Iter 75: T = 849.8108193494858 K, F = -0.011379780570717424, relative_change = 9.575502856202304e-8 Iter 80: T = 849.810570802618 K, F = -0.00475916061006143, relative_change = 4.0045956239879095e-8 Iter 85: T = 849.8104668572728 K, F = -0.001990337887486593, relative_change = 1.674770760946023e-8 Iter 90: T = 849.8104233860745 K, F = -0.0008323830885719197, relative_change = 7.004093158984493e-9 Iter 95: T = 849.810405205898 K, F = -0.0003481125508626448, relative_change = 2.9291957247623676e-9 Iter 100: T = 849.8103976027305 K, F = -0.00014558482524984484, relative_change = 1.2250246790054929e-9 Iter 105: T = 849.810394422995 K, F = -6.088531238046535e-5, relative_change = 5.123199581811308e-10 Iter 110: T = 849.8103930931917 K, F = -2.546296428795891e-5, relative_change = 2.1425832251383464e-10 Iter 115: T = 849.810392537052 K, F = -1.0648915713673546e-5, relative_change = 8.960538917266707e-11 Iter 120: T = 849.8103923044678 K, F = -4.453503192447528e-6, relative_change = 3.747403942249195e-11 Iter 125: T = 849.8103922071983 K, F = -1.8625095028479421e-6, relative_change = 1.567210161449757e-11 Iter 130: T = 849.810392166519 K, F = -7.789232618904407e-7, relative_change = 6.554256230295215e-12 Iter 135: T = 849.8103921495065 K, F = -3.257567642300785e-7, relative_change = 2.7410829874787126e-12 Iter 140: T = 849.8103921423917 K, F = -1.3623674166574062e-7, relative_change = 1.1463651898280341e-12 Iter 145: T = 849.8103921394162 K, F = -5.697789351444271e-8, relative_change = 4.79440956361333e-13 Converged in 150 iterations to T = 849.8103921381718 K Iter 1: T = 967.3738202647137 K, F = -7433.906088194087, relative_change = 0.03262617973528637 Iter 2: T = 936.8246884954224 K, F = -6301.427039569081, relative_change = 0.03157944853307252 Iter 3: T = 908.3211150177966 K, F = -5339.953510635109, relative_change = 0.030425728343478682 Iter 5: T = 857.3112804076118 K, F = -3831.011006571039, relative_change = 0.027803541207619516 Iter 10: T = 762.5402302523642 K, F = -1658.6362114490128, relative_change = 0.019867182025480674 Iter 15: T = 707.1454391407332 K, F = -710.0418722698613, relative_change = 0.01187858426052063 Iter 20: T = 678.6982318210534 K, F = -300.9038024868797, relative_change = 0.006072950019897736 Iter 25: T = 665.4453356046787 K, F = -126.66600801847642, relative_change = 0.002802777660480387 Iter 30: T = 659.6139237407306 K, F = -53.130120832250064, relative_change = 0.00122546812218678 Iter 35: T = 657.1197699309479 K, F = -22.248144450666093, relative_change = 0.0005224647976986558 Iter 40: T = 656.0665984857894 K, F = -9.309504852539565, relative_change = 0.00022029303404362777 Iter 45: T = 655.6243547440772 K, F = -3.894238124412574, relative_change = 9.244639017684422e-5 Iter 50: T = 655.4390869093505 K, F = -1.6287733571452532, relative_change = 3.871794609476206e-5 Iter 55: T = 655.3615502114675 K, F = -0.6811998688949704, relative_change = 1.6202080891654e-5 Iter 60: T = 655.3291137230217 K, F = -0.28489071496769547, relative_change = 6.7776146239251306e-6 Iter 65: T = 655.315546696034 K, F = -0.11914553804471878, relative_change = 2.834778726745212e-6 Iter 70: T = 655.3098725058996 K, F = -0.04982823360819422, relative_change = 1.1855906823905944e-6 Iter 75: T = 655.3074994397971 K, F = -0.020838788024378496, relative_change = 4.958373414193361e-7 Iter 80: T = 655.3065069861134 K, F = -0.00871503450604727, relative_change = 2.073666996986691e-7 Iter 85: T = 655.3060919285389 K, F = -0.0036447322930717174, relative_change = 8.672351044771998e-8 Iter 90: T = 655.3059183462261 K, F = -0.0015242707086048357, relative_change = 3.626885675095323e-8 Iter 95: T = 655.3058457519813 K, F = -0.0006374682373821994, relative_change = 1.51680775918266e-8 Iter 100: T = 655.3058153921927 K, F = -0.0002665968343558145, relative_change = 6.34347270038596e-9 Iter 105: T = 655.305802695365 K, F = -0.00011149398047199943, relative_change = 2.6529162971236056e-9 Iter 110: T = 655.3057973853998 K, F = -4.662811444761106e-5, relative_change = 1.1094813277879204e-9 Iter 115: T = 655.3057951647089 K, F = -1.950043453630146e-5, relative_change = 4.639983539363041e-10 Iter 120: T = 655.3057942359894 K, F = -8.155315287972087e-6, relative_change = 1.94049670428584e-10 Iter 125: T = 655.3057938475878 K, F = -3.4106500264585726e-6, relative_change = 8.115388456228789e-11 Iter 130: T = 655.3057936851536 K, F = -1.4263743681186547e-6, relative_change = 3.393951887514842e-11 Iter 135: T = 655.3057936172218 K, F = -5.965260847506926e-7, relative_change = 1.4193895218132996e-11 Iter 140: T = 655.3057935888119 K, F = -2.4947515392392816e-7, relative_change = 5.936076033514344e-12 Iter 145: T = 655.3057935769305 K, F = -1.0433390190689451e-7, relative_change = 2.482547720302709e-12 Iter 150: T = 655.3057935719615 K, F = -4.3634797830538474e-8, relative_change = 1.0382576123784867e-12 Iter 155: T = 655.3057935698833 K, F = -1.824761830526711e-8, relative_change = 4.341885274015687e-13 Converged in 159 iterations to T = 655.3057935691334 K Iter 1: T = 973.5857062477783 K, F = -6018.521957923759, relative_change = 0.026414293752221735 Iter 2: T = 949.3643388262819 K, F = -5093.03979064393, relative_change = 0.024878515847203707 Iter 3: T = 927.2679071127858 K, F = -4308.0577065340885, relative_change = 0.023274975486033564 Iter 5: T = 889.1251400514127 K, F = -3078.293753629836, relative_change = 0.019943163481827324 Iter 10: T = 824.237625303535 K, F = -1317.9152895624973, relative_change = 0.011943134671502825 Iter 15: T = 790.879879581971 K, F = -558.5538839339021, relative_change = 0.0061132547160324445 Iter 20: T = 775.3284436916648 K, F = -235.1349149152414, relative_change = 0.0028233129469212304 Iter 25: T = 768.4831337323893 K, F = -98.6296437862325, relative_change = 0.0012348587963481655 Iter 30: T = 765.5548228866613 K, F = -41.30140042837224, relative_change = 0.0005265470616172914 Iter 35: T = 764.3182328364097 K, F = -17.282215980271808, relative_change = 0.00022202857228277383 Iter 40: T = 763.7989519418984 K, F = -7.2292982030368345, relative_change = 9.317725068845213e-5 Iter 45: T = 763.5814082117171 K, F = -3.023671621965899, relative_change = 3.9024488516904396e-5 Iter 50: T = 763.4903631652531 K, F = -1.2645868521181478, relative_change = 1.6330436371689174e-5 Iter 55: T = 763.4522755405736 K, F = -0.5288742955194401, relative_change = 6.8313217007783094e-6 Iter 60: T = 763.4363448288063 K, F = -0.2211831159227633, relative_change = 2.8572444420210128e-6 Iter 65: T = 763.4296820628664 K, F = -0.0925016950697869, relative_change = 1.1949869480512795e-6 Iter 70: T = 763.4268955530049 K, F = -0.03868536158722391, relative_change = 4.99767118031568e-7 Iter 75: T = 763.4257301905332 K, F = -0.016178688610822944, relative_change = 2.0901020474875477e-7 Iter 80: T = 763.4252428201465 K, F = -0.006766122259323604, relative_change = 8.741084838817566e-8 Iter 85: T = 763.4250389957009 K, F = -0.0028296733877687386, relative_change = 3.655631045750711e-8 Iter 90: T = 763.424953753826 K, F = -0.0011834032490358748, relative_change = 1.5288294314687512e-8 Iter 95: T = 763.4249181046458 K, F = -0.0004949133791782856, relative_change = 6.393748783063619e-9 Iter 100: T = 763.4249031957313 K, F = -0.0002069786868450496, relative_change = 2.6739423621601137e-9 Iter 105: T = 763.4248969606449 K, F = -8.656096037151784e-5, relative_change = 1.1182746947295951e-9 Iter 110: T = 763.4248943530572 K, F = -3.620082920807732e-5, relative_change = 4.67675863532715e-10 Iter 115: T = 763.4248932625328 K, F = -1.5139619477300137e-5, relative_change = 1.955876375113185e-10 Iter 120: T = 763.4248928064626 K, F = -6.331570181927759e-6, relative_change = 8.179709265477351e-11 Iter 125: T = 763.4248926157285 K, F = -2.647938782796011e-6, relative_change = 3.4208527741887015e-11 Iter 130: T = 763.4248925359612 K, F = -1.1074001740052353e-6, relative_change = 1.4306421975765422e-11 Iter 135: T = 763.4248925026016 K, F = -4.6312771806444886e-7, relative_change = 5.9831131692151e-12 Iter 140: T = 763.4248924886502 K, F = -1.9368716464018831e-7, relative_change = 2.5022303359657893e-12 Iter 145: T = 763.4248924828156 K, F = -8.100192350202207e-8, relative_change = 1.0464579345887122e-12 Iter 150: T = 763.4248924803754 K, F = -3.3876031979573895e-8, relative_change = 4.376419833667357e-13 Converged in 154 iterations to T = 763.4248924794946 K Iter 1: T = 969.9495058087733 K, F = -6847.033686870608, relative_change = 0.030050494191226663 Iter 2: T = 942.0551279997093 K, F = -5799.90133668361, relative_change = 0.028758587578025352 Iter 3: T = 916.2744184281174 K, F = -4911.180862193796, relative_change = 0.027366455322346928 Iter 5: T = 870.8500013808429 K, F = -3517.3066936201926, relative_change = 0.02432153080264813 Iter 10: T = 789.761569948399 K, F = -1515.027543329111, relative_change = 0.016020799444878477 Iter 15: T = 745.2111753560065 K, F = -645.3265497310074, relative_change = 0.008861106570235483 Iter 20: T = 723.4508636519698 K, F = -272.5108825594679, relative_change = 0.00429097626520225 Iter 25: T = 713.6214322095221 K, F = -114.48890370956866, relative_change = 0.0019223100994082913 Iter 30: T = 709.3639812171983 K, F = -47.97735595019219, relative_change = 0.0008286894384087623 Iter 35: T = 707.5561395465677 K, F = -20.08206077015591, relative_change = 0.000351096080619016 Iter 40: T = 706.7951669256455 K, F = -8.401626907469534, relative_change = 0.00014763984821772238 Iter 45: T = 706.4760500041456 K, F = -3.514200010709515, relative_change = 6.188708318875253e-5 Iter 50: T = 706.342438748255 K, F = -1.469774920079698, relative_change = 2.590689624756748e-5 Iter 55: T = 706.2865341547443 K, F = -0.6146939671371358, relative_change = 1.083894844722895e-5 Iter 60: T = 706.2631494998641 K, F = -0.2570752523386003, relative_change = 4.533743338282031e-6 Iter 65: T = 706.2533689380009 K, F = -0.10751244692163853, relative_change = 1.8961995549632948e-6 Iter 70: T = 706.2492784467993 K, F = -0.0449630778166199, relative_change = 7.930367290026984e-7 Iter 75: T = 706.2475677294414 K, F = -0.018804111598876072, relative_change = 3.316615289296697e-7 Iter 80: T = 706.2468522826244 K, F = -0.00786410674732907, relative_change = 1.387055290332605e-7 Iter 85: T = 706.2465530734538 K, F = -0.003288863831299227, relative_change = 5.800843407458686e-8 Iter 90: T = 706.2464279404711 K, F = -0.001375442212382949, relative_change = 2.425984178725333e-8 Iter 95: T = 706.2463756083399 K, F = -0.0005752263737973662, relative_change = 1.0145759391237585e-8 Iter 100: T = 706.2463537224137 K, F = -0.00024056654114534837, relative_change = 4.243078404146603e-9 Iter 105: T = 706.2463445694572 K, F = -0.00010060780153442472, relative_change = 1.7745061897953585e-9 Iter 110: T = 706.2463407415814 K, F = -4.2075384509954183e-5, relative_change = 7.421197068111779e-10 Iter 115: T = 706.246339140718 K, F = -1.7596428866450964e-5, relative_change = 3.103633377167526e-10 Iter 120: T = 706.2463384712178 K, F = -7.359036481080494e-6, relative_change = 1.2979765111945915e-10 Iter 125: T = 706.2463381912247 K, F = -3.0776363747486712e-6, relative_change = 5.4282917909595075e-11 Iter 130: T = 706.2463380741283 K, F = -1.2871031045413872e-6, relative_change = 2.270174371261265e-11 Iter 135: T = 706.2463380251571 K, F = -5.38281633599702e-7, relative_change = 9.494135824942533e-12 Iter 140: T = 706.2463380046769 K, F = -2.2511543484871055e-7, relative_change = 3.970554411724833e-12 Iter 145: T = 706.2463379961118 K, F = -9.414673896035453e-8, relative_change = 1.6605469545051385e-12 Iter 150: T = 706.2463379925298 K, F = -3.937243031604254e-8, relative_change = 6.944453942465356e-13 Iter 155: T = 706.2463379910317 K, F = -1.6465556584854824e-8, relative_change = 2.904171737022439e-13 Converged in 157 iterations to T = 706.2463379907147 K Iter 1: T = 973.4291236981662 K, F = -6054.199440801309, relative_change = 0.02657087630183373 Iter 2: T = 949.0513707578074 K, F = -5123.450592737125, relative_change = 0.0250431719648422 Iter 3: T = 926.8000003113013 K, F = -4333.97710324319, relative_change = 0.023445907283963528 Iter 5: T = 888.3571329569771 K, F = -3097.109413626368, relative_change = 0.020120005677317573 Iter 10: T = 822.8343671532118 K, F = -1326.2853853304628, relative_change = 0.012093795348532773 Iter 15: T = 789.0665150498163 K, F = -562.2028878769363, relative_change = 0.006207585752759548 Iter 20: T = 773.2983864175021 K, F = -236.69593291473913, relative_change = 0.0028714590678837848 Iter 25: T = 766.3517488960966 K, F = -99.28955474231358, relative_change = 0.001256895365897768 Iter 30: T = 763.3789023348082 K, F = -41.57870466996727, relative_change = 0.0005361305681501636 Iter 35: T = 762.1232846545103 K, F = -17.398425760679213, relative_change = 0.00022610363190533905 Iter 40: T = 761.595973893162 K, F = -7.277940625161095, relative_change = 9.4893446092077e-5 Iter 45: T = 761.3750591887517 K, F = -3.0440218654750244, relative_change = 3.9744329358955864e-5 Iter 50: T = 761.2826021132017 K, F = -1.2730988643149388, relative_change = 1.6631852192414492e-5 Iter 55: T = 761.2439235672296 K, F = -0.5324343477813354, relative_change = 6.957442159778761e-6 Iter 60: T = 761.2277456561751 K, F = -0.22267201202999198, relative_change = 2.9100008577110555e-6 Iter 65: T = 761.2209794964782 K, F = -0.09312437615295388, relative_change = 1.2170522938425113e-6 Iter 70: T = 761.2181497440027 K, F = -0.03894577547066891, relative_change = 5.089954560000007e-7 Iter 75: T = 761.2169662965842 K, F = -0.01628759701786675, relative_change = 2.1286966653524603e-7 Iter 80: T = 761.2164713627924 K, F = -0.006811669092805395, relative_change = 8.902493200635163e-8 Iter 85: T = 761.2162643752291 K, F = -0.002848721626313222, relative_change = 3.723134138865183e-8 Iter 90: T = 761.2161778104986 K, F = -0.0011913694505815142, relative_change = 1.557060063052075e-8 Iter 95: T = 761.2161416080842 K, F = -0.0004982449415487089, relative_change = 6.511812732761944e-9 Iter 100: T = 761.2161264678002 K, F = -0.00020837198626089126, relative_change = 2.7233181285520383e-9 Iter 105: T = 761.2161201359523 K, F = -8.714365259443468e-5, relative_change = 1.1389242026053974e-9 Iter 110: T = 761.2161174878978 K, F = -3.644451700457463e-5, relative_change = 4.763117211695711e-10 Iter 115: T = 761.2161163804499 K, F = -1.5241532624998833e-5, relative_change = 1.9919925642726133e-10 Iter 120: T = 761.2161159173019 K, F = -6.374189610802716e-6, relative_change = 8.330749050747934e-11 Iter 125: T = 761.2161157236078 K, F = -2.6657602948398917e-6, relative_change = 3.484016232436349e-11 Iter 130: T = 761.2161156426026 K, F = -1.1148516487757831e-6, relative_change = 1.4570557039880115e-11 Iter 135: T = 761.2161156087253 K, F = -4.662436828839489e-7, relative_change = 6.093573243438884e-12 Iter 140: T = 761.2161155945574 K, F = -1.949871555328997e-7, relative_change = 2.548385227496086e-12 Iter 145: T = 761.2161155886323 K, F = -8.154733399656777e-8, relative_change = 1.0657831319108623e-12 Iter 150: T = 761.2161155861544 K, F = -3.410441151707744e-8, relative_change = 4.457277109848971e-13 Converged in 154 iterations to T = 761.2161155852599 K Iter 1: T = 964.2831381298349 K, F = -8138.120952623891, relative_change = 0.03571686187016502 Iter 2: T = 930.4893128447358 K, F = -6904.126298363781, relative_change = 0.035045542070392406 Iter 3: T = 898.5874535480834 K, F = -5856.183345260789, relative_change = 0.034285035686353584 Iter 5: T = 840.3464936112209 K, F = -4210.634469500595, relative_change = 0.03247072522215911 Iter 10: T = 725.8772548643661 K, F = -1836.4714355882181, relative_change = 