Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1395 (a32911ae58*) started at 2025-12-21T15:20:21.270 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.21s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.1 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.5s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 13.27s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_P1KDfO/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_P1KDfO/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.1 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:52 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 99%|████████████████████████████████▋| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012795904121568559 Iteration 10: d = 1.1788031111829568e-5 Iteration 20: d = 1.7663441331060323e-7 Iteration 30: d = 3.0309026430030227e-9 Iteration 40: d = 5.341939852463761e-11 Iteration 50: d = 9.492265931689584e-13 Iteration 60: d = 1.6909562943439406e-14 Converged after 66 iterations. d = 1.5192876919799284e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▎ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011175463354999562 Iteration 10: d = 1.0229758578768158e-5 Iteration 20: d = 1.521390741225878e-7 Iteration 30: d = 2.541327967412364e-9 Iteration 40: d = 4.358696307160736e-11 Iteration 50: d = 7.537874299433744e-13 Iteration 60: d = 1.3073954626461488e-14 Converged after 65 iterations. d = 1.7064577205548104e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▎ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011770821301941548 Iteration 10: d = 1.475611792687989e-5 Iteration 20: d = 2.3101040688126088e-7 Iteration 30: d = 3.810510922851083e-9 Iteration 40: d = 6.415909720411177e-11 Iteration 50: d = 1.0928764417286663e-12 Iteration 60: d = 1.8718182077342855e-14 Converged after 66 iterations. d = 1.6505612357852528e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|██████████████ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011086871067405794 Iteration 10: d = 1.102384152836592e-5 Iteration 20: d = 1.5609718764255833e-7 Iteration 30: d = 2.495398733367959e-9 Iteration 40: d = 4.146756367043947e-11 Iteration 50: d = 7.019567642467562e-13 Iteration 60: d = 1.1974056906527722e-14 Converged after 65 iterations. d = 1.6225705159581372e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001222674411259965 Iteration 10: d = 1.4774932112467877e-5 Iteration 20: d = 2.150674166392714e-7 Iteration 30: d = 3.3210989725175252e-9 Iteration 40: d = 5.168565067913554e-11 Iteration 50: d = 8.056948849717834e-13 Iteration 60: d = 1.2601039884985259e-14 Converged after 65 iterations. d = 1.574418821156963e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013339101048148903 Iteration 10: d = 1.7141045012904673e-5 Iteration 20: d = 2.538678603021838e-7 Iteration 30: d = 3.9249115836625215e-9 Iteration 40: d = 6.097875962589367e-11 Iteration 50: d = 9.485388132417696e-13 Iteration 60: d = 1.4727086380444168e-14 Converged after 65 iterations. d = 1.8181307422981085e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001160318958756814 Iteration 10: d = 8.37361186955615e-6 Iteration 20: d = 1.0498003284973662e-7 Iteration 30: d = 1.6422539541690337e-9 Iteration 40: d = 2.593334289390491e-11 Iteration 50: d = 4.0710992292326657e-13 Iteration 60: d = 6.426167626923097e-15 Converged after 63 iterations. d = 1.8443691550405547e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011946430661050713 Iteration 10: d = 8.728431663017241e-6 Iteration 20: d = 1.1416254969510707e-7 Iteration 30: d = 1.7857286355191197e-9 Iteration 40: d = 2.810301278604224e-11 Iteration 50: d = 4.4104823060779226e-13 Iteration 60: d = 6.888040815339064e-15 Converged after 63 iterations. d = 2.0056537717267146e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010998929678546882 Iteration 10: d = 1.0763243636810032e-5 Iteration 20: d = 1.533658075683443e-7 Iteration 30: d = 2.363675805796198e-9 Iteration 40: d = 3.678044883945182e-11 Iteration 50: d = 5.740328887450379e-13 Iteration 60: d = 8.982940970966456e-15 Converged after 64 iterations. d = 1.6752546215307518e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 94%|██████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011938860902999313 Iteration 10: d = 1.5512896066128863e-5 Iteration 20: d = 2.3269802106463757e-7 Iteration 30: d = 3.5990120228674566e-9 Iteration 40: d = 5.590177033503847e-11 Iteration 50: d = 8.701920523913178e-13 Iteration 60: d = 1.3574261796883197e-14 Converged after 65 iterations. d = 1.6925858800792035e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004925485395806288 Iteration 10: d = 5.3184007064710055e-5 Iteration 20: d = 6.916099188414288e-7 Iteration 30: d = 9.96208823161403e-9 Iteration 40: d = 1.444228901562612e-10 Iteration 50: d = 2.0889618682643538e-12 Iteration 60: d = 3.0163420914278376e-14 Converged after 67 iterations. d = 1.52682576638338e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002887423302757859 Iteration 10: d = 1.628896178795559e-5 Iteration 20: d = 1.1323992283030321e-7 Iteration 30: d = 1.1986002543843464e-9 Iteration 40: d = 1.6367730854946638e-11 Iteration 50: d = 2.518763376445976e-13 Iteration 60: d = 4.024414919599882e-15 Converged after 62 iterations. d = 1.806952078818764e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002688799745769072 Iteration 10: d = 2.4343444974697223e-5 Iteration 20: d = 3.281686924512814e-7 Iteration 30: d = 5.226868797591265e-9 Iteration 40: d = 8.65121292372932e-11 Iteration 50: d = 1.45179667072158e-12 Iteration 60: d = 2.4509083960094586e-14 Converged after 66 iterations. d = 2.101368424695788e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002214532669409519 Iteration 10: d = 1.9642046911843455e-5 Iteration 20: d = 3.252779033621181e-7 Iteration 30: d = 6.008882591490706e-9 Iteration 40: d = 1.1153207812547799e-10 Iteration 50: d = 2.066211905150323e-12 Iteration 60: d = 3.819700885245828e-14 Converged after 68 iterations. d = 1.5827638505194795e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001222674411259965 Iteration 10: d = 1.4774932112467877e-5 Iteration 20: d = 2.150674166392714e-7 Iteration 30: d = 3.3210989725175252e-9 Iteration 40: d = 5.168565067913554e-11 Iteration 50: d = 8.056948849717834e-13 Iteration 60: d = 1.2601039884985259e-14 Converged after 65 iterations. d = 1.574418821156963e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017139098198891494 Iteration 10: d = 2.0366590856897088e-5 Iteration 20: d = 2.6237584353872217e-7 Iteration 30: d = 3.693806759462413e-9 Iteration 40: d = 5.260191943876636e-11 Iteration 50: d = 7.498520871525605e-13 Iteration 60: d = 1.0703308195552914e-14 Converged after 64 iterations. d = 1.9617585986651795e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013257587337302662 Iteration 10: d = 1.1427365459120087e-5 Iteration 20: d = 1.163588208405041e-7 Iteration 30: d = 1.448313339316481e-9 Iteration 40: d = 1.9535270076142222e-11 Iteration 50: d = 2.7176084659728535e-13 Iteration 60: d = 3.790052972596868e-15 Converged after 62 iterations. d = 1.624128781971248e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.803885367493 Iteration 2: convergence error = 4821.491379875474 Iteration 3: convergence error = 1092.7655691251894 Iteration 4: convergence error = 322.78825472927565 Iteration 5: convergence error = 95.90307493846103 Iteration 6: convergence error = 28.644594841792923 Iteration 7: convergence error = 8.632276122662006 Iteration 8: convergence error = 2.590740239008028 Iteration 9: convergence error = 0.7756405642132904 Iteration 10: convergence error = 0.23189122225880965 Iteration 11: convergence error = 0.06927215586688362 Iteration 12: convergence error = 0.02068399456265979 Iteration 13: convergence error = 0.00617443087094216 Iteration 14: convergence error = 0.0018428700777803897 Iteration 15: convergence error = 0.0005499906806107902 Iteration 16: convergence error = 0.00016413247453783697 Iteration 17: convergence error = 4.898028146271827e-5 Iteration 18: convergence error = 1.4616420685342746e-5 Iteration 19: convergence error = 4.3617076244117925e-6 Iteration 20: convergence error = 1.3015712738706497e-6 Iteration 21: convergence error = 3.884024408762343e-7 Iteration 22: convergence error = 1.1577503755688667e-7 Iteration 23: convergence error = 3.36394805344753e-8 Iteration 24: convergence error = 9.715449778013863e-9 Iteration 25: convergence error = 2.789420250337571e-9 Iteration 26: convergence error = 8.017195796128362e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.730260793119669e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017139098198891494 Iteration 10: d = 2.0366590856897088e-5 Iteration 20: d = 2.6237584353872217e-7 Iteration 30: d = 3.693806759462413e-9 Iteration 40: d = 5.260191943876636e-11 Iteration 50: d = 7.498520871525605e-13 Iteration 60: d = 1.0703308195552914e-14 Converged after 64 iterations. d = 1.9617585986651795e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.477105982169 Iteration 2: convergence error = 4821.1354222846385 Iteration 3: convergence error = 1098.6158055744886 Iteration 4: convergence error = 320.71450405118867 Iteration 5: convergence error = 95.18486653664786 Iteration 6: convergence error = 28.478280939574006 Iteration 7: convergence error = 8.573860827716544 Iteration 8: convergence error = 2.5712134866992074 Iteration 9: convergence error = 0.769279347363863 Iteration 10: convergence error = 0.22984922615228243 Iteration 11: convergence error = 0.06862260564184908 Iteration 12: convergence error = 0.020478630771776807 Iteration 13: convergence error = 0.006109787248760767 Iteration 14: convergence error = 0.0018225907479063608 Iteration 15: convergence error = 0.0005436464500689908 Iteration 16: convergence error = 0.00016215239429584472 Iteration 17: convergence error = 4.836355492443545e-5 Iteration 18: convergence error = 1.4424675782720442e-5 Iteration 19: convergence error = 4.302200522943167e-6 Iteration 20: convergence error = 1.2831310414185282e-6 Iteration 21: convergence error = 3.8269831748038996e-7 Iteration 22: convergence error = 1.139985670306487e-7 Iteration 23: convergence error = 3.3093556339736097e-8 Iteration 24: convergence error = 9.537643563817255e-9 Iteration 25: convergence error = 2.7439455152489245e-9 Iteration 26: convergence error = 7.930793799459934e-10 Iteration 27: convergence error = 2.2805579646956176e-10 Iteration 28: convergence error = 6.59383658785373e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:35:30 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:35 Bin 1 ray tracing: 18%|█████▎ | ETA: 0:00:21 Bin 1 ray tracing: 26%|████████ | ETA: 0:00:15 Bin 1 ray tracing: 36%|██████████▊ | ETA: 0:00:12 Bin 1 ray tracing: 45%|█████████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 56%|█████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 2 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 2 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 2 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 3 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 4 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 58%|█████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 67%|████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 64%|███████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 6 ray tracing: 35%|██████████▌ | ETA: 0:00:07 Bin 6 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 39%|███████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 8 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 8 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 48%|██████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 9 ray tracing: 21%|██████▍ | ETA: 0:00:08 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 9 ray tracing: 39%|███████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▊ | ETA: 0:00:09 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:09 Bin 10 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 10 ray tracing: 38%|██████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 47%|█████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 56%|████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 65%|███████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 27%|████████▊ | ETA: 0:00:03 Bin 2 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 2 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 3 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 27%|████████▊ | ETA: 0:00:03 Bin 8 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 9 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 9 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 53%|█████████████████▏ | ETA: 0:00:02 Bin 10 progress: 89%|████████████████████████████▌ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017139098198891494 Iteration 10: d = 2.0366590856897088e-5 Iteration 20: d = 2.6237584353872217e-7 Iteration 30: d = 3.693806759462413e-9 Iteration 40: d = 5.260191943876636e-11 Iteration 50: d = 7.498520871525605e-13 Iteration 60: d = 1.0703308195552914e-14 Converged after 64 iterations. d = 1.9617585986651795e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013268172928313248 Iteration 10: d = 1.1546554620509942e-5 Iteration 20: d = 1.1852599682586754e-7 Iteration 30: d = 1.4829483642904562e-9 Iteration 40: d = 2.003083238635714e-11 Iteration 50: d = 2.785365739276538e-13 Iteration 60: d = 3.914300691302569e-15 Converged after 62 iterations. d = 1.6935357459803132e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014483590992063254 Iteration 10: d = 1.5345029904759746e-5 Iteration 20: d = 1.6218668421628133e-7 Iteration 30: d = 2.1008572467373284e-9 Iteration 40: d = 2.8961583421061122e-11 Iteration 50: d = 4.0594539320671563e-13 Iteration 60: d = 5.766906538916391e-15 Converged after 63 iterations. d = 1.5936758128164285e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001561557601258806 Iteration 10: d = 1.627453474562002e-5 Iteration 20: d = 2.1150505918092567e-7 Iteration 30: d = 2.9601592413740117e-9 Iteration 40: d = 4.1804773588032936e-11 Iteration 50: d = 5.91821770028152e-13 Iteration 60: d = 8.378966108823082e-15 Converged after 64 iterations. d = 1.5252612962036548e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018378783468394077 Iteration 10: d = 2.0901330505971853e-5 Iteration 20: d = 2.122281861952657e-7 Iteration 30: d = 2.600907279191943e-9 Iteration 40: d = 3.4544971988006364e-11 Iteration 50: d = 4.733996087327888e-13 Iteration 60: d = 6.5869826579706576e-15 Converged after 63 iterations. d = 1.816770732369529e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001087804815140634 Iteration 10: d = 1.0932678826023085e-5 Iteration 20: d = 1.39385320220275e-7 Iteration 30: d = 1.903359307510866e-9 Iteration 40: d = 2.6449660450275567e-11 Iteration 50: d = 3.706076976519144e-13 Iteration 60: d = 5.200449211292681e-15 Converged after 62 iterations. d = 2.1910729745718735e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016948556617726821 Iteration 10: d = 1.2267777155029378e-5 Iteration 20: d = 8.19743458177916e-8 Iteration 30: d = 7.592694422368002e-10 Iteration 40: d = 8.609536740758873e-12 Iteration 50: d = 1.0933324565661541e-13 Converged after 60 iterations. d = 1.4696854109672954e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001276997601385596 Iteration 10: d = 1.0641471781752374e-5 Iteration 20: d = 1.0922342354912639e-7 Iteration 30: d = 1.3326856963944013e-9 Iteration 40: d = 1.749438742314796e-11 Iteration 50: d = 2.3837870280588347e-13 Iteration 60: d = 3.328389943983392e-15 Converged after 61 iterations. d = 2.1997535318497795e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001467262578355355 Iteration 10: d = 2.437970855551409e-5 Iteration 20: d = 3.220484401110599e-7 Iteration 30: d = 4.37206363627813e-9 Iteration 40: d = 6.007259670498027e-11 Iteration 50: d = 8.314400896864994e-13 Iteration 60: d = 1.1578134102656818e-14 Converged after 64 iterations. d = 2.1169553960413986e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014303240829534663 Iteration 10: d = 1.1854962307388123e-5 Iteration 20: d = 1.337971425166611e-7 Iteration 30: d = 1.8573988808772414e-9 Iteration 40: d = 2.6402774436891628e-11 Iteration 50: d = 3.760976772031766e-13 Iteration 60: d = 5.363976202951828e-15 Converged after 63 iterations. d = 1.4883661183643861e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.212246756868 Iteration 2: convergence error = 4810.026715484702 Iteration 3: convergence error = 1101.129061706009 Iteration 4: convergence error = 319.8790559044912 Iteration 5: convergence error = 95.27075102014783 Iteration 6: convergence error = 28.923137503592898 Iteration 7: convergence error = 8.757585582045976 Iteration 8: convergence error = 2.6416997702333447 Iteration 9: convergence error = 0.7950550322439085 Iteration 10: convergence error = 0.23896691066443054 Iteration 11: convergence error = 0.07177107548204731 Iteration 12: convergence error = 0.021546320633433425 Iteration 13: convergence error = 0.006466796354743565 Iteration 14: convergence error = 0.001940633321964924 Iteration 15: convergence error = 0.0005823206556669902 Iteration 16: convergence error = 0.00017472712511334976 Iteration 17: convergence error = 5.2425975582082174e-5 Iteration 18: convergence error = 1.5729890947113745e-5 Iteration 19: convergence error = 4.719552407550509e-6 Iteration 20: convergence error = 1.4160352748149307e-6 Iteration 21: convergence error = 4.248597633704776e-7 Iteration 22: convergence error = 1.273479028895963e-7 Iteration 23: convergence error = 3.733794073923491e-8 Iteration 24: convergence error = 1.084299583453685e-8 Iteration 25: convergence error = 3.139120963169262e-9 Iteration 26: convergence error = 9.035829862114042e-10 Iteration 27: convergence error = 2.59660737356171e-10 Iteration 28: convergence error = 7.548806024715304e-11 Iteration 29: convergence error = 2.2509993868879974e-11 Iteration 30: convergence error = 5.9117155615240335e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2702446618224 K, F = -7457.505887838698, relative_change = 0.032729755338177645 Iter 2: T = 936.6134265082641 K, F = -6321.609030494546, relative_change = 0.031694160264669965 Iter 3: T = 907.9983210296919 K, F = -5357.22288886352, relative_change = 0.030551671232442863 Iter 5: T = 856.7558366016182 K, F = -3843.675474230556, relative_change = 0.02795090367448438 Iter 10: T = 761.3880139255654 K, F = -1664.4914532528007, relative_change = 0.020043806207229356 Iter 15: T = 705.4860901361113 K, F = -712.7170315975949, relative_change = 0.012028588390261087 Iter 20: T = 676.7075513984825 K, F = -302.09180692080685, relative_change = 0.006166647630596726 Iter 25: T = 663.278717010288 K, F = -127.17937910188704, relative_change = 0.0028505349094063302 Iter 30: T = 657.3648689210664 K, F = -53.348186069143445, relative_change = 0.0012473120235983893 Iter 35: T = 654.8344526499887 K, F = -22.339972721741866, relative_change = 0.0005319616499200512 Iter 40: T = 653.76578298795 K, F = -9.348022180411983, relative_change = 0.00022433072173786233 Iter 45: T = 653.3169979016122 K, F = -3.9103666600112543, relative_change = 9.414675284921788e-5 Iter 50: T = 653.1289838183162 K, F = -1.6355220426506265, relative_change = 3.9431129533573255e-5 Iter 55: T = 653.0502967471106 K, F = -0.68402287017444, relative_change = 1.6500706186720254e-5 Iter 60: T = 653.017378832942 K, F = -0.28607143642764155, relative_change = 6.902566944220653e-6 Iter 65: T = 653.0036104109261 K, F = -0.11963934886291139, relative_change = 2.8870464189976423e-6 Iter 70: T = 652.9978519850057 K, F = -0.05003475451395717, relative_change = 1.207451604295139e-6 Iter 75: T = 652.9954436887457 K, F = -0.02092515811546941, relative_change = 5.049801809245183e-7 Iter 80: T = 652.994436501084 K, F = -0.008751155610668915, relative_change = 2.1119040397503766e-7 Iter 85: T = 652.9940152815308 K, F = -0.003659838589605502, relative_change = 8.832263970263136e-8 Iter 90: T = 652.9938391221955 K, F = -0.0015305883460564607, relative_change = 3.693763354405222e-8 Iter 95: T = 652.9937654502074 K, F = -0.0006401103503712591, relative_change = 1.5447768376860548e-8 Iter 100: T = 652.9937346396933 K, F = -0.0002677017972424478, relative_change = 6.4604427728064474e-9 Iter 105: T = 652.9937217543669 K, F = -0.00011195608998582074, relative_change = 2.7018346078446213e-9 Iter 110: T = 652.9937163655692 K, F = -4.682137478023707e-5, relative_change = 1.1299395660788114e-9 Iter 115: T = 652.9937141119095 K, F = -1.9581257563294763e-5, relative_change = 4.725542157135894e-10 Iter 120: T = 652.9937131694022 K, F = -8.189115537515779e-6, relative_change = 1.976278124274107e-10 Iter 125: T = 652.9937127752344 K, F = -3.4247857513824975e-6, relative_change = 8.265030758483703e-11 Iter 130: T = 652.9937126103887 K, F = -1.4322866495053432e-6, relative_change = 3.456535411763083e-11 Iter 135: T = 652.9937125414482 K, F = -5.989987693633125e-7, relative_change = 1.4455629113505832e-11 Iter 140: T = 652.9937125126165 K, F = -2.505088773085973e-7, relative_change = 6.045527313226658e-12 Iter 145: T = 652.9937125005588 K, F = -1.0476604883624674e-7, relative_change = 2.528317625302425e-12 Iter 150: T = 652.9937124955161 K, F = -4.381440021905547e-8, relative_change = 1.0573723219543526e-12 Iter 155: T = 652.9937124934071 K, F = -1.8323648764972944e-8, relative_change = 4.422043653393879e-13 Converged in 159 iterations to T = 652.9937124926458 K Iter 1: T = 970.3911226336727 K, F = -6746.410873231238, relative_change = 0.029608877366327304 Iter 2: T = 942.9474758112734 K, F = -5713.980172626565, relative_change = 0.02828101595562454 Iter 3: T = 917.6240154827824 K, F = -4837.795228226664, relative_change = 0.026855642523146633 Iter 5: T = 873.1201818278238 K, F = -3463.7527735591107, relative_change = 0.023757923985654957 Iter 10: T = 794.1758657043839 K, F = -1490.7616790463346, relative_change = 0.015452318082610592 Iter 15: T = 751.2007120371359 K, F = -634.5353607047319, relative_change = 0.00845232184163714 Iter 20: T = 730.3534598029648 K, F = -267.8280595499577, relative_change = 0.004063787356229083 Iter 25: T = 720.973856146706 K, F = -112.49369114481797, relative_change = 0.0018137335338723698 Iter 30: T = 716.9191756919367 K, F = -47.1358205849264, relative_change = 0.0007805289323518812 Iter 35: T = 715.1989509974045 K, F = -19.7288204544578, relative_change = 0.00033044096832629414 Iter 40: T = 714.4751339777373 K, F = -8.253665865730659, relative_change = 0.00013890923357899783 Iter 45: T = 714.171647299002 K, F = -3.4522800840260945, relative_change = 5.821948435480022e-5 Iter 50: T = 714.044588888132 K, F = -1.4438720983180948, relative_change = 2.4370188599294702e-5 Iter 55: T = 713.9914275956515 K, F = -0.6038598421242412, relative_change = 1.0195775250279804e-5 Iter 60: T = 713.9691907164043 K, F = -0.2525440721358445, relative_change = 4.26467245134219e-6 Iter 65: T = 713.9598902545325 K, F = -0.1056174148072182, relative_change = 1.7836554692399315e-6 Iter 70: T = 713.9560005620157 K, F = -0.0441705460298234, relative_change = 7.459667495961956e-7 Iter 75: T = 713.9543738237132 K, F = -0.018472664166024, relative_change = 3.1197582940017725e-7 Iter 80: T = 713.9536934984031 K, F = -0.007725491267195128, relative_change = 1.3047265183753857e-7 Iter 85: T = 713.9534089775472 K, F = -0.0032308931458261414, relative_change = 5.4565332066096204e-8 Iter 90: T = 713.9532899874073 K, F = -0.001351198175677526, relative_change = 2.281989292727333e-8 Iter 95: T = 713.9532402242888 K, F = -0.0005650872266386164, relative_change = 9.543555133459906e-9 Iter 100: T = 713.9532194127547 K, F = -0.00023632623024305577, relative_change = 3.991229343900879e-9 Iter 105: T = 713.9532107091219 K, F = -9.883445243907829e-5, relative_change = 1.6691798843206988e-9 Iter 110: T = 713.9532070691586 K, F = -4.133374762316233e-5, relative_change = 6.980709666341496e-10 Iter 115: T = 713.9532055468825 K, F = -1.728626692942825e-5, relative_change = 2.9194161868495897e-10 Iter 120: T = 713.9532049102485 K, F = -7.229324070157084e-6, relative_change = 1.2209348545967042e-10 Iter 125: T = 713.9532046440005 K, F = -3.0233901948673036e-6, relative_change = 5.106096280496819e-11 Iter 130: T = 713.9532045326523 K, F = -1.2644163522868013e-6, relative_change = 2.1354278548516657e-11 Iter 135: T = 713.9532044860853 K, F = -5.287938368292444e-7, relative_change = 8.930611241680524e-12 Iter 140: T = 713.9532044666104 K, F = -2.2114799003158936e-7, relative_change = 3.734889835233488e-12 Iter 145: T = 713.9532044584657 K, F = -9.248644916581839e-8, relative_change = 1.5619707818989162e-12 Iter 150: T = 713.9532044550596 K, F = -3.867875786323083e-8, relative_change = 6.532317999966026e-13 Iter 155: T = 713.9532044536351 K, F = -1.617701483880296e-8, relative_change = 2.732078563430035e-13 Converged in 157 iterations to T = 713.9532044533336 K Iter 1: T = 974.4053402362358 K, F = -5831.7675739805, relative_change = 0.025594659763764176 Iter 2: T = 950.9999822596916 K, F = -4933.8954231941125, relative_change = 0.02402014542620404 Iter 3: T = 929.7092690091259 K, F = -4172.458549342132, relative_change = 0.022387711511809197 Iter 5: T = 893.1186909760736 K, F = -2979.92990967404, relative_change = 0.019033442812188064 Iter 10: T = 831.4758001903359 K, F = -1274.2593545332586, relative_change = 0.011184954487743004 Iter 15: T = 800.1795817406188 K, F = -539.5636113721926, relative_change = 0.005646261919042604 Iter 20: T = 785.7059857593559 K, F = -227.0227213453213, relative_change = 0.0025871901040607414 Iter 25: T = 779.3618547728862 