Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1384 (b34261b5d0*) started at 2025-12-18T15:22:53.766 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.34s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.94s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 13.39s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_aDomwU/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_aDomwU/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:58 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011311954214772684 Iteration 10: d = 1.150229096878134e-5 Iteration 20: d = 1.8554481182552595e-7 Iteration 30: d = 3.1942449983015925e-9 Iteration 40: d = 5.521105965281303e-11 Iteration 50: d = 9.537685784835535e-13 Iteration 60: d = 1.646343601583997e-14 Converged after 65 iterations. d = 2.1389777052632164e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001302626819939664 Iteration 10: d = 1.4902284318150556e-5 Iteration 20: d = 2.2372045547322085e-7 Iteration 30: d = 3.738230514282923e-9 Iteration 40: d = 6.439976492615227e-11 Iteration 50: d = 1.1235998491115403e-12 Iteration 60: d = 1.9736752614684577e-14 Converged after 66 iterations. d = 1.757251537162125e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001224449468242362 Iteration 10: d = 8.190554117389309e-6 Iteration 20: d = 1.0202419200688358e-7 Iteration 30: d = 1.6387800104922525e-9 Iteration 40: d = 2.7961141815316273e-11 Iteration 50: d = 4.860926362773601e-13 Iteration 60: d = 8.471403649909543e-15 Converged after 64 iterations. d = 1.6911836122628398e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011855350240024972 Iteration 10: d = 1.0596960307380968e-5 Iteration 20: d = 1.506572493493326e-7 Iteration 30: d = 2.4605814452317867e-9 Iteration 40: d = 4.202610813752298e-11 Iteration 50: d = 7.323401889032524e-13 Iteration 60: d = 1.2889347605507543e-14 Converged after 65 iterations. d = 1.7448708827419716e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014352651229865092 Iteration 10: d = 1.9114090731287843e-5 Iteration 20: d = 2.7434940395043854e-7 Iteration 30: d = 4.184877863082828e-9 Iteration 40: d = 6.461495952513137e-11 Iteration 50: d = 1.0012334569604594e-12 Iteration 60: d = 1.553891071241055e-14 Converged after 65 iterations. d = 1.9543912739697488e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014831808483574658 Iteration 10: d = 1.629501554755944e-5 Iteration 20: d = 1.990503696912197e-7 Iteration 30: d = 2.759780363934582e-9 Iteration 40: d = 4.063925891770918e-11 Iteration 50: d = 6.16360958889632e-13 Iteration 60: d = 9.499089603175066e-15 Converged after 64 iterations. d = 1.807925521300691e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 94%|██████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012968618286127295 Iteration 10: d = 1.3121725174070031e-5 Iteration 20: d = 1.749941425508728e-7 Iteration 30: d = 2.623646242842227e-9 Iteration 40: d = 4.038516910808581e-11 Iteration 50: d = 6.26632279266797e-13 Iteration 60: d = 9.736966572846186e-15 Converged after 64 iterations. d = 1.8222690747901075e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016103524786023182 Iteration 10: d = 2.3016738697598138e-5 Iteration 20: d = 3.2765675271983325e-7 Iteration 30: d = 4.9722758920699874e-9 Iteration 40: d = 7.686160270369948e-11 Iteration 50: d = 1.1956728670232558e-12 Iteration 60: d = 1.8645341948310464e-14 Converged after 66 iterations. d = 1.5241504487558106e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001260549860241937 Iteration 10: d = 1.5158412722934799e-5 Iteration 20: d = 2.0470379007669201e-7 Iteration 30: d = 3.0216426433952254e-9 Iteration 40: d = 4.59923095230531e-11 Iteration 50: d = 7.084108809981751e-13 Iteration 60: d = 1.0973032587615914e-14 Converged after 64 iterations. d = 2.0626729085474916e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014685469051191077 Iteration 10: d = 1.6674100326230755e-5 Iteration 20: d = 2.0685490925525989e-7 Iteration 30: d = 2.9002417484376474e-9 Iteration 40: d = 4.288322828454825e-11 Iteration 50: d = 6.505634044802165e-13 Iteration 60: d = 9.974301884011318e-15 Converged after 64 iterations. d = 1.9103668500422692e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005108681671440155 Iteration 10: d = 7.543448277911356e-5 Iteration 20: d = 9.305797618356969e-7 Iteration 30: d = 1.2302132904716143e-8 Iteration 40: d = 1.6667033244627479e-10 Iteration 50: d = 2.284527295882115e-12 Iteration 60: d = 3.149606528889454e-14 Converged after 67 iterations. d = 1.594317426615822e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003115084914250778 Iteration 10: d = 3.100593403256601e-5 Iteration 20: d = 4.0607491732809427e-7 Iteration 30: d = 6.176978054807314e-9 Iteration 40: d = 9.766520302531634e-11 Iteration 50: d = 1.56486423156962e-12 Iteration 60: d = 2.5209722370553422e-14 Converged after 66 iterations. d = 2.1914702798515502e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0023458978953688945 Iteration 10: d = 2.2216923080802695e-5 Iteration 20: d = 3.1811045611993144e-7 Iteration 30: d = 5.203042890939724e-9 Iteration 40: d = 8.661115431963206e-11 Iteration 50: d = 1.4498953304678115e-12 Iteration 60: d = 2.432667987165911e-14 Converged after 66 iterations. d = 2.109131644404889e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020583305833985406 Iteration 10: d = 1.772988507894767e-5 Iteration 20: d = 2.7439748193067003e-7 Iteration 30: d = 4.9611388196174925e-9 Iteration 40: d = 8.885415311297106e-11 Iteration 50: d = 1.5695364553910684e-12 Iteration 60: d = 2.744361162354232e-14 Converged after 67 iterations. d = 1.608526234355783e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014352651229865092 Iteration 10: d = 1.9114090731287843e-5 Iteration 20: d = 2.7434940395043854e-7 Iteration 30: d = 4.184877863082828e-9 Iteration 40: d = 6.461495952513137e-11 Iteration 50: d = 1.0012334569604594e-12 Iteration 60: d = 1.553891071241055e-14 Converged after 65 iterations. d = 1.9543912739697488e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001588829449182054 Iteration 10: d = 1.883520188774753e-5 Iteration 20: d = 2.2915242464050648e-7 Iteration 30: d = 3.1998041630967665e-9 Iteration 40: d = 4.557621647655424e-11 Iteration 50: d = 6.493080167817541e-13 Iteration 60: d = 9.223315525039176e-15 Converged after 64 iterations. d = 1.6544810625773082e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001397970612212534 Iteration 10: d = 1.7868861377762072e-5 Iteration 20: d = 2.2068939562633587e-7 Iteration 30: d = 2.952658978911469e-9 Iteration 40: d = 4.068244506962579e-11 Iteration 50: d = 5.681524972554841e-13 Iteration 60: d = 7.979436548215033e-15 Converged after 64 iterations. d = 1.4083210080335534e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.78581247708 Iteration 2: convergence error = 4829.371891119003 Iteration 3: convergence error = 1093.7957459309284 Iteration 4: convergence error = 320.3037806249147 Iteration 5: convergence error = 95.06946440911133 Iteration 6: convergence error = 28.375724243722743 Iteration 7: convergence error = 8.540687697061912 Iteration 8: convergence error = 2.5605353864646077 Iteration 9: convergence error = 0.7658646445993327 Iteration 10: convergence error = 0.22876360450391076 Iteration 11: convergence error = 0.0682791104034095 Iteration 12: convergence error = 0.020370374144476955 Iteration 13: convergence error = 0.006075780830997246 Iteration 14: convergence error = 0.001811938365790411 Iteration 15: convergence error = 0.0005403177908647194 Iteration 16: convergence error = 0.00016111451122924336 Iteration 17: convergence error = 4.804058426088886e-5 Iteration 18: convergence error = 1.4324349649541546e-5 Iteration 19: convergence error = 4.2710735215223394e-6 Iteration 20: convergence error = 1.2734915344481124e-6 Iteration 21: convergence error = 3.7972358768456616e-7 Iteration 22: convergence error = 1.1307747627142817e-7 Iteration 23: convergence error = 3.280547389294952e-8 Iteration 24: convergence error = 9.457153282710351e-9 Iteration 25: convergence error = 2.7262103685643524e-9 Iteration 26: convergence error = 7.837570592528209e-10 Iteration 27: convergence error = 2.2009771782904863e-10 Iteration 28: convergence error = 6.252776074688882e-11 Iteration 29: convergence error = 2.091837814077735e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001588829449182054 Iteration 10: d = 1.883520188774753e-5 Iteration 20: d = 2.2915242464050648e-7 Iteration 30: d = 3.1998041630967665e-9 Iteration 40: d = 4.557621647655424e-11 Iteration 50: d = 6.493080167817541e-13 Iteration 60: d = 9.223315525039176e-15 Converged after 64 iterations. d = 1.6544810625773082e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.656517119967 Iteration 2: convergence error = 4824.216153512708 Iteration 3: convergence error = 1093.5924666266053 Iteration 4: convergence error = 320.2170156427949 Iteration 5: convergence error = 95.06356446856034 Iteration 6: convergence error = 28.355329546256826 Iteration 7: convergence error = 8.48306086920752 Iteration 8: convergence error = 2.542098380337393 Iteration 9: convergence error = 0.7600211823396421 Iteration 10: convergence error = 0.22692305542591384 Iteration 11: convergence error = 0.06770191097803036 Iteration 12: convergence error = 0.020189956124340824 Iteration 13: convergence error = 0.006019533808284905 Iteration 14: convergence error = 0.0017944410608379258 Iteration 15: convergence error = 0.0005348850070276967 Iteration 16: convergence error = 0.00015943050038913498 Iteration 17: convergence error = 4.7519371491944185e-5 Iteration 18: convergence error = 1.416325517311634e-5 Iteration 19: convergence error = 4.221356448397273e-6 Iteration 20: convergence error = 1.2581679129652912e-6 Iteration 21: convergence error = 3.749894403881626e-7 Iteration 22: convergence error = 1.116266048484249e-7 Iteration 23: convergence error = 3.2361185731133446e-8 Iteration 24: convergence error = 9.328914529760368e-9 Iteration 25: convergence error = 2.6764155336422846e-9 Iteration 26: convergence error = 7.689777703490108e-10 Iteration 27: convergence error = 2.2146195988170803e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:57:05 Bin 1 ray tracing: 8%|██▌ | ETA: 0:00:39 Bin 1 ray tracing: 16%|█████ | ETA: 0:00:24 Bin 1 ray tracing: 24%|███████▍ | ETA: 0:00:18 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:14 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:12 Bin 1 ray tracing: 48%|██████████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 56%|████████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▊ | ETA: 0:00:09 Bin 2 ray tracing: 40%|████████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 2 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 74%|██████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:12 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:11 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 3 ray tracing: 48%|██████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 3 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 4 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 4 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:08 Bin 4 ray tracing: 40%|████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 49%|██████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 5 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 50%|███████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 5 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 5 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 16%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 8 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 8 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 9 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 52%|███████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:10 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:08 Bin 10 ray tracing: 35%|██████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 44%|████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 53%|███████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 62%|██████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 71%|████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 27%|████████▊ | ETA: 0:00:03 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 27%|████████▊ | ETA: 0:00:03 Bin 2 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 2 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 5 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 6 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 80%|█████████████████████████▋ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001588829449182054 Iteration 10: d = 1.883520188774753e-5 Iteration 20: d = 2.2915242464050648e-7 Iteration 30: d = 3.1998041630967665e-9 Iteration 40: d = 4.557621647655424e-11 Iteration 50: d = 6.493080167817541e-13 Iteration 60: d = 9.223315525039176e-15 Converged after 64 iterations. d = 1.6544810625773082e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013920569049910866 Iteration 10: d = 1.7832264159971452e-5 Iteration 20: d = 2.2031218923915088e-7 Iteration 30: d = 2.946302977342078e-9 Iteration 40: d = 4.05703990320583e-11 Iteration 50: d = 5.661805989910719e-13 Iteration 60: d = 7.9094855728364e-15 Converged after 64 iterations. d = 1.4088487745443916e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012547372214584014 Iteration 10: d = 1.4499526611502292e-5 Iteration 20: d = 1.623130964979113e-7 Iteration 30: d = 2.045891493943465e-9 Iteration 40: d = 2.733619956347789e-11 Iteration 50: d = 3.757146709004177e-13 Iteration 60: d = 5.2770971708752974e-15 Converged after 63 iterations. d = 1.442524158698286e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018504352284357188 Iteration 10: d = 2.083774763343025e-5 Iteration 20: d = 2.2493186343829415e-7 Iteration 30: d = 2.8626306349620354e-9 Iteration 40: d = 3.8705227142926e-11 Iteration 50: d = 5.363305660406752e-13 Iteration 60: d = 7.493795445967155e-15 Converged after 63 iterations. d = 2.123800429600389e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012436213241008515 Iteration 10: d = 1.1637826922434306e-5 Iteration 20: d = 1.3921769089532596e-7 Iteration 30: d = 1.8446841495656298e-9 Iteration 40: d = 2.4860971323663935e-11 Iteration 50: d = 3.374443656208993e-13 Iteration 60: d = 4.601550511669828e-15 Converged after 62 iterations. d = 1.953470080638313e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012559009550449365 Iteration 10: d = 9.786446055767134e-6 Iteration 20: d = 1.0604576473805804e-7 Iteration 30: d = 1.4300797238172364e-9 Iteration 40: d = 1.9841968192327646e-11 Iteration 50: d = 2.7686558230259474e-13 Iteration 60: d = 3.869546183730594e-15 Converged after 62 iterations. d = 1.619738568601179e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001305072777991774 Iteration 10: d = 1.4807607074537688e-5 Iteration 20: d = 1.5617560493704865e-7 Iteration 30: d = 1.9043257326296105e-9 Iteration 40: d = 2.4356733202329013e-11 Iteration 50: d = 3.162686970715969e-13 Iteration 60: d = 4.123246284721523e-15 Converged after 62 iterations. d = 1.7051277921314497e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001553994223398484 Iteration 10: d = 1.4211900154874306e-5 Iteration 20: d = 1.6235541600924685e-7 Iteration 30: d = 2.192517207256502e-9 Iteration 40: d = 3.032308997609408e-11 Iteration 50: d = 4.221249590508359e-13 Iteration 60: d = 5.849433934167682e-15 Converged after 63 iterations. d = 1.6163543499741925e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013515017032100036 Iteration 10: d = 1.018990379664892e-5 Iteration 20: d = 8.932424755399923e-8 Iteration 30: d = 1.0899604134784109e-9 Iteration 40: d = 1.4750223283854792e-11 Iteration 50: d = 2.0568391203468973e-13 Iteration 60: d = 2.9333276130139483e-15 Converged after 61 iterations. d = 1.8606904908809736e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001455806755160104 Iteration 10: d = 1.3248786446000603e-5 Iteration 20: d = 1.2272744998414378e-7 Iteration 30: d = 1.276334006862245e-9 Iteration 40: d = 1.4227525130015577e-11 Iteration 50: d = 1.684358208750119e-13 Converged after 60 iterations. d = 2.128264625241847e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.529147113335 Iteration 2: convergence error = 4807.438132587478 Iteration 3: convergence error = 1095.0526619215293 Iteration 4: convergence error = 319.90558185458394 Iteration 5: convergence error = 95.36842836990468 Iteration 6: convergence error = 28.680380637733606 Iteration 7: convergence error = 8.68747463093382 Iteration 8: convergence error = 2.621420719731759 Iteration 9: convergence error = 0.7891576502422595 Iteration 10: convergence error = 0.23724307328097893 Iteration 11: convergence error = 0.0712652307611279 Iteration 12: convergence error = 0.021397488302682177 Iteration 13: convergence error = 0.00642293013811468 Iteration 14: convergence error = 0.0019276905661627097 Iteration 15: convergence error = 0.000578499529410692 Iteration 16: convergence error = 0.0001735986481889995 Iteration 17: convergence error = 5.209267465033918e-5 Iteration 18: convergence error = 1.563144292049401e-5 Iteration 19: convergence error = 4.690482228397741e-6 Iteration 20: convergence error = 1.4074516911932733e-6 Iteration 21: convergence error = 4.223220457788557e-7 Iteration 22: convergence error = 1.2661075743380934e-7 Iteration 23: convergence error = 3.712830221047625e-8 Iteration 24: convergence error = 1.0790472515509464e-8 Iteration 25: convergence error = 3.1161562219494954e-9 Iteration 26: convergence error = 9.038103598868474e-10 Iteration 27: convergence error = 2.59660737356171e-10 Iteration 28: convergence error = 7.389644451905042e-11 Iteration 29: convergence error = 2.205524651799351e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.4302090443083 K, F = -7421.057851123855, relative_change = 0.03256979095569166 Iter 2: T = 936.9396736252643 K, F = -6290.439992392803, relative_change = 0.03151703878377394 Iter 3: T = 908.496753300349 K, F = -5330.552579068922, relative_change = 0.03035725898430807 Iter 5: T = 857.6133079183772 K, F = -3824.117838126452, relative_change = 0.02772356310923006 Iter 10: T = 763.1655089537012 K, F = -1655.4512766112741, relative_change = 0.01977182756921598 Iter 15: T = 708.0441299381184 K, F = -708.5881090931471, relative_change = 0.011798048265321374 Iter 20: T = 679.7748162092294 K, F = -300.2587762658003, relative_change = 0.006022854086193951 Iter 25: T = 666.6161231949526 K, F = -126.38743337693332, relative_change = 0.0027773054913591217 Iter 30: T = 660.828785675854 K, F = -53.0118254118631, relative_change = 0.001213831026451008 Iter 35: T = 658.3540061194599 K, F = -22.198336492225863, relative_change = 0.0005174081317834583 Iter 40: T = 657.3091125171202 K, F = -9.288614166111893, relative_change = 0.00021814362915662896 Iter 45: T = 656.8703621559551 K, F = -3.8854906933241424, relative_change = 9.154131407044642e-5 Iter 50: T = 656.686560864304 K, F = -1.6251131963663479, relative_change = 3.833834527695692e-5 Iter 55: T = 656.6096384709989 K, F = -0.6796688163010242, relative_change = 1.604313654542718e-5 Iter 60: T = 656.5774590635876 K, F = -0.2842503527804095, relative_change = 6.711108793454584e-6 Iter 65: T = 656.5639995809834 K, F = -0.11887772083260578, relative_change = 2.8069593480767017e-6 Iter 70: T = 656.5583703724477 K, F = -0.04971622748459836, relative_change = 1.1739552632537422e-6 Iter 75: T = 656.5560161191058 K, F = -0.020791945416956337, relative_change = 4.909710912886938e-7 Iter 80: T = 656.5550315333041 K, F = -0.008695444313646439, relative_change = 2.053315444767373e-7 Iter 85: T = 656.5546197662001 K, F = -0.0036365394320815314, relative_change = 8.587237877737055e-8 Iter 90: T = 656.5544475600061 K, F = -0.0015208443547452544, relative_change = 3.591290236716016e-8 Iter 95: T = 656.5543755412715 K, F = -0.0006360352948232562, relative_change = 1.5019213046294896e-8 Iter 100: T = 656.5543454221682 K, F = -0.0002659975610661558, relative_change = 6.281215750963995e-9 Iter 105: T = 656.5543328259981 K, F = -0.00011124335723117218, relative_change = 2.6268796926347547e-9 Iter 110: T = 656.5543275581291 K, F = -4.652330103316338e-5, relative_change = 1.0985925131051227e-9 Iter 115: T = 656.5543253550433 K, F = -1.9456600027389914e-5, relative_change = 4.594445146275291e-10 Iter 120: T = 656.5543244336865 K, F = -8.136981992756809e-6, relative_change = 1.9214517243044148e-10 Iter 125: T = 656.554324048364 K, F = -3.402982783562436e-6, relative_change = 8.035739984855537e-11 Iter 130: T = 656.5543238872176 K, F = -1.423168047631762e-6, relative_change = 3.3606424499495066e-11 Iter 135: T = 656.5543238198243 K, F = -5.951860457265035e-7, relative_change = 1.4054612139388999e-11 Iter 140: T = 656.5543237916396 K, F = -2.4891456007480883e-7, relative_change = 5.877821940772878e-12 Iter 145: T = 656.5543237798524 K, F = -1.0409922041043629e-7, relative_change = 2.4581795521090497e-12 Iter 150: T = 656.5543237749229 K, F = -4.353553550995315e-8, relative_change = 1.028040006088085e-12 Iter 155: T = 656.5543237728613 K, F = -1.8207294061323154e-8, relative_change = 4.2994364210015845e-13 Converged in 159 iterations to T = 656.5543237721171 K Iter 1: T = 970.3497894448956 K, F = -6755.8286796121165, relative_change = 0.02965021055510442 Iter 2: T = 942.8640112152042 K, F = -5722.021124477465, relative_change = 0.028325639402070706 Iter 3: T = 917.497871672914 K, F = -4844.662160316579, relative_change = 0.02690328535246268 Iter 5: T = 872.9083184808055 K, F = -3468.7623329190906, relative_change = 0.02381028083322893 Iter 10: T = 793.7655989439158 K, F = -1493.0287302474974, relative_change = 0.015504543113683112 Iter 15: T = 750.6459766201073 K, F = -635.5420331562958, relative_change = 0.008489506887890762 Iter 20: T = 729.7155544467382 K, F = -268.26440112571026, relative_change = 0.004084320813328144 Iter 25: T = 720.2951407038241 K, F = -112.67948092725443, relative_change = 0.0018235135803323231 Iter 30: T = 716.2221008661315 K, F = -47.21415752670143, relative_change = 0.0007848601745432736 Iter 35: T = 714.4939502729508 K, F = -19.761698259047314, relative_change = 0.00033229727453315766 Iter 40: T = 713.7667734456402 K, F = -8.26743648314168, relative_change = 0.00013969363644247962 Iter 45: T = 713.4618736319644 K, F = -3.458042773912118, relative_change = 5.8548959244193635e-5 Iter 50: T = 713.3342228178603 K, F = -1.446282765077441, relative_change = 2.4508229932555363e-5 Iter 55: T = 713.2808135273394 K, F = -0.6048681240210664, relative_change = 1.0253549772632677e-5 Iter 60: T = 713.2584728889317 K, F = -0.2529657673131312, relative_change = 4.288842146601711e-6 Iter 65: T = 713.2491290261421 K, F = -0.10579377620321828, relative_change = 1.7937648716573537e-6 Iter 70: T = 713.245221181514 K, F = -0.04424430307526872, relative_change = 7.501948581208249e-7 Iter 75: T = 713.2435868515491 K, F = -0.018503510348419017, relative_change = 3.137441160995928e-7 Iter 80: T = 713.2429033512744 K, F = -0.007738391524523047, relative_change = 1.3121217761315363e-7 Iter 85: T = 713.2426175026035 K, F = -0.0032362881924467013, relative_change = 5.4874611867434694e-8 Iter 90: T = 713.2424979571542 K, F = -0.0013534544482725064, relative_change = 2.2949237639186774e-8 Iter 95: T = 713.2424479617985 K, F = -0.0005660308285252436, relative_change = 9.597648703088651e-9 Iter 100: T = 713.24242705314 K, F = -0.00023672085495340944, relative_change = 4.013851912554584e-9 Iter 105: T = 713.2424183088885 K, F = -9.89994890235879e-5, relative_change = 1.6786409107564104e-9 Iter 110: T = 713.242414651938 K, F = -4.14027676698403e-5, relative_change = 7.02027677225459e-10 Iter 115: T = 713.2424131225577 K, F = -1.731513112646077e-5, relative_change = 2.935963485967003e-10 Iter 120: T = 713.2424124829525 K, F = -7.24139475005714e-6, relative_change = 1.2278550193549617e-10 Iter 125: T = 713.2424122154621 K, F = -3.0284379745060264e-6, relative_change = 5.135036692223881e-11 Iter 130: T = 713.2424121035942 K, F = -1.2665284562229928e-6, relative_change = 2.147532871419699e-11 Iter 135: T = 713.2424120568098 K, F = -5.29676290716985e-7, relative_change = 8.98122138742811e-12 Iter 140: T = 713.242412037244 K, F = -2.2151680068027702e-7, relative_change = 3.7560515036668226e-12 Iter 145: T = 713.2424120290614 K, F = -9.263983868912362e-8, relative_change = 1.5708063874078966e-12 Iter 150: T = 713.2424120256394 K, F = -3.8743459107593026e-8, relative_change = 6.56936301908944e-13 Iter 155: T = 713.2424120242082 K, F = -1.620328171636487e-8, relative_change = 2.747437687501965e-13 Converged in 157 iterations to T = 713.2424120239053 K Iter 1: T = 974.4031242148548 K, F = -5832.272496560166, relative_change = 0.025596875785145284 Iter 2: T = 950.9955658753544 K, F = -4934.32560336331, relative_change = 0.02402245821857509 Iter 3: T = 929.7026861804418 K, F = -4172.824992373271, relative_change = 0.022390093559808935 Iter 5: T = 893.1079533462785 K, F = -2980.195567486591, relative_change = 0.019035866823221448 Iter 10: T = 831.45646788042 K, F = -1274.3770363142103, relative_change = 0.011186937956128448 Iter 15: T = 800.1548604841313 K, F = -539.6147121595671, relative_change = 0.00564746707035545 Iter 20: T = 785.6784714447862 K, F = -227.0445253441418, relative_change = 0.0025877947271848055 Iter 25: T = 779.3330477415659 K, F = -95.21203750003447, relative_change = 0.0011275525019998115 Iter 30: T = 776.623869281551 K, F = -39.86576734589398, relative_change = 0.0004799757745136894 Iter 35: T = 775.4807936223262 K, F = -16.680676257315366, relative_change = 0.00020224313944699872 Iter 40: T = 775.0009572256193 K, F = -6.9775252829398635, relative_change = 8.484779787800293e-5 Iter 45: T = 774.7999690021512 K, F = -2.9183417106310454, relative_change = 3.553133093667976e-5 Iter 50: T = 774.7158580934029 K, F = -1.2205304091535416, relative_change = 1.4867857759969124e-5 Iter 55: T = 774.6806722351147 K, F = -0.5104482768028915, relative_change = 6.219356426747125e-6 Iter 60: T = 774.6659553965386 K, F = -0.21347694446283938, relative_change = 2.601261207014229e-6 Iter 65: T = 774.6598003428214 K, F = -0.08927884883233883, relative_change = 1.0879225966328795e-6 Iter 70: T = 774.6572261740633 K, F = -0.03733752297988757, relative_change = 4.5498993498764396e-7 Iter 75: T = 774.6561496168889 K, F = -0.015615005388768921, relative_change = 1.90283573459975e-7 Iter 80: T = 774.6556993862375 K, F = -0.006530383024823672, relative_change = 7.957909880365545e-8 Iter 85: T = 774.6555110941252 K, F = -0.002731084395719119, relative_change = 3.3280970758386253e-8 Iter 90: T = 774.6554323480667 K, F = -0.0011421721482139935, relative_change = 1.391850662804735e-8 Iter 95: T = 774.6553994155163 K, F = -0.0004776700400930256, relative_change = 5.8208869610194636e-9 Iter 100: T = 774.6553856427288 K, F = -0.00019976731652049384, relative_change = 2.4343646634810936e-9 Iter 105: T = 774.6553798827844 K, F = -8.354507863095328e-5, relative_change = 1.0180804246129804e-9 Iter 110: T = 774.6553774739068 K, F = -3.493955083144762e-5, relative_change = 4.2577341305823346e-10 Iter 115: T = 774.6553764664853 K, F = -1.4612134984437475e-5, relative_change = 1.7806349752253532e-10 Iter 120: T = 774.6553760451698 K, F = -6.110971600192805e-6, relative_change = 7.446830872886688e-11 Iter 125: T = 774.6553758689706 K, F = -2.5556829618134103e-6, relative_change = 3.1143556290382393e-11 Iter 130: T = 774.6553757952819 K, F = -1.0688166774963648e-6, relative_change = 1.3024601592665638e-11 Iter 135: T = 774.6553757644643 K, F = -4.469913070792586e-7, relative_change = 5.447036721799977e-12 Iter 140: T = 774.6553757515761 K, F = -1.8693590908558377e-7, relative_change = 2.278001261694214e-12 Iter 145: T = 774.6553757461861 K, F = -7.817991654057721e-8, relative_change = 9.527005774099153e-13 Iter 150: T = 774.6553757439319 K, F = -3.269466719579839e-8, relative_change = 3.9841726231476654e-13 Converged in 154 iterations to T = 774.6553757431183 K Iter 1: T = 970.2931594283616 K, F = -6768.731882748442, relative_change = 0.029706840571638422 Iter 2: T = 942.7496391848597 K, F = -5733.038204328451, relative_change = 0.028386802458474355 Iter 3: T = 917.3249862752234 K, F = -4854.070985129878, relative_change = 0.02696861590063239 Iter 5: T = 872.6178422130823 K, F = -3475.6268049814976, relative_change = 0.023882145557043814 Iter 10: T = 793.2025381149281 K, F = -1496.1361539140557, relative_change = 0.015576420175696526 Iter 15: T = 749.8840049769806 K, F = -636.922362445391, relative_change = 0.00854080563157717 Iter 20: T = 728.8388843192686 K, F = -268.8628684262355, relative_change = 0.004112691192310797 Iter 25: T = 719.3621362385078 K, F = -112.93434208433901, relative_change = 0.0018370371517056876 Iter 30: T = 715.2637410842727 K, F = -47.3216260417769, relative_change = 0.0007908515155643869 Iter 35: T = 713.5246420509945 K, F = -19.806804024256902, relative_change = 0.0003348654912896422 Iter 40: T = 712.7928237244788 K, F = -8.286328961491506, relative_change = 0.00014077894013897317 Iter 45: T = 712.4859716199044 K, F = -3.465948894323864, relative_change = 5.900483563807707e-5 Iter 50: T = 712.3575023683743 K, F = -1.449590087002925, relative_change = 2.4699232518028013e-5 Iter 55: T = 712.3037504526445 K, F = -0.606251441064086, relative_change = 1.0333490609703194e-5 Iter 60: T = 712.2812664638825 K, F = -0.25354431423694535, relative_change = 4.322285085451675e-6 Iter 65: T = 712.271862639693 K, F = -0.1060357361961396, relative_change = 1.807752984724639e-6 Iter 70: T = 712.2679297166424 K, F = -0.044345494464753776, relative_change = 7.560451823041136e-7 Iter 75: T = 712.2662848982584 K, F = -0.01854582994089793, relative_change = 3.1619084894759813e-7 Iter 80: T = 712.2655970115451 K, F = -0.007756090110694336, relative_change = 1.322354405823921e-7 Iter 85: T = 712.2653093284031 K, F = -0.0032436899574251887, relative_change = 5.530255442523157e-8 Iter 90: T = 712.2651890157543 K, F = -0.00135654995563661, relative_change = 2.3128208636040293e-8 Iter 95: T = 712.2651386995465 K, F = -0.0005673254065519107, relative_change = 9.672496560785738e-9 Iter 100: T = 712.2651176567035 K, F = -0.00023726226345710533, relative_change = 4.0451541982688734e-9 Iter 105: T = 712.2651088563347 K, F = -9.922591200062225e-5, relative_change = 1.6917318930946155e-9 Iter 110: T = 712.2651051759152 K, F = -4.1497461150341586e-5, relative_change = 7.075024942794489e-10 Iter 115: T = 712.2651036367199 K, F = -1.7354735234897944e-5, relative_change = 2.958860193421537e-10 Iter 120: T = 712.26510299301 K, F = -7.257958990258828e-6, relative_change = 1.2374309226558803e-10 Iter 125: T = 712.2651027238028 K, F = -3.0353656818027375e-6, relative_change = 5.1750848524101204e-11 Iter 130: T = 712.2651026112171 K, F = -1.2694255422385226e-6, relative_change = 2.1642812064553062e-11 Iter 135: T = 712.2651025641325 K, F = -5.308899334588446e-7, relative_change = 9.051299724257653e-12 Iter 140: T = 712.2651025444411 K, F = -2.220249109008421e-7, relative_change = 3.785368469857093e-12 Iter 145: T = 712.265102536206 K, F = -9.28537473576796e-8, relative_change = 1.5830910421225719e-12 Iter 150: T = 712.2651025327618 K, F = -3.883283150596384e-8, relative_change = 6.620724467042999e-13 Iter 155: T = 712.2651025313214 K, F = -1.6239060762757163e-8, relative_change = 2.7686455698783566e-13 Converged in 157 iterations to T = 712.2651025310166 K Iter 1: T = 969.4042500287361 K, F = -6971.270735024231, relative_change = 0.03059574997126386 Iter 2: T = 940.9515768511817 K, F = -5906.0142194556365, relative_change = 0.029350679220470677 Iter 3: T = 914.6024803983792 K, F = -5001.84102313872, relative_change = 0.028002606192528673 Iter 5: T = 868.0268642163871 K, F = -3583.521254027097, relative_change = 0.025030427334433326 Iter 10: T = 784.2149092954395 K, F = -1545.1250424100158, relative_change = 0.01675602159183429 Iter 15: T = 737.6180040093483 K, F = -658.7627404357835, relative_change = 0.009403205216152939 Iter 20: T = 714.6506235112663 K, F = -278.3591992183032, relative_change = 0.004597281653946463 Iter 25: T = 704.220314226965 K, F = -116.98507327404309, relative_change = 0.0020699844554693684 Iter 30: T = 699.6905941171491 K, F = -49.03108223449653, relative_change = 0.0008944603574083885 Iter 35: T = 697.7648276562268 K, F = -20.52453837862855, relative_change = 0.00037935456627419186 Iter 40: T = 696.9537957335499 K, F = -8.586996996871738, relative_change = 0.00015959344146383766 Iter 45: T = 696.613611233482 K, F = -3.5917805629825676, relative_change = 6.691022775879419e-5 Iter 50: T = 696.4711659632493 K, F = -1.5022299627957758, relative_change = 2.8011856749117953e-5 Iter 55: T = 696.411562790512 K, F = -0.6282687928480288, relative_change = 1.1720008039554245e-5 Iter 60: T = 696.38663062948 K, F = -0.26275271095543323, relative_change = 4.902342523651144e-6 Iter 65: T = 696.3762027567356 K, F = -0.10988688117033418, relative_change = 2.0503748020664266e-6 Iter 70: T = 696.3718415304676 K, F = -0.04595610389219307, relative_change = 8.575186235110447e-7 Iter 75: T = 696.3700175846366 K, F = -0.019219408593373455, relative_change = 3.5862932082239657e-7 Iter 80: T = 696.369254783649 K, F = -0.008037789193035771, relative_change = 1.499839029273336e-7 Iter 85: T = 696.3689357702815 K, F = -0.003361499955006786, relative_change = 6.272520595972788e-8 Iter 90: T = 696.3688023549267 K, F = -0.001405819517916962, relative_change = 2.6232455873575756e-8 Iter 95: T = 696.368746559005 K, F = -0.0005879305267161294, relative_change = 1.0970730798477958e-8 Iter 100: T = 696.3687232244795 K, F = -0.0002458795714308515, relative_change = 4.588091440724256e-9 Iter 105: T = 696.3687134657014 K, F = -0.00010282977479969535, relative_change = 1.9187947918696414e-9 Iter 110: T = 696.3687093844637 K, F = -4.300463993278658e-5, relative_change = 8.024629208079297e-10 Iter 115: T = 696.3687076776413 K, F = -1.798505342209822e-5, relative_change = 3.35599569975714e-10 Iter 120: T = 696.3687069638278 K, F = -7.521564128643021e-6, relative_change = 1.4035174876573028e-10 Iter 125: T = 696.3687066653024 K, F = -3.1456080568093014e-6, relative_change = 5.869677969301645e-11 Iter 130: T = 696.3687065404555 K, F = -1.315530325673997e-6, relative_change = 2.4547684383096538e-11 Iter 135: T = 696.3687064882432 K, F = -5.501713381539375e-7, relative_change = 1.0266150545431577e-11 Iter 140: T = 696.3687064664073 K, F = -2.3008808291979932e-7, relative_change = 4.2934241290049376e-12 Iter 145: T = 696.3687064572753 K, F = -9.622679486565033e-8, relative_change = 1.7955838377896068e-12 Iter 150: T = 696.3687064534561 K, F = -4.024255295664858e-8, relative_change = 7.509226279761638e-13 Iter 155: T = 696.3687064518589 K, F = -1.6829881044344575e-8, relative_change = 3.140441541096491e-13 Converged in 157 iterations to T = 696.3687064515209 K Iter 1: T = 963.5580893566874 K, F = -8303.324005284994, relative_change = 0.036441910643312564 Iter 2: T = 928.9936193739821 K, F = -7045.655506222397, relative_change = 0.035871703392352794 Iter 3: T = 896.2730317914443 K, F = -5977.562185286894, relative_change = 0.03522154178474032 Iter 5: T = 836.2445850814487 K, F = -4300.220165740805, relative_change = 0.0336521039221094 Iter 10: T = 716.5021779618185 K, F = -1879.2310622272732, relative_change = 0.02793645484095909 Iter 15: T = 636.8015159114113 K, F = -813.7754952235156, relative_change = 0.020025904736161525 Iter 20: T = 590.0974895315278 K, F = -348.44089747228827, relative_change = 0.012013122234437885 Iter 25: T = 566.0604406213561 K, F = -147.6870930535464, relative_change = 0.006156907073846384 Iter 30: T = 554.8460492981476 K, F = -62.17494730169933, relative_change = 0.0028455514000971867 Iter 35: T = 549.9078577100457 K, F = -26.080504901983534, relative_change = 0.0012450287991134733 Iter 40: T = 547.7949951791668 K, F = -10.92138968448751, relative_change = 0.0005309682873274927 Iter 45: T = 546.9026875104297 K, F = -4.569982493635109, relative_change = 0.00022390825569008527 Iter 50: T = 546.5279681853801 K, F = -1.9116663148759148, relative_change = 9.396882018464715e-5 Iter 55: T = 546.3709837511491 K, F = -0.7995597534694571, relative_change = 3.935649523921644e-5 Iter 60: T = 546.3052832054442 K, F = -0.33439910906892945, relative_change = 1.6469454502619162e-5 Iter 65: T = 546.277798084837 K, F = -0.13985209333747228, relative_change = 6.8894903334213305e-6 Iter 70: T = 546.2663020148289 K, F = -0.058488234126273186, relative_change = 2.8815764370853988e-6 Iter 75: T = 546.261493964889 K, F = -0.024460551208106973, relative_change = 1.2051637848492717e-6 Iter 80: T = 546.2594831361755 K, F = -0.010229707437149044, relative_change = 5.040233511790725e-7 Iter 85: T = 546.2586421757561 K, F = -0.004278188057635385, relative_change = 2.1079024002071628e-7 Iter 90: T = 546.2582904746947 K, F = -0.0017891897292641457, relative_change = 8.815528523294744e-8 Iter 95: T = 546.258143388871 K, F = -0.0007482605808019627, relative_change = 3.6867643721164055e-8 Iter 100: T = 546.2580818757809 K, F = -0.0003129315230079033, relative_change = 1.5418497754020354e-8 Iter 105: T = 546.2580561502647 K, F = -0.000130871702212626, relative_change = 6.4482014456452255e-9 Iter 110: T = 546.2580453915454 K, F = -5.473210923198635e-5, relative_change = 2.696715126329958e-9 Iter 115: T = 546.2580408921202 K, F = -2.2889621804855764e-5, relative_change = 1.1277985198060778e-9 Iter 120: T = 546.2580390104068 K, F = -9.572713686234469e-6, relative_change = 4.716588415028776e-10 Iter 125: T = 546.2580382234518 K, F = -4.003422900134002e-6, relative_change = 1.9725334758412283e-10 Iter 130: T = 546.2580378943378 K, F = -1.6742792775803483e-6, relative_change = 8.24937063805307e-11 Iter 135: T = 546.2580377566984 K, F = -7.002031351399651e-7, relative_change = 3.449983087035016e-11 Iter 140: T = 546.258037699136 K, F = -2.9283399524682174e-7, relative_change = 1.442827489218988e-11 Iter 145: T = 546.2580376750627 K, F = -1.2246672109750278e-7, relative_change = 6.0340791922785695e-12 Iter 150: T = 546.258037664995 K, F = -5.121679941266777e-8, relative_change = 2.523511864191673e-12 Iter 155: T = 546.2580376607845 K, F = -2.1419455403792753e-8, relative_change = 1.0553617261880263e-12 Iter 160: T = 546.2580376590234 K, F = -8.957093816652772e-9, relative_change = 4.413265330005546e-13 Converged in 164 iterations to T = 546.2580376583879 K Iter 1: T = 966.9331947442498 K, F = -7534.303032174843, relative_change = 0.03306680525575018 Iter 2: T = 935.9254481197223 K, F = -6387.291729571062, relative_change = 0.03206813748154432 Iter 3: T = 906.9462906840267 K, F = -5413.434568454814, relative_change = 0.03096310448007886 Iter 5: T = 854.9422496498971 K, F = -3884.91456394477, relative_change = 0.028434581200387297 Iter 10: T = 757.6048919986428 K, F = -1683.5917132161142, relative_change = 0.02063213316794557 Iter 15: T = 700.0070725261565 K, F = -721.4671225148965, relative_change = 0.012536129540217041 Iter 20: T = 670.1073980506721 K, F = -305.98752941836295, relative_change = 0.006487488193881734 Iter 25: T = 656.0785202510098 K, F = -128.86564188572547, relative_change = 0.003015209594891159 Iter 30: T = 649.8823228741152 K, F = -54.065082215851554, relative_change = 0.0013228917781057026 Iter 35: T = 647.2274558508366 K, F = -22.641981463103726, relative_change = 0.0005648713588087941 Iter 40: T = 646.1055500161366 K, F = -9.474721663210255, relative_change = 0.00023833194034778702 Iter 45: T = 645.6342869710604 K, F = -3.9634240409298456, relative_change = 0.00010004464808862132 Iter 50: T = 645.4368344684439 K, F = -1.6577236092341943, relative_change = 4.190517803716638e-5 Iter 55: T = 645.3541934811491 K, F = -0.6933099930877575, relative_change = 1.7536695146339803e-5 Iter 60: T = 645.3196208253994 K, F = -0.2899558007532621, relative_change = 7.336059748000212e-6 Iter 65: T = 645.3051601664648 K, F = -0.1212639026584339, relative_change = 3.0683785107672576e-6 Iter 70: T = 645.2991122030654 K, F = -0.050714173900770154, relative_change = 1.2832938876094582e-6 Iter 75: T = 645.2965828125233 K, F = -0.021209301444592155, relative_change = 5.366995604674091e-7 Iter 80: T = 645.2955249806932 K, F = -0.008869988097491122, relative_change = 2.2445604256866208e-7 Iter 85: T = 645.2950825809527 K, F = -0.00370953581598249, relative_change = 9.387052582360323e-8 Iter 90: T = 645.2948975637768 K, F = -0.0015513723298130055, relative_change = 3.925783234453619e-8 Iter 95: T = 645.2948201873281 K, F = -0.0006488024627336331, relative_change = 1.641810438286556e-8 Iter 100: T = 645.2947878275634 K, F = -0.0002713369423149592, relative_change = 6.866249068610006e-9 Iter 105: T = 645.2947742943214 K, F = -0.00011347634880765067, relative_change = 2.8715476243681326e-9 Iter 110: T = 645.2947686345578 K, F = -4.7457164133068996e-5, relative_change = 1.2009155568369342e-9 Iter 115: T = 645.2947662675772 K, F = -1.9847153244545446e-5, relative_change = 5.022372478834258e-10 Iter 120: T = 645.2947652776775 K, F = -8.300316664711094e-6, relative_change = 2.1004162044436113e-10 Iter 125: T = 645.2947648636897 K, F = -3.471291588286185e-6, relative_change = 8.78419151844393e-11 Iter 130: T = 645.2947646905551 K, F = -1.4517363016164353e-6, relative_change = 3.673655583126048e-11 Iter 135: T = 645.2947646181482 K, F = -6.071345475255896e-7, relative_change = 1.536369393624847e-11 Iter 140: T = 645.2947645878667 K, F = -2.539111917942982e-7, relative_change = 6.425287202788967e-12 Iter 145: T = 645.2947645752025 K, F = -1.0618849316523793e-7, relative_change = 2.6871267920893566e-12 Iter 150: T = 645.2947645699062 K, F = -4.440936329785927e-8, relative_change = 1.1237902185529433e-12 Iter 155: T = 645.2947645676911 K, F = -1.8571569726510972e-8, relative_change = 4.699582892505494e-13 Converged in 160 iterations to T = 645.2947645667648 K Iter 1: T = 965.2658296575759 K, F = -7914.213753247175, relative_change = 0.03473417034242419 Iter 2: T = 932.5107269762225 K, F = -6712.390671735936, relative_change = 0.03393376381402947 Iter 3: T = 901.7053053778069 K, F = -5691.840808615418, relative_change = 0.03303492464725399 Iter 5: T = 845.8301203312335 K, F = -4089.5409482017203, relative_change = 0.03092401594807997 Iter 10: T = 738.0803944044202 K, F = -1779.1883192482956, relative_change = 0.02388375751212532 Iter 15: T = 670.9040830269278 K, F = -765.8791428929492, relative_change = 0.015577741115229492 Iter 20: T = 634.2612123938935 K, F = -326.04377847297343, relative_change = 0.008541647840746019 Iter 25: T = 616.4591612953809 K, F = -137.6323254063413, relative_change = 0.004113132745095923 Iter 30: T = 608.4427558528772 K, F = -57.81170180541496, relative_change = 0.0018372427552566665 Iter 35: T = 604.9759060637181 K, F = -24.224199680082485, relative_change = 0.0007909416989544223 Iter 40: T = 603.5047935204616 K, F = -10.139212037916105, relative_change = 0.00033490398652754683 Iter 45: T = 602.8857445089307 K, F = -4.241817514019927, relative_change = 0.0001407951791711877 Iter 50: T = 602.6261766401665 K, F = -1.774238378377204, relative_change = 5.901165172334641e-5 Iter 55: T = 602.517503792114 K, F = -0.7420531732391765, relative_change = 2.4702087430931572e-5 Iter 60: T = 602.4720347489692 K, F = -0.3103434621906901, relative_change = 1.0334685329691918e-5 Iter 65: T = 602.4530154181481 K, F = -0.12979073536684377, relative_change = 4.322784864881815e-6 Iter 70: T = 602.4450606710592 K, F = -0.05428027925485013, relative_change = 1.8079620218004676e-6 Iter 75: T = 602.4417337896091 K, F = -0.022700703649260856, relative_change = 7.561326082124717e-7 Iter 80: T = 602.4403424286023 K, F = -0.009493712822904121, relative_change = 3.162274122192161e-7 Iter 85: T = 602.4397605414106 K, F = -0.003970385384950259, relative_change = 1.3225073191850944e-7 Iter 90: T = 602.4395171886428 K, F = -0.0016604628120540088, relative_change = 5.5308949446527456e-8 Iter 95: T = 602.4394154155049 K, F = -0.0006944254172600584, relative_change = 2.3130883094735956e-8 Iter 100: T = 602.439372852745 K, F = -0.00029041701023113653, relative_change = 9.673615056380178e-9 Iter 105: T = 602.4393550524874 K, F = -0.00012145586305484235, relative_change = 4.045621948505421e-9 Iter 110: T = 602.4393476082065 K, F = -5.079429250748335e-5, relative_change = 1.6919275162833428e-9 Iter 115: T = 602.4393444949192 K, F = -2.124277942155972e-5, relative_change = 7.075843000404894e-10 Iter 120: T = 602.4393431929053 K, F = -8.883984135177325e-6, relative_change = 2.95920210618109e-10 Iter 125: T = 602.4393426483875 K, F = -3.715388448288781e-6, relative_change = 1.2375737283494769e-10 Iter 130: T = 602.4393424206637 K, F = -1.5538202968179426e-6, relative_change = 5.175682726430439e-11 Iter 135: T = 602.4393423254268 K, F = -6.498253822817546e-7, relative_change = 2.164529589226454e-11 Iter 140: T = 602.4393422855976 K, F = -2.717644470018321e-7, relative_change = 9.052311637241235e-12 Iter 145: T = 602.4393422689405 K, F = -1.1365485685921328e-7, relative_change = 3.785775493672801e-12 Iter 150: T = 602.4393422619745 K, F = -4.7532571156860826e-8, relative_change = 1.5832815949934605e-12 Iter 155: T = 602.439342259061 K, F = -1.987835268613125e-8, relative_change = 6.621360717812181e-13 Iter 160: T = 602.4393422578427 K, F = -8.31285218438893e-9, relative_change = 2.7689614816837455e-13 Converged in 162 iterations to T = 602.4393422575848 K Iter 1: T = 980.0070385811181 K, F = -4555.415277508313, relative_change = 0.0199929614188819 Iter 2: T = 962.0635963736879 K, F = -3848.1142269226893, relative_change = 0.018309503402556368 Iter 3: T = 946.0497365307962 K, F = -3249.117817895136, relative_change = 0.016645323555794938 Iter 5: T = 919.2905619548447 K, F = -2313.1453397423033, relative_change = 0.01346415122986051 Iter 10: T = 876.7518369593477 K, F = -982.1560058193596, relative_change = 0.007089873761723589 Iter 15: T = 856.586394020795 K, F = -413.9120417111014, relative_change = 0.0033292737479562852 Iter 20: T = 847.6301028846734 K, F = -173.7139653543663, relative_change = 0.0014681606152732334 Iter 25: T = 843.7825023405047 K, F = -72.76104093088583, relative_change = 0.0006283482709711523 Iter 30: T = 842.1546715119489 K, F = -30.449472894998003, relative_change = 0.0002653788043606589 Iter 35: T = 841.4705507052597 K, F = -12.737849152518073, relative_change = 0.00011144525081501967 Iter 40: T = 841.1838534494572 K, F = -5.327737727845373, relative_change = 4.66887975883727e-5 Iter 45: T = 841.0638497014884 K, F = -2.228231631819495, relative_change = 1.9540026932157624e-5 Iter 50: T = 841.0136445651125 K, F = -0.9318919951736075, relative_change = 8.174361357203292e-6 Iter 55: T = 840.992645003476 K, F = -0.38973167074138726, relative_change = 3.4190510192623374e-6 Iter 60: T = 840.9838621807216 K, F = -0.162991017903789, relative_change = 1.429964147842327e-6 Iter 65: T = 840.9801890022255 K, F = -0.06816489144165616, relative_change = 5.980414088430363e-7 Iter 70: T = 840.9786528181223 K, F = -0.0285073893616401, relative_change = 2.5011038985794346e-7 Iter 75: T = 840.9780103646132 K, F = -0.011922133774013854, relative_change = 1.0459955958460607e-7 Iter 80: T = 840.9777416823636 K, F = -0.004985979264714224, relative_change = 4.374485628285928e-8 Iter 85: T = 840.9776293161472 K, F = -0.002085196168728709, relative_change = 1.8294633793991828e-8 Iter 90: T = 840.9775823232377 K, F = -0.0008720539582602882, relative_change = 7.651036530216508e-9 Iter 95: T = 840.977562670239 K, F = -0.00036470338353167264, relative_change = 3.1997552377819996e-9 Iter 100: T = 840.9775544511197 K, F = -0.0001525233115244884, relative_change = 1.338175925099629e-9 Iter 105: T = 840.9775510137856 K, F = -6.378706953125146e-5, relative_change = 5.59641156406586e-10 Iter 110: T = 840.9775495762516 K, F = -2.6676516523327365e-5, relative_change = 2.3404863692955946e-10 Iter 115: T = 840.9775489750576 K, F = -1.1156438704640337e-5, relative_change = 9.788194340942476e-11 Iter 120: T = 840.9775487236311 K, F = -4.665755094279689e-6, relative_change = 4.093539066016298e-11 Iter 125: T = 840.9775486184816 K, F = -1.951275977685185e-6, relative_change = 1.7119682209170414e-11 Iter 130: T = 840.9775485745068 K, F = -8.160471605123121e-7, relative_change = 7.15965769010192e-12 Iter 135: T = 840.977548556116 K, F = -3.4128210302242223e-7, relative_change = 2.994266939326226e-12 Iter 140: T = 840.9775485484247 K, F = -1.4272715698204763e-7, relative_change = 1.2522285925022605e-12 Iter 145: T = 840.9775485452082 K, F = -5.969049143850214e-8, relative_change = 5.23699495328465e-13 Converged in 150 iterations to T = 840.9775485438629 K Iter 1: T = 976.3608707556807 K, F = -5386.19808493523, relative_change = 0.023639129244319292 Iter 2: T = 954.8849134332906 K, F = -4554.481471516915, relative_change = 0.02199592175971591 Iter 3: T = 935.4811270565042 K, F = -3849.453656083319, relative_change = 0.020320549737266394 Iter 5: T = 902.471530593854 K, F = -2746.092847435902, relative_change = 0.016966318851020443 Iter 10: T = 848.0638941909234 K, F = -1171.1106886778678, relative_change = 0.009561207445705457 Iter 15: T = 821.1756378185216 K, F = -494.94208106314426, relative_change = 0.004687680547989076 Iter 20: T = 808.9454320192217 K, F = -208.0282591654343, relative_change = 0.002113857445706207 Iter 25: T = 803.6298510567224 K, F = -87.19340992008492, relative_change = 0.0009140612299102259 Iter 30: T = 801.3691735003518 K, F = -36.50013991383702, relative_change = 0.0003877875900452728 Iter 35: T = 800.4169466609849 K, F = -15.270957541220337, relative_change = 0.00016316276733155242 Iter 40: T = 800.0175120983422 K, F = -6.387580267476952, relative_change = 6.841050072100215e-5 Iter 45: T = 799.8502524374486 K, F = -2.6715522542892587, relative_change = 2.8640614601879887e-5 Iter 50: T = 799.7802653994356 K, F = -1.1173083016432066, relative_change = 1.1983194502934534e-5 Iter 55: T = 799.7509894980259 K, F = -0.4672774917163981, relative_change = 5.0124509358903005e-6 Iter 60: T = 799.73874483152 K, F = -0.19542204494611615, relative_change = 2.096430574693773e-6 Iter 65: T = 799.7336237672259 K, F = -0.08172801097860138, relative_change = 8.767809430782693e-7 Iter 70: T = 799.7314820422547 K, F = -0.03417966134820005, relative_change = 3.666852707291252e-7 Iter 75: T = 799.7305863412206 K, F = -0.014294348006365976, relative_change = 1.5335303548858716e-7 Iter 80: T = 799.7302117472891 K, F = -0.00597806799672862, relative_change = 6.413422408427143e-8 Iter 85: T = 799.7300550874476 K, F = -0.0025000995945358984, relative_change = 2.6821725223852344e-8 Iter 90: T = 799.7299895703984 K, F = -0.0010455715357328144, relative_change = 1.1217170481319661e-8 Iter 95: T = 799.7299621703805 K, F = -0.00043727050979758264, relative_change = 4.691155494730234e-9 Iter 100: T = 799.7299507113647 K, F = -0.00018287174980247123, relative_change = 1.9618973912517515e-9 Iter 105: T = 799.7299459190672 K, F = -7.64791479103133e-5, relative_change = 8.204889230481513e-10 Iter 110: T = 799.7299439148711 