Package evaluation to test TuringCallbacks on Julia 1.14.0-DEV.1384 (b34261b5d0*) started at 2025-12-18T17:23:33.564 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.5s ################################################################################ # Installation # Installing TuringCallbacks... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [ea0860ee] + TuringCallbacks v0.4.4 Updating `~/.julia/environments/v1.14/Manifest.toml` [1520ce14] + AbstractTrees v0.4.5 [66dad0bd] + AliasTables v1.1.3 [e1450e63] + BufferedStreams v1.2.2 [3da002f7] + ColorTypes v0.12.1 [c3611d14] + ColorVectorSpace v0.11.0 [5ae59095] + Colors v0.13.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [31c24e10] + Distributions v0.25.122 [ffbed154] + DocStringExtensions v0.9.5 [4e289a0a] + EnumX v1.0.5 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.15.0 [53c48c17] + FixedPointNumbers v0.8.5 [34004b35] + HypergeometricFunctions v0.3.28 [a09fc81d] + ImageCore v0.10.5 [92d709cd] + IrrationalConstants v0.2.6 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [dbb5928d] + MappedArrays v0.4.3 [e1d29d7a] + Missings v1.2.0 [e94cdb99] + MosaicViews v0.3.4 [6fe1bfb0] + OffsetArrays v1.17.0 [a15396b6] + OnlineStats v1.7.3 [925886fa] + OnlineStatsBase v1.7.1 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.36 [5432bcbf] + PaddedViews v0.5.12 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [3349acd9] + ProtoBuf v1.2.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [3cdcf5f2] + RecipesBase v1.3.4 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [cae243ae] + StackViews v0.1.2 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 [2913bbd2] + StatsBase v0.34.9 [4c63d2b9] + StatsFuns v1.5.2 [899adc3e] + TensorBoardLogger v0.1.26 [62fd8b95] + TensorCore v0.1.1 [ea0860ee] + TuringCallbacks v0.4.4 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [8bf52ea8] + CRC32c v1.11.0 [ade2ca70] + Dates v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Installation completed after 5.57s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 14.86s ################################################################################ # Testing # Testing TuringCallbacks Test Could not use exact versions of packages in manifest, re-resolving. Note: if you do not check your manifest file into source control, then you can probably ignore this message. However, if you do check your manifest file into source control, then you probably want to pass the `allow_reresolve = false` kwarg when calling the `Pkg.test` function. Updating `/tmp/jl_kwWUAm/Project.toml` ⌅ [366bfd00] + DynamicPPL v0.36.15 ⌅ [fce5fe82] + Turing v0.39.10 [ea0860ee] + TuringCallbacks v0.4.4 [98cad3c8] + ValueHistories v0.5.4 [8dfed614] ~ Test ⇒ v1.11.0 Updating `/tmp/jl_kwWUAm/Manifest.toml` [47edcb42] + ADTypes v1.20.0 [621f4979] + AbstractFFTs v1.5.0 [80f14c24] + AbstractMCMC v5.10.0 ⌅ [7a57a42e] + AbstractPPL v0.12.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.43 [79e6a3ab] + Adapt v4.4.0 [0bf59076] + AdvancedHMC v0.8.3 [5b7e9947] + AdvancedMH v0.8.9 [576499cb] + AdvancedPS v0.7.2 ⌅ [b5ca4192] + AdvancedVI v0.4.1 [dce04be8] + ArgCheck v2.5.0 [4fba245c] + ArrayInterface v7.22.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.8 [198e06fe] + BangBang v0.4.6 [9718e550] + Baselet v0.1.1 [76274a88] + Bijectors v0.15.14 [082447d4] + ChainRules v1.72.6 [d360d2e6] + ChainRulesCore v1.26.0 [0ca39b1e] + Chairmarks v1.3.1 [9e997f8a] + ChangesOfVariables v0.1.10 [861a8166] + Combinatorics v1.1.0 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 ⌅ [864edb3b] ↓ DataStructures v0.19.3 ⇒ v0.18.22 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [8bb1440f] + DelimitedFiles v1.9.1 [b429d917] + DensityInterface v0.4.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.12 [31c24e10] + Distributions v0.25.122 [ced4e74d] + DistributionsAD v0.6.58 ⌅ [366bfd00] + DynamicPPL v0.36.15 [cad2338a] + EllipticalSliceSampling v2.0.0 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [7a1cc6ca] + FFTW v1.10.0 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.15.0 [6a86dc24] + FiniteDiff v2.29.0 [f6369f11] + ForwardDiff v1.3.0 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [22cec73e] + InitialValues v0.3.1 [a98d9a8b] + Interpolations v0.16.2 [8197267c] + IntervalSets v0.7.13 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 ⌅ [682c06a0] + JSON v0.21.4 [ae98c720] + Jieko v0.2.1 [5ab0869b] + KernelDensity v0.6.10 [5be7bae1] + LBFGSB v0.4.1 [b964fa9f] + LaTeXStrings v1.4.0 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.1 [6f1fad26] + Libtask v0.9.10 [d3d80556] + LineSearches v7.5.1 [6fdf6af0] + LogDensityProblems v2.2.0 [996a588d] + LogDensityProblemsAD v1.13.1 [e6f89c97] + LoggingExtras v1.2.0 [c7f686f2] + MCMCChains v7.6.0 [be115224] + MCMCDiagnosticTools v0.3.15 [e80e1ace] + MLJModelInterface v1.12.1 [1914dd2f] + MacroTools v0.5.16 [128add7d] + MicroCollections v0.2.0 [dbe65cb8] + MistyClosures v2.1.0 [2e0e35c7] + Moshi v0.3.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [86f7a689] + NamedArrays v0.10.5 [c020b1a1] + NaturalSort v1.0.0 [a15396b6] + OnlineStats v1.7.3 [925886fa] + OnlineStatsBase v1.7.1 [429524aa] + Optim v1.13.3 [3bd65402] + Optimisers v0.4.7 ⌅ [7f7a1694] + Optimization v4.8.0 ⌅ [bca83a33] + OptimizationBase v2.14.0 ⌃ [36348300] + OptimizationOptimJL v0.4.5 [90014a1f] + PDMats v0.11.36 [69de0a69] + Parsers v2.8.3 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [08abe8d2] + PrettyTables v3.1.2 [33c8b6b6] + ProgressLogging v0.1.6 [92933f4c] + ProgressMeter v1.11.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.41.0 [79098fc4] + Rmath v0.9.0 [f2b01f46] + Roots v2.2.10 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [26aad666] + SSMProblems v0.6.1 [0bca4576] + SciMLBase v2.128.0 [a6db7da4] + SciMLLogging v1.7.1 [c0aeaf25] + SciMLOperators v1.14.1 [431bcebd] + SciMLPublic v1.0.0 [53ae85a6] + SciMLStructures v1.7.0 [30f210dd] + ScientificTypesBase v3.0.0 [efcf1570] + Setfield v1.1.2 [9f842d2f] + SparseConnectivityTracer v1.1.3 [dc90abb0] + SparseInverseSubset v0.1.2 [0a514795] + SparseMatrixColorings v0.4.23 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [64bff920] + StatisticalTraits v3.5.0 [4c63d2b9] + StatsFuns v1.5.2 [892a3eda] + StringManipulation v0.4.2 [09ab397b] + StructArrays v0.7.2 [2efcf032] + SymbolicIndexingInterface v0.3.46 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5d786b92] + TerminalLoggers v0.1.7 [28d57a85] + Transducers v0.4.85 ⌅ [fce5fe82] + Turing v0.39.10 [ea0860ee] + TuringCallbacks v0.4.4 [98cad3c8] + ValueHistories v0.5.4 [efce3f68] + WoodburyMatrices v1.0.0 [700de1a5] + ZygoteRules v0.2.7 [f5851436] + FFTW_jll v3.3.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [81d17ec3] + L_BFGS_B_jll v3.0.1+0 [856f044c] + MKL_jll v2025.