Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1372 (893635dc59*) started at 2025-12-16T15:18:50.006 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.61s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.79s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 13.75s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_Z572kV/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Z572kV/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:10 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011075439521339543 Iteration 10: d = 1.1415260977713283e-5 Iteration 20: d = 1.8664049255650593e-7 Iteration 30: d = 3.2144393830613918e-9 Iteration 40: d = 5.578789389960689e-11 Iteration 50: d = 9.717925594924855e-13 Iteration 60: d = 1.6953082959070163e-14 Converged after 66 iterations. d = 1.50459443562351e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▋ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010553686084872882 Iteration 10: d = 1.236789084517222e-5 Iteration 20: d = 1.9453294207132768e-7 Iteration 30: d = 3.2666575285973254e-9 Iteration 40: d = 5.585967566756e-11 Iteration 50: d = 9.638453204894093e-13 Iteration 60: d = 1.6699015791376414e-14 Converged after 65 iterations. d = 2.191433219647638e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▎ | ETA: 0:00:01 Bin 1 progress: 85%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001094240229078663 Iteration 10: d = 1.0391822021547974e-5 Iteration 20: d = 1.6251571595259646e-7 Iteration 30: d = 2.732804862493357e-9 Iteration 40: d = 4.697267075727951e-11 Iteration 50: d = 8.185998230550891e-13 Iteration 60: d = 1.4358327018834836e-14 Converged after 65 iterations. d = 1.890318004124228e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 37%|████████████▎ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010921579670899835 Iteration 10: d = 1.0539040625111169e-5 Iteration 20: d = 1.4674355884342196e-7 Iteration 30: d = 2.2914428702606776e-9 Iteration 40: d = 3.8147385041504907e-11 Iteration 50: d = 6.617452148985638e-13 Iteration 60: d = 1.1728656383790776e-14 Converged after 65 iterations. d = 1.6012760748844782e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 94%|██████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013459344649682221 Iteration 10: d = 1.7648753994198238e-5 Iteration 20: d = 2.763165707027311e-7 Iteration 30: d = 4.447063154311339e-9 Iteration 40: d = 7.112297880150992e-11 Iteration 50: d = 1.1328544233380894e-12 Iteration 60: d = 1.799581013470544e-14 Converged after 66 iterations. d = 1.4548373743481245e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013526499955221702 Iteration 10: d = 1.5517437831782467e-5 Iteration 20: d = 2.3006974299534356e-7 Iteration 30: d = 3.652341999221179e-9 Iteration 40: d = 5.793636497197979e-11 Iteration 50: d = 9.164869587461523e-13 Iteration 60: d = 1.443861208127676e-14 Converged after 65 iterations. d = 1.8024262416844238e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014613178444317929 Iteration 10: d = 1.4265717855196931e-5 Iteration 20: d = 2.023562002009349e-7 Iteration 30: d = 3.1813603041287438e-9 Iteration 40: d = 5.033380592532022e-11 Iteration 50: d = 7.963678041279792e-13 Iteration 60: d = 1.2601333787904706e-14 Converged after 65 iterations. d = 1.578555194119502e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012682466476138159 Iteration 10: d = 1.3480118602894966e-5 Iteration 20: d = 2.022952787423798e-7 Iteration 30: d = 3.2383864672783154e-9 Iteration 40: d = 5.161607559281468e-11 Iteration 50: d = 8.192220708735225e-13 Iteration 60: d = 1.2947278763242925e-14 Converged after 65 iterations. d = 1.6359913237426687e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014039183988471908 Iteration 10: d = 1.737727974315584e-5 Iteration 20: d = 2.620225418295025e-7 Iteration 30: d = 4.157919748209229e-9 Iteration 40: d = 6.600562232156772e-11 Iteration 50: d = 1.0450181674856365e-12 Iteration 60: d = 1.6494899962205676e-14 Converged after 65 iterations. d = 2.0695475600363423e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014017313393590288 Iteration 10: d = 1.5274021455709594e-5 Iteration 20: d = 2.28358731209469e-7 Iteration 30: d = 3.6626499180316427e-9 Iteration 40: d = 5.855128972051899e-11 Iteration 50: d = 9.30960727865169e-13 Iteration 60: d = 1.4791521033787806e-14 Converged after 65 iterations. d = 1.8812286844577294e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0035371620749186155 Iteration 10: d = 2.497955808743534e-5 Iteration 20: d = 1.9417741417047994e-7 Iteration 30: d = 2.323522741803391e-9 Iteration 40: d = 3.133820813219983e-11 Iteration 50: d = 4.3391384029107587e-13 Iteration 60: d = 6.03144993347542e-15 Converged after 63 iterations. d = 1.7141617815102345e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0033909301590257543 Iteration 10: d = 3.371459762040695e-5 Iteration 20: d = 4.0049866213354484e-7 Iteration 30: d = 5.712330094998078e-9 Iteration 40: d = 8.547716154651346e-11 Iteration 50: d = 1.2980778556244542e-12 Iteration 60: d = 1.9812041320088707e-14 Converged after 66 iterations. d = 1.6408485064171865e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0027513416168446336 Iteration 10: d = 3.373703273802428e-5 Iteration 20: d = 4.89616551789708e-7 Iteration 30: d = 7.681614143725565e-9 Iteration 40: d = 1.2303269785786112e-10 Iteration 50: d = 1.9875321838725834e-12 Iteration 60: d = 3.223096761378957e-14 Converged after 67 iterations. d = 1.781823289846872e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0020671869638444512 Iteration 10: d = 1.3439386915177382e-5 Iteration 20: d = 1.8707678306445188e-7 Iteration 30: d = 3.1376249506924375e-9 Iteration 40: d = 5.386573297463652e-11 Iteration 50: d = 9.296572717316989e-13 Iteration 60: d = 1.6090321712529818e-14 Converged after 65 iterations. d = 2.100436182033564e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013459344649682221 Iteration 10: d = 1.7648753994198238e-5 Iteration 20: d = 2.763165707027311e-7 Iteration 30: d = 4.447063154311339e-9 Iteration 40: d = 7.112297880150992e-11 Iteration 50: d = 1.1328544233380894e-12 Iteration 60: d = 1.799581013470544e-14 Converged after 66 iterations. d = 1.4548373743481245e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015139661905976152 Iteration 10: d = 1.3243418185363813e-5 Iteration 20: d = 1.5477365028222855e-7 Iteration 30: d = 2.1359213604968953e-9 Iteration 40: d = 3.00443472860951e-11 Iteration 50: d = 4.231645810132254e-13 Iteration 60: d = 5.957617946828341e-15 Converged after 63 iterations. d = 1.6514239743239764e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012174713861290163 Iteration 10: d = 1.213677336938688e-5 Iteration 20: d = 1.3902639265614318e-7 Iteration 30: d = 1.8674096312043548e-9 Iteration 40: d = 2.6019035622477845e-11 Iteration 50: d = 3.66085661022697e-13 Iteration 60: d = 5.192528988332649e-15 Converged after 62 iterations. d = 2.197233205009787e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.587985875894 Iteration 2: convergence error = 4823.043070626481 Iteration 3: convergence error = 1096.0714411747017 Iteration 4: convergence error = 317.8688883340483 Iteration 5: convergence error = 94.05928185851826 Iteration 6: convergence error = 28.133076547492465 Iteration 7: convergence error = 8.457948240069527 Iteration 8: convergence error = 2.5327854590013885 Iteration 9: convergence error = 0.756672442948684 Iteration 10: convergence error = 0.22574846722159236 Iteration 11: convergence error = 0.06729809854800806 Iteration 12: convergence error = 0.020053372279789983 Iteration 13: convergence error = 0.005973948631208259 Iteration 14: convergence error = 0.0017793938802697085 Iteration 15: convergence error = 0.0005299636991367151 Iteration 16: convergence error = 0.00015783343133080052 Iteration 17: convergence error = 4.700450267591805e-5 Iteration 18: convergence error = 1.3998222357258783e-5 Iteration 19: convergence error = 4.168718078290112e-6 Iteration 20: convergence error = 1.2414429875207134e-6 Iteration 21: convergence error = 3.6970391192880925e-7 Iteration 22: convergence error = 1.0995768207067158e-7 Iteration 23: convergence error = 3.183367880410515e-8 Iteration 24: convergence error = 9.162249625660479e-9 Iteration 25: convergence error = 2.6343514036852866e-9 Iteration 26: convergence error = 7.532889867434278e-10 Iteration 27: convergence error = 2.1782398107461631e-10 Iteration 28: convergence error = 5.979927664157003e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015139661905976152 Iteration 10: d = 1.3243418185363813e-5 Iteration 20: d = 1.5477365028222855e-7 Iteration 30: d = 2.1359213604968953e-9 Iteration 40: d = 3.00443472860951e-11 Iteration 50: d = 4.231645810132254e-13 Iteration 60: d = 5.957617946828341e-15 Converged after 63 iterations. d = 1.6514239743239764e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.30498011232 Iteration 2: convergence error = 4825.765352699584 Iteration 3: convergence error = 1091.4156941623478 Iteration 4: convergence error = 319.15584714206693 Iteration 5: convergence error = 94.57261994518853 Iteration 6: convergence error = 28.30655152529016 Iteration 7: convergence error = 8.517497923377277 Iteration 8: convergence error = 2.552715491428444 Iteration 9: convergence error = 0.7632374079066722 Iteration 10: convergence error = 0.2278875023484943 Iteration 11: convergence error = 0.0679894053228054 Iteration 12: convergence error = 0.02027535398588043 Iteration 13: convergence error = 0.00604484662176219 Iteration 14: convergence error = 0.0018019342574007169 Iteration 15: convergence error = 0.0005371013646708889 Iteration 16: convergence error = 0.00016008571719794418 Iteration 17: convergence error = 4.771300496031472e-5 Iteration 18: convergence error = 1.4220465573089314e-5 Iteration 19: convergence error = 4.238251221977407e-6 Iteration 20: convergence error = 1.2631601293833228e-6 Iteration 21: convergence error = 3.7646213968400843e-7 Iteration 22: convergence error = 1.1206429917365313e-7 Iteration 23: convergence error = 3.248896973673254e-8 Iteration 24: convergence error = 9.358927854918875e-9 Iteration 25: convergence error = 2.6961970434058458e-9 Iteration 26: convergence error = 7.680682756472379e-10 Iteration 27: convergence error = 2.212345862062648e-10 Iteration 28: convergence error = 6.366462912410498e-11 Iteration 29: convergence error = 1.8189894035458565e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 7:07:44 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:38 Bin 1 ray tracing: 17%|█████▏ | ETA: 0:00:23 Bin 1 ray tracing: 26%|███████▋ | ETA: 0:00:16 Bin 1 ray tracing: 34%|██████████▎ | ETA: 0:00:13 Bin 1 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▍ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████ | ETA: 0:00:08 Bin 2 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 44%|█████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 46%|██████████████ | ETA: 0:00:06 Bin 4 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:10 Bin 5 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 5 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 5 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 59%|█████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 69%|████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 6 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 6 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 7 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 7 ray tracing: 58%|█████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 67%|████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 8 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 8 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 59%|█████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 68%|████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 10 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 39%|███████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 49%|██████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 58%|█████████████████ | ETA: 0:00:04 Bin 10 ray tracing: 68%|███████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 78%|██████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 88%|█████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████▎| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 4 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 4 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 5 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 6 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 6 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 78%|████████████████████████▉ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015139661905976152 Iteration 10: d = 1.3243418185363813e-5 Iteration 20: d = 1.5477365028222855e-7 Iteration 30: d = 2.1359213604968953e-9 Iteration 40: d = 3.00443472860951e-11 Iteration 50: d = 4.231645810132254e-13 Iteration 60: d = 5.957617946828341e-15 Converged after 63 iterations. d = 1.6514239743239764e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012304955425754386 Iteration 10: d = 1.2296808858539537e-5 Iteration 20: d = 1.4299593360921284e-7 Iteration 30: d = 1.933169540306099e-9 Iteration 40: d = 2.700440987756926e-11 Iteration 50: d = 3.805130137279498e-13 Iteration 60: d = 5.357869859842937e-15 Converged after 63 iterations. d = 1.4966427656995402e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016350063788347102 Iteration 10: d = 1.989944630806846e-5 Iteration 20: d = 2.2662556637601274e-7 Iteration 30: d = 2.9164000424329145e-9 Iteration 40: d = 3.9445052010006175e-11 Iteration 50: d = 5.451825939254782e-13 Iteration 60: d = 7.613042533426308e-15 Converged after 63 iterations. d = 2.144949769454269e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016479341559216844 Iteration 10: d = 1.8148206515004583e-5 Iteration 20: d = 2.070796318182473e-7 Iteration 30: d = 2.6239556804447236e-9 Iteration 40: d = 3.413480836404081e-11 Iteration 50: d = 4.48523887631576e-13 Iteration 60: d = 5.9340039202835796e-15 Converged after 63 iterations. d = 1.5986342596686641e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014336634758056802 Iteration 10: d = 9.690255677439478e-6 Iteration 20: d = 7.131313391582333e-8 Iteration 30: d = 8.026397790192045e-10 Iteration 40: d = 1.0438244858910171e-11 Iteration 50: d = 1.4078173071162457e-13 Converged after 60 iterations. d = 1.9757053960886185e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013782938592075576 Iteration 10: d = 1.2357320980238588e-5 Iteration 20: d = 1.2263705485798188e-7 Iteration 30: d = 1.5930763981477854e-9 Iteration 40: d = 2.189292028039807e-11 Iteration 50: d = 3.0323202739190913e-13 Iteration 60: d = 4.23073519234107e-15 Converged after 62 iterations. d = 1.799294442805159e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017728682599595323 Iteration 10: d = 1.880018635317109e-5 Iteration 20: d = 2.0160187255025586e-7 Iteration 30: d = 2.5071373971035957e-9 Iteration 40: d = 3.3102366936848415e-11 Iteration 50: d = 4.495296872009133e-13 Iteration 60: d = 6.1870099475884305e-15 Converged after 63 iterations. d = 1.685519163500211e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001751977337992593 Iteration 10: d = 1.157005772485462e-5 Iteration 20: d = 1.1284617330687384e-7 Iteration 30: d = 1.4821417487189792e-9 Iteration 40: d = 2.0336376386559178e-11 Iteration 50: d = 2.807100050646292e-13 Iteration 60: d = 3.8588053019004276e-15 Converged after 62 iterations. d = 1.6337051688646485e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010675302342260961 Iteration 10: d = 5.727415486614904e-6 Iteration 20: d = 3.758515187360685e-8 Iteration 30: d = 3.7001698734674846e-10 Iteration 40: d = 4.602276561540821e-12 Iteration 50: d = 6.196208766485244e-14 Converged after 58 iterations. d = 1.993694576114987e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017310622121703514 Iteration 10: d = 1.4356673375749328e-5 Iteration 20: d = 1.314664761740267e-7 Iteration 30: d = 1.5876028024664673e-9 Iteration 40: d = 2.0767659189264565e-11 Iteration 50: d = 2.779892055861885e-13 Iteration 60: d = 3.726270903416907e-15 Converged after 62 iterations. d = 1.624757193312122e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.34726882223 Iteration 2: convergence error = 4812.253774198063 Iteration 3: convergence error = 1095.765404835536 Iteration 4: convergence error = 324.78689524696665 Iteration 5: convergence error = 96.87680278257108 Iteration 6: convergence error = 29.045436039862352 Iteration 7: convergence error = 8.723055088093815 Iteration 8: convergence error = 2.6295906207096778 Iteration 9: convergence error = 0.7908485256627955 Iteration 10: convergence error = 0.23752549627488406 Iteration 11: convergence error = 0.07128383429585483 Iteration 12: convergence error = 0.021383589573133577 Iteration 13: convergence error = 0.006412999640815542 Iteration 14: convergence error = 0.0019230011716899753 Iteration 15: convergence error = 0.0005765834225712752 Iteration 16: convergence error = 0.00017287180185121542 Iteration 17: convergence error = 5.1829173798978445e-5 Iteration 18: convergence error = 1.5538800425929367e-5 Iteration 19: convergence error = 4.658612624552916e-6 Iteration 20: convergence error = 1.3966732694825623e-6 Iteration 21: convergence error = 4.1872226574923843e-7 Iteration 22: convergence error = 1.2541227079054806e-7 Iteration 23: convergence error = 3.670220394269563e-8 Iteration 24: convergence error = 1.0646999726304784e-8 Iteration 25: convergence error = 3.081368049606681e-9 Iteration 26: convergence error = 8.826646080706269e-10 Iteration 27: convergence error = 2.5852386897895485e-10 Iteration 28: convergence error = 7.457856554538012e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2646729737239 K, F = -7458.775402271966, relative_change = 0.032735327026276066 Iter 2: T = 936.6020599469298 K, F = -6322.69472034778, relative_change = 0.03170033382127577 Iter 3: T = 907.9809502389893 K, F = -5358.151928050748, relative_change = 0.030558452657644397 Iter 5: T = 856.7259325111103 K, F = -3844.356850184309, relative_change = 0.02795884765774756 Iter 10: T = 761.3258958730135 K, F = -1664.8066154115825, relative_change = 0.020053362055213634 Iter 15: T = 705.3965089212603 K, F = -712.8611178070579, relative_change = 0.012036734850573123 Iter 20: T = 676.599976274784 K, F = -302.1558329909316, relative_change = 0.006171750781736865 Iter 25: T = 663.1615690129128 K, F = -127.20705762690251, relative_change = 0.0028531402770925946 Iter 30: T = 657.2432309966799 K, F = -53.35994552834425, relative_change = 0.0012485046715082005 Iter 35: T = 654.7108387339596 K, F = -22.344925152794385, relative_change = 0.0005324803542319716 Iter 40: T = 653.6413243754765 K, F = -9.350099561148728, relative_change = 0.00022455128901672277 Iter 45: T = 653.1921827354448 K, F = -3.9112365463547625, relative_change = 9.423964495537272e-5 Iter 50: T = 653.0040189547642 K, F = -1.6358860330906164, relative_change = 3.947009237699681e-5 Iter 55: T = 652.9252691759727 K, F = -0.6841751292584507, relative_change = 1.6517020961298826e-5 Iter 60: T = 652.892325018805 K, F = -0.2861351189346841, relative_change = 6.909393488956968e-6 Iter 65: T = 652.8785456185135 K, F = -0.1196659826882373, relative_change = 2.889901976013617e-6 Iter 70: T = 652.8727826007977 K, F = -0.050045893278782616, relative_change = 1.2086459398166857e-6 Iter 75: T = 652.8703723840979 K, F = -0.020929816510989574, relative_change = 5.054796850874674e-7 Iter 80: T = 652.8693643932686 K, F = -0.008753103813176788, relative_change = 2.1139930587744698e-7 Iter 85: T = 652.868942837818 K, F = -0.0036606533514532136, relative_change = 8.84100055318148e-8 Iter 90: T = 652.868766538006 K, F = -0.001530929088134625, relative_change = 3.69741710481542e-8 Iter 95: T = 652.8686928072688 K, F = -0.000640252852000589, relative_change = 1.5463048795543574e-8 Iter 100: T = 652.8686619721852 K, F = -0.0002677613938665835, relative_change = 6.4668332472306505e-9 Iter 105: T = 652.8686490765834 K, F = -0.0001119810137800159, relative_change = 2.70450717564222e-9 Iter 110: T = 652.8686436834885 K, F = -4.683179780429203e-5, relative_change = 1.131057256188492e-9 Iter 115: T = 652.8686414280318 K, F = -1.9585617600847982e-5, relative_change = 4.730216713291078e-10 Iter 120: T = 652.8686404847728 K, F = -8.190939623009541e-6, relative_change = 1.9782332402504897e-10 Iter 125: T = 652.8686400902906 K, F = -3.4255487824652597e-6, relative_change = 8.27320771359433e-11 Iter 130: T = 652.8686399253133 K, F = -1.4326053018320906e-6, relative_change = 3.459954010458743e-11 Iter 135: T = 652.868639856318 K, F = -5.991326549881215e-7, relative_change = 1.446994109832577e-11 Iter 140: T = 652.8686398274633 K, F = -2.505650154582817e-7, relative_change = 6.0515162803423306e-12 Iter 145: T = 652.8686398153958 K, F = -1.0478814993497565e-7, relative_change = 2.5307890417760365e-12 Iter 150: T = 652.8686398103491 K, F = -4.382337381869661e-8, relative_change = 1.0583993925545567e-12 Iter 155: T = 652.8686398082385 K, F = -1.8327376949400787e-8, relative_change = 4.4263330137277074e-13 Converged in 159 iterations to T = 652.8686398074767 K Iter 1: T = 970.3410580972557 K, F = -6757.818125477536, relative_change = 0.029658941902744373 Iter 2: T = 942.8463784545507 K, F = -5723.719741938517, relative_change = 0.028335067771551637 Iter 3: T = 917.4712201398311 K, F = -4846.112794213497, relative_change = 0.026913353961557186 Iter 5: T = 872.863547659239 K, F = -3469.820641863852, relative_change = 0.023821351193163347 Iter 10: T = 793.6788573945643 K, F = -1493.507736734983, relative_change = 0.015515600785287085 Iter 15: T = 750.5286403391472 K, F = -635.7547723257021, relative_change = 0.008497389617664995 Iter 20: T = 729.5805903149484 K, F = -268.3566256952267, relative_change = 0.004088677023400716 Iter 25: T = 720.1515226801407 K, F = -112.71875233568134, relative_change = 0.0018255892796722407 Iter 30: T = 716.0745887478847 K, F = -47.23071667364816, relative_change = 0.0007857796030133581 Iter 35: T = 714.3447568588942 K, F = -19.768648207613758, relative_change = 0.0003326913604801296 Iter 40: T = 713.616867292708 K, F = -8.270347437430962, relative_change = 0.0001398601677098732 Iter 45: T = 713.3116676951146 K, F = -3.4592609458034715, relative_change = 5.8618908867946635e-5 Iter 50: T = 713.1838912069168 K, F = -1.4467923552825677, relative_change = 2.453753717193284e-5 Iter 55: T = 713.1304293052066 K, F = -0.605081264579407, relative_change = 1.0265815781164975e-5 Iter 60: T = 713.1080666549279 K, F = -0.2530549094149993, relative_change = 4.293973578262887e-6 Iter 65: T = 713.0987135848934 K, F = -0.1058310572248301, relative_change = 1.7959111846641854e-6 Iter 70: T = 713.0948018894024 K, F = -0.044259894570131464, relative_change = 7.510925220352335e-7 Iter 75: T = 713.0931659489114 K, F = -0.01851003091955461, relative_change = 3.141195386409457e-7 Iter 80: T = 713.0924817750869 K, F = -0.007741118510730227, relative_change = 1.3136918536611755e-7 Iter 85: T = 713.0921956447276 K, F = -0.0032374286498924043, relative_change = 5.4940274629051264e-8 Iter 90: T = 713.0920759814727 K, F = -0.0013539314015239556, relative_change = 2.2976698640786838e-8 Iter 95: T = 713.0920259368492 K, F = -0.0005662302936521035, relative_change = 9.609133188740368e-9 Iter 100: T = 713.0920050075862 K, F = -0.00023680427291183914, relative_change = 4.018654850433305e-9 Iter 105: T = 713.0919962547179 K, F = -9.903437493474776e-5, relative_change = 1.6806495489117678e-9 Iter 110: T = 713.0919925941638 K, F = -4.1417359472162296e-5, relative_change = 7.028677493156459e-10 Iter 115: T = 713.0919910632762 K, F = -1.7321232398836983e-5, relative_change = 2.9394765651747457e-10 Iter 120: T = 713.0919904230408 K, F = -7.243946577029092e-6, relative_change = 1.229324265345418e-10 Iter 125: T = 713.0919901552866 K, F = -3.0295042650063664e-6, relative_change = 5.141179703626535e-11 Iter 130: T = 713.0919900433087 K, F = -1.2669750452110051e-6, relative_change = 2.1501030606063302e-11 Iter 135: T = 713.0919899964781 K, F = -5.29863734999303e-7, relative_change = 8.99198167311012e-12 Iter 140: T = 713.091989976893 K, F = -2.2159494306173144e-7, relative_change = 3.7605473549310735e-12 Iter 145: T = 713.0919899687023 K, F = -9.267227518705567e-8, relative_change = 1.5726824562603015e-12 Iter 150: T = 713.0919899652769 K, F = -3.875737653036282e-8, relative_change = 6.577268767637229e-13 Iter 155: T = 713.0919899638444 K, F = -1.6209095066166412e-8, relative_change = 2.750742807575183e-13 Converged in 157 iterations to T = 713.0919899635413 K Iter 1: T = 974.3036819936323 K, F = -5854.930501259671, relative_change = 0.025696318006367718 Iter 2: T = 950.7973514438902 K, F = -4953.6301257876175, relative_change = 0.024126287300529493 Iter 3: T = 929.4071878290758 K, F = -4189.269798083166, relative_change = 0.022497079511560516 Iter 5: T = 892.6257802847975 K, F = -2992.118340524931, relative_change = 0.01914483867099048 Iter 10: T = 830.5876426152049 K, F = -1279.6598366645142, relative_change = 0.011276304988253442 Iter 15: T = 799.0432114411018 K, F = -541.9091444849465, relative_change = 0.00570185535370374 Iter 20: T = 784.4408367281175 K, F = -228.0236619631996, relative_change = 0.002615106590773343 Iter 25: T = 778.0370706344548 K, F = -95.62543544713346, relative_change = 0.0011399546524355642 Iter 30: T = 775.3023660745168 K, F = -40.03938149400657, relative_change = 0.0004853502842554545 Iter 35: T = 774.148406407345 K, F = -16.75341409490637, relative_change = 0.00020452498244216553 Iter 40: T = 773.6639807815146 K, F = -7.007968160127829, relative_change = 8.580816645821583e-5 Iter 45: T = 773.4610666769081 K, F = -2.9310773345677417, relative_change = 3.5934038451459226e-5 Iter 50: T = 773.3761491804022 K, F = -1.2258573087434226, relative_change = 1.503646252874978e-5 Iter 55: T = 773.3406257940034 K, F = -0.5126761740287975, relative_change = 6.289901819747907e-6 Iter 60: T = 773.3257677615248 K, F = -0.21440869941746987, relative_change = 2.630769883929176e-6 Iter 65: T = 773.3195536526005 K, F = -0.08966852368412703, relative_change = 1.1002644838288517e-6 Iter 70: T = 773.3169547851594 K, F = -0.037500490320046875, relative_change = 4.6015163557028616e-7 Iter 75: T = 773.3158678985101 K, F = -0.01568316039399964, relative_change = 1.924422890804243e-7 Iter 80: T = 773.3154133479158 K, F = -0.006558886282100218, relative_change = 8.048190483776047e-8 Iter 85: T = 773.3152232491459 K, F = -0.002743004802485016, relative_change = 3.365853597276636e-8 Iter 90: T = 773.3151437475204 K, F = -0.0011471574055672562, relative_change = 1.4076409077550169e-8 Iter 95: T = 773.3151104989828 K, F = -0.0004797549356518882, relative_change = 5.886923695801498e-9 Iter 100: T = 773.3150965940456 K, F = -0.00020063924383739717, relative_change = 2.461982008311594e-9 Iter 105: T = 773.3150907788346 K, F = -8.390972690619503e-5, relative_change = 1.0296303026803818e-9 Iter 110: T = 773.3150883468438 K, F = -3.509205034424312e-5, relative_change = 4.306037010349428e-10 Iter 115: T = 773.3150873297561 K, F = -1.4675911644834727e-5, relative_change = 1.8008357585004284e-10 Iter 120: T = 773.3150869043981 K, F = -6.1376412554547954e-6, relative_change = 7.531309905716707e-11 Iter 125: T = 773.3150867265082 K, F = -2.5668339597162415e-6, relative_change = 3.149682629484585e-11 Iter 130: T = 773.3150866521125 K, F = -1.0734798517875177e-6, relative_change = 1.3172339531456557e-11 Iter 135: T = 773.3150866209994 K, F = -4.489424197950953e-7, relative_change = 5.508833700884441e-12 Iter 140: T = 773.3150866079876 K, F = -1.877544135719944e-7, relative_change = 2.3038763891595137e-12 Iter 145: T = 773.3150866025459 K, F = -7.852206795888605e-8, relative_change = 9.63520031102488e-13 Iter 150: T = 773.31508660027 K, F = -3.283766836226221e-8, relative_change = 4.029408810113089e-13 Converged in 154 iterations to T = 773.3150865994485 K Iter 1: T = 970.3746554603314 K, F = -6750.162934341394, relative_change = 0.029625344539668672 Iter 2: T = 942.9142248093547 K, F = -5717.183672779839, relative_change = 0.028298792117514578 Iter 3: T = 917.5737639406789 K, F = -4840.530979375158, relative_change = 0.026874619347056043 Iter 5: T = 873.0357904516582 K, F = -3465.7485159922376, relative_change = 0.02377877331139502 Iter 10: T = 794.0124858360239 K, F = -1491.664773093465, relative_change = 0.015473100724474997 Iter 15: T = 750.979847500632 K, F = -634.9363387109275, relative_change = 0.008467110552270497 Iter 20: T = 730.0995152328762 K, F = -268.0018511746145, relative_change = 0.004071950470249994 Iter 25: T = 720.7036836788948 K, F = -112.56768691985582, relative_change = 0.001817620822922211 Iter 30: T = 716.6417035928328 K, F = -47.16701978347468, relative_change = 0.0007822503159205389 Iter 35: T = 714.9183277567842 K, F = -19.741914563467805, relative_change = 0.00033117869753717186 Iter 40: T = 714.1931749917921 K, F = -8.25915021333286, relative_change = 0.00013922096382031505 Iter 45: T = 713.889126504202 K, F = -3.454575155106287, relative_change = 5.8350420298539464e-5 Iter 50: T = 713.7618325772569 K, F = -1.4448321791296486, relative_change = 2.4425047154168473e-5 Iter 55: T = 713.7085726907451 K, F = -0.6042614039883121, relative_change = 1.021873520451692e-5 Iter 60: T = 713.6862945610652 K, F = -0.2527120179085399, relative_change = 4.2742776332366775e-6 Iter 65: T = 713.6769768447548 K, F = -0.10568765310084638, relative_change = 1.7876730055037077e-6 Iter 70: T = 713.6730799356981 K, F = -0.04419992076330448, relative_change = 7.476470247598565e-7 Iter 75: T = 713.67145017926 K, F = -0.018484949070533108, relative_change = 3.126785568662669e-7 Iter 80: T = 713.6707685917135 K, F = -0.007730628966077346, relative_change = 1.307665436792157e-7 Iter 85: T = 713.6704835429724 K, F = -0.00323304179516537, relative_change = 5.468824166177281e-8 Iter 90: T = 713.6703643320642 K, F = -0.0013520967661695416, relative_change = 2.2871295266321742e-8 Iter 95: T = 713.6703144766176 K, F = -0.0005654630274715133, relative_change = 9.565052212669856e-9 Iter 100: T = 713.6702936264709 K, F = -0.00023648339458637313, relative_change = 4.000219680851028e-9 Iter 105: T = 713.6702849066899 K, F = -9.890018122138411e-5, relative_change = 1.6729397641972635e-9 Iter 110: T = 713.6702812599731 K, F = -4.1361237679504725e-5, relative_change = 6.996434186401825e-10 Iter 115: T = 713.6702797348726 K, F = -1.7297763829748902e-5, relative_change = 2.9259924080576814e-10 Iter 120: T = 713.6702790970573 K, F = -7.234130759425916e-6, relative_change = 1.2236848635105553e-10 Iter 125: T = 713.6702788303154 K, F = -3.025401186129706e-6, relative_change = 5.117598460987233e-11 Iter 130: T = 713.6702787187608 K, F = -1.2652595536843947e-6, relative_change = 2.140241888973046e-11 Iter 135: T = 713.6702786721073 K, F = -5.291471364410327e-7, relative_change = 8.950755312583127e-12 Iter 140: T = 713.6702786525962 K, F = -2.212954552938129e-7, relative_change = 3.743309442628262e-12 Iter 145: T = 713.6702786444364 K, F = -9.254722788121228e-8, relative_change = 1.5654768489290169e-12 Iter 150: T = 713.6702786410239 K, F = -3.870432518926492e-8, relative_change = 6.547005936943267e-13 Iter 155: T = 713.6702786395967 K, F = -1.6187141516077475e-8, relative_change = 2.7381258061128277e-13 Converged in 157 iterations to T = 713.6702786392947 K Iter 1: T = 969.3730431750693 K, F = -6978.381246317617, relative_change = 0.03062695682493077 Iter 2: T = 940.8883569914689 K, F = -5912.088347435479, relative_change = 0.02938464854593246 Iter 3: T = 914.5066009785106 K, F = -5007.03156680937, relative_change = 0.028039199142940882 Iter 5: T = 867.8646040576584 K, F = -3587.3140568477397, relative_change = 0.025071442846715225 Iter 10: T = 783.8941415464882 K, F = -1546.8523149561638, relative_change = 0.016799267329004487 Iter 15: T = 737.1765164081535 K, F = -659.5356598090139, relative_change = 0.009435573919722978 Iter 20: T = 714.1371797182418 K, F = -278.69626376668543, relative_change = 0.004615755284482213 Iter 25: T = 703.6708234118367 K, F = -117.12909858491336, relative_change = 0.002078938512560636 Iter 30: T = 699.1247176924667 K, F = -49.091913753910134, relative_change = 0.0008984582724429577 Iter 35: T = 697.1918440379046 K, F = -20.550088793760363, relative_change = 0.0003810741580570685 Iter 40: T = 696.3777932009557 K, F = -8.597702125786368, relative_change = 0.00016032118549039938 Iter 45: T = 696.0363378441438 K, F = -3.596261041615436, relative_change = 6.721610122950225e-5 Iter 50: T = 695.8933596209157 K, F = -1.5041043609297207, relative_change = 2.8140044393992255e-5 Iter 55: T = 695.8335333036649 K, F = -0.6290527951206131, relative_change = 1.1773664573631209e-5 Iter 60: T = 695.808507775882 K, F = -0.2630806087223242, relative_change = 4.924790543018692e-6 Iter 65: T = 695.7980408481633 K, F = -0.1100240151972724, relative_change = 2.0597642694500176e-6 Iter 70: T = 695.7936632872593 K, F = -0.046013455549726245, relative_change = 8.61445662359006e-7 Iter 75: T = 695.791832509847 K, F = -0.01924339384001761, relative_change = 3.6027169932912614e-7 Iter 80: T = 695.7910668517685 K, F = -0.00804782012860894, relative_change = 1.506707729547549e-7 Iter 85: T = 695.7907466435241 K, F = -0.0033656950153785337, relative_change = 6.301246455871635e-8 Iter 90: T = 695.7906127284562 K, F = -0.0014075739415017052, relative_change = 2.635259106136526e-8 Iter 95: T = 695.7905567235483 K, F = -0.0005886642484619342, relative_change = 1.1020972824019314e-8 Iter 100: T = 695.7905333016222 K, F = -0.0002461864220049126, relative_change = 4.609103251121912e-9 Iter 105: T = 695.7905235062922 K, F = -0.0001029581030519422, relative_change = 1.9275821771509975e-9 Iter 110: T = 695.790519409768 K, F = -4.3058308338617124e-5, relative_change = 8.061379104515962e-10 Iter 115: T = 695.7905176965526 K, F = -1.800749877367558e-5, relative_change = 3.371365054541519e-10 Iter 120: T = 695.7905169800654 K, F = -7.530949773681961e-6, relative_change = 1.4099448978496053e-10 Iter 125: T = 695.790516680422 K, F = -3.1495334301689937e-6, relative_change = 5.8965585125759e-11 Iter 130: T = 695.7905165551075 K, F = -1.3171724361216164e-6, relative_change = 2.4660110837389874e-11 Iter 135: T = 695.7905165026995 K, F = -5.508568007295267e-7, relative_change = 1.031314457687099e-11 Iter 140: T = 695.7905164807818 K, F = -2.3037421725824458e-7, relative_change = 4.313067582314665e-12 Iter 145: T = 695.7905164716155 K, F = -9.634529174462614e-8, relative_change = 1.80377717395625e-12 Iter 150: T = 695.7905164677823 K, F = -4.0293476555319785e-8, relative_change = 7.543747281847582e-13 Iter 155: T = 695.790516466179 K, F = -1.6851597117728545e-8, relative_change = 3.154957100276971e-13 Converged in 158 iterations to T = 695.7905164657096 K Iter 1: T = 963.5387431416076 K, F = -8307.732058793928, relative_change = 0.03646125685839236 Iter 2: T = 928.9536606559508 K, F = -7049.432610494066, relative_change = 0.03589381613539742 Iter 3: T = 896.2111125623925 K, F = -5980.802336473999, relative_change = 0.03524669688091675 Iter 5: T = 836.134470857042 K, F = -4302.613383409512, relative_change = 0.033684108638716716 Iter 10: T = 716.247431739918 K, F = -1880.3780771758877, relative_change = 0.027987420549346675 Iter 15: T = 636.3844437105778 K, F = -814.3352538500254, relative_change = 0.02008722803256849 Iter 20: T = 589.5391989036964 K, F = -348.7092572986872, relative_change = 0.012065416083957989 Iter 25: T = 565.4087384252875 K, F = -147.81011309743772, relative_change = 0.006189672556019076 Iter 30: T = 554.1444368863278 K, F = -62.22901108564199, relative_change = 0.0028622816921758617 Iter 35: T = 549.1827918560462 K, F = -26.103651367714946, relative_change = 0.0012526878415842404 Iter 40: T = 547.0595992478193 K, F = -10.931170591271986, relative_change = 0.0005342994401452228 Iter 45: T = 546.1628741703973 K, F = -4.574091166672394, relative_change = 0.00022532477065262976 Iter 50: T = 545.7862899510242 K, F = -1.9133878329686, relative_change = 9.45653898579128e-5 Iter 55: T = 545.6285225025966 K, F = -0.8002802795448389, relative_change = 3.9606722121770054e-5 Iter 60: T = 545.5624939473743 K, F = -0.33470054101548136, relative_change = 1.657423122311945e-5 Iter 65: T = 545.5348715539943 K, F = -0.13997817316913247, relative_change = 6.933331775819381e-6 Iter 70: T = 545.5233180581954 K, F = -0.05854096526145994, relative_change = 2.899915401072264e-6 Iter 75: T = 545.5184859891858 K, F = -0.024482604531431196, relative_change = 1.2128340495031384e-6 Iter 80: T = 545.5164651148999 K, F = -0.010238930492945636, relative_change = 5.072312682812143e-7 Iter 85: T = 545.5156199532129 K, F = -0.004282045265679407, relative_change = 2.1213185038452315e-7 Iter 90: T = 545.5152664951156 K, F = -0.0017908028622888594, relative_change = 8.87163663916665e-8 Iter 95: T = 545.5151186744757 K, F = -0.0007489352124071535, relative_change = 3.710229518983551e-8 Iter 100: T = 545.5150568540764 K, F = -0.00031321366221515046, relative_change = 1.5516631919889915e-8 Iter 105: T = 545.5150310000397 K, F = -0.00013098969633881796, relative_change = 6.489242351756333e-9 Iter 110: T = 545.5150201875715 K, F = -5.478145583165395e-5, relative_change = 2.713878929067489e-9 Iter 115: T = 545.515015665668 K, F = -2.291025971670746e-5, relative_change = 1.1349766561406724e-9 Iter 120: T = 545.5150137745538 K, F = -9.581344272951986e-6, relative_change = 4.746608025484114e-10 Iter 125: T = 545.5150129836672 K, F = -4.007032354730322e-6, relative_change = 1.985088054743029e-10 Iter 130: T = 545.5150126529091 K, F = -1.6757887700558083e-6, relative_change = 8.301875265334017e-11 Iter 135: T = 545.515012514582 K, F = -7.008348977544099e-7, relative_change = 3.471943489381631e-11 Iter 140: T = 545.5150124567322 K, F = -2.9309809240762874e-7, relative_change = 1.4520110477649324e-11 Iter 145: T = 545.5150124325386 K, F = -1.225772625901289e-7, relative_change = 6.072490546124004e-12 Iter 150: T = 545.5150124224206 K, F = -5.1263631867248804e-8, relative_change = 2.5396057419086678e-12 Iter 155: T = 545.515012418189 K, F = -2.1439029829206646e-8, relative_change = 1.0620918041509248e-12 Iter 160: T = 545.5150124164194 K, F = -8.96629076541089e-9, relative_change = 4.441909923904659e-13 Converged in 164 iterations to T = 545.5150124157807 K Iter 1: T = 966.887526588686 K, F = -7544.708564861698, relative_change = 0.033112473411314035 Iter 2: T = 935.8321722743068 K, F = -6396.192218118491, relative_change = 0.03211889021254293 Iter 3: T = 906.8035569631662 K, F = -5421.052623454753, relative_change = 0.0310190397072947 Iter 5: T = 854.6957989932441 K, F = -3890.5054020697703, relative_change = 0.028500607761702802 Iter 10: T = 757.0882835100546 K, F = -1686.1852190783025, relative_change = 0.02071348420398896 Iter 15: T = 699.2551385406061 K, F = -722.6580998282511, relative_change = 0.012607279691216966 Iter 20: T = 669.1982698283426 K, F = -306.5189999182127, relative_change = 0.006532941778940264 Iter 25: T = 655.0846704731852 K, F = -129.09603843916818, relative_change = 0.0030386833009420806 Iter 30: T = 648.8484567868181 K, F = -54.16311043636443, relative_change = 0.0013336981097592595 Iter 35: T = 646.1759203037964 K, F = -22.68329319286232, relative_change = 0.0005695831952775019 Iter 40: T = 645.0464500560304 K, F = -9.492055636570212, relative_change = 0.00024033774293542545 Iter 45: T = 644.5719920023356 K, F = -3.9706834063172582, relative_change = 0.00010088978681320006 Iter 50: T = 644.3731977348176 K, F = -1.6607613375441697, relative_change = 4.225973403200339e-5 Iter 55: T = 644.2899946254428 K, F = -0.6945807185427411, relative_change = 1.7685169313581453e-5 Iter 60: T = 644.2551867117558 K, F = -0.2904872877975957, relative_change = 7.398187505640825e-6 Iter 65: T = 644.2406276350723 K, F = -0.12148618642146963, relative_change = 3.094367046577965e-6 Iter 70: T = 644.2345385069336 K, F = -0.05080713729345526, relative_change = 1.2941636473228125e-6 Iter 75: T = 644.2319918998855 K, F = -0.021248180136649197, relative_change = 5.412456063292005e-7 Iter 80: T = 644.2309268677461 K, F = -0.008886247682693804, relative_change = 2.263572851910783e-7 Iter 85: T = 644.2304814567221 K, F = -0.0037163357784872897, relative_change = 9.466565380066648e-8 Iter 90: T = 644.2302951801865 K, F = -0.0015542161576699298, relative_change = 3.959036535658566e-8 Iter 95: T = 644.2302172770577 K, F = -0.00064999178524211, relative_change = 1.6557173817068035e-8 Iter 100: T = 644.2301846970289 K, F = -0.00027183433206995344, relative_change = 6.924409617779536e-9 Iter 105: T = 644.2301710716699 K, F = -0.00011368436497238843, relative_change = 2.8958711119314916e-9 Iter 110: T = 644.2301653733819 K, F = -4.754415876762064e-5, relative_change = 1.2110879253070184e-9 Iter 115: T = 644.2301629902897 K, F = -1.9883535597009505e-5, relative_change = 5.064914580937125e-10 Iter 120: T = 644.2301619936521 K, F = -8.31553306679389e-6, relative_change = 2.1182080411702757e-10 Iter 125: T = 644.2301615768464 K, F = -3.477655960537618e-6, relative_change = 8.858600866060147e-11 Iter 130: T = 644.2301614025331 K, F = -1.4543969966696046e-6, relative_change = 3.7047720237680384e-11 Iter 135: T = 644.2301613296333 K, F = -6.082465681123139e-7, relative_change = 1.5493808605693582e-11 Iter 140: T = 644.2301612991457 K, F = -2.5437545347894996e-7, relative_change = 6.479682414500054e-12 Iter 145: T = 644.2301612863954 K, F = -1.0638241637606072e-7, relative_change = 2.709869459656725e-12 Iter 150: T = 644.2301612810631 K, F = -4.4490858053247706e-8, relative_change = 1.1333115150437597e-12 Iter 155: T = 644.2301612788332 K, F = -1.8607502594303327e-8, relative_change = 4.739871937610058e-13 Converged in 160 iterations to T = 644.2301612779006 K Iter 1: T = 965.2373354619468 K, F = -7920.706182826213, relative_change = 0.034762664538053156 Iter 2: T = 932.4522070149798 K, F = -6717.948867856928, relative_change = 0.03396587268485278 Iter 3: T = 901.6152050331303 K, F = -5696.603387082022, relative_change = 0.03307086599169161 Iter 5: T = 845.6723220321797 K, F = -4093.0469692179154, relative_change = 0.030968008750721476 Iter 10: T = 737.7342348485932 K, F = -1780.8389824719386, relative_change = 0.02394481792341751 Iter 15: T = 670.3743979717863 K, F = -766.6562930588484, relative_change = 0.015638989883932388 Iter 20: T = 633.5949637555323 K, F = -326.3997878724979, relative_change = 0.00858547328391628 Iter 25: T = 615.7133990111029 K, F = -137.78953976673145, relative_change = 0.004137410396423353 Iter 30: T = 607.6577624993708 K, F = -57.87926810934543, relative_change = 