0.02611269772163365 Iter 15: T = 651.9029119154419 K, F = -793.0922630637989, relative_change = 0.01792360431495499 Iter 20: T = 609.9947421694147 K, F = -338.6434254363037, relative_change = 0.010296434377093253 Iter 25: T = 589.0290102932181 K, F = -143.2423900933618, relative_change = 0.005114823910749457 Iter 30: T = 579.4217287991985 K, F = -60.2341854644813, relative_change = 0.0023229028848348954 Iter 35: T = 575.2304825145972 K, F = -25.252299791661535, relative_change = 0.0010078263289556677 Iter 40: T = 573.4449293852796 K, F = -10.571935617816063, relative_change = 0.0004281996034252267 Iter 45: T = 572.6922728899538 K, F = -4.423281137079185, relative_change = 0.0001802802312003886 Iter 50: T = 572.376453339327 K, F = -1.8502157459541695, relative_change = 7.560766206929553e-5 Iter 55: T = 572.2441891541871 K, F = -0.77384311166062, relative_change = 3.1657315306536094e-5 Iter 60: T = 572.1888423111579 K, F = -0.3236410737551705, relative_change = 1.3246000354123401e-5 Iter 65: T = 572.1656899309689 K, F = -0.13535242432785477, relative_change = 5.540778999747738e-6 Iter 70: T = 572.1560063370483 K, F = -0.05660632604991045, relative_change = 2.317420001513001e-6 Iter 75: T = 572.1519563688862 K, F = -0.023673498549746208, relative_change = 9.692077142379955e-7 Iter 80: T = 572.15026259348 K, F = -0.009900549778408707, relative_change = 4.053403615989745e-7 Iter 85: T = 572.1495542310681 K, F = -0.004140529896795753, relative_change = 1.695192505217468e-7 Iter 90: T = 572.1492579845192 K, F = -0.0017316193551840664, relative_change = 7.089516226330634e-8 Iter 95: T = 572.1491340905122 K, F = -0.0007241839471991973, relative_change = 2.9649236260076965e-8 Iter 100: T = 572.1490822765305 K, F = -0.0003028623842315503, relative_change = 1.239967040232681e-8 Iter 105: T = 572.1490606072996 K, F = -0.0001266606676837978, relative_change = 5.185691248488235e-9 Iter 110: T = 572.1490515449675 K, F = -5.297100378520714e-5, relative_change = 2.168718170287558e-9 Iter 115: T = 572.149047754992 K, F = -2.2153106619293705e-5, relative_change = 9.069838767552323e-10 Iter 120: T = 572.1490461699789 K, F = -9.264693936805735e-6, relative_change = 3.793115014967153e-10 Iter 125: T = 572.1490455071075 K, F = -3.8746054572547095e-6, relative_change = 1.586325929199391e-10 Iter 130: T = 572.1490452298868 K, F = -1.62040708545641e-6, relative_change = 6.634207817558665e-11 Iter 135: T = 572.1490451139498 K, F = -6.776742718095363e-7, relative_change = 2.7745077125900802e-11 Iter 140: T = 572.1490450654635 K, F = -2.8341145663635103e-7, relative_change = 1.1603321909972065e-11 Iter 145: T = 572.149045045186 K, F = -1.1852630471542724e-7, relative_change = 4.852657986967908e-12 Iter 150: T = 572.1490450367056 K, F = -4.956936477951146e-8, relative_change = 2.0294497031753584e-12 Iter 155: T = 572.149045033159 K, F = -2.0729803984487205e-8, relative_change = 8.48711592968231e-13 Iter 160: T = 572.1490450316759 K, F = -8.669522932880369e-9, relative_change = 3.549442447326804e-13 Converged in 163 iterations to T = 572.1490450312416 K Iter 1: T = 963.5407827213927 K, F = -8307.267338599757, relative_change = 0.036459217278607285 Iter 2: T = 928.9578734361788 K, F = -7049.034406496409, relative_change = 0.035891484725264135 Iter 3: T = 896.2176408176185 K, F = -5980.460739145536, relative_change = 0.035244044487674674 Iter 5: T = 836.1460813210145 K, F = -4302.361070822971, relative_change = 0.03368073333437772 Iter 10: T = 716.2742999994131 K, F = -1880.25713757796, relative_change = 0.02798204157729223 Iter 15: T = 636.4284501422146 K, F = -814.2762208393725, relative_change = 0.02008074903981053 Iter 20: T = 589.5981293240224 K, F = -348.68094696525736, relative_change = 0.01205988489623252 Iter 25: T = 565.4775489620124 K, F = -147.7971316560875, relative_change = 0.006186203968600018 Iter 30: T = 554.218529383922 K, F = -62.223305120872766, relative_change = 0.0028605097351657805 Iter 35: T = 549.2593671627804 K, F = -26.10120824131243, relative_change = 0.001251876453150941 Iter 40: T = 547.1372682641797 K, F = -10.93013816743191, relative_change = 0.0005339465041908262 Iter 45: T = 546.2410109146417 K, F = -4.57365746793213, relative_change = 0.00022517468375214943 Iter 50: T = 545.8646241609166 K, F = -1.9132061135104543, relative_change = 9.450217904348915e-5 Iter 55: T = 545.7069396234374 K, F = -0.8002042222432447, relative_change = 3.958020857725542e-5 Iter 60: T = 545.6409458002922 K, F = -0.3346687224159144, relative_change = 1.6563129250790345e-5 Iter 65: T = 545.6133379423991 K, F = -0.13996486440768557, relative_change = 6.928686400511898e-6 Iter 70: T = 545.6017905272853 K, F = -0.058535399055593074, relative_change = 2.8979722299888025e-6 Iter 75: T = 545.5969610016008 K, F = -0.024480276620492902, relative_change = 1.2120213187006075e-6 Iter 80: T = 545.5949411910182 K, F = -0.010237956924293468, relative_change = 5.068913617804266e-7 Iter 85: T = 545.5940964741939 K, F = -0.004281638105648855, relative_change = 2.1198969516732227e-7 Iter 90: T = 545.5937432021453 K, F = -0.0017906325838632497, relative_change = 8.865691504198378e-8 Iter 95: T = 545.5935954593134 K, F = -0.0007488640000812841, relative_change = 3.70774318665066e-8 Iter 100: T = 545.5935336714543 K, F = -0.00031318388017900767, relative_change = 1.5506233760121777e-8 Iter 105: T = 545.5935078310264 K, F = -0.00013097724127991706, relative_change = 6.484893722279387e-9 Iter 110: T = 545.5934970242495 K, F = -5.4776246410592755e-5, relative_change = 2.7120602518725383e-9 Iter 115: T = 545.5934925047261 K, F = -2.2908080423239552e-5, relative_change = 1.1342160312891553e-9 Iter 120: T = 545.5934906146074 K, F = -9.580432739159095e-6, relative_change = 4.743426938399413e-10 Iter 125: T = 545.5934898241372 K, F = -4.006651256521776e-6, relative_change = 1.9837577436733925e-10 Iter 130: T = 545.5934894935531 K, F = -1.6756294378417191e-6, relative_change = 8.296311981292953e-11 Iter 135: T = 545.5934893552989 K, F = -7.007680736803579e-7, relative_change = 3.469615919546118e-11 Iter 140: T = 545.5934892974793 K, F = -2.930691841429578e-7, relative_change = 1.4510328674129063e-11 Iter 145: T = 545.5934892732985 K, F = -1.2256520784403868e-7, relative_change = 6.068401409742474e-12 Iter 150: T = 545.5934892631858 K, F = -5.125865024102616e-8, relative_change = 2.5378985674907222e-12 Iter 155: T = 545.5934892589564 K, F = -2.143646757324369e-8, relative_change = 1.0613541342269088e-12 Iter 160: T = 545.5934892571878 K, F = -8.964815473300192e-9, relative_change = 4.4386249426614905e-13 Converged in 164 iterations to T = 545.5934892565493 K Iter 1: T = 969.3098059374494 K, F = -6992.7899110634335, relative_change = 0.030690194062550576 Iter 2: T = 940.7602290408969 K, F = -5924.397202864897, relative_change = 0.029453510860690497 Iter 3: T = 914.3122491038512 K, F = -5017.550211928915, relative_change = 0.02811341202636656 Iter 5: T = 867.5355736892784 K, F = -3595.000791808498, relative_change = 0.02515470490848891 Iter 10: T = 783.2430217276731 K, F = -1550.3540229476453, relative_change = 0.016887298706790864 Iter 15: T = 736.2795358075072 K, F = -661.1032317626676, relative_change = 0.00950163211413015 Iter 20: T = 713.0933879602916 K, F = -279.38009350322653, relative_change = 0.004653521403014573 Iter 25: T = 702.5534051676177 K, F = -117.42135048203018, relative_change = 0.002097260481362683 Iter 30: T = 697.9738131649436 K, F = -49.215362952113466, relative_change = 0.0009066424486502503 Iter 35: T = 696.0264113053785 K, F = -20.60194204859532, relative_change = 0.00038459502869720363 Iter 40: T = 695.206188663708 K, F = -8.61942803291038, relative_change = 0.00016181136632312782 Iter 45: T = 694.8621350731117 K, F = -3.6053541799413997, relative_change = 6.78424513562188e-5 Iter 50: T = 694.7180672198751 