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+1 [8ba89e20] + Distributed v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [4af54fe1] + LazyArtifacts v1.11.0 [a63ad114] + Mmap v1.11.0 [3fa0cd96] + REPL v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [4607b0f0] + SuiteSparse [8dfed614] ~ Test ⇒ v1.11.0 [05823500] + OpenLibm_jll v0.8.7+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_kwWUAm/Project.toml` ⌅ [366bfd00] DynamicPPL v0.36.15 [899adc3e] TensorBoardLogger v0.1.26 ⌅ [fce5fe82] Turing v0.39.10 [ea0860ee] TuringCallbacks v0.4.4 [98cad3c8] ValueHistories v0.5.4 [8dfed614] Test v1.11.0 Status `/tmp/jl_kwWUAm/Manifest.toml` [47edcb42] ADTypes v1.20.0 [621f4979] AbstractFFTs v1.5.0 [80f14c24] AbstractMCMC v5.10.0 ⌅ [7a57a42e] AbstractPPL v0.12.0 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.43 [79e6a3ab] Adapt v4.4.0 [0bf59076] AdvancedHMC v0.8.3 [5b7e9947] AdvancedMH v0.8.9 [576499cb] AdvancedPS v0.7.2 ⌅ [b5ca4192] AdvancedVI v0.4.1 [66dad0bd] AliasTables v1.1.3 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.22.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [76274a88] Bijectors v0.15.14 [e1450e63] BufferedStreams v1.2.2 [082447d4] ChainRules v1.72.6 [d360d2e6] ChainRulesCore v1.26.0 [0ca39b1e] Chairmarks v1.3.1 [9e997f8a] ChangesOfVariables v0.1.10 [3da002f7] ColorTypes v0.12.1 [c3611d14] ColorVectorSpace v0.11.0 [5ae59095] Colors v0.13.1 [861a8166] Combinatorics v1.1.0 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b429d917] DensityInterface v0.4.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.12 [31c24e10] Distributions v0.25.122 [ced4e74d] DistributionsAD v0.6.58 [ffbed154] DocStringExtensions v0.9.5 ⌅ [366bfd00] DynamicPPL v0.36.15 [cad2338a] EllipticalSliceSampling v2.0.0 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7a1cc6ca] FFTW v1.10.0 [9aa1b823] FastClosures v0.3.2 [5789e2e9] FileIO v1.17.1 [1a297f60] FillArrays v1.15.0 [6a86dc24] FiniteDiff v2.29.0 [53c48c17] FixedPointNumbers v0.8.5 [f6369f11] ForwardDiff v1.3.0 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [a09fc81d] ImageCore v0.10.5 [22cec73e] InitialValues v0.3.1 [a98d9a8b] Interpolations v0.16.2 [8197267c] IntervalSets v0.7.13 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 ⌅ [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5ab0869b] KernelDensity v0.6.10 [5be7bae1] LBFGSB v0.4.1 [b964fa9f] LaTeXStrings v1.4.0 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [6f1fad26] Libtask v0.9.10 [d3d80556] LineSearches v7.5.1 [6fdf6af0] LogDensityProblems v2.2.0 [996a588d] LogDensityProblemsAD v1.13.1 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [c7f686f2] MCMCChains v7.6.0 [be115224] MCMCDiagnosticTools v0.3.15 [e80e1ace] MLJModelInterface v1.12.1 [1914dd2f] MacroTools v0.5.16 [dbb5928d] MappedArrays v0.4.3 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [dbe65cb8] MistyClosures v2.1.0 [e94cdb99] MosaicViews v0.3.4 [2e0e35c7] Moshi v0.3.7 [d41bc354] NLSolversBase v7.10.0 [77ba4419] NaNMath v1.1.3 [86f7a689] NamedArrays v0.10.5 [c020b1a1] NaturalSort v1.0.0 [6fe1bfb0] OffsetArrays v1.17.0 [a15396b6] OnlineStats v1.7.3 [925886fa] OnlineStatsBase v1.7.1 [429524aa] Optim v1.13.3 [3bd65402] Optimisers v0.4.7 ⌅ [7f7a1694] Optimization v4.8.0 ⌅ [bca83a33] OptimizationBase v2.14.0 ⌃ [36348300] OptimizationOptimJL v0.4.5 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.36 [5432bcbf] PaddedViews v0.5.12 [69de0a69] Parsers v2.8.3 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.34 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [08abe8d2] PrettyTables v3.1.2 [33c8b6b6] ProgressLogging v0.1.6 [92933f4c] ProgressMeter v1.11.0 [3349acd9] ProtoBuf v1.2.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.41.0 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [f2b01f46] Roots v2.2.10 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 [26aad666] SSMProblems v0.6.1 [0bca4576] SciMLBase v2.128.0 [a6db7da4] SciMLLogging v1.7.1 [c0aeaf25] SciMLOperators v1.14.1 [431bcebd] SciMLPublic v1.0.0 [53ae85a6] SciMLStructures v1.7.0 [30f210dd] ScientificTypesBase v3.0.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.2 [9f842d2f] SparseConnectivityTracer v1.1.3 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.23 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [cae243ae] StackViews v0.1.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 [2913bbd2] StatsBase v0.34.9 [4c63d2b9] StatsFuns v1.5.2 [892a3eda] StringManipulation v0.4.2 [09ab397b] StructArrays v0.7.2 [2efcf032] SymbolicIndexingInterface v0.3.46 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [899adc3e] TensorBoardLogger v0.1.26 [62fd8b95] TensorCore v0.1.1 [5d786b92] TerminalLoggers v0.1.7 [28d57a85] Transducers v0.4.85 ⌅ [fce5fe82] Turing v0.39.10 [ea0860ee] TuringCallbacks v0.4.4 [98cad3c8] ValueHistories v0.5.4 [efce3f68] WoodburyMatrices v1.0.0 [700de1a5] ZygoteRules v0.2.7 [f5851436] FFTW_jll v3.3.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [81d17ec3] L_BFGS_B_jll v3.0.1+0 [856f044c] MKL_jll v2025.2.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+1 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [8bf52ea8] CRC32c v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. Testing Running tests... ┌ Warning: The call to compilecache failed to create a usable precompiled cache file for TuringCallbacks [ea0860ee-d0ef-45ef-82e6-cc37d6be2f9c] │ exception = Required dependency Base.PkgId(Base.UUID("5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"), "FileIO") failed to load from a cache file. └ @ Base loading.jl:2923 ┌ Warning: The call to compilecache failed to create a usable precompiled cache file for TensorBoardLogger [899adc3e-224a-11e9-021f-63837185c80f] │ exception = Required dependency Base.PkgId(Base.UUID("5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"), "FileIO") failed to load from a cache file. └ @ Base loading.jl:2923 ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("899adc3e-224a-11e9-021f-63837185c80f"), "TensorBoardLogger") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=0, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2845  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2697  [4] macro expansion  @ ./loading.jl:2625 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2589  [7] require  @ ./loading.jl:2565 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/TuringCallbacks/rZplz/src/TuringCallbacks.jl:11  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3282  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3124  [18] include_string  @ ./loading.jl:3134 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:577 in expression starting at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/src/TuringCallbacks.jl:1 in expression starting at stdin:5 ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("ea0860ee-d0ef-45ef-82e6-cc37d6be2f9c"), "TuringCallbacks") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=0, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2845  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2697  [4] macro expansion  @ ./loading.jl:2625 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2589  [7] require  @ ./loading.jl:2565 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_import(::Bool, ::Module, ::Expr, ::Expr, ::Vararg{Expr})  @ Base ./module.jl:101  [11] top-level scope  @ ~/.julia/packages/TuringCallbacks/rZplz/ext/TuringCallbacksTuringExt.jl:5  [12] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [13] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3282  [14] top-level scope  @ stdin:5  [15] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [16] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:3124  [17] include_string  @ ./loading.jl:3134 [inlined]  [18] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [19] _start()  @ Base ./client.jl:577 in expression starting at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/ext/TuringCallbacksTuringExt.jl:1 in expression starting at stdin:5 2 dependencies had output during precompilation: ┌ TuringCallbacks │ ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("899adc3e-224a-11e9-021f-63837185c80f"), "TensorBoardLogger") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=0, inline=true, opt_level=0) │ Stacktrace: │ [1] error(s::String) │ @ Base ./error.jl:44 │ [2] __require_prelocked(pkg::Base.PkgId, env::String) │ @ Base ./loading.jl:2845 │ [3] _require_prelocked(uuidkey::Base.PkgId, env::String) │ @ Base ./loading.jl:2697 │ [4] macro expansion │ @ ./loading.jl:2625 [inlined] │ [5] macro expansion │ @ ./lock.jl:376 [inlined] │ [6] __require(into::Module, mod::Symbol) │ @ Base ./loading.jl:2589 │ [7] require │ @ ./loading.jl:2565 [inlined] │ [8] eval_import_path │ @ ./module.jl:36 [inlined] │ [9] eval_import_path_all(at::Module, path::Expr, keyword::String) │ @ Base ./module.jl:60 │ [10] _eval_using │ @ ./module.jl:137 [inlined] │ [11] _eval_using(to::Module, path::Expr) │ @ Base ./module.jl:137 │ [12] top-level scope │ @ ~/.julia/packages/TuringCallbacks/rZplz/src/TuringCallbacks.jl:11 │ [13] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [14] include_package_for_output(pkg::Base.PkgId, input::String, syntax_version::VersionNumber, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing) │ @ Base ./loading.jl:3282 │ [15] top-level scope │ @ stdin:5 │ [16] eval(m::Module, e::Any) │ @ Core ./boot.jl:489 │ [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String) │ @ Base ./loading.jl:3124 │ [18] include_string │ @ ./loading.jl:3134 [inlined] │ [19] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:342 │ [20] _start() │ @ Base ./client.jl:577 │ in expression starting at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/src/TuringCallbacks.jl:1 │ in expression starting at stdin:5 └ ┌ TuringCallbacks → TuringCallbacksTuringExt │ [Output was shown above] └ ┌ Error: Error during loading of extension TuringCallbacksTuringExt of TuringCallbacks, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 2 packages failed to precompile: │ │ TuringCallbacks │ Failed to precompile TuringCallbacks [ea0860ee-d0ef-45ef-82e6-cc37d6be2f9c] to "/home/pkgeval/.julia/compiled/v1.14/TuringCallbacks/jl_y02lgE" (ProcessExited(1)). │ │ TuringCallbacksTuringExt │ Failed to precompile TuringCallbacksTuringExt [c1499ae1-b666-5196-bf03-41224ecbb5ec] to "/home/pkgeval/.julia/compiled/v1.14/TuringCallbacksTuringExt/jl_uTyGTY" (ProcessExited(1)). │ └ @ Base loading.jl:1753 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:55:50 Sampling 1%|▌ | ETA: 0:28:28 Sampling 2%|▉ | ETA: 0:18:53 Sampling 3%|█▏ | ETA: 0:14:04 Sampling 3%|█▍ | ETA: 0:11:10 Sampling 4%|█▋ | ETA: 0:09:15 Sampling 5%|██ | ETA: 0:07:52 Sampling 5%|██▎ | ETA: 0:06:50 Sampling 6%|██▌ | ETA: 0:06:02 Sampling 7%|██▊ | ETA: 0:05:24 Sampling 7%|███▏ | ETA: 0:04:52 Sampling 8%|███▍ | ETA: 0:04:26 Sampling 9%|███▋ | ETA: 0:04:04 Sampling 9%|███▉ | ETA: 0:03:45 Sampling 10%|████▎ | ETA: 0:03:28 Sampling 11%|████▌ | ETA: 0:03:14 Sampling 11%|████▊ | ETA: 0:03:01 Sampling 12%|█████ | ETA: 0:02:50 Sampling 13%|█████▍ | ETA: 0:02:39 Sampling 13%|█████▋ | ETA: 0:02:30 Sampling 14%|█████▉ | ETA: 0:02:22 Sampling 15%|██████▏ | ETA: 0:02:15 Sampling 15%|██████▌ | ETA: 0:02:08 Sampling 16%|██████▊ | ETA: 0:02:01 Sampling 17%|███████ | ETA: 0:01:56 Sampling 17%|███████▎ | ETA: 0:01:50 Sampling 18%|███████▌ | ETA: 0:01:45 Sampling 19%|███████▉ | ETA: 0:01:41 Sampling 19%|████████▏ | ETA: 0:01:36 Sampling 20%|████████▍ | ETA: 0:01:33 Sampling 21%|████████▋ | ETA: 0:01:29 Sampling 21%|█████████ | ETA: 0:01:25 Sampling 22%|█████████▎ | ETA: 0:01:22 Sampling 23%|█████████▌ | ETA: 0:01:19 Sampling 23%|█████████▊ | ETA: 0:01:16 Sampling 24%|██████████▏ | ETA: 0:01:13 Sampling 25%|██████████▍ | ETA: 0:01:11 Sampling 25%|██████████▋ | ETA: 0:01:08 Sampling 26%|██████████▉ | ETA: 0:01:06 Sampling 27%|███████████▎ | ETA: 0:01:04 Sampling 27%|███████████▌ | ETA: 0:01:01 Sampling 28%|███████████▊ | ETA: 0:00:59 Sampling 29%|████████████ | ETA: 0:00:58 Sampling 29%|████████████▍ | ETA: 0:00:56 Sampling 30%|████████████▋ | ETA: 0:00:54 Sampling 31%|████████████▉ | ETA: 0:00:52 Sampling 31%|█████████████▏ | ETA: 0:00:51 Sampling 32%|█████████████▌ | ETA: 0:00:49 Sampling 33%|█████████████▊ | ETA: 0:00:48 Sampling 33%|██████████████ | ETA: 0:00:46 Sampling 34%|██████████████▎ | ETA: 0:00:45 Sampling 35%|██████████████▌ | ETA: 0:00:44 Sampling 35%|██████████████▉ | ETA: 0:00:43 Sampling 36%|███████████████▏ | ETA: 0:00:42 Sampling 37%|███████████████▍ | ETA: 0:00:41 Sampling 37%|███████████████▋ | ETA: 0:00:40 Sampling 38%|████████████████ | ETA: 0:00:38 Sampling 39%|████████████████▎ | ETA: 0:00:37 Sampling 39%|████████████████▌ | ETA: 0:00:36 Sampling 40%|████████████████▊ | ETA: 0:00:35 Sampling 41%|█████████████████▏ | ETA: 0:00:34 Sampling 41%|█████████████████▍ | ETA: 0:00:33 Sampling 42%|█████████████████▋ | ETA: 0:00:33 Sampling 43%|█████████████████▉ | ETA: 0:00:32 Sampling 43%|██████████████████▎ | ETA: 0:00:31 Sampling 44%|██████████████████▌ | ETA: 0:00:30 Sampling 45%|██████████████████▊ | ETA: 0:00:29 Sampling 45%|███████████████████ | ETA: 0:00:28 Sampling 46%|███████████████████▍ | ETA: 0:00:28 Sampling 47%|███████████████████▋ | ETA: 0:00:27 Sampling 47%|███████████████████▉ | ETA: 0:00:26 Sampling 48%|████████████████████▏ | ETA: 0:00:26 Sampling 49%|████████████████████▌ | ETA: 0:00:25 Sampling 49%|████████████████████▊ | ETA: 0:00:24 Sampling 50%|█████████████████████ | ETA: 0:00:24 Sampling 51%|█████████████████████▎ | ETA: 0:00:23 Sampling 51%|█████████████████████▌ | ETA: 0:00:22 Sampling 52%|█████████████████████▉ | ETA: 0:00:22 Sampling 53%|██████████████████████▏ | ETA: 0:00:21 Sampling 53%|██████████████████████▍ | ETA: 0:00:21 Sampling 54%|██████████████████████▋ | ETA: 0:00:20 Sampling 55%|███████████████████████ | ETA: 0:00:20 Sampling 55%|███████████████████████▎ | ETA: 0:00:19 Sampling 56%|███████████████████████▌ | ETA: 0:00:19 Sampling 57%|███████████████████████▊ | ETA: 0:00:18 Sampling 57%|████████████████████████▏ | ETA: 0:00:18 Sampling 58%|████████████████████████▍ | ETA: 0:00:17 Sampling 59%|████████████████████████▋ | ETA: 0:00:17 Sampling 59%|████████████████████████▉ | ETA: 0:00:16 Sampling 60%|█████████████████████████▎ | ETA: 0:00:16 Sampling 61%|█████████████████████████▌ | ETA: 0:00:15 Sampling 61%|█████████████████████████▊ | ETA: 0:00:15 Sampling 62%|██████████████████████████ | ETA: 0:00:14 Sampling 63%|██████████████████████████▍ | ETA: 0:00:14 Sampling 63%|██████████████████████████▋ | ETA: 0:00:14 Sampling 64%|██████████████████████████▉ | ETA: 0:00:13 Sampling 65%|███████████████████████████▏ | ETA: 0:00:13 Sampling 65%|███████████████████████████▌ | ETA: 0:00:13 Sampling 66%|███████████████████████████▊ | ETA: 0:00:12 Sampling 67%|████████████████████████████ | ETA: 0:00:12 Sampling 67%|████████████████████████████▎ | ETA: 0:00:11 Sampling 68%|████████████████████████████▌ | ETA: 0:00:11 Sampling 69%|████████████████████████████▉ | ETA: 0:00:11 Sampling 69%|█████████████████████████████▏ | ETA: 0:00:10 Sampling 70%|█████████████████████████████▍ | ETA: 0:00:10 Sampling 71%|█████████████████████████████▋ | ETA: 0:00:10 Sampling 71%|██████████████████████████████ | ETA: 0:00:09 Sampling 72%|██████████████████████████████▎ | ETA: 0:00:09 Sampling 73%|██████████████████████████████▌ | ETA: 0:00:09 Sampling 73%|██████████████████████████████▊ | ETA: 0:00:09 Sampling 74%|███████████████████████████████▏ | ETA: 0:00:08 Sampling 75%|███████████████████████████████▍ | ETA: 0:00:08 Sampling 75%|███████████████████████████████▋ | ETA: 0:00:08 Sampling 76%|███████████████████████████████▉ | ETA: 0:00:07 Sampling 77%|████████████████████████████████▎ | ETA: 0:00:07 Sampling 77%|████████████████████████████████▌ | ETA: 0:00:07 Sampling 78%|████████████████████████████████▊ | ETA: 0:00:07 Sampling 79%|█████████████████████████████████ | ETA: 0:00:06 Sampling 79%|█████████████████████████████████▍ | ETA: 0:00:06 Sampling 80%|█████████████████████████████████▋ | ETA: 0:00:06 Sampling 81%|█████████████████████████████████▉ | ETA: 0:00:06 Sampling 81%|██████████████████████████████████▏ | ETA: 0:00:05 Sampling 82%|██████████████████████████████████▌ | ETA: 0:00:05 Sampling 83%|██████████████████████████████████▊ | ETA: 0:00:05 Sampling 83%|███████████████████████████████████ | ETA: 0:00:05 Sampling 84%|███████████████████████████████████▎ | ETA: 0:00:04 Sampling 85%|███████████████████████████████████▌ | ETA: 0:00:04 Sampling 85%|███████████████████████████████████▉ | ETA: 0:00:04 Sampling 86%|████████████████████████████████████▏ | ETA: 0:00:04 Sampling 87%|████████████████████████████████████▍ | ETA: 0:00:04 Sampling 87%|████████████████████████████████████▋ | ETA: 0:00:03 Sampling 88%|█████████████████████████████████████ | ETA: 0:00:03 Sampling 89%|█████████████████████████████████████▎ | ETA: 0:00:03 Sampling 89%|█████████████████████████████████████▌ | ETA: 0:00:03 Sampling 90%|█████████████████████████████████████▊ | ETA: 0:00:03 Sampling 91%|██████████████████████████████████████▏ | ETA: 0:00:02 Sampling 91%|██████████████████████████████████████▍ | ETA: 0:00:02 Sampling 92%|██████████████████████████████████████▋ | ETA: 0:00:02 Sampling 93%|██████████████████████████████████████▉ | ETA: 0:00:02 Sampling 93%|███████████████████████████████████████▎ | ETA: 0:00:02 Sampling 94%|███████████████████████████████████████▌ | ETA: 0:00:02 Sampling 95%|███████████████████████████████████████▊ | ETA: 0:00:01 Sampling 95%|████████████████████████████████████████ | ETA: 0:00:01 Sampling 96%|████████████████████████████████████████▍ | ETA: 0:00:01 Sampling 97%|████████████████████████████████████████▋ | ETA: 0:00:01 Sampling 97%|████████████████████████████████████████▉ | ETA: 0:00:01 Sampling 98%|█████████████████████████████████████████▏| ETA: 0:00:00 Sampling 99%|█████████████████████████████████████████▌| ETA: 0:00:00 Sampling 99%|█████████████████████████████████████████▊| ETA: 0:00:00 Sampling 100%|██████████████████████████████████████████| Time: 0:00:23 Sampling 100%|██████████████████████████████████████████| Time: 0:00:34 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:00:00 Sampling 1%|▌ | ETA: 0:00:00 Sampling 2%|▉ | ETA: 0:00:00 Sampling 3%|█▏ | ETA: 0:00:00 Sampling 3%|█▍ | ETA: 0:00:00 Sampling 4%|█▋ | ETA: 0:00:00 Sampling 5%|██ | ETA: 0:00:00 Sampling 5%|██▎ | ETA: 0:00:00 Sampling 6%|██▌ | ETA: 0:00:00 Sampling 7%|██▊ | ETA: 0:00:00 Sampling 7%|███▏ | ETA: 0:00:00 Sampling 8%|███▍ | ETA: 0:00:00 Sampling 9%|███▋ | ETA: 0:00:00 Sampling 9%|███▉ | ETA: 0:00:00 Sampling 10%|████▎ | ETA: 0:00:00 Sampling 11%|████▌ | ETA: 0:00:00 Sampling 11%|████▊ | ETA: 0:00:00 Sampling 12%|█████ | ETA: 0:00:00 Sampling 13%|█████▍ | ETA: 0:00:00 Sampling 13%|█████▋ | ETA: 0:00:00 Sampling 14%|█████▉ | ETA: 0:00:00 Sampling 15%|██████▏ | ETA: 0:00:00 Sampling 15%|██████▌ | ETA: 0:00:00 Sampling 16%|██████▊ | ETA: 0:00:00 Sampling 17%|███████ | ETA: 0:00:00 Sampling 17%|███████▎ | ETA: 0:00:00 Sampling 18%|███████▌ | ETA: 0:00:00 Sampling 19%|███████▉ | ETA: 0:00:00 Sampling 19%|████████▏ | ETA: 0:00:00 Sampling 20%|████████▍ | ETA: 0:00:00 Sampling 21%|████████▋ | ETA: 0:00:00 Sampling 21%|█████████ | ETA: 0:00:00 Sampling 22%|█████████▎ | ETA: 0:00:00 Sampling 23%|█████████▌ | ETA: 0:00:00 Sampling 23%|█████████▊ | ETA: 0:00:00 Sampling 24%|██████████▏ | ETA: 0:00:00 Sampling 25%|██████████▍ | ETA: 0:00:00 Sampling 25%|██████████▋ | ETA: 0:00:00 Sampling 26%|██████████▉ | ETA: 0:00:00 Sampling 27%|███████████▎ | ETA: 0:00:00 Sampling 27%|███████████▌ | ETA: 0:00:00 Sampling 28%|███████████▊ | ETA: 0:00:00 Sampling 29%|████████████ | ETA: 0:00:00 Sampling 29%|████████████▍ | ETA: 0:00:00 Sampling 30%|████████████▋ | ETA: 0:00:00 Sampling 31%|████████████▉ | ETA: 0:00:00 Sampling 31%|█████████████▏ | ETA: 0:00:00 Sampling 32%|█████████████▌ | ETA: 0:00:00 Sampling 33%|█████████████▊ | ETA: 0:00:00 Sampling 33%|██████████████ | ETA: 0:00:00 Sampling 34%|██████████████▎ | ETA: 0:00:00 Sampling 100%|██████████████████████████████████████████| Time: 0:00:00 Correctness of values: Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:14 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}; nadapts::Int64) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] kwcall(::@NamedTuple{nadapts::Int64}, cb::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nadapts::Int64, discard_initial::Int64, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:117 [19] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:86 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:19 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:16 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [29] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [32] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [33] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [34] top-level scope @ none:6 [35] eval(m::Module, e::Any) @ Core ./boot.jl:489 [36] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [37] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:00:00 Sampling 1%|▌ | ETA: 0:00:00 Sampling 