0.001848825482840691 Iter 35: T = 604.1732195722049 K, F = -24.25280905715694, relative_change = 0.0007960752613351133 Iter 40: T = 602.6944604540244 K, F = -10.151241297412609, relative_change = 0.00033710490134854676 Iter 45: T = 602.0721685422692 K, F = -4.246859791040833, relative_change = 0.0001417253347017858 Iter 50: T = 601.8112364441383 K, F = -1.7763491461589895, relative_change = 5.940237132171322e-5 Iter 55: T = 601.7019916479244 K, F = -0.7429362773280801, relative_change = 2.4865792877667e-5 Iter 60: T = 601.6562831616624 K, F = -0.31071284918502207, relative_change = 1.0403201802923901e-5 Iter 65: T = 601.6371636495151 K, F = -0.12994522832491756, relative_change = 4.3514485324384825e-6 Iter 70: T = 601.6291669978123 K, F = -0.05434489196301756, relative_change = 1.819951130088688e-6 Iter 75: T = 601.625822590025 K, F = -0.022727725788019182, relative_change = 7.611468798552084e-7 Iter 80: T = 601.6244238990625 K, F = -0.009505013862574352, relative_change = 3.183244900810135e-7 Iter 85: T = 601.6238389463551 K, F = -0.003975111623801375, relative_change = 1.3312776355799988e-7 Iter 90: T = 601.6235943115449 K, F = -0.001662439383636527, relative_change = 5.567573607748175e-8 Iter 95: T = 601.6234920022406 K, F = -0.0006952520443717081, relative_change = 2.3284277941357958e-8 Iter 100: T = 601.6234492152491 K, F = -0.00029076271518729824, relative_change = 9.737766645299407e-9 Iter 105: T = 601.6234313212152 K, F = -0.00012160044102343948, relative_change = 4.072450917804605e-9 Iter 110: T = 601.6234238377159 K, F = -5.0854757083107494e-5, relative_change = 1.7031477244619105e-9 Iter 115: T = 601.623420708027 K, F = -2.1268066771717997e-5, relative_change = 7.122767367441899e-10 Iter 120: T = 601.6234193991536 K, F = -8.894558553296239e-6, relative_change = 2.9788260845443376e-10 Iter 125: T = 601.6234188517673 K, F = -3.7198106727087676e-6, relative_change = 1.2457806694997232e-10 Iter 130: T = 601.6234186228437 K, F = -1.555669027208939e-6, relative_change = 5.2100028099977485e-11 Iter 135: T = 601.6234185271053 K, F = -6.506001798411987e-7, relative_change = 2.178888123656461e-11 Iter 140: T = 601.6234184870663 K, F = -2.7208922492860665e-7, relative_change = 9.112385752865648e-12 Iter 145: T = 601.6234184703214 K, F = -1.137912958859566e-7, relative_change = 3.810919685778758e-12 Iter 150: T = 601.6234184633186 K, F = -4.758899863066546e-8, relative_change = 1.5937761346870622e-12 Iter 155: T = 601.6234184603899 K, F = -1.9902098080670783e-8, relative_change = 6.665298675032421e-13 Iter 160: T = 601.623418459165 K, F = -8.323253364306282e-9, relative_change = 2.7874935294127405e-13 Converged in 162 iterations to T = 601.6234184589058 K Iter 1: T = 980.1431052094733 K, F = -4524.412366804807, relative_change = 0.01985689479052672 Iter 2: T = 962.3298715118241 K, F = -3821.7811802385877, relative_change = 0.018174115190906025 Iter 3: T = 946.4393893591463 K, F = -3226.7626011262723, relative_change = 0.016512510546631783 Iter 5: T = 919.9034264202439 K, F = -2297.0628552843264, relative_change = 0.013341575914640622 Iter 10: T = 877.7721316442653 K, F = -975.1813349503104, relative_change = 0.0070091356653049375 Iter 15: T = 857.8272578005101 K, F = -410.9352958586279, relative_change = 0.0032868094150663614 Iter 20: T = 848.9755807907455 K, F = -172.4567643143606, relative_change = 0.0014484330380453352 Iter 25: T = 845.1742803801259 K, F = -72.23295103163566, relative_change = 0.0006197110239802562 Iter 30: T = 843.5662925519102 K, F = -30.2282016191647, relative_change = 0.00026169541201578493 Iter 35: T = 842.8905569167143 K, F = -12.645236791411545, relative_change = 0.00010989208958994039 Iter 40: T = 842.6073817882261 K, F = -5.2889931027364465, relative_change = 4.603700156830924e-5 Iter 45: T = 842.4888537355295 K, F = -2.212025882492912, relative_change = 1.926704382561297e-5 Iter 50: T = 842.4392662258088 K, F = -0.9251141573220488, relative_change = 8.060127501385864e-6 Iter 55: T = 842.4185250458723 K, F = -0.3868970280294798, relative_change = 3.3712649697247926e-6 Iter 60: T = 842.4098502959284 K, F = -0.16180552422694894, relative_change = 1.4099773366525262e-6 Iter 65: T = 842.4062223173083 K, F = -0.06766910168777351, relative_change = 5.896823158315131e-7 Iter 70: T = 842.4047050367768 K, F = -0.02830004379229023, relative_change = 2.466144526461865e-7 Iter 75: T = 842.4040704890446 K, F = -0.011835419316458928, relative_change = 1.031375055879775e-7 Iter 80: T = 842.4038051130988 K, F = -0.004949714232074909, relative_change = 4.3133405866640774e-8 Iter 85: T = 842.4036941296205 K, F = -0.0020700296960529663, relative_change = 1.803891757342045e-8 Iter 90: T = 842.403647714989 K, F = -0.0008657111573460163, relative_change = 7.544092887326304e-9 Iter 95: T = 842.4036283038331 K, F = -0.0003620507475792234, relative_change = 3.155030111544582e-9 Iter 100: T = 842.4036201858554 K, F = -0.00015141394704354383, relative_change = 1.3194713374946628e-9 Iter 105: T = 842.4036167908201 K, F = -6.332312075918445e-5, relative_change = 5.518186803605284e-10 Iter 110: T = 842.4036153709758 K, F = -2.648248643399853e-5, relative_change = 2.3077717362546463e-10 Iter 115: T = 842.4036147771799 K, F = -1.1075291289186495e-5, relative_change = 9.651376337887799e-11 Iter 120: T = 842.4036145288475 K, F = -4.631821220124621e-6, relative_change = 4.0363227133925845e-11 Iter 125: T = 842.4036144249919 K, F = -1.9370856252365343e-6, relative_change = 1.68804069499636e-11 Iter 130: T = 842.4036143815581 K, F = -8.101116675263142e-7, relative_change = 7.059581903843321e-12 Iter 135: T = 842.4036143633936 K, F = -3.387972191681854e-7, relative_change = 2.9523913969305057e-12 Iter 140: T = 842.403614355797 K, F = -1.416884172211752e-7, relative_change = 1.2347198867024847e-12 Iter 145: T = 842.40361435262 K, F = -5.925464896527899e-8, relative_change = 5.163646746375287e-13 Converged in 150 iterations to T = 842.4036143512914 K Iter 1: T = 976.4492074295208 K, F = -5366.070489770897, relative_change = 0.02355079257047921 Iter 2: T = 955.0598282312264 K, F = -4537.351701947486, relative_change = 0.021905265563788433 Iter 3: T = 935.7401214382337 K, F = -3834.8797102917633, relative_change = 0.0202287921886243 Iter 5: T = 902.8883575545609 K, F = -2735.5573784358985, relative_change = 0.016876226287911064 Iter 10: T = 848.7919434038878 K, F = -1166.4829143373004, relative_change = 0.009493395681708884 Iter 15: T = 822.0877384744579 K, F = -492.94741293300723, relative_change = 0.004648831544343859 Iter 20: T = 809.9494651219859 K, F = -207.18106675980442, relative_change = 0.002094989122637384 Iter 25: T = 804.6756272221629 K, F = -86.83657347423149, relative_change = 0.0009056285868357003 Iter 30: T = 802.4330477646815 K, F = -36.35044255317842, relative_change = 0.0003841589901957925 Iter 35: T = 801.4885070958175 K, F = -15.208269475977154, relative_change = 0.00016162683933107984 Iter 40: T = 801.0923079087747 K, F = -6.361348755611434, relative_change = 6.776489531987981e-5 Iter 45: T = 800.9264050111711 K, F = -2.6605793574330847, relative_change = 2.837004099877359e-5 Iter 50: T = 800.8569860354967 K, F = -1.112718855774586, relative_change = 1.1869936812657792e-5 Iter 55: T = 800.827947817994 K, F = -0.4653580520022158, relative_change = 4.965067608794804e-6 Iter 60: T = 800.8158025735914 K, F = -0.19461929857707605, relative_change = 2.076611220436876e-6 Iter 65: T = 800.810723092282 K, F = -0.08139229045242224, relative_change = 8.684917134603857e-7 Iter 70: T = 800.8085987584192 K, F = -0.03403925859456858, relative_change = 3.6321852164471016e-7 Iter 75: T = 800.8077103306606 K, F = -0.01423562982433868, relative_change = 1.5190318313051378e-7 Iter 80: T = 800.8073387785183 K, F = -0.0059535113396438355, relative_change = 6.352787563752374e-8 Iter 85: T = 800.8071833907927 K, F = -0.002489829706404101, relative_change = 2.656814257251206e-8 Iter 90: T = 800.8071184057583 K, F = -0.0010412765492157083, relative_change = 1.1111119139895867e-8 Iter 95: T = 800.8070912282351 K, F = -0.00043547429288137707, relative_change = 4.646803518298855e-9 Iter 100: T = 800.8070798622695 K, F = -0.00018212055238564506, relative_change = 1.9433488832824697e-9 Iter 105: T = 800.8070751088866 K, F = -7.616498949214456e-5, relative_change = 8.127317291707766e-10 Iter 110: T = 800.8070731209651 K, F = -3.1853108000579056e-5, relative_change = 3.398941170132155e-10 Iter 115: T = 800.8070722895927 K, F = -1.3321351781003798e-5, relative_change = 1.4214779679664197e-10 Iter 120: T = 800.8070719419028 K, F = -5.571148460892239e-6, relative_change = 5.944790693908421e-11 Iter 125: T = 800.8070717964947 K, F = -2.3299217926098237e-6, relative_change = 2.4861835040737015e-11 Iter 130: T = 800.8070717356833 K, F = -9.744018549806555e-7, relative_change = 1.0397524186226189e-11 Iter 135: T = 800.8070717102512 K, F = -4.075060359154392e-7, relative_change = 4.348363915202863e-12 Iter 140: T = 800.8070716996152 K, F = -1.7042504174558104e-7, relative_change = 1.818550000506169e-12 Iter 145: T = 800.8070716951671 K, F = -7.127255219341322e-8, relative_change = 7.60526143947365e-13 Iter 150: T = 800.807071693307 K, F = -2.9807966206440994e-8, relative_change = 3.18071079265262e-13 Converged in 153 iterations to T = 800.8070716927623 K Iter 1: T = 980.7332163419318 K, F = -4389.954983933524, relative_change = 0.019266783658068175 Iter 2: T = 963.4833532847877 K, F = -3707.5991761899754, relative_change = 0.017588741535118916 Iter 3: T = 948.1254132989282 K, F = -3129.8492845146247, relative_change = 0.015940015915687524 Iter 5: T = 922.5495586987773 K, F = -2227.3743396256514, relative_change = 0.012816299141764069 Iter 10: T = 882.1586072704773 K, F = -944.9919978709296, relative_change = 0.006667248295979169 Iter 15: T = 863.1487597429411 K, F = -398.06067635908767, relative_change = 0.0031082757104867013 Iter 20: T = 854.7386869036096 K, F = -167.02157361287138, relative_change = 0.0013657880996822663 Iter 25: T = 851.132435486204 K, F = -69.95033929099212, relative_change = 0.000583585548403878 Iter 30: T = 849.6079650071139 K, F = -29.271863565489763, relative_change = 0.00024630035925367365 Iter 35: T = 848.9675080975398 K, F = -12.244979544449158, relative_change = 0.0001034024547737863 Iter 40: T = 848.6991490980873 K, F = -5.121547057592781, relative_change = 4.331391823269408e-5 Iter 45: T = 848.5868282555872 K, F = -2.141988535469263, relative_change = 1.812663084731848e-5 Iter 50: T = 848.5398385909718 K, F = -0.8958220547474125, relative_change = 7.582915178996616e-6 Iter 55: T = 848.5201841962544 K, F = -0.3746464326242014, relative_change = 3.1716404244530796e-6 Iter 60: T = 848.5119640115479 K, F = -0.15668212849707364, relative_change = 1.3264834560807617e-6 Iter 65: T = 848.5085261478035 K, F = -0.0655264275845755, relative_change = 5.547626889564286e-7 Iter 70: T = 848.5070883773791 K, F = -0.02740395035076304, relative_change = 2.3201038724270625e-7 Iter 75: T = 848.5064870820371 K, F = -0.011460662067059868, relative_change = 9.70298654732428e-8 Iter 80: T = 848.506235612693 K, F = -0.004792986226424878, relative_change = 4.057910985350989e-8 Iter 85: T = 848.5061304451312 K, F = -0.0020044841642128386, relative_change = 1.6970679083668896e-8 Iter 90: T = 848.5060864627873 K, F = -0.0008382992305426828, relative_change = 7.097342539671408e-9 Iter 95: T = 848.5060680688432 K, F = -0.00035058675169619136, relative_change = 2.9681937342026703e-9 Iter 100: T = 848.5060603762757 K, F = -0.0001466195665211778, relative_change = 1.241334121554247e-9 Iter 105: T = 848.5060571591521 K, F = -6.131805291120784e-5, relative_change = 5.191407567628422e-10 Iter 110: T = 848.5060558137125 K, F = -2.5643939888020384e-5, relative_change = 2.1711084792001798e-10 Iter 115: T = 848.5060552510337 K, F = -1.072460204354364e-5, relative_change = 9.07983508305626e-11 Iter 120: T = 848.5060550157145 K, F = -4.485155129074769e-6, relative_change = 3.7972941823249214e-11 Iter 125: T = 848.5060549173014 K, F = -1.875744152668446e-6, relative_change = 1.588072688103579e-11 Iter 130: T = 848.5060548761439 K, F = -7.844601219719749e-7, relative_change = 6.641522475896061e-12 Iter 135: T = 848.5060548589313 K, F = -3.2807293148806593e-7, relative_change = 2.777583827899658e-12 Iter 140: T = 848.5060548517328 K, F = -1.3720363467584207e-7, relative_change = 1.1616154831534115e-12 Iter 145: T = 848.5060548487222 K, F = -5.7380039386600856e-8, relative_change = 4.858001199022904e-13 Converged in 150 iterations to T = 848.5060548474632 K Iter 1: T = 967.3549289627242 K, F = -7438.210489322631, relative_change = 0.032645071037275736 Iter 2: T = 936.7861615174335 K, F = -6305.107979838273, relative_change = 0.0316003635584604 Iter 3: T = 908.2622574936572 K, F = -5343.103139600747, relative_change = 0.030448682095786262 Iter 5: T = 857.210037543363 K, F = -3833.320605984268, relative_change = 0.027830374604269858 Iter 10: T = 762.3304336346233 K, F = -1659.7036625328087, relative_change = 0.01989925371109181 Iter 15: T = 706.8436238214181 K, F = -710.5293264969415, relative_change = 0.011905742132920555 Iter 20: T = 678.336429202212 K, F = -301.1201725724071, relative_change = 0.006089876016573091 Iter 25: T = 665.0517261300818 K, F = -126.75947916807986, relative_change = 0.002811393658731421 Iter 30: T = 659.2054227793749 K, F = -53.16981839807598, relative_change = 0.0012294065479073516 Iter 35: T = 656.704720846222 K, F = -22.264860060734726, relative_change = 0.00052417658268611 Iter 40: T = 655.6487512536032 K, F = -9.316515985424743, relative_change = 0.00022102072882077486 Iter 45: T = 655.2053265778482 K, F = -3.8971738882938998, relative_change = 9.275282325397547e-5 Iter 50: T = 655.0195629669129 K, F = -1.630001765908176, relative_change = 3.884647058429761e-5 Iter 55: T = 654.9418185963937 K, F = -0.681713715811366, relative_change = 1.625589637833628e-5 Iter 60: T = 654.9092951983943 K, F = -0.28510563143997947, relative_change = 6.800132288672766e-6 Iter 65: T = 654.8956918145747 K, F = -0.1192354221009822, relative_change = 2.8441978754952613e-6 Iter 70: T = 654.8900024177912 K, F = -0.04986582479171475, relative_change = 1.189530231430261e-6 Iter 75: T = 654.8876229917737 K, F = -0.020854509211617467, relative_change = 4.974849688614869e-7 Iter 80: T = 654.8866278782427 K, F = -0.008721609310762879, relative_change = 2.0805576779176568e-7 Iter 85: T = 654.8862117082789 K, F = -0.0036474819577639317, relative_change = 8.701168880991897e-8 Iter 90: T = 654.88603766075 K, F = -0.0015254206526714165, relative_change = 3.638937673110471e-8 Iter 95: T = 654.8859648719459 K, F = -0.0006379491578673013, relative_change = 1.5218480544939165e-8 Iter 100: T = 654.8859344307903 K, F = -0.00026679796100265163, relative_change = 6.364551825869191e-9 Iter 105: T = 654.8859216999339 K, F = -0.00011157809405476504, relative_change = 2.6617318412064863e-9 Iter 110: T = 654.8859163757376 K, F = -4.666329253999457e-5, relative_change = 1.1131681126932358e-9 Iter 115: T = 654.8859141490949 K, F = -1.951514534670462e-5, relative_change = 4.6554018552297907e-10 Iter 120: T = 654.8859132178865 K, F = -8.161468048439868e-6, relative_change = 1.9469449535892713e-10 Iter 125: T = 654.8859128284439 K, F = -3.413223386539155e-6, relative_change = 8.14235628598745e-11 Iter 130: T = 654.8859126655744 K, F = -1.427451850444239e-6, relative_change = 3.405233190130056e-11 Iter 135: T = 654.8859125974603 K, F = -5.969770591196522e-7, relative_change = 1.4241083479169364e-11 Iter 140: T = 654.8859125689743 K, F = -2.4966298622919325e-7, relative_change = 5.955792395989454e-12 Iter 145: T = 654.885912557061 K, F = -1.0441207037859002e-7, relative_change = 2.4907841737233324e-12 Iter 150: T = 654.8859125520788 K, F = -4.3666099347472453e-8, relative_change = 1.0416691173011809e-12 Iter 155: T = 654.8859125499952 K, F = -1.8262696577231452e-8, relative_change = 4.3566261488234577e-13 Converged in 159 iterations to T = 654.8859125492431 K Iter 1: T = 973.4564213483239 K, F = -6047.979645246115, relative_change = 0.02654357865167606 Iter 2: T = 949.105943169125 K, F = -5118.1487754352975, relative_change = 0.025014451232928718 Iter 3: T = 926.8816073568855 K, F = -4329.458135812152, relative_change = 0.02341607485675524 Iter 5: T = 888.4911410746653 K, F = -3093.8286418815774, relative_change = 0.020089104593420358 Iter 10: T = 823.0794859174017 K, F = -1324.8254856270325, relative_change = 0.012067390743279595 Iter 15: T = 789.3835210095237 K, F = -561.566240607905, relative_change = 0.006191016131521552 Iter 20: T = 773.653431657198 K, F = -236.42352482919316, relative_change = 0.0028629909667454664 Iter 25: T = 766.7245956069906 K, F = -99.17438372136971, relative_change = 0.001253017021603939 Iter 30: T = 763.759576080402 K, F = -41.53030576114656, relative_change = 0.0005344434267685444 Iter 35: T = 762.5073030013712 K, F = -17.378142816769575, relative_change = 0.00022538614370659486 Iter 40: T = 761.9814037966506 K, F = -7.269450630006482, relative_change = 9.459126289821241e-5 Iter 45: T = 761.7610816875306 K, F = -3.0404699426460464, relative_change = 3.9617578872536924e-5 Iter 50: T = 761.6688728405596 K, F = -1.271613178949675, relative_change = 1.657877802260828e-5 Iter 55: T = 761.6302981765223 K, F = -0.5318129763614692, relative_change = 6.935234418499951e-6 Iter 60: T = 761.6141637223482 K, F = -0.22241214007320942, relative_change = 2.9007113044036865e-6 Iter 65: T = 761.6074157389747 K, F = -0.09301569337006932, relative_change = 1.2131669399392953e-6 Iter 70: T = 761.6045935884287 K, F = -0.0389003228173469, relative_change = 5.073704930534775e-7 Iter 75: T = 761.6034133202932 K, F = -0.016268588137342443, relative_change = 2.1219007685555612e-7 Iter 80: T = 761.6029197161268 K, F = -0.0068037193444879795, relative_change = 8.874071759217397e-8 Iter 85: T = 761.602713284631 K, F = -0.002845396945158285, relative_change = 3.7112479193003166e-8 Iter 90: T = 761.6026269524548 K, F = -0.0011899790283647071, relative_change = 1.5520890974714444e-8 Iter 95: T = 761.6025908472973 K, F = -0.0004976634472561026, relative_change = 6.491023510750311e-9 Iter 100: T = 761.6025757476875 K, F = -0.00020812879752807323, relative_change = 2.7146238145353325e-9 Iter 105: T = 761.60256943285 K, F = -8.704194722108927e-5, relative_change = 1.1352881241051423e-9 Iter 110: T = 761.6025667919096 K, F = -3.6401982638989416e-5, relative_change = 4.747910701177162e-10 Iter 115: T = 761.6025656874367 K, F = -1.5223743924153155e-5, relative_change = 1.9856329778896693e-10 Iter 120: T = 761.6025652255329 K, F = -6.366750160302637e-6, relative_change = 8.304152500049272e-11 Iter 125: T = 761.6025650323592 K, F = -2.6626499599613496e-6, relative_change = 3.472894458201927e-11 Iter 130: T = 761.6025649515717 K, F = -1.1135520210370231e-6, relative_change = 1.4524059500439612e-11 Iter 135: T = 761.6025649177855 K, F = -4.6569962675047094e-7, relative_change = 6.0741204379351736e-12 Iter 140: T = 761.6025649036555 K, F = -1.9476103596538508e-7, relative_change = 2.5402682785681985e-12 Iter 145: T = 761.6025648977463 K, F = -8.145051633157152e-8, relative_change = 1.0623591207150344e-12 Iter 150: T = 761.6025648952751 K, F = -3.406381277049064e-8, relative_change = 4.442943251127315e-13 Converged in 154 iterations to T = 761.6025648943831 K Iter 1: T = 969.959313073651 K, F = -6844.79909223913, relative_change = 0.030040686926349067 Iter 2: T = 942.0749589772436 K, F = -5797.993012996855, relative_change = 0.028747962641903133 Iter 3: T = 916.3044338714698 K, F = -4909.550729387384, relative_change = 0.02735506857517086 Iter 5: T = 870.9005746643553 K, F = -3516.1166620888607, relative_change = 0.024308912908752853 Iter 10: T = 789.8603484574357 K, F = -1514.487592674416, relative_change = 0.016007919043985745 Iter 15: T = 745.3457116021984 K, F = -645.086037206806, relative_change = 0.008851745681249471 Iter 20: T = 723.6062790012703 K, F = -272.40637958965794, relative_change = 0.004285737667182116 Iter 25: T = 713.787178536687 K, F = -114.44434552625259, relative_change = 0.0019197973902819988 Iter 30: T = 709.5343945254309 K, F = -47.95855566306024, relative_change = 0.000827573010586273 Iter 35: T = 707.7285714223982 K, F = -20.074167972110345, relative_change = 0.0003506169118915158 Iter 40: T = 706.9684551742475 K, F = -8.39832064288175, relative_change = 0.00014743724666008783 Iter 45: T = 706.6496985676081 K, F = -3.5128163387503033, relative_change = 6.180196201864922e-5 Iter 50: T = 706.5162383820299 K, F = -1.4691960847536922, relative_change = 2.5871228862680597e-5 Iter 55: T = 706.4603970350112 K, F = -0.6144518620064107, relative_change = 1.0824019880523534e-5 Iter 60: T = 706.4370388423176 K, F = -0.25697399595519527, relative_change = 4.527497925627328e-6 Iter 65: T = 706.4272693493131 K, F = -0.10747009939604618, relative_change = 1.89358728001695e-6 Iter 70: T = 706.4231834876 K, F = -0.044945367419589655, relative_change = 7.919441799252612e-7 Iter 75: T = 706.4214747064123 K, F = -0.018796704871796743, relative_change = 3.312046005721891e-7 Iter 80: T = 706.4207600693358 K, F = -0.00786100915909993, relative_change = 1.3851443413353864e-7 Iter 85: T = 706.4204611988104 K, F = -0.003287568381934003, relative_change = 5.792851555781554e-8 Iter 90: T = 706.4203362074536 K, F = -0.0013749004421625965, relative_change = 2.422641888968527e-8 Iter 95: T = 706.420283934552 K, F = -0.0005749997992973155, relative_change = 1.013178153108339e-8 Iter 100: T = 706.4202620733962 K, F = -0.00024047178488817433, relative_change = 4.2372326926605926e-9 Iter 105: T = 706.420252930799 K, F = -0.00010056817311165922, relative_change = 1.772061439165743e-9 Iter 110: T = 706.4202491072556 K, F = -4.205881128860334e-5, relative_change = 7.410972803451599e-10 Iter 115: T = 706.420247508204 K, F = -1.7589495856284998e-5, relative_change = 3.0993571341743754e-10 Iter 120: T = 706.4202468394616 K, F = -7.35613822844261e-6, relative_change = 1.296188349418241e-10 Iter 125: T = 706.4202465597856 K, F = -3.0764251288672995e-6, relative_change = 5.420814962385559e-11 Iter 130: T = 706.4202464428216 K, F = -1.286596568950138e-6, relative_change = 2.2670475128984283e-11 Iter 135: T = 706.4202463939059 K, F = -5.380704594104557e-7, relative_change = 9.481070652692051e-12 Iter 140: T = 706.4202463734488 K, F = -2.250266787351407e-7, relative_change = 3.965082644492798e-12 Iter 145: T = 706.4202463648934 K, F = -9.410852241931167e-8, relative_change = 1.6582392410652359e-12 Iter 150: T = 706.4202463613154 K, F = -3.9357334280509804e-8, relative_change = 6.934959178133334e-13 Iter 155: T = 706.4202463598191 K, F = -1.645926295257283e-8, relative_change = 2.9002044667423413e-13 Converged in 157 iterations to T = 706.4202463595024 K Iter 1: T = 973.4932628310546 K, F = -6039.585278360634, relative_change = 0.026506737168945388 Iter 2: T = 949.1795875684364 K, F = -5110.993453739474, relative_change = 0.024975699566641727 Iter 3: T = 926.9917224856755 K, F = -4323.359468219877, relative_change = 0.023375834640102993 Iter 5: T = 888.6719218801835 K, F = -3089.401221151527, relative_change = 0.02004744777909472 Iter 10: T = 823.4099790861422 K, F = -1322.8556492805635, relative_change = 0.012031848165693871 Iter 15: T = 789.8107712668311 K, F = -560.707345240214, relative_change = 0.006168737234034562 Iter 20: T = 774.1318439230114 K, F = -236.05605837243633, relative_change = 0.002851612497092667 Iter 25: T = 767.2269410892936 K, F = -99.01903128808948, relative_change = 0.0012478074108935235 Iter 30: T = 764.272442686986 K, F = -41.46502280151989, relative_change = 0.0005321774889390118 Iter 35: T = 763.0246650645481 K, F = -17.35078442067015, relative_change = 0.00022442257128944248 Iter 40: T = 762.5006630575655 K, F = -7.257999057769992, relative_change = 9.418544752046877e-5 Iter 45: T = 762.2811374123213 K, F = -3.0356790066813293, relative_change = 3.9447361833496207e-5 Iter 50: T = 762.1892621891152 K, F = -1.2696092452823937, relative_change = 1.6507503454203006e-5 Iter 55: T = 762.150827143942 K, F = -0.5309748536206738, relative_change = 6.905411170889995e-6 Iter 60: T = 762.1347510963977 K, F = -0.2220616177312723, relative_change = 2.888236176022587e-6 Iter 65: T = 762.1280275422356 K, F = -0.09286909909745689, relative_change = 1.207949221680528e-6 Iter 70: T = 762.1252156087779 K, F = -0.03883901505432774, relative_change = 5.051882986496292e-7 Iter 75: T = 762.1240396136384 K, F = -0.016242948451303585, relative_change = 2.1127744273535034e-7 Iter 80: T = 762.1235477965052 K, F = -0.006792996512725469, relative_change = 8.835904058498008e-8 Iter 85: T = 762.1233421123707 K, F = -0.0028409125265741464, relative_change = 3.695285686029325e-8 Iter 90: T = 762.1232560927505 K, F = -0.001188103592568046, relative_change = 1.5454134956337924e-8 Iter 95: T = 762.1232201183077 K, F = -0.0004968791194637223, relative_change = 6.463105357963626e-9 Iter 100: T = 762.1232050733644 K, F = -0.00020780078482707243, relative_change = 2.702948140559436e-9 Iter 105: T = 762.1231987813891 K, F = -8.690477150519182e-5, relative_change = 1.1304052579712196e-9 Iter 110: T = 762.1231961500098 K, F = -3.634461342738593e-5, relative_change = 4.727489881286439e-10 Iter 115: T = 762.1231950495355 K, F = -1.5199752016581414e-5, relative_change = 1.9770928226827884e-10 Iter 120: T = 762.123194589304 K, F = -6.356719042477366e-6, relative_change = 8.26843991738666e-11 Iter 125: T = 762.1231943968297 K, F = -2.6584566991116887e-6, relative_change = 3.457961468664136e-11 Iter 130: T = 762.1231943163347 K, F = -1.111797848341034e-6, relative_change = 1.4461601438627774e-11 Iter 135: T = 762.1231942826706 K, F = -4.649664583356028e-7, relative_change = 6.048005592228302e-12 Iter 140: T = 762.1231942685919 K, F = -1.94453232960079e-7, relative_change = 2.5293313515187336e-12 Iter 145: T = 762.123194262704 K, F = -8.132214568412621e-8, relative_change = 1.0577898321774278e-12 Iter 150: T = 762.1231942602417 K, F = -3.4010515292948185e-8, relative_change = 4.423884412037998e-13 Converged in 154 iterations to T = 762.1231942593529 K Iter 1: T = 964.2893364205852 K, F = -8136.708666180364, relative_change = 0.03571066357941483 Iter 2: T = 930.5020836086063 K, F = -6902.916625004102, relative_change = 0.035038500931054734 Iter 3: T = 898.6071875236976 K, F = -5855.146156574144, relative_change = 0.03427708185371944 Iter 5: T = 840.3813526910445 K, F = -4209.869507173582, relative_change = 0.032460775604024855 Iter 10: T = 725.955993594179 K, F = -1836.107759534687, relative_change = 0.026097800059470523 Iter 15: T = 652.0277915425573 K, F = -792.9178016289119, relative_change = 0.017907140249999256 Iter 20: T = 610.1568604585894 K, F = -338.5616835919799, relative_change = 0.010283550500971763 Iter 25: T = 589.2142392946173 K, F = -143.20564946457665, relative_change = 0.005107241936256379 Iter 30: T = 579.6188092086786 K, F = -60.218233145934626, relative_change = 0.002319166225420144 Iter 35: T = 575.4330131709852 K, F = -25.24551146290737, relative_change = 0.0010061447391940318 Iter 40: T = 573.6498365859634 K, F = -10.569075002033898, relative_change = 0.00042747379215759364 Iter 45: T = 572.8981918879865 K, F = -4.422080910794555, relative_change = 0.00017997260434133132 Iter 50: T = 572.5827986831807 K, F = -1.8497131107617582, relative_change = 7.547828396109333e-5 Iter 55: T = 572.450713365875 K, F = -0.7736327830687886, relative_change = 3.160308026678736e-5 Iter 60: T = 572.3954414267012 K, F = -0.32355309070325444, relative_change = 1.3223296242775553e-5 Iter 65: T = 572.372320389576 K, F = -0.1353156250664067, relative_change = 5.53127995240033e-6 Iter 70: T = 572.3626499067403 K, F = -0.05659093551258024, relative_change = 2.313446701113657e-6 Iter 75: T = 572.3586054223226 K, F = -0.02366706193074325, relative_change = 9.675459126936733e-7 Iter 80: T = 572.3569139403768 K, F = -0.009897857887248451, relative_change = 4.046453553583224e-7 Iter 85: T = 572.3562065371337 K, F = -0.004139404112276479, relative_change = 1.6922858694275807e-7 Iter 90: T = 572.3559106917236 K, F = -0.0017311485381882319, relative_change = 7.077360264755704e-8 Iter 95: T = 572.3557869654782 K, F = -0.0007239870464488263, relative_change = 2.95983984912625e-8 Iter 100: T = 572.3557352216563 K, F = -0.00030278003774675266, relative_change = 1.2378409411641225e-8 Iter 105: T = 572.3557135817672 K, F = -0.00012662622941150836, relative_change = 5.176799645424923e-9 Iter 110: T = 572.3557045317061 K, F = -5.295660137955016e-5, relative_change = 2.1649995988673484e-9 Iter 115: T = 572.3557007468625 K, F = -2.2147082705648025e-5, relative_change = 9.054286988641113e-10 Iter 120: T = 572.3556991639956 K, F = -9.26217460933687e-6, relative_change = 3.7866110525979145e-10 Iter 125: T = 572.3556985020218 K, F = -3.87355197084549e-6, relative_change = 1.5836059462315825e-10 Iter 130: T = 572.3556982251764 K, F = -1.6199656547866148e-6, relative_change = 6.622829043800575e-11 Iter 135: T = 572.3556981093964 K, F = -6.774891656569082e-7, relative_change = 2.7697469475579672e-11 Iter 140: T = 572.3556980609758 K, F = -2.833341929964206e-7, relative_change = 1.1583417953935661e-11 Iter 145: T = 572.3556980407257 K, F = -1.1849356468252026e-7, relative_change = 4.844316424660677e-12 Iter 150: T = 572.3556980322569 K, F = -4.955566701436709e-8, relative_change = 2.025960922965111e-12 Iter 155: T = 572.3556980287151 K, F = -2.0724633287283467e-8, relative_change = 8.472753917706805e-13 Iter 160: T = 572.3556980272339 K, F = -8.66678950828259e-9, relative_change = 3.54320261030643e-13 Converged in 163 iterations to T = 572.3556980268003 K Iter 1: T = 963.5615573557714 K, F = -8302.533818394802, relative_change = 0.03643844264422863 Iter 2: T = 929.000782093405 K, F = -7044.978427197011, relative_change = 0.0358677398434293 Iter 3: T = 896.2841305153165 K, F = -5976.981364298883, relative_change = 0.03521703340697403 Iter 5: T = 836.264320455837 K, F = -4299.791173626445, relative_change = 0.033646369448134296 Iter 10: T = 716.5478178053769 K, F = -1879.0254826835207, relative_change = 0.027927331942694485 Iter 15: T = 636.8761985424475 K, F = -813.6751984508948, relative_change = 0.02001494316355592 Iter 20: T = 590.1974065064945 K, F = -348.39283254657335, relative_change = 0.012003788451766332 Iter 25: T = 566.1770307062185 K, F = -147.6650673641564, relative_change = 0.006151065387402025 Iter 30: T = 554.9715412992573 K, F = -62.1652698560339, relative_change = 0.002842570525239007 Iter 35: T = 550.0375311723712 K, F = -26.076362156144068, relative_change = 0.0012436646031481553 Iter 40: T = 547.9265100229433 K, F = -10.91963919487541, relative_change = 0.0005303750412290048 Iter 45: T = 547.034989711619 K, F = -4.5692471811786755, relative_change = 0.00022365600359447777 Iter 50: T = 546.6606027729553 K, F = -1.9113582248435361, relative_change = 9.38625862008e-5 Iter 55: T = 546.5037578958955 K, F = -0.7994308056642528, relative_change = 3.931193664294577e-5 Iter 60: T = 546.4381158111916 K, F = -0.3343451638726239, relative_change = 1.645079670656351e-5 Iter 65: T = 546.4106551565898 K, F = -0.13982952971603857, relative_change = 6.88168341682575e-6 Iter 70: T = 546.3991693215188 K, F = -0.058478797209210454, relative_change = 2.8783107907554225e-6 Iter 75: T = 546.3943655524699 K, F = -0.024456604481970873, relative_change = 1.203797929990697e-6 Iter 80: T = 546.3923565141667 K, F = -0.010228056853004208, relative_change = 5.034521129479772e-7 Iter 85: T = 546.391516302534 K, F = -0.0042774977595711194, relative_change = 2.1055133756333358e-7 Iter 90: T = 546.391164914627 K, F = -0.0017889010378256687, relative_change = 8.805537271450522e-8 Iter 95: T = 546.3910179597686 K, F = -0.0007481398466205047, relative_change = 3.682585900366374e-8 Iter 100: T = 546.39095650145 K, F = -0.000312881030213763, relative_change = 1.54010228512136e-8 Iter 105: T = 546.39093079884 K, F = -0.0001308505859875242, relative_change = 6.440893252081485e-9 Iter 110: T = 546.3909200497002 K, F = -5.4723278463425507e-5, relative_change = 2.693658766133423e-9 Iter 115: T = 546.3909155542813 K, F = -2.2885927985161203e-5, relative_change = 1.1265202795594293e-9 Iter 120: T = 546.3909136742434 K, F = -9.571168782335215e-6, relative_change = 4.711242609870447e-10 Iter 125: T = 546.3909128879891 K, F = -4.0027771505413146e-6, relative_change = 1.970297967521451e-10 Iter 130: T = 546.3909125591681 K, F = -1.6740088784605867e-6, relative_change = 8.240019806867575e-11 Iter 135: T = 546.3909124216513 K, F = -7.000902974563239e-7, relative_change = 3.4460736730698287e-11 Iter 140: T = 546.3909123641401 K, F = -2.927862674806381e-7, relative_change = 1.441189875610232e-11 Iter 145: T = 546.3909123400882 K, F = -1.2244683031403802e-7, relative_change = 6.02723391723993e-12 Iter 150: T = 546.3909123300294 K, F = -5.1208797008373e-8, relative_change = 2.5206646625754816e-12 Iter 155: T = 546.3909123258228 K, F = -2.1415975465233217e-8, relative_change = 1.054164435125259e-12 Iter 160: T = 546.3909123240635 K, F = -8.956735325638121e-9, relative_change = 4.4087983993960356e-13 Converged in 164 iterations to T = 546.3909123234284 K Iter 1: T = 969.3510013472634 K, F = -6983.403497750369, relative_change = 0.030648998652736608 Iter 2: T = 940.8437000296168 K, F = -5916.378647455125, relative_change = 0.02940864689676434 Iter 3: T = 914.4388676863783 K, F = -5010.6978332860535, relative_change = 0.02806505729103282 Iter 5: T = 867.7499526801794 K, F = -3589.9931696099006, relative_change = 0.025100441858994745 Iter 10: T = 783.6673591508991 K, F = -1548.0726216204102, relative_change = 0.016829890584381123 Iter 15: T = 736.8642257214494 K, F = -660.0818455012915, relative_change = 0.009458527798300443 Iter 20: T = 713.7738695055605 K, F = -278.934495052508, relative_change = 0.0046288683345088585 Iter 25: T = 703.2819388952418 K, F = -117.23090414677985, relative_change = 0.002085297634723644 Iter 30: T = 698.724204463803 K, F = -49.13491533486062, relative_change = 0.0009012982639528576 Iter 35: T = 696.7862861873266 K, F = -20.56815072062589, relative_change = 0.000382295832802712 Iter 40: T = 695.9700924204622 K, F = -8.6052698010318, relative_change = 0.00016083823112287229 Iter 45: T = 695.6277349419238 K, F = -3.5994283976762937, relative_change = 6.743342161850782e-5 Iter 50: T = 695.4843783961402 K, F = -1.5054294196237819, relative_change = 2.823112132210867e-5 Iter 55: T = 695.4243936765665 K, F = -0.6296070262665453, relative_change = 1.1811787506634459e-5 Iter 60: T = 695.3993018709325 K, F = -0.2633124080705083, relative_change = 4.940739869226236e-6 Iter 65: T = 695.3888072194056 K, F = -0.11012095877128708, relative_change = 2.0664354934988725e-6 Iter 70: T = 695.3844180630911 K, F = -0.04605399891647066, relative_change = 8.642358273083793e-7 Iter 75: T = 695.3825824361677 K, F = -0.019260349632095553, relative_change = 3.6143861102437266e-7 Iter 80: T = 695.3818147499356 K, F = -0.00805491125503055, relative_change = 1.51158794835321e-7 Iter 85: T = 695.3814936934879 K, F = -0.0033686606106961836, relative_change = 6.321656208573244e-8 Iter 90: T = 695.3813594236902 K, F = -0.0014088141897038442, relative_change = 2.6437947260761284e-8 Iter 95: T = 695.38130327043 K, F = -0.0005891829342069554, relative_change = 1.1056669817861771e-8 Iter 100: T = 695.3812797864612 K, F = -0.00024640334385150897, relative_change = 4.624032189092148e-9 Iter 105: T = 695.381269965184 K, F = -0.00010304882039779972, relative_change = 1.9338256013941682e-9 Iter 110: T = 695.3812658578086 K, F = -4.309624813436663e-5, relative_change = 8.087489986617484e-10 Iter 115: T = 695.381264140055 K, F = -1.802336575706942e-5, relative_change = 3.3822849577371656e-10 Iter 120: T = 695.3812634216699 K, F = -7.537586672268226e-6, relative_change = 1.4145119445655944e-10 Iter 125: T = 695.3812631212328 K, F = -3.1523087946627726e-6, relative_change = 5.915657950026682e-11 Iter 130: T = 695.3812629955863 K, F = -1.3183341259770387e-6, relative_change = 2.4740005715940452e-11 Iter 135: T = 695.3812629430395 K, F = -5.51342171584146e-7, relative_change = 1.0346548885116076e-11 Iter 140: T = 695.3812629210638 K, F = -2.305782454969929e-7, relative_change = 4.327057156508086e-12 Iter 145: T = 695.3812629118734 K, F = -9.643239107237633e-8, relative_change = 1.8096610416814487e-12 Iter 150: T = 695.3812629080297 K, F = -4.032840050793851e-8, relative_change = 7.568072767135717e-13 Iter 155: T = 695.3812629064222 K, F = -1.686492123731398e-8, relative_change = 3.1648899914164706e-13 Converged in 158 iterations to T = 695.3812629059516 K Iter 1: T = 966.5627132267043 K, F = -7618.717598366477, relative_change = 0.03343728677329563 Iter 2: T = 935.1683433251615 K, F = -6459.502821124627, relative_change = 0.03248042726243611 Iter 3: T = 905.7870537571526 K, F = -5475.247690786834, relative_change = 0.03141818238151461 Iter 5: T = 852.9379226667572 K, F = -3930.2922102867133, relative_change = 0.028973644746363825 Iter 10: T = 753.3856343239053 K, F = -1704.6703379447179, relative_change = 0.02130377307453442 Iter 15: T = 693.8387408694365 K, F = -731.1673960732193, relative_change = 0.013130778568903925 Iter 20: T = 662.6248896589835 K, F = -310.3252975139699, relative_change = 0.0068710419080792095 Iter 25: T = 647.8831727513102 K, F = -130.748728244065, relative_change = 0.003214424561056027 Iter 30: T = 641.3491005415102 K, F = -54.86688010711377, relative_change = 0.0014148631545610555 Iter 35: T = 638.5447936328785 K, F = -22.979996029977606, relative_change = 0.0006050247942311632 Iter 40: T = 637.3588642634271 K, F = -9.616570248694359, relative_change = 0.00025543454035324215 Iter 45: T = 636.860550787928 K, F = -4.022833169642874, relative_change = 0.00010725247576551189 Iter 50: T = 636.6517367560108 K, F = -1.6825844097463514, relative_change = 4.492933500300245e-5 Iter 55: T = 636.5643356753841 K, F = -0.7037097407030224, relative_change = 1.8803146365066988e-5 Iter 60: T = 636.5277707901834 K, F = -0.2943055658162476, relative_change = 7.86600476535423e-6 Iter 65: T = 636.5124766942276 K, F = -0.12308310796654692, relative_change = 3.2900603477725037e-6 Iter 70: T = 636.506080131518 K, F = -0.05147500156403639, relative_change = 1.37601306433558e-6 Iter 75: T = 636.5034049445352 K, F = -0.02152749115714153, relative_change = 5.754774341285042e-7 Iter 80: T = 636.5022861374853 K, F = -0.009003059273049507, relative_change = 2.406736934791072e-7 Iter 85: T = 636.5018182369334 K, F = -0.003765187848157936, relative_change = 1.0065299028921782e-7 Iter 90: T = 636.5016225549706 K, F = -0.0015746466881302323, relative_change = 4.209434859188575e-8 Iter 95: T = 636.501540718373 K, F = -0.0006585360782527805, relative_change = 1.760437081919912e-8 Iter 100: T = 636.5015064933194 K, F = -0.0002754076568615149, relative_change = 7.36236011836308e-9 Iter 105: T = 636.5014921799914 K, F = -0.0001151787713343233, relative_change = 3.0790272609177036e-9 Iter 110: T = 636.5014861939864 K, F = -4.816913809185808e-5, relative_change = 1.2876860400777428e-9 Iter 115: T = 636.5014836905675 K, F = -2.014490918517131e-5, relative_change = 5.385257002659201e-10 Iter 120: T = 636.5014826436078 K, F = -8.424840828635816e-6, relative_change = 2.252178602889846e-10 Iter 125: T = 636.5014822057568 K, F = -3.5233690018343644e-6, relative_change = 9.418879790623224e-11 Iter 130: T = 636.5014820226423 K, F = -1.473516299865807e-6, relative_change = 3.9390915086509415e-11 Iter 135: T = 636.5014819460616 K, F = -6.162422009348134e-7, relative_change = 1.6473753446678814e-11 Iter 140: T = 636.5014819140347 K, F = -2.5771944234254107e-7, relative_change = 6.889509589157078e-12 Iter 145: T = 636.5014819006406 K, F = -1.077820497852322e-7, relative_change = 2.881293932887672e-12 Iter 150: T = 636.5014818950391 K, F = -4.507582856971837e-8, relative_change = 1.2049938894468048e-12 Iter 155: T = 636.5014818926965 K, F = -1.8851589622670417e-8, relative_change = 5.039519188635654e-13 Converged in 160 iterations to T = 636.5014818917167 K Iter 1: T = 966.4922412296022 K, F = -7634.77470994239, relative_change = 0.033507758770397834 Iter 2: T = 935.0242236129562 K, F = -6473.240208287607, relative_change = 0.032558996621236576 Iter 3: T = 905.5662068666888 K, F = -5487.008687290711, relative_change = 0.03150508404203792 Iter 5: T = 852.5553671323339 K, F = -3938.9295586340513, relative_change = 0.029077074649899035 Iter 10: T = 752.5756626126623 K, F = -1708.6900092254366, relative_change = 0.02143460958757636 Iter 15: T = 692.6474107666642 K, F = -733.0227056644791, relative_change = 0.01324855795471721 Iter 20: T = 661.1731287486421 K, F = -311.1573856408352, relative_change = 0.006948010069024446 Iter 25: T = 646.2889073621353 K, F = -131.11066267736317, relative_change = 0.0032547135964736858 Iter 30: T = 639.6869657113925 K, F = -55.021148595454804, relative_change = 0.0014335355131247982 Iter 35: T = 636.8525719210089 K, F = -23.045062632976045, relative_change = 0.0006131911811185952 Iter 40: T = 635.6537395605468 K, F = -9.64388138944623, relative_change = 0.0002589154965496896 Iter 45: T = 635.149972102889 K, F = -4.034272676253302, relative_change = 0.00010871998379528131 Iter 50: T = 634.938866907201 K, F = -1.6873716561466752, relative_change = 4.5545134300704e-5 Iter 55: T = 634.8505058329769 K, F = -0.7057123693425235, relative_change = 1.9061044360957266e-5 Iter 60: T = 634.8135391511616 K, F = -0.29514318445761445, relative_change = 7.973924440708087e-6 Iter 65: T = 634.7980769637709 K, F = -0.12343342678320507, relative_change = 3.3352047851333515e-6 Iter 70: T = 634.7916100935411 K, F = -0.05162151199778653, relative_change = 1.3948949561556934e-6 Iter 75: T = 634.7889055014214 K, F = -0.021588764080635814, relative_change = 5.833744076874774e-7 Iter 80: T = 634.7877743964959 K, F = -0.009028684430751444, relative_change = 2.4397636175975406e-7 Iter 85: T = 634.7873013527739 K, F = -0.0037759046098528315, relative_change = 1.0203421601110605e-7 Iter 90: T = 634.7871035198667 K, F = -0.0015791285682281164, relative_change = 4.2671995498351644e-8 Iter 95: T = 634.7870207837171 K, F = -0.0006604104547534573, relative_change = 1.7845949979372482e-8 Iter 100: T = 634.7869861824598 K, F = -0.00027619154410618574, relative_change = 7.463391477967607e-9 Iter 105: T = 634.7869717117989 K, F = -0.00011550660269588064, relative_change = 3.1212798008055037e-9 Iter 110: T = 634.7869656599953 K, F = -4.830624166313191e-5, relative_change = 1.305356574261388e-9 Iter 115: T = 634.7869631290587 K, F = -2.020224724941233e-5, relative_change = 5.459157213339858e-10 Iter 120: T = 634.7869620705908 K, F = -8.448820562612092e-6, relative_change = 2.2830846249591715e-10 Iter 125: T = 634.7869616279269 K, F = -3.5333981734941844e-6, relative_change = 9.548133980078657e-11 Iter 130: T = 634.7869614427995 K, F = -1.47770873676345e-6, relative_change = 3.9931421054050254e-11 Iter 135: T = 634.7869613653769 K, F = -6.1799473599633e-7, relative_change = 1.6699778117733446e-11 Iter 140: T = 634.786961332998 K, F = -2.58453544121906e-7, relative_change = 6.98406732327158e-12 Iter 145: T = 634.7869613194567 K, F = -1.0808860212430105e-7, relative_change = 2.920826939154049e-12 Iter 150: T = 634.7869613137937 K, F = -4.5203526977122266e-8, relative_change = 1.221513432039098e-12 Iter 155: T = 634.7869613114252 K, F = -1.8904237952810377e-8, relative_change = 5.108402402741326e-13 Converged in 160 iterations to T = 634.7869613104347 K Iter 1: T = 976.4146202903427 K, F = -5373.951202333498, relative_change = 0.023585379709657343 Iter 2: T = 954.9913484202277 K, F = -4544.0585558278735, relative_change = 0.021940752857371838 Iter 3: T = 935.6387330831072 K, F = -3840.5857844806337, relative_change = 0.020264702260532563 Iter 5: T = 902.7252112875889 K, F = -2739.6821314617073, relative_change = 0.016911468157436382 Iter 10: T = 848.5070945129482 K, F = -1168.2945479790458, relative_change = 0.00951989358792979 Iter 15: T = 821.730969384205 K, F = -493.72819638112776, relative_change = 0.0046640010608681465 Iter 20: T = 809.5567884876239 K, F = -207.51267022990737, relative_change = 0.0021023538335194288 Iter 25: T = 804.2666500392945 K, F = -86.97624081270664, relative_change = 0.0009089194234680279 Iter 30: T = 802.0170040622484 K, F = -36.40903406118617, relative_change = 0.00038557493563363553 Iter 35: T = 801.0694624146786 K, F = -15.232805443504084, relative_change = 0.00016222616552414752 Iter 40: T = 800.6720000360551 K, F = -6.37161568810933, relative_change = 6.801680984327963e-5 Iter 45: T = 800.505567420038 K, F = -2.66487411137955, relative_change = 2.8475617875501618e-5 Iter 50: T = 800.4359266576622 K, F = -1.1145151483612648, relative_change = 1.1914129454967396e-5 Iter 55: T = 800.4067956421497 K, F = -0.4661093136767249, relative_change = 4.983556350435584e-6 Iter 60: T = 800.3946115807826 K, F = -0.1949334905439486, relative_change = 2.084344631686468e-6 Iter 65: T = 800.3895158644028 K, F = -0.08152369022443695, relative_change = 8.717261281024947e-7 Iter 70: T = 800.3873847406032 K, F = -0.03409421171259841, relative_change = 3.645712291529791e-7 Iter 75: T = 800.3864934731707 K, F = -0.01425861190625688, relative_change = 1.5246890801210855e-7 Iter 80: T = 800.3861207334355 K, F = -0.005963122725571646, relative_change = 6.376446965889673e-8 Iter 85: T = 800.385964849043 K, F = -0.0024938493026516184, relative_change = 2.666708920322779e-8 Iter 90: T = 800.3858996562963 K, F = -0.001042957588870519, relative_change = 1.1152499797843337e-8 Iter 95: T = 800.3858723919054 K, F = -0.0004361773231907895, relative_change = 4.6641094034647566e-9 Iter 100: T = 800.3858609896106 K, F = -0.00018241456601153505, relative_change = 1.950586390297206e-9 Iter 105: T = 800.3858562210346 K, F = -7.628795073244543e-5, relative_change = 8.157585543586653e-10 Iter 110: T = 800.3858542267591 K, F = -3.190453198276266e-5, relative_change = 3.4115997279553837e-10 Iter 115: T = 800.3858533927292 K, F = -1.3342856555853544e-5, relative_change = 1.426771784226029e-10 Iter 120: T = 800.385853043928 K, F = -5.580141305250308e-6, relative_change = 5.966929307466914e-11 Iter 125: T = 800.3858528980551 K, F = -2.33367986235411e-6, relative_change = 2.4954390964808842e-11 Iter 130: T = 800.3858528370494 K, F = -9.75971815142529e-7, relative_change = 1.043621391580732e-11 Iter 135: T = 800.385852811536 K, F = -4.0816201751781023e-7, relative_change = 4.3645380549721956e-12 Iter 140: T = 800.3858528008661 K, F = -1.7070058644375052e-7, relative_change = 1.8253271338619815e-12 Iter 145: T = 800.3858527964038 K, F = -7.13879146907459e-8, relative_change = 7.633617460432135e-13 Iter 150: T = 800.3858527945376 K, F = -2.985638902774923e-8, relative_change = 3.192588739670183e-13 Converged in 153 iterations to T = 800.3858527939913 K Iter 1: T = 965.2256022511738 K, F = -7923.379606062023, relative_change = 0.03477439774882623 Iter 2: T = 932.4281083172552 K, F = -6720.237620716872, relative_change = 0.033979096552583854 Iter 3: T = 901.5780986491844 K, F = -5698.56454703291, relative_change = 0.033085671048404514 Iter 5: T = 845.6073238674879 K, F = -4094.4907525679664, relative_change = 0.030986138509082183 Iter 10: T = 737.5915657381034 K, F = -1781.5188592579445, relative_change = 0.023970019843220697 Iter 15: T = 670.1559386518186 K, F = -766.9764997239901, relative_change = 0.015664316934532786 Iter 20: T = 633.3200217143715 K, F = -326.5465322697995, relative_change = 0.008603625552867502 Iter 25: T = 615.4055321330815 K, F = -137.85436184065725, relative_change = 0.004147476867586022 Iter 30: T = 607.3336399038586 K, F = -57.907131519904674, relative_change = 0.0018536308383466182 Iter 35: T = 603.8417632179251 K, F = -24.26460812494933, relative_change = 0.0007982055910876187 Iter 40: T = 602.359834133725 K, F = -10.156202578205724, relative_change = 0.0003380183430376692 Iter 45: T = 601.7361977561636 K, F = -4.248939431780102, relative_change = 0.0001421113942701922 Iter 50: T = 601.4747000498701 K, F = -1.7772197185780128, relative_change = 5.9564542198307466e-5 Iter 55: T = 601.3652181217273 K, F = -0.7433005088553287, relative_change = 2.4933740543382733e-5 Iter 60: T = 601.3194103609308 K, F = -0.3108652010370348, relative_change = 1.0431640387700678e-5 Iter 65: T = 601.300249312927 K, F = -0.13000894821779155, relative_change = 4.363345749757375e-6 Iter 70: T = 601.2922352872724 K, F = -0.05437154117525356, relative_change = 1.8249273640741756e-6 Iter 75: T = 601.2888836129381 K, F = -0.022738870946341305, relative_change = 7.632281185529852e-7 Iter 80: T = 601.2874818829222 K, F = -0.009509674925232636, relative_change = 3.1919490963521336e-7 Iter 85: T = 601.2868956592293 K, F = -0.003977060939859112, relative_change = 1.3349178701772248e-7 Iter 90: T = 601.286650492875 K, F = -0.0016632546114183078, relative_change = 5.5827975660866306e-8 Iter 95: T = 601.2865479612719 K, F = -0.0006955929820668394, relative_change = 2.3347946449484632e-8 Iter 100: T = 601.2865050813125 K, F = -0.0002909052992901562, relative_change = 9.764393590565114e-9 Iter 105: T = 601.2864871483981 K, F = -0.00012166007121444666, relative_change = 4.083586621384239e-9 Iter 110: T = 601.2864796486386 K, F = -5.087969501288425e-5, relative_change = 1.707804804967663e-9 Iter 115: T = 601.2864765121494 K, F = -2.1278495619336812e-5, relative_change = 7.142243669986313e-10 Iter 120: T = 601.2864752004323 K, F = -8.898920994704351e-6, relative_change = 2.986971632830025e-10 Iter 125: T = 601.2864746518565 K, F = -3.7216351965740913e-6, relative_change = 1.249187268300165e-10 Iter 130: T = 601.2864744224356 K, F = -1.5564325998584927e-6, relative_change = 5.2242514071024147e-11 Iter 135: T = 601.2864743264889 K, F = -6.509184365399712e-7, relative_change = 2.1848434432017307e-11 Iter 140: T = 601.2864742863629 K, F = -2.7222188203612774e-7, relative_change = 9.137276820935623e-12 Iter 145: T = 601.2864742695817 K, F = -1.1384645431933293e-7, relative_change = 3.821318699860843e-12 Iter 150: T = 601.2864742625637 K, F = -4.7611892151078195e-8, relative_change = 1.5981192818921772e-12 Iter 155: T = 601.2864742596287 K, F = -1.9912318571790877e-8, relative_change = 6.683678975942065e-13 Iter 160: T = 601.2864742584013 K, F = -8.3281864182716e-9, relative_change = 2.7954014632391886e-13 Converged in 162 iterations to T = 601.2864742581415 K Iter 1: T = 964.5873846927378 K, F = -8068.798083853272, relative_change = 0.035412615307262134 Iter 2: T = 931.1158613294635 K, F = -6844.753417231596, relative_change = 0.034700353637671114 Iter 3: T = 899.5550809767964 K, F = -5805.281421116496, relative_change = 0.03389565323009768 Iter 5: T = 842.0534740458494 K, F = -4173.103476135481, relative_change = 0.03198528226393027 Iter 10: T = 729.7150710901244 K, F = -1818.6563601819375, relative_change = 0.025394491592974935 Iter 15: T = 657.9540196910236 K, F = -784.5727230954113, relative_change = 0.01714227610837105 Iter 20: T = 617.8082519083588 K, F = -334.6673067242891, relative_change = 0.009694112393146952 Iter 25: T = 597.9244746172303 K, F = -141.46090618213364, relative_change = 0.004764030852070128 Iter 30: T = 588.8683210981027 K, F = -59.46213839913942, relative_change = 0.00215099765459257 Iter 35: T = 584.9296600008117 K, F = -24.92406727906644, relative_change = 0.0009306724749395175 Iter 40: T = 583.2540713688809 K, F = -10.433675174032377, relative_change = 0.00039493787169679395 Iter 45: T = 582.5481993141697 K, F = -4.365281699919938, relative_change = 0.00016618980229270405 Iter 50: T = 582.2520877731314 K, F = -1.8259283704512157, relative_change = 6.96829490797432e-5 Iter 55: T = 582.1280908066954 K, F = -0.7636803403548618, relative_change = 2.9173912093882128e-5 Iter 60: T = 582.0762058186672 K, F = -0.3193899176192087, relative_change = 1.2206426513199138e-5 Iter 65: T = 582.0545019993046 K, F = -0.13357437136550268, relative_change = 5.105844353787777e-6 Iter 70: T = 582.0454243458848 K, F = -0.05586269355279358, relative_change = 2.1354949634119263e-6 Iter 75: T = 582.0416278129059 K, F = -0.02336249739662305, relative_change = 8.931192120991064e-7 Iter 80: T = 582.0400400312529 K, F = -0.009770484478456298, relative_change = 3.735183179957732e-7 Iter 85: T = 582.0393759974176 K, F = -0.004086134876545577, relative_change = 1.5621073034080293e-7 Iter 90: T = 582.0390982897353 K, F = -0.0017088706814045174, relative_change = 6.532935197863215e-8 Iter 95: T = 582.0389821489258 K, F = -0.0007146701751072349, relative_change = 2.7321542981985106e-8 Iter 100: T = 582.0389335774278 K, F = -0.0002988836107984394, relative_change = 1.1426200431772802e-8 Iter 105: T = 582.0389132642429 K, F = -0.00012499669648757816, relative_change = 4.778574311490155e-9 Iter 110: T = 582.0389047690256 K, F = -5.2275111759036985e-5, relative_change = 1.9984570037423996e-9 Iter 115: T = 582.0389012162242 K, F = -2.1862075650080914e-5, relative_change = 8.357785951816846e-10 Iter 120: T = 582.0388997304002 K, F = -9.142981142074014e-6, relative_change = 3.4953259470305303e-10 Iter 125: T = 582.0388991090108 K, F = -3.823704015137874e-6, relative_change = 1.4617871040228784e-10 Iter 130: T = 582.0388988491384 K, F = -1.599118245598774e-6, relative_change = 6.113366581039152e-11 Iter 135: T = 582.0388987404565 K, F = -6.6876979071262e-7, relative_change = 2.5566807857006032e-11 Iter 140: T = 582.0388986950046 K, F = -2.796873965760227e-7, relative_change = 1.0692339920624055e-11 Iter 145: T = 582.038898675996 K, F = -1.16969101127129e-7, relative_change = 4.471683046739017e-12 Iter 150: T = 582.0388986680464 K, F = -4.8917153661065527e-8, relative_change = 1.870083677033616e-12 Iter 155: T = 582.0388986647217 K, F = -2.045707558906429e-8, relative_change = 7.820660090949169e-13 Iter 160: T = 582.0388986633313 K, F = -8.555522679198901e-9, relative_change = 3.2707429018324687e-13 Converged in 163 iterations to T = 582.0388986629243 K Iter 1: T = 964.320114532193 K, F = -8129.695844172992, relative_change = 0.035679885467807065 Iter 2: T = 930.565493951756 K, F = -6896.909952434625, relative_change = 0.035003542985113205 Iter 3: T = 898.7051652770733 K, F = -5849.996026447217, relative_change = 0.0342375994830671 Iter 5: T = 840.5543966780192 K, F = -4206.071246623174, relative_change = 0.03241140704815877 Iter 10: T = 726.3466335062669 K, F = -1834.302354485685, relative_change = 0.026023990894113263 Iter 15: T = 652.6468863745243 K, F = -792.0520611011245, relative_change = 0.017825733218267626 Iter 20: T = 610.9600165380865 K, F = -338.1562546583526, relative_change = 0.010219968678390532 Iter 25: T = 590.1314655624991 K, F = -143.02349562497568, relative_change = 0.005069875568495324 Iter 30: T = 580.5944806700156 K, F = -60.139163587495624, relative_change = 0.0023007644891751187 Iter 35: T = 576.4355504147333 K, F = -25.21186837142088, relative_change = 0.0009978664342093014 Iter 40: T = 574.6640860468284 K, F = -10.554898504714577, relative_change = 0.0004239012538668038 Iter 45: T = 573.9174272929151 K, F = -4.416133028735011, relative_change = 0.00017845852647588005 Iter 50: T = 573.6041349578201 K, F = -1.8472222595459962, relative_change = 7.484152890175755e-5 Iter 55: T = 573.4729310186965 K, F = -0.7725904863000621, relative_change = 3.133615703008024e-5 Iter 60: T = 573.4180281686539 K, F = -0.3231170858319514, relative_change = 1.3111556220268839e-5 Iter 65: T = 573.3950615741951 K, F = -0.1351332644344799, relative_change = 5.484529761693506e-6 Iter 70: T = 573.3854556960359 K, F = -0.05651466693635954, relative_change = 2.293891857128844e-6 Iter 75: T = 573.3814382326736 K, F = -0.02363516494444881, relative_change = 9.593672563311625e-7 Iter 80: T = 573.3797580517121 K, F = -0.009884518089289362, relative_change = 4.0122484090802887e-7 Iter 85: T = 573.3790553747556 K, F = -0.0041338252326713065, relative_change = 1.6779806899960927e-7 Iter 90: T = 573.3787615059489 K, F = -0.0017288153821563568, relative_change = 7.017533986012369e-8 Iter 95: T = 573.3786386063448 K, F = -0.000723011290805875, relative_change = 2.9348197242215264e-8 Iter 100: T = 573.378587208235 K, F = -0.00030237196617199924, relative_change = 1.2273772213205007e-8 Iter 105: T = 573.3785657129266 K, F = -0.00012645556908902345, relative_change = 5.133039106623039e-9 Iter 110: T = 573.3785567233311 K, F = -5.288523000374079e-5, relative_change = 2.1466984490300786e-9 Iter 115: T = 573.3785529637747 K, F = -2.2117233907270606e-5, relative_change = 8.977749213597772e-10 Iter 120: T = 573.3785513914834 K, F = -9.24969108734297e-6, relative_change = 3.754601878231803e-10 Iter 125: T = 573.3785507339325 K, F = -3.868332181911072e-6, relative_change = 1.5702197206348406e-10 Iter 130: T = 573.3785504589367 K, F = -1.617782612872709e-6, relative_change = 6.566845991437748e-11 Iter 135: T = 573.3785503439302 K, F = -6.765760004467936e-7, relative_change = 2.746333385788034e-11 Iter 140: T = 573.3785502958332 K, F = -2.829525714842518e-7, relative_change = 1.1485510769801872e-11 Iter 145: T = 573.3785502757183 K, F = -1.1833411112105452e-7, relative_change = 4.803376413274429e-12 Iter 150: T = 573.3785502673061 K, F = -4.94880470491843e-8, relative_change = 2.0088013143437287e-12 Iter 155: T = 573.378550263788 K, F = -2.0697063451979858e-8, relative_change = 8.401278843209562e-13 Iter 160: T = 573.3785502623167 K, F = -8.655661076772958e-9, relative_change = 3.513475351123656e-13 Converged in 163 iterations to T = 573.378550261886 K Iter 1: T = 980.0209062985521 K, F = -4552.255504899375, relative_change = 0.01997909370144792 Iter 2: T = 962.0907400415202 K, F = -3845.430311221891, relative_change = 0.018295697716033874 Iter 3: T = 946.0894647553274 K, F = -3246.839249019515, relative_change = 0.016631773511823048 Iter 5: T = 919.3530712651062 K, F = -2311.505997237714, relative_change = 0.013451633255140732 Iter 10: T = 876.855978081212 K, F = -981.4449200363525, relative_change = 0.007081611613526424 Iter 15: T = 856.7131025789711 K, F = -413.6085141034981, relative_change = 0.00332492290828701 Iter 20: T = 847.7675227932756 K, F = -173.58576393372712, relative_change = 0.001466138105048884 Iter 25: T = 843.9246645430343 K, F = -72.7071878073562, relative_change = 0.0006274625148219873 Iter 30: T = 842.2988664526453 K, F = -30.426907930449865, relative_change = 0.0002650010237606904 Iter 35: T = 841.6156046895966 K, F = -12.728404600023548, relative_change = 0.0001112859453601247 Iter 40: T = 841.3292682787779 K, F = -5.323786563638551, relative_change = 4.662194237864813e-5 Iter 45: T = 841.2094157188698 K, F = -2.22657897290372, relative_change = 1.951202659356978e-5 Iter 50: T = 841.1592738599505 K, F = -0.9312007923593195, relative_change = 8.162644152817933e-6 Iter 55: T = 841.1383007702465 K, F = -0.3894425942770925, relative_change = 3.4141494968740737e-6 Iter 60: T = 841.1295290198655 K, F = -0.16287012141546509, relative_change = 1.4279140543747755e-6 Iter 65: T = 841.1258604722295 K, F = -0.06811433086762553, relative_change = 5.97183997103677e-7 Iter 70: T = 841.1243262248532 K, F = -0.0284862442863556, relative_change = 2.4975180334303177e-7 Iter 75: T = 841.1236845813144 K, F = -0.01191329064379043, relative_change = 1.0444959324944942e-7 Iter 80: T = 841.1234162378054 K, F = -0.004982280963194086, relative_change = 4.3682138386638305e-8 Iter 85: T = 841.1233040132545 K, F = -0.0020836494940184025, relative_change = 1.8268404379425333e-8 Iter 90: T = 841.1232570795913 K, F = -0.0008714071186068928, relative_change = 7.64006705391498e-9 Iter 95: T = 841.1232374513701 K, F = -0.0003644328670158181, relative_change = 3.1951676668200402e-9 Iter 100: T = 841.1232292426131 K, F = -0.00015241017899314535, relative_change = 1.3362573541432797e-9 Iter 105: T = 841.1232258096128 K, F = -6.373975852724811e-5, relative_change = 5.588388078879184e-10 Iter 110: T = 841.1232243738909 K, F = -2.6656726554996624e-5, relative_change = 2.3371305062111876e-10 Iter 115: T = 841.1232237734549 K, F = -1.1148160201646107e-5, relative_change = 9.774157877261561e-11 Iter 120: T = 841.1232235223455 K, F = -4.6622926652695185e-6, relative_change = 4.087668621625048e-11 Iter 125: T = 841.1232234173285 K, F = -1.949826789582332e-6, relative_change = 1.709512113962687e-11 Iter 130: T = 841.1232233734091 K, F = -8.154422626027724e-7, relative_change = 7.149396212787478e-12 Iter 135: T = 841.1232233550415 K, F = -3.410275295490095e-7, relative_change = 2.989961448263999e-12 Iter 140: T = 841.1232233473601 K, F = -1.4262171266210544e-7, relative_change = 1.2504369460364635e-12 Iter 145: T = 841.1232233441476 K, F = -5.964783400536078e-8, relative_change = 5.22962836447041e-13 Converged in 150 iterations to T = 841.1232233428042 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:14 Bin 1 ray tracing: 13%|████ | ETA: 0:00:13 Bin 1 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 1 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 1 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 1 ray tracing: 42%|████████████▌ | ETA: 0:00:08 Bin 1 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 13%|████ | ETA: 0:00:13 Bin 2 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 2 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 2 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 2 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 2 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 2 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:02 Bin 2 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 3 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 3 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 3 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 3 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 54%|████████████████▏ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 4 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 4 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 4 ray tracing: 30%|████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 4 ray tracing: 45%|█████████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 67%|████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 5 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 5 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 5 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 46%|█████████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 5 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 6 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 6 ray tracing: 30%|████████▉ | ETA: 0:00:10 Bin 6 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 51%|███████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 57%|█████████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 7 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 7 ray tracing: 29%|████████▋ | ETA: 0:00:10 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:09 Bin 7 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 7 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 8 ray tracing: 29%|████████▉ | ETA: 0:00:10 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 45%|█████████████▌ | ETA: 0:00:07 Bin 8 ray tracing: 53%|████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 9 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 9 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 9 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 51%|███████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▎ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 10 ray tracing: 23%|██████▋ | ETA: 0:00:11 Bin 10 ray tracing: 31%|████████▉ | ETA: 0:00:09 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:08 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 53%|███████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 61%|█████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3010406794258 K, F = -7450.4889859331815, relative_change = 0.03269895932057422 Iter 2: T = 936.6762483599184 K, F = -6315.608227145535, relative_change = 0.03166004277013567 Iter 3: T = 908.0943212918035 K, F = -5352.087983269263, relative_change = 0.03051420073708578 Iter 5: T = 856.9210776584898 K, F = -3839.9095545648524, relative_change = 0.02790702649913659 Iter 10: T = 761.7311031599576 K, F = -1662.7498265385473, relative_change = 0.019991089779981815 Iter 15: T = 705.9806365104153 K, F = -711.9209665929967, relative_change = 0.011983704103101556 Iter 20: T = 677.301238288487 K, F = -301.7381405676015, relative_change = 0.006138557983280136 Iter 25: T = 663.9251138861565 K, F = -127.02650925914283, relative_change = 0.0028362019806333085 Iter 30: T = 658.0359797558274 K, F = -53.28324249522254, relative_change = 0.0012407526910477235 Iter 35: T = 655.5164382187726 K, F = -22.312622966356745, relative_change = 0.000529109226210316 Iter 40: T = 654.4524169574128 K, F = -9.33655002341305, relative_change = 0.00022311785715542804 Iter 45: T = 654.0055939420592 K, F = -3.905562815638581, relative_change = 9.3635965285759e-5 Iter 50: T = 653.818403614495 K, F = -1.633511953522422, relative_change = 3.921688583390591e-5 Iter 55: T = 653.7400616091492 K, F = -0.6831820403767294, relative_change = 1.641099702902057e-5 Iter 60: T = 653.7072881040281 K, F = -0.2857197587115174, relative_change = 6.865030258336345e-6 Iter 65: T = 653.6935800928225 K, F = -0.11949226732871804, relative_change = 2.87134476084122e-6 Iter 70: T = 653.6878469344377 K, F = -0.04997324226012134, relative_change = 1.2008843941531776e-6 Iter 75: T = 653.68544920589 K, F = -0.020899432781973315, relative_change = 5.022335921681683e-7 Iter 80: T = 653.6844464378639 K, F = -0.008740396938758777, relative_change = 2.1004172973906308e-7 Iter 85: T = 653.6840270666711 K, F = -0.003655339177698169, relative_change = 8.78422472307548e-8 Iter 90: T = 653.6838516803451 K, F = -0.0015287066371824642, relative_change = 3.673672712033342e-8 Iter 95: T = 653.6837783316392 K, F = -0.0006393233974137935, relative_change = 1.536374682256491e-8 Iter 100: T = 653.6837476563257 K, F = -0.00026737268398457914, relative_change = 6.425303936008373e-9 Iter 105: T = 653.6837348275418 K, F = -0.00011181845051894124, relative_change = 2.6871391148193857e-9 Iter 110: T = 653.6837294623908 K, F = -4.676381115853445e-5, relative_change = 1.1237937071147807e-9 Iter 115: T = 653.6837272186207 K, F = -1.955718447133048e-5, relative_change = 4.699839609399998e-10 Iter 120: T = 653.6837262802492 K, F = -8.17904867317365e-6, relative_change = 1.9655292018369773e-10 Iter 125: T = 653.683725887811 K, F = -3.4205758567829037e-6, relative_change = 8.220077935070518e-11 Iter 130: T = 653.6837257236886 K, F = -1.4305248794421743e-6, relative_change = 3.437732856533668e-11 Iter 135: T = 653.6837256550506 K, F = -5.98261922502008e-7, relative_change = 1.437699335665032e-11 Iter 140: T = 653.6837256263454 K, F = -2.502006158922043e-7, relative_change = 6.012638374544089e-12 Iter 145: T = 653.6837256143407 K, F = -1.0463732252885549e-7, relative_change = 2.5145676746559758e-12 Iter 150: T = 653.68372560932 K, F = -4.376070666944898e-8, relative_change = 1.0516253259899415e-12 Iter 155: T = 653.6837256072204 K, F = -1.830127477342458e-8, relative_change = 4.398028623099196e-13 Converged in 159 iterations to T = 653.6837256064625 K Iter 1: T = 970.3882865958701 K, F = -6747.057067142335, relative_change = 0.02961171340412993 Iter 2: T = 942.9417493281003 K, F = -5714.531889340243, relative_change = 0.028284077257416735 Iter 3: T = 917.6153613762187 K, F = -4838.266385707293, relative_change = 0.02685891039391145 Iter 5: T = 873.1056490601015 K, F = -3464.096481154533, relative_change = 0.023761513820592262 Iter 10: T = 794.1477344856794 K, F = -1490.9172037474827, relative_change = 0.015455895098618897 Iter 15: T = 751.1626873555556 K, F = -634.6044109867979, relative_change = 0.00845486637522698 Iter 20: T = 730.3097431272007 K, F = -267.8579861432646, relative_change = 0.004065191597743589 Iter 25: T = 720.9273475476225 K, F = -112.50643280418308, relative_change = 0.001814402162206194 Iter 30: T = 716.8714113121829 K, F = -47.141192856836376, relative_change = 0.000780825001631651 Iter 35: T = 715.1506445319301 K, F = -19.731075153021237, relative_change = 0.0003305678511811684 Iter 40: T = 714.4265977291112 K, F = -8.254610223688601, relative_change = 0.00013896284789235232 Iter 45: T = 714.1230144050736 K, F = -3.4526752753896863, relative_change = 5.824200386527146e-5 Iter 50: T = 713.9959154795871 K, F = -1.444037415862289, relative_change = 2.437962363814776e-5 Iter 55: T = 713.9427372264997 K, F = -0.6039289875655935, relative_change = 1.0199724094858578e-5 Iter 60: T = 713.9204932511626 K, F = -0.25257299092704893, relative_change = 4.266324430204017e-6 Iter 65: T = 713.9111898211033 K, F = -0.10562950922605585, relative_change = 1.7843464383705355e-6 Iter 70: T = 713.9072988871643 K, F = -0.04417560410277843, relative_change = 7.462557372286543e-7 Iter 75: T = 713.9056716296683 K, F = -0.0184747795179645, relative_change = 3.120966902595446e-7 Iter 80: T = 713.9049910872225 K, F = -0.0077263759325713055, relative_change = 1.3052319776141238e-7 Iter 85: T = 713.9047064755574 K, F = -0.003231263124594874, relative_change = 5.458647107666024e-8 Iter 90: T = 713.90458744744 K, F = -0.0013513529058056806, relative_change = 2.282873353827531e-8 Iter 95: T = 713.9045376684388 K, F = -0.0005651519372666947, relative_change = 9.547252395895775e-9 Iter 100: T = 713.9045168502623 K, F = -0.0002363532922637912, relative_change = 3.9927755712057264e-9 Iter 105: T = 713.9045081438517 K, F = -9.884577010443873e-5, relative_change = 1.6698265352095333e-9 Iter 110: T = 713.9045045027266 K, F = -4.133848132648055e-5, relative_change = 6.983414125613079e-10 Iter 115: T = 713.9045029799647 K, F = -1.728824832181175e-5, relative_change = 2.920547511415121e-10 Iter 120: T = 713.9045023431274 K, F = -7.230153019843755e-6, relative_change = 1.22140804006715e-10 Iter 125: T = 713.9045020767945 K, F = -3.0237375097108554e-6, relative_change = 5.1080762769986515e-11 Iter 130: T = 713.9045019654108 K, F = -1.2645627242013902e-6, relative_change = 2.1362578055546635e-11 Iter 135: T = 713.9045019188288 K, F = -5.288554109084131e-7, relative_change = 8.934088268554485e-12 Iter 140: T = 713.9045018993476 K, F = -2.211727886392012e-7, relative_change = 3.736327880559194e-12 Iter 145: T = 713.9045018912005 K, F = -9.249812915612665e-8, relative_change = 1.562594300188354e-12 Iter 150: T = 713.9045018877931 K, F = -3.868366904580256e-8, relative_change = 6.534930091471326e-13 Iter 155: T = 713.9045018863683 K, F = -1.6178598905014496e-8, relative_change = 2.733091649037903e-13 Converged in 157 iterations to T = 713.9045018860667 K Iter 1: T = 974.3939726996704 K, F = -5834.3576780002595, relative_change = 0.02560602730032964 Iter 2: T = 950.977327173751 K, F = -4936.102126077263, relative_change = 0.02403200982559536 Iter 3: T = 929.675500018954 K, F = -4174.338303991034, relative_change = 0.022399931676714783 Iter 5: T = 893.0636067034372 K, F = -2981.292672278538, relative_change = 0.019045879291047254 Iter 10: T = 831.376617756427 K, F = -1274.863047136508, relative_change = 0.011195132792493595 Iter 15: T = 800.0527453582868 K, F = -539.8257569441482, relative_change = 0.005652447144782376 Iter 20: T = 785.5648151621095 K, F = -227.13457660534576, relative_change = 0.0025902934829455724 Iter 25: T = 779.2140495140013 K, F = -95.250055359976, relative_change = 0.0011286867194759583 Iter 30: T = 776.5025343689153 K, F = -39.881733194788865, relative_change = 0.0004804672036852881 Iter 35: T = 775.3584624767748 K, F = -16.687365267697697, relative_change = 0.00020245176841520517 Iter 40: T = 774.8782060376773 K, F = -6.980324811332429, relative_change = 8.493560156095534e-5 Iter 45: T = 774.6770415455954 K, F = -2.9195128765800846, relative_change = 3.556814880275833e-5 Iter 50: T = 774.5928568134833 K, F = -1.2210202695336867, relative_change = 1.4883272501866744e-5 Iter 55: T = 774.5576400628576 K, F = -0.5106531536034983, relative_change = 6.225806045187934e-6 Iter 60: T = 774.5429103014945 K, F = -0.2135626283706199, relative_change = 2.6039590375564023e-6 Iter 65: T = 774.5367498427463 K, F = -0.08931468321273262, relative_change = 1.0890509530921935e-6 Iter 70: T = 774.5341734134405 K, F = -0.037352509405780054, relative_change = 4.5546184313306003e-7 Iter 75: T = 774.5330959108607 K, F = -0.015621272902984207, relative_change = 1.9048093389782786e-7 Iter 80: T = 774.5326452848265 K, F = -0.006533004176307866, relative_change = 7.96616377894608e-8 Iter 85: T = 774.5324568273596 K, F = -0.0027321805905224927, relative_change = 3.331548960465385e-8 Iter 90: T = 774.532378012148 K, F = -0.0011426305922650482, relative_change = 1.3932942864032713e-8 Iter 95: T = 774.5323450506766 K, F = -0.00047786176484432286, relative_change = 5.82692434511293e-9 Iter 100: T = 774.5323312657943 K, F = -0.000199847499817718, relative_change = 2.4368895909785397e-9 Iter 105: T = 774.5323255007916 K, F = -8.357861160646074e-5, relative_change = 1.0191363717628179e-9 Iter 110: T = 774.5323230897985 K, F = -3.495357423111134e-5, relative_change = 4.2621501680031246e-10 Iter 115: T = 774.5323220814923 K, F = -1.4618000474309056e-5, relative_change = 1.7824819044734267e-10 Iter 120: T = 774.5323216598067 K, F = -6.113421419429166e-6, relative_change = 7.454551052964805e-11 Iter 125: T = 774.5323214834528 K, F = -2.5567057710951246e-6, relative_change = 3.117582186977663e-11 Iter 130: T = 774.5323214096995 K, F = -1.069246814422442e-6, relative_change = 1.303812453245059e-11 Iter 135: T = 774.5323213788549 K, F = -4.471726110510943e-7, relative_change = 5.45270943326587e-12 Iter 140: T = 774.5323213659553 K, F = -1.8701152804112553e-7, relative_change = 2.280371154135056e-12 Iter 145: T = 774.5323213605607 K, F = -7.821067882218813e-8, relative_change = 9.53681186424685e-13 Iter 150: T = 774.5323213583044 K, F = -3.270738935245987e-8, relative_change = 3.9882561246983413e-13 Converged in 154 iterations to T = 774.5323213574901 K Iter 1: T = 970.3104132506166 K, F = -6764.800582935014, relative_change = 0.029689586749383406 Iter 2: T = 942.7844878785231 K, F = -5729.681526549405, relative_change = 0.028368164451496973 Iter 3: T = 917.3776674040479 K, F = -4851.204273527615, relative_change = 0.026948704397593833 Iter 5: T = 872.7063686021733 K, F = -3473.5352473480802, relative_change = 0.02386023397357281 Iter 10: T = 793.3742072242957 K, F = -1495.1892276983763, relative_change = 0.015554481085229048 Iter 15: T = 750.1163975743626 K, F = -636.5016735292819, relative_change = 0.008525132771283417 Iter 20: T = 729.1063150136207 K, F = -268.68045071575887, relative_change = 0.004104018093354268 Iter 25: T = 719.6467825650583 K, F = -112.8566534081744, relative_change = 0.0018329015329254805 Iter 30: T = 715.5561374080828 K, F = -47.28886568727439, relative_change = 0.0007890190406470429 Iter 35: T = 713.820385116191 K, F = -19.793053941528573, relative_change = 0.00033407994085535097 Iter 40: T = 713.089985665427 K, F = -8.28056972743228, relative_change = 0.00014044696482622094 Iter 45: T = 712.7837303727614 K, F = -3.463538765291756, relative_change = 5.886538942772282e-5 Iter 50: T = 712.655511317783 K, F = -1.4485818705243994, relative_change = 2.4640807211364277e-5 Iter 55: T = 712.6018641429681 K, F = -0.6058297452996224, relative_change = 1.0309037654987005e-5 Iter 60: T = 712.579423976623 K, F = -0.2533679477015349, relative_change = 4.312055277900072e-6 Iter 65: T = 712.5700384827321 K, F = -0.10596197614965464, relative_change = 1.803474181471734e-6 Iter 70: T = 712.5661132261979 K, F = -0.04431464687893816, relative_change = 7.542556350198998e-7 Iter 75: T = 712.5644716141418 K, F = -0.018532929067756276, relative_change = 3.1544242129404465e-7 Iter 80: T = 712.5637850683703 K, F = -0.007750694803473901, relative_change = 1.319224361157393e-7 Iter 85: T = 712.5634979460292 K, F = -0.0032414335717295684, relative_change = 5.5171651639271995e-8 Iter 90: T = 712.5633778679148 K, F = -0.001355606308375279, relative_change = 2.3073463440603977e-8 Iter 95: T = 712.5633276497919 K, F = -0.0005669307601834372, relative_change = 9.649601419583239e-9 Iter 100: T = 712.5633066479694 K, F = -0.0002370972170911978, relative_change = 4.035579164794863e-9 Iter 105: T = 712.5632978647558 K, F = -9.915688780892662e-5, relative_change = 1.6877275021643267e-9 Iter 110: T = 712.5632941915109 K, F = -4.1468594045079854e-5, relative_change = 7.058278038997915e-10 Iter 115: T = 712.5632926553159 K, F = -1.7342661687291816e-5, relative_change = 2.951856271002824e-10 Iter 120: T = 712.5632920128609 K, F = -7.252908840182926e-6, relative_change = 1.2345016538319838e-10 Iter 125: T = 712.5632917441785 K, F = -3.0332534614041506e-6, relative_change = 5.1628339798946144e-11 Iter 130: T = 712.5632916318124 K, F = -1.2685433319337136e-6, relative_change = 2.1591596967836314e-11 Iter 135: T = 712.5632915848195 K, F = -5.305203913952283e-7, relative_change = 9.029870867997925e-12 Iter 140: T = 712.5632915651664 K, F = -2.2186991777140008e-7, relative_change = 3.776399059729271e-12 Iter 145: T = 712.5632915569473 K, F = -9.278885548802407e-8, relative_change = 1.5793386961030456e-12 Iter 150: T = 712.56329155351 K, F = -3.88052604494149e-8, relative_change = 6.604958011302945e-13 Iter 155: T = 712.5632915520725 K, F = -1.6229274257817394e-8, relative_change = 2.7623490677911305e-13 Converged in 157 iterations to T = 712.5632915517683 K Iter 1: T = 969.3080483297758 K, F = -6993.190383643788, relative_change = 0.030691951670224215 Iter 2: T = 940.756667488423 K, F = -5924.739319483169, relative_change = 0.029455425332070614 Iter 3: T = 914.3068461103688 K, F = -5017.842576944468, relative_change = 0.02811547586334761 Iter 5: T = 867.5264242939064 K, F = -3595.2144558309474, relative_change = 0.02515702193174273 Iter 10: T = 783.2249031178116 K, F = -1550.4513792858006, relative_change = 0.016889753098967522 Iter 15: T = 736.2545600169061 K, F = -661.146826320252, relative_change = 0.009503477114687698 Iter 20: T = 713.0643124533183 K, F = -279.3991152712862, relative_change = 0.004654577463409096 Iter 25: T = 702.5222720842485 K, F = -117.42948100033686, relative_change = 0.0020977731493400675 Iter 30: T = 697.9417439122594 K, F = -49.21879756413027, relative_change = 0.0009068715193944506 Iter 35: T = 695.9939358198324 K, F = -20.603384755944134, relative_change = 0.00038469358905064916 Iter 40: T = 695.1735405911327 K, F = -8.620032518098554, relative_change = 0.00016185308358111783 Iter 45: T = 694.8294143417427 K, F = -3.605607181899834, relative_change = 6.785998629832599e-5 Iter 50: T = 694.6853160169311 K, F = -1.5080143106425807, relative_change = 2.84098923564026e-5 Iter 55: T = 694.6250207153225 K, F = -0.6306882074026012, relative_change = 1.1886617707461383e-5 Iter 60: T = 694.5997989573087 K, F = -0.2637645969833634, relative_change = 4.972046310951698e-6 Iter 65: T = 694.5892499470729 K, F = -0.11031007413162819, relative_change = 2.0795302436358616e-6 Iter 70: T = 694.5848380553601 K, F = -0.046133090015281986, relative_change = 8.697125619587184e-7 Iter 75: T = 694.582992919883 K, F = -0.019293426613204656, relative_change = 3.63729108732614e-7 Iter 80: T = 694.5822212570009 K, F = -0.0080687444687505, relative_change = 1.521167191693946e-7 Iter 85: T = 694.5818985374602 K, F = -0.0033744458302475966, relative_change = 6.36171793771585e-8 Iter 90: T = 694.5817635721355 K, F = -0.0014112336365337264, relative_change = 2.660549049310026e-8 Iter 95: T = 694.5817071279971 K, F = -0.0005901947760318382, relative_change = 1.112673845890575e-8 Iter 100: T = 694.5816835223794 K, F = -0.00024682650515073234, relative_change = 4.6533356841754665e-9 Iter 105: T = 694.5816736502276 K, F = -0.00010322579300203749, relative_change = 1.946080702780469e-9 Iter 110: T = 694.5816695215756 K, F = -4.317026077038655e-5, relative_change = 8.138742396988694e-10 Iter 115: T = 694.581667794924 K, F = -1.8054319292137855e-5, relative_change = 3.4037194352923763e-10 Iter 120: T = 694.5816670728176 K, F = -7.550531730293741e-6, relative_change = 1.4234760839525447e-10 Iter 125: T = 694.581666770824 K, F = -3.1577213390754366e-6, relative_change = 5.95314472652431e-11 Iter 130: T = 694.5816666445268 K, F = -1.3205967729357226e-6, relative_change = 2.4896762181602858e-11 Iter 135: T = 694.5816665917077 K, F = -5.522890015319248e-7, relative_change = 1.041211686521577e-11 Iter 140: T = 694.5816665696182 K, F = -2.309729996152754e-7, relative_change = 4.354455472401458e-12 Iter 145: T = 694.5816665603802 K, F = -9.659679445217506e-8, relative_change = 1.8211065403574115e-12 Iter 150: T = 694.5816665565167 K, F = -4.039820988843701e-8, relative_change = 7.61613722957821e-13 Iter 155: T = 694.5816665549008 K, F = -1.6894601051475888e-8, relative_change = 3.1850817252491903e-13 Converged in 158 iterations to T = 694.5816665544278 K Iter 1: T = 963.5476673972142 K, F = -8305.698658664804, relative_change = 0.03645233260278575 Iter 2: T = 928.9720936169836 K, F = -7047.690257523415, relative_change = 0.035883615258628564 Iter 3: T = 896.2396764770355 K, F = -5979.307671091878, relative_change = 0.03523509195255087 Iter 5: T = 836.1852700045769 K, F = -4301.5093926649915, relative_change = 0.03366934195860284 Iter 10: T = 716.3649746366137 K, F = -1879.8489281099626, relative_change = 0.027963894935490397 Iter 15: T = 636.5769318985375 K, F = -814.0769881423912, relative_change = 0.020058903307728304 Iter 20: T = 589.7969247916855 K, F = -348.585416519113, relative_change = 0.012041245727788637 Iter 25: T = 565.7096389994359 K, F = -147.7533332845138, relative_change = 0.006174520538438322 Iter 30: T = 554.468413691962 K, F = -62.20405537271991, relative_change = 0.00285454267485958 Iter 35: T = 549.5176144416583 K, F = -26.09296644370851, relative_change = 0.0012491444455855205 Iter 40: T = 547.3991992693393 K, F = -10.926655396557587, relative_change = 0.0005327582081209706 Iter 45: T = 546.504517224239 K, F = -4.572194445208215, relative_change = 0.00022466937007485258 Iter 50: T = 546.1287955242897 K, F = -1.9125931104314158, relative_change = 9.428936258869726e-5 Iter 55: T = 545.971390224828 K, F = -0.7999476548682063, relative_change = 3.9490943879158436e-5 Iter 60: T = 545.9055133764937 K, F = -0.33456138743449854, relative_change = 1.6525751659846628e-5 Iter 65: T = 545.8779544728876 K, F = -0.1399199694318094, relative_change = 6.913046584284482e-6 Iter 70: T = 545.8664275369974 K, F = -0.05851662235527985, relative_change = 2.8914300613516784e-6 Iter 75: T = 545.8616065770109 K, F = -0.02447242379111239, relative_change = 1.2092850588914188e-6 Iter 80: T = 545.8595903488877 K, F = -0.010234672743429846, relative_change = 5.057469820506864e-7 Iter 85: T = 545.8587471303225 K, F = -0.004280264615823232, relative_change = 2.1151109432933286e-7 Iter 90: T = 545.8583944848693 K, F = -0.0017900581724256959, relative_change = 8.845675710682582e-8 Iter 95: T = 545.8582470040881 K, F = -0.0007486237735725987, relative_change = 3.699372316662178e-8 Iter 100: T = 545.858185325822 K, F = -0.00031308341450175803, relative_change = 1.547122573920501e-8 Iter 105: T = 545.8581595312271 K, F = -0.00013093522524276757, relative_change = 6.470252938522056e-9 Iter 110: T = 545.8581487436182 K, F = -5.475867514076471e-5, relative_change = 2.7059373168489935e-9 Iter 115: T = 545.8581442321112 K, F = -2.2900731862784962e-5, relative_change = 1.1316553442847965e-9 Iter 120: T = 545.858142345345 K, F = -9.577359771084648e-6, relative_change = 4.732717981407921e-10 Iter 125: T = 545.8581415562768 K, F = -4.005366429860047e-6, relative_change = 1.9792792907724367e-10 Iter 130: T = 545.8581412262791 K, F = -1.6750922057218176e-6, relative_change = 8.277583038957712e-11 Iter 135: T = 545.85814108827 K, F = -7.005436282181421e-7, relative_change = 3.461784397396532e-11 Iter 140: T = 545.858141030553 K, F = -2.92975711496668e-7, relative_change = 1.4477595777518775e-11 Iter 145: T = 545.8581410064152 K, F = -1.225262852844189e-7, relative_change = 6.0547204468940625e-12 Iter 150: T = 545.8581409963202 K, F = -5.1241218601560945e-8, relative_change = 2.5321199716270918e-12 Iter 155: T = 545.8581409920985 K, F = -2.142969321439203e-8, relative_change = 1.0589629922335349e-12 Iter 160: T = 545.858140990333 K, F = -8.962386277566736e-9, relative_change = 4.428824666429202e-13 Converged in 164 iterations to T = 545.8581409896957 K Iter 1: T = 966.9061230375462 K, F = -7540.471346299108, relative_change = 0.03309387696245382 Iter 2: T = 935.8701566692979 K, F = -6392.567840183269, relative_change = 0.03209822094284443 Iter 3: T = 906.8616847971168 K, F = -5417.950439062835, relative_change = 0.03099625697588262 Iter 5: T = 854.7961765810564 K, F = -3888.2286743625336, relative_change = 0.028473706960403352 Iter 10: T = 757.2987678142105 K, F = -1685.1289609822609, relative_change = 0.020680309378371235 Iter 15: T = 699.5616128403408 K, F = -722.1729657976524, relative_change = 0.012578235976090363 Iter 20: T = 669.568912497371 K, F = -306.3024736885522, relative_change = 0.006514373207081984 Iter 25: T = 655.4899150729588 K, F = -129.00216215588873, relative_change = 0.0030290895412997446 Iter 30: T = 649.2700493662143 K, F = -54.12316598418858, relative_change = 0.0013292805463473345 Iter 35: T = 646.6047323905796 K, F = -22.666459069429767, relative_change = 0.0005676568301346801 Iter 40: T = 645.4783530421452 K, F = -9.48499212925959, relative_change = 0.0002395176641817932 Iter 45: T = 645.0052005354571 K, F = -3.9677252363504762, relative_change = 0.00010054424276259217 Iter 50: T = 644.8069545467894 K, F = -1.659523469591623, relative_change = 4.211476887334749e-5 Iter 55: T = 644.7239811356386 K, F = -0.6940629001079828, relative_change = 1.7624463383261947e-5 Iter 60: T = 644.6892693548606 K, F = -0.2902707076615832, relative_change = 7.3727855885720545e-6 Iter 65: T = 644.6747504944265 K, F = -0.12139560612273015, relative_change = 3.083741216281072e-6 Iter 70: T = 644.6686781873589 K, F = -0.050769254848212764, relative_change = 1.2897193704033927e-6 Iter 75: T = 644.6661386154607 K, F = -0.021232337126368184, relative_change = 5.393868818199938e-7 Iter 80: T = 644.6650765255708 K, F = -0.008879621925338477, relative_change = 2.2557993130602032e-7 Iter 85: T = 644.6646323450424 K, F = -0.0037135648032734503, relative_change = 9.434055281522634e-8 Iter 90: T = 644.6644465831166 K, F = -0.001553057301654559, relative_change = 3.9454403830146416e-8 Iter 95: T = 644.6643688952042 K, F = -0.0006495071374564843, relative_change = 1.6500313006635563e-8 Iter 100: T = 644.6643364051815 K, F = -0.0002716316468540092, relative_change = 6.900629743034947e-9 Iter 105: T = 644.6643228174643 K, F = -0.00011359959897710992, relative_change = 2.8859260665750916e-9 Iter 110: T = 644.6643171349183 K, F = -4.7508708505950015e-5, relative_change = 1.2069287854461258e-9 Iter 115: T = 644.6643147584098 K, F = -1.9868709217607528e-5, relative_change = 5.04752039350107e-10 Iter 120: T = 644.6643137645254 K, F = -8.309331899714056e-6, relative_change = 2.1109334314914846e-10 Iter 125: T = 644.6643133488711 K, F = -3.4750610348743827e-6, relative_change = 8.828173704026033e-11 Iter 130: T = 644.6643131750396 K, F = -1.4533131211802441e-6, relative_change = 3.6920504612243166e-11 Iter 135: T = 644.6643131023411 K, F = -6.077918195401821e-7, relative_change = 1.5440568423714023e-11 Iter 140: T = 644.6643130719377 K, F = -2.541855429472051e-7, relative_change = 6.4574236488502176e-12 Iter 145: T = 644.6643130592226 K, F = -1.0630299962510747e-7, relative_change = 2.7005607629302523e-12 Iter 150: T = 644.6643130539053 K, F = -4.44580900427205e-8, relative_change = 1.1294297808370491e-12 Iter 155: T = 644.6643130516813 K, F = -1.8592670791850452e-8, relative_change = 4.72335093068136e-13 Converged in 160 iterations to T = 644.6643130507513 K Iter 1: T = 965.1683626647065 K, F = -7936.421700287509, relative_change = 0.03483163733529357 Iter 2: T = 932.3105311360824 K, F = -6731.4033305448675, relative_change = 0.03404362679057135 Iter 3: T = 901.3970338250169 K, F = -5708.132311308511, relative_change = 0.03315794070608148 Iter 5: T = 845.2900619028593 K, F = -4101.534893595677, relative_change = 0.031074705519933393 Iter 10: T = 736.8944818100489 K, F = -1784.8370480184783, relative_change = 0.024093459506871397 Iter 15: T = 669.0872731355727 K, F = -768.5402468523849, relative_change = 0.015788771134985204 Iter 20: T = 631.9737015954412 K, F = -327.26366619574765, relative_change = 0.008693079336261704 Iter 25: T = 613.8970375822091 K, F = -138.1713103317406, relative_change = 0.004197176691774042 Iter 30: T = 605.7449819550534 K, F = -58.04341017255294, relative_change = 0.0018773788969285302 Iter 35: T = 602.2169184541063 K, F = -24.322324967144162, relative_change = 0.0008087384650399774 Iter 40: T = 600.7193437360381 K, F = -10.180472920551003, relative_change = 0.0003425355227373051 Iter 45: T = 600.0890708750682 K, F = -4.259113205994499, relative_change = 0.00014402070999369632 Iter 50: T = 599.8247811070826 K, F = -1.7814786791721324, relative_change = 6.036661141560716e-5 Iter 55: T = 599.7141285796664 K, F = -0.7450823883358986, relative_change = 2.526980304392758e-5 Iter 60: T = 599.667830746976 K, F = -0.31161053240685743, relative_change = 1.0572295728666602e-5 Iter 65: T = 599.648464655161 K, F = -0.13032067711441486, relative_change = 4.422188747041054e-6 Iter 70: T = 599.640364862005 K, F = -0.054501913843922556, relative_change = 1.8495395770009338e-6 Iter 75: T = 599.6369773159254 K, F = -0.022793395039618247, relative_change = 7.735218292250171e-7 Iter 80: T = 599.6355605834357 K, F = -0.009532477671855721, relative_change = 3.234999654327328e-7 Iter 85: T = 599.6349680854452 K, F = -0.00398659734238177, relative_change = 1.3529223081251167e-7 Iter 90: T = 599.6347202950898 K, F = -0.0016672428525206229, relative_change = 5.658094591100725e-8 Iter 95: T = 599.6346166660954 K, F = -0.0006972609124515916, relative_change = 2.366284814115551e-8 Iter 100: T = 599.6345733271935 K, F = -0.0002916028477661925, relative_change = 9.89608933376004e-9 Iter 105: T = 599.6345552023438 K, F = -0.00012195179395474431, relative_change = 4.138663357736337e-9 Iter 110: T = 599.6345476223146 K, F = -5.100169613392325e-5, relative_change = 1.7308385291458372e-9 Iter 115: T = 599.6345444522559 K, F = -2.132951901889779e-5, relative_change = 7.23857382278426e-10 Iter 120: T = 599.6345431264994 K, F = -8.920259882694292e-6, relative_change = 3.027258153443065e-10 Iter 125: T = 599.6345425720522 K, F = -3.7305589358771485e-6, relative_change = 1.266035424277144e-10 Iter 130: T = 599.6345423401757 K, F = -1.5601637642359556e-6, relative_change = 5.294709534908693e-11 Iter 135: T = 599.6345422432022 K, F = -6.52479102081216e-7, relative_change = 2.2143107056904524e-11 Iter 140: T = 599.6345422026467 K, F = -2.7287405823805955e-7, relative_change = 9.26049503699027e-12 Iter 145: T = 599.634542185686 K, F = -1.1411914024872516e-7, relative_change = 3.8728479316244125e-12 Iter 150: T = 599.6345421785928 K, F = -4.772657674623204e-8, relative_change = 1.6196912598772672e-12 Iter 155: T = 599.6345421756264 K, F = -1.9960362251936203e-8, relative_change = 6.773924820987509e-13 Iter 160: T = 599.6345421743857 K, F = -8.347379176765202e-9, relative_change = 2.8328403203582197e-13 Converged in 162 iterations to T = 599.6345421741232 K Iter 1: T = 980.2464283410183 K, F = -4500.8700929966, relative_change = 0.019753571658981686 Iter 2: T = 962.5319922819733 K, F = -3801.7862990415865, relative_change = 0.018071410970632244 Iter 3: T = 946.7350509251987 K, F = -3209.7893032201237, relative_change = 0.016411861094947307 Iter 5: T = 920.3681241787001 K, F = -2284.8539867876857, relative_change = 0.013248865144519749 Iter 10: T = 878.5446590629284 K, F = -969.8885206386624, relative_change = 0.006948311193203493 Iter 15: T = 858.7660106649645 K, F = -408.67694397236005, relative_change = 0.003254895446904086 Iter 20: T = 849.9930610932819 K, F = -171.50310528177957, relative_change = 0.0014336246791915655 Iter 25: T = 846.2265800665455 K, F = -71.83239128944062, relative_change = 0.0006132310864297714 Iter 30: T = 844.6335103516665 K, F = -30.060370796150842, relative_change = 0.0002589326693954622 Iter 35: T = 843.9640779248261 K, F = -12.574992637099307, relative_change = 0.00010872725238374414 Iter 40: T = 843.683550264299 K, F = -5.259606431574843, relative_change = 4.5548189428638884e-5 Iter 45: T = 843.566131417681 K, F = -2.1997343203641533, relative_change = 1.906232474231494e-5 Iter 50: T = 843.5170081423939 K, F = -0.91997338069405, relative_change = 7.974460382873297e-6 Iter 55: T = 843.4964611723275 K, F = -0.3847470416096571, relative_change = 3.335429005064396e-6 Iter 60: T = 843.4878676540288 K, F = -0.1609063650925613, relative_change = 1.394988742016045e-6 Iter 65: T = 843.4842736493348 K, F = -0.06729306099927235, relative_change = 5.834136325663549e-7 Iter 70: T = 843.4827705774342 K, F = -0.028142778806637292, relative_change = 2.439927665272285e-7 Iter 75: T = 843.4821419719786 K, F = -0.011769649172701069, relative_change = 1.0204107676459159e-7 Iter 80: T = 843.4818790811739 K, F = -0.0049222083615045875, relative_change = 4.267486475155375e-8 Iter 85: T = 843.4817691370131 K, F = -0.0020585264091708133, relative_change = 1.78471499307683e-8 Iter 90: T = 843.4817231570369 K, F = -0.0008609003427597628, relative_change = 7.463893303530436e-9 Iter 95: T = 843.4817039276592 K, F = -0.00036003880757307094, relative_change = 3.121489681299174e-9 Iter 100: T = 843.4816958857032 K, F = -0.00015057252900896323, relative_change = 1.305444321663936e-9 Iter 105: T = 843.4816925224611 K, F = -6.297123094078927e-5, relative_change = 5.459524254627498e-10 Iter 110: T = 843.4816911159131 K, F = -2.6335321423154312e-5, relative_change = 2.2832383146499536e-10 Iter 115: T = 843.481690527678 K, F = -1.1013745905508188e-5, relative_change = 9.548775319167362e-11 Iter 120: T = 843.481690281671 K, F = -4.606081324576294e-6, relative_change = 3.993412968540725e-11 Iter 125: T = 843.481690178788 K, F = -1.926319354916828e-6, relative_change = 1.67009398138471e-11 Iter 130: T = 843.481690135761 K, F = -8.056119265020811e-7, relative_change = 6.984551272225267e-12 Iter 135: T = 843.4816901177667 K, F = -3.3691697409743426e-7, relative_change = 2.9210266170252274e-12 Iter 140: T = 843.4816901102412 K, F = -1.409016767706106e-7, relative_change = 1.2215993253248705e-12 Iter 145: T = 843.481690107094 K, F = -5.8926785895252465e-8, relative_change = 5.108876171266191e-13 Converged in 150 iterations to T = 843.4816901057777 K Iter 1: T = 976.469165483518 K, F = -5361.523028182616, relative_change = 0.023530834516481972 Iter 2: T = 955.0993401349482 K, F = -4533.481656831822, relative_change = 0.021884792786045798 Iter 3: T = 935.7986158888149 K, F = -3831.5871977682577, relative_change = 0.020208080390262124 Iter 5: T = 902.9824654988134 K, F = -2733.1774080076884, relative_change = 0.016855909585351943 Iter 10: T = 848.9561891168709 K, F = -1165.437718777596, relative_change = 0.009478136304618865 Iter 15: T = 822.2934014797729 K, F = -492.49699141836504, relative_change = 0.004640102249952341 Iter 20: T = 810.1757971459825 K, F = -206.98978020423363, relative_change = 0.0020907527697113445 Iter 25: T = 804.9113399736635 K, F = -86.75600803495009, relative_change = 0.0009037359717535842 Iter 30: T = 802.6728267672058 K, F = -36.316645141960734, relative_change = 0.00038334472280010713 Iter 35: T = 801.7300128570778 K, F = -15.194116436453973, relative_change = 0.000161282196993637 Iter 40: T = 801.3345404944694 K, F = -6.355426511650966, relative_change = 6.762003408751058e-5 Iter 45: T = 801.1689423876329 K, F = -2.6581020296267908, relative_change = 2.830933031942208e-5 Iter 50: T = 801.0996510237323 K, F = -1.1116827070415563, relative_change = 1.1844524445243359e-5 Iter 55: T = 801.070666200331 K, F = -0.4649247046113656, relative_change = 4.9544359253057545e-6 Iter 60: T = 801.0585432904127 K, F = -0.1944380644391014, relative_change = 2.072164236130149e-6 Iter 65: T = 801.053473150427 K, F = -0.08131649563171928, relative_change = 8.666318112807423e-7 Iter 70: T = 801.0513527233529 K, F = -0.034007560200709275, relative_change = 3.6244066730811103e-7 Iter 75: T = 801.0504659294838 K, F = -0.014222373160440394, relative_change = 1.5157787147359948e-7 Iter 80: T = 801.0500950606578 K, F = -0.005947967242119545, relative_change = 6.339182577980413e-8 Iter 85: T = 801.0499399587039 K, F = -0.0024875110976660952, relative_change = 2.651124478004581e-8 Iter 90: T = 801.0498750931827 K, F = -0.0010403068768112256, relative_change = 1.1087323757739893e-8 Iter 95: T = 801.0498479656414 K, F = -0.0004350687646021978, relative_change = 4.636852005238103e-9 Iter 100: T = 801.0498366205787 K, F = -0.0001819509528460106, relative_change = 1.939187011556226e-9 Iter 105: T = 801.049831875938 K, F = -7.609406390152174e-5, relative_change = 8.109912161911568e-10 Iter 110: T = 801.0498298916725 K, F = -3.182344705554563e-5, relative_change = 3.3916622417168704e-10 Iter 115: T = 801.049829061829 K, F = -1.3308946866907867e-5, relative_change = 1.4184337953511285e-10 Iter 120: T = 801.0498287147785 K, F = -5.565961200382219e-6, relative_change = 5.932060264025348e-11 Iter 125: T = 801.0498285696378 K, F = -2.327752203101774e-6, relative_change = 2.480859255627133e-11 Iter 130: T = 801.0498285089383 K, F = -9.734941419647924e-7, relative_change = 1.0375253646179827e-11 Iter 135: T = 801.0498284835529 K, F = -4.071279855466514e-7, relative_change = 4.339066805904678e-12 Iter 140: T = 801.0498284729365 K, F = -1.702643658285652e-7, relative_change = 1.8146344252159049e-12 Iter 145: T = 801.0498284684967 K, F = -7.12081026366107e-8, relative_change = 7.589178967266476e-13 Iter 150: T = 801.0498284666398 K, F = -2.9780819810198977e-8, relative_change = 3.173964239538777e-13 Converged in 153 iterations to T = 801.0498284660961 K Iter 1: T = 980.9119803191222 K, F = -4349.223441682244, relative_change = 0.01908801968087775 Iter 2: T = 963.8323535089359 K, F = -3673.016936183516, relative_change = 0.0174119871638532 Iter 3: T = 948.6349281824312 K, F = -3100.503765768728, relative_change = 0.01576770614845709 Iter 5: T = 923.3473998569682 K, F = -2206.282563608319, relative_change = 0.012659176756911075 Iter 10: T = 883.4752790494412 K, F = -935.8654075916195, relative_change = 0.006566257082570039 Iter 15: T = 864.7419707782544 K, F = -394.1716320651683, relative_change = 0.0030559318481919117 Iter 20: T = 856.4619303625169 K, F = -165.3804667099509, relative_change = 0.00134164796987977 Iter 25: T = 852.9129909455482 K, F = -69.26126388502364, relative_change = 0.0005730513276967919 Iter 30: T = 851.4130376872597 K, F = -28.983189518912244, relative_change = 0.0002418144334624569 Iter 35: T = 850.7829329755436 K, F = -12.124165031880086, relative_change = 0.00010151204376202987 Iter 40: T = 850.5189208844229 K, F = -5.071005586733849, relative_change = 4.252079597705782e-5 Iter 45: T = 850.4084210468168 K, F = -2.1208487894997643, relative_change = 1.7794493624538837e-5 Iter 50: T = 850.3621934873487 K, F = -0.8869806879824025, relative_change = 7.443933651170545e-6 Iter 55: T = 850.3428579084895 K, F = -0.3709487847763091, relative_change = 3.1135030784630694e-6 Iter 60: T = 850.3347710728966 K, F = -0.15513571354556888, relative_change = 1.3021673424481473e-6 Iter 65: T = 850.3313889802329 K, F = -0.06487969585414932, relative_change = 5.445929833151468e-7 Iter 70: T = 850.3299745344456 K, F = -0.027133478973547565, relative_change = 2.277572220253895e-7 Iter 75: T = 850.329382993834 K, F = -0.011347547630488952, relative_change = 9.525112825095404e-8 Iter 80: T = 850.3291356040501 K, F = -0.004745680405378705, relative_change = 3.983521848216982e-8 Iter 85: T = 850.3290321426117 K, F = -0.0019847003040889266, relative_change = 1.6659574451526994e-8 Iter 90: T = 850.3289888737893 K, F = -0.0008300253839292893, relative_change = 6.9672348021169736e-9 Iter 95: T = 850.3289707782486 K, F = -0.0003471265280559077, relative_change = 2.913781094998162e-9 Iter 100: T = 850.3289632104771 K, F = -0.00014517245979117632, relative_change = 1.218578105071674e-9 Iter 105: T = 850.3289600455446 K, F = -6.0712855904476726e-5, relative_change = 5.096239212251068e-10 Iter 110: T = 850.328958721932 K, F = -2.5390842550043757e-5, relative_change = 2.131308212518195e-10 Iter 115: T = 850.3289581683814 K, F = -1.0618752844360202e-5, relative_change = 8.913384882533193e-11 Iter 120: T = 850.3289579368799 K, F = -4.440889242784962e-6, relative_change = 3.7276840014199606e-11 Iter 125: T = 850.3289578400631 K, F = -1.8572316586862314e-6, relative_change = 1.558960912167855e-11 Iter 130: T = 850.3289577995733 K, F = -7.767168406225267e-7, relative_change = 6.519763912941809e-12 Iter 135: T = 850.3289577826399 K, F = -3.2483001466410144e-7, relative_change = 2.7266242945766117e-12 Iter 140: T = 850.3289577755583 K, F = -1.3584826730195232e-7, relative_change = 1.1403108373447484e-12 Iter 145: T = 850.3289577725966 K, F = -5.6813974858016536e-8, relative_change = 4.76896706384209e-13 Converged in 150 iterations to T = 850.328957771358 K Iter 1: T = 967.3317180117004 K, F = -7443.499126592728, relative_change = 0.032668281988299575 Iter 2: T = 936.7388217377422 K, F = -6309.630646880069, relative_change = 0.03162606549988908 Iter 3: T = 908.1899311364415 K, F = -5346.973052951518, relative_change = 0.030476894881264517 Iter 5: T = 857.0856048034393 K, F = -3836.1584916122392, relative_change = 0.02786337067738834 Iter 10: T = 762.0724471933765 K, F = -1661.0154967074702, relative_change = 0.019938745959871707 Iter 15: T = 706.4722870635502 K, F = -711.1285284643401, relative_change = 0.011939232375145863 Iter 20: T = 677.8911184384971 K, F = -301.3862070674935, relative_change = 0.006110771559137608 Iter 25: T = 664.5671640537163 K, F = -126.87442254746767, relative_change = 0.0028220370606268207 Iter 30: T = 658.7024767332395 K, F = -53.218639116221894, relative_change = 0.001234273221629288 Iter 35: T = 656.1936894835254 K, F = -22.285417930361106, relative_change = 0.0005262921128567337 Iter 40: T = 655.1342645924658 K, F = -9.32513883612002, relative_change = 0.00022192011316305837 Iter 45: T = 654.6893815877817 K, F = -3.9007845490082227, relative_change = 9.313156462255234e-5 Iter 50: T = 654.5030057366856 K, F = -1.6315125753197084, relative_change = 3.900532439249629e-5 Iter 55: T = 654.4250049071057 K, F = -0.6823456924749777, relative_change = 1.6322411587428064e-5 Iter 60: T = 654.3923741825006 K, F = -0.28536995580868085, relative_change = 6.827963868003608e-6 Iter 65: T = 654.3787259007455 K, F = -0.11934596993819396, relative_change = 2.8558398460959377e-6 Iter 70: T = 654.373017724893 K, F = -0.04991205795697229, relative_change = 1.1943994749731813e-6 Iter 75: T = 654.3706304448569 K, F = -0.02087384460334274, relative_change = 4.995214203096907e-7 Iter 80: T = 654.3696320466138 K, F = -0.008729695626315648, relative_change = 2.089074493653883e-7 Iter 85: T = 654.3692145029324 K, F = -0.0036508637573682834, relative_change = 8.736787457468047e-8 Iter 90: T = 654.3690398808961 K, F = -0.0015268349616914256, relative_change = 3.653833826073204e-8 Iter 95: T = 654.3689668518258 K, F = -0.0006385406385712722, relative_change = 1.5280778098217485e-8 Iter 100: T = 654.3689363101879 K, F = -0.000267045324713, relative_change = 6.390605404560424e-9 Iter 105: T = 654.3689235373088 K, F = -0.00011168154574231481, relative_change = 2.672627790449599e-9 Iter 110: T = 654.3689181955378 K, F = -4.6706557834341744e-5, relative_change = 1.117724942703363e-9 Iter 115: T = 654.3689159615454 K, F = -1.9533240247893158e-5, relative_change = 4.674459263128328e-10 Iter 120: T = 654.3689150272631 K, F = -8.16903506511979e-6, relative_change = 1.954914873617078e-10 Iter 125: T = 654.368914636535 K, F = -3.4163873874892836e-6, relative_change = 8.175685969747161e-11 Iter 130: T = 654.3689144731278 K, F = -1.428773964307073e-6, relative_change = 3.419169415795631e-11 Iter 135: T = 654.3689144047889 K, F = -5.975298887905822e-7, relative_change = 1.4299364159978995e-11 Iter 140: T = 654.3689143762089 K, F = -2.4989347069404033e-7, relative_change = 5.980148953938797e-12 Iter 145: T = 654.3689143642564 K, F = -1.0450883369816921e-7, relative_change = 2.500979280635225e-12 Iter 150: T = 654.3689143592578 K, F = -4.370759548733005e-8, relative_change = 1.045957426334656e-12 Iter 155: T = 654.3689143571672 K, F = -1.827954509980856e-8, relative_change = 4.3744401251716627e-13 Converged in 159 iterations to T = 654.3689143564126 K Iter 1: T = 973.5144637316032 K, F = -6034.754633003378, relative_change = 0.02648553626839681 Iter 2: T = 949.2219631801744 K, F = -5106.875896482864, relative_change = 0.02495340486089201 Iter 3: T = 927.055077429054 K, F = -4319.850029882692, relative_change = 0.0233526894772375 Iter 5: T = 888.7759132012744 K, F = -3086.853602130567, relative_change = 0.02002350076463711 Iter 10: T = 823.5999970580103 K, F = -1321.7223287873508, relative_change = 0.012011443334184057 Iter 15: T = 790.0563327038756 K, F = -560.2132580688804, relative_change = 0.006155959993459724 Iter 20: T = 774.4067556664959 K, F = -235.84468918048356, relative_change = 0.002845090634609665 Iter 25: T = 767.5155778433478 K, F = -98.92967575173579, relative_change = 0.0012448222497621552 Iter 30: T = 764.5671119973612 K, F = -41.42747420379219, relative_change = 0.0005308792511929515 Iter 35: T = 763.3219117706308 K, F = -17.33504892735587, relative_change = 0.00022387053664361354 Iter 40: T = 762.798997456362 K, F = -7.25141258234871, relative_change = 9.39529597067998e-5 Iter 45: T = 762.5799284300673 K, F = -3.032923461233517, relative_change = 3.934984706336264e-5 Iter 50: T = 762.4882444748988 K, F = -1.2684566675063937, relative_change = 1.6466671501118322e-5 Iter 55: T = 762.4498894736748 K, F = -0.5304928010623554, relative_change = 6.888325984037644e-6 Iter 60: T = 762.4338469108086 K, F = -0.22186001220782137, relative_change = 2.8810894109203557e-6 Iter 65: T = 762.4271373619735 K, F = -0.09278478431877124, relative_change = 1.2049600904820513e-6 Iter 70: T = 762.4243312859968 K, F = -0.038803753443441336, relative_change = 5.039381613015758e-7 Iter 75: T = 762.4231577405757 K, F = -0.01622820159521199, relative_change = 2.1075461213970536e-7 Iter 80: T = 762.4226669479528 K, F = -0.006786829196781974, relative_change = 8.814038515375809e-8 Iter 85: T = 762.4224616922821 K, F = -0.0028383332805133055, relative_change = 3.6861412296227354e-8 Iter 90: T = 762.4223758518509 K, F = -0.0011870249209150474, relative_change = 1.5415891703653558e-8 Iter 95: T = 762.4223399523472 K, F = -0.0004964280053696424, relative_change = 6.447111556186868e-9 Iter 100: T = 762.4223249387442 