K, F = -95.20283235533806, relative_change = 0.0011272780694445868 Iter 30: T = 776.6532417596283 K, F = -39.86190159904006, relative_change = 0.00047985687212767273 Iter 35: T = 775.5104071725079 K, F = -16.679056676630555, relative_change = 0.00020219266168473765 Iter 40: T = 775.0306724186574 K, F = -6.976847445885137, relative_change = 8.482655386987483e-5 Iter 45: T = 774.829726848991 K, F = -2.9180581416369957, relative_change = 3.552242290813733e-5 Iter 50: T = 774.7456338041383 K, F = -1.2204118015397678, relative_change = 1.4864128188502792e-5 Iter 55: T = 774.7104554212241 K, F = -0.5103986709379323, relative_change = 6.2177959526161145e-6 Iter 60: T = 774.6957417097227 K, F = -0.21345619821573059, relative_change = 2.600608471591058e-6 Iter 65: T = 774.6895879639229 K, F = -0.08927017241849877, relative_change = 1.0876495927379547e-6 Iter 70: T = 774.6870143421755 K, F = -0.03733389438563728, relative_change = 4.5487575763206993e-7 Iter 75: T = 774.6859380137716 K, F = -0.015613487865827724, relative_change = 1.9023582246250114e-7 Iter 80: T = 774.6854878787957 K, F = -0.006529748378376277, relative_change = 7.955912865051538e-8 Iter 85: T = 774.6852996266961 K, F = -0.002730818978077143, relative_change = 3.327261897090861e-8 Iter 90: T = 774.6852208973713 K, F = -0.0011420611487573673, relative_change = 1.3915013824035761e-8 Iter 95: T = 774.685187971819 K, F = -0.000477623618248324, relative_change = 5.8194262214074864e-9 Iter 100: T = 774.6851742019584 K, F = -0.0001997479016406789, relative_change = 2.4337537559745222e-9 Iter 105: T = 774.685168443238 K, F = -8.353695831775365e-5, relative_change = 1.0178249262911973e-9 Iter 110: T = 774.6851660348723 K, F = -3.4936153723519325e-5, relative_change = 4.2566654724988795e-10 Iter 115: T = 774.685165027665 K, F = -1.4610716044693994e-5, relative_change = 1.7801882655175863e-10 Iter 120: T = 774.6851646064389 K, F = -6.110378050205867e-6, relative_change = 7.444962517743033e-11 Iter 125: T = 774.6851644302772 K, F = -2.5554337225175416e-6, relative_change = 3.1135730301788774e-11 Iter 130: T = 774.6851643566041 K, F = -1.068713137986066e-6, relative_change = 1.30213371437384e-11 Iter 135: T = 774.6851643257932 K, F = -4.4694789724797346e-7, relative_change = 5.445670170968523e-12 Iter 140: T = 774.6851643129077 K, F = -1.8691868020059843e-7, relative_change = 2.277441033984931e-12 Iter 145: T = 774.6851643075188 K, F = -7.817117997355183e-8, relative_change = 9.524476246120766e-13 Iter 150: T = 774.6851643052652 K, F = -3.2692472284878704e-8, relative_change = 3.9832925102825916e-13 Converged in 154 iterations to T = 774.6851643044517 K Iter 1: T = 970.3835993127251 K, F = -6748.125069065677, relative_change = 0.029616400687274915 Iter 2: T = 942.932284722552 K, F = -5715.443745169381, relative_change = 0.028289137006865563 Iter 3: T = 917.601057869883 K, F = -4839.045098254675, relative_change = 0.026864311746545525 Iter 5: T = 873.081628614031 K, F = -3464.664552514896, relative_change = 0.02376744778081852 Iter 10: T = 794.101234316598 K, F = -1491.1742570609226, relative_change = 0.015461809088795304 Iter 15: T = 751.0998295263092 K, F = -634.7185413353059, relative_change = 0.008459074090685326 Iter 20: T = 730.2374730960362 K, F = -267.90745160305863, relative_change = 0.004067513963806553 Iter 25: T = 720.8504604953497 K, F = -112.52749365575575, relative_change = 0.001815508022108981 Iter 30: T = 716.792447492779 K, F = -47.15007280468058, relative_change = 0.0007813146913067539 Iter 35: T = 715.0707842151196 K, F = -19.73480200399579, relative_change = 0.000330777714195776 Iter 40: T = 714.3463573959292 K, F = -8.256171179685218, relative_change = 0.0001390515259151041 Iter 45: T = 714.0426142389953 K, F = -3.453328498686223, relative_change = 5.827925119671113e-5 Iter 50: T = 713.915448309976 K, F = -1.4443106740883145, relative_change = 2.4395229232504343e-5 Iter 55: T = 713.8622420072297 K, F = -0.6040432801056277, relative_change = 1.0206255503106037e-5 Iter 60: T = 713.8399862962902 K, F = -0.25262079165374607, relative_change = 4.2690568117994226e-6 Iter 65: T = 713.8306779574043 K, F = -0.10564950044848642, relative_change = 1.7854893049524289e-6 Iter 70: T = 713.8267849703855 K, F = -0.04418396473938169, relative_change = 7.467337242789747e-7 Iter 75: T = 713.8251568542406 K, F = -0.018478276049600506, relative_change = 3.12296594830774e-7 Iter 80: T = 713.8244759526931 K, F = -0.007727838226515904, relative_change = 1.3060680106355785e-7 Iter 85: T = 713.8241911908465 K, F = -0.0032318746739045112, relative_change = 5.462143512091846e-8 Iter 90: T = 713.8240720999212 K, F = -0.001351608661081527, relative_change = 2.2843355910019057e-8 Iter 95: T = 713.824022294653 K, F = -0.0005652588980320505, relative_change = 9.553367664995481e-9 Iter 100: T = 713.8240014654914 K, F = -0.00023639802388031317, relative_change = 3.995333039471256e-9 Iter 105: T = 713.8239927544865 K, F = -9.886447808293841e-5, relative_change = 1.6708961106406308e-9 Iter 110: T = 713.8239891114403 K, F = -4.134630541907658e-5, relative_change = 6.987887250547855e-10 Iter 115: T = 713.8239875878747 K, F = -1.7291519565865165e-5, relative_change = 2.9224180762968083e-10 Iter 120: T = 713.8239869507014 K, F = -7.231518630579359e-6, relative_change = 1.2221899165309036e-10 Iter 125: T = 713.8239866842279 K, F = -3.0243069856217275e-6, relative_change = 5.1113434089214295e-11 Iter 130: T = 713.8239865727855 K, F = -1.2648009463100962e-6, relative_change = 2.1376242610490308e-11 Iter 135: T = 713.8239865261789 K, F = -5.289546327613692e-7, relative_change = 8.93979609704732e-12 Iter 140: T = 713.8239865066876 K, F = -2.2121540366182302e-7, relative_change = 3.7387338724982706e-12 Iter 145: T = 713.823986498536 K, F = -9.251501598139811e-8, relative_change = 1.5635847154294292e-12 Iter 150: T = 713.8239864951269 K, F = -3.869001841128039e-8, relative_change = 6.538951627171581e-13 Iter 155: T = 713.8239864937012 K, F = -1.618047995588512e-8, relative_change = 2.7346426825713386e-13 Converged in 157 iterations to T = 713.8239864933995 K Iter 1: T = 969.3580926205864 K, F = -6981.787744378176, relative_change = 0.030641907379413587 Iter 2: T = 940.8580673729335 K, F = -5914.998371263561, relative_change = 0.029400925689499542 Iter 3: T = 914.4606598842748 K, F = -5009.518315608177, relative_change = 0.0280567371467257 Iter 5: T = 867.7868422483649 K, F = -3589.1312298571934, relative_change = 0.025091109688513104 Iter 10: T = 783.7403392157983 K, F = -1547.6799977904143, relative_change = 0.016820031424709024 Iter 15: T = 736.9647373578129 K, F = -659.9061034966121, relative_change = 0.009451134815309977 Iter 20: T = 713.8908128454041 K, F = -278.857837231199, relative_change = 0.004624643733555812 Iter 25: T = 703.4071202940262 K, F = -117.19814425789896, relative_change = 0.0020832486312237814 Iter 30: T = 698.8531320592627 K, F = -49.1210777007414, relative_change = 0.0009003831135847293 Iter 35: T = 696.9168389755544 K, F = -20.56233846881632, relative_change = 0.0003819021520572502 Iter 40: T = 696.1013355943269 K, F = -8.602834548023978, relative_change = 0.00016067161267695597 Iter 45: T = 695.7592687536035 K, F = -3.598409151659391, relative_change = 6.73633895337811e-5 Iter 50: T = 695.6160340929033 K, F = -1.505003019349287, relative_change = 2.8201771467621644e-5 Iter 55: T = 695.5561004062515 K, F = -0.629428676156086, relative_change = 1.1799502248046267e-5 Iter 60: T = 695.531029953551 K, F = -0.26323781564843673, relative_change = 4.935600136765647e-6 Iter 65: T = 695.5205442338881 K, F = -0.11008976258184666, relative_change = 2.0642856652069868e-6 Iter 70: T = 695.5161588133028 K, F = -0.04604095216563597, relative_change = 8.633366855562365e-7 Iter 75: T = 695.5143247487615 K, F = -0.019254893300309384, relative_change = 3.610625690484323e-7 Iter 80: T = 695.513557715946 K, F = -0.008052629348465845, relative_change = 1.510015278301352e-7 Iter 85: T = 695.5132369327666 K, F = -0.0033677062897493615, relative_change = 6.315079084256495e-8 Iter 90: T = 695.5131027772534 K, F = -0.0014084150804315465, relative_change = 2.641044087350089e-8 Iter 95: T = 695.5130466717883 K, F = -0.000589016022947253, relative_change = 1.1045166327989389e-8 Iter 100: T = 695.5130232078079 K, F = -0.0002463335378874998, relative_change = 4.619221259099485e-9 Iter 105: T = 695.5130133948903 K, F = -0.00010301962874859072, relative_change = 1.9318136509833954e-9 Iter 110: T = 695.5130092910108 K, F = -4.3084039927254736e-5, relative_change = 8.079075785866417e-10 Iter 115: T = 695.5130075747194 K, F = -1.8018259207219778e-5, relative_change = 3.378765863660568e-10 Iter 120: T = 695.5130068569458 K, F = -7.535451436391227e-6, relative_change = 1.413040289455312e-10 Iter 125: T = 695.5130065567643 K, F = -3.1514152809553053e-6, relative_change = 5.909502313876132e-11 Iter 130: T = 695.5130064312248 K, F = -1.3179601553447995e-6, relative_change = 2.4714256611521236e-11 Iter 135: T = 695.5130063787227 K, F = -5.511864259455379e-7, relative_change = 1.033579256645836e-11 Iter 140: T = 695.5130063567657 K, F = -2.305126427515347e-7, relative_change = 4.32254995339727e-12 Iter 145: T = 695.513006347583 K, F = -9.640441611669104e-8, relative_change = 1.8077659404905406e-12 Iter 150: T = 695.5130063437426 K, F = -4.031670552961941e-8, relative_change = 7.560148178578097e-13 Iter 155: T = 695.5130063421367 K, F = -1.6861748108887298e-8, relative_change = 3.161898091122422e-13 Converged in 158 iterations to T = 695.5130063416664 K Iter 1: T = 963.6310677100622 K, F = -8286.695818048212, relative_change = 0.03636893228993777 Iter 2: T = 929.1443295394878 K, F = -7031.4077460394265, relative_change = 0.03578832120110809 Iter 3: T = 896.5065281631051 K, F = -5965.340269049559, relative_change = 0.035126729334460774 Iter 5: T = 836.6596478619041 K, F = -4291.1937335793655, relative_change = 0.033531603230031626 Iter 10: T = 717.4609375401471 K, F = -1874.9071610378178, relative_change = 0.027745320375347573 Iter 15: T = 638.3678889117957 K, F = -811.6678098293647, relative_change = 0.019797216628844382 Iter 20: T = 592.1897887924144 K, F = -347.4320645491848, relative_change = 0.011819254930570244 Iter 25: T = 568.4990747123122 K, F = -147.2252975376763, relative_change = 0.006035976972047891 Iter 30: T = 557.4691857424118 K, F = -61.97218635039692, relative_change = 0.002783962592829394 Iter 35: T = 552.6175572073015 K, F = -25.993736672051952, relative_change = 0.0012168693023638859 Iter 40: T = 550.5427930580674 K, F = -10.884732176590546, relative_change = 0.0005187277889683088 Iter 45: T = 549.6667719038293 K, F = -4.554585167036546, relative_change = 0.0002187044663789473 Iter 50: T = 549.2989272809185 K, F = -1.9052151476997097, relative_change = 9.177745477721915e-5 Iter 55: T = 549.14482916069 K, F = -0.7968597194580613, relative_change = 3.843738265764692e-5 Iter 60: T = 549.0803376798091 K, F = -0.3332695581746304, relative_change = 1.608460437796203e-5 Iter 65: T = 549.0533585504713 K, F = -0.13937963786559485, relative_change = 6.728459755769213e-6 Iter 70: T = 549.0420741526078 K, F = -0.05829063644359053, relative_change = 2.8142172361344114e-6 Iter 75: T = 549.0373546370811 K, F = -0.02437791154422539, relative_change = 1.1769908625796803e-6 Iter 80: T = 549.0353808363698 K, F = -0.010195146201781413, relative_change = 4.922406613678583e-7 Iter 85: T = 549.0345553618271 K, F = -0.004263734076461273, relative_change = 2.0586250193858094e-7 Iter 90: T = 549.034210137201 K, F = -0.0017831448909022274, relative_change = 8.609443292231546e-8 Iter 95: T = 549.0340657599097 K, F = -0.0007457325547050864, relative_change = 3.6005768300580835e-8 Iter 100: T = 549.0340053795621 K, F = -0.0003118742716901046, relative_change = 1.5058050736747836e-8 Iter 105: T = 549.0339801277727 K, F = -0.00013042954756953273, relative_change = 6.29745815287664e-9 Iter 110: T = 549.0339695671715 K, F = -5.454719473918512e-5, relative_change = 2.6336724621418252e-9 Iter 115: T = 549.0339651506017 K, F = -2.281228794928647e-5, relative_change = 1.1014333030081277e-9 Iter 120: T = 549.0339633035394 K, F = -9.540370852434421e-6, relative_change = 4.6063254907102734e-10 Iter 125: T = 549.033962531076 K, F = -3.9898967752471926e-6, relative_change = 1.9264202229141354e-10 Iter 130: T = 549.0339622080226 K, F = -1.6686229469264902e-6, relative_change = 8.05652170834252e-11 Iter 135: T = 549.0339620729178 K, F = -6.978383044198289e-7, relative_change = 3.3693348550752836e-11 Iter 140: T = 549.0339620164154 K, F = -2.918451173505865e-7, relative_change = 1.4090999597280174e-11 Iter 145: T = 549.0339619927854 K, F = -1.2205369442908065e-7, relative_change = 5.893052366310838e-12 Iter 150: T = 549.0339619829031 K, F = -5.1044583310178027e-8, relative_change = 2.464557946371361e-12 Iter 155: T = 549.03396197877 K, F = -2.1347068085431076e-8, relative_change = 1.0306889168605433e-12 Iter 160: T = 549.0339619770416 K, F = -8.927989514351253e-9, relative_change = 4.3106527817312077e-13 Converged in 164 iterations to T = 549.0339619764177 K Iter 1: T = 966.881989588769 K, F = -7545.970175559838, relative_change = 0.03311801041123105 Iter 2: T = 935.8208621580487 K, F = -6397.271365406304, relative_change = 0.03212504500567961 Iter 3: T = 906.7862482334485 K, F = -5421.97629657826, relative_change = 0.03102582459814468 Iter 5: T = 854.6659065291524 K, F = -3891.1833109271042, relative_change = 0.02850862112482187 Iter 10: T = 757.0255817334303 K, F = -1686.4997574959127, relative_change = 0.020723374620662757 Iter 15: T = 699.1638126709454 K, F = -722.8025881847035, relative_change = 0.01261594618628136 Iter 20: T = 669.0877961151098 K, F = -306.5834980449257, relative_change = 0.006538486365335622 Iter 25: T = 654.9638668094688 K, F = -129.12400480389698, relative_change = 0.0030415491681956702 Iter 30: T = 648.7227714325962 K, F = -54.17501077796194, relative_change = 0.0013350179987699905 Iter 35: T = 646.0480788684247 K, F = -22.688308575088506, relative_change = 0.0005701588110176985 Iter 40: T = 644.9176854858189 K, F = -9.494160086261756, relative_change = 0.00024058279967524592 Iter 45: T = 644.442837505812 K, F = -3.9715647458295487, relative_change = 0.00010099304434453026 Iter 50: T = 644.24387948289 K, F = -1.661130141240883, relative_change = 4.230305368737873e-5 Iter 55: T = 644.1606077688713 K, F = -0.694734994697667, relative_change = 1.7703310001515018e-5 Iter 60: T = 644.1257711428377 K, F = -0.29055181458802215, relative_change = 7.4057783425418596e-6 Iter 65: T = 644.1112000546203 K, F = -0.12151317346256252, relative_change = 3.0975423575882083e-6 Iter 70: T = 644.1051059024695 K, F = -0.05081842380013968, relative_change = 1.295491728424909e-6 Iter 75: T = 644.1025571942066 K, F = -0.021252900324523483, relative_change = 5.418010481254401e-7 Iter 80: T = 644.1014912832944 K, F = -0.008888221728267642, relative_change = 2.2658958151348316e-7 Iter 85: T = 644.1010455047535 K, F = -0.00371716134800415, relative_change = 9.476280355678125e-8 Iter 90: T = 644.1008590745174 K, F = -0.0015545614207125857, relative_change = 3.963099466013889e-8 Iter 95: T = 644.1007811071091 K, F = -0.000650136178259042, relative_change = 1.6574165494329513e-8 Iter 100: T = 644.1007485001978 K, F = -0.0002718947178493303, relative_change = 6.931515715495496e-9 Iter 105: T = 644.1007348635964 K, F = -0.00011370961895046383, relative_change = 2.898842965540561e-9 Iter 110: T = 644.1007291606065 K, F = -4.755472095213653e-5, relative_change = 1.212330807137918e-9 Iter 115: T = 644.100726775548 K, F = -1.9887952351638205e-5, relative_change = 5.07011233986953e-10 Iter 120: T = 644.1007257780881 K, F = -8.31737962270207e-6, relative_change = 2.1203816574854856e-10 Iter 125: T = 644.1007253609384 K, F = -3.47842778963825e-6, relative_change = 8.867690113178871e-11 Iter 130: T = 644.1007251864814 K, F = -1.4547206531045909e-6, relative_change = 3.7085754685019164e-11 Iter 135: T = 644.1007251135214 K, F = -6.083812968404878e-7, relative_change = 1.5509699057064144e-11 Iter 140: T = 644.1007250830086 K, F = -2.5443142603887026e-7, relative_change = 6.486318481363872e-12 Iter 145: T = 644.1007250702478 K, F = -1.0640620734525541e-7, relative_change = 2.712654486301649e-12 Iter 150: T = 644.1007250649111 K, F = -4.4499674334286254e-8, relative_change = 1.1344473620317253e-12 Iter 155: T = 644.1007250626792 K, F = -1.8609937646463237e-8, relative_change = 4.744303185762187e-13 Converged in 160 iterations to T = 644.1007250617458 K Iter 1: T = 965.1665739419399 K, F = -7936.829262471382, relative_change = 0.03483342605806012 Iter 2: T = 932.3068565175621 K, F = -6731.75226156357, relative_change = 0.03404564384173798 Iter 3: T = 901.3913744141585 K, F = -5708.431312059777, relative_change = 0.03316020030023368 Iter 5: T = 845.2801429070678 K, F = -4101.7550413779045, relative_change = 0.031077476493169914 Iter 10: T = 736.8726690671434 K, F = -1784.9407797425852, relative_change = 0.024097330228950536 Iter 15: T = 669.0537989567381 K, F = -768.5891576852612, relative_change = 0.015792684490145353 Iter 20: T = 631.9314939424546 K, F = -327.2861101551832, relative_change = 0.0086958990410156 Iter 25: T = 613.8497200524226 K, F = -138.18123426459897, relative_change = 0.004198745804731216 Iter 30: T = 605.6951360417241 K, F = -58.04767826047411, relative_change = 0.0018781292955688715 Iter 35: T = 602.1659306223248 K, F = -24.324132811676954, relative_change = 0.0008090714159738972 Iter 40: T = 600.667862075361 K, F = -10.18123317323513, relative_change = 0.00034267833810019954 Iter 45: T = 600.0373797240367 K, F = -4.259431900266068, relative_change = 0.00014408107940816454 Iter 50: T = 599.7730018168432 K, F = -1.7816120927573569, relative_change = 6.0391972301061134e-5 Iter 55: T = 599.6623123355503 K, F = -0.745138206628745, relative_change = 2.5280429249653812e-5 Iter 60: T = 599.6159990319898 K, F = -0.3116338803373174, relative_change = 1.0576743236710519e-5 Iter 65: T = 599.5966264672143 K, F = -0.13033044220765427, relative_change = 4.424049361053249e-6 Iter 70: T = 599.5885239664887 K, F = -0.05450599784704996, relative_change = 1.8503178152713712e-6 Iter 75: T = 599.5851352879836 K, F = -0.022795103039516595, relative_change = 7.738473165024227e-7 Iter 80: T = 599.583718081885 K, F = -0.00953319198263719, relative_change = 3.236360914159142e-7 Iter 85: T = 599.5831253858227 K, F = -0.003986896076380364, relative_change = 1.3534916089953194e-7 Iter 90: T = 599.5828775126307 K, F = -0.001667367786191809, relative_change = 5.6604754834298406e-8 Iter 95: T = 599.5827738489933 K, F = -0.0006973131610090166, relative_change = 2.367280532742738e-8 Iter 100: T = 599.5827304956031 K, F = -0.00029162469880733566, relative_change = 9.900253553314456e-9 Iter 105: T = 599.5827123646943 K, F = -0.00012196093356880988, relative_change = 4.140404926950792e-9 Iter 110: T = 599.5827047821311 K, F = -5.1005519364877294e-5, relative_change = 1.7315669060205585e-9 Iter 115: T = 599.5827016110125 K, F = -2.13311171618491e-5, relative_change = 7.241619718001678e-10 Iter 120: T = 599.5827002848129 K, F = -8.920928235400805e-6, relative_change = 3.0285319799468567e-10 Iter 125: T = 599.5826997301803 K, F = -3.7308381293232884e-6, relative_change = 1.2665680451933247e-10 Iter 130: T = 599.5826994982264 K, F = -1.5602817347026843e-6, relative_change = 5.296941121032965e-11 Iter 135: T = 599.5826994012205 K, F = -6.525289626413411e-7, relative_change = 2.2152457602157926e-11 Iter 140: T = 599.5826993606514 K, F = -2.72895148645258e-7, relative_change = 9.264413624914971e-12 Iter 145: T = 599.5826993436849 K, F = -1.141278977989657e-7, relative_change = 3.87448460239404e-12 Iter 150: T = 599.5826993365893 K, F = -4.772904199645822e-8, relative_change = 1.6203350966689842e-12 Iter 155: T = 599.5826993336218 K, F = -1.996036302909232e-8, relative_change = 6.776267741023255e-13 Iter 160: T = 599.5826993323808 K, F = -8.34788721482127e-9, relative_change = 2.833992485888349e-13 Converged in 162 iterations to T = 599.5826993321182 K Iter 1: T = 980.0969925580534 K, F = -4534.919178295278, relative_change = 0.01990300744194658 Iter 2: T = 962.2396444433392 K, F = -3830.705168246144, relative_change = 0.018219980522648574 Iter 3: T = 946.3073745468757 K, F = -3234.3383459292295, relative_change = 0.016557486472800993 Iter 5: T = 919.6958431835994 K, F = -2302.5125867770575, relative_change = 0.013383054601349944 Iter 10: T = 877.4267329992583 K, F = -977.5444540641093, relative_change = 0.007036415964914833 Iter 15: T = 857.4073220763299 K, F = -411.943761096652, relative_change = 0.003301144514059666 Iter 20: T = 848.5203117186007 K, F = -172.88265747129455, relative_change = 0.0014550896335083178 Iter 25: T = 844.7033775148976 K, F = -72.41184381992035, relative_change = 0.0006226248510694714 Iter 30: T = 843.0886902329388 K, F = -30.303157408970286, relative_change = 0.0002629379149040575 Iter 35: T = 842.4101237110774 K, F = -12.676609140365034, relative_change = 0.00011041599079571212 Iter 40: T = 842.1257595151719 K, F = -5.302117781191318, relative_change = 4.6256857197028446e-5 Iter 45: T = 842.0067332732989 K, F = -2.2175155489758045, relative_change = 1.935912243078652e-5 Iter 50: T = 841.9569372559112 K, F = -0.9274101360768074, relative_change = 8.098659059572204e-6 Iter 55: T = 841.9361088477409 K, F = -0.3878572573252784, relative_change = 3.387383385414983e-6 Iter 60: T = 841.9273976130372 K, F = -0.16220710770800073, relative_change = 1.416718960519307e-6 Iter 65: T = 841.9237543752027 K, F = -0.06783704941526292, relative_change = 5.925018676160516e-7 Iter 70: T = 841.9222307129365 K, F = -0.02837028166320188, relative_change = 2.477936445907679e-7 Iter 75: T = 841.9215934962606 K, F = -0.011864793653683536, relative_change = 1.0363066152967146e-7 Iter 80: T = 841.9213270041262 K, F = -0.004961998933311618, relative_change = 4.333965022448994e-8 Iter 85: T = 841.9212155538437 K, F = -0.0020751673075514177, relative_change = 1.8125171561114187e-8 Iter 90: T = 841.9211689439888 K, F = -0.0008678597649356412, relative_change = 7.58016532909637e-9 Iter 95: T = 841.9211494511883 K, F = -0.00036294931988045676, relative_change = 3.1701160316696576e-9 Iter 100: T = 841.9211412990659 K, F = -0.00015178974341978346, relative_change = 1.3257804737055485e-9 Iter 105: T = 841.9211378897506 K, F = -6.348028126779148e-5, relative_change = 5.544572188919145e-10 Iter 110: T = 841.9211364639344 K, F = -2.6548212987975717e-5, relative_change = 2.3188064332071071e-10 Iter 115: T = 841.9211358676409 K, F = -1.110277936566817e-5, relative_change = 9.697525147198874e-11 Iter 120: T = 841.9211356182639 K, F = -4.6433117553146275e-6, relative_change = 4.055618065886127e-11 Iter 125: T = 841.9211355139715 K, F = -1.9418881416211065e-6, relative_change = 1.6961076595211257e-11 Iter 130: T = 841.9211354703552 K, F = -8.121202259570026e-7, relative_change = 7.093319674363739e-12 Iter 135: T = 841.9211354521143 K, F = -3.3963709600293157e-7, relative_change = 2.9664998093489603e-12 Iter 140: T = 841.9211354444857 K, F = -1.420398993978722e-7, relative_change = 1.2406222390332607e-12 Iter 145: T = 841.9211354412954 K, F = -5.940259506509449e-8, relative_change = 5.188414016609571e-13 Converged in 150 iterations to T = 841.9211354399612 K Iter 1: T = 976.5139079685762 K, F = -5351.328410401029, relative_change = 0.023486092031423832 Iter 2: T = 955.1879097211225 K, F = -4524.8058398583735, relative_change = 0.021838908871065356 Iter 3: T = 935.9297227156768 K, F = -3824.20623020597, relative_change = 0.02016167374969015 Iter 5: T = 903.1933502345789 K, F = -2727.8423643923247, relative_change = 0.016810413930985334 Iter 10: T = 849.3240741017842 K, F = -1163.095060080515, relative_change = 0.009444009294044216 Iter 15: T = 822.7539161417671 K, F = -491.48754115884094, relative_change = 0.004620596402481384 Iter 20: T = 810.6825132894382 K, F = -206.5611103711139, relative_change = 0.0020812909237880235 Iter 25: T = 805.4390191754294 K, F = -86.57546791072164, relative_change = 0.0008995097620506364 Iter 30: T = 803.2095916686324 K, F = -36.24090915225638, relative_change = 0.00038152663877701835 Iter 35: T = 802.2706358488763 K, F = -15.16240134557441, relative_change = 0.00016051271645440256 Iter 40: T = 801.8767873899931 K, F = -6.342155579769363, relative_change = 6.729660905086789e-5 Iter 45: T = 801.7118702537603 K, F = -2.6525506856942838, relative_change = 2.8173785356887243e-5 Iter 50: T = 801.6428640018889 K, F = -1.1093608442001972, relative_change = 1.1787788004645137e-5 Iter 55: T = 801.6139984721406 K, F = -0.4639536345519305, relative_change = 4.9306993290167125e-6 Iter 60: T = 801.6019254621226 K, F = -0.19403194446955607, relative_change = 2.062235778962637e-6 Iter 65: T = 801.5968761925978 K, F = -0.08114665021038414, relative_change = 8.624793444569489e-7 Iter 70: T = 801.5947644941018 K, F = -0.03393652860561058, relative_change = 3.6070400929097374e-7 Iter 75: T = 801.5938813506812 K, F = -0.014192666864698222, relative_change = 1.5085157219300783e-7 Iter 80: T = 801.5935120085254 K, F = -0.0059355437079948725, relative_change = 6.30880773150581e-8 Iter 85: T = 801.5933575450448 K, F = -0.0024823154253542645, relative_change = 2.6384213285233307e-8 Iter 90: T = 801.593292946541 K, F = -0.0010381339826117664, relative_change = 1.1034197606697422e-8 Iter 95: T = 801.5932659306699 K, F = -0.0004341600356980724, relative_change = 4.6146340220044745e-9 Iter 100: T = 801.5932546323089 K, F = -0.00018157091064407993, relative_change = 1.9298951745917945e-9 Iter 105: T = 801.5932499071993 K, F = -7.59351239825179e-5, relative_change = 8.071052403109294e-10 Iter 110: T = 801.5932479311019 K, F = -3.175697664614674e-5, relative_change = 3.3754106432070154e-10 Iter 115: T = 801.5932471046744 K, F = -1.3281147723587239e-5, relative_change = 1.4116371372429465e-10 Iter 120: T = 801.5932467590525 K, F = -5.5543329748886094e-6, relative_change = 5.903633390160274e-11 Iter 125: T = 801.5932466145094 K, F = -2.3228885202009053e-6, relative_change = 2.4689701361533452e-11 Iter 130: T = 801.5932465540596 K, F = -9.714584670028614e-7, relative_change = 1.0325514649308812e-11 Iter 135: T = 801.5932465287789 K, F = -4.0627588138164583e-7, relative_change = 4.318257247208288e-12 Iter 140: T = 801.5932465182062 K, F = -1.6990865159272062e-7, relative_change = 1.8059385254535981e-12 Iter 145: T = 801.5932465137846 K, F = -7.105835542198236e-8, relative_change = 7.55270672872556e-13 Iter 150: T = 801.5932465119355 K, F = -2.9718978833415122e-8, relative_change = 3.1587943469208744e-13 Converged in 153 iterations to T = 801.593246511394 K Iter 1: T = 980.6791877882803 K, F = -4402.265441277451, relative_change = 0.019320812211719718 Iter 2: T = 963.3778345022973 K, F = -3718.051766765095, relative_change = 0.017642215213114317 Iter 3: T = 947.9713076542282 K, F = -3138.7196591990473, relative_change = 0.01599219568512133 Iter 5: T = 922.308081676006 K, F = -2233.7507388725285, relative_change = 0.012863968535211958 Iter 10: T = 881.7595646770926 K, F = -947.7520647771071, relative_change = 0.006698003209396684 Iter 15: T = 862.665534419896 K, F = -399.2370814201851, relative_change = 0.003124251518758116 Iter 20: T = 854.2158259866701 K, F = -167.51805848009712, relative_change = 0.0013731640194458658 Iter 25: T = 850.5920942163295 K, F = -70.15881799263344, relative_change = 0.0005868058434657972 Iter 30: T = 849.0601438322205 K, F = -29.35920373121293, relative_change = 0.0002476719957757942 Iter 35: T = 848.4165282182487 K, F = -12.281533149376102, relative_change = 0.00010398052811693113 Iter 40: T = 848.1468428059861 K, F = -5.136838942634356, relative_change = 4.355645833974075e-5 Iter 45: T = 848.033966291504 K, F = -2.148384613720679, relative_change = 1.8228201440706688e-5 Iter 50: T = 847.9867440716542 K, F = -0.8984971162422428, relative_change = 7.625417285674185e-6 Iter 55: T = 847.9669923903991 K, F = -0.3757652006892964, relative_change = 3.189419525793675e-6 Iter 60: T = 847.9587315141986 K, F = -0.15715001510652216, relative_change = 1.3339196255975049e-6 Iter 65: T = 847.955276631893 K, F = -0.06572210413236212, relative_change = 5.578727127954577e-7 Iter 70: T = 847.9538317439467 K, F = -0.02748578475335628, relative_change = 2.333110588811797e-7 Iter 75: T = 847.953227471945 K, F = -0.011494886217514155, relative_change = 9.757382584827741e-8 Iter 80: T = 847.9529747577213 K, F = -0.004807299180339841, relative_change = 4.0806601279507695e-8 Iter 85: T = 847.9528690695352 K, F = -0.002010470011208243, relative_change = 1.7065818818569755e-8 Iter 90: T = 847.9528248694597 K, F = -0.0008408025838839706, relative_change = 7.1371311384771384e-9 Iter 95: T = 847.9528063844579 K, F = -0.0003516336852418256, relative_change = 2.9848338157718344e-9 Iter 100: T = 847.9527986538089 K, F = -0.00014705740772669174, relative_change = 1.24829321227894e-9 Iter 105: T = 847.9527954207591 K, F = -6.150116411540729e-5, relative_change = 5.220511383478847e-10 Iter 110: T = 847.952794068659 K, F = -2.572052181770701e-5, relative_change = 2.1832802661396178e-10 Iter 115: T = 847.9527935031947 K, F = -1.0756630314689986e-5, relative_change = 9.130739623883071e-11 Iter 120: T = 847.9527932667107 K, F = -4.498553005438666e-6, relative_change = 3.818585842384546e-11 Iter 125: T = 847.9527931678103 K, F = -1.881348348664602e-6, relative_change = 1.5969779980603367e-11 Iter 130: T = 847.9527931264489 K, F = -7.868031481894633e-7, relative_change = 6.678759505898409e-12 Iter 135: T = 847.9527931091512 K, F = -3.290517316401065e-7, relative_change = 2.7931476709190143e-12 Iter 140: T = 847.952793101917 K, F = -1.376141205433612e-7, relative_change = 1.168134136176725e-12 Iter 145: T = 847.9527930988914 K, F = -5.754944965019604e-8, relative_change = 4.885071124262824e-13 Converged in 150 iterations to T = 847.9527930976262 K Iter 1: T = 967.4141738438964 K, F = -7424.711486791145, relative_change = 0.03258582615610367 Iter 2: T = 936.9069776426513 K, F = -6293.564330914664, relative_change = 0.03153478316327396 Iter 3: T = 908.4468142841638 K, F = -5333.2258454579105, relative_change = 0.030376722596405583 Iter 5: T = 857.5274471240973 K, F = -3826.0779215646953, relative_change = 0.0277462885412868 Iter 10: T = 762.9878430465874 K, F = -1656.356773216191, relative_change = 0.019798886157889987 Iter 15: T = 707.7889048081358 K, F = -709.0013249164656, relative_change = 0.011820870133529148 Iter 20: T = 679.4691800385133 K, F = -300.4420772385504, relative_change = 0.006037035194972136 Iter 25: T = 666.2838102578122 K, F = -126.46658631701324, relative_change = 0.002784511788762863 Iter 30: T = 660.4839961955998 K, F = -53.045434866103115, relative_change = 0.0012171222935037107 Iter 35: T = 658.0037331298747 K, F = -22.212487181488317, relative_change = 0.0005188380970734514 Iter 40: T = 656.9564968212942 K, F = -9.294549226915139, relative_change = 0.00021875142087543278 Iter 45: T = 656.5167578331387 K, F = -3.8879758299663663, relative_change = 9.179723817299198e-5 Iter 50: T = 656.3325415153595 K, F = -1.6261530417311898, relative_change = 3.8445682123391065e-5 Iter 55: T = 656.2554452771888 K, F = -0.6801037852219498, relative_change = 1.608807984293791e-5 Iter 60: T = 656.2231931174136 K, F = -0.2844322782887305, relative_change = 6.729914029931318e-6 Iter 65: T = 656.2097032004358 K, F = -0.11895380710647552, relative_change = 2.814825569750407e-6 Iter 70: T = 656.2040612624005 K, F = -0.04974804817315215, relative_change = 1.1772452992860484e-6 Iter 75: T = 656.2017016851707 K, F = -0.020805253296781734, relative_change = 4.92347074066165e-7 Iter 80: T = 656.2007148728101 K, F = -0.00870100984181238, relative_change = 2.0590700569050196e-7 Iter 85: T = 656.2003021745246 K, F = -0.0036388670047086125, relative_change = 8.611304506215908e-8 Iter 90: T = 656.2001295788983 K, F = -0.0015218177758870022, relative_change = 3.601355219872142e-8 Iter 95: T = 656.200057397298 K, F = -0.0006364423920647844, relative_change = 1.5061306074243212e-8 Iter 100: T = 656.2000272100823 K, F = -0.0002661678128306755, relative_change = 6.298819538361837e-9 Iter 105: T = 656.2000145854267 K, F = -0.00011131455900192933, relative_change = 2.634241818770754e-9 Iter 110: T = 656.2000093056448 K, F = -4.65530780912049e-5, relative_change = 1.101671433616603e-9 Iter 115: T = 656.2000070975769 K, F = -1.946905352273598e-5, relative_change = 4.607321648451918e-10 Iter 120: T = 656.2000061741364 K, F = -8.142190997373344e-6, relative_change = 1.9268370214074088e-10 Iter 125: T = 656.2000057879427 K, F = -3.405162523062444e-6, relative_change = 8.058264948398997e-11 Iter 130: T = 656.2000056264318 K, F = -1.4240796559206181e-6, relative_change = 3.3700626947345066e-11 Iter 135: T = 656.200005558886 K, F = -5.95566066019515e-7, relative_change = 1.409397974320664e-11 Iter 140: T = 656.2000055306376 K, F = -2.490735132032462e-7, relative_change = 5.894286546306216e-12 Iter 145: T = 656.2000055188238 K, F = -1.0416552365111187e-7, relative_change = 2.4650611652845786e-12 Iter 150: T = 656.2000055138831 K, F = -4.356320726373042e-8, relative_change = 1.030916628659104e-12 Iter 155: T = 656.2000055118168 K, F = -1.8218264730140987e-8, relative_change = 4.311324449137739e-13 Converged in 159 iterations to T = 656.200005511071 K Iter 1: T = 973.5164869841961 K, F = -6034.29363297546, relative_change = 0.026483513015803845 Iter 2: T = 949.2260070334805 K, F = -5106.482950590972, relative_change = 0.024951277431329206 Iter 3: T = 927.0611230765562 K, F = -4319.515120288124, relative_change = 0.023350481121133543 Iter 5: T = 888.7858357655695 K, F = -3086.610484266106, relative_change = 0.020021216394854022 Iter 10: T = 823.6181245006935 K, F = -1321.6141827220852, relative_change = 0.012009497903682654 Iter 15: T = 790.0797555888726 K, F = -560.1661128233129, relative_change = 0.006154742283763383 Iter 20: T = 774.4329760384817 K, F = -235.82452129683014, relative_change = 0.002844469227372379 Iter 25: T = 767.5431062127645 K, F = -98.92115001528524, relative_change = 0.001244537854432905 Iter 30: T = 764.5952152328916 K, F = -41.42389158691954, relative_change = 0.0005307555748982187 Iter 35: T = 763.3502606091697 K, F = -17.33354756559541, relative_change = 0.00022381794837317946 Iter 40: T = 762.8274499410921 K, F = -7.250784151699305, relative_change = 9.393081251613624e-5 Iter 45: T = 762.6084244257664 K, F = -3.0326605485344316, relative_change = 3.934055767483188e-5 Iter 50: T = 762.5167586963837 K, F = -1.2683466975390398, relative_change = 1.6462781800687688e-5 Iter 55: T = 762.4784113224797 K, F = -0.5304468073792779, relative_change = 6.88669842995393e-6 Iter 60: T = 762.4623719503387 K, F = -0.2218407765903636, relative_change = 2.8804086022902897e-6 Iter 65: T = 762.4556637360583 K, F = -0.09277673966208211, relative_change = 1.2046753425945682e-6 Iter 70: T = 762.4528582182356 K, F = -0.03880038905532346, relative_change = 5.038190718512568e-7 Iter 75: T = 762.4516849062461 K, F = -0.016226794564746183, relative_change = 2.1070480672171868e-7 Iter 80: T = 762.4511942112479 K, F = -0.006786240758109741, relative_change = 8.811955578016983e-8 Iter 85: T = 762.4509889964052 K, F = -0.002838087189113936, relative_change = 3.6852701189446714e-8 Iter 90: T = 762.4509031730487 K, F = -0.0011869220021893945, relative_change = 1.5412248606050468e-8 Iter 95: T = 762.4508672806858 K, F = -0.0004963849623916827, relative_change = 6.445587953789947e-9 Iter 100: T = 762.4508522700693 K, F = -0.00020759412160542556, relative_change = 2.695622140676154e-9 Iter 105: T = 762.4508459924499 K, F = -8.681834171664349e-5, relative_change = 1.1273414271683673e-9 Iter 110: T = 762.4508433670743 K, F = -3.6308466792922545e-5, relative_change = 4.714676488210279e-10 Iter 115: T = 762.450842269111 K, F = -1.5184635045017991e-5, relative_change = 1.9717341062059256e-10 Iter 120: T = 762.4508418099296 K, F = -6.350394194387654e-6, relative_change = 8.246025551294403e-11 Iter 125: T = 762.4508416178944 K, F = -2.655811932927854e-6, relative_change = 3.448587979620594e-11 Iter 130: T = 762.4508415375831 K, F = -1.1106918027525836e-6, relative_change = 1.4422400752352872e-11 Iter 135: T = 762.4508415039959 K, F = -4.645053434115809e-7, relative_change = 6.031630195787569e-12 Iter 140: T = 762.4508414899493 K, F = -1.9426011821366274e-7, relative_change = 2.522479475374654e-12 Iter 145: T = 762.4508414840748 K, F = -8.124043548995985e-8, relative_change = 1.054912006570718e-12 Iter 150: T = 762.4508414816181 K, F = -3.397669046112384e-8, relative_change = 4.41189396577715e-13 Converged in 154 iterations to T = 762.4508414807314 K Iter 1: T = 969.9674533491228 K, F = -6842.9443227294605, relative_change = 0.030032546650877182 Iter 2: T = 942.0914187003458 K, F = -5796.40906405824, relative_change = 0.028739144341932425 Iter 3: T = 916.329345917213 K, F = -4908.197692537205, relative_change = 0.027345618770917828 Iter 5: T = 870.9425462826415 K, F = -3515.1289312227227, relative_change = 0.024298443268289994 Iter 10: T = 789.9423110143822 K, F = -1514.039457156306, relative_change = 0.015997236980239984 Iter 15: T = 745.4573266111069 K, F = -644.8864361619793, relative_change = 0.008843985952827435 Iter 20: T = 723.7352027750488 K, F = -272.31965743340777, relative_change = 0.004281396412164145 Iter 25: T = 713.9246650880019 K, F = -114.40736992571296, relative_change = 0.0019177154214684907 Iter 30: T = 709.6757489196495 K, F = -47.94295490869806, relative_change = 0.0008266480337515441 Iter 35: T = 707.8715986694482 K, F = -20.067618457132575, relative_change = 0.0003502199263174803 Iter 40: T = 707.1121921123608 K, F = -8.395577082781235, relative_change = 0.00014726939598728786 Iter 45: T = 706.7937341026139 K, F = -3.5116681600858075, relative_change = 6.173144151902336e-5 Iter 50: T = 706.6603991102575 K, F = -1.4687157642392996, relative_change = 2.584167950734118e-5 Iter 55: T = 706.6046101760599 K, F = -0.614250961977021, relative_change = 1.081165202474241e-5 Iter 60: T = 706.5812739127574 K, F = -0.25688997291950794, relative_change = 4.522323796647774e-6 Iter 65: T = 706.5715135925877 K, F = -0.10743495921930918, relative_change = 1.891423092394875e-6 Iter 70: T = 706.5674315673613 K, F = -0.044930671246306786, relative_change = 7.91039037406272e-7 Iter 75: T = 706.5657243906903 K, F = -0.018790558734442575, relative_change = 3.308260498342356e-7 Iter 80: T = 706.565010424651 K, F = -0.007858438767774145, relative_change = 1.3835611807325925e-7 Iter 85: T = 706.5647118347629 K, F = -0.0032864934141089153, relative_change = 5.786230562658818e-8 Iter 90: T = 706.5645869607722 K, F = -0.0013744508767924435, relative_change = 2.419872904052137e-8 Iter 95: T = 706.5645347369547 K, F = -0.0005748117859984969, relative_change = 1.0120201302532898e-8 Iter 100: T = 706.5645128963263 K, F = -0.00024039315581791953, relative_change = 4.232389707257748e-9 Iter 105: T = 706.564503762314 K, F = -0.00010053528873854578, relative_change = 1.7700360312452601e-9 Iter 110: T = 706.5644999423608 K, F = -4.204505761484789e-5, relative_change = 7.402502122736207e-10 Iter 115: T = 706.5644983448108 K, F = -1.7583744908900023e-5, relative_change = 3.095814771080822e-10 Iter 120: T = 706.5644976766963 K, F = -7.353732275561242e-6, relative_change = 1.2947067431708282e-10 Iter 125: T = 706.5644973972828 K, F = -3.0754184257020256e-6, relative_change = 5.414617818706504e-11 Iter 130: T = 706.5644972804288 K, F = -1.2861759941529272e-6, relative_change = 2.264456570597198e-11 Iter 135: T = 706.564497231559 K, F = -5.378951005718946e-7, relative_change = 9.47024435785222e-12 Iter 140: T = 706.5644972111211 K, F = -2.2495330620486698e-7, relative_change = 3.9605543476696806e-12 Iter 145: T = 706.5644972025738 K, F = -9.407787460169459e-8, relative_change = 1.6563461172488571e-12 Iter 150: T = 706.5644971989992 K, F = -3.9346168212439636e-8, relative_change = 6.927332619362836e-13 Iter 155: T = 706.5644971975042 K, F = -1.6454534290666345e-8, relative_change = 2.89700464639573e-13 Converged in 157 iterations to T = 706.5644971971878 K Iter 1: T = 973.5234099200419 K, F = -6032.716235457591, relative_change = 0.02647659007995808 Iter 2: T = 949.2398436301902 K, F = -5105.138416192997, relative_change = 0.024943998308008024 Iter 3: T = 927.0818087720052 K, F = -4318.369170607877, relative_change = 0.023342925401704365 Iter 5: T = 888.8197855921392 K, F = -3085.7786210707627, relative_change = 0.020013401250775338 Iter 10: T = 823.6801424600151 K, F = -1321.2441532080188, relative_change = 0.012002843687917736 Iter 15: T = 790.1598860420493 K, F = -560.0048053664592, relative_change = 0.006150577837990953 Iter 20: T = 774.5226740319652 K, F = -235.75551784153592, relative_change = 0.002842344268529004 Iter 25: T = 767.6372773779788 K, F = -98.89197982508104, relative_change = 0.0012435653816451583 Iter 30: T = 764.691352311073 K, F = -41.41163396373691, relative_change = 0.0005303326796214974 Iter 35: T = 763.4472375849924 K, F = -17.32841078976802, relative_change = 0.00022363813104701592 Iter 40: T = 762.9247813578962 K, F = -7.24863403343222, relative_change = 9.385508395321066e-5 Iter 45: T = 762.70590463761 K, F = -3.0317610169033267, relative_change = 3.9308794234484675e-5 Iter 50: T = 762.6143012351358 K, F = -1.2679704454420482, relative_change = 1.6449481658416034e-5 Iter 55: T = 762.5759799444473 K, F = -0.5302894442425268, relative_change = 6.881133298267315e-6 Iter 60: T = 762.5599514836571 K, F = -0.2217749636920704, relative_change = 2.878080698386456e-6 Iter 65: T = 762.5532478331656 K, F = -0.09274921561657101, relative_change = 1.2037016980401073e-6 Iter 70: T = 762.550444224067 K, F = -0.03878887811744103, relative_change = 5.034118667944617e-7 Iter 75: T = 762.5492717103447 K, F = -0.016221980543326575, relative_change = 2.1053450602680744e-7 Iter 80: T = 762.5487813491943 K, F = -0.006784227476811844, relative_change = 8.80483335489653e-8 Iter 85: T = 762.5485762739712 K, F = -0.0028372452093634593, relative_change = 3.682291510469997e-8 Iter 90: T = 762.5484905090055 K, F = -0.0011865698769795152, relative_change = 1.5399791706123615e-8 Iter 95: T = 762.5484546410623 K, F = -0.0004962377019621655, relative_change = 6.440378360043913e-9 Iter 100: T = 762.5484396406583 K, F = -0.000207532533892274, relative_change = 2.693443404610883e-9 Iter 105: T = 762.54843336731 K, F = -8.679258644983534e-5, relative_change = 1.126430272472292e-9 Iter 110: T = 762.5484307437207 K, F = -3.6297695342746295e-5, relative_change = 4.71086589272837e-10 Iter 115: T = 762.5484296465044 K, F = -1.518012983747763e-5, relative_change = 1.9701404101063524e-10 Iter 120: T = 762.5484291876354 K, F = -6.348513462928196e-6, relative_change = 8.23936493769301e-11 Iter 125: T = 762.5484289957309 K, F = -2.6550244894840702e-6, relative_change = 3.4458012637643774e-11 Iter 130: T = 762.5484289154741 K, F = -1.110362958467448e-6, relative_change = 1.4410752528256579e-11 Iter 135: T = 762.5484288819098 K, F = -4.6436786838022215e-7, relative_change = 6.026759433636134e-12 Iter 140: T = 762.5484288678728 K, F = -1.9420423191807146e-7, relative_change = 2.520463336426502e-12 Iter 145: T = 762.5484288620023 K, F = -8.121850703091127e-8, relative_change = 1.0540875819048742e-12 Iter 150: T = 762.5484288595471 K, F = -3.3965605772401375e-8, relative_change = 4.4081976591231036e-13 Converged in 154 iterations to T = 762.548428858661 K Iter 1: T = 964.3070225312873 K, F = -8132.678869033038, relative_change = 0.03569297746871265 Iter 2: T = 930.5385220640682 K, F = -6899.464982495663, relative_change = 0.03501841185245908 Iter 3: T = 898.6634913713137 K, F = -5852.18670002379, relative_change = 0.03425439134110319 Iter 5: T = 840.4807999232337 K, F = -4207.68685724607, relative_change = 0.032432399275737274 Iter 10: T = 726.1805379240644 K, F = -1835.0702216327522, relative_change = 0.026055353093176675 Iter 15: T = 652.3837478531887 K, F = -792.4202046570323, relative_change = 0.017860290772027235 Iter 20: T = 610.6187568548006 K, F = -338.32861611125924, relative_change = 0.010246934434144775 Iter 25: T = 589.7418235509253 K, F = -143.10092015248026, relative_change = 0.005085712788448247 Iter 30: T = 580.1800597881283 K, F = -60.17276819957185, relative_change = 0.0023085610308936806 Iter 35: T = 576.0097417654534 K, F = -25.226165882929656, relative_change = 0.001001373233344212 Iter 40: T = 574.2333133598838 K, F = -10.560923021778226, relative_change = 0.0004254145143668025 Iter 45: T = 573.4845414842038 K, F = -4.4186606429389395, relative_change = 0.00017909984090562088 Iter 50: T = 573.1703587838211 K, F = -1.8482807675983965, relative_change = 7.511123408205908e-5 Iter 55: T = 573.0387813125238 K, F = -0.7730334181438003, relative_change = 3.144921489524988e-5 Iter 60: T = 572.9837220413013 K, F = -0.3233023692229801, relative_change = 1.3158884651683082e-5 Iter 65: T = 572.9606899936254 K, F = -0.13521075986304423, relative_change = 5.504331180408271e-6 Iter 70: T = 572.9510567358464 K, F = -0.05654707779725909, relative_change = 2.3021744648484393e-6 Iter 75: T = 572.9470278208975 K, F = -0.02364871978971872, relative_change = 9.62831389860551e-7 Iter 80: T = 572.9453428505528 K, F = -0.009890186929267575, relative_change = 4.0267362633098365e-7 Iter 85: T = 572.9446381705852 K, F = -0.004136196016083671, relative_change = 1.6840397593887498e-7 Iter 90: T = 572.9443434640896 K, F = -0.0017298068732997662, relative_change = 7.042873870331269e-8 Iter 95: T = 572.944220214153 K, F = -0.0007234259451401881, relative_change = 2.9454171924216338e-8 Iter 100: T = 572.9441686695295 K, F = -0.000302545378365382, relative_change = 1.2318092081015667e-8 Iter 105: T = 572.9441471129476 K, F = -0.00012652809223412387, relative_change = 5.151574215338225e-9 Iter 110: T = 572.9441380977266 K, F = -5.291555933711889e-5, relative_change = 2.1544500251205965e-9 Iter 115: T = 572.9441343274535 K, F = -2.212991937666775e-5, relative_change = 9.010167793358596e-10 Iter 120: T = 572.9441327506802 K, F = -9.25499619880421e-6, relative_change = 3.768159673397905e-10 Iter 125: T = 572.9441320912547 K, F = -3.870549463047546e-6, relative_change = 1.5758891918669875e-10 Iter 130: T = 572.9441318154752 K, F = -1.6187102820919286e-6, relative_change = 6.590557925979295e-11 Iter 135: T = 572.9441317001408 K, F = -6.769637138082096e-7, relative_change = 2.7562489861675868e-11 Iter 140: T = 572.9441316519067 K, F = -2.831143596226937e-7, relative_change = 1.152696446021584e-11 Iter 145: T = 572.9441316317345 K, F = -1.1840188818279529e-7, relative_change = 4.820717533201738e-12 Iter 150: T = 572.9441316232983 K, F = -4.951665094621305e-8, relative_change = 2.0160640263611876e-12 Iter 155: T = 572.9441316197701 K, F = -2.0708167625116403e-8, relative_change = 8.431303612885276e-13 Iter 160: T = 572.9441316182947 K, F = -8.66089999718156e-9, relative_change = 3.5262742102494334e-13 Converged in 163 iterations to T = 572.9441316178627 K Iter 1: T = 963.5315565906906 K, F = -8309.369521256565, relative_change = 0.036468443409309464 Iter 2: T = 928.9388165066906 K, F = -7050.8357035185445, relative_change = 0.03590203128001444 Iter 3: T = 896.188109202542 K, F = -5982.005976646752, relative_change = 0.03525604347906229 Iter 5: T = 836.0935577788167 K, F = -4303.502431261563, relative_change = 0.033696003927828004 Iter 10: T = 716.1527384625025 K, F = -1880.8042419418193, relative_change = 0.028006384697110316 Iter 15: T = 636.2293164061064 K, F = -814.543297536633, relative_change = 0.020110083376479015 Iter 20: T = 589.331418372114 K, F = -348.80904475020975, relative_change = 0.012084939629128233 Iter 25: T = 565.1660841027241 K, F = -147.85587645807138, relative_change = 0.006201921266311803 Iter 30: T = 553.8831332310464 K, F = -62.249128150771426, relative_change = 0.0028685407003115867 Iter 35: T = 548.9127205799224 K, F = -26.112265314481043, relative_change = 0.0012555542452829971 Iter 40: T = 546.7856654263235 K, F = -10.934810778695356, relative_change = 0.0005355463346120775 Iter 45: T = 545.8872884653175 K, F = -4.575620344525721, relative_change = 0.00022585502895304605 Iter 50: T = 545.5100068426644 K, F = -1.9140285599637903, relative_change = 9.478871657804408e-5 Iter 55: T = 545.3519465700446 K, F = -0.8005484514302476, relative_change = 3.970039611510008e-5 Iter 60: T = 545.2857953480499 K, F = -0.33481273090224206, relative_change = 1.6613455251877454e-5 Iter 65: T = 545.2581216181732 K, F = -0.14002509883288228, relative_change = 6.949744217904214e-6 Iter 70: T = 545.2465466465734 K, F = -0.058560591273870755, relative_change = 2.906780765197327e-6 Iter 75: T = 545.2417055950314 K, F = -0.024490812563108144, relative_change = 1.2157054865109543e-6 Iter 80: T = 545.2396809639515 K, F = -0.010242363225383133, relative_change = 5.084321830018269e-7 Iter 85: T = 545.2388342310948 K, F = -0.0042834808813341785, relative_change = 2.1263409520275798e-7 Iter 90: T = 545.2384801159096 K, F = -0.0017914032551280545, relative_change = 8.892641257066104e-8 Iter 95: T = 545.2383320204668 K, F = -0.0007491863041165503, relative_change = 3.7190139256801006e-8 Iter 100: T = 545.2382700851414 K, F = -0.00031331867209744013, relative_change = 1.555336941511003e-8 Iter 105: T = 545.2382441830412 K, F = -0.0001310336120604605, relative_change = 6.504606385140848e-9 Iter 110: T = 545.2382333504722 K, F = -5.4799822058665404e-5, relative_change = 2.7203043599108355e-9 Iter 115: T = 545.2382288201622 K, F = -2.2917939472261173e-5, relative_change = 1.1376637877760717e-9 Iter 120: T = 545.2382269255324 K, F = -9.584555794583949e-6, relative_change = 4.757845810267429e-10 Iter 125: T = 545.2382261331757 K, F = -4.008375434266798e-6, relative_change = 1.9897878218444494e-10 Iter 130: T = 545.2382258018026 K, F = -1.6763505198691409e-6, relative_change = 8.321530540064547e-11 Iter 135: T = 545.2382256632185 K, F = -7.010701339738024e-7, relative_change = 3.480165077948675e-11 Iter 140: T = 545.2382256052609 K, F = -2.931960070839956e-7, relative_change = 1.45544711708147e-11 Iter 145: T = 545.2382255810224 K, F = -1.2261804729907233e-7, relative_change = 6.086852452606495e-12 Iter 150: T = 545.2382255708856 K, F = -5.128059654690986e-8, relative_change = 2.5456075330329584e-12 Iter 155: T = 545.2382255666463 K, F = -2.1446714904005404e-8, relative_change = 1.0646311216470655e-12 Iter 160: T = 545.2382255648733 K, F = -8.969433223926515e-9, relative_change = 4.4524943780978654e-13 Converged in 164 iterations to T = 545.2382255642333 K Iter 1: T = 969.2180698159332 K, F = -7013.692073614489, relative_change = 0.030781930184066823 Iter 2: T = 940.5743107768112 K, F = -5942.253973400055, relative_change = 0.029553471949364068 Iter 3: T = 914.0301597098552 K, F = -5032.810641410263, relative_change = 0.028221216296066456 Iter 5: T = 867.057716396835 K, F = -3606.154155925071, relative_change = 0.02527584536957398 Iter 10: T = 782.2957857094541 K, F = -1555.4376133504534, relative_change = 0.017015960025790637 Iter 15: T = 734.9726660614083 K, F = -663.3804613854825, relative_change = 0.00959858642487757 Iter 20: T = 711.57112997187 K, F = -280.3740397130475, relative_change = 0.004709109758378579 Iter 25: T = 700.9229332510032 K, F = -117.84627486938646, relative_change = 0.0021242702904310045 Iter 30: T = 696.294078994536 K, F = -49.394882272829136, relative_change = 0.0009187161031035899 Iter 35: T = 694.3252954798326 K, F = -20.677352192596096, relative_change = 0.000389790828014487 Iter 40: T = 693.4959879268341 K, F = -8.651024968138385, relative_change = 0.00016401074756203357 Iter 45: T = 693.1481094334512 K, F = -3.6185788994937598, relative_change = 6.876694456261809e-5 Iter 50: T = 693.0024374655554 K, F = -1.5134410470870656, relative_change = 2.8790001741718813e-5 Iter 55: T = 692.9414832736222 K, F = -0.6329580503360868, relative_change = 1.204572575038138e-5 Iter 60: T = 692.9159858242347 K, F = -0.26471392787666237, relative_change = 5.038612012726538e-6 Iter 65: T = 692.9053214928477 K, F = -0.1107071053556537, relative_change = 2.107373157616674e-6 Iter 70: T = 692.9008613683015 K, F = -0.046299134911451434, relative_change = 8.81357560720385e-7 Iter 75: T = 692.8989960605513 K, F = -0.01936286886876193, relative_change = 3.6859931915690097e-7 Iter 80: T = 692.8982159612567 K, F = -0.008097786100088933, relative_change = 1.541535225486741e-7 Iter 85: T = 692.8978897134855 K, F = -0.003386591395988403, relative_change = 6.44689989319551e-8 Iter 90: T = 692.8977532726087 K, F = -0.001416313059758867, relative_change = 2.6961732333240206e-8 Iter 95: T = 692.8976962113761 K, F = -0.0005923190523671185, relative_change = 1.1275723186570813e-8 Iter 100: T = 692.8976723476821 K, F = -0.00024771490322883505, relative_change = 4.715642903670621e-9 Iter 105: T = 692.8976623675995 K, F = -0.00010359733025699924, relative_change = 1.9721383025375077e-9 Iter 110: T = 692.8976581938097 K, F = -4.332564072950795e-5, relative_change = 8.247718141303088e-10 Iter 115: T = 692.8976564482809 K, F = -1.811930026596187e-5, relative_change = 3.449294246719195e-10 Iter 120: T = 692.8976557182799 K, F = -7.5777077708227836e-6, relative_change = 1.4425360562862237e-10 Iter 125: T = 692.8976554129848 K, F = -3.169088242493956e-6, relative_change = 6.032858752540556e-11 Iter 130: T = 692.8976552853068 K, F = -1.3253518210687432e-6, relative_change = 2.5230159999118654e-11 Iter 135: T = 692.8976552319102 K, F = -5.54277145403681e-7, relative_change = 1.05515387274631e-11 Iter 140: T = 692.8976552095792 K, F = -2.3180544084233645e-7, relative_change = 4.412781777026943e-12 Iter 145: T = 692.89765520024 K, F = -9.694360203482688e-8, relative_change = 1.8454741999651863e-12 Iter 150: T = 692.8976551963343 K, F = -4.054304758582816e-8, relative_change = 7.718007866340196e-13 Iter 155: T = 692.897655194701 K, F = -1.6956076986929247e-8, relative_change = 3.227856398604908e-13 Converged in 158 iterations to T = 692.8976551942227 K Iter 1: T = 966.3938996013005 K, F = -7657.181943497963, relative_change = 0.033606100398699504 Iter 2: T = 934.8230524285423 K, F = -6492.41118158437, relative_change = 0.032668715298992686 Iter 3: T = 905.2578393372917 K, F = -5503.422458810004, relative_change = 0.0316265340423989 Iter 5: T = 852.0208243798864 K, F = -3950.9858035988477, relative_change = 0.02922188849377817 Iter 10: T = 751.4413516931352 K, F = -1714.3048490273493, relative_change = 0.02161887960568921 Iter 15: T = 690.9750447491612 K, F = -735.6173135428558, relative_change = 0.013415532102280726 Iter 20: T = 659.1314527371364 K, F = -312.32241298570244, relative_change = 0.00705770153406809 Iter 25: T = 644.0444347600709 K, F = -131.61782343199818, relative_change = 0.003312313693465371 Iter 30: T = 637.3457201380796 K, F = -55.23740978661443, relative_change = 0.0014602732080843783 Iter 35: T = 634.4683862507305 K, F = -23.13629439716541, relative_change = 0.0006248933725214698 Iter 40: T = 633.2511310431855 K, F = -9.682178476148328, relative_change = 0.00026390515941068126 Iter 45: T = 632.7395750181978 K, F = -4.050314339219261, relative_change = 0.00011082381366299803 Iter 50: T = 632.5251976756954 K, F = -1.6940849352986826, relative_change = 4.642799770265571e-5 Iter 55: T = 632.4354655342139 K, F = -0.708520725695403, relative_change = 1.943079798342829e-5 Iter 60: T = 632.397924997005 K, F = -0.29631780969377086, relative_change = 8.128652596130412e-6 Iter 65: T = 632.3822227361298 K, F = -0.12392469306919296, relative_change = 3.399930184680198e-6 Iter 70: T = 632.3756554502504 K, F = -0.05182696962012279, relative_change = 1.4219667318713898e-6 Iter 75: T = 632.3729088606489 K, F = -0.021674689645420908, relative_change = 5.946966444776091e-7 Iter 80: T = 632.3717601914451 K, F = -0.009064619656750761, relative_change = 2.4871154331967785e-7 Iter 85: T = 632.3712798020568 K, F = -0.0037909331735113128, relative_change = 1.0401454070501302e-7 Iter 90: T = 632.3710788970913 K, F = -0.0015854136974643995, relative_change = 4.350019360778888e-8 Iter 95: T = 632.3709948761679 K, F = -0.0006630389721182239, relative_change = 1.8192312799982678e-8 Iter 100: T = 632.3709597376024 K, F = -0.00027729082223709733, relative_change = 7.608244645305969e-9 Iter 105: T = 632.3709450422327 K, F = -0.00011596633504640241, relative_change = 3.1818591691959844e-9 Iter 110: T = 632.3709388964531 K, F = -4.8498506164895705e-5, relative_change = 1.33069156330212e-9 Iter 115: T = 632.3709363262147 K, F = -2.028265511783145e-5, relative_change = 5.56511132057894e-10 Iter 120: T = 632.3709352513102 K, F = -8.482448069668802e-6, relative_change = 2.3273958900607815e-10 Iter 125: T = 632.3709348017724 K, F = -3.5474613223618334e-6, relative_change = 9.733448247423634e-11 Iter 130: T = 632.3709346137703 K, F = -1.4835904302845648e-6, relative_change = 4.070643590378334e-11 Iter 135: T = 632.3709345351455 K, F = -6.204548446131497e-7, relative_change = 1.702390691044241e-11 Iter 140: T = 632.3709345022637 K, F = -2.5948161480604526e-7, relative_change = 7.119600878089979e-12 Iter 145: T = 632.3709344885121 K, F = -1.0851824383539821e-7, relative_change = 2.977500293254972e-12 Iter 150: T = 632.3709344827612 K, F = -4.538383746588437e-8, relative_change = 1.245231995963048e-12 Iter 155: T = 632.3709344803559 K, F = -1.898009349687868e-8, relative_change = 5.207717334806238e-13 Converged in 160 iterations to T = 632.3709344793501 K Iter 1: T = 966.458754216958 K, F = -7642.40475762774, relative_change = 0.03354124578304202 Iter 2: T = 934.9557287386407 K, F = -6479.768142886339, relative_change = 0.03259634758427088 Iter 3: T = 905.4612262633095 K, F = -5492.597643427249, relative_change = 0.031546416122956424 Iter 5: T = 852.3734375156379 K, F = -3943.0345143249738, relative_change = 0.02912632328610588 Iter 10: T = 752.1899377580999 K, F = -1710.601236305295, relative_change = 0.021497134214117277 Iter 15: T = 692.0792437233036 K, F = -733.9054805704596, relative_change = 0.013305069998883392 Iter 20: T = 660.4799833641348 K, F = -311.55358694052455, relative_change = 0.006985059221025173 Iter 25: T = 645.5272276426223 K, F = -131.28308348589857, relative_change = 0.003274144511743191 Iter 30: T = 638.8926067904089 K, F = -55.09465925455056, relative_change = 0.0014425496772444918 Iter 35: T = 636.0437178723656 K, F = -23.0760713680947, relative_change = 0.0006171352702283231 Iter 40: T = 634.8386675888522 K, F = -9.65689773035595, relative_change = 0.00026059700033983276 Iter 45: T = 634.3322715831156 K, F = -4.039724806819786, relative_change = 0.00010942893249927495 Iter 50: T = 634.1200621096482 K, F = -1.6896533054997076, relative_change = 4.584263518472376e-5 Iter 55: T = 634.0312383360252 K, F = -0.7066668459570693, relative_change = 1.9185640108836254e-5 Iter 60: T = 633.9940779940035 K, F = -0.2955424041309744, relative_change = 8.026062933499372e-6 Iter 65: T = 633.9785347886768 K, F = -0.12360039329555372, relative_change = 3.357015162041209e-6 Iter 70: T = 633.9720340310674 K, F = -0.051691340799962626, relative_change = 1.4040172673623108e-6 Iter 75: T = 633.9693152660167 K, F = -0.021617967566156138, relative_change = 5.871896335309815e-7 Iter 80: T = 633.9681782336581 K, F = -0.00904089772078187, relative_change = 2.45571963881227e-7 Iter 85: T = 633.9677027109876 K, F = -0.00378101236230316, relative_change = 1.0270152099437843e-7 Iter 90: T = 633.9675038413502 K, F = -0.0015812646924524554, relative_change = 4.2951071297078375e-8 Iter 95: T = 633.9674206716268 K, F = -0.0006613038086240031, relative_change = 1.7962662993456702e-8 Iter 100: T = 633.9673858890437 K, F = -0.0002765651559413773, relative_change = 7.512202296106378e-9 Iter 105: T = 633.9673713425501 K, F = -0.00011566285227643247, relative_change = 3.1416930900286643e-9 Iter 110: T = 633.9673652590321 K, F = -4.837158539844344e-5, relative_change = 1.3138936101948042e-9 Iter 115: T = 633.9673627148323 K, F = -2.0229573399421774e-5, relative_change = 5.494859743663768e-10 Iter 120: T = 633.9673616508176 K, F = -8.46024900930109e-6, relative_change = 2.2980159371711878e-10 Iter 125: T = 633.9673612058339 K, F = -3.538176739981136e-6, relative_change = 9.610575947867863e-11 Iter 130: T = 633.9673610197365 K, F = -1.4797074936456767e-6, relative_change = 4.019256897907632e-11 Iter 135: T = 633.9673609419083 K, F = -6.188311800769952e-7, relative_change = 1.6809007870133174e-11 Iter 140: T = 633.9673609093595 K, F = -2.588020632243726e-7, relative_change = 7.0297135287644626e-12 Iter 145: T = 633.9673608957473 K, F = -1.0823371376922353e-7, relative_change = 2.9398992904089672e-12 Iter 150: T = 633.9673608900546 K, F = -4.5264799575228665e-8, relative_change = 1.2295055535204952e-12 Iter 155: T = 633.9673608876737 K, F = -1.8929985856619425e-8, relative_change = 5.1418592278339e-13 Converged in 160 iterations to T = 633.9673608866781 K Iter 1: T = 976.5428306771541 K, F = -5344.738343738939, relative_change = 0.02345716932284586 Iter 2: T = 955.2451566196047 K, F = -4519.197676712518, relative_change = 0.0218092575036173 Iter 3: T = 936.0144533141199 K, F = -3819.435181084455, relative_change = 0.020131694122938994 Iter 5: T = 903.3296062513143 K, F = -2724.3939738763843, relative_change = 0.016781041730914745 Iter 10: T = 849.5616455719601 K, F = -1161.5810629242712, relative_change = 0.00942200875259452 Iter 15: T = 823.051204019796 K, F = -490.83523849157154, relative_change = 0.004608033991603311 Iter 20: T = 811.009568195891 K, F = -206.28412541353697, relative_change = 0.0020752003991013237 Iter 25: T = 805.7795761519061 K, F = -86.45881604592385, relative_change = 0.0008967900555776938 Iter 30: T = 803.5559998173271 K, F = -36.191974854730645, relative_change = 0.0003803567692011748 Iter 35: T = 802.6195284476886 K, F = -15.141909832065204, relative_change = 0.00016001760744528205 Iter 40: T = 802.2267256881678 K, F = -6.333581091018295, relative_change = 6.708851088548164e-5 Iter 45: T = 802.062247052505 K, F = -2.648963908339448, relative_change = 2.8086573728031075e-5 Iter 50: T = 801.993424393304 K, F = -1.107860666783804, relative_change = 1.1751283068352773e-5 Iter 55: T = 801.9646356803711 K, F = -0.46332621718889266, relative_change = 4.915426927939276e-6 Iter 60: T = 801.9525948023924 K, F = -0.1937695466179833, relative_change = 2.0558476984694404e-6 Iter 65: T = 801.9475589719774 K, F = -0.08103691152031112, relative_change = 8.598076014550264e-7 Iter 70: T = 801.9454528940713 K, F = -0.03389063443914464, relative_change = 3.5958662446940574e-7 Iter 75: T = 801.9445721012823 K, F = -0.014173473352294685, relative_change = 1.5038426326901081e-7 Iter 80: T = 801.9442037421948 K, F = -0.005927516745701467, relative_change = 6.289264220314273e-8 Iter 85: T = 801.9440496898462 K, F = -0.0024789584554705257, relative_change = 2.6302479851781242e-8 Iter 90: T = 801.9439852632829 K, F = -0.001036730058326718, relative_change = 1.1000015688522865e-8 Iter 95: T = 801.9439583193193 K, F = -0.0004335728985418452, relative_change = 4.600338738826271e-9 Iter 100: T = 801.9439470510309 K, F = -0.0001813253658813352, relative_change = 1.923916747581597e-9 Iter 105: T = 801.9439423384979 K, F = -7.58324319878323e-5, relative_change = 8.04604966790551e-10 Iter 110: T = 801.9439403676603 K, F = -3.1714027832308034e-5, relative_change = 3.3649540098469354e-10 Iter 115: T = 801.9439395434325 K, F = -1.3263184789114035e-5, relative_change = 1.407263917842812e-10 Iter 120: T = 801.9439391987306 K, F = -5.546822464230772e-6, relative_change = 5.885345980381493e-11 Iter 125: T = 801.9439390545722 K, F = -2.319747321344323e-6, relative_change = 2.4613218960763902e-11 Iter 130: T = 801.9439389942834 K, F = -9.701446255228063e-7, relative_change = 1.0293527178774981e-11 Iter 135: T = 801.9439389690699 K, F = -4.0572603032806853e-7, relative_change = 4.304875593876553e-12 Iter 140: T = 801.9439389585252 K, F = -1.6967851657057054e-7, relative_change = 1.8003402548387688e-12 Iter 145: T = 801.9439389541153 K, F = -7.095977117010932e-8, relative_change = 7.529045815408652e-13 Iter 150: T = 801.9439389522712 K, F = -2.9677773127900764e-8, relative_change = 3.1489012703558143e-13 Converged in 153 iterations to T = 801.9439389517313 K Iter 1: T = 965.2250299055113 K, F = -7923.51001556567, relative_change = 0.03477497009448875 Iter 2: T = 932.4269327594433 K, F = -6720.3492663701345, relative_change = 0.03397974164561263 Iter 3: T = 901.5762885222238 K, F = -5698.66021305621, relative_change = 0.033086393317618396 Iter 5: T = 845.6041529500349 K, F = -4094.561181617507, relative_change = 0.03098702309618042 Iter 10: T = 737.5846044142337 K, F = -1781.552026228725, relative_change = 0.02397125007059163 Iter 15: T = 670.1452770071311 K, F = -766.9921223164719, relative_change = 0.01566555398020692 Iter 20: T = 633.306601108452 K, F = -326.55369268019456, relative_change = 0.00860451261132283 Iter 25: T = 615.3905027067569 K, F = -137.85752513414886, relative_change = 0.004147968954444362 Iter 30: T = 607.3178160021328 K, F = -57.90849131487918, relative_change = 0.001853865782743028 Iter 35: T = 603.825580852027 K, F = -24.26518395945695, relative_change = 0.000798309755952031 Iter 40: T = 602.3434968169589 K, F = -10.156444708209035, relative_change = 0.0003380630083637111 Iter 45: T = 601.7197947193392 K, F = -4.249040926904291, relative_change = 0.0001421302720322785 Iter 50: T = 601.4582693648007 K, F = -1.7772622062195897, relative_change = 5.957247217285911e-5 Iter 55: T = 601.3487758450548 K, F = -0.7433182849199347, relative_change = 2.493706311707613e-5 Iter 60: T = 601.3029632314631 K, F = -0.310872636466396, relative_change = 1.0433031007975133e-5 Iter 65: T = 601.2838001530781 K, F = -0.13001205802498395, relative_change = 4.363927512871212e-6 Iter 70: T = 601.275785278139 K, F = -0.05437284177170243, relative_change = 1.825170697413947e-6 Iter 75: T = 601.2724332485968 K, F = -0.022739414878016506, relative_change = 7.633298892467857e-7 Iter 80: T = 601.2710313700239 K, F = -0.009509902404765957, relative_change = 3.192374723544716e-7 Iter 85: T = 601.2704450842022 K, F = -0.003977156075713528, relative_change = 1.3350958746549076e-7 Iter 90: T = 601.2701998918644 K, F = -0.0016632943984959403, relative_change = 5.583542005472273e-8 Iter 95: T = 601.2700973493947 K, F = -0.000695609621390314, relative_change = 2.3351059785492497e-8 Iter 100: T = 601.2700544648909 K, F = -0.00029091225820349065, relative_change = 9.765695630794773e-9 Iter 105: T = 601.2700365300759 K, F = -0.0001216629816122583, relative_change = 4.084131153577095e-9 Iter 110: T = 601.2700290295215 K, F = -5.088091224103586e-5, relative_change = 1.7080325370449462e-9 Iter 115: T = 601.2700258927 K, F = -2.1279004809082736e-5, relative_change = 7.143196116533592e-10 Iter 120: T = 601.2700245808438 K, F = -8.899133774331602e-6, relative_change = 2.9873699004240255e-10 Iter 125: T = 601.2700240322098 K, F = -3.7217237740527764e-6, relative_change = 1.2493536911048374e-10 Iter 130: T = 601.2700238027646 K, F = -1.556469189367693e-6, relative_change = 5.224945881039433e-11 Iter 135: T = 601.2700237068079 K, F = -6.509349051997404e-7, relative_change = 2.1851377962155542e-11 Iter 140: T = 601.2700236666776 K, F = -2.722285915024436e-7, relative_change = 9.138501867694454e-12 Iter 145: T = 601.2700236498947 K, F = -1.138497889852097e-7, relative_change = 3.821848776699415e-12 Iter 150: T = 601.2700236428759 K, F = -4.761360550276095e-8, relative_change = 1.5983516664991698e-12 Iter 155: T = 601.2700236399405 K, F = -1.991269293899478e-8, relative_change = 6.68453598676176e-13 Iter 160: T = 601.2700236387128 K, F = -8.327877054625787e-9, relative_change = 2.795603489495928e-13 Converged in 162 iterations to T = 601.270023638453 K Iter 1: T = 964.5655325861019 K, F = -8073.777107137005, relative_change = 0.03543446741389814 Iter 2: T = 931.0708815060349 K, F = -6849.017481961142, relative_change = 0.03472511711077249 Iter 3: T = 899.4856521287528 K, F = -5808.936768051549, relative_change = 0.03392354975830843 Iter 5: T = 841.9311503382917 K, F = -4175.797894196333, relative_change = 0.032019949526743544 Iter 10: T = 729.4412524551814 K, F = -1819.933464085099, relative_change = 0.025445201519628566 Iter 15: T = 657.5246644542068 K, F = -785.1816865036653, relative_change = 0.01719662350207147 Iter 20: T = 617.2566154623363 K, F = -334.95048713484465, relative_change = 0.009735414405337204 Iter 25: T = 597.2985377661125 K, F = -141.58741509134032, relative_change = 0.00478784813227242 Iter 30: T = 588.2047769442577 K, F = -59.51687009105776, relative_change = 0.002162606313301054 Iter 35: T = 584.2489361824581 K, F = -24.947316658702714, relative_change = 0.0009358692853762349 Iter 40: T = 582.5658794494261 K, F = -10.443464746316474, relative_change = 0.00039717572527180013 Iter 45: T = 581.8568321572335 K, F = -4.369387699008315, relative_change = 0.00016713734785209517 Iter 50: T = 581.5593834139329 K, F = -1.827647646872066, relative_change = 7.008128924446045e-5 Iter 55: T = 581.4348255764517 K, F = -0.7643997308234332, relative_change = 2.934086600486269e-5 Iter 60: T = 581.3827057380913 K, F = -0.3196908398713664, relative_change = 1.2276312326273692e-5 Iter 65: T = 581.3609036511792 K, F = -0.13370023194693686, relative_change = 5.135082586748032e-6 Iter 70: T = 581.3517848922872 K, F = -0.05591533192781109, relative_change = 2.147724692791316e-6 Iter 75: T = 581.3479711669676 K, F = -0.023384511738594904, relative_change = 8.98234172268249e-7 Iter 80: T = 581.3463761950031 K, F = -0.009779691200284768, relative_change = 3.7565751514990736e-7 Iter 85: T = 581.3457091540464 K, F = -0.0040899852488904265, relative_change = 1.5710537860874704e-7 Iter 90: T = 581.3454301887418 K, F = -0.0017104809546535926, relative_change = 6.570350638356648e-8 Iter 95: T = 581.3453135219781 K, F = -0.0007153436112332101, relative_change = 2.7478019153293216e-8 Iter 100: T = 581.3452647305195 K, F = -0.0002991652500899389, relative_change = 1.149164069908229e-8 Iter 105: T = 581.3452443253445 K, F = -0.00012511448233620825, relative_change = 4.805942257964833e-9 Iter 110: T = 581.3452357916559 K, F = -5.232437130042733e-5, relative_change = 2.009902611055143e-9 Iter 115: T = 581.3452322227653 K, F = -2.1882677554874164e-5, relative_change = 8.405653225600881e-10 Iter 120: T = 581.3452307302125 K, F = -9.151597020085056e-6, relative_change = 3.515344580600292e-10 Iter 125: T = 581.345230106009 K, F = -3.827306721049251e-6, relative_change = 1.4701589219219715e-10 Iter 130: T = 581.3452298449598 K, F = -1.6006251558620122e-6, relative_change = 6.148379343709643e-11 Iter 135: T = 581.3452297357859 K, F = -6.694005257878999e-7, relative_change = 2.571325556161188e-11 Iter 140: T = 581.345229690128 K, F = -2.799510564477359e-7, relative_change = 1.0753581427804706e-11 Iter 145: T = 581.3452296710334 K, F = -1.1707920721804044e-7, relative_change = 4.4972889350533475e-12 Iter 150: T = 581.3452296630477 K, F = -4.896377103769112e-8, relative_change = 1.8808141168106925e-12 Iter 155: T = 581.3452296597081 K, F = -2.0477689599562865e-8, relative_change = 7.865964337169006e-13 Iter 160: T = 581.3452296583114 K, F = -8.56364873458304e-9, relative_change = 3.2894997853899083e-13 Converged in 163 iterations to T = 581.3452296579025 K Iter 1: T = 964.3021148572959 K, F = -8133.797087220375, relative_change = 0.03569788514270402 Iter 2: T = 930.5284110651086 K, F = -6900.42276683048, relative_change = 0.03502398602245663 Iter 3: T = 898.6478684697989 K, F = -5853.007905844584, relative_change = 0.03426068695615458 Iter 5: T = 840.4532074051292 K, F = -4208.292503034761, relative_change = 0.03244027130837524 Iter 10: T = 726.1182486168632 K, F = -1835.3581001782234, relative_change = 0.026067122429300805 Iter 15: T = 652.2850297981071 K, F = -792.5582506343665, relative_change = 0.017873271827773454 Iter 20: T = 610.4906885746897 K, F = -338.3932637092102, relative_change = 0.010257073237965481 Iter 25: T = 589.5955655821296 K, F = -143.1299655465696, relative_change = 0.0050916713065486665 Iter 30: T = 580.0244820692558 K, F = -60.18537628086738, relative_change = 0.0023114954224270024 Iter 35: T = 575.8498799808655 K, F = -25.23153046562709, relative_change = 0.0010026933172842046 Iter 40: T = 574.0715839219448 K, F = -10.563183545918788, relative_change = 0.0004259842027909735 Iter 45: T = 573.322016977328 K, F = -4.419609067139062, relative_change = 0.00017934128071176082 Iter 50: T = 573.0074992678483 K, F = -1.8486779482598363, relative_change = 7.521277314127386e-5 Iter 55: T = 572.8757812501216 K, F = -0.773199618408918, relative_change = 3.1491779356606466e-5 Iter 60: T = 572.8206631231632 K, F = -0.32337189272953637, relative_change = 1.3176703085404408e-5 Iter 65: T = 572.7976064477316 K, F = -0.13523983832452952, relative_change = 5.511786120612916e-6 Iter 70: T = 572.7879628879535 K, F = -0.056559239264970335, relative_change = 2.3052927450502494e-6 Iter 75: T = 572.7839296641697 K, F = -0.023653805949036127, relative_change = 9.641355854792561e-7 Iter 80: T = 572.782242891746 K, F = -0.00989231403708335, relative_change = 4.032190728778758e-7 Iter 85: T = 572.7815374581148 K, F = -0.00413708560174908, relative_change = 1.6863209110600576e-7 Iter 90: T = 572.7812424364257 K, F = -0.0017301789082023733, relative_change = 7.052413965387319e-8 Iter 95: T = 572.7811190546712 K, F = -0.0007235815354863506, relative_change = 2.9494069862243467e-8 Iter 100: T = 572.7810674549198 K, F = -0.00030261044880758314, relative_change = 1.2334777918466957e-8 Iter 105: T = 572.7810458752826 K, F = -0.0001265553053519386, relative_change = 5.158552429599845e-9 Iter 110: T = 572.7810368504197 K, F = -5.292694019121136e-5, relative_change = 2.1573683982360856e-9 Iter 115: T = 572.7810330761141 K, F = -2.213467854023099e-5, relative_change = 9.022372597654444e-10 Iter 120: T = 572.7810314976545 K, F = -9.256986756522867e-6, relative_change = 3.773263957408812e-10 Iter 125: T = 572.7810308375238 K, F = -3.871382574571758e-6, relative_change = 1.5780241236524107e-10 Iter 130: T = 572.7810305614493 K, F = -1.6190588957853969e-6, relative_change = 6.599487267953044e-11 Iter 135: T = 572.7810304459915 K, F = -6.771098185476276e-7, relative_change = 2.7599846073738746e-11 Iter 140: T = 572.7810303977058 K, F = -2.831750630094554e-7, relative_change = 1.1542570998133088e-11 Iter 145: T = 572.7810303775121 K, F = -1.1842769132019981e-7, relative_change = 4.827261344662234e-12 Iter 150: T = 572.7810303690668 K, F = -4.952703330785013e-8, relative_change = 2.0187840424344025e-12 Iter 155: T = 572.7810303655349 K, F = -2.071301374861889e-8, relative_change = 8.442884387552434e-13 Iter 160: T = 572.7810303640579 K, F = -8.66261595788842e-9, relative_change = 3.530990995069142e-13 Converged in 163 iterations to T = 572.7810303636255 K Iter 1: T = 980.1475299683167 K, F = -4523.404181293302, relative_change = 0.019852470031683302 Iter 2: T = 962.3385285911352 K, F = -3820.9248869650132, relative_change = 0.018169715101722637 Iter 3: T = 946.4520548708048 K, F = -3226.0356880532404, relative_change = 0.0165081966982951 Iter 5: T = 919.9233389627395 K, F = -2296.539955443757, relative_change = 0.013337599133963839 Iter 10: T = 877.8052542586626 K, F = -974.9546120579007, relative_change = 0.0070065223545886825 Iter 15: T = 857.8675212100101 K, F = -410.83854678556924, relative_change = 0.003285436883689321 Iter 20: T = 849.0192281872074 K, F = -172.41590664753295, relative_change = 0.0014477958564402913 Iter 25: T = 845.2194248584134 K, F = -72.21578935880352, relative_change = 0.0006194321393109783 Iter 30: T = 843.6120785242522 K, F = -30.22101095052007, relative_change = 0.00026157649705125407 Iter 35: T = 842.936613947986 K, F = -12.64222718310217, relative_change = 0.00010984195017507657 Iter 40: T = 842.6535526720148 K, F = -5.287734029113282, relative_change = 4.6015960704634917e-5 Iter 45: T = 842.5350723204089 K, F = -2.211499249325134, relative_change = 1.9258231651415035e-5 Iter 50: T = 842.4855047750374 K, F = -0.9248939001662708, relative_change = 8.056439931747055e-6 Iter 55: T = 842.4647719470885 K, F = -0.3868049116052712, relative_change = 3.3697223967391777e-6 Iter 60: T = 842.4561006905104 K, F = -0.1617669996449067, relative_change = 1.409332146449804e-6 Iter 65: T = 842.452474172939 K, F = -0.06765299017859228, relative_change = 5.89412477730451e-7 Iter 70: T = 842.4509575034497 K, F = -0.02829330575330613, relative_change = 2.4650160104451447e-7 Iter 75: T = 842.4503232112651 K, F = -0.011832601385644237, relative_change = 1.0309030933489703e-7 Iter 80: T = 842.4500579421929 K, F = -0.0049485357396394924, relative_change = 4.311366776874464e-8 Iter 85: T = 842.4499470034106 K, F = -0.002069536837775221, relative_change = 1.8030662866240663e-8 Iter 90: T = 842.4499006074714 K, F = -0.0008655050374555273, relative_change = 7.540640662496745e-9 Iter 95: T = 842.4498812041328 