K, F = -3.198449186536667e-5, relative_change = 3.4313825814019505e-10 Iter 115: T = 799.7299430766925 K, F = -1.3376297126721504e-5, relative_change = 1.4350452521346431e-10 Iter 120: T = 799.7299427261562 K, F = -5.594129427910488e-6, relative_change = 6.001533022219035e-11 Iter 125: T = 799.7299425795577 K, F = -2.339532096717889e-6, relative_change = 2.509913173834599e-11 Iter 130: T = 799.7299425182484 K, F = -9.784197538831307e-7, relative_change = 1.0496751184362026e-11 Iter 135: T = 799.7299424926082 K, F = -4.0918565791248085e-7, relative_change = 4.389854173452719e-12 Iter 140: T = 799.729942481885 K, F = -1.7112630568139053e-7, relative_change = 1.835889192850527e-12 Iter 145: T = 799.7299424774005 K, F = -7.156546022457633e-8, relative_change = 7.67773572204625e-13 Iter 150: T = 799.729942475525 K, F = -2.9929258182903595e-8, relative_change = 3.210891594446531e-13 Converged in 153 iterations to T = 799.7299424749759 K Iter 1: T = 980.722847919346 K, F = -4392.317438882618, relative_change = 0.019277152080653993 Iter 2: T = 963.4631049661308 K, F = -3709.6050709008077, relative_change = 0.017599001583202288 Iter 3: T = 948.0958435145697 K, F = -3131.551523958212, relative_change = 0.015950025872657897 Iter 5: T = 922.5032300653525 K, F = -2228.5979481802437, relative_change = 0.012825440644322488 Iter 10: T = 882.0820681755371 K, F = -945.5216108359269, relative_change = 0.006673141962271874 Iter 15: T = 863.056087292522 K, F = -398.2863996891707, relative_change = 0.003111335921799613 Iter 20: T = 854.6384202913277 K, F = -167.11683461678416, relative_change = 0.0013672006830135496 Iter 25: T = 851.0288200413145 K, F = -69.99033983988042, relative_change = 0.0005842022180262062 Iter 30: T = 849.5029166599251 K, F = -29.288621331616675, relative_change = 0.0002465630097290231 Iter 35: T = 848.8618546607065 K, F = -12.251992989707292, relative_change = 0.00010351314634903957 Iter 40: T = 848.5932415725748 K, F = -5.124481069260999, relative_change = 4.336036035132914e-5 Iter 45: T = 848.4808142855384 K, F = -2.1432157328439954, relative_change = 1.8146079750760492e-5 Iter 50: T = 848.4337800727121 K, F = -0.8963353111220347, relative_change = 7.591053541528425e-6 Iter 55: T = 848.4141070418277 K, F = -0.374861087430566, relative_change = 3.175044789707393e-6 Iter 60: T = 848.4058790622786 K, F = -0.15677190054823975, relative_change = 1.327907343069941e-6 Iter 65: T = 848.4024379384674 K, F = -0.0655639714768832, relative_change = 5.553582001271003e-7 Iter 70: T = 848.4009988046142 K, F = -0.027419651680765655, relative_change = 2.3225944143292682e-7 Iter 75: T = 848.400396939065 K, F = -0.011467228555644526, relative_change = 9.713402366605892e-8 Iter 80: T = 848.4001452312524 K, F = -0.004795732412845588, relative_change = 4.0622670199650926e-8 Iter 85: T = 848.4000399639601 K, F = -0.0020056326531552315, relative_change = 1.698889657085641e-8 Iter 90: T = 848.3999959399075 K, F = -0.0008387795414435129, relative_change = 7.1049613066548614e-9 Iter 95: T = 848.3999775285205 K, F = -0.00035078762343698777, relative_change = 2.9713799940902806e-9 Iter 100: T = 848.3999698286582 K, F = -0.00014670357579316118, relative_change = 1.2426666731827444e-9 Iter 105: T = 848.3999666084837 K, F = -6.135318735567274e-5, relative_change = 5.196980522530619e-10 Iter 110: T = 848.3999652617683 K, F = -2.565863585579642e-5, relative_change = 2.173439352255229e-10 Iter 115: T = 848.3999646985559 K, F = -1.0730750625409513e-5, relative_change = 9.089585234887719e-11 Iter 120: T = 848.3999644630137 K, F = -4.48772729999547e-6, relative_change = 3.8013724558627073e-11 Iter 125: T = 848.3999643645071 K, F = -1.8768220686471437e-6, relative_change = 1.589780136654444e-11 Iter 130: T = 848.3999643233104 K, F = -7.849080225774685e-7, relative_change = 6.648638699044822e-12 Iter 135: T = 848.3999643060815 K, F = -3.2825783935486186e-7, relative_change = 2.780539517284897e-12 Iter 140: T = 848.3999642988762 K, F = -1.372811373467897e-7, relative_change = 1.1628530430109466e-12 Iter 145: T = 848.3999642958629 K, F = -5.741399355940757e-8, relative_change = 4.863307400669516e-13 Converged in 150 iterations to T = 848.3999642946026 K Iter 1: T = 967.4282596422811 K, F = -7421.502024230132, relative_change = 0.03257174035771895 Iter 2: T = 936.935698861712 K, F = -6290.819817350404, relative_change = 0.03151919584388005 Iter 3: T = 908.4906825027921 K, F = -5330.87756581286, relative_change = 0.0303596248851206 Iter 5: T = 857.6028709248914 K, F = -3824.356120818425, relative_change = 0.027726325087919765 Iter 10: T = 763.143916169106 K, F = -1655.5613495554562, relative_change = 0.019775114664538653 Iter 15: T = 708.0131163256306 K, F = -708.6383358189483, relative_change = 0.011800819342603085 Iter 20: T = 679.7376815631818 K, F = -300.2810549423708, relative_change = 0.006024575360913271 Iter 25: T = 666.5757501607436 K, F = -126.39705326858596, relative_change = 0.0027781799947667685 Iter 30: T = 660.7868982618488 K, F = -53.015910049291335, relative_change = 0.0012142303897716 Iter 35: T = 658.3114531669379 K, F = -22.200056239218878, relative_change = 0.000517581636266794 Iter 40: T = 657.2662752356872 K, F = -9.289335456128589, relative_change = 0.00021821737396157312 Iter 45: T = 656.8274048884696 K, F = -3.885792712195526, relative_change = 9.157236568735037e-5 Iter 50: T = 656.6435532268499 K, F = -1.6252395687476073, relative_change = 3.835136855577254e-5 Iter 55: T = 656.5666097347696 K, F = -0.679721678043632, relative_change = 1.6048589549268307e-5 Iter 60: T = 656.5344214977362 K, F = -0.2842724621713915, relative_change = 6.7133904454367996e-6 Iter 65: T = 656.5209583214521 K, F = -0.1188869675907327, relative_change = 2.8079137618082207e-6 Iter 70: T = 656.515327567996 K, F = -0.04972009464985272, relative_change = 1.1743544453948041e-6 Iter 75: T = 656.5129726685186 K, F = -0.02079356272221594, relative_change = 4.911380401348322e-7 Iter 80: T = 656.5119878124897 K, F = -0.008696120691737974, relative_change = 2.0540136554313775e-7 Iter 85: T = 656.5115759323725 K, F = -0.003636822302596987, relative_change = 8.590157898683318e-8 Iter 90: T = 656.5114036789149 K, F = -0.0015209626546849875, relative_change = 3.59251142774653e-8 Iter 95: T = 656.511331640414 K, F = -0.0006360847692510885, relative_change = 1.5024320218036014e-8 Iter 100: T = 656.5113015130444 K, F = -0.00026601825145239344, relative_change = 6.283351622450127e-9 Iter 105: T = 656.5112889134169 K, F = -0.00011125201006578767, relative_change = 2.627772936646375e-9 Iter 110: T = 656.5112836441021 K, F = -4.6526919214084916e-5, relative_change = 1.0989660657460385e-9 Iter 115: T = 656.5112814404117 K, F = -1.9458113309778202e-5, relative_change = 4.5960074154563106e-10 Iter 120: T = 656.511280518802 K, F = -8.137615131076359e-6, relative_change = 1.9221051466346304e-10 Iter 125: T = 656.5112801333738 K, F = -3.403247080591143e-6, relative_change = 8.038471519962867e-11 Iter 130: T = 656.5112799721833 K, F = -1.4232794777746527e-6, relative_change = 3.3617869315635805e-11 Iter 135: T = 656.5112799047714 K, F = -5.952326742608705e-7, relative_change = 1.4059399139772593e-11 Iter 140: T = 656.511279876579 K, F = -2.4893408734349975e-7, relative_change = 5.879824555193953e-12 Iter 145: T = 656.5112798647885 K, F = -1.0410757628198652e-7, relative_change = 2.459021542566885e-12 Iter 150: T = 656.5112798598575 K, F = -4.3538569027834484e-8, relative_change = 1.0283812475455114e-12 Iter 155: T = 656.5112798577953 K, F = -1.820835426880052e-8, relative_change = 4.3008143117906925e-13 Converged in 159 iterations to T = 656.511279857051 K Iter 1: T = 973.466511601187 K, F = -6045.680571532951, relative_change = 0.026533488398812966 Iter 2: T = 949.126113988863 K, F = -5116.189041050422, relative_change = 0.02500383662123938 Iter 3: T = 926.9117686888432 K, F = -4327.787789122639, relative_change = 0.023405051207220834 Iter 5: T = 888.5406629124687 K, F = -3092.616003817274, relative_change = 0.02007769003072846 Iter 10: T = 823.1700393610315 K, F = -1324.2859268791372, relative_change = 0.012057645558213353 Iter 15: T = 789.5006046030132 K, F = -561.3309653668117, relative_change = 0.0061849047684371375 Iter 20: T = 773.784547781736 K, F = -236.32286137170604, relative_change = 0.0028598688716530637 Iter 25: T = 766.8622771177833 K, F = -99.13182567203036, relative_change = 0.0012515873860989121 Iter 30: T = 763.9001439795248 K, F = -41.512421628215584, relative_change = 0.000533821564801076 Iter 35: T = 762.6491042357783 K, F = -17.3706480070797, relative_change = 0.00022512169493144862 Iter 40: T = 762.1237255376736 K, F = -7.266313475470244, relative_change = 9.447988719909766e-5 Iter 45: T = 761.9036219441314 K, F = -3.039157466235406, relative_change = 3.9570862730611596e-5 Iter 50: T = 761.8115046294694 K, F = -1.2710642013454683, relative_change = 1.6559216648002552e-5 Iter 55: T = 761.7729682710091 K, F = -0.5315833726175969, relative_change = 6.9270493926368065e-6 Iter 60: T = 761.7568498411787 K, F = -0.2223161144649588, relative_change = 2.8972874894033813e-6 Iter 65: T = 761.7501085601633 K, F = -0.09297553386263047, relative_change = 1.2117349302602336e-6 Iter 70: T = 761.7472892127611 K, F = -0.03888352755314073, relative_change = 5.06771586881509e-7 Iter 75: T = 761.7461101169579 K, F = -0.01626156414722868, relative_change = 2.1193960323342028e-7 Iter 80: T = 761.7456170030791 K, F = -0.006800781827028701, relative_change = 8.86359658595376e-8 Iter 85: T = 761.745410776628 K, F = -0.0028441684396915967, relative_change = 3.7068670644245875e-8 Iter 90: T = 761.7453245302041 K, F = -0.001189465253465194, relative_change = 1.550256970611932e-8 Iter 95: T = 761.7452884609093 K, F = -0.0004974485812703211, relative_change = 6.483361344499404e-9 Iter 100: T = 761.7452733762976 K, F = -0.00020803893871279566, relative_change = 2.7114194136955433e-9 Iter 105: T = 761.7452670677327 K, F = -8.700436910669129e-5, relative_change = 1.1339480302765467e-9 Iter 110: T = 761.7452644294154 K, F = -3.6386266479615514e-5, relative_change = 4.742306197690154e-10 Iter 115: T = 761.7452633260395 K, F = -1.5217171696502163e-5, relative_change = 1.9832891672397954e-10 Iter 120: T = 761.7452628645947 K, F = -6.364003345193936e-6, relative_change = 8.294352710829774e-11 Iter 125: T = 761.7452626716127 K, F = -2.661501640521813e-6, relative_change = 3.4687966325848804e-11 Iter 130: T = 761.7452625909054 K, F = -1.113070532632321e-6, relative_change = 1.4506905645247559e-11 Iter 135: T = 761.7452625571527 K, F = -4.654990410912774e-7, relative_change = 6.06695664875689e-12 Iter 140: T = 761.7452625430369 K, F = -1.9467679412965566e-7, relative_change = 2.537267676940719e-12 Iter 145: T = 761.7452625371335 K, F = -8.141535257077948e-8, relative_change = 1.0611051174112475e-12 Iter 150: T = 761.7452625346647 K, F = -3.404844950427588e-8, relative_change = 4.437613161234413e-13 Converged in 154 iterations to T = 761.7452625337736 K Iter 1: T = 969.9977201329835 K, F = -6836.04800723565, relative_change = 0.030002279867016462 Iter 2: T = 942.1526145994635 K, F = -5790.519760490269, relative_change = 0.028706361835265464 Iter 3: T = 916.4219605740079 K, F = -4903.16700850193, relative_change = 0.027310494740169527 Iter 5: T = 871.0985596214535 K, F = -3511.4565971633665, relative_change = 0.024259543594892755 Iter 10: T = 790.2468530453416 K, F = -1512.3735155003237, relative_change = 0.015957590829464702 Iter 15: T = 745.8719038057775 K, F = -644.144530289483, relative_change = 0.008815213747862522 Iter 20: T = 724.2139668059601 K, F = -271.9973535276745, relative_change = 0.004265309736654408 Iter 25: T = 714.4351702043575 K, F = -114.26995889664914, relative_change = 0.001910003195080886 Iter 30: T = 710.200588772576 K, F = -47.884980303634805, relative_change = 0.0008232221814911667 Iter 35: T = 708.4026377775493 K, F = -20.043279889390515, relative_change = 0.00034874970479542626 Iter 40: T = 707.6458610897629 K, F = -8.38538183848307, relative_change = 0.0001466477853302051 Iter 45: T = 707.3285095583549 K, F = -3.507401466250428, relative_change = 6.14702822797322e-5 Iter 50: T = 707.1956384777989 K, F = -1.4669308692963923, relative_change = 2.5732249663645305e-5 Iter 55: T = 707.1400437622232 K, F = -0.6135044078078923, relative_change = 1.0765850362346471e-5 Iter 60: T = 707.1167887593994 K, F = -0.25657773933677425, relative_change = 4.503162553279045e-6 Iter 65: T = 707.1070624296202 K, F = -0.10730437665691489, relative_change = 1.8834085045959124e-6 Iter 70: T = 707.102994620681 K, F = -0.04487605957969443, relative_change = 7.876870439565407e-7 Iter 75: T = 707.1012933896236 K, F = -0.018767719399072735, relative_change = 3.2942417165851315e-7 Iter 80: T = 707.1005819101445 K, F = -0.00784888707150666, relative_change = 1.3776982986911876e-7 Iter 85: T = 707.1002843601715 K, F = -0.0032824987776866044, relative_change = 5.761711183599952e-8 Iter 90: T = 707.1001599210866 K, F = -0.0013727802709131431, relative_change = 2.4096185871056194e-8 Iter 95: T = 707.100107879152 K, F = -0.0005741131177389169, relative_change = 1.0077316477208524e-8 Iter 100: T = 707.1000861145894 K, F = -0.00024010096466275943, relative_change = 4.214454760242096e-9 Iter 105: T = 707.1000770123889 K, F = -0.00010041309170538693, relative_change = 1.7625354352866301e-9 Iter 110: T = 707.1000732057397 K, F = -4.199395451687238e-5, relative_change = 7.371133937205252e-10 Iter 115: T = 707.1000716137535 K, F = -1.756237294703311e-5, relative_change = 3.082696214841736e-10 Iter 120: T = 707.1000709479658 K, F = -7.34479475938965e-6, relative_change = 1.2892204927744053e-10 Iter 125: T = 707.1000706695255 K, F = -3.071680823141243e-6, relative_change = 5.3916739699468085e-11 Iter 130: T = 707.1000705530785 K, F = -1.2846141393962895e-6, relative_change = 2.254863386214779e-11 Iter 135: T = 707.1000705043789 K, F = -5.372399367598035e-7, relative_change = 9.43008975425539e-12 Iter 140: T = 707.1000704840122 K, F = -2.2468178895174162e-7, relative_change = 3.94380479052032e-12 Iter 145: T = 707.1000704754946 K, F = -9.396429445640564e-8, relative_change = 1.6493407692952029e-12 Iter 150: T = 707.1000704719324 K, F = -3.929754477383085e-8, relative_change = 6.897837429121346e-13 Iter 155: T = 707.1000704704427 K, F = -1.643495595171629e-8, relative_change = 2.8848024720958965e-13 Converged in 157 iterations to T = 707.1000704701274 K Iter 1: T = 973.5951425601464 K, F = -6016.371885174421, relative_change = 0.026404857439853564 Iter 2: T = 949.3831944914097 K, F = -5091.20719105553, relative_change = 0.024868599903928815 Iter 3: T = 927.2960895786705 K, F = -4306.495846138604, relative_change = 0.02326468915912437 Iter 5: T = 889.1713708402062 K, F = -3077.1600941934576, relative_change = 0.01993253790280342 Iter 10: T = 824.321977615035 K, F = -1317.411186376184, relative_change = 0.01193411675317541 Iter 15: T = 790.9887737854818 K, F = -558.3342017536052, relative_change = 0.006107624779828113 Iter 20: T = 775.450281136358 K, F = -235.04096058588078, relative_change = 0.002820444271206369 Iter 25: T = 768.6110174698034 K, F = -98.58993049446644, relative_change = 0.0012335468769873025 Iter 30: T = 765.6853628431278 K, F = -41.28471335826732, relative_change = 0.0005259767302039421 Iter 35: T = 764.4499074096758 K, F = -17.275223125959783, relative_change = 0.00022178609688205703 Iter 40: T = 763.9311052928873 K, F = -7.226371208074369, relative_change = 9.307514000982943e-5 Iter 45: T = 763.7137625481417 K, F = -3.022447078292241, relative_change = 3.8981660437901435e-5 Iter 50: T = 763.622801688845 K, F = -1.2640746563105845, relative_change = 1.631250336987389e-5 Iter 55: T = 763.5847492954925 K, F = -0.5286600756325635, relative_change = 6.823818089447175e-6 Iter 60: T = 763.5688333219564 K, F = -0.22109352424858653, relative_change = 2.8541056743868234e-6 Iter 65: T = 763.562176720433 K, F = -0.0924642263487444, relative_change = 1.1936741611185332e-6 Iter 70: T = 763.5593927887286 K, F = -0.0386696916507594, relative_change = 4.992180744545155e-7 Iter 75: T = 763.5582285044945 K, F = -0.016172135242384034, relative_change = 2.0878058457774984e-7 Iter 80: T = 763.5577415850437 K, F = -0.006763381559745207, relative_change = 8.731481785981505e-8 Iter 85: T = 763.5575379491854 K, F = -0.002828527193753483, relative_change = 3.651614923006962e-8 Iter 90: T = 763.5574527861802 K, F = -0.0011829238961214017, relative_change = 1.527149838002191e-8 Iter 95: T = 763.5574171699843 K, F = -0.0004947129082024659, relative_change = 6.386724521188404e-9 Iter 100: T = 763.5574022748641 K, F = -0.000206894848178929, relative_change = 2.671004740309245e-9 Iter 105: T = 763.5573960455466 K, F = -8.652589553326262e-5, relative_change = 1.1170461137151573e-9 Iter 110: T = 763.5573934403716 K, F = -3.618616172473832e-5, relative_change = 4.671620181727683e-10 Iter 115: T = 763.5573923508563 K, F = -1.5133485048224316e-5, relative_change = 1.9537273720614002e-10 Iter 120: T = 763.557391895208 K, F = -6.329003470861849e-6, relative_change = 8.170720303105195e-11 Iter 125: T = 763.5573917046504 K, F = -2.6468654650280143e-6, relative_change = 3.4170936261858344e-11 Iter 130: T = 763.5573916249571 K, F = -1.1069523030426964e-6, relative_change = 1.4290713718079246e-11 Iter 135: T = 763.5573915916283 K, F = -4.6294228861487596e-7, relative_change = 5.976568003677882e-12 Iter 140: T = 763.5573915776898 K, F = -1.9360764214049198e-7, relative_change = 2.4994675747748702e-12 Iter 145: T = 763.5573915718605 K, F = -8.096975567806197e-8, relative_change = 1.0453165826752696e-12 Iter 150: T = 763.5573915694227 K, F = -3.3864095305702335e-8, relative_change = 4.371842311298399e-13 Converged in 154 iterations to T = 763.5573915685428 K Iter 1: T = 964.3692911563815 K, F = -8118.49090357258, relative_change = 0.03563070884361849 Iter 2: T = 930.666796158518 K, F = -6887.312816321426, relative_change = 0.03494770655487231 Iter 3: T = 898.8616675681119 K, F = -5841.767649082913, relative_change = 0.03417456034929686 Iter 5: T = 840.8307047254023 K, F = -4200.003229814887, relative_change = 0.032332654884567595 Iter 10: T = 726.9696063837276 K, F = -1831.419292960247, relative_change = 0.025906632092958782 Iter 15: T = 653.6326108599748 K, F = -790.6707289613507, relative_change = 0.017696848844101467 Iter 20: T = 612.2369251553118 K, F = -337.5100675819075, relative_change = 0.01011972158369261 Iter 25: T = 591.5882907493973 K, F = -142.73342707431334, relative_change = 0.005011131890956121 Iter 30: T = 582.1433158513391 K, F = -60.013315896101915, relative_change = 0.0022718811044163956 Iter 35: T = 578.026639611044 K, F = -25.158335547154778, relative_change = 0.0009848826282457344 Iter 40: T = 576.2735878474944 K, F = -10.53234349848499, relative_change = 0.00041829991371708996 Iter 45: T = 575.5347659079008 K, F = -4.406670337359506, relative_change = 0.00017608496279317886 Iter 50: T = 575.2247754089728 K, F = -1.8432595620081034, relative_change = 7.384337220730522e-5 Iter 55: T = 575.0949566416067 K, F = -0.7709323101485962, relative_change = 3.091774743970629e-5 Iter 60: T = 575.0406338426799 K, F = -0.3224234540337505, relative_change = 1.2936402500985391e-5 Iter 65: T = 575.0179099649181 K, F = -0.1348431508492801, relative_change = 5.411248648985252e-6 Iter 70: T = 575.0084056169514 K, F = -0.05639333298702731, relative_change = 2.2632396175351213e-6 Iter 75: T = 575.0044306187821 K, F = -0.023584420765686204, relative_change = 9.465472134548227e-7 Iter 80: T = 575.0027681979805 K, F = -0.009863296115076192, relative_change = 3.9586318666057375e-7 Iter 85: T = 575.0020729486589 K, F = -0.004124949922720278, relative_change = 1.655557333066452e-7 Iter 90: T = 575.0017821861995 K, F = -0.0017251036154404265, relative_change = 6.923756336595582e-8 Iter 95: T = 575.001660585711 K, F = -0.0007214589856474607, relative_change = 2.8956007094743104e-8 Iter 100: T = 575.0016097309073 K, F = -0.000301722772947266, relative_change = 1.2109753439420038e-8 Iter 105: T = 575.0015884628162 K, F = -0.0001261840680613635, relative_change = 5.064444444694097e-9 Iter 110: T = 575.0015795682457 K, F = -5.277168479500549e-5, relative_change = 2.118011328099181e-9 Iter 115: T = 575.00157584843 K, F = -2.206974854468413e-5, relative_change = 8.857776485098994e-10 Iter 120: T = 575.0015742927586 K, F = -9.229832926171966e-6, relative_change = 3.7044281652044026e-10 Iter 125: T = 575.0015736421582 K, F = -3.860026089042012e-6, relative_change = 1.5492359996194504e-10 Iter 130: T = 575.0015733700693 K, F = -1.6143081253416902e-6, relative_change = 6.479086436725249e-11 Iter 135: T = 575.0015732562786 K, F = -6.751233635471365e-7, relative_change = 2.7096330392749077e-11 Iter 140: T = 575.0015732086899 K, F = -2.823450441225006e-7, relative_change = 1.133202465859994e-11 Iter 145: T = 575.0015731887878 K, F = -1.1808036870508687e-7, relative_change = 4.739200060131251e-12 Iter 150: T = 575.0015731804644 K, F = -4.938194597681189e-8, relative_change = 1.9819629962652003e-12 Iter 155: T = 575.0015731769836 K, F = -2.0652265009246662e-8, relative_change = 8.288864326608246e-13 Iter 160: T = 575.0015731755278 K, F = -8.63715293730749e-9, relative_change = 3.4665538542293814e-13 Converged in 163 iterations to T = 575.0015731751016 K Iter 1: T = 963.5777348007495 K, F = -8298.847772167823, relative_change = 0.03642226519925055 Iter 2: T = 929.03419348997 K, F = -7041.820020155538, relative_change = 0.03584925228468717 Iter 3: T = 896.3358999563736 K, F = -5974.271995363134, relative_change = 0.035196006522390064 Iter 5: T = 836.356366808227 K, F = -4297.790083641885, relative_change = 0.03361963018239475 Iter 10: T = 716.7606135706677 K, F = -1878.0666368143716, relative_change = 0.027884828569913585 Iter 15: T = 637.2242493400813 K, F = -813.2075183988364, relative_change = 0.019963934723315122 Iter 20: T = 590.6628486002294 K, F = -348.1687851491652, relative_change = 0.011960409560067746 Iter 25: T = 566.719962809026 K, F = -147.56242969807548, relative_change = 0.006123941987358478 Iter 30: T = 555.5558197915024 K, F = -62.12018266543601, relative_change = 0.0028287377473147244 Iter 35: T = 550.6412245519833 K, F = -26.057063038240017, relative_change = 0.001237335753424553 Iter 40: T = 548.5387517315559 K, F = -10.911484852713574, relative_change = 0.0005276231573630079 Iter 45: T = 547.6508863481317 K, F = -4.565821927656392, relative_change = 0.0002224859460504469 Iter 50: T = 547.2780423068473 K, F = -1.9099230831089347, relative_change = 9.336983662609796e-5 Iter 55: T = 547.1218452290509 K, F = -0.7988301444858176, relative_change = 3.910526055434806e-5 Iter 60: T = 547.0564745083393 K, F = -0.33409387819337366, relative_change = 1.6364256610388264e-5 Iter 65: T = 547.0291274196697 K, F = -0.1397244246883076, relative_change = 6.8454728053187845e-6 Iter 70: T = 547.017689092929 K, F = -0.05843483851957734, relative_change = 2.8631638413742877e-6 Iter 75: T = 547.0129051948284 K, F = -0.02443821999426754, relative_change = 1.19746272822668e-6 Iter 80: T = 547.0109044672123 K, F = -0.010220368163234073, relative_change = 5.00802556761366e-7 Iter 85: T = 547.0100677312817 K, F = -0.004274282244863564, relative_change = 2.0944324421720576e-7 Iter 90: T = 547.0097177969675 K, F = -0.0017875562686478774, relative_change = 8.759195180293123e-8 Iter 95: T = 547.0095714500213 K, F = -0.0007475774477142816, relative_change = 3.66320503153389e-8 Iter 100: T = 547.0095102459392 K, F = -0.00031264582815490605, relative_change = 1.531996964814651e-8 Iter 105: T = 547.0094846496539 K, F = -0.00013075222155559119, relative_change = 6.406995812888011e-9 Iter 110: T = 547.0094739449804 K, F = -5.4682140380624134e-5, relative_change = 2.67948240520321e-9 Iter 115: T = 547.0094694681579 K, F = -2.2868724538827045e-5, relative_change = 1.1205916043566582e-9 Iter 120: T = 547.0094675958971 K, F = -9.563973405485315e-6, relative_change = 4.68644784230122e-10 Iter 125: T = 547.0094668128953 K, F = -3.999767599544013e-6, relative_change = 1.9599283236797747e-10 Iter 130: T = 547.0094664854346 K, F = -1.6727498515778372e-6, relative_change = 8.196650781050483e-11 Iter 135: T = 547.0094663484867 K, F = -6.995644878937668e-7, relative_change = 3.4279398127074676e-11 Iter 140: T = 547.0094662912135 K, F = -2.925664399910932e-7, relative_change = 1.4336064299475623e-11 Iter 145: T = 547.0094662672611 K, F = -1.2235505175706152e-7, relative_change = 5.9955266563518824e-12 Iter 150: T = 547.009466257244 K, F = -5.1170640585906924e-8, relative_change = 2.5074153888741893e-12 Iter 155: T = 547.0094662530547 K, F = -2.1400004185379018e-8, relative_change = 1.0486227884574537e-12 Iter 160: T = 547.0094662513027 K, F = -8.95002169598591e-9, relative_change = 4.3856050804675785e-13 Converged in 164 iterations to T = 547.0094662506702 K Iter 1: T = 969.3839950304741 K, F = -6975.885855645698, relative_change = 0.03061600496952583 Iter 2: T = 940.9105443554521 K, F = -5909.956657783438, relative_change = 0.02937272620652968 Iter 3: T = 914.5402516104938 K, F = -5005.209955461875, relative_change = 0.028026354793401403 Iter 5: T = 867.9215567385469 K, F = -3585.982957186693, relative_change = 0.025057043187552884 Iter 10: T = 784.0067545302304 K, F = -1546.2460805424982, relative_change = 0.01678407574333736 Iter 15: T = 737.3315409816795 K, F = -659.2643589778414, relative_change = 0.009424197083172705 Iter 20: T = 714.317493808636 K, F = -278.57794320917714, relative_change = 0.0046092598522607 Iter 25: T = 703.8638094308745 K, F = -117.07853896927622, relative_change = 0.002075789594981818 Iter 30: T = 699.3234645667088 K, F = -49.07055861722082, relative_change = 0.0008970521755738724 Iter 35: T = 697.393089794472 K, F = -20.541119142047116, relative_change = 0.0003804693399799698 Iter 40: T = 696.5801004295753 K, F = -8.593944000849236, relative_change = 0.00016006521751850286 Iter 45: T = 696.2390919195984 K, F = -3.5946881295627895, relative_change = 6.710851616436144e-5 Iter 50: T = 696.0963010891309 K, F = -1.5034463362603563, relative_change = 2.8094956734904776e-5 Iter 55: T = 696.0365532323447 K, F = -0.6287775638458843, relative_change = 1.1754791844877928e-5 Iter 60: T = 696.0115605335296 K, F = -0.26296549715498096, relative_change = 4.916894848370281e-6 Iter 65: T = 696.0011073380534 K, F = -0.10997587301572931, relative_change = 2.0564616892413027e-6 Iter 70: T = 695.996735520623 K, F = -0.04599332171360593, relative_change = 8.600643952911811e-7 Iter 75: T = 695.994907145285 K, F = -0.019234973593223015, relative_change = 3.5969402143346047e-7 Iter 80: T = 695.9941424917974 K, F = -0.008044298673352435, relative_change = 1.5042917842468515e-7 Iter 85: T = 695.9938227036876 K, F = -0.0033642222992544824, relative_change = 6.291142635940685e-8 Iter 90: T = 695.9936889643254 K, F = -0.0014069580346079968, relative_change = 2.6310335611190516e-8 Iter 95: T = 695.9936330328999 K, F = -0.0005884066698166324, relative_change = 1.1003301094431324e-8 Iter 100: T = 695.993609641705 K, F = -0.00024607869964765605, relative_change = 4.6017127223532415e-9 Iter 105: T = 695.9935998592272 K, F = -0.00010291305283904872, relative_change = 1.92449137985183e-9 Iter 110: T = 695.9935957680779 K, F = -4.303946873229769e-5, relative_change = 8.048453194401177e-10 Iter 115: T = 695.9935940571104 K, F = -1.7999619579378567e-5, relative_change = 3.3659592384450086e-10 Iter 120: T = 695.9935933415632 K, F = -7.52765441702774e-6, relative_change = 1.4076840869386697e-10 Iter 125: T = 695.9935930423129 K, F = -3.1481549396250585e-6, relative_change = 5.887102907879329e-11 Iter 130: T = 695.9935929171629 K, F = -1.3165972800877057e-6, relative_change = 2.4620591525489506e-11 Iter 135: T = 695.9935928648237 K, F = -5.506163205382109e-7, relative_change = 1.029661820294052e-11 Iter 140: T = 695.9935928429347 K, F = -2.3027480300363834e-7, relative_change = 4.306177714316939e-12 Iter 145: T = 695.9935928337807 K, F = -9.630518971182056e-8, relative_change = 1.8009233156504915e-12 Iter 150: T = 695.9935928299523 K, F = -4.027662769967577e-8, relative_change = 7.531797416013722e-13 Iter 155: T = 695.9935928283511 K, F = -1.684414030478365e-8, relative_change = 3.14988269052508e-13 Converged in 158 iterations to T = 695.9935928278823 K Iter 1: T = 966.5086437473975 K, F = -7631.037380659908, relative_change = 0.033491356252602536 Iter 2: T = 935.05777081136 K, F = -6470.042754845171, relative_change = 0.032540705289602574 Iter 3: T = 905.6176192058922 K, F = -5484.271200873898, relative_change = 0.031484847807769424 Iter 5: T = 852.6444450225556 K, F = -3936.919031961478, relative_change = 0.029052975492207575 Iter 10: T = 752.7643992868398 K, F = -1707.7541284292279, relative_change = 0.02140406727115083 Iter 15: T = 692.9252211423075 K, F = -732.5905819972348, relative_change = 0.013221006213905597 Iter 20: T = 661.5118658584936 K, F = -310.96351011560427, relative_change = 0.00692997520846637 Iter 25: T = 646.6610200479919 K, F = -131.02631098714429, relative_change = 0.0032452638064385964 Iter 30: T = 640.0749836978232 K, F = -54.98519025374465, relative_change = 0.0014291537261708553 Iter 35: T = 637.2476428881442 K, F = -23.02989534798704, relative_change = 0.0006112743654891712 Iter 40: T = 636.0518356486199 K, F = -9.637514878182916, relative_change = 0.00025809836583704686 Iter 45: T = 635.5493469551252 K, F = -4.031605976832605, relative_change = 0.00010837548196020344 Iter 50: T = 635.3387789683314 K, F = -1.6862556805311848, relative_change = 4.54005710683014e-5 Iter 55: T = 635.2506429859375 K, F = -0.7052455269901998, relative_change = 1.9000500541082023e-5 Iter 60: T = 635.2137705146604 K, F = -0.2949479229936133, relative_change = 7.948589271017907e-6 Iter 65: T = 635.1983477402755 K, F = -0.12335176218505056, relative_change = 3.3246066856817746e-6 Iter 70: T = 635.1918973553159 K, F = -0.051587358200788025, relative_change = 1.3904622444521177e-6 Iter 75: T = 635.1891996579319 K, F = -0.021574480434117194, relative_change = 5.815205142450938e-7 Iter 80: T = 635.1880714365371 K, F = -0.009022710817856439, relative_change = 2.4320102730112606e-7 Iter 85: T = 635.1875995987542 K, F = -0.0037734063696622244, relative_change = 1.0170995941275115e-7 Iter 90: T = 635.1874022701875 K, F = -0.0015780837727726316, relative_change = 4.253638706098335e-8 Iter 95: T = 635.1873197449594 K, F = -0.0006599735088874681, relative_change = 1.778923684104464e-8 Iter 100: T = 635.187285231912 K, F = -0.00027600880800909833, relative_change = 7.439673350420414e-9 Iter 105: T = 635.1872707981416 K, F = -0.00011543018112708525, relative_change = 3.1113606173189262e-9 Iter 110: T = 635.1872647617661 K, F = -4.827428157039293e-5, relative_change = 1.3012082614502486e-9 Iter 115: T = 635.1872622372816 K, F = -2.0188881083738064e-5, relative_change = 5.44180845330087e-10 Iter 120: T = 635.1872611815121 K, F = -8.443231963806141e-6, relative_change = 2.2758295146145887e-10 Iter 125: T = 635.1872607399766 K, F = -3.53106095352107e-6, relative_change = 9.51779223521323e-11 Iter 130: T = 635.1872605553212 K, F = -1.4767322479292133e-6, relative_change = 3.9804554289179395e-11 Iter 135: T = 635.1872604780962 K, F = -6.175869237678988e-7, relative_change = 1.664673625439401e-11 Iter 140: T = 635.1872604457998 K, F = -2.582830440078787e-7, relative_change = 6.961885927555488e-12 Iter 145: T = 635.187260432293 K, F = -1.0801711203267672e-7, relative_change = 2.911545413909051e-12 Iter 150: T = 635.1872604266442 K, F = -4.517354396105233e-8, relative_change = 1.2176295244368452e-12 Iter 155: T = 635.1872604242819 K, F = -1.8892233888401222e-8, relative_change = 5.09230397892277e-13 Converged in 160 iterations to T = 635.1872604232939 K Iter 1: T = 966.4585727471277 K, F = -7642.446105701184, relative_change = 0.03354142725287227 Iter 2: T = 934.955357536607 K, F = -6479.803518798942, relative_change = 0.03259655002177052 Iter 3: T = 905.4606572947627 K, F = -5492.627931203863, relative_change = 0.03154664017280583 Iter 5: T = 852.3724513620451 K, F = -3943.0567606668146, relative_change = 0.02912659034684937 Iter 10: T = 752.1878459914881 K, F = -1710.6115954847598, relative_change = 0.021497473665767385 Iter 15: T = 692.0761611122582 K, F = -733.910266482226, relative_change = 0.013305377210225053 Iter 20: T = 660.4762213069046 K, F = -311.5557354285385, relative_change = 0.006985260839251757 Iter 25: T = 645.5230927349965 K, F = -131.2840186257863, relative_change = 0.0032742503198872567 Iter 30: T = 638.8882940273736 K, F = -55.095057980408775, relative_change = 0.0014425987780590551 Iter 35: T = 636.0393262053774 K, F = -23.0762395678966, relative_change = 0.0006171567570568155 Iter 40: T = 634.8342420719082 K, F = -9.656968335760592, relative_change = 0.0002606061614999346 Iter 45: T = 634.3278317560222 K, F = -4.039754381394276, relative_change = 0.00010943279509188294 Iter 50: T = 634.1156162706358 K, F = -1.6896656821335108, relative_change = 4.584425608831491e-5 Iter 55: T = 634.0267899779648 K, F = -0.7066720234496877, relative_change = 1.9186318959374208e-5 Iter 60: T = 633.989628581607 K, F = -0.29554456967302034, relative_change = 8.026347006734395e-6 Iter 65: T = 633.9740849351972 K, F = -0.12360129899496924, relative_change = 3.3571339945742408e-6 Iter 70: T = 633.9675839930957 K, F = -0.05169171958087049, relative_change = 1.4040669697158644e-6 Iter 75: T = 633.9648651508837 K, F = -0.02161812597749413, relative_change = 5.87210420538998e-7 Iter 80: T = 633.9637280862547 K, F = -0.009040963969812965, relative_change = 2.4558065739579574e-7 Iter 85: T = 633.9632525500881 K, F = -0.0037810400670459376, relative_change = 1.027051567148522e-7 Iter 90: T = 633.9630536748065 K, F = -0.0015812762790609058, relative_change = 4.2952591807657105e-8 Iter 95: T = 633.9629705027227 K, F = -0.0006613086537206048, relative_change = 1.796329887470651e-8 Iter 100: T = 633.9629357191524 K, F = -0.0002765671819472959, relative_change = 7.512468222011662e-9 Iter 105: T = 633.9629211722458 K, F = -0.00011566369988280645, relative_change = 3.1418043117689055e-9 Iter 110: T = 633.9629150885554 K, F = -4.837194069590156e-5, relative_change = 1.313940146687596e-9 Iter 115: T = 633.9629125442834 K, F = -2.022972287507585e-5, relative_change = 5.495054605502205e-10 Iter 120: T = 633.9629114802384 K, F = -8.460311052171932e-6, relative_change = 2.298097303151468e-10 Iter 125: T = 633.9629110352421 K, F = -3.538203476760593e-6, relative_change = 9.61091837519439e-11 Iter 130: T = 633.9629108491392 K, F = -1.4797181639991663e-6, relative_change = 4.019398716261811e-11 Iter 135: T = 633.9629107713089 K, F = -6.188356491132474e-7, relative_change = 1.6809601149682743e-11 Iter 140: T = 633.9629107387593 K, F = -2.58804768615839e-7, relative_change = 7.029984363967186e-12 Iter 145: T = 633.9629107251467 K, F = -1.0823534646320354e-7, relative_change = 2.940026172671189e-12 Iter 150: T = 633.9629107194538 K, F = -4.526536256932445e-8, relative_change = 1.229555362676255e-12 Iter 155: T = 633.9629107170729 K, F = -1.8929935341471804e-8, relative_change = 5.141989855707229e-13 Converged in 160 iterations to T = 633.9629107160771 K Iter 1: T = 976.3301585759851 K, F = -5393.195884293685, relative_change = 0.023669841424014834 Iter 2: T = 954.8240888097872 K, F = -4560.437201719385, relative_change = 0.02202745616049121 Iter 3: T = 935.3910471368605 K, F = -3854.5209522103482, relative_change = 0.02035248366759417 Iter 5: T = 902.3264989658355 K, F = -2749.756285796801, relative_change = 0.016997706032291126 Iter 10: T = 847.8103585174551 K, F = -1172.7202553750128, relative_change = 0.009584888155997668 Iter 15: T = 820.8578306829663 K, F = -495.6359739568962, relative_change = 0.004701268885593861 Iter 20: T = 808.5954898102688 K, F = -208.3230098637999, relative_change = 0.00212046278265644 Iter 25: T = 803.2653101508688 K, F = -87.31756579164777, relative_change = 0.0009170144926238844 Iter 30: T = 800.9983017285417 K, F = -36.552226223770134, relative_change = 0.00038905861860123893 Iter 35: T = 800.043385932216 K, F = -15.292769729233086, relative_change = 0.00016370081454963336 Iter 40: T = 799.642819445962 K, F = -6.396707513841861, relative_change = 6.863666850750856e-5 Iter 45: T = 799.4750851013648 K, F = -2.675370278038074, relative_change = 2.873540294267804e-5 Iter 50: T = 799.404899316839 K, F = -1.1189052024798405, relative_change = 1.2022871579921533e-5 Iter 55: T = 799.3755402573073 K, F = -0.46794536231892303, relative_change = 5.029050571591992e-6 Iter 60: T = 799.3632608060888 K, F = -0.1957013612358497, relative_change = 2.103373826852565e-6 Iter 65: T = 799.3581251931893 K, F = -0.08184482522910386, relative_change = 8.796848840506461e-7 Iter 70: T = 799.3559773836035 K, F = -0.03422851461111465, relative_change = 3.6789976676785406e-7 Iter 75: T = 799.3550791378736 K, F = -0.014314779050006887, relative_change = 1.5386095804759797e-7 Iter 80: T = 799.3547034797133 K, F = -0.005986612508057543, relative_change = 6.434664438495983e-8 Iter 85: T = 799.3545463747976 K, F = -0.002503673013310337, relative_change = 2.6910562122253772e-8 Iter 90: T = 799.3544806716128 K, F = -0.0010470659828647477, relative_change = 1.1254323170550532e-8 Iter 95: T = 799.3544531937507 K, F = -0.00043789550635109364, relative_change = 4.706693208117864e-9 Iter 100: T = 799.3544417021795 K, F = -0.0001831331318570273, relative_change = 1.9683954605386526e-9 Iter 105: T = 799.3544368962671 K, F = -7.658846387748053e-5, relative_change = 8.232065241983724e-10 Iter 110: T = 799.354434886377 K, F = -3.2030211891243e-5, relative_change = 3.4427482131212777e-10 Iter 115: T = 799.354434045817 K, F = -1.3395418686168448e-5, relative_change = 1.4397985918201166e-10 Iter 120: T = 799.3544336942848 K, F = -5.602124256820495e-6, relative_change = 6.021409873055274e-11 Iter 125: T = 799.3544335472699 K, F = -2.342876641692193e-6, relative_change = 2.5182269987699626e-11 Iter 130: T = 799.3544334857863 K, F = -9.79818394308829e-7, relative_change = 1.0531519634603553e-11 Iter 135: T = 799.3544334600733 K, F = -4.0977383031215453e-7, relative_change = 4.40442960185936e-12 Iter 140: T = 799.3544334493198 K, F = -1.7137555685664552e-7, relative_change = 1.8420199628851195e-12 Iter 145: T = 799.3544334448225 K, F = -7.167115767536814e-8, relative_change = 7.703531683639415e-13 Iter 150: T = 799.3544334429416 K, F = -2.997229142653879e-8, relative_change = 3.2215538876045703e-13 Converged in 153 iterations to T = 799.3544334423909 K Iter 1: T = 965.2228669468499 K, F = -7924.002847754174, relative_change = 0.03477713305315015 Iter 2: T = 932.4224901739694 K, F = -6720.771188158019, relative_change = 0.033982179552617904 Iter 3: T = 901.5694477826524 K, F = -5699.021746311796, relative_change = 0.03308912292061993 Iter 5: T = 845.5921694365898 K, F = -4094.8273420480436, relative_change = 0.03099036623356999 Iter 10: T = 737.5582951667802 K, F = -1781.6773701300465, relative_change = 0.023975899976809392 Iter 15: T = 670.1049810753523 K, F = -767.0511643073479, relative_change = 0.015670230255076235 Iter 20: T = 633.2558756082926 K, F = -326.58075454670274, relative_change = 0.008607866244570444 Iter 25: T = 615.3336949801175 K, F = -137.86948064864205, relative_change = 0.00414982948579261 Iter 30: T = 607.2580045820185 K, F = -57.913630653670836, relative_change = 0.0018547541182905778 Iter 35: T = 603.7644141460772 K, F = -24.267360335397687, relative_change = 0.0007987036151298458 Iter 40: T = 602.2817442647319 K, F = -10.157359844775762, relative_change = 0.000338231894354785 Iter 45: T = 601.6577936881891 K, F = -4.249424530741149, relative_change = 0.00014220165179133022 Iter 50: T = 601.3961637990616 K, F = -1.7774227896007833, relative_change = 5.9602456684325464e-5 Iter 55: T = 601.2866264528653 K, F = -0.7433854701287799, relative_change = 2.4949626310955705e-5 Iter 60: T = 601.2407954914344 K, F = -0.3109007389083498, relative_change = 1.0438289171523304e-5 Iter 65: T = 601.22162473642 K, F = -0.13002381163903326, relative_change = 4.366127254883202e-6 Iter 70: T = 601.2136066504378 K, F = -0.054377757420209005, relative_change = 1.8260907809407285e-6 Iter 75: T = 601.2102532778966 K, F = -0.02274147068744803, relative_change = 7.637147010860051e-7 Iter 80: T = 601.2088508376476 K, F = -0.009510762172962317, relative_change = 3.1939840907861457e-7 Iter 85: T = 601.208264316923 K, F = -0.0039775156414589286, relative_change = 1.335768937829032e-7 Iter 90: T = 601.2080190263457 K, F = -0.001663444773931988, relative_change = 5.586356849808739e-8 Iter 95: T = 601.2079164427909 K, F = -0.0006956725103156036, relative_change = 2.336283182444708e-8 Iter 100: T = 601.2078735411046 K, F = -0.000290938559518672, relative_change = 9.770618855473969e-9 Iter 105: T = 601.2078555991038 K, F = -0.00012167398199297574, relative_change = 4.086190134299978e-9 Iter 110: T = 601.2078480955443 K, F = -5.08855119334406e-5, relative_change = 1.7088936006746082e-9 Iter 115: T = 601.2078449574659 K, F = -2.1280929127065473e-5, relative_change = 7.146797413171158e-10 Iter 120: T = 601.2078436450842 K, F = -8.899939619444464e-6, relative_change = 2.9888763658241316e-10 Iter 125: T = 601.2078430962304 K, F = -3.7220616422861674e-6, relative_change = 1.249983999758455e-10 Iter 130: T = 601.2078428666932 K, F = -1.5566112380183128e-6, relative_change = 5.227584419340091e-11 Iter 135: T = 601.207842770698 K, F = -6.509933773712895e-7, relative_change = 2.1862381281270806e-11 Iter 140: T = 601.2078427305516 K, F = -2.7225362547733667e-7, relative_change = 9.14312307034634e-12 Iter 145: T = 601.2078427137619 K, F = -1.138595518979102e-7, relative_change = 3.823757696707516e-12 Iter 150: T = 601.2078427067403 K, F = -4.761789895724178e-8, relative_change = 1.5991570721460061e-12 Iter 155: T = 601.2078427038037 K, F = -1.9914473070592464e-8, relative_change = 6.687899119244209e-13 Iter 160: T = 601.2078427025756 K, F = -8.328077838459791e-9, relative_change = 2.7968274251565295e-13 Converged in 162 iterations to T = 601.2078427023157 K Iter 1: T = 964.5654528553569 K, F = -8073.795273863095, relative_change = 0.035434547144643135 Iter 2: T = 931.0707173842849 K, F = -6849.033040140823, relative_change = 0.03472520747235874 Iter 3: T = 899.4853987872816 K, F = -5808.9501053171125, relative_change = 0.03392365156294243 Iter 5: T = 841.9307039430934 K, F = -4175.807725529854, relative_change = 0.03202007607165038 Iter 10: T = 729.4402528734347 K, F = -1819.9381244790486, relative_change = 0.025445386786265376 Iter 15: T = 657.5230964236883 K, F = -785.1839092180551, relative_change = 0.017196822283163236 Iter 20: T = 617.2546000946911 K, F = -334.9515210230241, relative_change = 0.009735565632542487 Iter 25: T = 597.2962503800671 K, F = -141.58787707361577, relative_change = 0.004787935402734172 Iter 30: T = 588.202351811196 K, F = -59.51706998419601, relative_change = 0.0021626488661268283 Iter 35: T = 584.2464481092364 K, F = -24.94740157619882, relative_change = 0.0009358883384080497 Iter 40: T = 582.5633640127712 K, F = -10.44350050335491, relative_change = 0.00039718393057362885 Iter 45: T = 581.8543050858256 K, F = -4.369402696612716, relative_change = 0.000167140822239722 Iter 50: T = 581.5568514426294 K, F = -1.82765392674651, relative_change = 7.008274986941995e-5 Iter 55: T = 581.4322915499372 K, F = -0.7644023584928551, relative_change = 2.934147819158012e-5 Iter 60: T = 581.380170851007 K, F = -0.3196919390320105, relative_change = 1.2276568584333137e-5 Iter 65: T = 581.3583684040093 K, F = -0.13370069166970971, relative_change = 5.135189797905559e-6 Iter 70: T = 581.3492494944928 K, F = -0.055915524196818306, relative_change = 2.1477695369606696e-6 Iter 75: T = 581.3454357061747 K, F = -0.023384592149255923, relative_change = 8.982529278981751e-7 Iter 80: T = 581.3438407078623 K, F = -0.009779724828953562, relative_change = 3.7566535918820376e-7 Iter 85: T = 581.3431736558865 K, F = -0.004089999312594406, relative_change = 1.571086591082005e-7 Iter 90: T = 581.3428946859735 K, F = -0.001710486836395464, relative_change = 6.570487833917624e-8 Iter 95: T = 581.3427780172826 K, F = -0.0007153460716393112, relative_change = 2.7478592945360492e-8 Iter 100: T = 581.342729225018 K, F = -0.0002991662785392646, relative_change = 1.1491880645927714e-8 Iter 105: T = 581.3427088195059 K, F = -0.00012511491219246995, relative_change = 4.806042596897211e-9 Iter 110: T = 581.3427002856762 K, F = -5.232455025860894e-5, relative_change = 2.009944542777565e-9 Iter 115: T = 581.3426967167267 K, F = -2.188275217784863e-5, relative_change = 8.405828504779245e-10 Iter 120: T = 581.3426952241493 K, F = -9.151628591497207e-6, relative_change = 3.515418023960756e-10 Iter 125: T = 581.3426945999356 K, F = -3.827320155913583e-6, relative_change = 1.470189725667817e-10 Iter 130: T = 581.3426943388819 K, F = -1.6006299950466207e-6, relative_change = 6.148505174588739e-11 Iter 135: T = 581.3426942297062 K, F = -6.694032337883904e-7, relative_change = 2.571380808338792e-11 Iter 140: T = 581.3426941840477 K, F = -2.799524380092677e-7, relative_change = 1.075382206536248e-11 Iter 145: T = 581.3426941649527 K, F = -1.1707912611624849e-7, relative_change = 4.4973642629162526e-12 Iter 150: T = 581.3426941569669 K, F = -4.896378336116669e-8, relative_change = 1.8808473959862e-12 Iter 155: T = 581.3426941536272 K, F = -2.0476998874308094e-8, relative_change = 7.86583620945308e-13 Iter 160: T = 581.3426941522305 K, F = -8.563525444316156e-9, relative_change = 3.2895098024231987e-13 Converged in 163 iterations to T = 581.3426941518215 K Iter 1: T = 964.3692966930516 K, F = -8118.489642037016, relative_change = 0.035630703306948334 Iter 2: T = 930.6668075629382 K, F = -6887.3117358183, relative_change = 0.034947700269682705 Iter 3: T = 898.8616851852222 K, F = -5841.766722698198, relative_change = 0.034174553254995126 Iter 5: T = 840.8307358219002 K, F = -4200.00254668534, relative_change = 0.032332646026906914 Iter 10: T = 726.9696764409236 K, F = -1831.4189684726787, relative_change = 0.025906618919258568 Iter 15: T = 653.632721602349 K, F = -790.6705735736738, relative_change = 0.01769683441475549 Iter 20: T = 612.2370684822473 K, F = -337.5099949392057, relative_change = 0.01011971038890975 Iter 25: T = 591.588454172626 K, F = -142.73339448295485, relative_change = 0.005011125342558317 Iter 30: T = 582.1434895401378 K, F = -60.013301760653164, relative_change = 0.0022718778877967322 Iter 35: T = 578.026818011362 K, F = -25.158329535185274, relative_change = 0.000984881182962823 Iter 40: T = 576.2737683003486 K, F = -10.53234096563674, relative_change = 0.00041829929033556024 Iter 45: T = 575.534947234257 K, F = -4.406669274764445, relative_change = 0.0001760846986588857 Iter 50: T = 575.2249571033378 K, F = -1.8432591170303416, relative_change = 7.384326113481586e-5 Iter 55: T = 575.0951384903536 K, F = -0.7709321239501183, relative_change = 3.091770088080539e-5 Iter 60: T = 575.0408157560751 K, F = -0.3224233761452248, relative_change = 1.2936383010725867e-5 Iter 65: T = 575.0180919053645 K, F = -0.13484311827253123, relative_change = 5.411240494652643e-6 Iter 70: T = 575.0085875687136 K, F = -0.05639331936183292, relative_change = 2.263236206694484e-6 Iter 75: T = 575.0046125752771 K, F = -0.023584415067170794, relative_change = 9.465457868919285e-7 Iter 80: T = 575.0029501564549 K, F = -0.009863293732292333, relative_change = 3.958625900542064e-7 Iter 85: T = 575.0022549079611 K, F = -0.00412494892596782, relative_change = 1.6555548378599415e-7 Iter 90: T = 575.001964145848 K, F = -0.0017251031990303534, relative_change = 6.923745903073055e-8 Iter 95: T = 575.0018425455042 K, F = -0.0007214588121822185, relative_change = 2.8955963487804626e-8 Iter 100: T = 575.001791690761 K, F = -0.00030172270038764104, relative_change = 1.2109735201884265e-8 Iter 105: T = 575.0017704226952 K, F = -0.00012618403780206844, relative_change = 5.064436820987996e-9 Iter 110: T = 575.0017615281353 K, F = -5.277167123679538e-5, relative_change = 2.118008103515031e-9 Iter 115: T = 575.001757808324 K, F = -2.2069743059016655e-5, relative_change = 8.857763073567177e-10 Iter 120: T = 575.0017562526544 K, F = -9.22982937406891e-6, relative_change = 3.7044220514663644e-10 Iter 125: T = 575.0017556020549 K, F = -3.8600252536546975e-6, relative_change = 1.549233703718951e-10 Iter 130: T = 575.0017553299664 K, F = -1.6143083069186659e-6, relative_change = 6.479078965968381e-11 Iter 135: T = 575.0017552161758 K, F = -6.751234354895885e-7, relative_change = 2.7096298988780977e-11 Iter 140: T = 575.0017551685871 K, F = -2.8234467946974817e-7, relative_change = 1.1331995682049303e-11 Iter 145: T = 575.001755148685 K, F = -1.1808012706504556e-7, relative_change = 4.739184364197645e-12 Iter 150: T = 575.0017551403618 K, F = -4.938240338869804e-8, relative_change = 1.9819788463932467e-12 Iter 155: T = 575.0017551368809 K, F = -2.0652381971242306e-8, relative_change = 8.288900779823795e-13 Iter 160: T = 575.0017551354251 K, F = -8.637258352983679e-9, relative_change = 3.46659177610312e-13 Converged in 163 iterations to T = 575.0017551349989 K Iter 1: T = 980.1005255142289 K, F = -4534.114190869988, relative_change = 0.01989947448577111 Iter 2: T = 962.246557728339 K, F = -3830.02144215539, relative_change = 0.0182164658839689 Iter 3: T = 946.3174903256687 K, F = -3233.7579104991264, relative_change = 0.016554039372482048 Iter 5: T = 919.7117515013731 K, F = -2302.0950302634897, relative_change = 0.013379874442135868 Iter 10: T = 877.4532096212882 K, F = -977.3633808779638, relative_change = 0.007034322911617637 Iter 15: T = 857.4395171232416 K, F = -411.8664842105251, relative_change = 0.0033000441979229166 Iter 20: T = 848.5552181971707 K, F = -172.85002121767414, relative_change = 0.001454578585064868 Iter 25: T = 844.7394838548812 K, F = -72.39813507695797, relative_change = 0.0006224011253162251 Iter 30: T = 843.1253107700733 K, F = -30.29741343769876, relative_change = 0.0002628425106051403 Iter 35: T = 842.4469615297743 K, F = -12.674205026220724, relative_change = 0.00011037576286243354 Iter 40: T = 842.1626886003177 K, F = -5.301112014776682, relative_change = 4.623997537999539e-5 Iter 45: T = 842.043700596937 K, F = -2.2170948663368817, relative_change = 1.9352052067871587e-5 Iter 50: T = 841.9939205835756 K, F = -0.9272341912229556, relative_change = 8.095700365082873e-6 Iter 55: T = 841.9730988706219 K, F = -0.3877836732788408, relative_change = 3.3861457117975183e-6 Iter 60: T = 841.9643904363123 K, F = -0.16217633366460293, relative_change = 1.4162012960018105e-6 Iter 65: T = 841.9607483697016 K, F = -0.06782417928579187, relative_change = 5.922853645622198e-7 Iter 70: T = 841.9592251972667 K, F = -0.028364899212333983, relative_change = 2.477030987624008e-7 Iter 75: T = 841.958588185446 K, F = -0.011862542647858465, relative_change = 1.035927939001837e-7 Iter 80: T = 841.9583217789849 K, F = -0.004961057535192603, relative_change = 4.332381347581946e-8 Iter 85: T = 841.958210364532 K, F = -0.002074773602646074, relative_change = 1.8118548426731893e-8 Iter 90: T = 841.9581637696617 K, F = -0.000867695114902256, relative_change = 7.577395471707345e-9 Iter 95: T = 841.9581442831277 K, F = -0.00036288046154786535, relative_change = 3.1689576463976093e-9 Iter 100: T = 841.958136133626 K, F = -0.000151760941886403, relative_change = 1.325295986804481e-9 Iter 105: T = 841.9581327254069 K, F = -6.346823928549128e-5, relative_change = 5.542546283005599e-10 Iter 110: T = 841.9581313000491 K, F = -2.6543176707694016e-5, relative_change = 2.3179591594539149e-10 Iter 115: T = 841.9581307039474 K, F = -1.1100674609076933e-5, relative_change = 9.693983036140164e-11 Iter 120: T = 841.9581304546506 K, F = -4.642434519475103e-6, relative_change = 4.0541393317510066e-11 Iter 125: T = 841.9581303503916 K, F = -1.9415213587947733e-6, relative_change = 1.6954893118568474e-11 Iter 130: T = 841.9581303067893 K, F = -8.119683239105058e-7, relative_change = 7.090746691298976e-12 Iter 135: T = 841.9581302885542 K, F = -3.395754022417208e-7, relative_change = 2.965439770536772e-12 Iter 140: T = 841.9581302809281 K, F = -1.4201371989486233e-7, relative_change = 1.2401756139465e-12 Iter 145: T = 841.9581302777387 K, F = -5.939023428602752e-8, relative_change = 5.18642285576055e-13 Converged in 150 iterations to T = 841.9581302764051 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:14 Bin 1 ray tracing: 13%|████ | ETA: 0:00:13 Bin 1 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 1 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 1 ray tracing: 39%|███████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 2 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 2 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 2 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 2 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 2 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 2 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 63%|██████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 3 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 3 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 3 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 3 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 4 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 4 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 4 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 4 ray tracing: 37%|███████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 59%|█████████████████▉ | ETA: 0:00:06 Bin 4 ray tracing: 66%|████████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 13%|████ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 5 ray tracing: 35%|██████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 5 ray tracing: 49%|██████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 58%|█████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 51%|███████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 8 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 8 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 8 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 45%|█████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 9 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 9 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 45%|█████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:10 Bin 10 ray tracing: 36%|██████████▋ | ETA: 0:00:09 Bin 10 ray tracing: 44%|████████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:06 Bin 10 ray tracing: 66%|███████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 73%|█████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 80%|███████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 88%|█████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3685654663387 K, F = -7435.103399002412, relative_change = 0.03263143453366127 Iter 2: T = 936.8139720855435 K, F = -6302.450925042485, relative_change = 0.031585265917820876 Iter 3: T = 908.3047440041063 K, F = -5340.829603340175, relative_change = 0.030432112384030444 Iter 5: T = 857.2831216483886 K, F = -3831.6534309664544, relative_change = 0.027811003197674038 Iter 10: T = 762.4818892706419 K, F = -1658.9331111873548, relative_change = 0.01987609669916779 Iter 15: T = 707.0615235393454 K, F = -710.1774413429908, relative_change = 0.011886129530687156 Iter 20: T = 678.5976499129381 K, F = -300.9639740477225, relative_change = 0.006077650899404514 Iter 25: T = 665.335918841567 K, F = -126.6920006626757, relative_change = 0.0028051701026103595 Iter 30: T = 659.5003711490539 K, F = -53.14115973270105, relative_change = 0.0012265616125722986 Iter 35: T = 657.0043988287426 K, F = -22.252792590050497, relative_change = 0.0005229400475566466 Iter 40: T = 655.9504503168355 K, F = -9.311454440882247, relative_change = 0.00022049506300110658 Iter 45: T = 655.5078786244229 K, F = -3.8950544716204454, relative_change = 9.253146409621653e-5 Iter 50: T = 655.3224731110546 K, F = -1.6291149401849734, relative_change = 3.875362776593583e-5 Iter 55: T = 655.2448787419283 K, F = -0.6813427540083188, relative_change = 1.6217021419553608e-5 Iter 60: T = 655.2124181184884 K, F = -0.284950476657724, relative_change = 6.7838660882641305e-6 Iter 65: T = 655.1988409951234 K, F = -0.1191705320461593, relative_change = 2.8373937162619587e-6 Iter 70: T = 655.1931625820677 K, F = -0.04983868656267376, relative_change = 1.1866843988527023e-6 Iter 75: T = 655.1907877498024 K, F = -0.020843159605569372, relative_change = 4.962947636531958e-7 Iter 80: T = 655.1897945574731 K, F = -0.008716862757132182, relative_change = 2.0755800206195383e-7 Iter 85: T = 655.1893791909856 K, F = -0.003645496891419575, relative_change = 8.680351592217123e-8 Iter 90: T = 655.1892054794812 K, F = -0.0015245904724169312, relative_change = 3.6302316074287024e-8 Iter 95: T = 655.1891328312068 K, F = -0.0006376019671463506, relative_change = 1.518207071272119e-8 Iter 100: T = 655.1891024488224 K, F = -0.00026665276175746877, relative_change = 6.349324793726305e-9 Iter 105: T = 655.1890897425449 K, F = -0.00011151737051584565, relative_change = 2.6553637256837477e-9 Iter 110: T = 655.1890844286277 K, F = -4.6637896512935484e-5, relative_change = 1.110504873382745e-9 Iter 115: T = 655.1890822062838 K, F = -1.9504525140601192e-5, relative_change = 4.644264040817534e-10 Iter 120: T = 655.1890812768731 K, F = -8.157024849575478e-6, relative_change = 1.9422865807654432e-10 Iter 125: T = 655.1890808881826 K, F = -3.4113666354529393e-6, relative_change = 8.122877861737344e-11 Iter 130: T = 655.1890807256275 K, F = -1.426674999527311e-6, relative_change = 3.397086277038299e-11 Iter 135: T = 655.189080657645 K, F = -5.966520016942312e-7, relative_change = 1.4207008104829373e-11 Iter 140: T = 655.1890806292139 K, F = -2.4952691668467253e-7, relative_change = 5.941538649628738e-12 Iter 145: T = 655.1890806173237 K, F = -1.0435555686250098e-7, relative_change = 2.48483242887655e-12 Iter 150: T = 655.1890806123511 K, F = -4.364286365632353e-8, relative_change = 1.039189537832438e-12 Iter 155: T = 655.1890806102714 K, F = -1.8250633337935085e-8, relative_change = 4.3456972423340646e-13 Converged in 159 iterations to T = 655.1890806095207 K Iter 1: T = 970.383633705094 K, F = -6748.117232731706, relative_change = 0.029616366294906007 Iter 2: T = 942.9323541684716 K, F = -5715.437054530111, relative_change = 0.028289099880846626 Iter 3: T = 917.6011628217768 K, F = -4839.03938453072, relative_change = 0.026864272113171057 Iter 5: T = 873.0818048670412 K, F = -3464.6603843332514, relative_change = 0.023767404237327386 Iter 10: T = 794.1015755335294 K, F = -1491.1723709241812, relative_change = 0.015461765686308889 Iter 15: T = 751.1002907935607 K, F = -634.717703886153, relative_change = 0.008459043207015089 Iter 20: T = 730.2380034455799 K, F = -267.9070886378695, relative_change = 0.004067496916939344 Iter 25: T = 720.8510247337491 K, F = -112.52733911534753, relative_change = 0.001815499904457773 Iter 30: T = 716.7930269749531 K, F = -47.150007645129016, relative_change = 0.0007813110966385439 Iter 35: T = 715.0713702777821 K, F = -19.734774656951956, relative_change = 0.00033077617364119297 Iter 40: T = 714.3469462480076 K, F = -8.256159725628127, relative_change = 0.00013905087494865177 Iter 45: T = 714.0432042642897 K, F = -3.45332370543205, relative_change = 5.827897777162181e-5 Iter 50: T = 713.9160388270946 K, F = -1.4443086689615345, relative_change = 2.4395114674961864e-5 Iter 55: T = 713.8628327302404 K, F = -0.6040424414454975, relative_change = 1.0206207557351091e-5 Iter 60: T = 713.8405771054435 K, F = -0.25262044089787744, relative_change = 4.26903675390166e-6 Iter 65: T = 713.8312688025896 K, F = -0.10564935375634876, relative_change = 1.7854809154010487e-6 Iter 70: T = 713.8273758306409 K, F = -0.04418390339024725, relative_change = 7.467302154692577e-7 Iter 75: T = 713.8257477207989 K, F = -0.018478250392504503, relative_change = 3.1229512736934974e-7 Iter 80: T = 713.8250668218872 K, F = -0.0077278274947640835, relative_change = 1.3060618732010054e-7 Iter 85: T = 713.8247820611429 K, F = -0.0032318701844942233, relative_change = 5.462117842372116e-8 Iter 90: T = 713.8246629706786 K, F = -0.0013516067826004896, relative_change = 2.2843248539852906e-8 Iter 95: T = 713.8246131656032 K, F = -0.0005652581098278819, relative_change = 9.553322717520673e-9 Iter 100: T = 713.8245923365223 K, F = -0.00023639769515948483, relative_change = 3.9953142573690126e-9 Iter 105: T = 713.8245836255512 K, F = -9.88643395378741e-5, relative_change = 1.6708882376548164e-9 Iter 110: T = 713.824579982519 K, F = -4.134624771701123e-5, relative_change = 6.987854365195145e-10 Iter 115: T = 713.8245784589594 K, F = -1.7291495157278902e-5, relative_change = 2.922404276451551e-10 Iter 120: T = 713.8245778217886 K, F = -7.231509247307422e-6, relative_change = 1.222184284650943e-10 Iter 125: T = 713.8245775553162 K, F = -3.024304214838125e-6, relative_change = 5.1113218050914396e-11 Iter 130: T = 713.8245774438742 K, F = -1.264800245537323e-6, relative_change = 2.1376160001322085e-11 Iter 135: T = 713.8245773972678 K, F = -5.289553854925799e-7, relative_change = 8.939779223842373e-12 Iter 140: T = 713.8245773777766 K, F = -2.2121641363170852e-7, relative_change = 3.7387385648283776e-12 Iter 145: T = 713.824577369625 K, F = -9.251448884750602e-8, relative_change = 1.5635706302255279e-12 Iter 150: T = 713.8245773662159 K, F = -3.869044840065783e-8, relative_change = 6.539002651856644e-13 Iter 155: T = 713.8245773647902 K, F = -1.6181402329173977e-8, relative_change = 2.7347895182428294e-13 Converged in 157 iterations to T = 713.8245773644885 K Iter 1: T = 974.4814334519001 K, F = -5814.429662408064, relative_change = 0.02551856654809992 Iter 2: T = 951.1516117781724 K, F = -4919.1243081141, relative_change = 0.023940755434494608 Iter 3: T = 929.9352502634787 K, F = -4159.876282566146, relative_change = 0.022305972309745514 Iter 5: T = 893.4872027793524 K, F = -2970.8087492260934, relative_change = 0.018950323050133226 Iter 10: T = 832.1388634583402 K, F = -1270.2195548601126, relative_change = 0.011117057655192006 Iter 15: T = 801.0271049875528 K, F = -537.8097012457257, relative_change = 0.005605059567095651 Iter 20: T = 786.649037238908 K, F = -226.27443033366126, relative_change = 0.002566533538415043 Iter 25: T = 780.3491011873684 K, F = -94.88693810158638, relative_change = 0.0011179054562555626 Iter 30: T = 777.6598156715678 K, F = -39.72924347402303, relative_change = 0.000475796652773197 Iter 35: T = 776.5252204440562 K, F = -16.623479255029935, relative_change = 0.0002004690850973803 Iter 40: T = 776.0489595108147 K, F = -6.953586940814985, relative_change = 8.410119167110818e-5 Iter 45: T = 775.8494716860497 K, F = -2.9083272698701674, relative_change = 3.521826787705676e-5 Iter 50: T = 775.765989157311 K, F = -1.216341700158361, relative_change = 1.4736786612913448e-5 Iter 55: T = 775.7310662519284 K, F = -0.5086964123543081, relative_change = 6.164515614842072e-6 Iter 60: T = 775.7164594108572 K, F = -0.21274427697586118, relative_change = 2.578321698532812e-6 Iter 65: T = 775.7103503642145 K, F = -0.08897243559087742, relative_change = 1.0783282459470093e-6 Iter 70: T = 775.7077954370047 K, F = -0.037209376786411785, relative_change = 4.5097732750528736e-7 Iter 75: T = 775.7067269270226 K, F = -0.015561413030005578, relative_change = 1.8860542940112577e-7 Iter 80: T = 775.706280061829 K, F = -0.0065079700459818035, relative_change = 7.88772747907994e-8 Iter 85: T = 775.7060931771958 K, F = -0.0027217110171819936, relative_change = 3.298745884566838e-8 Iter 90: T = 775.7060150197626 K, F = -0.0011382520896764392, relative_change = 1.379575632382434e-8 Iter 95: T = 775.7059823333823 K, F = -0.00047603062458823064, relative_change = 5.769551294141675e-9 Iter 100: T = 775.7059686635462 K, F = -0.0001990816920891536, relative_change = 2.4128954552032717e-9 Iter 105: T = 775.7059629466573 K, F = -8.325834246691866e-5, relative_change = 1.0091017465611334e-9 Iter 110: T = 775.7059605557861 K, F = -3.4819632626414965e-5, relative_change = 4.2201840166973966e-10 Iter 115: T = 775.7059595558951 K, F = -1.4561985990590998e-5, relative_change = 1.7649313410447468e-10 Iter 120: T = 775.7059591377288 K, F = -6.089994029623291e-6, relative_change = 7.381150733279208e-11 Iter 125: T = 775.7059589628466 K, F = -2.5469082102214102e-6, relative_change = 3.086885361825661e-11 Iter 130: T = 775.7059588897089 K, F = -1.0651470205846891e-6, relative_change = 1.2909718278481982e-11 Iter 135: T = 775.7059588591218 K, F = -4.4545688937525085e-7, relative_change = 5.3989945397080645e-12 Iter 140: T = 775.70595884633 K, F = -1.862967190513487e-7, relative_change = 2.257940090259636e-12 Iter 145: T = 775.7059588409803 K, F = -7.791358802577975e-8, relative_change = 9.443226637645082e-13 Iter 150: T = 775.7059588387428 K, F = -3.258456393595566e-8, relative_change = 3.9492908738650267e-13 Converged in 154 iterations to T = 775.7059588379353 K Iter 1: T = 970.3592171704369 K, F = -6753.680563379466, relative_change = 0.02964078282956319 Iter 2: T = 942.8830497285504 K, F = -5720.187040791139, relative_change = 0.028315459837653514 Iter 3: T = 917.526647051465 K, F = -4843.095846187898, relative_change = 0.02689241543199368 Iter 5: T = 872.9566537124772 K, F = -3467.6196466025717, relative_change = 0.02379833159725609 Iter 10: T = 793.8592290403053 K, F = -1492.511562317697, relative_change = 0.015492613526002204 Iter 15: T = 750.7726114593023 K, F = -635.3123607227915, relative_change = 0.008481006314440003 Iter 20: T = 729.8611999916726 K, F = -268.1648408802444, relative_change = 0.004079624496934946 Iter 25: T = 720.4501173655364 K, F = -112.63708704275662, relative_change = 0.0018212761543668335 Iter 30: T = 716.381275993985 K, F = -47.19628200926084, relative_change = 0.0007838691774982979 Iter 35: T = 714.6549380389722 K, F = -19.75419587057005, relative_change = 0.0003318725255820798 Iter 40: T = 713.9285296163561 K, F = -8.264294150315676, relative_change = 0.0001395141500237447 Iter 45: T = 713.6239529977606 K, F = -3.456727776563355, relative_change = 5.847356835907751e-5 Iter 50: T = 713.4964376716609 K, F = -1.4457326707490392, relative_change = 2.447664300484654e-5 Iter 55: T = 713.443085100673 K, F = -0.6046380423033291, relative_change = 1.0240329654801502e-5 Iter 60: T = 713.4207681930037 K, F = -0.2528695398935619, relative_change = 4.283311569656816e-6 Iter 65: T = 713.411434256434 K, F = -0.1057535319599131, relative_change = 1.7914516093758912e-6 Iter 70: T = 713.4075305633742 K, F = -0.044227472314771754, relative_change = 7.492273701705855e-7 Iter 75: T = 713.4058979696981 K, F = -0.018496471498073763, relative_change = 3.1333949161096246e-7 Iter 80: T = 713.4052151955696 K, F = -0.007735447791115679, relative_change = 1.3104295720169622e-7 Iter 85: T = 713.404929650583 K, F = -0.003235057085860249, relative_change = 5.480384155783305e-8 Iter 90: T = 713.4048102321385 K, F = -0.001352939582975221, relative_change = 2.291964057130869e-8 Iter 95: T = 713.4047602898978 K, F = -0.0005658155061329939, relative_change = 9.585270854537429e-9 Iter 100: T = 713.4047394034526 K, F = -0.000236630804668847, relative_change = 4.008675348869798e-9 Iter 105: T = 713.4047306684911 K, F = -9.896182901325545e-5, relative_change = 1.6764760113369836e-9 Iter 110: T = 713.4047270154257 K, F = -4.1387018652860874e-5, relative_change = 7.011223047885146e-10 Iter 115: T = 713.4047254876702 K, F = -1.730854607306931e-5, relative_change = 2.932177343047602e-10 Iter 120: T = 713.4047248487445 K, F = -7.23864071949798e-6, relative_change = 1.226271595145879e-10 Iter 125: T = 713.4047245815382 K, F = -3.0272853804858e-6, relative_change = 5.1284132241994025e-11 Iter 130: T = 713.4047244697894 K, F = -1.2660479310477868e-6, relative_change = 2.14476540558463e-11 Iter 135: T = 713.4047244230546 K, F = -5.294757277063411e-7, relative_change = 8.969654279168346e-12 Iter 140: T = 713.4047244035096 K, F = -2.2143381939176976e-7, relative_change = 3.7512291914175095e-12 Iter 145: T = 713.4047243953356 K, F = -9.260520617004886e-8, relative_change = 1.568790863272199e-12 Iter 150: T = 713.4047243919173 K, F = -3.873026788170364e-8, relative_change = 6.561152757947089e-13 Iter 155: T = 713.4047243904876 K, F = -1.6197161722963926e-8, relative_change = 2.743901814341884e-13 Converged in 157 iterations to T = 713.404724390185 K Iter 1: T = 969.3897807141607 K, F = -6974.567582114115, relative_change = 0.030610219285839298 Iter 2: T = 940.9222652495239 K, F = -5908.8305264479695, relative_change = 0.029366428273737803 Iter 3: T = 914.5580276630998 K, F = -5004.247637822334, relative_change = 0.028019570330214797 Iter 5: T = 867.9516401997533 K, F = -3585.2797761461825, relative_change = 0.025049438494283427 Iter 10: T = 784.0662279818531 K, F = -1545.9258425507169, relative_change = 0.016776056726913745 Iter 15: T = 737.4133998103734 K, F = -659.1210568587726, relative_change = 0.009418194421592037 Iter 20: T = 714.4126965310509 K, F = -278.51544944125715, relative_change = 0.004605833766400141 Iter 25: T = 703.9656971493325 K, F = -117.05183563290113, relative_change = 0.0020741289356766175 Iter 30: T = 699.4283910922281 K, F = -49.05927997351695, relative_change = 0.0008963106926654978 Iter 35: T = 697.4993344027272 K, F = -20.536381886086428, relative_change = 0.0003801504095320047 Iter 40: T = 696.6869049205217 K, F = -8.59195918104888, relative_change = 0.00015993024337840122 Iter 45: T = 696.3461321018698 K, F = -3.5938574113817796, relative_change = 6.705178596905952e-5 Iter 50: T = 696.2034401121945 K, F = -1.5030988071411564, relative_change = 2.807118182575027e-5 Iter 55: T = 696.1437336395215 K, F = -0.6286322032481073, relative_change = 1.1744840187618466e-5 Iter 60: T = 696.1187582563939 K, F = -0.2629047021560276, relative_change = 4.9127314222250036e-6 Iter 65: T = 696.1083123040078 K, F = -0.10995044721723585, relative_change = 2.0547202280384313e-6 Iter 70: T = 696.10394351598 K, F = -0.045982688234832314, relative_change = 8.593360487599994e-7 Iter 75: T = 696.1021164076191 K, F = -0.01923052652927304, relative_change = 3.5938941010020624e-7 Iter 80: T = 696.1013522840043 K, F = -0.00804243885536482, relative_change = 1.503017849094755e-7 Iter 85: T = 696.101032717495 K, F = -0.0033634445004183666, relative_change = 6.285814861702623e-8 Iter 90: T = 696.100899070809 K, F = -0.0014066327500329434, relative_change = 2.6288054184744825e-8 Iter 95: T = 696.1008431781416 K, F = -0.0005882706306860053, relative_change = 1.0993982705359963e-8 Iter 100: T = 696.100819803156 K, F = -0.0002460218062616537, relative_change = 4.597815655794026e-9 Iter 105: T = 696.100810027457 K, F = -0.00010288925905721502, relative_change = 1.922861574447666e-9 Iter 110: T = 696.1008059391427 K, F = -4.302951531498511e-5, relative_change = 8.041636672095672e-10 Iter 115: T = 696.1008042293608 K, F = -1.7995458153063915e-5, relative_change = 3.3631087138174224e-10 Iter 120: T = 696.1008035143096 K, F = -7.525915699635455e-6, relative_change = 1.4064922702941255e-10 Iter 125: T = 696.1008032152668 K, F = -3.1474277102372383e-6, relative_change = 5.882118444440058e-11 Iter 130: T = 696.1008030902035 K, F = -1.3162927621213072e-6, relative_change = 2.4599738751096034e-11 Iter 135: T = 696.1008030379004 K, F = -5.50489575035229e-7, relative_change = 1.0287908682327721e-11 Iter 140: T = 696.1008030160267 K, F = -2.3022066097944105e-7, relative_change = 4.302514061495884e-12 Iter 145: T = 696.1008030068789 K, F = -9.628271147033018e-8, relative_change = 1.7993941909625547e-12 Iter 150: T = 696.1008030030531 K, F = -4.0266763257079674e-8, relative_change = 7.525315686386441e-13 Iter 155: T = 696.1008030014532 K, F = -1.6841144034884792e-8, relative_change = 3.147382981211346e-13 Converged in 158 iterations to T = 696.1008030009847 K Iter 1: T = 963.5701718064189 K, F = -8300.571007620305, relative_change = 0.0364298281935811 Iter 2: T = 929.0185738069471 K, F = -7043.296579715746, relative_change = 0.03585789495195506 Iter 3: T = 896.3116983644811 K, F = -5975.538625302397, relative_change = 0.035205835883817906 Iter 5: T = 836.3133379477565 K, F = -4298.7255851189375, relative_change = 0.033632128643699064 Iter 10: T = 716.6611523422981 K, F = -1878.5148714816144, relative_change = 0.02790468815804697 Iter 15: T = 637.0616017488222 K, F = -813.4261226463466, relative_change = 0.019987755732774358 Iter 20: T = 590.4453860485825 K, F = -348.27349410779345, relative_change = 0.011980656338255293 Iter 25: T = 566.4663320535535 K, F = -147.6103911002324, relative_change = 0.006136596327748072 Iter 30: T = 555.2828961076864 K, F = -62.141249590316114, relative_change = 0.0028351898212927223 Iter 35: T = 550.3592428996336 K, F = -26.066080130108, relative_change = 0.001240287391306052 Iter 40: T = 548.2527821564739 K, F = -10.915294715282558, relative_change = 0.0005289065076419854 Iter 45: T = 547.3632117474427 K, F = -4.567422256891761, relative_change = 0.0002230315937528525 Iter 50: T = 546.9896479533073 K, F = -1.9105936001394874, relative_change = 9.359962451335022e-5 Iter 55: T = 546.8331486825257 K, F = -0.7991107808266148, relative_change = 3.9201641087990175e-5 Iter 60: T = 546.7676513730582 K, F = -0.33421128189809907, relative_change = 1.6404613317194277e-5 Iter 65: T = 546.7402513069992 K, F = -0.1397735310134895, relative_change = 6.862359081677839e-6 Iter 70: T = 546.7287908180991 K, F = -0.058455376543176424, relative_change = 2.8702273922758823e-6 Iter 75: T = 546.7239976504021 K, F = -0.024446809446071055, relative_change = 1.200417053466468e-6 Iter 80: T = 546.7219930459347 K, F = -0.010223960409926514, relative_change = 5.020381369943041e-7 Iter 85: T = 546.7211546886243 K, F = -0.004275784571373176, relative_change = 2.0995998668893942e-7 Iter 90: T = 546.720804076224 K, F = -0.0017881845609566682, relative_change = 8.780806110378788e-8 Iter 95: T = 546.720657445693 K, F = -0.0007478402070035528, relative_change = 3.6722430040604113e-8 Iter 100: T = 546.720596123012 K, F = -0.00031275571720479345, relative_change = 1.5357767569005903e-8 Iter 105: T = 546.7205704771272 K, F = -0.00013079817727598697, relative_change = 6.422803303535377e-9 Iter 110: T = 546.7205597517108 K, F = -5.4701360510306385e-5, relative_change = 2.6860933319121454e-9 Iter 115: T = 546.7205552662133 K, F = -2.2876762505757986e-5, relative_change = 1.1233563671797373e-9 Iter 120: T = 546.7205533903245 K, F = -9.56733528997833e-6, relative_change = 4.698010563251437e-10 Iter 125: T = 546.7205526058054 K, F = -4.001173195378183e-6, relative_change = 1.96476380266437e-10 Iter 130: T = 546.7205522777102 K, F = -1.6733380872047121e-6, relative_change = 8.2168752818557e-11 Iter 135: T = 546.7205521404969 K, F = -6.998097354937727e-7, relative_change = 3.436394216100823e-11 Iter 140: T = 546.7205520831127 K, F = -2.926687936166683e-7, relative_change = 1.4371411243807114e-11 Iter 145: T = 546.7205520591139 K, F = -1.2239762428589707e-7, relative_change = 6.010297758459217e-12 Iter 150: T = 546.7205520490774 K, F = -5.118836304829344e-8, relative_change = 2.513588850357223e-12 Iter 155: T = 546.7205520448799 K, F = -2.1407379952043115e-8, relative_change = 1.0512028195552367e-12 Iter 160: T = 546.7205520431246 K, F = -8.95341298323693e-9, relative_change = 4.39654595464249e-13 Converged in 164 iterations to T = 546.7205520424909 K Iter 1: T = 966.8546776088941 K, F = -7552.19323615472, relative_change = 0.033145322391105896 Iter 2: T = 935.7650704875595 K, F = -6402.594447105323, relative_change = 0.03215540850277692 Iter 3: T = 906.7008608642278 K, F = -5426.532524231715, relative_change = 0.031059301677277214 Iter 5: T = 854.5184208182993 K, F = -3894.527350263116, relative_change = 0.02854817351838087 Iter 10: T = 756.7160876730736 K, F = -1688.0515475928519, relative_change = 0.020772246417288545 Iter 15: T = 698.7128331035991 K, F = -723.5155795185653, relative_change = 0.012658822104486017 Iter 20: T = 668.5420837009493 K, F = -306.9018357237963, relative_change = 0.0065659430714887414 Iter 25: T = 654.3670155102978 K, F = -129.26205485590899, relative_change = 0.0030557488005636376 Iter 30: T = 648.1017448559944 K, F = -54.23375853063228, relative_change = 0.0013415595108710165 Iter 35: T = 645.4163731412223 K, F = -22.713068558632948, relative_change = 0.0005730119795584664 Iter 40: T = 644.2814071091406 K, F = -9.504549503672012, relative_change = 0.00024179754369948366 Iter 45: T = 643.8046276115456 K, F = -3.9759158410355893, relative_change = 0.00010150490265930384 Iter 50: T = 643.6048584082955 K, F = -1.6629508972422777, relative_change = 4.251779578199486e-5 Iter 55: T = 643.5212468518038 K, F = -0.6954966452542946, relative_change = 1.7793236501448864e-5 Iter 60: T = 643.4862679949155 K, F = -0.29087037897806284, relative_change = 7.443407485840625e-6 Iter 65: T = 643.4716374057314 K, F = -0.12164640667291843, relative_change = 3.11328295605809e-6 Iter 70: T = 643.4655183663596 K, F = -0.0508741445310516, relative_change = 1.3020752717378241e-6 Iter 75: T = 643.4629592494028 K, F = -0.021276203576220287, relative_change = 5.445544759879878e-7 Iter 80: T = 643.4618889853524 K, F = -0.008897967457366651, relative_change = 2.2774111741895285e-7 Iter 85: T = 643.46144138626 K, F = -0.0037212371340327177, relative_change = 9.52443930417414e-8 Iter 90: T = 643.4612541946445 K, F = -0.0015562659639635767, relative_change = 3.983240172810907e-8 Iter 95: T = 643.4611759088177 K, F = -0.0006508490388294486, relative_change = 1.6658396441299606e-8 Iter 100: T = 643.46114316874 K, F = -0.0002721928455251543, relative_change = 6.966742143177887e-9 Iter 105: T = 643.4611294764466 K, F = -0.00011383429850309046, relative_change = 2.9135750557111853e-9 Iter 110: T = 643.4611237501658 K, F = -4.760686348675991e-5, relative_change = 1.2184919451914798e-9 Iter 115: T = 643.4611213553667 K, F = -1.9909758805947142e-5, relative_change = 5.095878910898381e-10 Iter 120: T = 643.461120353833 K, F = -8.326498640520708e-6, relative_change = 2.1311573661861535e-10 Iter 125: T = 643.4611199349798 K, F = -3.4822415643787075e-6, relative_change = 8.912755654158657e-11 Iter 130: T = 643.4611197598102 K, F = -1.4563140589562984e-6, relative_change = 3.72741842863285e-11 Iter 135: T = 643.4611196865523 K, F = -6.090470031083761e-7, relative_change = 1.5588485262219265e-11 Iter 140: T = 643.461119655915 K, F = -2.5471125031373276e-7, relative_change = 6.5193040147520515e-12 Iter 145: T = 643.461119643102 K, F = -1.0652307635972136e-7, relative_change = 2.7264454105821104e-12 Iter 150: T = 643.4611196377436 K, F = -4.4549876010435696e-8, relative_change = 1.1402487530992654e-12 Iter 155: T = 643.4611196355027 K, F = -1.8631702236593384e-8, relative_change = 4.768761923999102e-13 Converged in 160 iterations to T = 643.4611196345654 K Iter 1: T = 965.1980970999776 K, F = -7929.646680926217, relative_change = 0.03480190290002238 Iter 2: T = 932.3716121352106 K, F = -6725.6030010668355, relative_change = 0.03401010120450614 Iter 3: T = 901.4911013032661 K, F = -5703.16203209171, relative_change = 0.03312038937052737 Iter 5: T = 845.4549069315033 K, F = -4097.87549467165, relative_change = 0.031028671961775004 Iter 10: T = 737.2568230123246 K, F = -1783.1130346405816, relative_change = 0.024029233343782787 Iter 15: T = 669.6430243418272 K, F = -767.7275808624407, relative_change = 0.015723933714517274 Iter 20: T = 632.6741255943421 K, F = -326.89087394829266, relative_change = 0.008646423140950548 Iter 25: T = 614.682030436706 K, F = -138.00651451700105, relative_change = 0.00417123564895969 Iter 30: T = 606.5717970802799 K, F = -57.972544404182635, relative_change = 0.001864978670789168 Iter 35: T = 603.0626170934149 K, F = -24.29231014388536, relative_change = 0.0008032376524130927 Iter 40: T = 601.5732076594121 K, F = -10.167851157018562, relative_change = 0.00034017623071880916 Iter 45: T = 600.9463984637451 K, F = -4.2538222894273865, relative_change = 0.0001430234538105138 Iter 50: T = 600.6835659365065 K, F = -1.7792637776630158, relative_change = 5.994767605514582e-5 Iter 55: T = 600.5735243765457 K, F = -0.7441557079824836, relative_change = 2.5094270430615056e-5 Iter 60: T = 600.5274823265178 K, F = -0.3112229166905348, relative_change = 1.0498828259662936e-5 Iter 65: T = 600.508223253137 K, F = -0.1301585598805776, relative_change = 4.391453685194189e-6 Iter 70: T = 600.5001682246053 K, F = -0.0544341124311572, relative_change = 1.8366840418647147e-6 Iter 75: T = 600.4967994010673 K, F = -0.022765039319942948, relative_change = 7.681451820971635e-7 Iter 80: T = 600.4953904988203 K, F = -0.009520618908779033, relative_change = 3.212513333911253e-7 Iter 85: T = 600.4948012755748 K, F = -0.003981637856203701, relative_change = 1.343518166300551e-7 Iter 90: T = 600.4945548547645 K, F = -0.0016651687344778066, relative_change = 5.6187651824345e-8 Iter 95: T = 600.4944517985317 K, F = -0.000696393491449232, relative_change = 2.3498367577380274e-8 Iter 100: T = 600.4944086991658 K, F = -0.0002912400824197636, relative_change = 9.827301565180712e-9 Iter 105: T = 600.4943906744928 K, F = -0.00012180008183532154, relative_change = 4.1098955060321905e-9 Iter 110: T = 600.4943831363588 K, F = -5.093824914242928e-5, relative_change = 1.7188074966201837e-9 Iter 115: T = 600.4943799838211 K, F = -2.130298422914345e-5, relative_change = 7.188258435472154e-10 Iter 120: T = 600.4943786653921 K, F = -8.909162298120776e-6, relative_change = 3.0062155153018324e-10 Iter 125: T = 600.4943781140095 K, F = -3.7259191133509617e-6, relative_change = 1.257235587530322e-10 Iter 130: T = 600.4943778834145 K, F = -1.5582233067190643e-6, relative_change = 5.2579074813733806e-11 Iter 135: T = 600.494377786977 K, F = -6.516678637824569e-7, relative_change = 2.198920606691934e-11 Iter 140: T = 600.4943777466457 K, F = -2.725354606991637e-7, relative_change = 9.196154576334218e-12 Iter 145: T = 600.4943777297786 K, F = -1.1397768739929148e-7, relative_change = 3.845945144269332e-12 Iter 150: T = 600.4943777227246 K, F = -4.76669682059061e-8, relative_change = 1.6084248514498066e-12 Iter 155: T = 600.4943777197745 K, F = -1.9934858208614514e-8, relative_change = 6.726612276893438e-13 Iter 160: T = 600.4943777185407 K, F = -8.336384582641188e-9, relative_change = 2.812943352404472e-13 Converged in 162 iterations to T = 600.4943777182797 K Iter 1: T = 980.2422721222287 K, F = -4501.817091401408, relative_change = 0.019757727877771344 Iter 2: T = 962.5238631683148 K, F = -3802.590580352895, relative_change = 0.01807554056565363 Iter 3: T = 946.7231615361087 K, F = -3210.4720235121003, relative_change = 0.01641590638614963 Iter 5: T = 920.3494428966422 K, F = -2285.345036085233, relative_change = 0.013252588371717751 Iter 10: T = 878.5136209746179 K, F = -970.1013691709219, relative_change = 0.00695074987016673 Iter 15: T = 858.7283069997865 K, F = -408.76775302497344, relative_change = 0.0032561737287569023 Iter 20: T = 849.95220233471 K, F = -171.54144999087436, relative_change = 0.0014342175188451246 Iter 25: T = 846.1843262733347 K, F = -71.84849654986039, relative_change = 0.0006134904466139149 Iter 30: T = 844.5906589408212 K, F = -30.067118669960607, relative_change = 0.0002590432376661013 Iter 35: T = 843.9209740218853 K, F = -12.577816887394901, relative_change = 0.00010877386863250385 Iter 40: T = 843.6403403122679 K, F = -5.260787955294929, relative_change = 4.556775112418044e-5 Iter 45: T = 843.522877034831 K, F = -2.2002285158084387, relative_change = 1.9070517302940733e-5 Iter 50: T = 843.4737351640513 K, F = -0.920180071052102, relative_change = 7.977888646106408e-6 Iter 55: T = 843.453180414678 K, F = -0.38483348407235496, relative_change = 3.336863102122423e-6 Iter 60: T = 843.4445836425517 K, F = -0.16094251672745252, relative_change = 1.395588560886753e-6 Iter 65: T = 843.440988276993 K, F = -0.06730818010847828, relative_change = 5.836644948882505e-7 Iter 70: T = 843.4394846359494 K, F = -0.028149101807318555, relative_change = 2.440976820321982e-7 Iter 75: T = 843.4388557924692 K, F = -0.011772293527281485, relative_change = 1.0208495400006242e-7 Iter 80: T = 843.4385928021194 K, F = -0.004923314262609058, relative_change = 4.269321479463165e-8 Iter 85: T = 843.4384828163276 K, F = -0.0020589889124238425, relative_change = 1.7854824166726088e-8 Iter 90: T = 843.4384368189408 K, F = -0.0008610937675450625, relative_change = 7.46710276583083e-9 Iter 95: T = 843.4384175822815 K, F = -0.0003601196994296174, relative_change = 3.1228319110004916e-9 Iter 100: T = 843.4384095372806 K, F = -0.0001506063584162387, relative_change = 1.3060056535818568e-9 Iter 105: T = 843.438406172765 K, F = -6.298537814375393e-5, relative_change = 5.461871754693442e-10 Iter 110: T = 843.4384047656844 K, F = -2.6341236470939222e-5, relative_change = 2.2842199387730143e-10 Iter 115: T = 843.4384041772264 K, F = -1.1016219630510804e-5, relative_change = 9.552880572355694e-11 Iter 120: T = 843.4384039311262 K, F = -4.6071127035585135e-6, relative_change = 3.995127092394364e-11 Iter 125: T = 843.4384038282043 K, F = -1.92675067633985e-6, relative_change = 1.670810836874309e-11 Iter 130: T = 843.4384037851611 K, F = -8.057889959722786e-7, relative_change = 6.987520510900888e-12 Iter 135: T = 843.4384037671599 K, F = -3.3698993395780974e-7, relative_change = 2.922258913321801e-12 Iter 140: T = 843.4384037596316 K, F = -1.4093278322135916e-7, relative_change = 1.2221198334574883e-12 Iter 145: T = 843.4384037564831 K, F = -5.893970156378714e-8, relative_change = 5.111044897716394e-13 Converged in 150 iterations to T = 843.4384037551664 K Iter 1: T = 976.4720786395128 K, F = -5360.859262818082, relative_change = 0.023527921360487206 Iter 2: T = 955.1051072352797 K, F = -4532.916773311325, relative_change = 0.02188180478647489 Iter 3: T = 935.8071533343709 K, F = -3831.106615978634, relative_change = 0.02020505780433949 Iter 5: T = 902.9961998171789 K, F = -2732.830028209712, relative_change = 0.01685294525091017 Iter 10: T = 848.9801555723405 K, F = -1165.2851691646638, relative_change = 0.009475910872790897 Iter 15: T = 822.3234082783943 K, F = -492.4312534148375, relative_change = 0.004638829557217787 Iter 20: T = 810.208817765601 K, F = -206.96186298533567, relative_change = 0.0020901352298266828 Iter 25: T = 804.9457282979789 K, F = -86.74425008263171, relative_change = 0.0009034601036347117 Iter 30: T = 802.7078079225042 K, F = -36.31171267490253, relative_change = 0.0003832260390027229 Iter 35: T = 801.7652457569143 K, F = -15.192050915782708, relative_change = 0.00016123196427605014 Iter 40: T = 801.3698793573385 K, F = -6.354562209242338, relative_change = 6.759892023202068e-5 Iter 45: T = 801.2043256855014 K, F = -2.6577404843109336, relative_change = 2.8300481622154623e-5 Iter 50: T = 801.1350529259075 K, F = -1.1115314898076112, relative_change = 1.1840820548267215e-5 Iter 55: T = 801.1060758867379 K, F = -0.46486146119046556, relative_change = 4.952886339543323e-6 Iter 60: T = 801.0939562329239 K, F = -0.19441161483577607, relative_change = 2.071516080804821e-6 Iter 65: T = 801.0888874547929 K, F = -0.08130543401454071, relative_change = 8.663607274957776e-7 Iter 70: T = 801.0867675972826 K, F = -0.034002934087613124, relative_change = 3.6232729378172334e-7 Iter 75: T = 801.0858810416153 K, F = -0.01422043846370713, relative_change = 1.515304567905352e-7 Iter 80: T = 801.0855102724086 K, F = -0.005947158128679075, relative_change = 6.337199630220527e-8 Iter 85: T = 801.0853552121168 K, F = -0.002487172717311692, relative_change = 2.6502951845957378e-8 Iter 90: T = 801.0852903640192 K, F = -0.0010401653619039886, relative_change = 1.108385554878627e-8 Iter 95: T = 801.0852632437648 K, F = -0.00043500958209663487, relative_change = 4.635401566016015e-9 Iter 100: T = 801.0852519017495 K, F = -0.00018192620415846683, relative_change = 1.93858044330674e-9 Iter 105: T = 801.0852471583833 K, F = -7.608371330580788e-5, relative_change = 8.107375378343952e-10 Iter 110: T = 801.0852451746507 K, F = -3.1819119387099803e-5, relative_change = 3.390601442968919e-10 Iter 115: T = 801.08524434503 K, F = -1.330713513292281e-5, relative_change = 1.4179899593399534e-10 Iter 120: T = 801.0852439980728 K, F = -5.565203766488835e-6, relative_change = 5.930204360299432e-11 Iter 125: T = 801.0852438529711 K, F = -2.327434794890948e-6, relative_change = 2.480082412074205e-11 Iter 130: T = 801.0852437922878 K, F = -9.733602116535067e-7, relative_change = 1.0371992150776726e-11 Iter 135: T = 801.0852437669093 K, F = -4.070708745640417e-7, relative_change = 4.337691088946926e-12 Iter 140: T = 801.0852437562958 K, F = -1.7024305321022837e-7, relative_change = 1.8140864921927279e-12 Iter 145: T = 801.0852437518571 K, F = -7.119934408716944e-8, relative_change = 7.586903895892037e-13 Iter 150: T = 801.0852437500006 K, F = -2.977473612109094e-8, relative_change = 3.1727548108053854e-13 Converged in 153 iterations to T = 801.0852437494572 K Iter 1: T = 980.9462869053948 K, F = -4341.406653366045, relative_change = 0.019053713094605157 Iter 2: T = 963.8993074453942 K, F = -3666.380644688051, relative_change = 0.017378096729209196 Iter 3: T = 948.7326436121729 K, F = -3094.8727430690437, relative_change = 0.015734697302996634 Iter 5: T = 923.5003150661727 K, F = -2202.235855668675, relative_change = 0.012629128570730876 Iter 10: T = 883.7273254965588 K, F = -934.1149084546729, relative_change = 0.006547009544922082 Iter 15: T = 865.0467403961633 K, F = -393.42586562036996, relative_change = 0.003045976057186329 Iter 20: T = 856.791461610533 K, F = -165.06580284153853, relative_change = 0.0013370611424946073 Iter 25: T = 853.253429723833 K, F = -69.12914849515741, relative_change = 0.0005710506472730386 Iter 30: T = 851.7581413689737 K, F = -28.927843784300602, relative_change = 0.0002409626248985008 Iter 35: T = 851.1300061620269 K, F = -12.101002226985328, relative_change = 0.00010115311361724498 Iter 40: T = 850.866821032059 K, F = -5.0613157139600276, relative_change = 4.237021205874764e-5 Iter 45: T = 850.7566676179987 K, F = -2.1167958587069173, relative_change = 1.7731434255974767e-5 Iter 50: T = 850.7105850383954 K, F = -0.8852856145903327, relative_change = 7.417546866383132e-6 Iter 55: T = 850.6913101095981 K, F = -0.3702398692089365, relative_change = 3.1024652541584823e-6 Iter 60: T = 850.6832486416914 K, F = -0.15483923385314435, relative_change = 1.2975507453687207e-6 Iter 65: T = 850.6798771586404 K, F = -0.06475570403110442, relative_change = 5.426621891000116e-7 Iter 70: T = 850.6784671500147 K, F = -0.02708162402797809, relative_change = 2.2694972714018741e-7 Iter 75: T = 850.6778774650936 K, F = -0.011325861255878422, relative_change = 9.491342183318212e-8 Iter 80: T = 850.6776308513846 K, F = -0.004736610900258897, relative_change = 3.969398519241269e-8 Iter 85: T = 850.6775277145107 K, F = -0.0019809073275607325, relative_change = 1.6600508923771085e-8 Iter 90: T = 850.677484581425 K, F = -0.0008284391158812632, relative_change = 6.942532881154579e-9 Iter 95: T = 850.6774665426511 K, F = -0.000346463131302599, relative_change = 2.903450450272882e-9 Iter 100: T = 850.6774589986202 K, F = -0.00014489502158321343, relative_change = 1.2142577244512813e-9 Iter 105: T = 850.6774558436163 K, F = -6.059682833026159e-5, relative_change = 5.078170897289906e-10 Iter 110: T = 850.6774545241558 K, F = -2.5342317187426744e-5, relative_change = 2.12375172278156e-10 Iter 115: T = 850.6774539723417 K, F = -1.0598459139865568e-5, relative_change = 8.881782893083403e-11 Iter 120: T = 850.6774537415665 K, F = -4.4324015997521116e-6, relative_change = 3.714467191435816e-11 Iter 125: T = 850.6774536450536 K, F = -1.8536839612171008e-6, relative_change = 1.5534351087086142e-11 Iter 130: T = 850.6774536046906 K, F = -7.752315616116334e-7, relative_change = 6.496641016777598e-12 Iter 135: T = 850.6774535878104 K, F = -3.2421068452137547e-7, relative_change = 2.7169694006773312e-12 Iter 140: T = 850.6774535807509 K, F = -1.3558780076472488e-7, relative_change = 1.1362608432886484e-12 Iter 145: T = 850.6774535777986 K, F = -5.670578517857905e-8, relative_change = 4.752091480503231e-13 Converged in 150 iterations to T = 850.6774535765638 K Iter 1: T = 967.3155614395266 K, F = -7447.180416931394, relative_change = 0.032684438560473365 Iter 2: T = 936.705867535518 K, F = -6312.77879672265, relative_change = 0.03164395893565103 Iter 3: T = 908.1395796472492 K, F = -5349.6668671066145, relative_change = 0.03049653992605697 Iter 5: T = 856.9989642629303 K, F = -3838.1339896625814, relative_change = 0.027886356025793185 Iter 10: T = 761.8927269523033 K, F = -1661.9288289275128, relative_change = 0.01996629240736979 Iter 15: T = 706.2134764735026 K, F = -711.5458058033697, relative_change = 0.011962624235506496 Iter 20: T = 677.5806396109596 K, F = -301.57151104868177, relative_change = 0.006125381468487623 Iter 25: T = 664.2292509773031 K, F = -126.95449672788706, relative_change = 0.0028294832310158816 Iter 30: T = 658.3517097312827 K, F = -53.25265209106907, relative_change = 0.0012376789599870056 Iter 35: T = 655.8372683270137 K, F = -22.299740905514604, relative_change = 0.0005277727718809444 Iter 40: T = 654.7754269242432 K, F = -9.331146593590763, relative_change = 0.0002225496275188885 Iter 45: T = 654.3295239838039 K, F = -3.90330020311934, relative_change = 9.339666688339733e-5 Iter 50: T = 654.1427199343026 K, F = -1.6325652036997935, relative_change = 3.9116516171555296e-5 Iter 55: T = 654.0645397372215 K, F = -0.68278601095608, relative_change = 1.6368969964844714e-5 Iter 60: T = 654.0318339481946 K, F = -0.2855541191892875, relative_change = 6.847445058489909e-6 Iter 65: T = 654.018154264711 K, F = -0.11942299222762642, relative_change = 2.8639888488193797e-6 Iter 70: T = 654.012432954725 K, F = -0.04994427011685898, relative_change = 1.1978077889688715e-6 Iter 75: T = 654.0100401815653 K, F = -0.020887316204093342, relative_change = 5.009468710575374e-7 Iter 80: T = 654.0090394859848 K, F = -0.008735329626525401, relative_change = 2.0950359918485948e-7 Iter 85: T = 654.008620981521 K, F = -0.0036532199651965747, relative_change = 8.761719314721602e-8 Iter 90: T = 654.0084459576727 K, F = -0.0015278203567857251, relative_change = 3.664260655803843e-8 Iter 95: T = 654.0083727605596 K, F = -0.0006389527445498366, relative_change = 1.5324384440550513e-8 Iter 100: T = 654.008342148644 K, F = -0.00026721767262571916, relative_change = 6.408842112511942e-9 Iter 105: T = 654.0083293463739 K, F = -0.00011175362313753379, relative_change = 2.6802545875849305e-9 Iter 110: T = 654.0083239923114 K, F = -4.673670041166478e-5, relative_change = 1.1209145354975144e-9 Iter 115: T = 654.0083217531784 K, F = -1.9545846295099256e-5, relative_change = 4.687798536252185e-10 Iter 120: T = 654.0083208167462 K, F = -8.174306513841767e-6, relative_change = 1.9604933853028781e-10 Iter 125: T = 654.0083204251191 K, F = -3.4185924355223385e-6, relative_change = 8.199017084380922e-11 Iter 130: T = 654.0083202613359 K, F = -1.4296964013227331e-6, relative_change = 3.4289273889732546e-11 Iter 135: T = 654.00832019284 K, F = -5.979167477798697e-7, relative_change = 1.4340199163358692e-11 Iter 140: T = 654.0083201641941 K, F = -2.5005568421443414e-7, relative_change = 5.997236785267078e-12 Iter 145: T = 654.008320152214 K, F = -1.0457578264455591e-7, relative_change = 2.508104275049787e-12 Iter 150: T = 654.0083201472038 K, F = -4.373508905031187e-8, relative_change = 1.04892510528566e-12 Iter 155: T = 654.0083201451084 K, F = -1.8290841952151027e-8, relative_change = 4.3868033053837385e-13 Converged in 159 iterations to T = 654.0083201443521 K Iter 1: T = 973.5169378476025 K, F = -6034.190903319423, relative_change = 0.026483062152397412 Iter 2: T = 949.2269081657244 K, F = -5106.395386236908, relative_change = 0.02495080335795926 Iter 3: T = 927.0624702829558 K, F = -4319.44048884295, relative_change = 0.02334998901958946 Iter 5: T = 888.7880468812145 K, F = -3086.5563078432165, relative_change = 0.020020707366429136 Iter 10: T = 823.6221638836599 K, F = -1321.590083580214, relative_change = 0.012009064426129335 Iter 15: T = 790.0849748895188 K, F = -560.1556070931906, relative_change = 0.006154470967438778 Iter 20: T = 774.4388186510439 K, F = -235.82002715269633, relative_change = 0.0028443307758887052 Iter 25: T = 767.5492402576587 K, F = -98.91925017234152, relative_change = 0.0012444744910363615 Iter 30: T = 764.6014773616665 K, F = -41.42309325083423, relative_change = 0.0005307280199202764 Iter 35: T = 763.3565774597093 K, F = -17.33321300825066, relative_change = 0.00022380623177703412 Iter 40: T = 762.8337898845692 K, F = -7.250644114794551, relative_change = 9.392587815670011e-5 Iter 45: T = 762.6147740637197 K, F = -3.0326019621533873, relative_change = 3.933848801448129e-5 Iter 50: T = 762.5231123951382 K, F = -1.2683221922858476, relative_change = 1.6461915182037233e-5 Iter 55: T = 762.4847667206412 K, F = -0.5304365583368713, relative_change = 6.886335813692012e-6 Iter 60: T = 762.4687280594106 K, F = -0.22183649020324214, relative_change = 2.8802569192778534e-6 Iter 65: T = 762.4620201424761 K, F = -0.09277494702463707, relative_change = 1.2046119012638077e-6 Iter 70: T = 762.4592147490131 K, F = -0.0387996393496447, relative_change = 5.037925389357292e-7 Iter 75: T = 762.4580414890332 K, F = -0.016226481028873807, relative_change = 2.1069371017324953e-7 Iter 80: T = 762.4575508157864 K, F = -0.0067861096359026485, relative_change = 8.811491507107297e-8 Iter 85: T = 762.4573456100403 K, F = -0.0028380323520410533, relative_change = 3.685076038179817e-8 Iter 90: T = 762.457259790488 K, F = -0.0011868990663536083, relative_change = 1.5411436906138385e-8 Iter 95: T = 762.4572238997162 K, F = -0.0004963753699668283, relative_change = 6.445248486046596e-9 Iter 100: T = 762.4572088897651 K, F = -0.00020759010808213407, relative_change = 2.695480147076167e-9 Iter 105: T = 762.457202612424 K, F = -8.681666350063288e-5, relative_change = 1.1272820474753431e-9 Iter 110: T = 762.4571999871649 K, F = -3.630776493457333e-5, relative_change = 4.714428154149824e-10 Iter 115: T = 762.4571988892502 K, F = -1.5184341092489007e-5, relative_change = 1.9716301944895477e-10 Iter 120: T = 762.4571984300892 K, F = -6.350274315392035e-6, relative_change = 8.245594947554762e-11 Iter 125: T = 762.4571982380626 K, F = -2.6557609626998158e-6, relative_change = 3.4484068112036557e-11 Iter 130: T = 762.4571981577546 K, F = -1.110670584947293e-6, relative_change = 1.4421644364268885e-11 Iter 135: T = 762.4571981241689 K, F = -4.6449517909774585e-7, relative_change = 6.031297104701738e-12 Iter 140: T = 762.4571981101229 K, F = -1.9425681541118678e-7, relative_change = 2.5223524832628783e-12 Iter 145: T = 762.4571981042488 K, F = -8.124176820167861e-8, relative_change = 1.0548941376493246e-12 Iter 150: T = 762.4571981017922 K, F = -3.3976093827270404e-8, relative_change = 4.41166939032972e-13 Converged in 154 iterations to T = 762.4571981009054 K Iter 1: T = 969.9541715472957 K, F = -6845.970593910025, relative_change = 0.0300458284527043 Iter 2: T = 942.0645625299148 K, F = -5798.993463637265, relative_change = 0.02875353272917069 Iter 3: T = 916.2886983182125 K, F = -4910.405335438565, relative_change = 0.027361037912816976 Iter 5: T = 870.8740621700312 K, F = -3516.740540215956, relative_change = 0.02431552734744748 Iter 10: T = 789.8085674254995 K, F = -1514.7706594496203, relative_change = 0.01601467020584258 Iter 15: T = 745.275188826169 K, F = -645.2121225689428, relative_change = 0.008856651541238174 Iter 20: T = 723.5248137306849 K, F = -272.4611630480012, relative_change = 0.004288482902044579 Iter 25: T = 713.7002991838579 K, F = -114.46770401434179, relative_change = 0.0019211140965144677 Iter 30: T = 709.445069440239 K, F = -47.96841119355467, relative_change = 0.0008281580283427817 Iter 35: T = 707.6381885180863 K, F = -20.078305545805183, relative_change = 0.00035086799831641184 Iter 40: T = 706.8776234946878 K, F = -8.400053856228727, relative_change = 0.00014754341034806695 Iter 45: T = 706.5586780683321 K, F = -3.5135416884209474, relative_change = 6.184656564285885e-5 Iter 50: T = 706.4251387158022 K, F = -1.4694995222502554, relative_change = 2.5889918615470667e-5 Iter 55: T = 706.3692642250764 K, F = -0.6145787785379275, relative_change = 1.0831842465490781e-5 Iter 60: T = 706.345892165134 K, F = -0.2570270766498932, relative_change = 4.530770528185179e-6 Iter 65: T = 706.3361168716034 K, F = -0.10749229884733347, relative_change = 1.8949561146884907e-6 Iter 70: T = 706.3320285838525 K, F = -0.04495465157749412, relative_change = 7.925166767263258e-7 Iter 75: T = 706.330318788034 K, F = -0.01880058763187409, relative_change = 3.314440314820341e-7 Iter 80: T = 706.329603726621 K, F = -0.007862632979553252, relative_change = 1.386145680562585e-7 Iter 85: T = 706.3293046786318 K, F = -0.0032882474836458675, relative_change = 5.797039294388151e-8 Iter 90: T = 706.3291796130575 K, F = -0.0013751844498548493, relative_change = 2.4243932529642208e-8 Iter 95: T = 706.3291273091172 K, F = -0.0005751185743030351, relative_change = 1.0139105942662126e-8 Iter 100: T = 706.3291054349806 K, F = -0.00024052145780550926, relative_change = 4.240295846298467e-9 Iter 105: T = 706.3290962869548 K, F = -0.00010058894633879767, relative_change = 1.7733424765372554e-9 Iter 110: T = 706.329092461141 K, F = -4.206749911361829e-5, relative_change = 7.416330292638053e-10 Iter 115: T = 706.3290908611401 K, F = -1.7593131515059035e-5, relative_change = 3.101598106706929e-10 Iter 120: T = 706.3290901920004 K, F = -7.357657076600965e-6, relative_change = 1.2971252640259884e-10 Iter 125: T = 706.3290899121583 K, F = -3.077060261258424e-6, relative_change = 5.4247331314624496e-11 Iter 130: T = 706.329089795125 K, F = -1.2868637638829838e-6, relative_change = 2.2686889135757837e-11 Iter 135: T = 706.3290897461802 K, F = -5.381810318505487e-7, relative_change = 9.487914533973622e-12 Iter 140: T = 706.3290897257109 K, F = -2.2507335228905134e-7, relative_change = 3.967952425497443e-12 Iter 145: T = 706.3290897171504 K, F = -9.412744250703042e-8, relative_change = 