K, F = -1.5079084672576824, relative_change = 2.8402543506663412e-5 Iter 55: T = 694.6577846767265 K, F = -0.6306439363138188, relative_change = 1.1883541608625434e-5 Iter 60: T = 694.6325682570598 K, F = -0.2637460812129506, relative_change = 4.970759373097369e-6 Iter 65: T = 694.6220214798409 K, F = -0.11030233042906767, relative_change = 2.078991947492402e-6 Iter 70: T = 694.6176105220823 K, F = -0.046129851473589834, relative_change = 8.694874254958682e-7 Iter 75: T = 694.6157657772097 K, F = -0.019292072210372435, relative_change = 3.6363495141835957e-7 Iter 80: T = 694.6149942776856 K, F = -0.008068178039339124, relative_change = 1.5207734099157746e-7 Iter 85: T = 694.6146716264636 K, F = -0.0033742089414153797, relative_change = 6.360071085390434e-8 Iter 90: T = 694.6145366897108 K, F = -0.001411134568669259, relative_change = 2.6598603182261907e-8 Iter 95: T = 694.6144802575216 K, F = -0.0005901533465548781, relative_change = 1.1123858136547234e-8 Iter 100: T = 694.6144566569011 K, F = -0.00024680917911834577, relative_change = 4.652131103654752e-9 Iter 105: T = 694.6144467868389 K, F = -0.00010321854524197871, relative_change = 1.945576898700918e-9 Iter 110: T = 694.614442659061 K, F = -4.316722788744176e-5, relative_change = 8.136635091889146e-10 Iter 115: T = 694.6144409327749 K, F = -1.8053050313882046e-5, relative_change = 3.4028380238054516e-10 Iter 120: T = 694.6144402108214 K, F = -7.550001517864224e-6, relative_change = 1.4231075593998375e-10 Iter 125: T = 694.6144399088918 K, F = -3.1574993560878895e-6, relative_change = 5.951603057451081e-11 Iter 130: T = 694.6144397826213 K, F = -1.3205031407226286e-6, relative_change = 2.4890299728320298e-11 Iter 135: T = 694.6144397298134 K, F = -5.522489326947877e-7, relative_change = 1.0409397024888194e-11 Iter 140: T = 694.6144397077286 K, F = -2.3095846957144062e-7, relative_change = 4.353359986885319e-12 Iter 145: T = 694.6144396984923 K, F = -9.658800137479773e-8, relative_change = 1.8205971887721744e-12 Iter 150: T = 694.6144396946297 K, F = -4.039352485829539e-8, relative_change = 7.613817115667861e-13 Iter 155: T = 694.6144396930143 K, F = -1.6893877408108438e-8, relative_change = 3.184344357480836e-13 Converged in 158 iterations to T = 694.6144396925414 K Iter 1: T = 966.4793203918281 K, F = -7637.718735120109, relative_change = 0.03352067960817194 Iter 2: T = 934.9977960248294 K, F = -6475.758973707873, relative_change = 0.032573407110496166 Iter 3: T = 905.5257034110891 K, F = -5489.16513869454, relative_change = 0.03152102896824123 Iter 5: T = 852.485181443079 K, F = -3940.513391094938, relative_change = 0.0290960693584923 Iter 10: T = 752.4268964956049 K, F = -1709.4273608368833, relative_change = 0.021458707379137316 Iter 15: T = 692.4283442622254 K, F = -733.3632316821431, relative_change = 0.0132703209658067 Iter 20: T = 660.9059342100599 K, F = -311.3101963528576, relative_change = 0.00696226869662061 Iter 25: T = 645.9953322413712 K, F = -131.177157063214, relative_change = 0.0032621888315389745 Iter 30: T = 639.3808145452581 K, F = -55.04949662979881, relative_change = 0.0014370026658217649 Iter 35: T = 636.5408431838104 K, F = -23.057020290528804, relative_change = 0.0006147080779950948 Iter 40: T = 635.3396183541108 K, F = -9.648900726258379, relative_change = 0.00025956217836441066 Iter 45: T = 634.8348395324874 K, F = -4.036375106973071, relative_change = 0.00010899263071015048 Iter 50: T = 634.6233094571996 K, F = -1.6882514957660184, relative_change = 4.565954616959472e-5 Iter 55: T = 634.534770356416 K, F = -0.7060804301334276, relative_change = 1.9108960829302335e-5 Iter 60: T = 634.4977291627159 K, F = -0.2952971296215856, relative_change = 7.993975602133322e-6 Iter 65: T = 634.4822358032267 K, F = -0.12349781159498696, relative_change = 3.3435925068762236e-6 Iter 70: T = 634.4757558946441 K, F = -0.05164843903702909, relative_change = 1.3984031665688464e-6 Iter 75: T = 634.4730458494131 K, F = -0.02160002538484318, relative_change = 5.8484164702715e-7 Iter 80: T = 634.471912463876 K, F = -0.009033394058782007, relative_change = 2.445899899291763e-7 Iter 85: T = 634.4714384663654 K, F = -0.0037778742354664385, relative_change = 1.0229084459373925e-7 Iter 90: T = 634.4712402345708 K, F = -0.00157995229083846, relative_change = 4.277932100910636e-8 Iter 95: T = 634.4711573316014 K, F = -0.0006607549459600737, relative_change = 1.7890834862561048e-8 Iter 100: T = 634.471122660578 K, F = -0.00027633561384787786, relative_change = 7.482162866067201e-9 Iter 105: T = 634.47110816074 K, F = -0.0001155668545250732, relative_change = 3.129130225083736e-9 Iter 110: T = 634.4711020967342 K, F = -4.833143947657881e-5, relative_change = 1.308639709813295e-9 Iter 115: T = 634.4710995606944 K, F = -2.0212784637874126e-5, relative_change = 5.472887506116195e-10 Iter 120: T = 634.4710985000924 K, F = -8.453228260152379e-6, relative_change = 2.2888270235088804e-10 Iter 125: T = 634.4710980565358 K, F = -3.5352402691368745e-6, relative_change = 9.572145978444632e-11 Iter 130: T = 634.4710978710352 K, F = -1.4784791784738793e-6, relative_change = 4.003184356574912e-11 Iter 135: T = 634.4710977934566 K, F = -6.183167781115273e-7, relative_change = 1.6741771483990734e-11 Iter 140: T = 634.4710977610124 K, F = -2.5858731156347403e-7, relative_change = 7.001604732660686e-12 Iter 145: T = 634.4710977474439 K, F = -1.0814525397417896e-7, relative_change = 2.9281804955524058e-12 Iter 150: T = 634.4710977417693 K, F = -4.522745822299612e-8, relative_change = 1.224595219585393e-12 Iter 155: T = 634.4710977393961 K, F = -1.8914242227996425e-8, relative_change = 5.121289483192777e-13 Converged in 160 iterations to T = 634.4710977384036 K Iter 1: T = 966.4492628015491 K, F = -7644.56738565732, relative_change = 0.0335507371984509 Iter 2: T = 934.9363134612256 K, F = -6481.618413537421, relative_change = 0.03260693608371491 Iter 3: T = 905.4314665352787 K, F = -5494.18179356119, relative_change = 0.031558135566172554 Iter 5: T = 852.321855013803 K, F = -3944.1980809863426, relative_change = 0.029140293923361524 Iter 10: T = 752.0805106547322 K, F = -1711.1430817738496, relative_change = 0.021514897593420915 Iter 15: T = 691.9179610122446 K, F = -734.1558278984958, relative_change = 0.013321152102068929 Iter 20: T = 660.2831319959425 K, F = -311.66598003344825, relative_change = 0.006995616739849247 Iter 25: T = 645.3108539254346 K, F = -131.33200531525588, relative_change = 0.003279686013290372 Iter 30: T = 638.6669196013002 K, F = -55.115519088631274, relative_change = 0.0014451214660036312 Iter 35: T = 635.8138986305669 K, F = -23.08487104553092, relative_change = 0.000618260746319382 Iter 40: T = 634.607075647131 K, F = -9.660591598061632, relative_change = 0.0002610768685202481 Iter 45: T = 634.0999302208506 K, F = -4.041272065111136, relative_change = 0.00010963125937898469 Iter 50: T = 633.8874059026948 K, F = -1.69030081660724, relative_change = 4.592754017275758e-5 Iter 55: T = 633.798450206081 K, F = -0.7069377181016756, relative_change = 1.922119920833953e-5 Iter 60: T = 633.7612346482532 K, F = -0.29565569927772, relative_change = 8.040943076043122e-6 Iter 65: T = 633.7456683433072 K, F = -0.1236477769847778, relative_change = 3.3632397734207573e-6 Iter 70: T = 633.7391579238122 K, F = -0.05171115762693801, relative_change = 1.4066207467302947e-6 Iter 75: T = 633.7364351178096 K, F = -0.021626255271075923, relative_change = 5.882784873929419e-7 Iter 80: T = 633.7352963954355 K, F = -0.009044363750708773, relative_change = 2.460273439208665e-7 Iter 85: T = 633.7348201659729 K, F = -0.0037824618988296366, relative_change = 1.0289196780386233e-7 Iter 90: T = 633.7346210007454 K, F = -0.0015818709058785796, relative_change = 4.3030718670394536e-8 Iter 95: T = 633.7345377074024 K, F = -0.00066155733297385, relative_change = 1.799597248243324e-8 Iter 100: T = 633.7345028731202 K, F = -0.0002766711827826285, relative_change = 7.526132727808484e-9 Iter 105: T = 633.7344883050054 K, F = -0.00011570719377496097, relative_change = 3.1475189590097654e-9 Iter 110: T = 633.7344822124453 K, F = -4.8390130729103475e-5, relative_change = 1.316330090645645e-9 Iter 115: T = 633.7344796644638 K, F = -2.0237329713901353e-5, relative_change = 5.50504951428611e-10 Iter 120: T = 633.7344785988677 K, F = -8.463493847032932e-6, relative_change = 2.3022777077528651e-10 Iter 125: T = 633.7344781532225 K, F = -3.5395336523413867e-6, relative_change = 9.628398860082994e-11 Iter 130: T = 633.7344779668484 K, F = -1.4802745537667583e-6, relative_change = 4.026709517686209e-11 Iter 135: T = 633.7344778889046 K, F = -6.190693850882667e-7, relative_change = 1.6840204272642993e-11 Iter 140: T = 633.7344778563076 K, F = -2.589032510602607e-7, relative_change = 7.042802859896277e-12 Iter 145: T = 633.7344778426751 K, F = -1.0827694346682293e-7, relative_change = 2.9453981904984874e-12 Iter 150: T = 633.7344778369738 K, F = -4.528345692866864e-8, relative_change = 1.23182099376307e-12 Iter 155: T = 633.7344778345894 K, F = -1.893728135415884e-8, relative_change = 5.151404578942446e-13 Converged in 160 iterations to T = 633.7344778335922 K Iter 1: T = 976.4195601267746 K, F = -5372.825655903475, relative_change = 0.023580439873225365 Iter 2: T = 955.0011293742388 K, F = -4543.100655695458, relative_change = 0.02193568382607476 Iter 3: T = 935.6532150596811 K, F = -3839.7708124658975, relative_change = 0.02025957218211389 Iter 5: T = 902.7485168190395 K, F = -2739.093000082626, relative_change = 0.016906432231562785 Iter 10: T = 848.547793975109 K, F = -1168.035780408918, relative_change = 0.009516104916251782 Iter 15: T = 821.7819519297655 K, F = -493.61666653162564, relative_change = 0.00466183125930831 Iter 20: T = 809.6129063254696 K, F = -207.4653014502861, relative_change = 0.002101300182041129 Iter 25: T = 804.3250993803288 K, F = -86.95628937342997, relative_change = 0.0009084485639306798 Iter 30: T = 802.076464200922 K, F = -36.40066422683643, relative_change = 0.0003853723303106036 Iter 35: T = 801.1293518251733 K, F = -15.229300455064333, relative_change = 0.00016214040728832935 Iter 40: T = 800.7320701403656 K, F = -6.370149044404709, relative_change = 6.79807628316084e-5 Iter 45: T = 800.5657132984983 K, F = -2.664260600285712, relative_change = 2.8460510593601794e-5 Iter 50: T = 800.496104261903 K, F = -1.1142585456127065, relative_change = 1.1907805800876e-5 Iter 55: T = 800.4669865208188 K, F = -0.46600199495298955, relative_change = 4.980910740901628e-6 Iter 60: T = 800.4548080120833 K, F = -0.19488860780498563, relative_change = 2.083238034393411e-6 Iter 65: T = 800.4497146180743 K, F = -0.08150491959154282, relative_change = 8.71263305833841e-7 Iter 70: T = 800.4475844655516 K, F = -0.0340863615855751, relative_change = 3.6437766608896524e-7 Iter 75: T = 800.4466936043247 K, F = -0.014255328884381413, relative_change = 1.523879566981161e-7 Iter 80: T = 800.4463210344705 K, F = -0.005961749726526189, relative_change = 6.373061469854146e-8 Iter 85: T = 800.4461652211246 K, F = -0.002493275098060188, relative_change = 2.665293062778344e-8 Iter 90: T = 800.4461000580903 K, F = -0.001042717450714603, relative_change = 1.1146578519172272e-8 Iter 95: T = 800.4460728061257 K, F = -0.00043607689498681435, relative_change = 4.6616330579045515e-9 Iter 100: T = 800.4460614090276 K, F = -0.0001823725665961451, relative_change = 1.9495507620497443e-9 Iter 105: T = 800.446056642625 K, F = -7.627038740831704e-5, relative_change = 8.153254564799562e-10 Iter 110: T = 800.4460546492585 K, F = -3.189718914897721e-5, relative_change = 3.4097887129445507e-10 Iter 115: T = 800.4460538156087 K, F = -1.3339787059973851e-5, relative_change = 1.4260145420115978e-10 Iter 120: T = 800.4460534669664 K, F = -5.578857260490899e-6, relative_change = 5.963762061566886e-11 Iter 125: T = 800.44605332116 K, F = -2.3331446206142914e-6, relative_change = 2.4941163996391282e-11 Iter 130: T = 800.4460532601821 K, F = -9.757491807871332e-7, relative_change = 1.0430695179013777e-11 Iter 135: T = 800.4460532346803 K, F = -4.080703402964403e-7, relative_change = 4.3622453553489906e-12 Iter 140: T = 800.4460532240153 K, F = -1.7066125990172765e-7, relative_change = 1.8243577512904595e-12 Iter 145: T = 800.446053219555 K, F = -7.13736091340067e-8, relative_change = 7.629792323086975e-13 Iter 150: T = 800.4460532176895 K, F = -2.984808467054734e-8, relative_change = 3.1907408080364615e-13 Converged in 153 iterations to T = 800.4460532171435 K Iter 1: T = 965.1537305068822 K, F = -7939.755651366529, relative_change = 0.03484626949311777 Iter 2: T = 932.280471280732 K, F = -6734.257674970027, relative_change = 0.034060127611883914 Iter 3: T = 901.3507364592836 K, F = -5710.578223960498, relative_change = 0.033176426809582577 Iter 5: T = 845.2089140050049 K, F = -4103.335788231967, relative_change = 0.031097378548266223 Iter 10: T = 736.7159968053951 K, F = -1785.685666882165, relative_change = 0.02412514659274322 Iter 15: T = 668.8133061646845 K, F = -768.9404274317254, relative_change = 0.015820826643855153 Iter 20: T = 631.6281908173099 K, F = -327.4473232411694, relative_change = 0.00871618885335941 Iter 25: T = 613.5096513714518 K, F = -138.25252509842335, relative_change = 0.004210041231862518 Iter 30: T = 605.3368710363089 K, F = -58.078340997413456, relative_change = 0.001883532258710984 Iter 35: T = 601.7994463989747 K, F = -24.337121100513148, relative_change = 0.000811468938888415 Iter 40: T = 600.2978232034824 K, F = -10.186695211386485, relative_change = 0.0003437067713441005 Iter 45: T = 599.6658328744554 K, F = -4.261721573782216, relative_change = 0.0001445158159024544 Iter 50: T = 599.4008205067724 K, F = -1.7825706111061757, relative_change = 6.0574604312929795e-5 Iter 55: T = 599.2898650158488 K, F = -0.7455392371066649, relative_change = 2.5356952272864125e-5 Iter 60: T = 599.2434403462156 K, F = -0.31180162526337946, relative_change = 1.0608771340611372e-5 Iter 65: T = 599.2240211862112 K, F = -0.13040060024692512, relative_change = 4.437448318718674e-6 Iter 70: T = 599.2158991951984 K, F = -0.05453533967075719, relative_change = 1.8559221931058893e-6 Iter 75: T = 599.2125023649916 K, F = -0.022807374296986593, relative_change = 7.761912695894032e-7 Iter 80: T = 599.2110817496434 K, F = -0.009538323995452125, relative_change = 3.246163842305671e-7 Iter 85: T = 599.2104876277731 K, F = -0.00398904235037284, relative_change = 1.3575913520781917e-7 Iter 90: T = 599.210239158288 K, F = -0.0016682653853418716, relative_change = 5.677621174084484e-8 Iter 95: T = 599.2101352452728 K, F = -0.0006976885482061213, relative_change = 2.374451079245389e-8 Iter 100: T = 599.2100917875898 K, F = -0.00029178169037985535, relative_change = 9.930241661986534e-9 Iter 105: T = 599.2100736130644 K, F = -0.00012202658893079033, relative_change = 4.152946302676495e-9 Iter 110: T = 599.2100660122604 K, F = -5.10329774732754e-5, relative_change = 1.7368118683670418e-9 Iter 115: T = 599.2100628335132 K, F = -2.1342600669549405e-5, relative_change = 7.263554845551762e-10 Iter 120: T = 599.2100615041231 K, F = -8.925730733300163e-6, relative_change = 3.0377054983390735e-10 Iter 125: T = 599.2100609481563 K, F = -3.732846510839938e-6, relative_change = 1.2704044922864782e-10 Iter 130: T = 599.2100607156443 K, F = -1.5611208854515723e-6, relative_change = 5.3129829576022735e-11 Iter 135: T = 599.210060618405 K, F = -6.528791969828696e-7, relative_change = 2.2219522408219035e-11 Iter 140: T = 599.2100605777384 K, F = -2.730418708907223e-7, relative_change = 9.292469416448425e-12 Iter 145: T = 599.2100605607312 K, F = -1.1418948936414708e-7, relative_change = 3.8862257069878575e-12 Iter 150: T = 599.2100605536186 K, F = -4.7755694954076944e-8, relative_change = 1.6252757625025602e-12 Iter 155: T = 599.210060550644 K, F = -1.997265908215695e-8, relative_change = 6.797320979401281e-13 Iter 160: T = 599.2100605494 K, F = -8.353317870746224e-9, relative_change = 2.8428955091772487e-13 Converged in 162 iterations to T = 599.2100605491368 K Iter 1: T = 964.5478643288841 K, F = -8077.802836350928, relative_change = 0.03545213567111592 Iter 2: T = 931.0345112157685 K, F = -6852.465175581644, relative_change = 0.03474514262330944 Iter 3: T = 899.429508393469 K, F = -5811.892324436684, relative_change = 0.033946113104904085 Iter 5: T = 841.832215632167 K, F = -4177.976568459919, relative_change = 0.03204800173630552 Iter 10: T = 729.2196548536677 K, F = -1820.9663249224516, relative_change = 0.02548629984310385 Iter 15: T = 657.1769298206511 K, F = -785.6743837186759, relative_change = 0.01724076000270523 Iter 20: T = 616.8095414077624 K, F = -335.17971373309734, relative_change = 0.009769021076476512 Iter 25: T = 596.79101978416 K, F = -141.68986049326634, relative_change = 0.00480725334165409 Iter 30: T = 587.6666392939808 K, F = -59.56120127303234, relative_change = 0.002172071254077145 Iter 35: T = 583.6968049308135 K, F = -24.966150125469984, relative_change = 0.0009401078517376359 Iter 40: T = 582.0076639002497 K, F = -10.451395315116493, relative_change = 0.00039900121048126323 Iter 45: T = 581.2960295054418 K, F = -4.372714055751403, relative_change = 0.00016791033873606723 Iter 50: T = 580.9974912041114 K, F = -1.8290404817871535, relative_change = 7.04062568227877e-5 Iter 55: T = 580.8724763595297 K, F = -0.7649825318152288, relative_change = 2.9477069242224546e-5 Iter 60: T = 580.8201651599627 K, F = -0.31993462690749114, relative_change = 1.2333326378317019e-5 Iter 65: T = 580.7982830022778 K, F = -0.1338021958201503, relative_change = 5.158935688757564e-6 Iter 70: T = 580.7891307496163 K, F = -0.05595797605013325, relative_change = 2.157701944954358e-6 Iter 75: T = 580.7853030155401 K, F = -0.02340234630218352, relative_change = 9.024070581824458e-7 Iter 80: T = 580.7837021847254 K, F = -0.009787149876648082, relative_change = 3.7740271481383167e-7 Iter 85: T = 580.783032693489 K, F = -0.004093104564629357, relative_change = 1.5783525049694676e-7 Iter 90: T = 580.7827527034414 K, F = -0.0017117854908488828, relative_change = 6.600874900563497e-8 Iter 95: T = 580.7826356081167 K, F = -0.0007158891837144021, relative_change = 2.7605675509729907e-8 Iter 100: T = 580.7825866374286 K, F = -0.0002993934142348498, relative_change = 1.154502812580315e-8 Iter 105: T = 580.7825661572975 K, F = -0.00012520990194903048, relative_change = 4.828269472827e-9 Iter 110: T = 580.7825575922616 K, F = -5.23642770763888e-5, relative_change = 2.0192401263031773e-9 Iter 115: T = 580.782554010261 K, F = -2.1899366132560605e-5, relative_change = 8.444703642027236e-10 Iter 120: T = 580.7825525122256 K, F = -9.158576345980052e-6, relative_change = 3.5316759172970905e-10 Iter 125: T = 580.7825518857293 K, F = -3.830225796974673e-6, relative_change = 1.4769889733346377e-10 Iter 130: T = 580.7825516237211 K, F = -1.6018462722922067e-6, relative_change = 6.176944680658205e-11 Iter 135: T = 580.7825515141461 K, F = -6.699111689267845e-7, relative_change = 2.583271757539699e-11 Iter 140: T = 580.7825514683205 K, F = -2.8016479131087735e-7, relative_change = 1.0803548689622844e-11 Iter 145: T = 580.7825514491557 K, F = -1.1716838704822763e-7, relative_change = 4.518177921773074e-12 Iter 150: T = 580.7825514411408 K, F = -4.900086475467802e-8, relative_change = 1.88954231490609e-12 Iter 155: T = 580.7825514377888 K, F = -2.0492742947020304e-8, relative_change = 7.902290121166777e-13 Iter 160: T = 580.7825514363869 K, F = -8.569573273220499e-9, relative_change = 3.3045480732099833e-13 Converged in 163 iterations to T = 580.7825514359765 K Iter 1: T = 964.2835574390577 K, F = -8138.025412618622, relative_change = 0.03571644256094228 Iter 2: T = 930.4901767846397 K, F = -6904.044464842209, relative_change = 0.03504506573166761 Iter 3: T = 898.5887885626008 K, F = -5856.113180065059, relative_change = 0.03428449758843869 Iter 5: T = 840.3488519088984 K, F = -4210.582719962676, relative_change = 0.032470052059762625 Iter 10: T = 725.88258220659 K, F = -1836.446832229586, relative_change = 0.026111689552156068 Iter 15: T = 651.9113620636402 K, F = -793.0804596936035, relative_change = 0.017922489793615333 Iter 20: T = 610.0057133013592 K, F = -338.63789467088986, relative_change = 0.010295561949416296 Iter 25: T = 589.0415463194665 K, F = -143.23990401131866, relative_change = 0.005114310390470596 Iter 30: T = 579.4350674295312 K, F = -60.233105997405836, relative_change = 0.0023226497746361785 Iter 35: T = 575.2441902740849 K, F = -25.251840427920396, relative_change = 0.0010077124167118512 Iter 40: T = 573.4587981063615 K, F = -10.571742039326727, relative_change = 0.0004281504351707517 Iter 45: T = 572.7062101403018 K, F = -4.423199917206597, relative_change = 0.00018025939157361115 Iter 50: T = 572.3904194663504 K, F = -1.8501817323430632, relative_change = 7.559889754344601e-5 Iter 55: T = 572.2581673960744 K, F = -0.773828878595215, relative_change = 3.165364122822662e-5 Iter 60: T = 572.2028256263499 K, F = -0.3236351198865587, relative_change = 1.3244462294073244e-5 Iter 65: T = 572.1796753690553 K, F = -0.13534993409848184, relative_change = 5.540135499119193e-6 Iter 70: T = 572.1699926631607 K, F = -0.056605284562352254, relative_change = 2.3171508353961244e-6 Iter 75: T = 572.1659430664178 K, F = -0.023673062980444387, relative_change = 9.69095137661687e-7 Iter 80: T = 572.1642494463497 K, F = -0.00990036761715496, relative_change = 4.052932793237059e-7 Iter 85: T = 572.1635411489032 K, F = -0.004140453714421788, relative_change = 1.6949955989804367e-7 Iter 90: T = 572.1632449295239 K, F = -0.0017315874955964317, relative_change = 7.08869273998854e-8 Iter 95: T = 572.1631210468795 K, F = -0.0007241706236631451, relative_change = 2.9645792355987466e-8 Iter 100: T = 572.1630692376498 K, F = -0.00030285681282088417, relative_change = 1.2398230145889769e-8 Iter 105: T = 572.1630475704062 K, F = -0.00012665833763597645, relative_change = 5.185088915112111e-9 Iter 110: T = 572.1630385089053 K, F = -5.297003018944757e-5, relative_change = 2.1684663023658128e-9 Iter 115: T = 572.1630347192772 K, F = -2.215269956723498e-5, relative_change = 9.068785473774607e-10 Iter 120: T = 572.1630331344095 K, F = -9.264523584018303e-6, relative_change = 3.792674466295762e-10 Iter 125: T = 572.1630324715989 K, F = -3.874534152237263e-6, relative_change = 1.586141661334307e-10 Iter 130: T = 572.1630321944035 K, F = -1.6203761383226656e-6, relative_change = 6.633432575293136e-11 Iter 135: T = 572.163032078477 K, F = -6.776602068936377e-7, relative_change = 2.7741789016823533e-11 Iter 140: T = 572.1630320299953 K, F = -2.8340528568371326e-7, relative_change = 1.1601934959264721e-11 Iter 145: T = 572.1630320097197 K, F = -1.1852354703245638e-7, relative_change = 4.8520707040677854e-12 Iter 150: T = 572.1630320012401 K, F = -4.9567391136040584e-8, relative_change = 2.029170510391168e-12 Iter 155: T = 572.1630319976939 K, F = -2.0729863492441325e-8, relative_change = 8.486310600670781e-13 Iter 160: T = 572.1630319962109 K, F = -8.669491458057621e-9, relative_change = 3.549082573103941e-13 Converged in 163 iterations to T = 572.1630319957767 K Iter 1: T = 980.2189079591342 K, F = -4507.1406381875395, relative_change = 0.019781092040865814 Iter 2: T = 962.4781633938932 K, F = -3807.1118774939755, relative_change = 0.018098757758282995 Iter 3: T = 946.6563195802088 K, F = -3214.3099917108702, relative_change = 0.01643865223694356 Iter 5: T = 920.2444084043877 