K, F = -0.00036196454316983484, relative_change = 3.153586326834626e-9 Iter 100: T = 842.4498730894244 K, F = -0.00015137789612551522, relative_change = 1.31886753636049e-9 Iter 105: T = 842.4498696957563 K, F = -6.330804293264158e-5, relative_change = 5.515661556465866e-10 Iter 110: T = 842.4498682764838 K, F = -2.6476179543877265e-5, relative_change = 2.3067155463803485e-10 Iter 115: T = 842.4498676829271 K, F = -1.1072655740740345e-5, relative_change = 9.646961027831516e-11 Iter 120: T = 842.4498674346946 K, F = -4.630715841669186e-6, relative_change = 4.0344734239186724e-11 Iter 125: T = 842.4498673308808 K, F = -1.9366207535398416e-6, relative_change = 1.6872650436986723e-11 Iter 130: T = 842.4498672874647 K, F = -8.099181394438659e-7, relative_change = 7.056345765057951e-12 Iter 135: T = 842.4498672693076 K, F = -3.38719141401711e-7, relative_change = 2.9510629072470063e-12 Iter 140: T = 842.449867261714 K, F = -1.4165720396697168e-7, relative_change = 1.2341768417906207e-12 Iter 145: T = 842.4498672585382 K, F = -5.924235613186113e-8, relative_change = 5.161441984229429e-13 Converged in 150 iterations to T = 842.44986725721 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██▎ | ETA: 0:00:14 Bin 1 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 1 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 1 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 1 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 2 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 2 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 2 ray tracing: 42%|████████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 2 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 2 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 2 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 3 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 3 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 3 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 36%|██████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 46%|█████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 56%|████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 4 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 4 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 4 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 4 ray tracing: 44%|█████████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 67%|████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 5 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▍ | ETA: 0:00:10 Bin 5 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 5 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 55%|████████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 62%|██████████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 6 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 6 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 6 ray tracing: 38%|███████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 46%|█████████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 7 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 7 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 7 ray tracing: 37%|███████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 44%|█████████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 8 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 8 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 8 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 12%|███▌ | ETA: 0:00:08 Bin 9 ray tracing: 23%|███████ | ETA: 0:00:07 Bin 9 ray tracing: 35%|██████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 46%|█████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 68%|████████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 17%|████▉ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:09 Bin 10 ray tracing: 37%|██████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 49%|██████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 60%|█████████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2658408959421 K, F = -7458.509290083583, relative_change = 0.03273415910405793 Iter 2: T = 936.6044425921912 K, F = -6322.4671407085125, relative_change = 0.03169903971316768 Iter 3: T = 907.9845915130177 K, F = -5357.957184857573, relative_change = 0.030557031098383203 Iter 5: T = 856.7322011363134 K, F = -3844.214021059672, relative_change = 0.027957182318650516 Iter 10: T = 761.3389180486503 K, F = -1664.7405503713587, relative_change = 0.02005135851965287 Iter 15: T = 705.4152894072864 K, F = -712.8309133127794, relative_change = 0.012035026552448175 Iter 20: T = 676.622530051303 K, F = -302.1424110032749, relative_change = 0.006170680535140699 Iter 25: T = 663.1861303583746 K, F = -127.20125519590422, relative_change = 0.0028525938353759933 Iter 30: T = 657.2687339831235 K, F = -53.357480294937595, relative_change = 0.001248254520945499 Iter 35: T = 654.7367561393687 K, F = -22.343886929391907, relative_change = 0.0005323715575722977 Iter 40: T = 653.667418938128 K, F = -9.349664060095648, relative_change = 0.00022450502540019408 Iter 45: T = 653.218352077979 K, F = -3.9110541836873947, relative_change = 9.422016093895643e-5 Iter 50: T = 653.0302196933277 K, F = -1.63580972623995, relative_change = 3.946191995438012e-5 Iter 55: T = 652.9514830662055 K, F = -0.6841432097028479, relative_change = 1.6513598949809735e-5 Iter 60: T = 652.9185444129864 K, F = -0.2861217685490296, relative_change = 6.907961626123058e-6 Iter 65: T = 652.9047673151707 K, F = -0.11966039917798849, relative_change = 2.8893030249075403e-6 Iter 70: T = 652.8990052604934 K, F = -0.05004355815105482, relative_change = 1.2083954287814132e-6 Iter 75: T = 652.8965954465679 K, F = -0.020928839926798004, relative_change = 5.053749144542738e-7 Iter 80: T = 652.8955876241871 K, F = -0.00875269539291379, relative_change = 2.1135548885916386e-7 Iter 85: T = 652.8951661391843 K, F = -0.0036604825456065804, relative_change = 8.839168062501073e-8 Iter 90: T = 652.8949898688345 K, F = -0.0015308576558049625, relative_change = 3.696650735031165e-8 Iter 95: T = 652.8949161504187 K, F = -0.000640222977958016, relative_change = 1.5459843737472607e-8 Iter 100: T = 652.894885320488 K, F = -0.00026774889951164393, relative_change = 6.465492836782098e-9 Iter 105: T = 652.8948724270413 K, F = -0.00011197578822236265, relative_change = 2.703946593374376e-9 Iter 110: T = 652.8948670348476 K, F = -4.682961267615804e-5, relative_change = 1.1308228203072463e-9 Iter 115: T = 652.8948647797678 K, F = -1.958470282575897e-5, relative_change = 4.729236050199573e-10 Iter 120: T = 652.8948638366664 K, F = -8.190557446330349e-6, relative_change = 1.9778232101567097e-10 Iter 125: T = 652.8948634422502 K, F = -3.425388199751467e-6, relative_change = 8.271491103192421e-11 Iter 130: T = 652.8948632773006 K, F = -1.4325379724677845e-6, relative_change = 3.4592356887797684e-11 Iter 135: T = 652.8948632083167 K, F = -5.991051197917763e-7, relative_change = 1.4466952029109487e-11 Iter 140: T = 652.8948631794669 K, F = -2.5055348717994974e-7, relative_change = 6.050265906224953e-12 Iter 145: T = 652.8948631674016 K, F = -1.0478504253175203e-7, relative_change = 2.5303075103985357e-12 Iter 150: T = 652.8948631623557 K, F = -4.382276652670214e-8, relative_change = 1.0582147279220273e-12 Iter 155: T = 652.8948631602453 K, F = -1.8327764250702927e-8, relative_change = 4.425715580612079e-13 Converged in 159 iterations to T = 652.8948631594837 K Iter 1: T = 970.3091164704556 K, F = -6765.096055528255, relative_change = 0.029690883529544406 Iter 2: T = 942.7818687538202 K, F = -5729.933810055477, relative_change = 0.028369565171939247 Iter 3: T = 917.3737081574641 K, F = -4851.419730718531, relative_change = 0.026950200718158547 Iter 5: T = 872.6997158133527 K, F = -3473.692443213917, relative_change = 0.023861880335510694 Iter 10: T = 793.3613083372675 K, F = -1495.2603926125703, relative_change = 0.015556128789410258 Iter 15: T = 750.0989384356305 K, F = -636.5332879621823, relative_change = 0.008526309403874735 Iter 20: T = 729.08622526228 K, F = -268.69415864109664, relative_change = 0.004104669058850008 Iter 25: T = 719.6254004897368 K, F = -112.86249123580596, relative_change = 0.001833211893939728 Iter 30: T = 715.5341736096966 K, F = -47.29132739642223, relative_change = 0.000789156551905455 Iter 35: T = 713.7981701166364 K, F = -19.794087157361194, relative_change = 0.00033413888799226245 Iter 40: T = 713.0676641688964 K, F = -8.28100248974962, relative_change = 0.00014047187573069914 Iter 45: T = 712.7613640814316 K, F = -3.4637198678430976, relative_change = 5.8875853201544146e-5 Iter 50: T = 712.6331262475486 K, F = -1.4486576301612413, relative_change = 2.4645191324523792e-5 Iter 55: T = 712.5794712112448 K, F = -0.6058614324556079, relative_change = 1.0310872552172789e-5 Iter 60: T = 712.5570277557431 K, F = -0.25338120027363753, relative_change = 4.312822900410729e-6 Iter 65: T = 712.5476408860445 K, F = -0.10596751864341547, relative_change = 1.803795253526262e-6 Iter 70: T = 712.5437150540887 K, F = -0.04431696483479808, relative_change = 7.543899187287609e-7 Iter 75: T = 712.5420732013769 K, F = -0.01853389846650677, relative_change = 3.1549858164073005e-7 Iter 80: T = 712.5413865549591 K, F = -0.007751100218308493, relative_change = 1.3194592327626432e-7 Iter 85: T = 712.5410993905264 K, F = -0.003241603122932424, relative_change = 5.518147432089471e-8 Iter 90: T = 712.5409792948086 K, F = -0.0013556772167656606, relative_change = 2.3077571411018283e-8 Iter 95: T = 712.5409290693237 K, F = -0.0005669604148155205, relative_change = 9.65131942128657e-9 Iter 100: T = 712.5409080644224 K, F = -0.00023710961938305797, relative_change = 4.036297660139906e-9 Iter 105: T = 712.5408992799212 K, F = -9.916207557358891e-5, relative_change = 1.6880280021836946e-9 Iter 110: T = 712.5408956061377 K, F = -4.147076395732974e-5, relative_change = 7.059534821698819e-10 Iter 115: T = 712.5408940697176 K, F = -1.7343569787331425e-5, relative_change = 2.9523819775584297e-10 Iter 120: T = 712.5408934271684 K, F = -7.2532884219933536e-6, relative_change = 1.2347214771615622e-10 Iter 125: T = 712.5408931584467 K, F = -3.033412802166957e-6, relative_change = 5.163754320455157e-11 Iter 130: T = 712.540893046064 K, F = -1.2686093554536981e-6, relative_change = 2.1595435479251015e-11 Iter 135: T = 712.5408929990642 K, F = -5.305481270978518e-7, relative_change = 9.031478288980253e-12 Iter 140: T = 712.5408929794083 K, F = -2.2188194526151506e-7, relative_change = 3.777078589591697e-12 Iter 145: T = 712.5408929711881 K, F = -9.27940689843254e-8, relative_change = 1.5796260070099259e-12 Iter 150: T = 712.5408929677502 K, F = -3.880868193473219e-8, relative_change = 6.606370854762569e-13 Iter 155: T = 712.5408929663124 K, F = -1.62308795292887e-8, relative_change = 2.7629696275389705e-13 Converged in 157 iterations to T = 712.5408929660081 K Iter 1: T = 974.3683788012947 K, F = -5840.189272091224, relative_change = 0.025631621198705243 Iter 2: T = 950.9263164125603 K, F = -4941.070545334245, relative_change = 0.024058726554297524 Iter 3: T = 929.59946019589 K, F = -4178.5706433853875, relative_change = 0.022427453997831758 Iter 5: T = 892.9395541016657 K, F = -2984.3610675320174, relative_change = 0.019073898251277425 Iter 10: T = 831.1531876870031 K, F = -1276.2224349068608, relative_change = 0.011218082805209589 Iter 15: T = 799.76695942933 K, F = -540.4160988993355, relative_change = 0.005666401861506349 Iter 20: T = 785.2466953016504 K, F = -227.38648294234457, relative_change = 0.0025972974833177362 Iter 25: T = 778.8809607435113 K, F = -95.35640777739575, relative_change = 0.0011318664109564993 Iter 30: T = 776.1628972911197 K, F = -39.9263970785041, relative_change = 0.0004818449814101135 Iter 35: T = 775.0160334564006 K, F = -16.706077621253772, relative_change = 0.00020303670064960843 Iter 40: T = 774.534599829212 K, F = -6.988156443886595, relative_change = 8.518177945936405e-5 Iter 45: T = 774.3329413328169 K, F = -2.922789195994092, relative_change = 3.5671376728977344e-5 Iter 50: T = 774.2485497052985 K, F = -1.222390647186788, relative_change = 1.4926491609334571e-5 Iter 55: T = 774.21324637652 K, F = -0.5112262937185281, relative_change = 6.243889189901197e-6 Iter 60: T = 774.1984803980336 K, F = -0.21380232797617083, relative_change = 2.611523094154793e-6 Iter 65: T = 774.1923047912588 K, F = -0.0894149294248252, relative_change = 1.0922145889837283e-6 Iter 70: T = 774.1897220265887 K, F = -0.037394433740147615, relative_change = 4.5678495842387194e-7 Iter 75: T = 774.188641874435 K, F = -0.015638806190316656, relative_change = 1.9103428438167396e-7 Iter 80: T = 774.188190140309 K, F = -0.0065403368115724, relative_change = 7.989305694460289e-8 Iter 85: T = 774.1880012194235 K, F = -0.002735247191222312, relative_change = 3.34122721503138e-8 Iter 90: T = 774.1879222104042 K, F = -0.00114391308039119, relative_change = 1.397341850949502e-8 Iter 95: T = 774.1878891678801 K, F = -0.0004783981181341046, relative_change = 5.843851767992039e-9 Iter 100: T = 774.1878753491005 K, F = -0.0002000718066275109, relative_change = 2.4439688116024214e-9 Iter 105: T = 774.1878695699216 K, F = -8.3672418574543e-5, relative_change = 1.02209697659335e-9 Iter 110: T = 774.187867153 K, F = -3.499280487095913e-5, relative_change = 4.274531703764474e-10 Iter 115: T = 774.1878661422144 K, F = -1.4634407515146108e-5, relative_change = 1.7876600492256546e-10 Iter 120: T = 774.1878657194918 K, F = -6.120283480792743e-6, relative_change = 7.476207209392615e-11 Iter 125: T = 774.1878655427041 K, F = -2.5595741118822346e-6, relative_change = 3.126637272454461e-11 Iter 130: T = 774.1878654687695 K, F = -1.070444026529671e-6, relative_change = 1.3075965167050834e-11 Iter 135: T = 774.1878654378492 K, F = -4.476733566072255e-7, relative_change = 5.468535554636672e-12 Iter 140: T = 774.187865424918 K, F = -1.8722307781882108e-7, relative_change = 2.2870158401685615e-12 Iter 145: T = 774.18786541951 K, F = -7.830006065745465e-8, relative_change = 9.564711845459893e-13 Iter 150: T = 774.1878654172482 K, F = -3.2745171241188586e-8, relative_change = 3.999972983759717e-13 Converged in 154 iterations to T = 774.1878654164319 K Iter 1: T = 970.4052875469167 K, F = -6743.183384274288, relative_change = 0.029594712453083333 Iter 2: T = 942.9760765854005 K, F = -5711.224573172648, relative_change = 0.028265727025101432 Iter 3: T = 917.6672369055281 K, F = -4835.442001988367, relative_change = 0.026839323189956143 Iter 5: T = 873.1927584910687 K, F = -3462.036127906392, relative_change = 0.023739999834125156 Iter 10: T = 794.3163287613435 K, F = -1489.9849524588499, relative_change = 0.015434466253078344 Iter 15: T = 751.3905470750548 K, F = -634.1905287597813, relative_change = 0.00843962800454373 Iter 20: T = 730.5716920029615 K, F = -267.67861543265286, relative_change = 0.004056783904320231 Iter 25: T = 721.2060148699759 K, F = -112.430064961194, relative_change = 0.0018103993049812205 Iter 30: T = 717.1575979248131 K, F = -47.10899419401062, relative_change = 0.0007790526265891582 Iter 35: T = 715.4400769146476 K, F = -19.717561702541644, relative_change = 0.00032980830332837296 Iter 40: T = 714.7174059337619 K, F = -8.248950261682351, relative_change = 0.00013864190434405925 Iter 45: T = 714.4144012682553 K, F = -3.450306717849582, relative_change = 5.810719916477409e-5 Iter 50: T = 714.2875449212778 K, F = -1.4430465946937088, relative_change = 2.4323144375051936e-5 Iter 55: T = 714.2344682185691 K, F = -0.6035145684128569, relative_change = 1.0176085859557567e-5 Iter 60: T = 714.2122667305264 K, F = -0.2523996678550373, relative_change = 4.256435498792381e-6 Iter 65: T = 714.2029810722606 K, F = -0.10555702204233697, relative_change = 1.7802102199341552e-6 Iter 70: T = 714.1990975712403 K, F = -0.044145288851291764, relative_change = 7.4452582521175e-7 Iter 75: T = 714.1974734223744 K, F = -0.01846210127529102, relative_change = 3.1137320359919565e-7 Iter 80: T = 714.1967941800115 K, F = -0.007721073732990802, relative_change = 1.3022062406799207e-7 Iter 85: T = 714.1965101120594 K, F = -0.003229045680282261, relative_change = 5.445993063371171e-8 Iter 90: T = 714.1963913113298 K, F = -0.0013504255425620393, relative_change = 2.2775812701614352e-8 Iter 95: T = 714.196341627425 K, F = -0.0005647641029544737, relative_change = 9.52512025614885e-9 Iter 100: T = 714.1963208490189 K, F = -0.00023619109397376992, relative_change = 3.9835196206561195e-9 Iter 105: T = 714.1963121592406 K, F = -9.877793650014954e-5, relative_change = 1.6659555799101594e-9 Iter 110: T = 714.1963085250716 K, F = -4.131011178942767e-5, relative_change = 6.967225207171735e-10 Iter 115: T = 714.1963070052186 K, F = -1.7276383085573777e-5, relative_change = 2.913776984087984e-10 Iter 120: T = 714.1963063695979 K, F = -7.22518741580469e-6, relative_change = 1.2185759474550997e-10 Iter 125: T = 714.1963061037738 K, F = -3.021659924606901e-6, relative_change = 5.096230589099458e-11 Iter 130: T = 714.196305992603 K, F = -1.2636939806798253e-6, relative_change = 2.1313040133766927e-11 Iter 135: T = 714.19630594611 K, F = -5.284913410230629e-7, relative_change = 8.91335824754378e-12 Iter 140: T = 714.1963059266661 K, F = -2.2102194696671518e-7, relative_change = 3.727682255542089e-12 Iter 145: T = 714.1963059185344 K, F = -9.243298659811217e-8, relative_change = 1.5589438456947004e-12 Iter 150: T = 714.1963059151336 K, F = -3.865610820330545e-8, relative_change = 6.519609957582874e-13 Iter 155: T = 714.1963059137114 K, F = -1.616600509013466e-8, relative_change = 2.7265043652781444e-13 Converged in 157 iterations to T = 714.1963059134104 K Iter 1: T = 969.3097623842889 K, F = -6992.799834692482, relative_change = 0.030690237615711078 Iter 2: T = 940.7601407866001 K, F = -5924.405680441245, relative_change = 0.029453558300561157 Iter 3: T = 914.3121152195581 K, F = -5017.557456667224, relative_change = 0.028113463167059673 Iter 5: T = 867.5353469719789 K, F = -3595.006086346486, relative_change = 0.025154762321990355 Iter 10: T = 783.2425727662622 K, F = -1550.3564353980498, relative_change = 0.016887359521109573 Iter 15: T = 736.2789169421344 K, F = -661.1043120101164, relative_change = 0.009501677826967944 Iter 20: T = 713.0926675174327 K, F = -279.3805648486105, relative_change = 0.004653547567773729 Iter 25: T = 702.552633745802 K, F = -117.42155194956368, relative_change = 0.0020972731829152305 Iter 30: T = 697.9730185486295 K, F = -49.21544805881601, relative_change = 0.0009066481239235085 Iter 35: T = 696.0256066242998 K, F = -20.601977797603766, relative_change = 0.00038459747054100506 Iter 40: T = 695.2053797066472 K, F = -8.619443011510716, relative_change = 0.00016181239987128848 Iter 45: T = 694.8613243158727 K, F = -3.605360449100637, relative_change = 6.784288578540998e-5 Iter 50: T = 694.7172557076794 K, F = -1.5079110899614274, relative_change = 2.8402725574800563e-5 Iter 55: T = 694.6569728484301 K, F = -0.6306450333096255, relative_change = 1.1883617819091433e-5 Iter 60: T = 694.631756296502 K, F = -0.2637465400184141, relative_change = 4.9707912570708e-6 Iter 65: T = 694.6212094639583 K, F = -0.1103025223114133, relative_change = 2.079005283812309e-6 Iter 70: T = 694.6167984830602 K, F = -0.046129931721084816, relative_change = 8.694930032502775e-7 Iter 75: T = 694.6149537285102 K, F = -0.019292105772050205, relative_change = 3.6363728418533037e-7 Iter 80: T = 694.6141822249388 K, F = -0.00806819207498688, relative_change = 1.5207831658851998e-7 Iter 85: T = 694.6138595720241 K, F = -0.0033742148119890736, relative_change = 6.360111887520826e-8 Iter 90: T = 694.6137246345634 K, F = -0.0014111370239293652, relative_change = 2.659877382415582e-8 Iter 95: T = 694.613668202078 K, F = -0.0005901543721101854, relative_change = 1.1123929477260482e-8 Iter 100: T = 694.6136446013339 K, F = -0.0002468096097447692, relative_change = 4.652160971754349e-9 Iter 105: T = 694.6136347312199 K, F = -0.00010321872648466623, relative_change = 1.94558941156702e-9 Iter 110: T = 694.6136306034203 K, F = -4.3167304822455677e-5, relative_change = 8.136687636537108e-10 Iter 115: T = 694.6136288771252 K, F = -1.8053082838309642e-5, relative_change = 3.4028600644429215e-10 Iter 120: T = 694.6136281551679 K, F = -7.550015033941371e-6, relative_change = 1.4231167608426097e-10 Iter 125: T = 694.6136278532367 K, F = -3.1575063431654726e-6, relative_change = 5.951644054381867e-11 Iter 130: T = 694.6136277269657 K, F = -1.320508161151146e-6, relative_change = 2.4890510734496506e-11 Iter 135: T = 694.6136276741574 K, F = -5.522527123380527e-7, relative_change = 1.0409516937477877e-11 Iter 140: T = 694.6136276520724 K, F = -2.3095892121016703e-7, relative_change = 4.353388854143128e-12 Iter 145: T = 694.6136276428361 K, F = -9.658903354914372e-8, relative_change = 1.820625156667077e-12 Iter 150: T = 694.6136276389735 K, F = -4.039476264594555e-8, relative_change = 7.61408602720232e-13 Iter 155: T = 694.613627637358 K, F = -1.6893743515211668e-8, relative_change = 3.1843340082268805e-13 Converged in 158 iterations to T = 694.6136276368851 K Iter 1: T = 963.5315014910058 K, F = -8309.382075772164, relative_change = 0.03646849850899428 Iter 2: T = 928.9387026943958 K, F = -7050.846461130906, relative_change = 0.035902094267888186 Iter 3: T = 896.187932829934 K, F = -5982.015205062816, relative_change = 0.0352561151445923 Iter 5: T = 836.0932440773937 K, F = -4303.509247719811, relative_change = 0.033696095143229327 Iter 10: T = 716.1520123128977 K, F = -1880.80750954329, relative_change = 0.028006530163110235 Iter 15: T = 636.2281266229361 K, F = -814.5448928493071, relative_change = 0.02011025876825217 Iter 20: T = 589.329824484658 K, F = -348.8098100353103, relative_change = 0.012085089523141074 Iter 25: T = 565.1642224696757 K, F = -147.8562274649088, relative_change = 0.006202015340612697 Iter 30: T = 553.8811283827155 K, F = -62.24928246080325, relative_change = 0.002868588781607194 Iter 35: T = 548.9106483931521 K, F = -26.112331391129988, relative_change = 0.00125557626704906 Iter 40: T = 546.783563572056 K, F = -10.934838702656814, relative_change = 0.0005355559145858467 Iter 45: T = 545.885173922902 K, F = -4.575632074971617, relative_change = 0.00022585910304335623 Iter 50: T = 545.507886943421 K, F = -1.914033475046983, relative_change = 9.479043246029596e-5 Iter 55: T = 545.3498244215771 K, F = -0.800550508607492, relative_change = 3.9701115841376196e-5 Iter 60: T = 545.2836722573596 K, F = -0.3348135915244631, relative_change = 1.6613756622684202e-5 Iter 65: T = 545.2559981331586 K, F = -0.14002545880403594, relative_change = 6.949870319975254e-6 Iter 70: T = 545.2444229965998 K, F = -0.05856074182654608, relative_change = 2.9068335139958437e-6 Iter 75: T = 545.2395818760616 K, F = -0.02449087552814283, relative_change = 1.2157275487152635e-6 Iter 80: T = 545.2375572161252 K, F = -0.010242389558403453, relative_change = 5.084414100298104e-7 Iter 85: T = 545.2367104711999 K, F = -0.004283491894572999, relative_change = 2.126379541374614e-7 Iter 90: T = 545.2363563509676 K, F = -0.0017914078606975914, relative_change = 8.892802641870881e-8 Iter 95: T = 545.2362082534139 K, F = -0.0007491882301610686, relative_change = 3.719081418616501e-8 Iter 100: T = 545.2361463172057 K, F = -0.0003133194768502878, relative_change = 1.5553651642112833e-8 Iter 105: T = 545.2361204147363 K, F = -0.00013103394878380414, relative_change = 6.504724424143584e-9 Iter 110: T = 545.236109582013 K, F = -5.479996275731258e-5, relative_change = 2.720353719131582e-9 Iter 115: T = 545.2361050516386 K, F = -2.2917999067395556e-5, relative_change = 1.137684467786821e-9 Iter 120: T = 545.2361031569818 K, F = -9.584580755034322e-6, relative_change = 4.757932314937389e-10 Iter 125: T = 545.2361023646138 K, F = -4.008386448511869e-6, relative_change = 1.9898242848093366e-10 Iter 130: T = 545.236102033236 K, F = -1.6763548612297452e-6, relative_change = 8.321681717398342e-11 Iter 135: T = 545.2361018946498 K, F = -7.010719121069986e-7, relative_change = 3.480228116105642e-11 Iter 140: T = 545.2361018366913 K, F = -2.9319649480497034e-7, relative_change = 1.455472209995688e-11 Iter 145: T = 545.2361018124525 K, F = -1.2261850063088886e-7, relative_change = 6.086969772816816e-12 Iter 150: T = 545.2361018023155 K, F = -5.128067437354389e-8, relative_change = 2.545651049907067e-12 Iter 155: T = 545.2361017980761 K, F = -2.144643018731074e-8, relative_change = 1.064633571848525e-12 Iter 160: T = 545.2361017963032 K, F = -8.969162385019658e-9, relative_change = 4.452429286926526e-13 Converged in 164 iterations to T = 545.2361017956631 K Iter 1: T = 966.9172979861414 K, F = -7537.925123631552, relative_change = 0.03308270201385854 Iter 2: T = 935.8929810663573 K, F = -6390.389901741434, relative_change = 0.03208580194438599 Iter 3: T = 906.896611256094 K, F = -5416.086312168549, relative_change = 0.030982570012678966 Iter 5: T = 854.8564815399018 K, F = -3886.8606078251796, relative_change = 0.028457551187906695 Iter 10: T = 757.4251743022243 K, F = -1684.494342588428, relative_change = 0.020660405770350027 Iter 15: T = 699.7455933111892 K, F = -721.8815444976625, relative_change = 0.012560829917761775 Iter 20: T = 669.7913486281121 K, F = -306.17242992361093, relative_change = 0.006503254401678738 Iter 25: T = 655.7330762040973 K, F = -128.94578782642313, relative_change = 0.0030233477014455965 Iter 30: T = 649.5229991986811 K, F = -54.099180199854224, relative_change = 0.0013266373009520993 Iter 35: T = 646.8620044277066 K, F = -22.656350842640613, relative_change = 0.0005665043199276222 Iter 40: T = 