1.6594288485272755e-12 Iter 150: T = 706.3290897135703 K, F = -3.936463377485211e-8, relative_change = 6.939826171777493e-13 Iter 155: T = 706.329089712073 K, F = -1.6461670693246333e-8, relative_change = 2.9021261511724987e-13 Converged in 157 iterations to T = 706.3290897117562 K Iter 1: T = 973.4607555410677 K, F = -6046.992095306584, relative_change = 0.026539244458932368 Iter 2: T = 949.1146074750955 K, F = -5117.3069848767545, relative_change = 0.025009891695572422 Iter 3: T = 926.8945631793641 K, F = -4328.740648484215, relative_change = 0.02341133949549336 Iter 5: T = 888.5124136480819 K, F = -3093.3077582706633, relative_change = 0.020084201047198817 Iter 10: T = 823.1183858958725 K, F = -1324.5937171829503, relative_change = 0.012063203783463324 Iter 15: T = 789.4338195958088 K, F = -561.4651763263187, relative_change = 0.006188390156540598 Iter 20: T = 773.7097596763952 K, F = -236.38028368001935, relative_change = 0.002861649363685771 Iter 25: T = 766.7837447100701 K, F = -99.156102334082, relative_change = 0.001252402671833295 Iter 30: T = 763.819965457598 K, F = -41.52262337250571, relative_change = 0.0005341761938409329 Iter 35: T = 762.5682223436484 K, F = -17.374923309511402, relative_change = 0.0002252725014242683 Iter 40: T = 762.0425468017053 K, F = -7.268103017948809, relative_change = 9.454340100717775e-5 Iter 45: T = 761.8223185893085 K, F = -3.039906148507169, relative_change = 3.959750335222592e-5 Iter 50: T = 761.7301490740352 K, F = -1.2713773572797495, relative_change = 1.6570371828933785e-5 Iter 55: T = 761.691590870019 K, F = -0.5317143465815467, relative_change = 6.931717031498884e-6 Iter 60: T = 761.675463301554 K, F = -0.22237089081301908, relative_change = 2.8992399732948214e-6 Iter 65: T = 761.6687181982044 K, F = -0.09299844224572285, relative_change = 1.2125515561272183e-6 Iter 70: T = 761.6658972521777 K, F = -0.038893108156569656, relative_change = 5.071131224589945e-7 Iter 75: T = 761.664717487797 K, F = -0.016265570875609092, relative_change = 2.1208243971754102e-7 Iter 80: T = 761.6642240943087 K, F = -0.006802457488226943, relative_change = 8.869570215370174e-8 Iter 85: T = 761.6640177509211 K, F = -0.0028448692209188664, relative_change = 3.709365313786884e-8 Iter 90: T = 761.663931455593 K, F = -0.0011897583280422452, relative_change = 1.5513017688291456e-8 Iter 95: T = 761.663895365846 K, F = -0.0004975711508614644, relative_change = 6.4877308474571295e-9 Iter 100: T = 761.6638802726809 K, F = -0.000208090198916544, relative_change = 2.713246794152489e-9 Iter 105: T = 761.6638739605387 K, F = -8.702580643382696e-5, relative_change = 1.1347122587288902e-9 Iter 110: T = 761.6638713207254 K, F = -3.6395232777097775e-5, relative_change = 4.745502416499053e-10 Iter 115: T = 761.6638702167239 K, F = -1.5220920588587816e-5, relative_change = 1.9846257441280715e-10 Iter 120: T = 761.6638697550173 K, F = -6.3655710909049645e-6, relative_change = 8.299942323476179e-11 Iter 125: T = 761.6638695619262 K, F = -2.662158091637501e-6, relative_change = 3.471135319627e-11 Iter 130: T = 761.663869481173 K, F = -1.113346011827332e-6, relative_change = 1.4516698608959803e-11 Iter 135: T = 761.6638694474011 K, F = -4.6561416777723963e-7, relative_change = 6.071051111969168e-12 Iter 140: T = 761.6638694332773 K, F = -1.9472514789509177e-7, relative_change = 2.538982719114372e-12 Iter 145: T = 761.6638694273706 K, F = -8.143766339063774e-8, relative_change = 1.0618495981469928e-12 Iter 150: T = 761.6638694249003 K, F = -3.405779147591659e-8, relative_change = 4.4407281210369395e-13 Converged in 154 iterations to T = 761.6638694240088 K Iter 1: T = 964.2834980878742 K, F = -8138.038935842229, relative_change = 0.03571650191212573 Iter 2: T = 930.4900544982168 K, F = -6904.056047978548, relative_change = 0.03504513315499867 Iter 3: T = 898.5885995980234 K, F = -5856.123111605507, relative_change = 0.03428457375333984 Iter 5: T = 840.3485181042875 K, F = -4210.590044854201, relative_change = 0.03247014734193307 Iter 10: T = 725.8818281536384 K, F = -1836.45031470687, relative_change = 0.026111832250516907 Iter 15: T = 651.9101660051339 K, F = -793.0821303927366, relative_change = 0.017922647542159085 Iter 20: T = 610.0041604259019 K, F = -338.6386775150647, relative_change = 0.010295685429866017 Iter 25: T = 589.0397719538297 K, F = -143.24025589878116, relative_change = 0.005114383071422296 Iter 30: T = 579.4331794668307 K, F = -60.233258788027634, relative_change = 0.002322685598257099 Iter 35: T = 575.2422500666925 K, F = -25.25190544740075, relative_change = 0.0010077285390761956 Iter 40: T = 573.4568351173177 K, F = -10.571769438889786, relative_change = 0.0004281573941003766 Iter 45: T = 572.7042374519974 K, F = -4.423211413260072, relative_change = 0.000180262341066195 Iter 50: T = 572.3884426909995 K, F = -1.8501865467102425, relative_change = 7.560013801178147e-5 Iter 55: T = 572.2561889060522 K, F = -0.7738308931764609, relative_change = 3.1654161230924816e-5 Iter 60: T = 572.2008464182801 K, F = -0.3236359626116718, relative_change = 1.3244679980081279e-5 Iter 65: T = 572.1776958605228 K, F = -0.13535028657157883, relative_change = 5.540226575587151e-6 Iter 70: T = 572.1680130289418 K, F = -0.05660543197728529, relative_change = 2.3171889312499914e-6 Iter 75: T = 572.1639633796302 K, F = -0.02367312463143903, relative_change = 9.691110709213687e-7 Iter 80: T = 572.1622697375764 K, F = -0.009900393399975227, relative_change = 4.052999429818217e-7 Iter 85: T = 572.1615614309351 K, F = -0.004140464497219831, relative_change = 1.6950234675797947e-7 Iter 90: T = 572.1612652077104 K, F = -0.0017315920048454059, relative_change = 7.088809289384226e-8 Iter 95: T = 572.1611413234577 K, F = -0.0007241725086813977, relative_change = 2.9646279747619757e-8 Iter 100: T = 572.1610895135556 K, F = -0.00030285760151177454, relative_change = 1.239843399355392e-8 Iter 105: T = 572.1610678460306 K, F = -0.00012665866707983753, relative_change = 5.1851741504562595e-9 Iter 110: T = 572.1610587844121 K, F = -5.2970167667198975e-5, relative_change = 2.1685019365451636e-9 Iter 115: T = 572.1610549947349 K, F = -2.215275671346717e-5, relative_change = 9.068934357466994e-10 Iter 120: T = 572.1610534098465 K, F = -9.264547403520229e-6, relative_change = 3.79273669859399e-10 Iter 125: T = 572.1610527470274 K, F = -3.8745450657295954e-6, relative_change = 1.5861680773107806e-10 Iter 130: T = 572.1610524698284 K, F = -1.6203807726711261e-6, relative_change = 6.633543337412214e-11 Iter 135: T = 572.1610523539006 K, F = -6.776630813165596e-7, relative_change = 2.7742290566702187e-11 Iter 140: T = 572.1610523054181 K, F = -2.8340695434891927e-7, relative_change = 1.1602163812832619e-11 Iter 145: T = 572.1610522851421 K, F = -1.1852356646135931e-7, relative_change = 4.852138639847366e-12 Iter 150: T = 572.1610522766624 K, F = -4.956689697577232e-8, relative_change = 2.029178358962537e-12 Iter 155: T = 572.1610522731162 K, F = -2.0729486016612952e-8, relative_change = 8.486273498042248e-13 Iter 160: T = 572.1610522716333 K, F = -8.670243578645653e-9, relative_change = 3.5494395878881345e-13 Converged in 163 iterations to T = 572.161052271199 K Iter 1: T = 963.5192376935105 K, F = -8312.176393697338, relative_change = 0.03648076230648952 Iter 2: T = 928.9133704316557 K, F = -7053.240841471159, relative_change = 0.03591611449782247 Iter 3: T = 896.1486750133361 K, F = -5984.069232441551, relative_change = 0.035272067838892474 Iter 5: T = 836.023415030783 K, F = -4305.026448997145, relative_change = 0.03371640252236834 Iter 10: T = 715.9903401279032 K, F = -1881.5348604332894, relative_change = 0.028038932550876246 Iter 15: T = 635.9631541638164 K, F = -814.9000564105622, relative_change = 0.02014935673043507 Iter 20: T = 588.974753295428 K, F = -348.9802225342476, relative_change = 0.012118530387811252 Iter 25: T = 564.749418652644 K, F = -147.9344045920486, relative_change = 0.006223015810999049 Iter 30: T = 553.434361056853 K, F = -62.28365508951577, relative_change = 0.002879325907657922 Iter 35: T = 548.4488488677473 K, F = -26.12705093741733, relative_change = 0.0012604948446557445 Iter 40: T = 546.3151405869719 K, F = -10.941059358425196, relative_change = 0.0005376957758908874 Iter 45: T = 545.4139180990517 K, F = -4.578245314383463, relative_change = 0.000226769155846982 Iter 50: T = 545.035435096047 K, F = -1.915128434287103, relative_change = 9.517372435042879e-5 Iter 55: T = 544.8768703839098 K, F = -0.8010087979370795, relative_change = 3.986188846877745e-5 Iter 60: T = 544.8105078463733 K, F = -0.3350053174608116, relative_change = 1.6681077071883586e-5 Iter 65: T = 544.7827456799615 K, F = -0.1401056520626, relative_change = 6.978039145421969e-6 Iter 70: T = 544.7711337123195 K, F = -0.05859428156150215, relative_change = 2.91861660989831e-6 Iter 75: T = 544.7662771866965 K, F = -0.024504902587531463, relative_change = 1.220655827388043e-6 Iter 80: T = 544.7642460838398 K, F = -0.010248255902320064, relative_change = 5.105025532780894e-7 Iter 85: T = 544.7633966443506 K, F = -0.0042859452795437625, relative_change = 2.1349996251420016e-7 Iter 90: T = 544.7630413972093 K, F = -0.0017924338974288356, relative_change = 8.92885310099724e-8 Iter 95: T = 544.7628928283672 K, F = -0.0007496173312276644, relative_change = 3.734158192673547e-8 Iter 100: T = 544.7628306950601 K, F = -0.0003134989316391501, relative_change = 1.5616704562128577e-8 Iter 105: T = 544.7628047101616 K, F = -0.00013110899920398822, relative_change = 6.531093934721871e-9 Iter 110: T = 544.7627938429655 K, F = -5.483134938244483e-5, relative_change = 2.7313817477729935e-9 Iter 115: T = 544.7627892981742 K, F = -2.2931125687686293e-5, relative_change = 1.1422965393405978e-9 Iter 120: T = 544.7627873974881 K, F = -9.590070994075495e-6, relative_change = 4.777220813198425e-10 Iter 125: T = 544.7627866025983 K, F = -4.010681942168137e-6, relative_change = 1.9978906719440538e-10 Iter 130: T = 544.762786270166 K, F = -1.6773151589599689e-6, relative_change = 8.355417776959418e-11 Iter 135: T = 544.7627861311388 K, F = -7.014729920817864e-7, relative_change = 3.494334313923774e-11 Iter 140: T = 544.762786072996 K, F = -2.9336480777963914e-7, relative_change = 1.461374459764537e-11 Iter 145: T = 544.7627860486799 K, F = -1.2268834009843133e-7, relative_change = 6.111626276030022e-12 Iter 150: T = 544.7627860385106 K, F = -5.130947478004799e-8, relative_change = 2.5559424314594626e-12 Iter 155: T = 544.7627860342577 K, F = -2.145760547023201e-8, relative_change = 1.0688942838730383e-12 Iter 160: T = 544.7627860324792 K, F = -8.97407084754498e-9, relative_change = 4.470365085922089e-13 Converged in 165 iterations to T = 544.7627860317353 K Iter 1: T = 969.398087138603 K, F = -6972.67495540348, relative_change = 0.030601912861396966 Iter 2: T = 940.9390923818858 K, F = -5907.213761591897, relative_change = 0.029357386954125732 Iter 3: T = 914.5835472600252 K, F = -5002.866063377481, relative_change = 0.028009831173178634 Iter 5: T = 867.9948261340122 K, F = -3584.270249408583, relative_change = 0.02503852345291436 Iter 10: T = 784.1515912881027 K, F = -1545.4661123105634, relative_change = 0.016764551721537856 Iter 15: T = 737.5308773902126 K, F = -658.9153461263307, relative_change = 0.009409585573646758 Iter 20: T = 714.5493122797416 K, F = -278.42574373890903, relative_change = 0.004600921427397889 Iter 25: T = 704.1118991466843 K, F = -117.01350583903287, relative_change = 0.0020717482008955866 Iter 30: T = 699.5789503663093 K, F = -49.04309090905704, relative_change = 0.000895247765274361 Iter 35: T = 697.6517835752642 K, F = -20.52958219794141, relative_change = 0.00037969323071491577 Iter 40: T = 696.8401568531827 K, F = -8.589110249267122, relative_change = 0.00015973676367573734 Iter 45: T = 696.4997219665557 K, F = -3.592665032750237, relative_change = 6.697046605809018e-5 Iter 50: T = 696.3571716934756 K, F = -1.5025999784120367, relative_change = 2.803710175035804e-5 Iter 55: T = 696.2975245567138 K, F = -0.6284235587823311, relative_change = 1.1730575025911005e-5 Iter 60: T = 696.2725740005427 K, F = -0.2628174395904222, relative_change = 4.906763378624724e-6 Iter 65: T = 696.2621384331808 K, F = -0.10991395209989258, relative_change = 2.0522239389835148e-6 Iter 70: T = 696.2577739886607 K, F = -0.04596742538904175, relative_change = 8.582920040576239e-7 Iter 75: T = 696.2559486968707 K, F = -0.019224143396517124, relative_change = 3.589527664179149e-7 Iter 80: T = 696.255185332979 K, F = -0.008039769348425874, relative_change = 1.5011917326412167e-7 Iter 85: T = 696.2548660841967 K, F = -0.003362328081567001, relative_change = 6.278177791932219e-8 Iter 90: T = 696.2547325703883 K, F = -0.001406165849157981, relative_change = 2.6256114965029455e-8 Iter 95: T = 696.2546767332921 K, F = -0.0005880753661988702, relative_change = 1.0980625313748414e-8 Iter 100: T = 696.2546533815469 K, F = -0.0002459401441295972, relative_change = 4.592229429687963e-9 Iter 105: T = 696.2546436155674 K, F = -0.00010285510650731577, relative_change = 1.9205253388435714e-9 Iter 110: T = 696.2546395313178 K, F = -4.301523340866087e-5, relative_change = 8.031866460512216e-10 Iter 115: T = 696.254637823236 K, F = -1.7989483924174543e-5, relative_change = 3.35902243950312e-10 Iter 120: T = 696.2546371088957 K, F = -7.523416822530216e-6, relative_change = 1.4047832699691341e-10 Iter 125: T = 696.25463681015 K, F = -3.1463818229715557e-6, relative_change = 5.874969656922984e-11 Iter 130: T = 696.2546366852112 K, F = -1.3158543438196446e-6, relative_change = 2.4569822686600466e-11 Iter 135: T = 696.2546366329601 K, F = -5.503060536149462e-7, relative_change = 1.0275394255465051e-11 Iter 140: T = 696.2546366111081 K, F = -2.3014441252744433e-7, relative_change = 4.297289770357385e-12 Iter 145: T = 696.2546366019694 K, F = -9.624836716515262e-8, relative_change = 1.7971634380171504e-12 Iter 150: T = 696.2546365981475 K, F = -4.025255551098894e-8, relative_change = 7.516015407187814e-13 Iter 155: T = 696.2546365965491 K, F = -1.6834012184219205e-8, relative_change = 3.14327111251907e-13 Converged in 157 iterations to T = 696.2546365962108 K Iter 1: T = 966.462443094387 K, F = -7641.564243396516, relative_change = 0.03353755690561303 Iter 2: T = 934.9632744007095 K, F = -6479.049030111225, relative_change = 0.032592232547417506 Iter 3: T = 905.4727919698447 K, F = -5491.981961806197, relative_change = 0.0315418618445387 Iter 5: T = 852.3934832211391 K, F = -3942.582298395126, relative_change = 0.029120894949725397 Iter 10: T = 752.2324552501404 K, F = -1710.3906620051239, relative_change = 0.021490235378078554 Iter 15: T = 692.1418977943536 K, F = -733.808198458564, relative_change = 0.013298827340795247 Iter 20: T = 660.5564439657337 K, F = -311.50991631221274, relative_change = 0.006980962752801835 Iter 25: T = 645.611264049346 K, F = -131.26407598469305, relative_change = 0.0032719948643052956 Iter 30: T = 638.980256810903 K, F = -55.08655489769184, relative_change = 0.0014415521587098766 Iter 35: T = 636.1329710055637 K, F = -23.072652615823998, relative_change = 0.000616698757017158 Iter 40: T = 634.9286084540581 K, F = -9.655462640077875, relative_change = 0.00026041088917506245 Iter 45: T = 634.4225031874673 K, F = -4.03912368924365, relative_change = 0.00010935046324268925 Iter 50: T = 634.2104158578791 K, F = -1.6894017445117913, relative_change = 4.5809706282160484e-5 Iter 55: T = 634.1216432636035 K, F = -0.7065616109597307, relative_change = 1.917184916436681e-5 Iter 60: T = 634.0845043424574 K, F = -0.2954983884889043, relative_change = 8.020291947653706e-6 Iter 65: T = 634.0689700985836 K, F = -0.12358198453269287, relative_change = 3.354601063310178e-6 Iter 70: T = 634.0624730892835 K, F = -0.05168364187838098, relative_change = 1.403007556844075e-6 Iter 75: T = 634.0597558919119 K, F = -0.021614747757390806, relative_change = 5.867673420532985e-7 Iter 80: T = 634.0586195151916 K, F = -0.009039551153624092, relative_change = 2.4539535331468025e-7 Iter 85: T = 634.0581442667195 K, F = -0.0037804492100823595, relative_change = 1.0262765975639034e-7 Iter 90: T = 634.0579455117557 K, F = -0.0015810291763239115, relative_change = 4.29201815736615e-8 Iter 95: T = 634.0578623899903 K, F = -0.0006612053124648853, relative_change = 1.794974451201287e-8 Iter 100: T = 634.0578276274638 K, F = -0.0002765239641739914, relative_change = 7.50679964362553e-9 Iter 105: T = 634.057813089358 K, F = -0.00011564562454008387, relative_change = 3.1394336127266834e-9 Iter 110: T = 634.0578070093482 K, F = -4.8364381697363346e-5, relative_change = 1.3129487007845362e-9 Iter 115: T = 634.0578044666154 K, F = -2.0226562195635456e-5, relative_change = 5.490908418784213e-10 Iter 120: T = 634.0578034032142 K, F = -8.458989597226463e-6, relative_change = 2.296363421299439e-10 Iter 125: T = 634.0578029584871 K, F = -3.537651128260322e-6, relative_change = 9.603667887293955e-11 Iter 130: T = 634.057802772497 K, F = -1.4794886225022452e-6, relative_change = 4.0163704328786696e-11 Iter 135: T = 634.0578026947137 K, F = -6.187399367862945e-7, relative_change = 1.6796944237381956e-11 Iter 140: T = 634.0578026621837 K, F = -2.5876436116067936e-7, relative_change = 7.024680787011451e-12 Iter 145: T = 634.0578026485792 K, F = -1.0821858320575473e-7, relative_change = 2.937811833557235e-12 Iter 150: T = 634.0578026428898 K, F = -4.5258316760943273e-8, relative_change = 1.2286283428795683e-12 Iter 155: T = 634.0578026405103 K, F = -1.8927667044810192e-8, relative_change = 5.13829719277703e-13 Converged in 160 iterations to T = 634.0578026395152 K Iter 1: T = 966.4874224777958 K, F = -7635.872667125276, relative_change = 0.03351257752220416 Iter 2: T = 935.0143677290441 K, F = -6474.179565306588, relative_change = 0.032564370747902534 Iter 3: T = 905.5511017651282 K, F = -5487.812919522927, relative_change = 0.03151103018392763 Iter 5: T = 852.5291934253462 K, F = -3939.520232567849, relative_change = 0.02908415748714657 Iter 10: T = 752.5201905968964 K, F = -1708.9649873066262, relative_change = 0.021443592744063558 Iter 15: T = 692.5657344467724 K, F = -733.1496897670204, relative_change = 0.01325666819687377 Iter 20: T = 661.0735171845544 K, F = -311.214366413334, relative_change = 0.006953322376197433 Iter 25: T = 646.1794665556938 K, F = -131.1354564598863, relative_change = 0.00325749820680212 Iter 30: T = 639.57283958622 K, F = -55.03171851940698, relative_change = 0.0014348269689560915 Iter 35: T = 636.7363679146973 K, F = -23.04952115458466, relative_change = 0.000613756180113784 Iter 40: T = 635.5366442759988 K, F = -9.645752887089499, relative_change = 0.00025915636270471703 Iter 45: T = 635.032500053211 K, F = -4.035056582027805, relative_change = 0.00010882153450559386 Iter 50: T = 634.8212365769789 K, F = -1.6876997101618685, relative_change = 4.558774830040051e-5 Iter 55: T = 634.7328091825598 K, F = -0.7058496031963823, relative_change = 1.9078891373691295e-5 Iter 60: T = 634.6958147428663 K, F = -0.2952005839045121, relative_change = 7.981392711632077e-6 Iter 65: T = 634.680340942951 K, F = -0.12345743307462603, relative_change = 3.338328881793646e-6 Iter 70: T = 634.6738692155513 K, F = -0.05163155191692337, relative_change = 1.3962016265197052e-6 Iter 75: T = 634.6711625919875 K, F = -0.02159296292980456, relative_change = 5.839208965945689e-7 Iter 80: T = 634.6700306374672 K, F = -0.009030440445677523, relative_change = 2.442049141001637e-7 Iter 85: T = 634.6695572384309 K, F = -0.0037766389978929338, relative_change = 1.0212980007105781e-7 Iter 90: T = 634.6693592569264 K, F = -0.0015794356980477486, relative_change = 4.2711970014968584e-8 Iter 95: T = 634.6692764586315 K, F = -0.0006605389003450091, relative_change = 1.7862667827254856e-8 Iter 100: T = 634.6692418313845 K, F = -0.00027624526253650084, relative_change = 7.470383111024726e-9 Iter 105: T = 634.669227349854 K, F = -0.0001155290681542076, relative_change = 3.1242037796528074e-9 Iter 110: T = 634.6692212935048 K, F = -4.83156372804161e-5, relative_change = 1.306579425224742e-9 Iter 115: T = 634.6692187606671 K, F = -2.0206175352033284e-5, relative_change = 5.464270982466184e-10 Iter 120: T = 634.6692177014042 K, F = -8.45046429553964e-6, relative_change = 2.2852235220632194e-10 Iter 125: T = 634.6692172584078 K, F = -3.53408494069285e-6, relative_change = 9.557077315316169e-11 Iter 130: T = 634.6692170731415 K, F = -1.47799677935323e-6, relative_change = 3.996884553920495e-11 Iter 135: T = 634.6692169956608 K, F = -6.181163325624794e-7, relative_change = 1.6715460128823837e-11 Iter 140: T = 634.6692169632574 K, F = -2.5850339008259837e-7, relative_change = 6.9905985063176255e-12 Iter 145: T = 634.6692169497059 K, F = -1.0810768025226736e-7, relative_change = 2.9235105502032803e-12 Iter 150: T = 634.6692169440386 K, F = -4.521286817160686e-8, relative_change = 1.2226725872002968e-12 Iter 155: T = 634.6692169416684 K, F = -1.8908864807265502e-8, relative_change = 5.113444820085464e-13 Converged in 160 iterations to T = 634.6692169406772 K Iter 1: T = 976.4395111605842 K, F = -5368.279793871643, relative_change = 0.023560488839415847 Iter 2: T = 955.040631152126 K, F = -4539.231910178862, relative_change = 0.02191521314313033 Iter 3: T = 935.7117002019974 K, F = -3836.479346590477, relative_change = 0.020238857195856656 Iter 5: T = 902.8426280308859 K, F = -2736.713688473275, relative_change = 0.016886101857375924 Iter 10: T = 848.7121151535376 K, F = -1166.9907527166738, relative_change = 0.00950081733338516 Iter 15: T = 821.9877663782213 K, F = -493.16627378305037, relative_change = 0.004653078869602362 Iter 20: T = 809.8394379038076 K, F = -207.27401602715844, relative_change = 0.002097050803027809 Iter 25: T = 804.5610358717541 K, F = -86.87572210020933, relative_change = 0.000906549747068567 Iter 30: T = 802.3164778931863 K, F = -36.3668656095202, relative_change = 0.00038455532222531915 Iter 35: T = 801.3710970121923 K, F = -15.215146831506265, relative_change = 0.0001617945918232949 Iter 40: T = 800.9745441607118 K, F = -6.36422654205357, relative_change = 6.783540617841454e-5 Iter 45: T = 800.8084929547554 K, F = -2.6617831619287493, relative_change = 2.8399591876026912e-5 Iter 50: T = 800.7390118842626 K, F = -1.1132223502111989, relative_change = 1.1882306280699767e-5 Iter 55: T = 800.709947685618 K, F = -0.46556862796701615, relative_change = 4.970242583024972e-6 Iter 60: T = 800.6977915734308 K, F = -0.19470736546147482, relative_change = 2.0787757915331313e-6 Iter 65: T = 800.6927075467058 K, F = -0.08142912133576075, relative_change = 8.69397021535794e-7 Iter 70: T = 800.69058131183 K, F = -0.034054661757281224, relative_change = 3.6359714256213337e-7 Iter 75: T = 800.6896920890334 K, F = -0.014242071618003171, relative_change = 1.5206152870272737e-7 Iter 80: T = 800.6893202043948 K, F = -0.005956205375958312, relative_change = 6.359409795908745e-8 Iter 85: T = 800.6891646776147 K, F = -0.0024909563826417402, relative_change = 2.6595837569955632e-8 Iter 90: T = 800.689099634426 K, F = -0.0010417477361016614, relative_change = 1.1122701500264695e-8 Iter 95: T = 800.6890724325822 K, F = -0.00043567134985056377, relative_change = 4.651647411853321e-9 Iter 100: T = 800.6890610564452 K, F = -0.00018220296284177095, relative_change = 1.9453746457277115e-9 Iter 105: T = 800.6890562988087 K, F = -7.61994564378865e-5, relative_change = 8.135789476430957e-10 Iter 110: T = 800.6890543091082 K, F = -3.18675216111064e-5, relative_change = 3.4024842453105653e-10 Iter 115: T = 800.6890534769917 K, F = -1.3327376975125205e-5, relative_change = 1.422959430825444e-10 Iter 120: T = 800.6890531289907 K, F = -5.573669338398979e-6, relative_change = 5.95098749033121e-11 Iter 125: T = 800.6890529834525 K, F = -2.330974928410612e-6, relative_change = 2.4887738775039703e-11 Iter 130: T = 800.6890529225867 K, F = -9.748414458998766e-7, relative_change = 1.0408348440693944e-11 Iter 135: T = 800.689052897132 K, F = -4.0769223819125955e-7, relative_change = 4.3529159435627356e-12 Iter 140: T = 800.6890528864865 K, F = -1.7050231859716547e-7, relative_change = 1.8204473658260307e-12 Iter 145: T = 800.6890528820344 K, F = -7.130727441850837e-8, relative_change = 7.613453057464881e-13 Iter 150: T = 800.6890528801724 K, F = -2.9820436786565097e-8, relative_change = 3.18391773464275e-13 Converged in 153 iterations to T = 800.6890528796273 K Iter 1: T = 965.2356703835351 K, F = -7921.085572526218, relative_change = 0.03476432961646486 Iter 2: T = 932.4487871881503 K, F = -6718.273667524337, relative_change = 0.03396774922579992 Iter 3: T = 901.6099393950558 K, F = -5696.8816967096955, relative_change = 0.03307296681256956 Iter 5: T = 845.6630987756383 K, F = -4093.2518555921724, relative_change = 0.03097058105437943 Iter 10: T = 737.7139930404464 K, F = -1780.9354586655454, relative_change = 0.023948392277722257 Iter 15: T = 670.3434084488013 K, F = -766.701727142073, relative_change = 0.01564258029809162 Iter 20: T = 633.5559675619804 K, F = -326.420607314095, relative_change = 0.008588045518952599 Iter 25: T = 615.6697369326781 K, F = -137.79873573858376, relative_change = 0.00413883646301858 Iter 30: T = 607.6117971629728 K, F = -57.88322077905482, relative_change = 0.001849506137238023 Iter 35: T = 604.126215209874 K, F = -24.254482824527646, relative_change = 0.0007963769919958765 Iter 40: T = 602.6470069971398 K, F = -10.151945077992474, relative_change = 0.00033723427354511565 Iter 45: T = 602.0245246157427 K, F = -4.247154796532937, relative_change = 0.00014178001226080575 Iter 50: T = 601.763512388814 K, F = -1.776472640192257, relative_change = 5.942533943996059e-5 Iter 55: T = 601.6542339986007 K, F = -0.7429879449311101, relative_change = 2.487541622479218e-5 Iter 60: T = 601.6085114483341 K, F = -0.310734460858932, relative_change = 1.0407229522243404e-5 Iter 65: T = 601.5893860518966 K, F = -0.12995426722635636, relative_change = 4.353133519021304e-6 Iter 70: T = 601.581386938866 K, F = -0.054348672250840835, relative_change = 1.8206559071464239e-6 Iter 75: T = 601.5780415016438 K, F = -0.022729306769286306, relative_change = 7.61441642760663e-7 Iter 80: T = 601.5766423801458 K, F = -0.00950567505169142, relative_change = 3.184477663872569e-7 Iter 85: T = 601.5760572473808 K, F = -0.00397538814153886, relative_change = 1.3317931969136166e-7 Iter 90: T = 601.5758125372681 K, F = -0.00166255502648055, relative_change = 5.569729754820438e-8 Iter 95: T = 601.5757101964712 K, F = -0.000695300408045163, relative_change = 2.3293295236189768e-8 Iter 100: T = 601.5756673963092 K, F = -0.0002907829414728891, relative_change = 9.741537788980029e-9 Iter 105: T = 601.5756494967671 K, F = -0.00012160890020074255, relative_change = 4.074028065741878e-9 Iter 110: T = 601.5756420109643 K, F = -5.085829466988656e-5, relative_change = 1.7038073018835067e-9 Iter 115: T = 601.575638880312 K, F = -2.126954644665613e-5, relative_change = 7.125525870787161e-10 Iter 120: T = 601.5756375710358 K, F = -8.895178427947847e-6, relative_change = 2.979980077588046e-10 Iter 125: T = 601.5756370234809 K, F = -3.7200697615147327e-6, relative_change = 1.2462632328723577e-10 Iter 130: T = 601.5756367944869 K, F = -1.5557777641728165e-6, relative_change = 5.212022230285599e-11 Iter 135: T = 601.5756366987188 K, F = -6.506442573050997e-7, relative_change = 2.1797279879849145e-11 Iter 140: T = 601.5756366586675 K, F = -2.7210687525425215e-7, relative_change = 9.115871926072954e-12 Iter 145: T = 601.5756366419175 K, F = -1.1379805819888844e-7, relative_change = 3.812356902577631e-12 Iter 150: T = 601.5756366349125 K, F = -4.759192911985011e-8, relative_change = 1.594380628006856e-12 Iter 155: T = 601.575636631983 K, F = -1.9903628245554472e-8, relative_change = 6.667928762161055e-13 Iter 160: T = 601.5756366307577 K, F = -8.323624622885717e-9, relative_change = 2.7885034499328635e-13 Converged in 162 iterations to T = 601.5756366304985 K Iter 1: T = 964.5061756076195 K, F = -8087.301651147261, relative_change = 0.03549382439238044 Iter 2: T = 930.9486860570388 K, F = -6860.600225946565, relative_change = 0.034792405066188546 Iter 3: T = 899.2970078331242 K, F = -5818.86628516884, relative_change = 0.033999380092551414 Iter 5: T = 841.5986653721874 K, F = -4183.11768700614, relative_change = 0.032114271212664164 Iter 10: T = 728.69606140857 K, F = -1823.4043604671851, relative_change = 0.025583619296624883 Iter 15: T = 656.354357892193 K, F = -786.8380814018317, relative_change = 0.017345596891947816 Iter 20: T = 615.7508912183088 K, F = -335.72152467804557, relative_change = 0.009849079408734482 Iter 25: T = 595.5884246997297 K, F = -141.93214909436034, relative_change = 0.004853573269272289 Iter 30: T = 586.391030993926 K, F = -59.666083212237815, relative_change = 0.002194688440468005 Iter 35: T = 582.3878067930104 K, F = -25.010715293185644, relative_change = 0.0009502414192717672 Iter 40: T = 580.6841437989448 K, F = -10.470162655669641, relative_change = 0.0004033665699863717 Iter 45: T = 579.9663337183276 K, F = -4.380585990636298, relative_change = 0.00016975900345063985 Iter 50: T = 579.6651943831539 K, F = -1.83233671823588, relative_change = 7.118347256170212e-5 Iter 55: T = 579.5390885285578 K, F = -0.7663617771902989, relative_change = 2.980282825977754e-5 Iter 60: T = 579.4863204891731 K, F = -0.32051156992822993, relative_change = 1.24696885943636e-5 Iter 65: T = 579.4642471764048 K, F = -0.13404350235840556, relative_change = 5.2159860392745865e-6 Iter 70: T = 579.4550149630408 K, F = -0.056058897189570994, relative_change = 2.181564939930601e-6 Iter 75: T = 579.4511537854058 K, F = -0.023444553403711432, relative_change = 9.123875223888714e-7 Iter 80: T = 579.4495389675642 K, F = -0.00980480150898394, relative_change = 3.8157678216345113e-7 Iter 85: T = 579.448863626693 K, F = -0.0041004867086331664, relative_change = 1.595809159486943e-7 Iter 90: T = 579.4485811902421 K, F = -0.0017148727954007237, relative_change = 6.673881076129908e-8 Iter 95: T = 579.4484630717996 K, F = -0.000717180332602152, relative_change = 2.791099671014589e-8 Iter 100: T = 579.4484136732307 K, F = -0.00029993338810352377, relative_change = 1.1672717203470918e-8 Iter 105: T = 579.4483930141548 K, F = -0.0001254357255767169, relative_change = 4.881670592451797e-9 Iter 110: T = 579.4483843742819 K, F = -5.245871884612674e-5, relative_change = 2.0415731013661783e-9 Iter 115: T = 579.4483807609836 K, F = -2.1938862041326335e-5, relative_change = 8.538102518143252e-10 Iter 120: T = 579.4483792498592 K, F = -9.17509407949435e-6, relative_change = 3.5707364716271726e-10 Iter 125: T = 579.4483786178889 K, F = -3.837134452400193e-6, relative_change = 1.4933248518386128e-10 Iter 130: T = 579.4483783535914 K, F = -1.6047356181658756e-6, relative_change = 6.245263527168255e-11 Iter 135: T = 579.448378243059 K, F = -6.711198430320309e-7, relative_change = 2.611844739037876e-11 Iter 140: T = 579.448378196833 K, F = -2.806706257407754e-7, relative_change = 1.0923058007196314e-11 Iter 145: T = 579.4483781775008 K, F = -1.1737953381496524e-7, relative_change = 4.568142653112397e-12 Iter 150: T = 579.4483781694158 K, F = -4.90896968630139e-8, relative_change = 1.9104585850263228e-12 Iter 155: T = 579.4483781660347 K, F = -2.0530264488449745e-8, relative_change = 7.989908789895393e-13 Iter 160: T = 579.4483781646205 K, F = -8.586083621864304e-9, relative_change = 3.341507121864055e-13 Converged in 163 iterations to T = 579.4483781642065 K Iter 1: T = 964.2855873063164 K, F = -8137.56290543282, relative_change = 0.035714412693683556 Iter 2: T = 930.4943590827185 K, F = -6903.648310712704, relative_change = 0.03504275980935491 Iter 3: T = 898.5952512838927 K, F = -5855.77351230347, relative_change = 0.03428189272449963 Iter 5: T = 840.3602681536615 K, F = -4210.332202489608, relative_change = 0.03246679345662248 Iter 10: T = 725.9083702568154 K, F = -1836.327729882018, relative_change = 0.026106809753101957 Iter 15: T = 651.9522646538591 K, F = -793.0233222835516, relative_change = 0.01791709593984095 Iter 20: T = 610.0588161875218 K, F = -338.6111223974416, relative_change = 0.010291340278079278 Iter 25: T = 589.1022218008676 K, F = -143.2278701897289, relative_change = 0.00511182569367322 Iter 30: T = 579.4996265223085 K, F = -60.22788094774003, relative_change = 0.0023214251475058238 Iter 35: T = 575.3105354418994 K, F = -25.24961694277488, relative_change = 0.001007161286317007 Iter 40: T = 573.5259220950845 K, F = -10.570805053466545, relative_change = 0.00042791255173967187 Iter 45: T = 572.7736657093785 K, F = -4.4228067859592475, relative_change = 0.00018015856676919747 Iter 50: T = 572.4580147554932 K, F = -1.8500170952407025, relative_change = 7.555649371656749e-5 Iter 55: T = 572.3258213030368 K, F = -0.7737599858798151, relative_change = 3.163586561099997e-5 Iter 60: T = 572.2705040805059 K, F = -0.32360630120637773, relative_change = 1.3237020983458684e-5 Iter 65: T = 572.2473640948384 K, F = -0.13533788056975132, relative_change = 5.537022169798437e-6 Iter 70: T = 572.237685685658 K, F = -0.056600243420130286, relative_change = 2.315848579139104e-6 Iter 75: T = 572.2336378860267 K, F = -0.023670954676759032, relative_change = 9.685504792001314e-7 Iter 80: T = 572.2319450175627 K, F = -0.009899485892229387, relative_change = 4.0506548974705575e-7 Iter 85: T = 572.2312370344514 K, F = -0.004140084965740809, relative_change = 1.694042943882013e-7 Iter 90: T = 572.2309409465317 K, F = -0.0017314332797988552, relative_change = 7.084708599526018e-8 Iter 95: T = 572.2308171188655 K, F = -0.0007241061284987138, relative_change = 2.9629130158089996e-8 Iter 100: T = 572.2307653326284 K, F = -0.0003028298396648421, relative_change = 1.2391261788760411e-8 Iter 105: T = 572.2307436750006 K, F = -0.00012664705771625595, relative_change = 5.182174687438288e-9 Iter 110: T = 572.2307346175211 K, F = -5.2965311741648424e-5, relative_change = 2.1672474943595323e-9 Iter 115: T = 572.2307308295749 K, F = -2.2150726338210358e-5, relative_change = 9.063688306380321e-10 Iter 120: T = 572.2307292454105 K, F = -9.263698658334985e-6, relative_change = 3.790542893629001e-10 Iter 125: T = 572.230728582894 K, F = -3.8741891946192375e-6, relative_change = 1.5852502270215144e-10 Iter 130: T = 572.2307283058217 K, F = -1.620231805943284e-6, relative_change = 6.629704217045538e-11 Iter 135: T = 572.2307281899468 K, F = -6.776010246789532e-7, relative_change = 2.7726244841267813e-11 Iter 140: T = 572.2307281414866 K, F = -2.8338092777913104e-7, relative_change = 1.1595450278193363e-11 Iter 145: T = 572.2307281212198 K, F = -1.185137105674805e-7, relative_change = 4.849373065332792e-12 Iter 150: T = 572.2307281127441 K, F = -4.956444954462569e-8, relative_change = 2.028090298462528e-12 Iter 155: T = 572.2307281091995 K, F = -2.0728804339675833e-8, relative_change = 8.481862981936971e-13 Iter 160: T = 572.230728107717 K, F = -8.668912310216825e-9, relative_change = 3.5471667933039393e-13 Converged in 163 iterations to T = 572.230728107283 K Iter 1: T = 980.1658151146289 K, F = -4519.23789331241, relative_change = 0.019834184885371132 Iter 2: T = 962.3743023454824 K, F = -3817.3863096475343, relative_change = 0.018151533643382383 Iter 3: T = 946.504390852758 K, F = -3223.031786083677, relative_change = 0.016490373292435793 Iter 5: T = 920.0056152859684 K, F = -2294.379150245814, relative_change = 0.013321171406829455 Iter 10: T = 877.9420946224739 K, F = -974.0177462603835, relative_change = 0.006995731067676893 Iter 15: T = 858.0338494382199 K, F = -410.43876949644977, relative_change = 0.003279770503631247 Iter 20: T = 849.1995286871847 K, F = -172.2470807554297, relative_change = 0.0014451656058388517 Iter 25: T = 845.4059063162643 K, F = -72.14487692850523, relative_change = 0.0006182809783504901 Iter 30: T = 843.8012084234952 K, F = -30.19129902338407, relative_change = 0.00026108565905351915 Iter 35: T = 843.1268629141869 K, F = -12.629791461056278, relative_change = 0.0001096349947630897 Iter 40: T = 842.8442716759389 K, F = -5.282531530922691, relative_change = 4.592911279946069e-5 Iter 45: T = 842.7259882568502 K, F = -2.209323199022008, relative_change = 1.922185873461251e-5 Iter 50: T = 842.6765031336171 K, F = -0.9239837968174001, relative_change = 8.041219219310114e-6 Iter 55: T = 842.6558047865517 K, F = -0.386424286220452, relative_change = 3.3633553161295033e-6 Iter 60: T = 842.6471479522088 K, F = -0.16160781593869644, relative_change = 1.4066690779362964e-6 Iter 65: T = 842.6435274665238 K, F = -0.06758641736400794, relative_change = 5.882987017780039e-7 Iter 70: T = 842.6420133197003 K, F = -0.028265464159950238, relative_change = 2.460357981140792e-7 Iter 75: T = 842.6413800825349 K, F = -0.011820957691012435, relative_change = 1.0289550349944827e-7 Iter 80: T = 842.641115254686 K, F = -0.004943666205220021, relative_change = 4.3032197373902966e-8 Iter 85: T = 842.6410045004288 K, F = -0.002067500340262818, relative_change = 1.799659093017853e-8 Iter 90: T = 842.6409581816603 K, F = -0.0008646533484089058, relative_change = 7.526391351574446e-9 Iter 95: T = 842.6409388105955 K, F = -0.0003616083588862118, relative_change = 3.14762711308589e-9 Iter 100: T = 842.6409307093844 K, F = -0.00015122893410257632, relative_change = 1.316375308690919e-9 Iter 105: T = 842.6409273213611 K, F = -6.32457472247161e-5, relative_change = 5.505238935538481e-10 Iter 110: T = 842.6409259044492 K, F = -2.64501271598494e-5, relative_change = 2.3023567187653922e-10 Iter 115: T = 842.6409253118798 K, F = -1.1061757347663459e-5, relative_change = 9.628729299524824e-11 Iter 120: T = 842.6409250640602 K, F = -4.62616037144592e-6, relative_change = 4.026850759352951e-11 Iter 125: T = 842.640924960419 K, F = -1.934716239659906e-6, relative_change = 1.684077709769146e-11 Iter 130: T = 842.6409249170752 K, F = -8.091216836536574e-7, relative_change = 7.043016253924964e-12 Iter 135: T = 842.6409248989481 K, F = -3.3838594348800655e-7, relative_change = 2.9454873704138917e-12 Iter 140: T = 842.6409248913673 K, F = -1.4151716754007282e-7, relative_change = 1.2318390811604759e-12 Iter 145: T = 842.6409248881968 K, F = -5.918210121969025e-8, relative_change = 5.151518113042503e-13 Converged in 150 iterations to T = 842.640924886871 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001588829449182054 Iteration 10: d = 1.883520188774753e-5 Iteration 20: d = 2.2915242464050648e-7 Iteration 30: d = 3.1998041630967665e-9 Iteration 40: d = 4.557621647655424e-11 Iteration 50: d = 6.493080167817541e-13 Iteration 60: d = 9.223315525039176e-15 Converged after 64 iterations. d = 1.6544810625773082e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.656517119967 Iteration 2: convergence error = 4824.216153512708 Iteration 3: convergence error = 1093.5924666266053 Iteration 4: convergence error = 320.2170156427949 Iteration 5: convergence error = 95.06356446856034 Iteration 6: convergence error = 28.355329546256826 Iteration 7: convergence error = 8.48306086920752 Iteration 8: convergence error = 2.542098380337393 Iteration 9: convergence error = 0.7600211823396421 Iteration 10: convergence error = 0.22692305542591384 Iteration 11: convergence error = 0.06770191097803036 Iteration 12: convergence error = 0.020189956124340824 Iteration 13: convergence error = 0.006019533808284905 Iteration 14: convergence error = 0.0017944410608379258 Iteration 15: convergence error = 0.0005348850070276967 Iteration 16: convergence error = 0.00015943050038913498 Iteration 17: convergence error = 4.7519371491944185e-5 Iteration 18: convergence error = 1.416325517311634e-5 Iteration 19: convergence error = 4.221356448397273e-6 Iteration 20: convergence error = 1.2581679129652912e-6 Iteration 21: convergence error = 3.749894403881626e-7 Iteration 22: convergence error = 1.116266048484249e-7 Iteration 23: convergence error = 3.2361185731133446e-8 Iteration 24: convergence error = 9.328914529760368e-9 Iteration 25: convergence error = 2.6764155336422846e-9 Iteration 26: convergence error = 7.689777703490108e-10 Iteration 27: convergence error = 2.2146195988170803e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001838090069892416 Iteration 10: d = 1.8542210046330114e-5 Iteration 20: d = 1.8367837780947704e-7 Iteration 30: d = 2.307218433495952e-9 Iteration 40: d = 3.032373026965504e-11 Iteration 50: d = 4.0078590194055467e-13 Iteration 60: d = 5.321877523807602e-15 Converged after 63 iterations. d = 1.4328583334532669e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12287.57429557242 Iteration 2: convergence error = 8335.631613644196 Iteration 3: convergence error = 1950.0113585266963 Iteration 4: convergence error = 479.2509076247775 Iteration 5: convergence error = 122.03847564460216 Iteration 6: convergence error = 32.570993501009525 Iteration 7: convergence error = 8.873759235143098 Iteration 8: convergence error = 2.431910265352144 Iteration 9: convergence error = 0.6673456046678439 Iteration 10: convergence error = 0.1831590537142347 Iteration 11: convergence error = 0.050267754752667315 Iteration 12: convergence error = 0.013795260893402883 Iteration 13: convergence error = 0.0037858011482967413 Iteration 14: convergence error = 0.0010389134984052362 Iteration 15: convergence error = 0.0002851005924640049 Iteration 16: convergence error = 7.82376266670326e-5 Iteration 17: convergence error = 2.14700351079955e-5 Iteration 18: convergence error = 5.891822866033181e-6 Iteration 19: convergence error = 1.6168378351721913e-6 Iteration 20: convergence error = 4.4369448914949317e-7 Iteration 21: convergence error = 1.2262012205610517e-7 Iteration 22: convergence error = 3.2992829801514745e-8 Iteration 23: convergence error = 8.823008101899177e-9 Iteration 24: convergence error = 2.3590018827235326e-9 Iteration 25: convergence error = 6.284608389250934e-10 Iteration 26: convergence error = 1.6825651982799172e-10 Iteration 27: convergence error = 4.5702108764089644e-11 Iteration 28: convergence error = 1.2505552149377763e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001838090069892416 Iteration 10: d = 1.8542210046330114e-5 Iteration 20: d = 1.8367837780947704e-7 Iteration 30: d = 2.307218433495952e-9 Iteration 40: d = 3.032373026965504e-11 Iteration 50: d = 4.0078590194055467e-13 Iteration 60: d = 5.321877523807602e-15 Converged after 63 iterations. d = 1.4328583334532669e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.732277973182 Iteration 2: convergence error = 5726.535887920358 Iteration 3: convergence error = 2015.522684429985 Iteration 4: convergence error = 897.1826204574745 Iteration 5: convergence error = 410.426846230273 Iteration 6: convergence error = 193.49103736973075 Iteration 7: convergence error = 91.33917454882112 Iteration 8: convergence error = 43.14944439051942 Iteration 9: convergence error = 20.387396332117532 Iteration 10: convergence error = 9.63148215379897 Iteration 11: convergence error = 4.549190881252343 Iteration 12: convergence error = 2.148274423361272 Iteration 13: convergence error = 1.0143256929000017 Iteration 14: convergence error = 0.4788675625131873 Iteration 15: convergence error = 0.2260574181850643 Iteration 16: convergence error = 0.10662028550177638 Iteration 17: convergence error = 0.049851063466576306 Iteration 18: convergence error = 0.022769335258089995 Iteration 19: convergence error = 0.010361931078932685 Iteration 20: convergence error = 0.004705656809619541 Iteration 21: convergence error = 0.0021343898119994265 Iteration 22: convergence error = 0.0009674334210103552 Iteration 23: convergence error = 0.0004383174500617315 Iteration 24: convergence error = 0.00019854093989124522 Iteration 25: convergence error = 8.991824915938196e-5 Iteration 26: convergence error = 4.0719969547353685e-5 Iteration 27: convergence error = 1.8439278846926754e-5 Iteration 28: convergence error = 8.3496074694267e-6 Iteration 29: convergence error = 3.780759925575694e-6 Iteration 30: convergence error = 1.7119436961365864e-6 Iteration 31: convergence error = 7.751586963422596e-7 Iteration 32: convergence error = 3.5098946682410315e-7 Iteration 33: convergence error = 1.5892692317720503e-7 Iteration 34: convergence error = 7.195967555162497e-8 Iteration 35: convergence error = 3.2579919206909835e-8 Iteration 36: convergence error = 1.4758370525669307e-8 Iteration 37: convergence error = 6.682057573925704e-9 Iteration 38: convergence error = 3.0240698833949864e-9 Iteration 39: convergence error = 1.36969902087003e-9 Iteration 40: convergence error = 6.261871021706611e-10 Iteration 41: convergence error = 2.842170943040401e-10 Iteration 42: convergence error = 1.2960299500264227e-10 Iteration 43: convergence error = 5.6843418860808015e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001838090069892416 Iteration 10: d = 1.8542210046330114e-5 Iteration 20: d = 1.8367837780947704e-7 Iteration 30: d = 2.307218433495952e-9 Iteration 40: d = 3.032373026965504e-11 Iteration 50: d = 4.0078590194055467e-13 Iteration 60: d = 5.321877523807602e-15 Converged after 63 iterations. d = 1.4328583334532669e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.691742699548 Iteration 2: convergence error = 7346.078908728422 Iteration 3: convergence error = 1734.3045249130769 Iteration 4: convergence error = 505.50694932859824 Iteration 5: convergence error = 156.9452125080029 Iteration 6: convergence error = 48.75442349170453 Iteration 7: convergence error = 15.124161696313422 Iteration 8: convergence error = 4.684495192049326 Iteration 9: convergence error = 1.4493643795431126 Iteration 10: convergence error = 0.4481216951080569 Iteration 11: convergence error = 0.13849703657615464 Iteration 12: convergence error = 0.042794257361038035 Iteration 13: convergence error = 0.013221298836924689 Iteration 14: convergence error = 0.004084424539541942 Iteration 15: convergence error = 0.0012617392471838684 Iteration 16: convergence error = 0.00038976077803454245 Iteration 17: convergence error = 0.00012039843568345532 Iteration 18: convergence error = 3.7191203318798216e-5 Iteration 19: convergence error = 1.1488353266031481e-5 Iteration 20: convergence error = 3.5487450986693148e-6 Iteration 21: convergence error = 1.0961907719320152e-6 Iteration 22: convergence error = 3.384539013495669e-7 Iteration 23: convergence error = 1.033336047839839e-7 Iteration 24: convergence error = 3.076820576097816e-8 Iteration 25: convergence error = 9.124960342887789e-9 Iteration 26: convergence error = 2.701199264265597e-9 Iteration 27: convergence error = 8.085407898761332e-10 Iteration 28: convergence error = 2.4010660126805305e-10 Iteration 29: convergence error = 7.275957614183426e-11 Iteration 30: convergence error = 2.1827872842550278e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001838090069892416 Iteration 10: d = 1.8542210046330114e-5 Iteration 20: d = 1.8367837780947704e-7 Iteration 30: d = 2.307218433495952e-9 Iteration 40: d = 3.032373026965504e-11 Iteration 50: d = 4.0078590194055467e-13 Iteration 60: d = 5.321877523807602e-15 Converged after 63 iterations. d = 1.4328583334532669e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.712810536306 Iteration 2: convergence error = 5518.169335163515 Iteration 3: convergence error = 937.1871733862763 Iteration 4: convergence error = 170.94610493367827 Iteration 5: convergence error = 31.049355029540266 Iteration 6: convergence error = 5.652737329278352 Iteration 7: convergence error = 1.0309738301070865 Iteration 8: convergence error = 0.18875182811780178 Iteration 9: convergence error = 0.034517334157499135 Iteration 10: convergence error = 0.006308664291736932 Iteration 11: convergence error = 0.0011526935800247884 Iteration 12: convergence error = 0.00021058490165160038 Iteration 13: convergence error = 3.846873187285382e-5 Iteration 14: convergence error = 7.027052106423071e-6 Iteration 15: convergence error = 1.2835816960432567e-6 Iteration 16: convergence error = 2.3447682906407863e-7 Iteration 17: convergence error = 4.2817191570065916e-8 Iteration 18: convergence error = 7.817561709089205e-9 Iteration 19: convergence error = 1.4365468814503402e-9 Iteration 20: convergence error = 2.5920599000528455e-10 Iteration 21: convergence error = 4.8203219193965197e-11 Iteration 22: convergence error = 8.412825991399586e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001838090069892416 Iteration 10: d = 1.8542210046330114e-5 Iteration 20: d = 1.8367837780947704e-7 Iteration 30: d = 2.307218433495952e-9 Iteration 40: d = 3.032373026965504e-11 Iteration 50: d = 4.0078590194055467e-13 Iteration 60: d = 5.321877523807602e-15 Converged after 63 iterations. d = 1.4328583334532669e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4836479389155 Iteration 2: convergence error = 2714.504035362146 Iteration 3: convergence error = 205.07801157370216 Iteration 4: convergence error = 19.42565377383502 Iteration 5: convergence error = 1.6068692848669537 Iteration 6: convergence error = 0.1309749435796251 Iteration 7: convergence error = 0.01068872805587445 Iteration 8: convergence error = 0.0008742686890476714 Iteration 9: convergence error = 7.161565919480055e-5 Iteration 10: convergence error = 5.871259254769601e-6 Iteration 11: convergence error = 4.81554938312922e-7 Iteration 12: convergence error = 3.950582081343057e-8 Iteration 13: convergence error = 3.2421472397565782e-9 Iteration 14: convergence error = 2.6522707360012076e-10 Iteration 15: convergence error = 2.3078428057488054e-11 Iteration 16: convergence error = 3.2980887698004956e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001588829449182054 Iteration 10: d = 1.883520188774753e-5 Iteration 20: d = 2.2915242464050648e-7 Iteration 30: d = 3.1998041630967665e-9 Iteration 40: d = 4.557621647655424e-11 Iteration 50: d = 6.493080167817541e-13 Iteration 60: d = 9.223315525039176e-15 Converged after 64 iterations. d = 1.6544810625773082e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.326152031729 Iteration 2: convergence error = 3610.5017712909903 Iteration 3: convergence error = 591.623993395616 Iteration 4: convergence error = 104.55585759977998 Iteration 5: convergence error = 18.607477605892655 Iteration 6: convergence error = 3.2803331568748035 Iteration 7: convergence error = 0.5760513663024085 Iteration 8: convergence error = 0.10099476517302719 Iteration 9: convergence error = 0.01769469722330541 Iteration 10: convergence error = 0.003099314646988205 Iteration 11: convergence error = 0.0005427971818789956 Iteration 12: convergence error = 9.505793104835902e-5 Iteration 13: convergence error = 1.66467732469755e-5 Iteration 14: convergence error = 2.915205413955846e-6 Iteration 15: convergence error = 5.105034688313026e-7 Iteration 16: convergence error = 8.940787665778771e-8 Iteration 17: convergence error = 1.5657406038371846e-8 Iteration 18: convergence error = 2.7273472369415686e-9 Iteration 19: convergence error = 4.833964339923114e-10 Iteration 20: convergence error = 8.29913915367797e-11 Iteration 21: convergence error = 1.3642420526593924e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m43.2s Testing RayTraceHeatTransfer tests passed Testing completed after 546.87s PkgEval succeeded after 596.3s