2%|▉ | ETA: 0:00:00 Sampling 3%|█▏ | ETA: 0:00:00 Sampling 3%|█▍ | ETA: 0:00:00 Sampling 4%|█▋ | ETA: 0:00:00 Sampling 5%|██ | ETA: 0:00:00 Sampling 5%|██▎ | ETA: 0:00:00 Sampling 6%|██▌ | ETA: 0:00:00 Sampling 7%|██▊ | ETA: 0:00:00 Sampling 7%|███▏ | ETA: 0:00:00 Sampling 8%|███▍ | ETA: 0:00:00 Sampling 9%|███▋ | ETA: 0:00:00 Sampling 9%|███▉ | ETA: 0:00:00 Sampling 10%|████▎ | ETA: 0:00:00 Sampling 11%|████▌ | ETA: 0:00:00 Sampling 11%|████▊ | ETA: 0:00:00 Sampling 12%|█████ | ETA: 0:00:00 Sampling 13%|█████▍ | ETA: 0:00:00 Sampling 13%|█████▋ | ETA: 0:00:00 Sampling 14%|█████▉ | ETA: 0:00:00 Sampling 15%|██████▏ | ETA: 0:00:00 Sampling 15%|██████▌ | ETA: 0:00:00 Sampling 16%|██████▊ | ETA: 0:00:00 Sampling 17%|███████ | ETA: 0:00:00 Sampling 17%|███████▎ | ETA: 0:00:00 Sampling 18%|███████▌ | ETA: 0:00:00 Sampling 19%|███████▉ | ETA: 0:00:00 Sampling 19%|████████▏ | ETA: 0:00:00 Sampling 20%|████████▍ | ETA: 0:00:00 Sampling 21%|████████▋ | ETA: 0:00:00 Sampling 21%|█████████ | ETA: 0:00:00 Sampling 22%|█████████▎ | ETA: 0:00:00 Sampling 23%|█████████▌ | ETA: 0:00:00 Sampling 23%|█████████▊ | ETA: 0:00:00 Sampling 24%|██████████▏ | ETA: 0:00:00 Sampling 25%|██████████▍ | ETA: 0:00:00 Sampling 25%|██████████▋ | ETA: 0:00:00 Sampling 26%|██████████▉ | ETA: 0:00:00 Sampling 27%|███████████▎ | ETA: 0:00:00 Sampling 27%|███████████▌ | ETA: 0:00:00 Sampling 28%|███████████▊ | ETA: 0:00:00 Sampling 29%|████████████ | ETA: 0:00:00 Sampling 29%|████████████▍ | ETA: 0:00:00 Sampling 30%|████████████▋ | ETA: 0:00:00 Sampling 31%|████████████▉ | ETA: 0:00:00 Sampling 31%|█████████████▏ | ETA: 0:00:00 Sampling 32%|█████████████▌ | ETA: 0:00:00 Sampling 33%|█████████████▊ | ETA: 0:00:00 Sampling 33%|██████████████ | ETA: 0:00:00 Sampling 34%|██████████████▎ | ETA: 0:00:00 Sampling 100%|██████████████████████████████████████████| Time: 0:00:00 Default: Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:32 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}; nadapts::Int64) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] kwcall(::@NamedTuple{nadapts::Int64}, cb::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nadapts::Int64, discard_initial::Int64, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:117 [19] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:86 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:39 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:34 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [29] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [32] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [33] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [34] top-level scope @ none:6 [35] eval(m::Module, e::Any) @ Core ./boot.jl:489 [36] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [37] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:00:01 Sampling 1%|▌ | ETA: 0:00:00 Sampling 2%|▉ | ETA: 0:00:00 Sampling 3%|█▏ | ETA: 0:00:00 Sampling 3%|█▍ | ETA: 0:00:00 Sampling 4%|█▋ | ETA: 0:00:00 Sampling 5%|██ | ETA: 0:00:00 Sampling 5%|██▎ | ETA: 0:00:00 Sampling 6%|██▌ | ETA: 0:00:00 Sampling 7%|██▊ | ETA: 0:00:00 Sampling 7%|███▏ | ETA: 0:00:00 Sampling 8%|███▍ | ETA: 0:00:00 Sampling 9%|███▋ | ETA: 0:00:00 Sampling 9%|███▉ | ETA: 0:00:00 Sampling 10%|████▎ | ETA: 0:00:00 Sampling 11%|████▌ | ETA: 0:00:00 Sampling 11%|████▊ | ETA: 0:00:00 Sampling 12%|█████ | ETA: 0:00:00 Sampling 13%|█████▍ | ETA: 0:00:00 Sampling 13%|█████▋ | ETA: 0:00:00 Sampling 14%|█████▉ | ETA: 0:00:00 Sampling 15%|██████▏ | ETA: 0:00:00 Sampling 15%|██████▌ | ETA: 0:00:00 Sampling 16%|██████▊ | ETA: 0:00:00 Sampling 17%|███████ | ETA: 0:00:00 Sampling 17%|███████▎ | ETA: 0:00:00 Sampling 18%|███████▌ | ETA: 0:00:00 Sampling 19%|███████▉ | ETA: 0:00:00 Sampling 19%|████████▏ | ETA: 0:00:00 Sampling 20%|████████▍ | ETA: 0:00:00 Sampling 21%|████████▋ | ETA: 0:00:00 Sampling 21%|█████████ | ETA: 0:00:00 Sampling 22%|█████████▎ | ETA: 0:00:00 Sampling 23%|█████████▌ | ETA: 0:00:00 Sampling 23%|█████████▊ | ETA: 0:00:00 Sampling 24%|██████████▏ | ETA: 0:00:00 Sampling 25%|██████████▍ | ETA: 0:00:00 Sampling 25%|██████████▋ | ETA: 0:00:00 Sampling 26%|██████████▉ | ETA: 0:00:00 Sampling 27%|███████████▎ | ETA: 0:00:00 Sampling 27%|███████████▌ | ETA: 0:00:00 Sampling 28%|███████████▊ | ETA: 0:00:00 Sampling 29%|████████████ | ETA: 0:00:00 Sampling 29%|████████████▍ | ETA: 0:00:00 Sampling 30%|████████████▋ | ETA: 0:00:00 Sampling 31%|████████████▉ | ETA: 0:00:00 Sampling 31%|█████████████▏ | ETA: 0:00:00 Sampling 32%|█████████████▌ | ETA: 0:00:00 Sampling 33%|█████████████▊ | ETA: 0:00:00 Sampling 33%|██████████████ | ETA: 0:00:00 Sampling 34%|██████████████▎ | ETA: 0:00:00 Sampling 100%|██████████████████████████████████████████| Time: 0:00:00 Exclude variable: Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:60 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}; nadapts::Int64) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] kwcall(::@NamedTuple{nadapts::Int64}, cb::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nadapts::Int64, discard_initial::Int64, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:117 [19] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:86 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Vector{String}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:68 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:62 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [29] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [32] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [33] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [34] top-level scope @ none:6 [35] eval(m::Module, e::Any) @ Core ./boot.jl:489 [36] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [37] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:00:00 Sampling 1%|▌ | ETA: 0:00:00 Sampling 2%|▉ | ETA: 0:00:00 Sampling 3%|█▏ | ETA: 0:00:00 Sampling 3%|█▍ | ETA: 0:00:00 Sampling 4%|█▋ | ETA: 0:00:00 Sampling 5%|██ | ETA: 0:00:00 Sampling 5%|██▎ | ETA: 0:00:00 Sampling 6%|██▌ | ETA: 0:00:00 Sampling 7%|██▊ | ETA: 0:00:00 Sampling 7%|███▏ | ETA: 0:00:00 Sampling 8%|███▍ | ETA: 0:00:00 Sampling 9%|███▋ | ETA: 0:00:00 Sampling 9%|███▉ | ETA: 0:00:00 Sampling 10%|████▎ | ETA: 0:00:00 Sampling 11%|████▌ | ETA: 0:00:00 Sampling 11%|████▊ | ETA: 0:00:00 Sampling 12%|█████ | ETA: 0:00:00 Sampling 13%|█████▍ | ETA: 0:00:00 Sampling 13%|█████▋ | ETA: 0:00:00 Sampling 14%|█████▉ | ETA: 0:00:00 Sampling 15%|██████▏ | ETA: 0:00:00 Sampling 15%|██████▌ | ETA: 0:00:00 Sampling 16%|██████▊ | ETA: 0:00:00 Sampling 17%|███████ | ETA: 0:00:00 Sampling 17%|███████▎ | ETA: 0:00:00 Sampling 18%|███████▌ | ETA: 0:00:00 Sampling 19%|███████▉ | ETA: 0:00:00 Sampling 19%|████████▏ | ETA: 0:00:00 Sampling 20%|████████▍ | ETA: 0:00:00 Sampling 21%|████████▋ | ETA: 0:00:00 Sampling 21%|█████████ | ETA: 0:00:00 Sampling 22%|█████████▎ | ETA: 0:00:00 Sampling 23%|█████████▌ | ETA: 0:00:00 Sampling 23%|█████████▊ | ETA: 0:00:00 Sampling 