645.7374754324863 K, F = -9.480750827290205, relative_change = 0.00023902704925250843 Iter 45: T = 645.2651044641576 K, F = -3.9659490051236226, relative_change = 0.00010033752408122095 Iter 50: T = 645.0671866873049 K, F = -1.6587801943281921, relative_change = 4.202804549240495e-5 Iter 55: T = 644.9843507779045 K, F = -0.6937519774004557, relative_change = 1.758814703966982e-5 Iter 60: T = 644.9496965440067 K, F = -0.2901406627460096, relative_change = 7.3575893244024096e-6 Iter 65: T = 644.9352017577186 K, F = -0.12134121745643156, relative_change = 3.0773844983973837e-6 Iter 70: T = 644.9291395200329 K, F = -0.050746508450184524, relative_change = 1.2870606598534599e-6 Iter 75: T = 644.9266041594955 K, F = -0.021222824239734983, relative_change = 5.382749326762067e-7 Iter 80: T = 644.9255438308866 K, F = -0.008875643510992515, relative_change = 2.2511489311027559e-7 Iter 85: T = 644.9251003869534 K, F = -0.0037119009796192093, relative_change = 9.414606689502463e-8 Iter 90: T = 644.924914933082 K, F = -0.0015523614703943367, relative_change = 3.9373067257946106e-8 Iter 95: T = 644.9248373740018 K, F = -0.00064921613220148, relative_change = 1.646629703278631e-8 Iter 100: T = 644.9248049378582 K, F = -0.0002715099434887902, relative_change = 6.886403811652814e-9 Iter 105: T = 644.9247913726739 K, F = -0.00011354870125185323, relative_change = 2.879976612888187e-9 Iter 110: T = 644.9247856995515 K, F = -4.748742252597138e-5, relative_change = 1.2044406541075248e-9 Iter 115: T = 644.924783326984 K, F = -1.9859807143918218e-5, relative_change = 5.037114725008614e-10 Iter 120: T = 644.924782334748 K, F = -8.305608566017142e-6, relative_change = 2.1065815599978826e-10 Iter 125: T = 644.924781919783 K, F = -3.4735050306045068e-6, relative_change = 8.809976548119134e-11 Iter 130: T = 644.9247817462397 K, F = -1.45266092943519e-6, relative_change = 3.684436505584016e-11 Iter 135: T = 644.9247816736618 K, F = -6.075202897970478e-7, relative_change = 1.5408757057166964e-11 Iter 140: T = 644.9247816433088 K, F = -2.540721358301745e-7, relative_change = 6.444123566947486e-12 Iter 145: T = 644.9247816306149 K, F = -1.0625641794215213e-7, relative_change = 2.6950199982665295e-12 Iter 150: T = 644.9247816253061 K, F = -4.443744611171141e-8, relative_change = 1.127083034295833e-12 Iter 155: T = 644.9247816230859 K, F = -1.858421594391757e-8, relative_change = 4.713581974033078e-13 Converged in 160 iterations to T = 644.9247816221574 K Iter 1: T = 965.173015798447 K, F = -7935.361479338468, relative_change = 0.034826984201553085 Iter 2: T = 932.3200900841766 K, F = -6730.495632607735, relative_change = 0.03403837983088715 Iter 3: T = 901.4117557241038 K, F = -5707.354502039884, relative_change = 0.03315206299725045 Iter 5: T = 845.3158635854106 K, F = -4100.962212986225, relative_change = 0.03106749811809168 Iter 10: T = 736.9512166135621 K, F = -1784.5672143246625, relative_change = 0.02408339409432812 Iter 15: T = 669.174329535687 K, F = -768.4130241361457, relative_change = 0.015778597946509904 Iter 20: T = 632.0834607785883 K, F = -327.2052907153116, relative_change = 0.008685751184369518 Iter 25: T = 614.0200774514404 K, F = -138.1455000188696, relative_change = 0.0041930994297867995 Iter 30: T = 605.8745924199515 K, F = -58.032309976271044, relative_change = 0.001875429203695052 Iter 35: T = 602.3494962970398 K, F = -24.317623292789907, relative_change = 0.0008078734258013992 Iter 40: T = 600.853204805766 K, F = -10.178495737701088, relative_change = 0.0003421644813836712 Iter 45: T = 600.2234763048493 K, F = -4.258284382569274, relative_change = 0.00014386386853928586 Iter 50: T = 599.9594155652763 K, F = -1.781131712832379, relative_change = 6.0300723337810156e-5 Iter 55: T = 599.84885906177 K, F = -0.7449372227586126, relative_change = 2.5242195992275682e-5 Iter 60: T = 599.8026014297944 K, F = -0.31154981189930614, relative_change = 1.0560741038897861e-5 Iter 65: T = 599.7832521578184 K, F = -0.13029528123055484, relative_change = 4.417354846380625e-6 Iter 70: T = 599.7751594002184 K, F = -0.054491292659864854, relative_change = 1.8475177035826067e-6 Iter 75: T = 599.7717747967195 K, F = -0.022788953076745222, relative_change = 7.726762088923917e-7 Iter 80: T = 599.770359294892 K, F = -0.009530619979710053, relative_change = 3.231463083791517e-7 Iter 85: T = 599.7697673115861 K, F = -0.003985820432065357, relative_change = 1.351443257343199e-7 Iter 90: T = 599.7695197364791 K, F = -0.001666917939199708, relative_change = 5.6519089985535675e-8 Iter 95: T = 599.7694161975045 K, F = -0.0006971250298978271, relative_change = 2.3636979213251177e-8 Iter 100: T = 599.7693728962499 K, F = -0.0002915460202741471, relative_change = 9.88527063879211e-9 Iter 105: T = 599.7693547871447 K, F = -0.00012192802845484296, relative_change = 4.13413886376114e-9 Iter 110: T = 599.7693472137001 K, F = -5.099175793615851e-5, relative_change = 1.7289463592587525e-9 Iter 115: T = 599.7693440463951 K, F = -2.1325362302926365e-5, relative_change = 7.230660391562306e-10 Iter 120: T = 599.7693427217903 K, F = -8.918520953193898e-6, relative_change = 3.0239484783236154e-10 Iter 125: T = 599.7693421678247 K, F = -3.7298318901757277e-6, relative_change = 1.2646513449360206e-10 Iter 130: T = 599.7693419361497 K, F = -1.5598600875965651e-6, relative_change = 5.28892244852859e-11 Iter 135: T = 599.7693418392604 K, F = -6.523519113788012e-7, relative_change = 2.211889834556634e-11 Iter 140: T = 599.7693417987402 K, F = -2.7282207104573075e-7, relative_change = 9.25041155328863e-12 Iter 145: T = 599.7693417817942 K, F = -1.140974676405726e-7, relative_change = 3.868633241290765e-12 Iter 150: T = 599.7693417747071 K, F = -4.7717152396042906e-8, relative_change = 1.6179163812029315e-12 Iter 155: T = 599.7693417717431 K, F = -1.9955488317346948e-8, relative_change = 6.766185705368371e-13 Iter 160: T = 599.7693417705036 K, F = -8.345293733835746e-9, relative_change = 2.829587844284951e-13 Converged in 162 iterations to T = 599.7693417702413 K Iter 1: T = 980.1094048523296 K, F = -4532.091025237324, relative_change = 0.019890595147670463 Iter 2: T = 962.2639324644098 K, F = -3828.303047028079, relative_change = 0.018207633045423693 Iter 3: T = 946.3429131976221 K, F = -3232.2991190170137, relative_change = 0.016545376720099137 Iter 5: T = 919.7517306381885 K, F = -2301.045605783814, relative_change = 0.013371883424910073 Iter 10: T = 877.5197430114297 K, F = -976.908307118104, relative_change = 0.007029064630072834 Iter 15: T = 857.5204169101806 K, F = -411.6722743021226, relative_change = 0.0032972802691843953 Iter 20: T = 848.6429294100426 K, F = -172.76800138659942, relative_change = 0.0014532949421193094 Iter 25: T = 844.8302091495186 K, F = -72.36368305644959, relative_change = 0.00062183919068878 Iter 30: T = 843.2173277203149 K, F = -30.28297804314628, relative_change = 0.0002626028854508614 Iter 35: T = 842.5395242843583 K, F = -12.668163158683734, relative_change = 0.00011027472366023867 Iter 40: T = 842.2554806126454 K, F = -5.2985843869641425, relative_change = 4.619757395822962e-5 Iter 45: T = 842.1365886627432 K, F = -2.2160376337644796, relative_change = 1.933429372099848e-5 Iter 50: T = 842.0868488507997 K, F = -0.9267920179479356, relative_change = 8.08826913373639e-6 Iter 55: T = 842.0660439559349 K, F = -0.3875987465854469, relative_change = 3.3830370982499236e-6 Iter 60: T = 842.0573425560915 K, F = -0.16209899431584485, relative_change = 1.4149010995457025e-6 Iter 65: T = 842.0537034315432 K, F = -0.06779183490588214, relative_change = 5.917415828763791e-7 Iter 70: T = 842.0521814895427 K, F = -0.028351372380138073, relative_change = 2.474756785550181e-7 Iter 75: T = 842.0515449923095 K, F = -0.011856885559486496, relative_change = 1.0349768330791046e-7 Iter 80: T = 842.0512788010557 K, F = -0.004958691670993609, relative_change = 4.32840369485109e-8 Iter 85: T = 842.0511674766053 K, F = -0.002073784168919124, relative_change = 1.8101913377373088e-8 Iter 90: T = 842.0511209193752 K, F = -0.0008672813207821761, relative_change = 7.570438481905022e-9 Iter 95: T = 842.0511014485828 K, F = -0.00036270740870270046, relative_change = 3.1660481564917e-9 Iter 100: T = 842.0510933056644 K, F = -0.00015168857118674772, relative_change = 1.3240792213119795e-9 Iter 105: T = 842.0510899001986 K, F = -6.343797312169386e-5, relative_change = 5.537457635262962e-10 Iter 110: T = 842.0510884759922 K, F = -2.653051783774174e-5, relative_change = 2.3158309214789541e-10 Iter 115: T = 842.0510878803719 K, F = -1.1095378915193521e-5, relative_change = 9.685081090771384e-11 Iter 120: T = 842.0510876312765 K, F = -4.640219556151237e-6, relative_change = 4.050416221663827e-11 Iter 125: T = 842.0510875271018 K, F = -1.940593165050686e-6, relative_change = 1.693930630842997e-11 Iter 130: T = 842.0510874835346 K, F = -8.115777656581002e-7, relative_change = 7.0842073529725925e-12 Iter 135: T = 842.0510874653143 K, F = -3.394082874752513e-7, relative_change = 2.9626719555210996e-12 Iter 140: T = 842.0510874576945 K, F = -1.419467399177421e-7, relative_change = 1.2390434796932464e-12 Iter 145: T = 842.0510874545079 K, F = -5.9366576987684994e-8, relative_change = 5.182068300564723e-13 Converged in 150 iterations to T = 842.0510874531751 K Iter 1: T = 976.5300851563507 K, F = -5347.642422778132, relative_change = 0.02346991484364934 Iter 2: T = 955.2199299874179 K, F = -4521.6690444585265, relative_change = 0.02182232323699561 Iter 3: T = 935.9771166007232 K, F = -3821.5376447583353, relative_change = 0.020144903579375893 Iter 5: T = 903.2695679246458 K, F = -2725.9135630793985, relative_change = 0.01679398171780607 Iter 10: T = 849.456976810442 K, F = -1162.2482092921148, relative_change = 0.00943169804736456 Iter 15: T = 822.920235341093 K, F = -491.1226696664478, relative_change = 0.004613565430982353 Iter 20: T = 810.8654914602645 K, F = -206.40617438366928, relative_change = 0.0020778818484253783 Iter 25: T = 805.6295541152226 K, F = -86.51021641871672, relative_change = 0.0008979873839733609 Iter 30: T = 803.4034014419141 K, F = -36.21353672516023, relative_change = 0.00038087178231095155 Iter 35: T = 802.4658361548777 K, F = -15.150938973561045, relative_change = 0.00016023556765428404 Iter 40: T = 802.0725729706603 K, F = -6.33735925132582, relative_change = 6.7180120859377e-5 Iter 45: T = 801.9079012622908 K, F = -2.650544342649594, relative_change = 2.8124966380446474e-5 Iter 50: T = 801.8389977669394 K, F = -1.1085216867918246, relative_change = 1.176735340533515e-5 Iter 55: T = 801.8101752314523 K, F = -0.4636026747625396, relative_change = 4.922150198215084e-6 Iter 60: T = 801.798120205693 K, F = -0.19388516641958353, relative_change = 2.05865988140803e-6 Iter 65: T = 801.7930784580202 K, F = -0.08108526544237238, relative_change = 8.609837653468944e-7 Iter 70: T = 801.7909699053611 K, F = -0.03391085668716298, relative_change = 3.600785234530401e-7 Iter 75: T = 801.790088077586 K, F = -0.014181930549494237, relative_change = 1.5058998361764906e-7 Iter 80: T = 801.7897192856523 K, F = -0.005931053651934026, relative_change = 6.297867735082977e-8 Iter 85: T = 801.7895650522817 K, F = -0.0024804376290847863, relative_change = 2.6338460815358963e-8 Iter 90: T = 801.7895005500128 K, F = -0.0010373486680761435, relative_change = 1.1015063386763848e-8 Iter 95: T = 801.7894735743881 K, F = -0.0004338316075245263, relative_change = 4.606631857367176e-9 Iter 100: T = 801.7894622928587 K, F = -0.00018143356010913436, relative_change = 1.9265485951011627e-9 Iter 105: T = 801.7894575747882 K, F = -7.587768246675175e-5, relative_change = 8.057056619709371e-10 Iter 110: T = 801.7894556016348 K, F = -3.1732953217122883e-5, relative_change = 3.369557364759445e-10 Iter 115: T = 801.7894547764384 K, F = -1.3271100033129812e-5, relative_change = 1.4091891406467257e-10 Iter 120: T = 801.7894544313315 K, F = -5.550133383547262e-6, relative_change = 5.893398203418905e-11 Iter 125: T = 801.7894542870037 K, F = -2.321131981730673e-6, relative_change = 2.4646894258982376e-11 Iter 130: T = 801.789454226644 K, F = -9.707253136870264e-7, relative_change = 1.0307627639380568e-11 Iter 135: T = 801.789454201401 K, F = -4.0596988659657995e-7, relative_change = 4.310783251929841e-12 Iter 140: T = 801.7894541908439 K, F = -1.6978184769200766e-7, relative_change = 1.8028252087711822e-12 Iter 145: T = 801.789454186429 K, F = -7.100598864440144e-8, relative_change = 7.539756931931979e-13 Iter 150: T = 801.7894541845825 K, F = -2.969715584555388e-8, relative_change = 3.1533866498074397e-13 Converged in 153 iterations to T = 801.7894541840419 K Iter 1: T = 980.8599504233824 K, F = -4361.078502919771, relative_change = 0.01914004957661758 Iter 2: T = 963.7307962065072 K, F = -3683.0818741312646, relative_change = 0.01746340464760696 Iter 3: T = 948.4866912025648 K, F = -3109.0442756503057, relative_change = 0.015817804166834936 Iter 5: T = 923.1153644881691 K, F = -2212.4204855557314, relative_change = 0.01270481280293221 Iter 10: T = 883.0926316083186 K, F = -938.5208451859035, relative_change = 0.006595530022699387 Iter 15: T = 864.2791499296959 K, F = -395.30302826353767, relative_change = 0.0030710856815275604 Iter 20: T = 855.9614376964455 K, F = -165.85786282754643, relative_change = 0.001348632469595829 Iter 25: T = 852.3958999959409 K, F = -69.46170869697893, relative_change = 0.0005760983818256354 Iter 30: T = 850.8888473074644 K, F = -29.067160589808207, relative_change = 0.00024311184822139146 Iter 35: T = 850.2557451123962 K, F = -12.159308000588462, relative_change = 0.0001020587592159696 Iter 40: T = 849.990474406447 K, F = -5.0857072379252335, relative_change = 4.2750165729161245e-5 Iter 45: T = 849.8794473165257 K, F = -2.126997974225406, relative_change = 1.7890546360944378e-5 Iter 50: T = 849.8329990987968 K, F = -0.8895524867774771, relative_change = 7.484126396896996e-6 Iter 55: T = 849.8135712108756 K, F = -0.3720243655957829, relative_change = 3.1303160751601658e-6 Iter 60: T = 849.8054457657815 K, F = -0.15558553846017276, relative_change = 1.3091994225598847e-6 Iter 65: T = 849.8020475253326 K, F = -0.06506781873448575, relative_change = 5.475340028574248e-7 Iter 70: T = 849.8006263262034 K, F = -0.027212154337094008, relative_change = 2.2898721245735476e-7 Iter 75: T = 849.8000319612381 K, F = -0.011380450628771355, relative_change = 9.576552859403058e-8 Iter 80: T = 849.7997833902713 K, F = -0.004759440835845119, relative_change = 4.0050347486914606e-8 Iter 85: T = 849.7996794348475 K, F = -0.0019904550796789877, relative_change = 1.6749544070318185e-8 Iter 90: T = 849.7996359594343 K, F = -0.0008324321018058356, relative_change = 7.004861206557978e-9 Iter 95: T = 849.7996177774949 K, F = -0.0003481330495227475, relative_change = 2.9295169377264098e-9 Iter 100: T = 849.7996101735903 K, F = -0.0001455933980665236, relative_change = 1.2251590143853384e-9 Iter 105: T = 849.7996069935465 K, F = -6.0888898502753364e-5, relative_change = 5.123761461471337e-10 Iter 110: T = 849.7996056636141 K, F = -2.5464463239810442e-5, relative_change = 2.1428181419887338e-10 Iter 115: T = 849.7996051074206 K, F = -1.0649541913654303e-5, relative_change = 8.961520795728047e-11 Iter 120: T = 849.7996048748138 K, F = -4.453764668399529e-6, relative_change = 3.7478142318951716e-11 Iter 125: T = 849.7996047775348 K, F = -1.862614936731788e-6, relative_change = 1.5673784521572508e-11 Iter 130: T = 849.7996047368516 K, F = -7.789683933445701e-7, relative_change = 6.554968774493124e-12 Iter 135: T = 849.7996047198375 K, F = -3.2577225406171806e-7, relative_change = 2.7413525008450264e-12 Iter 140: T = 849.7996047127219 K, F = -1.3624320471805618e-7, relative_change = 1.1464777780649048e-12 Iter 145: T = 849.7996047097461 K, F = -5.697669536175454e-8, relative_change = 4.794552156644719e-13 Converged in 150 iterations to T = 849.7996047085016 K Iter 1: T = 967.266325307961 K, F = -7458.398916344287, relative_change = 0.03273367469203905 Iter 2: T = 936.605430824822 K, F = -6322.372748921983, relative_change = 0.031698502967501915 Iter 3: T = 907.9861017734943 K, F = -5357.876412482665, relative_change = 0.030556441495458775 Iter 5: T = 856.7348011032338 K, F = -3844.1547808351916, relative_change = 0.027956491618267906 Iter 10: T = 761.344318997402 K, F = -1664.7131492240026, relative_change = 0.020050527597654796 Iter 15: T = 705.4230784532522 K, F = -712.8183858162403, relative_change = 0.012034318114596515 Iter 20: T = 676.6318838954413 K, F = -302.136844204921, relative_change = 0.006170236719183113 Iter 25: T = 663.1963167250768 K, F = -127.19884863979239, relative_change = 0.0028523672395701625 Iter 30: T = 657.2793108346539 K, F = -53.356457843523046, relative_change = 0.001248150791013221 Iter 35: T = 654.7475048431653 K, F = -22.343456328606138, relative_change = 0.0005323264431145067 Iter 40: T = 653.6782411056847 K, F = -9.349483437143256, relative_change = 0.0002244858414202448 Iter 45: T = 653.2292052552971 K, F = -3.91097854925768, relative_change = 9.421208157499043e-5 Iter 50: T = 653.0410858899601 K, F = -1.6357780781805897, relative_change = 3.945853112801482e-5 Iter 55: T = 652.9623547165745 K, F = -0.6841299711554153, relative_change = 1.6512179958036646e-5 Iter 60: T = 652.9294183457338 K, F = -0.2861162315153295, relative_change = 6.907367881393667e-6 Iter 65: T = 652.9156422027089 K, F = -0.11965808343321338, relative_change = 2.8890546602967176e-6 Iter 70: T = 652.9098805473843 K, F = -0.050042589663435944, relative_change = 1.2082915503909735e-6 Iter 75: T = 652.9074709004814 K, F = -0.020928434891911873, relative_change = 5.053314696584195e-7 Iter 80: T = 652.9064631479528 K, F = -0.008752526001024885, relative_change = 2.1133731941695782e-7 Iter 85: T = 652.9060416921632 K, F = -0.003660411702368249, relative_change = 8.838408186241162e-8 Iter 90: T = 652.9058654340308 K, F = -0.0015308280288628406, relative_change = 3.6963329461838594e-8 Iter 95: T = 652.9057917207244 K, F = -0.0006402105873339892, relative_change = 1.5458514698260193e-8 Iter 100: T = 652.9057608929306 K, F = -0.0002677437175412356, relative_change = 6.46493701492222e-9 Iter 105: T = 652.9057480003777 K, F = -0.00011197362224507623, relative_change = 2.7037141705935084e-9 Iter 110: T = 652.9057426085577 K, F = -4.6828705485779665e-5, relative_change = 1.130725585650755e-9 Iter 115: T = 652.9057403536341 K, F = -1.9584323120713787e-5, relative_change = 4.728829329072631e-10 Iter 120: T = 652.9057394105981 K, F = -8.19039771776664e-6, relative_change = 1.9776528896176406e-10 Iter 125: T = 652.9057390162093 K, F = -3.425322488814775e-6, relative_change = 8.270781433072694e-11 Iter 130: T = 652.9057388512712 K, F = -1.4325101868051249e-6, relative_change = 3.4589381609043726e-11 Iter 135: T = 652.905738782292 K, F = -5.990931885579975e-7, relative_change = 1.4465700223082374e-11 Iter 140: T = 652.9057387534441 K, F = -2.5054764679621755e-7, relative_change = 6.049721846510962e-12 Iter 145: T = 652.9057387413795 K, F = -1.047810669896343e-7, relative_change = 2.530042960807631e-12 Iter 150: T = 652.9057387363341 K, F = -4.3821818618283714e-8, relative_change = 1.0581213468653146e-12 Iter 155: T = 652.9057387342241 K, F = -1.8327041773069652e-8, relative_change = 4.4252463126176e-13 Converged in 159 iterations to T = 652.9057387334625 K Iter 1: T = 973.5829638065676 K, F = -6019.146825762348, relative_change = 0.02641703619343242 Iter 2: T = 949.3588587643786 K, F = -5093.572394141145, relative_change = 0.024881397829185803 Iter 3: T = 927.2597162140805 K, F = -4308.511627542256, relative_change = 0.023277965277598893 Iter 5: T = 889.1117030476065 K, F = -3078.623230283152, relative_change = 0.01994625222866377 Iter 10: T = 824.21310575491 K, F = -1318.0618019026092, relative_change = 0.011945756820021847 Iter 15: T = 790.8482238533469 K, F = -558.6177340761332, relative_change = 0.006114892083014229 Iter 20: T = 775.2930238735555 K, F = -235.16222304446285, relative_change = 0.0028241473520321837 Iter 25: T = 768.4459554327282 K, F = -98.64118669530521, relative_change = 0.0012352404140800056 Iter 30: T = 765.5168720354025 K, F = -41.30625064834387, relative_change = 0.0005267129669413129 Iter 35: T = 764.2799519809905 K, F = -17.284248508938482, relative_change = 0.00022209910745452186 Iter 40: T = 763.7605318327088 K, F = -7.230148958091766, relative_change = 9.320695444169128e-5 Iter 45: T = 763.5429296452199 K, F = -3.0240275457375514, relative_change = 3.903694712869998e-5 Iter 50: T = 763.4518601125998 K, F = -1.2647357260996013, relative_change = 1.6335653054444057e-5 Iter 55: T = 763.4137622407505 K, F = -0.5289365603200162, relative_change = 6.833504490615824e-6 Iter 60: T = 763.3978272423099 K, F = -0.22120915649353856, relative_change = 2.8581575052036995e-6 Iter 65: T = 763.3911626834247 K, F = -0.09251258566741583, relative_change = 1.1953688359837565e-6 Iter 70: T = 763.3883754236961 K, F = -0.038689916188905715, relative_change = 4.999268341088049e-7 Iter 75: T = 763.3872097476144 K, F = -0.016180593403165022, relative_change = 2.0907700095817642e-7 Iter 80: T = 763.3867222460713 K, F = -0.006766918867635585, relative_change = 8.743878355251668e-8 Iter 85: T = 763.3865183667742 K, F = -0.0028300065401859476, relative_change = 3.6567993324116735e-8 Iter 90: T = 763.3864331019597 K, F = -0.0011835425774687769, relative_change = 1.5293180235803717e-8 Iter 95: T = 763.386397443186 K, F = -0.0004949716473686694, relative_change = 6.3957921264877374e-9 Iter 100: T = 763.3863825302592 K, F = -0.00020700305648957418, relative_change = 2.6747969283399036e-9 Iter 105: T = 763.3863762934948 K, F = -8.657114947974165e-5, relative_change = 1.1186320513593976e-9 Iter 110: T = 763.3863736852054 K, F = -3.620508859991656e-5, relative_change = 4.678252909013182e-10 Iter 115: T = 763.3863725943876 K, F = -1.5141400802498595e-5, relative_change = 1.9565012978011748e-10 Iter 120: T = 763.3863721381946 K, F = -6.332314393509009e-6, relative_change = 8.182321785043429e-11 Iter 125: T = 763.3863719474093 K, F = -2.6482507389236076e-6, relative_change = 3.421946288918943e-11 Iter 130: T = 763.3863718676205 K, F = -1.1075299753970924e-6, relative_change = 1.4310986627357646e-11 Iter 135: T = 763.386371834252 K, F = -4.6318327506789103e-7, relative_change = 5.985038603145008e-12 Iter 140: T = 763.3863718202969 K, F = -1.9370961934495057e-7, relative_change = 2.5030255021859967e-12 Iter 145: T = 763.3863718144606 K, F = -8.101252135794823e-8, relative_change = 1.0468060783373739e-12 Iter 150: T = 763.3863718120198 K, F = -3.3880672156705316e-8, relative_change = 4.377902694279643e-13 Converged in 154 iterations to T = 763.3863718111388 K Iter 1: T = 970.0389362581753 K, F = -6826.656873904033, relative_change = 0.029961063741824622 Iter 2: T = 942.2359390104778 K, F = -5782.500088275678, relative_change = 0.028661733265001526 Iter 3: T = 916.5480488854297 K, F = -4896.31670571027, relative_change = 0.02726269404670037 Iter 5: T = 871.31090226618 K, F = -3506.4562618478194, relative_change = 0.024206642519799336 Iter 10: T = 790.6610423789887 K, F = -1510.1056460240318, relative_change = 0.015903782539789708 Iter 15: T = 746.435386693947 K, F = -643.1348412181719, relative_change = 0.008776233627345496 Iter 20: T = 724.8644289689186 K, F = -271.55881177584604, relative_change = 0.004243541396280106 Iter 25: T = 715.1286128591023 K, F = -114.08301423211726, relative_change = 0.001899573555769428 Iter 30: T = 710.9134349065514 K, F = -47.806111887965045, relative_change = 0.0008185905647273179 Iter 35: T = 709.1238738152531 K, F = -20.010170692026133, relative_change = 0.00034676227535340617 Iter 40: T = 708.3706560640353 K, F = -8.371512803376154, relative_change = 0.00014580754426190813 Iter 45: T = 708.0548018562447 K, F = -3.501597325113827, relative_change = 6.11172772122603e-5 Iter 50: T = 707.9225585485976 K, F = -1.464502815813205, relative_change = 2.5584336384550705e-5 Iter 55: T = 707.8672266513615 K, F = -0.6124888455793229, relative_change = 1.0703941776240832e-5 Iter 60: T = 707.8440816106794 K, F = -0.256152997861604, relative_change = 4.4772629803707474e-6 Iter 65: T = 707.8344012768464 K, F = -0.10712674098635355, relative_change = 1.8725754781927255e-6 Iter 70: T = 707.8303527054421 K, F = -0.04480176957170734, relative_change = 7.831562778081892e-7 Iter 75: T = 707.8286595200105 K, F = -0.018736650317192405, relative_change = 3.275293047753473e-7 Iter 80: T = 707.8279514053535 K, F = -0.007835893589430265, relative_change = 1.3697736577804905e-7 Iter 85: T = 707.8276552625972 K, F = -0.0032770647452335933, relative_change = 5.7285692477448393e-8 Iter 90: T = 707.8275314120286 K, F = -0.0013705076930083937, relative_change = 2.3957582088781468e-8 Iter 95: T = 707.8274796162189 K, F = -0.0005731626993283889, relative_change = 1.0019350692820439e-8 Iter 100: T = 707.8274579545887 K, F = -0.000239703487557974, relative_change = 4.190212756141564e-9 Iter 105: T = 707.8274488954354 K, F = -0.00010024686042697795, relative_change = 1.7523971102795879e-9 Iter 110: T = 707.8274451067894 K, F = -4.192443540473878e-5, relative_change = 7.328734387561446e-10 Iter 115: T = 707.8274435223323 K, F = -1.753329922749014e-5, relative_change = 3.0649642172847496e-10 Iter 120: T = 707.8274428596934 K, F = -7.332635260204334e-6, relative_change = 1.281804667763916e-10 Iter 125: T = 707.8274425825699 K, F = -3.0665962129639013e-6, relative_change = 5.360661219008826e-11 Iter 130: T = 707.8274424666735 K, F = -1.282486602027788e-6, relative_change = 2.2418915694490834e-11 Iter 135: T = 707.8274424182043 K, F = -5.36352178115429e-7, relative_change = 9.375875154277858e-12 Iter 140: T = 707.827442397934 