K, F = -2288.105557460774, relative_change = 0.013273527987568888 Iter 10: T = 878.339082611307 K, F = -971.2979853641422, relative_change = 0.006964471353450569 Iter 15: T = 858.5162655838607 K, F = -409.27828884925486, relative_change = 0.003263368092897723 Iter 20: T = 849.722406297982 K, F = -171.75703050228833, relative_change = 0.001437554568173061 Iter 25: T = 845.9466793634398 K, F = -71.93904376212839, relative_change = 0.000614950456277549 Iter 30: T = 844.3496486859453 K, F = -30.105056783238503, relative_change = 0.0002596656736031966 Iter 35: T = 843.6785427402355 K, F = -12.593695500868293, relative_change = 0.00010903629437815646 Iter 40: T = 843.3973121820527 K, F = -5.267430769413006, relative_change = 4.567787404114037e-5 Iter 45: T = 843.2795988455094 K, F = -2.203007003652561, relative_change = 1.9116637563549326e-5 Iter 50: T = 843.2303523181533 K, F = -0.9213421350206688, relative_change = 7.997188171178388e-6 Iter 55: T = 843.2097537863417 K, F = -0.3853194848549444, relative_change = 3.3449364034000485e-6 Iter 60: T = 843.2011387014608 K, F = -0.1611457701162775, relative_change = 1.39896526345362e-6 Iter 65: T = 843.1975356768668 K, F = -0.06739318346086254, relative_change = 5.85076733704849e-7 Iter 70: T = 843.1960288326492 K, F = -0.028184651289779428, relative_change = 2.446883079477264e-7 Iter 75: T = 843.1953986495505 K, F = -0.011787160759499038, relative_change = 1.0233196271958416e-7 Iter 80: T = 843.195135098954 K, F = -0.00492953191918577, relative_change = 4.2796517125133115e-8 Iter 85: T = 843.1950248788598 K, F = -0.0020615892109236977, relative_change = 1.7898026491955724e-8 Iter 90: T = 843.1949787834849 K, F = -0.0008621812434819187, relative_change = 7.485170504164444e-9 Iter 95: T = 843.194959505846 K, F = -0.0003605744960357704, relative_change = 3.130388066874252e-9 Iter 100: T = 843.1949514437067 K, F = -0.00015079656147531928, relative_change = 1.309165743134661e-9 Iter 105: T = 843.1949480720236 K, F = -6.306492255903073e-5, relative_change = 5.475087559814424e-10 Iter 110: T = 843.1949466619456 K, F = -2.6374505702086992e-5, relative_change = 2.28974718997506e-10 Iter 115: T = 843.1949460722341 K, F = -1.1030134586365037e-5, relative_change = 9.575997383063544e-11 Iter 120: T = 843.1949458256096 K, F = -4.612932801961733e-6, relative_change = 4.0047954225287314e-11 Iter 125: T = 843.1949457224683 K, F = -1.929183172544313e-6, relative_change = 1.674852913495513e-11 Iter 130: T = 843.1949456793335 K, F = -8.06809690612198e-7, relative_change = 7.00445442671592e-12 Iter 135: T = 843.194945661294 K, F = -3.3741807792253553e-7, relative_change = 2.9293519615584784e-12 Iter 140: T = 843.1949456537498 K, F = -1.4111498436442105e-7, relative_change = 1.2251135410881086e-12 Iter 145: T = 843.1949456505945 K, F = -5.901610156122672e-8, relative_change = 5.123582409892345e-13 Converged in 150 iterations to T = 843.194945649275 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013144411122910432 Iteration 10: d = 7.298976376181562e-6 Iteration 20: d = 6.199405466418354e-8 Iteration 30: d = 7.661545416021266e-10 Iteration 40: d = 1.0174400620247759e-11 Iteration 50: d = 1.3813616618734073e-13 Converged after 60 iterations. d = 1.8889501907153963e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.658217761384 Iteration 2: convergence error = 4825.50803603306 Iteration 3: convergence error = 1100.5503166164572 Iteration 4: convergence error = 321.3720186501823 Iteration 5: convergence error = 95.32102354233325 Iteration 6: convergence error = 28.43387169884204 Iteration 7: convergence error = 8.491556986611386 Iteration 8: convergence error = 2.535725036635313 Iteration 9: convergence error = 0.7588188939964766 Iteration 10: convergence error = 0.22677130016722913 Iteration 11: convergence error = 0.06771787944717289 Iteration 12: convergence error = 0.02021287069533173 Iteration 13: convergence error = 0.006031757576920427 Iteration 14: convergence error = 0.0017996889582718723 Iteration 15: convergence error = 0.0005369269222228468 Iteration 16: convergence error = 0.00016018144287954783 Iteration 17: convergence error = 4.77856196994253e-5 Iteration 18: convergence error = 1.4255266705731628e-5 Iteration 19: convergence error = 4.252543703842093e-6 Iteration 20: convergence error = 1.2685891306318808e-6 Iteration 21: convergence error = 3.784300588449696e-7 Iteration 22: convergence error = 1.127605173678603e-7 Iteration 23: convergence error = 3.272748472227249e-8 Iteration 24: convergence error = 9.439418136025779e-9 Iteration 25: convergence error = 2.715069058467634e-9 Iteration 26: convergence error = 7.767084753140807e-10 Iteration 27: convergence error = 2.2532731236424297e-10 Iteration 28: convergence error = 6.343725544866174e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014963141208713024 Iteration 10: d = 8.649090051107887e-6 Iteration 20: d = 6.563432597073192e-8 Iteration 30: d = 7.322138752030132e-10 Iteration 40: d = 9.103379095943742e-12 Iteration 50: d = 1.1719415523176503e-13 Converged after 60 iterations. d = 1.4667377191721882e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12266.850997188367 Iteration 2: convergence error = 8318.537847998537 Iteration 3: convergence error = 1946.3201127411721 Iteration 4: convergence error = 477.514375454379 Iteration 5: convergence error = 121.51256086209219 Iteration 6: convergence error = 32.41218317368816 Iteration 7: convergence error = 8.824957714942002 Iteration 8: convergence error = 2.416959852606624 Iteration 9: convergence error = 0.6628072042626627 Iteration 10: convergence error = 0.18179370990992538 Iteration 11: convergence error = 0.04986016587645281 Iteration 12: convergence error = 0.013674379971007511 Iteration 13: convergence error = 0.003750151199483298 Iteration 14: convergence error = 0.0010284506186053477 Iteration 15: convergence error = 0.0002820428785526019 Iteration 16: convergence error = 7.734737050668627e-5 Iteration 17: convergence error = 2.1211699504419812e-5 Iteration 18: convergence error = 5.817081273562508e-6 Iteration 19: convergence error = 1.5952743979141815e-6 Iteration 20: convergence error = 4.374853688204894e-7 Iteration 21: convergence error = 1.2084024092473555e-7 Iteration 22: convergence error = 3.2474417821504176e-8 Iteration 23: convergence error = 8.679990060045384e-9 Iteration 24: convergence error = 2.318074621143751e-9 Iteration 25: convergence error = 6.193658919073641e-10 Iteration 26: convergence error = 1.6439116734545678e-10 Iteration 27: convergence error = 4.320099833421409e-11 Iteration 28: convergence error = 1.2732925824820995e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014963141208713024 Iteration 10: d = 8.649090051107887e-6 Iteration 20: d = 6.563432597073192e-8 Iteration 30: d = 7.322138752030132e-10 Iteration 40: d = 9.103379095943742e-12 Iteration 50: d = 1.1719415523176503e-13 Converged after 60 iterations. d = 1.4667377191721882e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.04880931398 Iteration 2: convergence error = 5743.430668279702 Iteration 3: convergence error = 2013.4380173293562 Iteration 4: convergence error = 893.4308720914969 Iteration 5: convergence error = 409.28646589331856 Iteration 6: convergence error = 192.93468750055445 Iteration 7: convergence error = 91.05686359836272 Iteration 8: convergence error = 43.003787012889006 Iteration 9: convergence error = 20.31202627091716 Iteration 10: convergence error = 9.592604126190963 Iteration 11: convergence error = 4.529238770376196 Iteration 12: convergence error = 2.1380901585735046 Iteration 13: convergence error = 1.0091536556242318 Iteration 14: convergence error = 0.47625307080352286 Iteration 15: convergence error = 0.22474125515645937 Iteration 16: convergence error = 0.1059583654027847 Iteration 17: convergence error = 0.04951638332750008 Iteration 18: convergence error = 0.022607087043525098 Iteration 19: convergence error = 0.010283728538070136 Iteration 20: convergence error = 0.004668163945552806 Iteration 21: convergence error = 0.0021164958784538612 Iteration 22: convergence error = 0.0009589247501935461 Iteration 23: convergence error = 0.00043428353956187493 Iteration 24: convergence error = 0.00019663313423734508 Iteration 25: convergence error = 8.901781984604895e-5 Iteration 26: convergence error = 4.029574984087958e-5 Iteration 27: convergence error = 1.8239726614410756e-5 Iteration 28: convergence error = 8.255880857177544e-6 Iteration 29: convergence error = 3.7367990444181487e-6 Iteration 30: convergence error = 1.6913390936679207e-6 Iteration 31: convergence error = 7.655225999769755e-7 Iteration 32: convergence error = 3.464829205768183e-7 Iteration 33: convergence error = 1.568178049637936e-7 Iteration 34: convergence error = 7.097969501046464e-8 Iteration 35: convergence error = 3.212926458218135e-8 Iteration 36: convergence error = 1.4541001291945577e-8 Iteration 37: convergence error = 6.582467904081568e-9 Iteration 38: convergence error = 2.976776158902794e-9 Iteration 39: convergence error = 1.3469616533257067e-9 Iteration 40: convergence error = 6.098161975387484e-10 Iteration 41: convergence error = 2.8057911549694836e-10 Iteration 42: convergence error = 1.2369127944111824e-10 Iteration 43: convergence error = 5.775291356258094e-11 Iteration 44: convergence error = 3.001332515850663e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014963141208713024 Iteration 10: d = 8.649090051107887e-6 Iteration 20: d = 6.563432597073192e-8 Iteration 30: d = 7.322138752030132e-10 Iteration 40: d = 9.103379095943742e-12 Iteration 50: d = 1.1719415523176503e-13 Converged after 60 iterations. d = 1.4667377191721882e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.791334015721 Iteration 2: convergence error = 7361.9709833401685 Iteration 3: convergence error = 1730.045373757814 Iteration 4: convergence error = 504.1206460994608 Iteration 5: convergence error = 156.4906073865236 Iteration 6: convergence error = 48.59514171463252 Iteration 7: convergence error = 15.068037004210964 Iteration 8: convergence error = 4.664938517784776 Iteration 9: convergence error = 1.4426337705708647 Iteration 10: convergence error = 0.4458294769588065 Iteration 11: convergence error = 0.13772305885322567 Iteration 12: convergence error = 0.04253477746351564 Iteration 13: convergence error = 0.013134831941442826 Iteration 14: convergence error = 0.0040557613556302385 Iteration 15: convergence error = 0.0012522809643087385 Iteration 16: convergence error = 0.0003866523229589802 Iteration 17: convergence error = 0.00011938050874960027 Iteration 18: convergence error = 3.685894080263097e-5 Iteration 19: convergence error = 1.1380202977306908e-5 Iteration 20: convergence error = 3.513624960760353e-6 Iteration 21: convergence error = 1.0848339115909766e-6 Iteration 22: convergence error = 3.3478272598586045e-7 Iteration 23: convergence error = 1.0213125278824009e-7 Iteration 24: convergence error = 3.0392129701795056e-8 Iteration 25: convergence error = 9.003542800201103e-9 Iteration 26: convergence error = 2.6743691705632955e-9 Iteration 27: convergence error = 7.967173587530851e-10 Iteration 28: convergence error = 2.360138751100749e-10 Iteration 29: convergence error = 7.321432349272072e-11 Iteration 30: convergence error = 2.091837814077735e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014963141208713024 Iteration 10: d = 8.649090051107887e-6 Iteration 20: d = 6.563432597073192e-8 Iteration 30: d = 7.322138752030132e-10 Iteration 40: d = 9.103379095943742e-12 Iteration 50: d = 1.1719415523176503e-13 Converged after 60 iterations. d = 1.4667377191721882e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.740841306847 Iteration 2: convergence error = 5528.723406577695 Iteration 3: convergence error = 935.7634433575763 Iteration 4: convergence error = 170.23111300025835 Iteration 5: convergence error = 30.884774834596328 Iteration 6: convergence error = 5.618905632778933 Iteration 7: convergence error = 1.0244206853499236 Iteration 8: convergence error = 0.1874464940060534 Iteration 9: convergence error = 0.03425934089909788 Iteration 10: convergence error = 0.006257978919620655 Iteration 11: convergence error = 0.0011427850918153126 Iteration 12: convergence error = 0.0002086560939460469 Iteration 13: convergence error = 3.809467762039276e-5 Iteration 14: convergence error = 6.9547450038953684e-6 Iteration 15: convergence error = 1.2696591511485167e-6 Iteration 16: convergence error = 2.3178790797828697e-7 Iteration 17: convergence error = 4.2304236558265984e-8 Iteration 18: convergence error = 7.722519512753934e-9 Iteration 19: convergence error = 1.4142642612569034e-9 Iteration 20: convergence error = 2.5556801119819283e-10 Iteration 21: convergence error = 4.5929482439532876e-11 Iteration 22: convergence error = 1.1368683772161603e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014963141208713024 Iteration 10: d = 8.649090051107887e-6 Iteration 20: d = 6.563432597073192e-8 Iteration 30: d = 7.322138752030132e-10 Iteration 40: d = 9.103379095943742e-12 Iteration 50: d = 1.1719415523176503e-13 Converged after 60 iterations. d = 1.4667377191721882e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.488449619497 Iteration 2: convergence error = 2717.86436074035 Iteration 3: convergence error = 204.40262446793747 Iteration 4: convergence error = 19.36644868449252 Iteration 5: convergence error = 1.6015880963418017 Iteration 6: convergence error = 0.13046616304904582 Iteration 7: convergence error = 0.010639735421142585 Iteration 8: convergence error = 0.0008696446561533961 Iteration 9: convergence error = 7.118757644900541e-5 Iteration 10: convergence error = 5.832224023461105e-6 Iteration 11: convergence error = 4.780363030341466e-7 Iteration 12: convergence error = 3.91914561356726e-8 Iteration 13: convergence error = 3.214286279370665e-9 Iteration 14: convergence error = 2.627186548799905e-10 Iteration 15: convergence error = 2.2964741219766438e-11 Iteration 16: convergence error = 3.865352482534945e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013144411122910432 Iteration 10: d = 7.298976376181562e-6 Iteration 20: d = 6.199405466418354e-8 Iteration 30: d = 7.661545416021266e-10 Iteration 40: d = 1.0174400620247759e-11 Iteration 50: d = 1.3813616618734073e-13 Converged after 60 iterations. d = 1.8889501907153963e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.330855265274 Iteration 2: convergence error = 3612.263124151939 Iteration 3: convergence error = 595.2686846252002 Iteration 4: convergence error = 105.41790060880908 Iteration 5: convergence error = 18.763554625051484 Iteration 6: convergence error = 3.3099676929573434 Iteration 7: convergence error = 0.5817387809847787 Iteration 8: convergence error = 0.10208609424876158 Iteration 9: convergence error = 0.0179033334061387 Iteration 10: convergence error = 0.0031390065687446622 Iteration 11: convergence error = 0.0005503098570898146 Iteration 12: convergence error = 9.647291244618827e-5 Iteration 13: convergence error = 1.6912076716835145e-5 Iteration 14: convergence error = 2.964752184198005e-6 Iteration 15: convergence error = 5.197291557124117e-7 Iteration 16: convergence error = 9.109385246119928e-8 Iteration 17: convergence error = 1.5981640899553895e-8 Iteration 18: convergence error = 2.785782271530479e-9 Iteration 19: convergence error = 4.913545126328245e-10 Iteration 20: convergence error = 8.594724931754172e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 7m44.0s Testing RayTraceHeatTransfer tests passed Testing completed after 481.56s PkgEval succeeded after 532.9s