24%|██████████▏ | ETA: 0:00:00 Sampling 25%|██████████▍ | ETA: 0:00:00 Sampling 25%|██████████▋ | ETA: 0:00:00 Sampling 26%|██████████▉ | ETA: 0:00:00 Sampling 27%|███████████▎ | ETA: 0:00:00 Sampling 27%|███████████▌ | ETA: 0:00:00 Sampling 28%|███████████▊ | ETA: 0:00:00 Sampling 29%|████████████ | ETA: 0:00:00 Sampling 29%|████████████▍ | ETA: 0:00:00 Sampling 30%|████████████▋ | ETA: 0:00:00 Sampling 31%|████████████▉ | ETA: 0:00:00 Sampling 31%|█████████████▏ | ETA: 0:00:00 Sampling 32%|█████████████▌ | ETA: 0:00:00 Sampling 33%|█████████████▊ | ETA: 0:00:00 Sampling 33%|██████████████ | ETA: 0:00:00 Sampling 34%|██████████████▎ | ETA: 0:00:00 Sampling 100%|██████████████████████████████████████████| Time: 0:00:00 Exclude extras: Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:93 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}; nadapts::Int64) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] kwcall(::@NamedTuple{nadapts::Int64}, cb::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nadapts::Int64, discard_initial::Int64, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:117 [19] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:86 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:101 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:95 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [29] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [32] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [33] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [34] top-level scope @ none:6 [35] eval(m::Module, e::Any) @ Core ./boot.jl:489 [36] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [37] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A Sampling 1%|▍ | ETA: 0:05:16 ┌ Warning: `hyperparams(model, sampler; kwargs...)` is not implemented for Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext} and Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}. If you want to record hyperparameters, please implement this method. └ @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:221 Sampling 100%|██████████████████████████████████████████| Time: 0:00:03 HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}(0.05, 10, AutoForwardDiff()) (has hyperparam: true): Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}; kwargs::@Kwargs{}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}; kwargs::@Kwargs{}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, iteration::Int64; kwargs::@Kwargs{}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedNSteps}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/nxcz4/src/sampler.jl:102 [19] sample @ ~/.julia/packages/DynamicPPL/nxcz4/src/sampler.jl:92 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:135 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:2042 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [29] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [31] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [32] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [36] top-level scope @ none:6 [37] eval(m::Module, e::Any) @ Core ./boot.jl:489 [38] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [39] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:09:51 Sampling 1%|▌ | ETA: 0:05:11 Sampling 2%|▉ | ETA: 0:03:26 Sampling 3%|█▏ | ETA: 0:02:34 Sampling 3%|█▍ | ETA: 0:02:02 Sampling 4%|█▋ | ETA: 0:01:41 Sampling 5%|██ | ETA: 0:01:26 Sampling 5%|██▎ | ETA: 0:01:15 Sampling 6%|██▌ | ETA: 0:01:06 Sampling 7%|██▊ | ETA: 0:00:59 Sampling 7%|███▏ | ETA: 0:00:53 Sampling 8%|███▍ | ETA: 0:00:48 Sampling 9%|███▋ | ETA: 0:00:44 Sampling 9%|███▉ | ETA: 0:00:41 Sampling 10%|████▎ | ETA: 0:00:38 Sampling 11%|████▌ | ETA: 0:00:35 Sampling 11%|████▊ | ETA: 0:00:33 Sampling 12%|█████ | ETA: 0:00:31 Sampling 13%|█████▍ | ETA: 0:00:29 Sampling 13%|█████▋ | ETA: 0:00:27 Sampling 14%|█████▉ | ETA: 0:00:26 Sampling 15%|██████▏ | ETA: 0:00:25 Sampling 15%|██████▌ | ETA: 0:00:23 Sampling 16%|██████▊ | ETA: 0:00:22 Sampling 17%|███████ | ETA: 0:00:21 Sampling 17%|███████▎ | ETA: 0:00:20 Sampling 18%|███████▌ | ETA: 0:00:19 Sampling 19%|███████▉ | ETA: 0:00:18 Sampling 19%|████████▏ | ETA: 0:00:18 Sampling 20%|████████▍ | ETA: 0:00:17 Sampling 21%|████████▋ | ETA: 0:00:16 Sampling 21%|█████████ | ETA: 0:00:16 Sampling 22%|█████████▎ | ETA: 0:00:15 Sampling 23%|█████████▌ | ETA: 0:00:14 Sampling 23%|█████████▊ | ETA: 0:00:14 Sampling 24%|██████████▏ | ETA: 0:00:13 Sampling 25%|██████████▍ | ETA: 0:00:13 Sampling 25%|██████████▋ | ETA: 0:00:12 Sampling 26%|██████████▉ | ETA: 0:00:12 Sampling 27%|███████████▎ | ETA: 0:00:12 Sampling 27%|███████████▌ | ETA: 0:00:11 Sampling 28%|███████████▊ | ETA: 0:00:11 Sampling 29%|████████████ | ETA: 0:00:11 Sampling 29%|████████████▍ | ETA: 0:00:10 Sampling 30%|████████████▋ | ETA: 0:00:10 Sampling 31%|████████████▉ | ETA: 0:00:10 Sampling 31%|█████████████▏ | ETA: 0:00:09 Sampling 32%|█████████████▌ | ETA: 0:00:09 Sampling 33%|█████████████▊ | ETA: 0:00:09 Sampling 33%|██████████████ | ETA: 0:00:08 Sampling 34%|██████████████▎ | ETA: 0:00:08 ┌ Warning: `hyperparams(model, sampler; kwargs...)` is not implemented for Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext} and Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}. If you want to record hyperparameters, please implement this method. └ @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:221 Sampling 100%|██████████████████████████████████████████| Time: 0:00:04 HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}(50, 0.65, 1.0, 0.0, AutoForwardDiff()) (has hyperparam: true): Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}; nadapts::Int64) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] kwcall(::@NamedTuple{nadapts::Int64}, cb::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.EndPointTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.FixedIntegrationTime{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.UnitEuclideanMetric{Float64, Tuple{Int64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.UnitMassMatrix{Float64}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nadapts::Int64, discard_initial::Int64, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:117 [19] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:86 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:135 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:2042 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [29] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [31] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [32] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [36] top-level scope @ none:6 [37] eval(m::Module, e::Any) @ Core ./boot.jl:489 [38] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [39] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A ┌ Info: Found initial step size └ ϵ = 0.4 Sampling 1%|▎ | ETA: 0:00:01 Sampling 1%|▌ | ETA: 0:00:00 Sampling 2%|▉ | ETA: 0:00:00 Sampling 3%|█▏ | ETA: 0:00:00 Sampling 3%|█▍ | ETA: 