K, F = -2.2430924528915597e-7, relative_change = 3.921109237325695e-12 Iter 145: T = 707.8274423894566 K, F = -9.380888299492796e-8, relative_change = 1.6398560710300543e-12 Iter 150: T = 707.8274423859112 K, F = -3.923275149197991e-8, relative_change = 6.858206138362124e-13 Iter 155: T = 707.8274423844284 K, F = -1.640612690145815e-8, relative_change = 2.8679252905943003e-13 Converged in 157 iterations to T = 707.8274423841146 K Iter 1: T = 973.5007066493516 K, F = -6037.889197280766, relative_change = 0.026499293350648396 Iter 2: T = 949.1944663422323 K, F = -5109.547738710713, relative_change = 0.024967871251761 Iter 3: T = 927.0139679664214 K, F = -4322.127264486514, relative_change = 0.023367707211025525 Iter 5: T = 888.7084375613995 K, F = -3088.5067138702675, relative_change = 0.020039037703453024 Iter 10: T = 823.4767100389208 K, F = -1322.4577101900697, relative_change = 0.012024679816854919 Iter 15: T = 789.897015355274 K, F = -560.5338524384, relative_change = 0.006164247429597952 Iter 20: T = 774.2284007534672 K, F = -235.98183701925637, relative_change = 0.0028493204559839765 Iter 25: T = 767.328320844272 K, F = -98.98765413691744, relative_change = 0.0012467582353870449 Iter 30: T = 764.3759423463168 K, F = -41.451837562233315, relative_change = 0.0005317211916497391 Iter 35: T = 763.1290704638396 K, F = -17.345258869078915, relative_change = 0.00022422854270109978 Iter 40: T = 762.6054506931117 K, F = -7.255686200834219, relative_change = 9.410373247790929e-5 Iter 45: T = 762.3860855131011 K, F = -3.0347113897693956, relative_change = 3.9413087166736716e-5 Iter 50: T = 762.2942775054823 K, F = -1.2692045145476518, relative_change = 1.649315175178295e-5 Iter 55: T = 762.255870589442 K, F = -0.5308055795806117, relative_change = 6.899406030342292e-6 Iter 60: T = 762.2398063091227 K, F = -0.22199082341398735, relative_change = 2.885724214265703e-6 Iter 65: T = 762.2330876767295 K, F = -0.09283949173604167, relative_change = 1.206898594740561e-6 Iter 70: T = 762.230277801715 K, F = -0.03882663284352672, relative_change = 5.047488973737417e-7 Iter 75: T = 762.2291026674586 K, F = -0.016237770052085265, relative_change = 2.1109367697398954e-7 Iter 80: T = 762.2286112103601 K, F = -0.006790830841798656, relative_change = 8.828218703332967e-8 Iter 85: T = 762.2284056767968 K, F = -0.002840006817602214, relative_change = 3.692071570889676e-8 Iter 90: T = 762.2283197201474 K, F = -0.0011877248121636708, relative_change = 1.5440693100958473e-8 Iter 95: T = 762.2282837720398 K, F = -0.0004967207096234771, relative_change = 6.457483819360665e-9 Iter 100: T = 762.2282687381102 K, F = -0.00020773453464062452, relative_change = 2.700597128623448e-9 Iter 105: T = 762.2282624507409 K, F = -8.687706347443314e-5, relative_change = 1.1294220182626441e-9 Iter 110: T = 762.2282598212879 K, F = -3.6333023420431765e-5, relative_change = 4.723377572166306e-10 Iter 115: T = 762.2282587216192 K, F = -1.5194903925430658e-5, relative_change = 1.9753728742881797e-10 Iter 120: T = 762.2282582617247 K, F = -6.354689920384793e-6, relative_change = 8.261244816620658e-11 Iter 125: T = 762.2282580693914 K, F = -2.657608268452627e-6, relative_change = 3.4549526151245914e-11 Iter 130: T = 762.2282579889553 K, F = -1.1114432152403708e-6, relative_change = 1.4449020536884317e-11 Iter 135: T = 762.2282579553159 K, F = -4.648190942146968e-7, relative_change = 6.042756433762444e-12 Iter 140: T = 762.2282579412475 K, F = -1.94393576680163e-7, relative_change = 2.527161751506708e-12 Iter 145: T = 762.2282579353639 K, F = -8.129684681001947e-8, relative_change = 1.0568779344080932e-12 Iter 150: T = 762.2282579329034 K, F = -3.399814640925314e-8, relative_change = 4.4198381808381773e-13 Converged in 154 iterations to T = 762.2282579320153 K Iter 1: T = 964.267902303268 K, F = -8141.592450200204, relative_change = 0.035732097696732065 Iter 2: T = 930.4579203026242 K, F = -6907.099775595375, relative_change = 0.035062851226183724 Iter 3: T = 898.5389423736941 K, F = -5858.7328593068205, relative_change = 0.03430459049512808 Iter 5: T = 840.2607927766742 K, F = -4212.514863281473, relative_change = 0.03249519271890455 Iter 10: T = 725.6836108539994 K, F = -1837.3655079747343, relative_change = 0.026149365090136514 Iter 15: T = 651.5956597753417 K, F = -793.5212630647346, relative_change = 0.017964174163150787 Iter 20: T = 609.5957091579536 K, F = -338.8444871783294, relative_change = 0.010328217891620596 Iter 25: T = 588.5729704036773 K, F = -143.33278333369086, relative_change = 0.0051335428543760634 Iter 30: T = 578.9364402420208 K, F = -60.27343869114358, relative_change = 0.0023321322486417303 Iter 35: T = 574.731739481907 K, F = -25.269004740307707, relative_change = 0.0010119806348160248 Iter 40: T = 572.9403189040708 K, F = -10.578975342033624, relative_change = 0.00042999285851913493 Iter 45: T = 572.1851642504381 K, F = -4.4262348291885205, relative_change = 0.0001810403119750458 Iter 50: T = 571.8682920152684 K, F = -1.851452711246973, relative_change = 7.59273332847126e-5 Iter 55: T = 571.7355861858368 K, F = -0.7743607232605296, relative_change = 3.1791321768012924e-5 Iter 60: T = 571.6800543962378 K, F = -0.32385759731527736, relative_change = 1.3302098894241182e-5 Iter 65: T = 571.6568246261492 K, F = -0.13544298620401135, relative_change = 5.56424978580682e-6 Iter 70: T = 571.6471086593161 K, F = -0.05664420170666168, relative_change = 2.327237463012809e-6 Iter 75: T = 571.6430451510978 K, F = -0.023689338881965838, relative_change = 9.733137910274735e-7 Iter 80: T = 571.6413457128477 K, F = -0.009907174443996802, relative_change = 4.070576239432778e-7 Iter 85: T = 571.6406349821267 K, F = -0.0041433004201410495, relative_change = 1.7023743925412724e-7 Iter 90: T = 571.6403377451156 K, F = -0.0017327780230425027, relative_change = 7.119551897486608e-8 Iter 95: T = 571.6402134368842 K, F = -0.0007246685160711697, relative_change = 2.9774849296732144e-8 Iter 100: T = 571.6401614496688 K, F = -0.00030306503779437, relative_change = 1.2452203365200907e-8 Iter 105: T = 571.6401397079893 K, F = -0.00012674541951024354, relative_change = 5.207661156229653e-9 Iter 110: T = 571.6401306153584 K, F = -5.300644880973371e-5, relative_change = 2.1779062822676523e-9 Iter 115: T = 571.6401268127115 K, F = -2.2167929842331624e-5, relative_change = 9.108264424733157e-10 Iter 120: T = 571.6401252223991 K, F = -9.270892711410461e-6, relative_change = 3.8091848895168646e-10 Iter 125: T = 571.6401245573114 K, F = -3.877198482715727e-6, relative_change = 1.59304679878874e-10 Iter 130: T = 571.6401242791638 K, F = -1.621490441361395e-6, relative_change = 6.66231087827082e-11 Iter 135: T = 571.6401241628391 K, F = -6.781267350985942e-7, relative_change = 2.7862582555080683e-11 Iter 140: T = 571.6401241141907 K, F = -2.836000659311999e-7, relative_change = 1.1652438760856531e-11 Iter 145: T = 571.6401240938454 K, F = -1.1860457121981582e-7, relative_change = 4.873174124952445e-12 Iter 150: T = 571.6401240853368 K, F = -4.960192412362119e-8, relative_change = 2.038022739918048e-12 Iter 155: T = 571.6401240817783 K, F = -2.0743357309616073e-8, relative_change = 8.522942334884854e-13 Iter 160: T = 571.6401240802902 K, F = -8.67493898937255e-9, relative_change = 3.5643219977562694e-13 Converged in 163 iterations to T = 571.6401240798546 K Iter 1: T = 963.5061525531382 K, F = -8315.157855378327, relative_change = 0.03649384744686173 Iter 2: T = 928.8863404462418 K, F = -7055.79559739846, relative_change = 0.03593107528702279 Iter 3: T = 896.1067841836158 K, F = -5986.260857412238, relative_change = 0.035289092793504284 Iter 5: T = 835.9488938713395 K, F = -4306.6453274468, relative_change = 0.033738081228024575 Iter 10: T = 715.8177312036372 K, F = -1882.3110678177425, relative_change = 0.028073560725857764 Iter 15: T = 635.6800908328902 K, F = -815.2791982856402, relative_change = 0.02019120574677544 Iter 20: T = 588.5952147538598 K, F = -349.1622228403803, relative_change = 0.012154383490924838 Iter 25: T = 564.3058398024508 K, F = -148.0179317993802, relative_change = 0.006245559483823866 Iter 30: T = 552.9564849718312 K, F = -62.320389544542465, relative_change = 0.0028908604763715436 Iter 35: T = 547.9548358075368 K, F = -26.14278398482217, relative_change = 0.0012657806205211412 Iter 40: T = 545.81401577769 K, F = -10.94770873526612, relative_change = 0.0005399957603878852 Iter 45: T = 544.9097513266199 K, F = -4.581038729205454, relative_change = 0.00022774737486937812 Iter 50: T = 544.5299839565099 K, F = -1.916298900973613, relative_change = 9.558573833021248e-5 Iter 55: T = 544.3708799509815 K, F = -0.8014986928193495, relative_change = 4.0034710783689484e-5 Iter 60: T = 544.3042914956075 K, F = -0.3352102660270659, relative_change = 1.67534434725183e-5 Iter 65: T = 544.2764347812508 K, F = -0.14019137602343648, relative_change = 7.008319408893844e-6 Iter 70: T = 544.2647832609044 K, F = -0.05863013444904239, relative_change = 2.9312829375479025e-6 Iter 75: T = 544.2599101918343 K, F = -0.02451989706123764, relative_change = 1.2259535196949357e-6 Iter 80: T = 544.2578721699545 K, F = -0.010254526833826383, relative_change = 5.127181958803906e-7 Iter 85: T = 544.257019836785 K, F = -0.004288567869153048, relative_change = 2.144265854775662e-7 Iter 90: T = 544.2566633794613 K, F = -0.0017935306973880238, relative_change = 8.967605836769332e-8 Iter 95: T = 544.2565143045044 K, F = -0.0007500760263055573, relative_change = 3.750365094220433e-8 Iter 100: T = 544.256451959534 K, F = -0.00031369076442083754, relative_change = 1.5684483886899716e-8 Iter 105: T = 544.2564258861153 K, F = -0.0001311892266288306, relative_change = 6.559440104303553e-9 Iter 110: T = 544.2564149818988 K, F = -5.486490150710677e-5, relative_change = 2.74323645957371e-9 Iter 115: T = 544.2564104216251 K, F = -2.2945157636677926e-5, relative_change = 1.14725432437587e-9 Iter 120: T = 544.2564085144642 K, F = -9.595939335943493e-6, relative_change = 4.797954870300102e-10 Iter 125: T = 544.2564077168666 K, F = -4.013137319264226e-6, relative_change = 2.0065624850674089e-10 Iter 130: T = 544.2564073833017 K, F = -1.6783419464483362e-6, relative_change = 8.391683933960405e-11 Iter 135: T = 544.2564072438009 K, F = -7.019022427723343e-7, relative_change = 3.5095004290011e-11 Iter 140: T = 544.25640718546 K, F = -2.935438044304739e-7, relative_change = 1.4677145125453786e-11 Iter 145: T = 544.2564071610611 K, F = -1.2276306535219383e-7, relative_change = 6.138134409275311e-12 Iter 150: T = 544.2564071508573 K, F = -5.134110428461902e-8, relative_change = 2.5670473276603378e-12 Iter 155: T = 544.2564071465899 K, F = -2.147126362816998e-8, relative_change = 1.0735598832211765e-12 Iter 160: T = 544.2564071448053 K, F = -8.979774979156474e-9, relative_change = 4.4898736958723727e-13 Converged in 165 iterations to T = 544.2564071440588 K Iter 1: T = 969.302857406521 K, F = -6994.373140445235, relative_change = 0.030697142593479006 Iter 2: T = 940.7461486695137 K, F = -5925.749729481395, relative_change = 0.029461079701564086 Iter 3: T = 914.2908885150323 K, F = -5018.706052090182, relative_change = 0.028121571575814353 Iter 5: T = 867.499401064816 K, F = -3595.845498017856, relative_change = 0.025163865934865293 Iter 10: T = 783.1713847745107 K, F = -1550.7389213464317, relative_change = 0.016897004333681687 Iter 15: T = 736.180782126255 K, F = -661.2755867316249, relative_change = 0.009508928996689633 Iter 20: T = 712.9784203334767 K, F = -279.45529912282524, relative_change = 0.004657698466827364 Iter 25: T = 702.4302995507628 K, F = -117.45349613893735, relative_change = 0.0020992883549224 Iter 30: T = 697.8470047596434 K, F = -49.228942460619216, relative_change = 0.0009075485667730092 Iter 35: T = 695.8979961229735 K, F = -20.60764612902194, relative_change = 0.00038498490072031924 Iter 40: T = 695.0770908418558 K, F = -8.62181800871421, relative_change = 0.0001619763866923547 Iter 45: T = 694.7327498606743 K, F = -3.6063544837253225, relative_change = 6.79118142129716e-5 Iter 50: T = 694.5885614817194 K, F = -1.5083269444811942, relative_change = 2.8431613327354652e-5 Iter 55: T = 694.5282284743842 K, F = -0.6308189727013209, relative_change = 1.1895709726771504e-5 Iter 60: T = 694.5029909396768 K, F = -0.26381928775887165, relative_change = 4.9758501112962956e-6 Iter 65: T = 694.4924353300904 K, F = -0.1103329470241512, relative_change = 2.0811212850134563e-6 Iter 70: T = 694.4880206782143 K, F = -0.04614265582859356, relative_change = 8.703779975921444e-7 Iter 75: T = 694.4861743883625 K, F = -0.019297427166841685, relative_change = 3.640074093937115e-7 Iter 80: T = 694.4854022427 K, F = -0.008070417550147813, relative_change = 1.5223310913264315e-7 Iter 85: T = 694.4850793212536 K, F = -0.0033751455340965686, relative_change = 6.36658552939661e-8 Iter 90: T = 694.4849442714892 K, F = -0.001411526262388274, relative_change = 2.6625847406898148e-8 Iter 95: T = 694.4848877920372 K, F = -0.0005903171555486919, relative_change = 1.1135251968043645e-8 Iter 100: T = 694.4848641716509 K, F = -0.0002468776868356226, relative_change = 4.656896157464278e-9 Iter 105: T = 694.4848542933224 K, F = -0.00010324719592613718, relative_change = 1.9475697002091936e-9 Iter 110: T = 694.4848501620874 K, F = -4.317921057450658e-5, relative_change = 8.144969344809322e-10 Iter 115: T = 694.4848484343555 K, F = -1.805806112598063e-5, relative_change = 3.4063234154349894e-10 Iter 120: T = 694.4848477117974 K, F = -7.552097018082016e-6, relative_change = 1.4245651765320606e-10 Iter 125: T = 694.4848474096151 K, F = -3.1583778771215876e-6, relative_change = 5.957703054694471e-11 Iter 130: T = 694.4848472832387 K, F = -1.3208706592937602e-6, relative_change = 2.4915812720042305e-11 Iter 135: T = 694.4848472303867 K, F = -5.524042677729213e-7, relative_change = 1.042009767551978e-11 Iter 140: T = 694.4848472082833 K, F = -2.3102304513855643e-7, relative_change = 4.357827838133433e-12 Iter 145: T = 694.4848471990393 K, F = -9.661499744684221e-8, relative_change = 1.8224654827366136e-12 Iter 150: T = 694.4848471951734 K, F = -4.040560885876232e-8, relative_change = 7.621780199965167e-13 Iter 155: T = 694.4848471935567 K, F = -1.689763617918061e-8, relative_change = 3.1874304705642867e-13 Converged in 158 iterations to T = 694.4848471930833 K Iter 1: T = 966.4780893915089 K, F = -7637.99921971381, relative_change = 0.033521910608491086 Iter 2: T = 934.9952781437592 K, F = -6475.998943637584, relative_change = 0.032574780114851085 Iter 3: T = 905.5218443551486 K, F = -5489.37059090093, relative_change = 0.03152254827117841 Iter 5: T = 852.4784939460463 K, F = -3940.6642899764724, relative_change = 0.02909787953569588 Iter 10: T = 752.4127189608623 K, F = -1709.4976159336895, relative_change = 0.02146100501046301 Iter 15: T = 692.4074628646484 K, F = -733.3956802940239, relative_change = 0.013272397127177345 Iter 20: T = 660.8804613590962 K, F = -311.3247590723122, relative_change = 0.006963629548422077 Iter 25: T = 645.9673419176311 K, F = -131.18349434328817, relative_change = 0.0032629024613279422 Iter 30: T = 639.3516239059596 K, F = -55.052198449878226, relative_change = 0.0014373337044490087 Iter 35: T = 636.5111201538557 K, F = -23.05815998079597, relative_change = 0.0006148529177877929 Iter 40: T = 635.3096669500942 K, F = -9.649379125241216, relative_change = 0.0002596239279162654 Iter 45: T = 634.804791586897 K, F = -4.036575492781976, relative_change = 0.000109018665169179 Iter 50: T = 634.5932209537033 K, F = -1.688335354702883, relative_change = 4.5670471160213006e-5 Iter 55: T = 634.5046648589204 K, F = -0.7061155106209294, relative_change = 1.9113536298540734e-5 Iter 60: T = 634.4676165524821 K, F = -0.29531180239623067, relative_change = 7.995890258030959e-6 Iter 65: T = 634.4521202173726 K, F = -0.12350394822137334, relative_change = 3.3443934383616304e-6 Iter 70: T = 634.445639064177 K, F = -0.05165100549887952, relative_change = 1.3987381605737064e-6 Iter 75: T = 634.4429284984038 K, F = -0.021601098718587675, relative_change = 5.849817516174868e-7 Iter 80: T = 634.4417948951645 K, F = -0.009033842941616466, relative_change = 2.4464858441694414e-7 Iter 85: T = 634.4413208066072 K, F = -0.0037780619643163482, relative_change = 1.0231534970617933e-7 Iter 90: T = 634.4411225367357 K, F = -0.0015800308008539488, relative_change = 4.2789569359452744e-8 Iter 95: T = 634.441039617842 K, F = -0.0006607877790272831, relative_change = 1.7895120829999377e-8 Iter 100: T = 634.441004940159 K, F = -0.0002763493463964761, relative_change = 7.483955346831959e-9 Iter 105: T = 634.4409904375357 K, F = -0.00011557259740579973, relative_change = 3.1298798557460646e-9 Iter 110: T = 634.440984372365 K, F = -4.833383997138174e-5, relative_change = 1.3089531805840404e-9 Iter 115: T = 634.4409818358383 K, F = -2.021378931388318e-5, relative_change = 5.474198684269071e-10 Iter 120: T = 634.4409807750326 K, F = -8.453648580930562e-6, relative_change = 2.289375415405624e-10 Iter 125: T = 634.4409803313908 K, F = -3.5354174345303413e-6, relative_change = 9.574443161754193e-11 Iter 130: T = 634.4409801458546 K, F = -1.4785542231110504e-6, relative_change = 4.0041476438379776e-11 Iter 135: T = 634.4409800682611 K, F = -6.183487270550181e-7, relative_change = 1.6745815346153222e-11 Iter 140: T = 634.4409800358105 K, F = -2.586004069771164e-7, relative_change = 7.00328871922801e-12 Iter 145: T = 634.4409800222394 K, F = -1.0815026668664629e-7, relative_change = 2.928872199386172e-12 Iter 150: T = 634.4409800165637 K, F = -4.5229053169393296e-8, relative_change = 1.2248709179964859e-12 Iter 155: T = 634.4409800141901 K, F = -1.891597234404685e-8, relative_change = 5.122730366140074e-13 Converged in 160 iterations to T = 634.4409800131975 K Iter 1: T = 966.4295775850519 K, F = -7649.052680961672, relative_change = 0.03357042241494806 Iter 2: T = 934.8960441846217 K, F = -6485.455908281278, relative_change = 0.03262889933400763 Iter 3: T = 905.3697384903401 K, F = -5497.467381250046, relative_change = 0.03158244799295661 Iter 5: T = 852.214848626432 K, F = -3946.6114273086428, relative_change = 0.029169285709286882 Iter 10: T = 751.8534190705805 K, F = -1712.267061517901, relative_change = 0.02155179773964561 Iter 15: T = 691.5831157772182 K, F = -734.6752428945096, relative_change = 0.013354597854331575 Iter 20: T = 659.874311379309 K, F = -311.8992186366996, relative_change = 0.007017593171126249 Iter 25: T = 644.8614059108934 K, F = -131.43354236891125, relative_change = 0.0032912275187906874 Iter 30: T = 638.1980829866621 K, F = -55.158816830237626, relative_change = 0.0014504793149749413 Iter 35: T = 635.3364585865303 K, F = -23.103136745789875, relative_change = 0.0006206057634277999 Iter 40: T = 634.1259443611855 K, F = -9.668259164862752, relative_change = 0.0002620767657071475 Iter 45: T = 633.6172383894625 K, F = -4.044483816276227, relative_change = 0.00011005285590125476 Iter 50: T = 633.404058450203 K, F = -1.6916449039535562, relative_change = 4.6104461776642346e-5 Iter 55: T = 633.3148280404388 K, F = -0.7074999883714785, relative_change = 1.9295296134138957e-5 Iter 60: T = 633.2774975023242 K, F = -0.2958908748889698, relative_change = 8.07194989883147e-6 Iter 65: T = 633.2618830951482 K, F = -0.12374613504078569, relative_change = 3.376210452940637e-6 Iter 70: T = 633.2553525559088 K, F = -0.05175229298176115, relative_change = 1.4120458094386562e-6 Iter 75: T = 633.252621335096 K, F = -0.021643458713868913, relative_change = 5.905474130199587e-7 Iter 80: T = 633.2514790934615 K, F = -0.009051558461014408, relative_change = 2.469762531248318e-7 Iter 85: T = 633.2510013921873 K, F = -0.0037854708166277784, relative_change = 1.0328881600055061e-7 Iter 90: T = 633.250801611428 K, F = -0.0015831292732053082, relative_change = 4.3196685890909514e-8 Iter 95: T = 633.2507180606617 K, F = -0.0006620835984085249, relative_change = 1.8065382078016995e-8 Iter 100: T = 633.2506831187218 K, F = -0.0002768912721426431, relative_change = 7.555160634459676e-9 Iter 105: T = 633.2506685055832 K, F = -0.0001157992376993322, relative_change = 3.1596587769515977e-9 Iter 110: T = 633.2506623941938 K, F = -4.842862437809403e-5, relative_change = 1.321407102005644e-9 Iter 115: T = 633.2506598383378 K, F = -2.0253429856620375e-5, relative_change = 5.526282629429925e-10 Iter 120: T = 633.2506587694481 K, F = -8.4702255278013e-6, relative_change = 2.311157216786711e-10 Iter 125: T = 633.2506583224258 K, F = -3.542349543472767e-6, relative_change = 9.665535719706573e-11 Iter 130: T = 633.2506581354758 K, F = -1.4814533522145013e-6, relative_change = 4.042243752996985e-11 Iter 135: T = 633.2506580572909 K, F = -6.195614142279204e-7, relative_change = 1.6905144221985056e-11 Iter 140: T = 633.2506580245931 K, F = -2.591086395442588e-7, relative_change = 7.069951131791214e-12 Iter 145: T = 633.2506580109185 K, F = -1.0836160402316608e-7, relative_change = 2.9567182569927326e-12 Iter 150: T = 633.2506580051996 K, F = -4.531898073478757e-8, relative_change = 1.236558455741975e-12 Iter 155: T = 633.2506580028079 K, F = -1.8952694580409712e-8, relative_change = 5.171368455983878e-13 Converged in 160 iterations to T = 633.2506580018077 K Iter 1: T = 976.4502357585606 K, F = -5365.836184020997, relative_change = 0.02354976424143946 Iter 2: T = 955.0618641249391 K, F = -4537.152298737541, relative_change = 0.021904210629849215 Iter 3: T = 935.7431355217378 K, F = -3834.7100633488362, relative_change = 0.020227724850998847 Iter 5: T = 902.8932070188714 K, F = -2735.4347486820343, relative_change = 0.016875179137350645 Iter 10: T = 848.800408275024 K, F = -1166.429057858902, relative_change = 0.009492608898031203 Iter 15: T = 822.0983388391446 K, F = -492.9242030518356, relative_change = 0.004648381341933352 Iter 20: T = 809.961131357457 K, F = -207.1712097257655, relative_change = 0.0020947706082531034 Iter 25: T = 804.6877772464319 K, F = -86.83242188327453, relative_change = 0.0009055309580117614 Iter 30: T = 802.4454075038537 K, F = -36.34870094280957, relative_change = 0.00038411698576719475 Iter 35: T = 801.500955893136 K, F = -15.2075401560847, relative_change = 0.00016160906055284603 Iter 40: T = 801.1047941925538 K, F = -6.3610435763875275, relative_change = 6.775742244555454e-5 Iter 45: T = 800.9389070147843 K, F = -2.660451698180923, relative_change = 2.8366909144610414e-5 Iter 50: T = 800.8694946207997 K, F = -1.11266546195727, relative_change = 1.186862587526542e-5 Iter 55: T = 800.8404591571463 K, F = -0.4653357211608611, relative_change = 4.964519156283188e-6 Iter 60: T = 800.8283150646653 K, F = -0.1946099593910504, relative_change = 2.0763818155298622e-6 Iter 65: T = 800.8232360651433 K, F = -0.08138838466398812, relative_change = 8.683957673643403e-7 Iter 70: T = 800.8211119327767 K, F = -0.03403762514079178, relative_change = 3.631783947391116e-7 Iter 75: T = 800.8202235892877 K, F = -0.014234946695854789, relative_change = 1.51886401413387e-7 Iter 80: T = 800.819852072388 K, F = -0.00595322564666545, relative_change = 6.352085728616542e-8 Iter 85: T = 800.8196966994012 K, F = -0.0024897102249139547, relative_change = 2.6565207395023718e-8 Iter 90: T = 800.8196317205308 K, F = -0.001041226578062382, relative_change = 1.1109891585255117e-8 Iter 95: T = 800.8196045455855 K, F = -0.00043545339641182235, relative_change = 4.646290162137148e-9 Iter 100: T = 800.8195931806979 K, F = -0.0001821118113822795, relative_change = 1.9431341718321482e-9 Iter 105: T = 800.819588427766 K, F = -7.616133531918035e-5, relative_change = 8.126419494144003e-10 Iter 110: T = 800.819586440033 K, F = -3.185157875407185e-5, relative_change = 3.398565590802293e-10 Iter 115: T = 800.8195856087395 K, F = -1.3320711707232036e-5, relative_change = 1.4213208402161022e-10 Iter 120: T = 800.8195852610825 K, F = -5.5708792857656064e-6, relative_change = 5.944131978514674e-11 Iter 125: T = 800.8195851156881 K, F = -2.329806198519968e-6, relative_change = 2.4859047970615577e-11 Iter 130: T = 800.8195850548825 K, F = -9.74352224458741e-7, relative_change = 1.039634486003139e-11 Iter 135: T = 800.8195850294529 K, F = -4.0748564622550276e-7, relative_change = 4.3478746165606615e-12 Iter 140: T = 800.819585018818 K, F = -1.7041622790703315e-7, relative_change = 1.8183423108940991e-12 Iter 145: T = 800.8195850143702 K, F = -7.126860424033765e-8, relative_change = 7.604364920146856e-13 Iter 150: T = 800.8195850125102 K, F = -2.98041251678427e-8, relative_change = 3.180102182725751e-13 Converged in 153 iterations to T = 800.8195850119655 K Iter 1: T = 965.1377257344438 K, F = -7943.402353991082, relative_change = 0.034862274265556145 Iter 2: T = 932.2475898912514 K, F = -6737.379804936236, relative_change = 0.03407817865389517 Iter 3: T = 901.3000905422738 K, F = -5713.25363179435, relative_change = 0.033196652568002576 Iter 5: T = 845.1201322114623 K, F = -4105.3057149173765, relative_change = 0.031122193732676273 Iter 10: T = 736.5206331200093 K, F = -1786.6140754311887, relative_change = 0.024159868124514122 Iter 15: T = 668.513271385715 K, F = -769.3783543399163, relative_change = 0.015856002730230814 Iter 20: T = 631.2496337898925 K, F = -327.64836671469806, relative_change = 0.008741580708402443 Iter 25: T = 613.0850928760433 K, F = -138.3414494064826, relative_change = 0.00422418819372088 Iter 30: T = 604.889533691473 K, F = -58.11659285619004, relative_change = 0.001890302022885188 Iter 35: T = 601.3418173618078 K, F = -24.353325013712904, relative_change = 0.0008144735516287619 Iter 40: T = 599.835742711624 K, F = -10.193509717849093, relative_change = 0.00034499572927431657 Iter 45: T = 599.2018638633035 K, F = -4.264578231881298, relative_change = 0.00014506070043180728 Iter 50: T = 598.9360569111138 K, F = -1.7837664901606793, relative_change = 6.0803512813723e-5 Iter 55: T = 598.8247682726126 K, F = -0.746039576965287, relative_change = 2.5452865813610402e-5 Iter 60: T = 598.7782041288068 K, F = -0.31201090996877673, relative_change = 1.0648915299622086e-5 Iter 65: T = 598.75872661314 K, F = -0.13048813201545734, relative_change = 4.4542425633900044e-6 Iter 70: T = 598.7505802125602 K, F = -0.05457194762125517, relative_change = 1.8629467198407375e-6 Iter 75: T = 598.7471731731881 K, F = -0.022822684375160718, relative_change = 7.791291807818676e-7 Iter 80: T = 598.7457482881065 K, F = -0.009544726887045163, relative_change = 3.2584508354289637e-7 Iter 85: T = 598.7451523805584 K, F = -0.003991720122165643, relative_change = 1.3627299714368668e-7 Iter 90: T = 598.7449031642772 K, F = -0.001669385262212164, relative_change = 5.699111583906816e-8 Iter 95: T = 598.7447989389423 K, F = -0.0006981568943303373, relative_change = 2.3834386414121747e-8 Iter 100: T = 598.7447553506433 K, F = -0.0002919775576616934, relative_change = 9.9678287245439e-9 Iter 105: T = 598.7447371214928 K, F = -0.00012210850345556468, relative_change = 4.168665682491554e-9 Iter 110: T = 598.7447294978439 K, F = -5.106723522746437e-5, relative_change = 1.743385905755401e-9 Iter 115: T = 598.7447263095426 K, F = -2.1356927266125147e-5, relative_change = 7.291048118053927e-10 Iter 120: T = 598.7447249761569 K, F = -8.931722259908348e-6, relative_change = 3.049203504467896e-10 Iter 125: T = 598.7447244185191 K, F = -3.735353004130637e-6, relative_change = 1.2752133563589085e-10 Iter 130: T = 598.7447241853083 K, F = -1.5621694131606745e-6, relative_change = 5.333095164095762e-11 Iter 135: T = 598.7447240877767 K, F = -6.533174439216083e-7, relative_change = 2.2303625164766056e-11 Iter 140: T = 598.7447240469879 K, F = -2.732250873327402e-7, relative_change = 9.327640019646528e-12 Iter 145: T = 598.7447240299294 K, F = -1.1426525681201838e-7, relative_change = 3.900905267683389e-12 Iter 150: T = 598.7447240227955 K, F = -4.7786858581311265e-8, relative_change = 1.6313970980971526e-12 Iter 155: T = 598.744724019812 K, F = -1.998481524712048e-8, relative_change = 6.822622488452122e-13 Iter 160: T = 598.7447240185643 K, F = -8.35837621337987e-9, relative_change = 2.8534687369267104e-13 Converged in 162 iterations to T = 598.7447240183003 K Iter 1: T = 964.5753536251523 K, F = -8071.53937404716, relative_change = 0.035424646374847775 Iter 2: T = 931.0910972898678 K, F = -6847.101068213453, relative_change = 0.03471398705082088 Iter 3: T = 899.5168570173843 K, F = -5807.2939258592705, relative_change = 0.03391101081772428 Iter 5: T = 841.9861318469005 K, F = -4174.586913273979, relative_change = 0.03200436515394597 Iter 10: T = 729.5643499806121 K, F = -1819.3594462380133, relative_change = 0.025422394388840037 Iter 15: T = 657.7177292516757 K, F = -784.9079435047289, relative_change = 0.017172165209765763 Iter 20: T = 617.5047166949745 K, F = -334.8231721182772, relative_change = 0.009716816161967762 Iter 25: T = 597.5800941922597 K, F = -141.53053124784796, relative_change = 0.004777118961829058 Iter 30: T = 588.5032711183085 K, F = -59.492258668957405, relative_change = 0.0021573757341419994 Iter 35: T = 584.5551688180694 K, F = -24.93686166247808, relative_change = 0.0009335274903903062 Iter 40: T = 582.8754762400546 K, F = -10.439062414185448, relative_change = 0.0003961672547889798 Iter 45: T = 582.167859333951 K, F = -4.367541235333934, relative_change = 0.0001667103359488228 Iter 50: T = 581.8710129823177 K, F = -1.826874487854524, relative_change = 6.990177558176898e-5 Iter 55: T = 581.7467078108858 K, F = -0.7640762203815632, relative_change = 2.9265627269276308e-5 Iter 60: T = 581.6946937701447 K, F = -0.3195555148399946, relative_change = 1.2244817839607773e-5 Iter 65: T = 581.6729359517723 K, F = -0.1336436323086428, relative_change = 5.121906183002111e-6 Iter 70: T = 581.6638357104871 K, F = -0.05589166039175292, relative_change = 2.1422132826794586e-6 Iter 75: T = 581.6600297301472 K, F = -0.023374611863753947, relative_change = 8.959290806821791e-7 Iter 80: T = 581.6584379973474 K, F = -0.00977555092671073, relative_change = 3.746934713564254e-7 Iter 85: T = 581.6577723110693 K, F = -0.004088253732037583, relative_change = 1.5670219925914052e-7 Iter 90: T = 581.6574939123111 K, F = -0.001709756812261265, relative_change = 6.553489111984825e-8 Iter 95: T = 581.6573774824845 K, F = -0.0007150407658624292, relative_change = 2.740750208339981e-8 Iter 100: T = 581.6573287901159 K, F = -0.0002990385948868912, relative_change = 1.1462149530703268e-8 Iter 105: T = 581.6573084263817 K, F = -0.00012506151377061903, relative_change = 4.793608700732578e-9 Iter 110: T = 581.6572999100241 K, F = -5.230221868018914e-5, relative_change = 2.004744548906773e-9 Iter 115: T = 581.6572963483816 K, F = -2.187341293485856e-5, relative_change = 8.3840815422428e-10 Iter 120: T = 581.65729485886 K, F = -9.147722659086366e-6, relative_change = 3.506323126759709e-10 Iter 125: T = 581.6572942359244 K, F = -3.825687192482441e-6, relative_change = 1.466386339754298e-10 Iter 130: T = 581.6572939754052 K, F = -1.5999476348227404e-6, relative_change = 6.13260113278296e-11 Iter 135: T = 581.657293866453 K, F = -6.691170069683672e-7, relative_change = 2.564726263064567e-11 Iter 140: T = 581.6572938208878 K, F = -2.7983313954926814e-7, relative_change = 1.0726007485555008e-11 Iter 145: T = 581.657293801832 K, F = -1.1702955082792954e-7, relative_change = 4.4857440417141756e-12 Iter 150: T = 581.6572937938627 K, F = -4.894350819073523e-8, relative_change = 1.8760052372097508e-12 Iter 155: T = 581.6572937905297 K, F = -2.0468635564263593e-8, relative_change = 7.845630388508316e-13 Iter 160: T = 581.6572937891358 K, F = -8.560308073501943e-9, relative_change = 3.281167078595277e-13 Converged in 163 iterations to T = 581.6572937887277 K Iter 1: T = 964.2806002483454 K, F = -8138.69921133543, relative_change = 0.03571939975165456 Iter 2: T = 930.4840837970751 K, F = -6904.621598558383, relative_change = 0.03504842516023478 Iter 3: T = 898.5793732481491 K, F = -5856.608022936459, relative_change = 0.03428829262584569 Iter 5: T = 840.3322196043569 K, F = -4210.9476865724455, relative_change = 0.03247479980218884 Iter 10: T = 725.8450086982955 K, F = -1836.6203511673884, relative_change = 0.026118800797316627 Iter 15: T = 651.8517604955315 K, F = -793.1637070270806, relative_change = 0.017930352285664312 Iter 20: T = 609.9283267799779 K, F = -338.6769036499898, relative_change = 0.010301717389684833 Iter 25: T = 588.9531187632349 K, F = -143.2574390668682, relative_change = 0.005117933887627026 Iter 30: T = 579.3409767969891 K, F = -60.24071991973586, relative_change = 0.002324435860552147 Iter 35: T = 575.1474950301808 K, F = -25.255080535184593, relative_change = 0.0010085162644008078 Iter 40: T = 573.3609670854112 K, F = -10.573107444065807, relative_change = 0.0004284974059285309 Iter 45: T = 572.6078955601778 K, F = -4.4237728020355265, relative_change = 0.0001804064534307352 Iter 50: T = 572.2919011248347 K, F = -1.8504216477068445, relative_change = 7.566074749894926e-5 Iter 55: T = 572.1595635688067 K, F = -0.7739292717013457, relative_change = 3.1679568673946176e-5 Iter 60: T = 572.1041860004582 K, F = -0.3236771155814976, relative_change = 1.3255316167976714e-5 Iter 65: T = 572.0810207634371 K, F = -0.13536749896693362, relative_change = 5.544676593400906e-6 Iter 70: T = 572.0713317913866 K, F = -0.056612630708915146, relative_change = 2.3190503032580687e-6 Iter 75: T = 572.0672795738078 K, F = -0.023676135279778326, relative_change = 9.698895751474113e-7 Iter 80: T = 572.0655848576304 K, F = -0.009901652498108815, relative_change = 4.056255325727612e-7 Iter 85: T = 572.0648761017701 K, F = -0.004140991068453115, relative_change = 1.6963851392273428e-7 Iter 90: T = 572.0645796906754 K, F = -0.001731812223539242, relative_change = 7.094503993051175e-8 Iter 95: T = 572.064455727853 K, F = -0.0007242646070547143, relative_change = 2.9670095740722554e-8 Iter 100: T = 572.0644038850919 K, F = -0.0003028961171189781, relative_change = 1.2408394092865226e-8 Iter 105: T = 572.0643822038251 K, F = -0.00012667477565125873, relative_change = 5.189339620708866e-9 Iter 110: T = 572.0643731364594 K, F = -5.297690358085916e-5, relative_change = 2.1702439500423245e-9 Iter 115: T = 572.0643693443787 K, F = -2.2155573480009405e-5, relative_change = 9.076219554577036e-10 Iter 120: T = 572.0643677584853 K, F = -9.265725752272136e-6, relative_change = 3.795783595759659e-10 Iter 125: T = 572.0643670952458 K, F = -3.8750373499985e-6, relative_change = 1.587442115223555e-10 Iter 130: T = 572.064366817871 K, F = -1.6205864603602294e-6, relative_change = 6.638870731081981e-11 Iter 135: T = 572.0643667018696 K, F = -6.777486656339704e-7, relative_change = 2.7764552485838207e-11 Iter 140: T = 572.0643666533565 K, F = -2.8344317254402895e-7, relative_change = 1.161149146146552e-11 Iter 145: T = 572.0643666330676 K, F = -1.18538908411292e-7, relative_change = 4.8560475482533e-12 Iter 150: T = 572.0643666245825 K, F = -4.957356924961687e-8, relative_change = 2.0308235722443557e-12 Iter 155: T = 572.064366621034 K, F = -2.0732261962752574e-8, relative_change = 8.493148050152099e-13 Iter 160: T = 572.06436661955 K, F = -8.670392459553256e-9, relative_change = 3.5519002675692984e-13 Converged in 163 iterations to T = 572.0643666191156 K Iter 1: T = 980.2027535097673 K, F = -4510.821444842645, relative_change = 0.019797246490232755 Iter 2: T = 962.446563667791 K, F = -3810.238026247754, relative_change = 0.018114813265314226 Iter 3: T = 946.6100979415074 K, F = -3216.963698715635, relative_change = 0.016454384403360906 Iter 5: T = 920.1717678179068 K, F = -2290.0143267079893, relative_change = 0.0132880155075805 Iter 10: T = 878.2183457596382 K, F = -972.1254383797441, relative_change = 0.006973971062286957 Iter 15: T = 858.3695660109645 K, F = -409.6313363854013, relative_change = 0.003268350883844726 Iter 20: T = 849.5634126449226 K, F = -171.9061129424637, relative_change = 0.001439866252475148 Iter 25: T = 845.7822488125549 K, F = -72.00166141726258, relative_change = 0.0006159619437287707 Iter 30: T = 844.182888830648 K, F = -30.13129289813252, relative_change = 0.00026009691085732687 Iter 35: T = 843.5107987234067 K, F = -12.604676383781124, relative_change = 0.00010921811167815502 Iter 40: T = 843.2291548016441 K, F = -5.2720246230945325, relative_change = 4.575417139578664e-5 Iter 45: T = 843.1112682792601 K, F = -2.204928474133401, relative_change = 1.9148591531018433e-5 Iter 50: T = 843.0619492687766 K, F = -0.9221457634929333, relative_change = 8.010559672923589e-6 Iter 55: T = 843.0413204140722 K, F = -0.38565558002786804, relative_change = 3.350529920160933e-6 Iter 60: T = 843.0326926461183 K, F = -0.16128633055324548, relative_change = 1.40130478299378e-6 Iter 65: T = 843.0290843170186 K, F = -0.06745196776402329, relative_change = 5.860551914116311e-7 Iter 70: T = 843.0275752543421 K, F = -0.028209235630204388, relative_change = 2.4509751810613713e-7 Iter 75: T = 843.0269441434484 K, F = -0.011797442230518929, relative_change = 1.0250310058894248e-7 Iter 80: T = 843.0266802048353 K, F = -0.004933831756958051, relative_change = 4.286808927579702e-8 Iter 85: T = 843.0265698224678 K, F = -0.002063387454657173, relative_change = 1.7927958860003798e-8 Iter 90: T = 843.0265236592281 K, F = -0.0008629332929541711, relative_change = 7.497688606013335e-9 Iter 95: T = 843.0265043532074 K, F = -0.000360889011666643, relative_change = 3.135623283908254e-9 Iter 100: T = 843.0264962791983 K, F = -0.00015092809425554243, relative_change = 1.3113551613523231e-9 Iter 105: T = 843.0264929025512 K, F = -6.311992891183671e-5, relative_change = 5.48424377512702e-10 Iter 110: T = 843.0264914903971 K, F = -2.6397507802089493e-5, relative_change = 2.2935762364264523e-10 Iter 115: T = 843.0264908998174 K, F = -1.1039752097818933e-5, relative_change = 9.592008966107526e-11 Iter 120: T = 843.0264906528299 K, F = -4.616956045477849e-6, relative_change = 4.011492599989987e-11 Iter 125: T = 843.0264905495368 K, F = -1.9308649910065867e-6, relative_change = 1.6776531011396484e-11 Iter 130: T = 843.0264905063384 K, F = -8.07509102918047e-7, relative_change = 7.016130891333038e-12 Iter 135: T = 843.0264904882723 K, F = -3.377093285017452e-7, relative_change = 2.93422432474382e-12 Iter 140: T = 843.0264904807169 K, F = -1.4123290847933845e-7, relative_change = 1.2271175255081376e-12 Iter 145: T = 843.0264904775571 K, F = -5.906692401858038e-8, relative_change = 5.132094100643315e-13 Converged in 150 iterations to T = 843.0264904762356 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017139098198891494 Iteration 10: d = 2.0366590856897088e-5 Iteration 20: d = 2.6237584353872217e-7 Iteration 30: d = 3.693806759462413e-9 Iteration 40: d = 5.260191943876636e-11 Iteration 50: d = 7.498520871525605e-13 Iteration 60: d = 1.0703308195552914e-14 Converged after 64 iterations. d = 1.9617585986651795e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.477105982169 Iteration 2: convergence error = 4821.1354222846385 Iteration 3: convergence error = 1098.6158055744886 Iteration 4: convergence error = 320.71450405118867 Iteration 5: convergence error = 95.18486653664786 Iteration 6: convergence error = 28.478280939574006 Iteration 7: convergence error = 8.573860827716544 Iteration 8: convergence error = 2.5712134866992074 Iteration 9: convergence error = 0.769279347363863 Iteration 10: convergence error = 0.22984922615228243 Iteration 11: convergence error = 0.06862260564184908 Iteration 12: convergence error = 0.020478630771776807 Iteration 13: convergence error = 0.006109787248760767 Iteration 14: convergence error = 0.0018225907479063608 Iteration 15: convergence error = 0.0005436464500689908 Iteration 16: convergence error = 0.00016215239429584472 Iteration 17: convergence error = 4.836355492443545e-5 Iteration 18: convergence error = 1.4424675782720442e-5 Iteration 19: convergence error = 4.302200522943167e-6 Iteration 20: convergence error = 1.2831310414185282e-6 Iteration 21: convergence error = 3.8269831748038996e-7 Iteration 22: convergence error = 1.139985670306487e-7 Iteration 23: convergence error = 3.3093556339736097e-8 Iteration 24: convergence error = 9.537643563817255e-9 Iteration 25: convergence error = 2.7439455152489245e-9 Iteration 26: convergence error = 7.930793799459934e-10 Iteration 27: convergence error = 2.2805579646956176e-10 Iteration 28: convergence error = 6.59383658785373e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001382687162123578 Iteration 10: d = 1.4987571339187902e-5 Iteration 20: d = 1.7560961699063646e-7 Iteration 30: d = 2.2702505846149653e-9 Iteration 40: d = 2.9803457013431954e-11 Iteration 50: d = 3.927676279210408e-13 Iteration 60: d = 5.199383524741915e-15 Converged after 62 iterations. d = 2.192270878769433e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12282.754870160588 Iteration 2: convergence error = 8328.762048838556 Iteration 3: convergence error = 1954.7599474201568 Iteration 4: convergence error = 481.42552791702656 Iteration 5: convergence error = 122.74169578682108 Iteration 6: convergence error = 32.78351400029396 Iteration 7: convergence error = 8.934966653840547 Iteration 8: convergence error = 2.4494727660357967 Iteration 9: convergence error = 0.6723394187308713 Iteration 10: convergence error = 0.18457134150958154 Iteration 11: convergence error = 0.050665875544154915 Iteration 12: convergence error = 0.013907269339370032 Iteration 13: convergence error = 0.0038172736069554958 Iteration 14: convergence error = 0.0010477487489879422 Iteration 15: convergence error = 0.0002875791894894064 Iteration 16: convergence error = 7.893255906310515e-5 Iteration 17: convergence error = 2.1664778159902198e-5 Iteration 18: convergence error = 5.946373221377144e-6 Iteration 19: convergence error = 1.6321080238412833e-6 Iteration 20: convergence error = 4.4796775000577327e-7 Iteration 21: convergence error = 1.2381497072055936e-7 Iteration 22: convergence error = 3.332252163090743e-8 Iteration 23: convergence error = 8.917822924559005e-9 Iteration 24: convergence error = 2.3835582396714017e-9 Iteration 25: convergence error = 6.357367965392768e-10 Iteration 26: convergence error = 1.709850039333105e-10 Iteration 27: convergence error = 4.865796654485166e-11 Iteration 28: convergence error = 1.2278178473934531e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001382687162123578 Iteration 10: d = 1.4987571339187902e-5 Iteration 20: d = 1.7560961699063646e-7 Iteration 30: d = 2.2702505846149653e-9 Iteration 40: d = 2.9803457013431954e-11 Iteration 50: d = 3.927676279210408e-13 Iteration 60: d = 5.199383524741915e-15 Converged after 62 iterations. d = 2.192270878769433e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.757842786259 Iteration 2: convergence error = 5729.903733234101 Iteration 3: convergence error = 2016.707577575463 Iteration 4: convergence error = 895.3645381426845 Iteration 5: convergence error = 411.840658372857 Iteration 6: convergence error = 194.28232312472664 Iteration 7: convergence error = 91.74929815094629 Iteration 8: convergence error = 43.354641585900936 Iteration 9: convergence error = 20.48818473147321 Iteration 10: convergence error = 9.680472613684742 Iteration 11: convergence error = 4.572856197759393 Iteration 12: convergence error = 2.1596624858771065 Iteration 13: convergence error = 1.0197925022362142 Iteration 14: convergence error = 0.48148775558411216 Iteration 15: convergence error = 0.22731193166237063 Iteration 16: convergence error = 0.10722096688914462 Iteration 17: convergence error = 0.05014286274263213 Iteration 18: convergence error = 0.022914065072200174 Iteration 19: convergence error = 0.01043113316563904 Iteration 20: convergence error = 0.004738124492178031 Iteration 21: convergence error = 0.0021494705624718335 Iteration 22: convergence error = 0.0009744000035425415 Iteration 23: convergence error = 0.00044152577856948483 Iteration 24: convergence error = 0.0002000158069677127 Iteration 25: convergence error = 9.059549802259426e-5 Iteration 26: convergence error = 4.103073115402367e-5 Iteration 27: convergence error = 1.8581804852146888e-5 Iteration 28: convergence error = 8.414953299507033e-6 Iteration 29: convergence error = 3.810720500041498e-6 Iteration 30: convergence error = 1.7256625142181292e-6 Iteration 31: convergence error = 7.814501259417739e-7 Iteration 32: convergence error = 3.5386119634495117e-7 Iteration 33: convergence error = 1.6025205695768818e-7 Iteration 34: convergence error = 7.256130629684776e-8 Iteration 35: convergence error = 3.286368155386299e-8 Iteration 36: convergence error = 1.4877969078952447e-8 Iteration 37: convergence error = 6.738446245435625e-9 Iteration 38: convergence error = 3.0527189665008336e-9 Iteration 39: convergence error = 1.380612957291305e-9 Iteration 40: convergence error = 6.280060915742069e-10 Iteration 41: convergence error = 2.864908310584724e-10 Iteration 42: convergence error = 1.2823875294998288e-10 Iteration 43: convergence error = 5.911715561524034e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001382687162123578 Iteration 10: d = 1.4987571339187902e-5 Iteration 20: d = 1.7560961699063646e-7 Iteration 30: d = 2.2702505846149653e-9 Iteration 40: d = 2.9803457013431954e-11 Iteration 50: d = 3.927676279210408e-13 Iteration 60: d = 5.199383524741915e-15 Converged after 62 iterations. d = 2.192270878769433e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.700100512704 Iteration 2: convergence error = 7347.968361021647 Iteration 3: convergence error = 1733.2036287309006 Iteration 4: convergence error = 507.07333431161214 Iteration 5: convergence error = 157.57407035789674 Iteration 6: convergence error = 48.97405264630834 Iteration 7: convergence error = 15.196903579887476 Iteration 8: convergence error = 4.70799869991788 Iteration 9: convergence error = 1.4568629060213425 Iteration 10: convergence error = 0.4504976858838745 Iteration 11: convergence error = 0.13924699915696692 Iteration 12: convergence error = 0.043030443137467955 Iteration 13: convergence error = 0.013295577921326185 Iteration 14: convergence error = 0.004107763960746524 Iteration 15: convergence error = 0.0012690682351603755 Iteration 16: convergence error = 0.000392061143884348 Iteration 17: convergence error = 0.00012112021113352966 Iteration 18: convergence error = 3.7417601106426446e-5 Iteration 19: convergence error = 1.1559348877199227e-5 Iteration 20: convergence error = 3.5709949770534877e-6 Iteration 21: convergence error = 1.1031816029571928e-6 Iteration 22: convergence error = 3.4064169085468166e-7 Iteration 23: convergence error = 1.0401618055766448e-7 Iteration 24: convergence error = 3.098602974205278e-8 Iteration 25: convergence error = 9.196355676976964e-9 Iteration 26: convergence error = 2.7271198632661253e-9 Iteration 27: convergence error = 8.135430107358843e-10 Iteration 28: convergence error = 2.423803380224854e-10 Iteration 29: convergence error = 6.957634468562901e-11 Iteration 30: convergence error = 2.546585164964199e-11 Iteration 31: convergence error = 8.640199666842818e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001382687162123578 Iteration 10: d = 1.4987571339187902e-5 Iteration 20: d = 1.7560961699063646e-7 Iteration 30: d = 2.2702505846149653e-9 Iteration 40: d = 2.9803457013431954e-11 Iteration 50: d = 3.927676279210408e-13 Iteration 60: d = 5.199383524741915e-15 Converged after 62 iterations. d = 2.192270878769433e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.715206356113 Iteration 2: convergence error = 5518.123987633834 Iteration 3: convergence error = 937.6595583700826 Iteration 4: convergence error = 170.67306811766116 Iteration 5: convergence error = 30.98049495899454 Iteration 6: convergence error = 5.639838568959021 Iteration 7: convergence error = 1.035271679426387 Iteration 8: convergence error = 0.18957427145278416 Iteration 9: convergence error = 0.03467292895084029 Iteration 10: convergence error = 0.006337927706681512 Iteration 11: convergence error = 0.0011581794733501738 Iteration 12: convergence error = 0.00021161136737646302 Iteration 13: convergence error = 3.866056840706733e-5 Iteration 14: convergence error = 7.062857548589818e-6 Iteration 15: convergence error = 1.2902787602797616e-6 Iteration 16: convergence error = 2.3570601115352474e-7 Iteration 17: convergence error = 4.305547918193042e-8 Iteration 18: convergence error = 7.857124728616327e-9 Iteration 19: convergence error = 1.4420038496609777e-9 Iteration 20: convergence error = 2.610249794088304e-10 Iteration 21: convergence error = 4.774847184307873e-11 Iteration 22: convergence error = 9.322320693172514e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001382687162123578 Iteration 10: d = 1.4987571339187902e-5 Iteration 20: d = 1.7560961699063646e-7 Iteration 30: d = 2.2702505846149653e-9 Iteration 40: d = 2.9803457013431954e-11 Iteration 50: d = 3.927676279210408e-13 Iteration 60: d = 5.199383524741915e-15 Converged after 62 iterations. d = 2.192270878769433e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4840663948307 Iteration 2: convergence error = 2713.862964783896 Iteration 3: convergence error = 204.8196254677614 Iteration 4: convergence error = 19.258013112074444 Iteration 5: convergence error = 1.5934278182014294 Iteration 6: convergence error = 0.13045712359947123 Iteration 7: convergence error = 0.01067571283721659 Iteration 8: convergence error = 0.0008746153482931304 Iteration 9: convergence error = 7.171144824324065e-5 Iteration 10: convergence error = 5.882402185489073e-6 Iteration 11: convergence error = 4.826387605633035e-7 Iteration 12: convergence error = 3.960411357616747e-8 Iteration 13: convergence error = 3.2509300663223452e-9 Iteration 14: convergence error = 2.6584931329568044e-10 Iteration 15: convergence error = 2.1560535059933e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017139098198891494 Iteration 10: d = 2.0366590856897088e-5 Iteration 20: d = 2.6237584353872217e-7 Iteration 30: d = 3.693806759462413e-9 Iteration 40: d = 5.260191943876636e-11 Iteration 50: d = 7.498520871525605e-13 Iteration 60: d = 1.0703308195552914e-14 Converged after 64 iterations. d = 1.9617585986651795e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.273780334762 Iteration 2: convergence error = 3608.267470573846 Iteration 3: convergence error = 594.5827264079307 Iteration 4: convergence error = 104.88338281095162 Iteration 5: convergence error = 18.66862794563508 Iteration 6: convergence error = 3.2925573285090195 Iteration 7: convergence error = 0.578540771887674 Iteration 8: convergence error = 0.10150030927411535 Iteration 9: convergence error = 0.01779629668749294 Iteration 10: convergence error = 0.0031194852504086157 Iteration 11: convergence error = 0.000546755095001572 Iteration 12: convergence error = 9.582650295669737e-5 Iteration 13: convergence error = 1.679467982285132e-5 Iteration 14: convergence error = 2.94344499707222e-6 Iteration 15: convergence error = 5.158658495929558e-7 Iteration 16: convergence error = 9.039990800374653e-8 Iteration 17: convergence error = 1.5862951840972528e-8 Iteration 18: convergence error = 2.758270056801848e-9 Iteration 19: convergence error = 4.902176442556083e-10 Iteration 20: convergence error = 8.36735125631094e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m08.7s Testing RayTraceHeatTransfer tests passed Testing completed after 507.29s PkgEval succeeded after 558.29s