0:00:00 Sampling 4%|█▋ | ETA: 0:00:00 Sampling 5%|██ | ETA: 0:00:00 Sampling 5%|██▎ | ETA: 0:00:00 Sampling 6%|██▌ | ETA: 0:00:00 Sampling 7%|██▊ | ETA: 0:00:00 Sampling 7%|███▏ | ETA: 0:00:00 Sampling 8%|███▍ | ETA: 0:00:00 Sampling 9%|███▋ | ETA: 0:00:00 Sampling 9%|███▉ | ETA: 0:00:00 Sampling 10%|████▎ | ETA: 0:00:00 Sampling 11%|████▌ | ETA: 0:00:00 Sampling 11%|████▊ | ETA: 0:00:00 Sampling 12%|█████ | ETA: 0:00:00 Sampling 13%|█████▍ | ETA: 0:00:00 Sampling 13%|█████▋ | ETA: 0:00:00 Sampling 14%|█████▉ | ETA: 0:00:00 Sampling 15%|██████▏ | ETA: 0:00:00 Sampling 15%|██████▌ | ETA: 0:00:00 Sampling 16%|██████▊ | ETA: 0:00:00 Sampling 17%|███████ | ETA: 0:00:00 Sampling 17%|███████▎ | ETA: 0:00:00 Sampling 18%|███████▌ | ETA: 0:00:00 Sampling 19%|███████▉ | ETA: 0:00:00 Sampling 19%|████████▏ | ETA: 0:00:00 Sampling 20%|████████▍ | ETA: 0:00:00 Sampling 21%|████████▋ | ETA: 0:00:00 Sampling 21%|█████████ | ETA: 0:00:00 Sampling 22%|█████████▎ | ETA: 0:00:00 Sampling 23%|█████████▌ | ETA: 0:00:00 Sampling 23%|█████████▊ | ETA: 0:00:00 Sampling 24%|██████████▏ | ETA: 0:00:00 Sampling 25%|██████████▍ | ETA: 0:00:00 Sampling 25%|██████████▋ | ETA: 0:00:00 Sampling 26%|██████████▉ | ETA: 0:00:00 Sampling 27%|███████████▎ | ETA: 0:00:00 Sampling 27%|███████████▌ | ETA: 0:00:00 Sampling 28%|███████████▊ | ETA: 0:00:00 Sampling 29%|████████████ | ETA: 0:00:00 Sampling 29%|████████████▍ | ETA: 0:00:00 Sampling 30%|████████████▋ | ETA: 0:00:00 Sampling 31%|████████████▉ | ETA: 0:00:00 Sampling 31%|█████████████▏ | ETA: 0:00:00 Sampling 32%|█████████████▌ | ETA: 0:00:00 Sampling 33%|█████████████▊ | ETA: 0:00:00 Sampling 33%|██████████████ | ETA: 0:00:00 Sampling 34%|██████████████▎ | ETA: 0:00:00 ┌ Warning: `hyperparams(model, sampler; kwargs...)` is not implemented for Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext} and Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}. If you want to record hyperparameters, please implement this method. └ @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:221 Sampling 100%|██████████████████████████████████████████| Time: 0:00:00 NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}(50, 0.65, 10, 1000.0, 0.0, AutoForwardDiff()) (has hyperparam: true): Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}; nadapts::Int64) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] kwcall(::@NamedTuple{nadapts::Int64}, ::typeof(TuringCallbacks.params_and_values), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{nadapts::Int64}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64; kwargs::@Kwargs{nadapts::Int64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] kwcall(::@NamedTuple{nadapts::Int64}, cb::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, @NamedTuple{n_steps::Int64, is_accept::Bool, acceptance_rate::Float64, log_density::Float64, hamiltonian_energy::Float64, hamiltonian_energy_error::Float64, max_hamiltonian_energy_error::Float64, tree_depth::Int64, numerical_error::Bool, step_size::Float64, nom_step_size::Float64}}, state::Turing.Inference.HMCState{VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}, Base.Fix1{typeof(LogDensityProblems.logdensity_and_gradient), LogDensityFunction{Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, SamplingContext{Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, DefaultContext, Random.TaskLocalRNG}, AutoForwardDiff{2, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64, Float64}}}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{nadapts::Int64}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, progress::Bool, nadapts::Int64, discard_initial::Int64, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, progress::Bool, nadapts::Int64, discard_adapt::Bool, discard_initial::Int64, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:117 [19] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/hmc.jl:86 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:135 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:2042 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [29] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [31] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [32] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [36] top-level scope @ none:6 [37] eval(m::Module, e::Any) @ Core ./boot.jl:489 [38] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [39] _start() @ Base ./client.jl:577 Sampling 0%| | ETA: N/A Sampling 1%|▍ | ETA: 0:00:08 ┌ Warning: `hyperparams(model, sampler; kwargs...)` is not implemented for Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext} and Sampler{MH{@NamedTuple{}}}. If you want to record hyperparameters, please implement this method. └ @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:221 Sampling 100%|██████████████████████████████████████████| Time: 0:00:00 MH{@NamedTuple{}}(NamedTuple()) (has hyperparam: false): Error During Test at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 Got exception outside of a @test MethodError: no method matching params_and_values(::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, ::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}) The function `params_and_values` exists, but no method is defined for this combination of argument types. Closest candidates are: params_and_values(::Any, ::Any, !Matched::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 params_and_values(::Any, ::Any, !Matched::Any; kwargs...) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 Stacktrace: [1] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, state::VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}; kwargs::@Kwargs{}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:183 [2] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, state::VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:182 [3] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, state::VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}; kwargs::@Kwargs{}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:186 [4] params_and_values(model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, state::VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:185 [5] (::TuringCallbacks.var"#27#28"{@Kwargs{}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{MH{@NamedTuple{}}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}})() @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:284 [6] with_logstate(f::TuringCallbacks.var"#27#28"{@Kwargs{}, TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{MH{@NamedTuple{}}}, Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, Base.Fix1{typeof(TuringCallbacks.filter_extras_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, Base.Fix1{typeof(TuringCallbacks.filter_param_and_value), TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, TBLogger{String, IOStream}, DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [7] with_logger(f::Function, logger::TBLogger{String, IOStream}) @ Base.CoreLogging ./logging/logging.jl:653 [8] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, state::VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, iteration::Int64; kwargs::@Kwargs{}) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:283 [9] (::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}})(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, transition::Turing.Inference.Transition{OrderedDict{Any, Any}, Float64, Nothing}, state::VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{VarName{:s, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{VarName{:m, typeof(identity)}, Int64}, Vector{Normal{Float64}}, Vector{VarName{:m, typeof(identity)}}, Vector{Float64}}}, Float64}, iteration::Int64) @ TuringCallbacks ~/.julia/packages/TuringCallbacks/rZplz/src/callbacks/tensorboard.jl:259 [10] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:219 [inlined] [11] (::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{MH{@NamedTuple{}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [12] with_logstate(f::AbstractMCMC.var"#27#28"{TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, Int64, Int64, Int64, Type{Chains}, Nothing, @Kwargs{}, Random.TaskLocalRNG, Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, Sampler{MH{@NamedTuple{}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:542 [13] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:653 [14] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [15] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [16] mcmcsample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, N::Int64; progress::Bool, progressname::String, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [17] kwcall(::@NamedTuple{chain_type::UnionAll, initial_state::Nothing, callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [18] sample(rng::Random.TaskLocalRNG, model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, sampler::Sampler{MH{@NamedTuple{}}}, N::Int64; chain_type::Type, resume_from::Nothing, initial_state::Nothing, kwargs::@Kwargs{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}) @ DynamicPPL ~/.julia/packages/DynamicPPL/nxcz4/src/sampler.jl:102 [19] sample @ ~/.julia/packages/DynamicPPL/nxcz4/src/sampler.jl:92 [inlined] [20] #sample#106 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:29 [inlined] [21] sample @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:20 [inlined] [22] #sample#105 @ ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:17 [inlined] [23] kwcall(::@NamedTuple{callback::TensorBoardCallback{DefaultDict{String, Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}, TuringCallbacks.var"#13#14"{Series{Number, Tuple{Mean{Float64, EqualWeight}, Variance{Float64, Float64, EqualWeight}, KHist{Float64}}}}}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}, TuringCallbacks.NameFilter{Nothing, Nothing}}}, ::typeof(sample), model::Model{typeof(demo), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DefaultContext}, alg::MH{@NamedTuple{}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/EEhvQ/src/mcmc/abstractmcmc.jl:14 [24] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:135 [inlined] [25] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:2042 [inlined] [26] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [27] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [28] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:121 [inlined] [29] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [30] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/tensorboardcallback.jl:2 [31] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [32] top-level scope @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:28 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:29 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [36] top-level scope @ none:6 [37] eval(m::Module, e::Any) @ Core ./boot.jl:489 [38] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [39] _start() @ Base ./client.jl:577 Test Summary: | Pass Error Total Time TuringCallbacks.jl | 3 8 11 1m40.3s MultiCallback | 3 3 58.6s TensorBoardCallback | 8 8 35.3s Correctness of values | 1 1 13.9s Default | 1 1 0.9s Exclude variable | 1 1 1.8s Exclude extras | 1 1 0.9s With hyperparams | 4 4 17.6s HMC{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}(0.05, 10, AutoForwardDiff()) (has hyperparam: true) | 1 1 6.8s HMCDA{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}(50, 0.65, 1.0, 0.0, AutoForwardDiff()) (has hyperparam: true) | 1 1 7.0s NUTS{AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}(50, 0.65, 10, 1000.0, 0.0, AutoForwardDiff()) (has hyperparam: true) | 1 1 0.8s MH{@NamedTuple{}}(NamedTuple()) (has hyperparam: false) | 1 1 2.3s RNG of the outermost testset: Random.Xoshiro(0xdcb9d75c09c94204, 0x5c701a6484c98c34, 0x53b627f22f333331, 0x612561ae022dd236, 0x3c9e9a069366a60f) ERROR: LoadError: Some tests did not pass: 3 passed, 0 failed, 8 errored, 0 broken. in expression starting at /home/pkgeval/.julia/packages/TuringCallbacks/rZplz/test/runtests.jl:27 Testing failed after 701.34s ERROR: LoadError: Package TuringCallbacks errored during testing Stacktrace: [1] pkgerror(msg::String) @ Pkg.Types /opt/julia/share/julia/stdlib/v1.14/Pkg/src/Types.jl:68 [2] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, julia_args::Cmd, test_args::Cmd, test_fn::Nothing, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool) @ Pkg.Operations /opt/julia/share/julia/stdlib/v1.14/Pkg/src/Operations.jl:3067 [3] test @ /opt/julia/share/julia/stdlib/v1.14/Pkg/src/Operations.jl:2916 [inlined] [4] test(ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}; coverage::Bool, test_fn::Nothing, julia_args::Cmd, test_args::Cmd, force_latest_compatible_version::Bool, allow_earlier_backwards_compatible_versions::Bool, allow_reresolve::Bool, kwargs::@Kwargs{io::IOContext{IO}}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:572 [5] kwcall(::@NamedTuple{julia_args::Cmd, io::IOContext{IO}}, ::typeof(Pkg.API.test), ctx::Pkg.Types.Context, pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:548 [6] test(pkgs::Vector{PackageSpec}; io::IOContext{IO}, kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:172 [7] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkgs::Vector{PackageSpec}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:161 [8] test(pkgs::Vector{String}; kwargs::@Kwargs{julia_args::Cmd}) @ Pkg.API /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:160 [9] test @ /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:160 [inlined] [10] kwcall(::@NamedTuple{julia_args::Cmd}, ::typeof(Pkg.API.test), pkg::String) @ Pkg.API /opt/julia/share/julia/stdlib/v1.14/Pkg/src/API.jl:159 [11] top-level scope @ /PkgEval.jl/scripts/evaluate.jl:237 [12] include(mod::Module, _path::String) @ Base ./Base.jl:309 [13] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [14] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/evaluate.jl:228 PkgEval failed after 800.86s: package fails to precompile