K, F = -0.0002076121202394532, relative_change = 2.696259297655761e-9 Iter 105: T = 762.4223186598758 K, F = -8.682586878239196e-5, relative_change = 1.127607891538023e-9 Iter 110: T = 762.422316033978 K, F = -3.631161497152924e-5, relative_change = 4.715790909094079e-10 Iter 115: T = 762.4223149357962 K, F = -1.518595134630818e-5, relative_change = 1.972200130788463e-10 Iter 120: T = 762.4223144765234 K, F = -6.350945150668252e-6, relative_change = 8.247975123235876e-11 Iter 125: T = 762.4223142844501 K, F = -2.6560420122168082e-6, relative_change = 3.4494028762010646e-11 Iter 130: T = 762.4223142041228 K, F = -1.1107888268080401e-6, relative_change = 1.44258191637856e-11 Iter 135: T = 762.4223141705289 K, F = -4.6454660673767023e-7, relative_change = 6.0330687360360466e-12 Iter 140: T = 762.4223141564795 K, F = -1.942787597464246e-7, relative_change = 2.523099070373216e-12 Iter 145: T = 762.4223141506039 K, F = -8.125119332902386e-8, relative_change = 1.0552095897167128e-12 Iter 150: T = 762.4223141481467 K, F = -3.3981404023997186e-8, relative_change = 4.413166370801037e-13 Converged in 154 iterations to T = 762.4223141472597 K Iter 1: T = 969.9813761249658 K, F = -6839.772005009651, relative_change = 0.03001862387503417 Iter 2: T = 942.1195696808567 K, F = -5793.699961956891, relative_change = 0.028724063296365374 Iter 3: T = 916.3719512013197 K, F = -4905.883546571167, relative_change = 0.027329459346926682 Iter 5: T = 871.0143212224077 K, F = -3513.439611760285, relative_change = 0.024280543859824887 Iter 10: T = 790.0824414478892 K, F = -1513.2730633443489, relative_change = 0.0159789857177427 Iter 15: T = 745.6481158810728 K, F = -644.5451109305249, relative_change = 0.008830735118972761 Iter 20: T = 723.9555512900604 K, F = -272.17136922865217, relative_change = 0.004273985810834328 Iter 25: T = 714.1596334401557 K, F = -114.34414693874501, relative_change = 0.0019141621475387961 Iter 30: T = 709.9173203599547 K, F = -47.91628035089514, relative_change = 0.0008250695274171362 Iter 35: T = 708.116025815799 K, F = -20.056420027325625, relative_change = 0.0003495424827942797 Iter 40: T = 707.3578307362045 K, F = -8.390886131679977, relative_change = 0.00014698296885393966 Iter 45: T = 707.039882441155 K, F = -3.5097050021593725, relative_change = 6.161110335768134e-5 Iter 50: T = 706.9067611568802 K, F = -1.4678945118966507, relative_change = 2.579125580749621e-5 Iter 55: T = 706.8510616925788 K, F = -0.6139074630595328, relative_change = 1.0790547257325816e-5 Iter 60: T = 706.8277628632272 K, F = -0.25674631032722883, relative_change = 4.5134945594570254e-6 Iter 65: T = 706.8180182012829 K, F = -0.10737487654028016, relative_change = 1.8877300800595013e-6 Iter 70: T = 706.8139427250208 K, F = -0.04490554373143185, relative_change = 7.894944846112224e-7 Iter 75: T = 706.8122382872934 K, F = -0.01878005006750738, relative_change = 3.301800834783064e-7 Iter 80: T = 706.8115254667287 K, F = -0.007854043912127628, relative_change = 1.3808596446664883e-7 Iter 85: T = 706.8112273558945 K, F = -0.003284655432104655, relative_change = 5.774932368061857e-8 Iter 90: T = 706.8111026822502 K, F = -0.0013736822106710234, relative_change = 2.4151478558269207e-8 Iter 95: T = 706.81105054222 K, F = -0.0005744903190212369, relative_change = 1.0100440543726801e-8 Iter 100: T = 706.8110287366326 K, F = -0.00024025871366195606, relative_change = 4.224125504908376e-9 Iter 105: T = 706.811019617275 K, F = -0.00010047906548527052, relative_change = 1.7665798789523888e-9 Iter 110: T = 706.8110158034505 K, F = -4.202154471277808e-5, relative_change = 7.388048139248284e-10 Iter 115: T = 706.8110142084636 K, F = -1.7573912763912958e-5, relative_change = 3.089770159025505e-10 Iter 120: T = 706.8110135414211 K, F = -7.349621512831028e-6, relative_change = 1.292179017705351e-10 Iter 125: T = 706.8110132624558 K, F = -3.073700171607463e-6, relative_change = 5.4040481798933604e-11 Iter 130: T = 706.8110131457892 K, F = -1.2854582843724316e-6, relative_change = 2.260037778446675e-11 Iter 135: T = 706.8110130969978 K, F = -5.375940984597705e-7, relative_change = 9.451749521234317e-12 Iter 140: T = 706.8110130765928 K, F = -2.248281428807175e-7, relative_change = 3.952832254321941e-12 Iter 145: T = 706.8110130680591 K, F = -9.402728728957754e-8, relative_change = 1.6531475519201082e-12 Iter 150: T = 706.8110130644902 K, F = -3.93236421203369e-8, relative_change = 6.913714580021284e-13 Iter 155: T = 706.8110130629975 K, F = -1.6445139805476572e-8, relative_change = 2.891314148796878e-13 Converged in 157 iterations to T = 706.8110130626817 K Iter 1: T = 973.5816180849106 K, F = -6019.453449721998, relative_change = 0.026418381915089377 Iter 2: T = 949.3561696686484 K, F = -5093.833744079993, relative_change = 0.024882812048069546 Iter 3: T = 927.2556968683813 K, F = -4308.734368059091, relative_change = 0.023279432426273405 Iter 5: T = 889.1051092975481 K, F = -3078.7849060457597, relative_change = 0.019947767994159708 Iter 10: T = 824.2010732124725 K, F = -1318.1336969128333, relative_change = 0.011947043728651715 Iter 15: T = 790.8326889693367 K, F = -558.6490662506719, relative_change = 0.006115695733492822 Iter 20: T = 775.2756415403388 K, F = -235.17562361666592, relative_change = 0.0028245569105088872 Iter 25: T = 768.4277099996444 K, F = -98.64685101936357, relative_change = 0.0012354277306566347 Iter 30: T = 765.498247413298 K, F = -41.308630746731865, relative_change = 0.0005267944020902181 Iter 35: T = 764.2611653831768 K, F = -17.285245911414762, relative_change = 0.00022213372999917893 Iter 40: T = 763.7416768849158 K, F = -7.230566440732414, relative_change = 9.3221534702655e-5 Iter 45: T = 763.5240460047788 K, F = -3.0242022047227968, relative_change = 3.904306251538636e-5 Iter 50: T = 763.4329644535937 K, F = -1.2648087815706177, relative_change = 1.6338213696155645e-5 Iter 55: T = 763.394861552115 K, F = -0.5289671149148565, relative_change = 6.834575926916543e-6 Iter 60: T = 763.3789244496418 K, F = -0.2212219351253557, relative_change = 2.8586056880798412e-6 Iter 65: T = 763.3722590107232 K, F = -0.09251792990119856, relative_change = 1.1955562880908787e-6 Iter 70: T = 763.3694713829362 K, F = -0.03869215122004266, relative_change = 5.000052317189552e-7 Iter 75: T = 763.3683055529252 K, F = -0.01618152812150342, relative_change = 2.0910978828352265e-7 Iter 80: T = 763.3678179870062 K, F = -0.006767309775178365, relative_change = 8.745249565224773e-8 Iter 85: T = 763.3676140807867 K, F = -0.002830170024141321, relative_change = 3.6573727925541397e-8 Iter 90: T = 763.3675288047127 K, F = -0.0011836109473920553, relative_change = 1.5295578504041743e-8 Iter 95: T = 763.3674931412302 K, F = -0.0004950002419537025, relative_change = 6.396795130314062e-9 Iter 100: T = 763.367478226334 K, F = -0.0002070150129309667, relative_change = 2.6752163687436164e-9 Iter 105: T = 763.367471988746 K, F = -8.657615088447645e-5, relative_change = 1.1188074802907121e-9 Iter 110: T = 763.3674693801122 K, F = -3.6207179066827244e-5, relative_change = 4.678986421253339e-10 Iter 115: T = 763.3674682891505 K, F = -1.5142275347823642e-5, relative_change = 1.9568080984899865e-10 Iter 120: T = 763.3674678328971 K, F = -6.332680485110487e-6, relative_change = 8.183605309659247e-11 Iter 125: T = 763.3674676420865 K, F = -2.6484014660210775e-6, relative_change = 3.422480002929603e-11 Iter 130: T = 763.3674675622873 K, F = -1.1075928710857497e-6, relative_change = 1.4313216871383869e-11 Iter 135: T = 763.3674675289143 K, F = -4.632071012311556e-7, relative_change = 5.985939302017537e-12 Iter 140: T = 763.3674675149573 K, F = -1.937176590249834e-7, relative_change = 2.5033773136710905e-12 Iter 145: T = 763.3674675091203 K, F = -8.101514259450937e-8, relative_change = 1.0469436346851087e-12 Iter 150: T = 763.3674675066792 K, F = -3.3881293326487594e-8, relative_change = 4.3784165833227026e-13 Converged in 154 iterations to T = 763.3674675057981 K Iter 1: T = 964.2934054842721 K, F = -8135.781526148619, relative_change = 0.035706594515727906 Iter 2: T = 930.5104672361672 K, F = -6902.122498853267, relative_change = 0.035033878750979214 Iter 3: T = 898.6201420418421 K, F = -5854.465265486383, relative_change = 0.03427186078738783 Iter 5: T = 840.4042351406515 K, F = -4209.367331630019, relative_change = 0.0324542452246733 Iter 10: T = 726.0076714944687 K, F = -1835.8690297204785, relative_change = 0.02608802613587008 Iter 15: T = 652.1097357571804 K, F = -792.8032915696132, relative_change = 0.01789634465662972 Iter 20: T = 610.2632198443473 K, F = -338.5080387584638, relative_change = 0.01027510700443578 Iter 25: T = 589.3357450693676 K, F = -143.1815404056758, relative_change = 0.0051022749372119066 Iter 30: T = 579.7480803093056 K, F = -60.20776601066362, relative_change = 0.0023167188251857693 Iter 35: T = 575.5658549547373 K, F = -25.241057442098388, relative_change = 0.0010050434572036935 Iter 40: T = 573.7842352523578 K, F = -10.567198096953447, relative_change = 0.00042699847538759224 Iter 45: T = 573.0332533696609 K, F = -4.4212934243884865, relative_change = 0.00017977115051758173 Iter 50: T = 572.7181394554451 K, F = -1.849383325215427, relative_change = 7.539355954029885e-5 Iter 55: T = 572.586171310335 K, F = -0.7734947838794906, relative_change = 3.156756408048225e-5 Iter 60: T = 572.5309484388571 K, F = -0.32349536396266537, relative_change = 1.3208428321112325e-5 Iter 65: T = 572.5078479337952 K, F = -0.1352914806339823, relative_change = 5.525059448739338e-6 Iter 70: T = 572.4981860397031 K, F = -0.056580837599416484, relative_change = 2.3108447640333453e-6 Iter 75: T = 572.4941451475485 K, F = -0.023662838788062857, relative_change = 9.664576731026907e-7 Iter 80: T = 572.4924551679909 K, F = -0.009896091706191268, relative_change = 4.0419022687630195e-7 Iter 85: T = 572.4917483930751 K, F = -0.004138665471931702, relative_change = 1.690382443748838e-7 Iter 90: T = 572.4914528104409 K, F = -0.00173083962927989, relative_change = 7.069399868081478e-8 Iter 95: T = 572.4913291940917 K, F = -0.0007238578561107878, relative_change = 2.9565107052611233e-8 Iter 100: T = 572.4912774962299 K, F = -0.0003027260092218764, relative_change = 1.2364486539145327e-8 Iter 105: T = 572.4912558755618 K, F = -0.00012660363389055407, relative_change = 5.170976925725094e-9 Iter 110: T = 572.4912468335393 K, F = -5.294715154069429e-5, relative_change = 2.1625644625955042e-9 Iter 115: T = 572.4912430520575 K, F = -2.2143131903185065e-5, relative_change = 9.044103461064838e-10 Iter 120: T = 572.4912414705965 K, F = -9.260522109644231e-6, relative_change = 3.782352086903343e-10 Iter 125: T = 572.4912408092107 K, F = -3.872860977471859e-6, relative_change = 1.5818248374722695e-10 Iter 130: T = 572.4912405326112 K, F = -1.6196768473641932e-6, relative_change = 6.615380946117041e-11 Iter 135: T = 572.491240416934 K, F = -6.773687644678894e-7, relative_change = 2.766633621736785e-11 Iter 140: T = 572.4912403685564 K, F = -2.8328374718222804e-7, relative_change = 1.1570393866285205e-11 Iter 145: T = 572.4912403483244 K, F = -1.1847294095757022e-7, relative_change = 4.838888934652131e-12 Iter 150: T = 572.491240339863 K, F = -4.9546865332761314e-8, relative_change = 2.0236838596598414e-12 Iter 155: T = 572.4912403363244 K, F = -2.0720988869182833e-8, relative_change = 8.463245949136524e-13 Iter 160: T = 572.4912403348445 K, F = -8.665648421057881e-9, relative_change = 3.539382910732402e-13 Converged in 163 iterations to T = 572.4912403344113 K Iter 1: T = 963.5364793490064 K, F = -8308.247866091542, relative_change = 0.03646352065099359 Iter 2: T = 928.9489847274008 K, F = -7049.874589905173, relative_change = 0.035896403885999115 Iter 3: T = 896.2038665386785 K, F = -5981.181486877597, relative_change = 0.035249640967454456 Iter 5: T = 836.1215835908748 K, F = -4302.893434871538, relative_change = 0.03368785532422399 Iter 10: T = 716.2176066323642 K, F = -1880.5123159821048, relative_change = 0.02799339246674192 Iter 15: T = 636.3355895272886 K, F = -814.4007820261569, relative_change = 0.020094423131911083 Iter 20: T = 589.4737701576262 K, F = -348.74068491082676, relative_change = 0.012071560334099698 Iter 25: T = 565.3323345145125 K, F = -147.8245249284932, relative_change = 0.006193526408877748 Iter 30: T = 554.0621647714628 K, F = -62.235346050679574, relative_change = 0.002864250707339354 Iter 35: T = 549.0977611577789 K, F = -26.1063638738075, relative_change = 0.0012535895183396432 Iter 40: T = 546.9733533145981 K, F = -10.932316862055414, relative_change = 0.0005346916601371444 Iter 45: T = 546.0761085305095 K, F = -4.57457269215824, relative_change = 0.00022549156513707058 Iter 50: T = 545.6993048995815 K, F = -1.9135895921762591, relative_change = 9.463563761002785e-5 Iter 55: T = 545.5414453254007 K, F = -0.8003647244000578, relative_change = 3.963618734542784e-5 Iter 60: T = 545.4753781778977 K, F = -0.3347358685633194, relative_change = 1.6586569157927545e-5 Iter 65: T = 545.4477396335151 K, F = -0.13999294961941922, relative_change = 6.93849431420797e-6 Iter 70: T = 545.4361793812047 K, F = -0.058547145307796006, relative_change = 2.902074902957065e-6 Iter 75: T = 545.4313444861968 K, F = -0.024485189163265725, relative_change = 1.2137372606211256e-6 Iter 80: T = 545.4293224299846 K, F = -0.010240011428771068, relative_change = 5.07609016285545e-7 Iter 85: T = 545.4284767739911 K, F = -0.004282497327679241, relative_change = 2.122898315995978e-7 Iter 90: T = 545.4281231091671 K, F = -0.0017909919204606717, relative_change = 8.878243646477555e-8 Iter 95: T = 545.4279752020714 K, F = -0.0007490142786362453, relative_change = 3.712992654920327e-8 Iter 100: T = 545.427913345515 K, F = -0.00031324672820987054, relative_change = 1.5528187675090307e-8 Iter 105: T = 545.427887476357 K, F = -0.00013100352407413585, relative_change = 6.494075066277963e-9 Iter 110: T = 545.427876657565 K, F = -5.478723872223701e-5, relative_change = 2.715900026732942e-9 Iter 115: T = 545.4278721330168 K, F = -2.291267797976948e-5, relative_change = 1.135821892957159e-9 Iter 120: T = 545.4278702407966 K, F = -9.582355652848484e-6, relative_change = 4.75014292348566e-10 Iter 125: T = 545.4278694494475 K, F = -4.007455829097006e-6, relative_change = 1.9865666406983488e-10 Iter 130: T = 545.4278691184959 K, F = -1.675966121911232e-6, relative_change = 8.30806012676017e-11 Iter 135: T = 545.427868980088 K, F = -7.009092605481104e-7, relative_change = 3.474531024786569e-11 Iter 140: T = 545.4278689222041 K, F = -2.931288136664989e-7, relative_change = 1.4530913132197242e-11 Iter 145: T = 545.4278688979963 K, F = -1.2258934348197137e-7, relative_change = 6.076970322926672e-12 Iter 150: T = 545.4278688878724 K, F = -5.1268590400832537e-8, relative_change = 2.5414745975656e-12 Iter 155: T = 545.4278688836384 K, F = -2.1441083852824505e-8, relative_change = 1.062872404569883e-12 Iter 160: T = 545.4278688818678 K, F = -8.967432657547292e-9, relative_change = 4.4453147877771636e-13 Converged in 164 iterations to T = 545.4278688812286 K Iter 1: T = 969.4248668666722 K, F = -6966.573168888822, relative_change = 0.030575133133327794 Iter 2: T = 940.9933395537914 K, F = -5902.001395853365, relative_change = 0.029328242223428624 Iter 3: T = 914.6658119948368 K, F = -4998.411989636604, relative_change = 0.027978441984976118 Iter 5: T = 868.1340207904856 K, F = -3581.015721003709, relative_change = 0.0250033569396827 Iter 10: T = 784.4266251873984 K, F = -1543.98420021849, relative_change = 0.01672752219936689 Iter 15: T = 737.9092540180753 K, F = -658.2523484211802, relative_change = 0.009381903576374613 Iter 20: T = 714.9892341291767 K, F = -278.1366604381716, relative_change = 0.004585135690428162 Iter 25: T = 704.5826364228083 K, F = -116.88999396374027, relative_change = 0.0020641003468630974 Iter 30: T = 700.0636914613393 K, F = -48.99092594662527, relative_change = 0.0008918337721105483 Iter 35: T = 698.1425980379543 K, F = -20.507672349643386, relative_change = 0.0003782249315934485 Iter 40: T = 697.3335509576746 K, F = -8.579930527733184, relative_change = 0.0001591153929839217 Iter 45: T = 696.9942019852934 K, F = -3.5888230058205144, relative_change = 6.670930601930632e-5 Iter 50: T = 696.8521071024951 K, F = -1.500992677618213, relative_change = 2.7927653692878336e-5 Iter 55: T = 696.7926506344097 K, F = -0.6277512754353076, relative_change = 1.1684762605350098e-5 Iter 60: T = 696.7677798565184 K, F = -0.26253626674763286, relative_change = 4.8875970857158715e-6 Iter 65: T = 696.7573776600996 K, F = -0.10979635947525446, relative_change = 2.044207143099502e-6 Iter 70: T = 696.7530271728809 K, F = -0.04591824626296481, relative_change = 8.549390703026877e-7 Iter 75: T = 696.7512077184065 K, F = -0.01920357601429379, relative_change = 3.5755049206419235e-7 Iter 80: T = 696.7504467957855 K, F = -0.008031167807362904, relative_change = 1.4953271881197256e-7 Iter 85: T = 696.7501285679782 K, F = -0.0033587308101099556, relative_change = 6.253651448778977e-8 Iter 90: T = 696.7499954811549 K, F = -0.0014046614265473822, relative_change = 2.6153542663629092e-8 Iter 95: T = 696.7499398226291 K, F = -0.0005874461992512181, relative_change = 1.0937728329174567e-8 Iter 100: T = 696.7499165455642 K, F = -0.0002456770172742928, relative_change = 4.574289360471502e-9 Iter 105: T = 696.7499068108169 K, F = -0.00010274506283558527, relative_change = 1.9130225702339914e-9 Iter 110: T = 696.7499027396293 K, F = -4.296921357216377e-5, relative_change = 8.000489308873314e-10 Iter 115: T = 696.7499010370099 K, F = -1.7970238050946108e-5, relative_change = 3.3459001718929205e-10 Iter 120: T = 696.7499003249542 K, F = -7.515368975696823e-6, relative_change = 1.3992955685219784e-10 Iter 125: T = 696.7499000271639 K, F = -3.143016392037623e-6, relative_change = 5.852019950506661e-11 Iter 130: T = 696.7498999026245 K, F = -1.3144491414207593e-6, relative_change = 2.4473886377283392e-11 Iter 135: T = 696.7498998505406 K, F = -5.497168011903142e-7, relative_change = 1.0235243124174343e-11 Iter 140: T = 696.7498998287585 K, F = -2.2989951309337897e-7, relative_change = 4.2805266382528315e-12 Iter 145: T = 696.749899819649 K, F = -9.614677343172673e-8, relative_change = 1.7901683189516835e-12 Iter 150: T = 696.7498998158393 K, F = -4.021111754681783e-8, relative_change = 7.486956258074046e-13 Iter 155: T = 696.749899814246 K, F = -1.6815975389938842e-8, relative_change = 3.1309866490556126e-13 Converged in 157 iterations to T = 696.7498998139088 K Iter 1: T = 966.5254236861817 K, F = -7627.214055646066, relative_change = 0.03347457631381825 Iter 2: T = 935.0920880407235 K, F = -6466.771756622441, relative_change = 0.03252199567143947 Iter 3: T = 905.6702084349141 K, F = -5481.470780115682, relative_change = 0.031464152014649624 Iter 5: T = 852.7355492134748 K, F = -3934.8623462881574, relative_change = 0.02902833790478927 Iter 10: T = 752.9573443224579 K, F = -1706.7968973081236, relative_change = 0.02137287867831517 Iter 15: T = 693.2090932872871 K, F = -732.1487014747693, relative_change = 0.013192907642863315 Iter 20: T = 661.8578707645975 K, F = -310.76530265811095, relative_change = 0.006911601264475929 Iter 25: T = 647.041037745458 K, F = -130.94008804832666, relative_change = 0.0032356422848737296 Iter 30: T = 640.4712041989657 K, F = -54.948437273196035, relative_change = 0.0014246936860881805 Iter 35: T = 637.6510469852917 K, F = -23.014393484120315, relative_change = 0.0006093235912465748 Iter 40: T = 636.4583206400728 K, F = -9.631008037067724, relative_change = 0.0002572668091702586 Iter 45: T = 635.9571342417327 K, F = -4.028880518118495, relative_change = 0.0001080249071831594 Iter 50: T = 635.7471133411648 K, F = -1.685115118477297, relative_change = 4.5253461043562453e-5 Iter 55: T = 635.6592065878115 K, F = -0.7047684000848652, relative_change = 1.893889039161147e-5 Iter 60: T = 635.6224300584239 K, F = -0.29474836002177784, relative_change = 7.92280793411463e-6 Iter 65: T = 635.6070474213125 K, F = -0.12326829857680771, relative_change = 3.3138219560519985e-6 Iter 70: T = 635.6006138245548 K, F = -0.051552452024232365, relative_change = 1.3859514751767946e-6 Iter 75: T = 635.5979231486024 K, F = -0.02155988213178417, relative_change = 5.796339750502442e-7 Iter 80: T = 635.596797863725 K, F = -0.00901660561245532, relative_change = 2.4241203981533263e-7 Iter 85: T = 635.5963272540412 K, F = -0.003770853096422222, relative_change = 1.0137999293548936e-7 Iter 90: T = 635.5961304390822 K, F = -0.0015770159641987913, relative_change = 4.2398390741772254e-8 Iter 95: T = 635.5960481286513 K, F = -0.0006595269382992375, relative_change = 1.7731525051246463e-8 Iter 100: T = 635.596013705435 K, F = -0.000275822046812757, relative_change = 7.415537576739702e-9 Iter 105: T = 635.5959993092329 K, F = -0.00011535207593321717, relative_change = 3.1012667615412915e-9 Iter 110: T = 635.5959932885688 K, F = -4.8241615768274126e-5, relative_change = 1.2969868556071587e-9 Iter 115: T = 635.5959907706552 K, F = -2.0175220976692554e-5, relative_change = 5.424154330767041e-10 Iter 120: T = 635.5959897176335 K, F = -8.437517697135188e-6, relative_change = 2.2684459601065208e-10 Iter 125: T = 635.5959892772473 K, F = -3.5286711339010957e-6, relative_change = 9.486913203590115e-11 Iter 130: T = 635.5959890930725 K, F = -1.475731802258462e-6, relative_change = 3.9675387724897563e-11 Iter 135: T = 635.5959890160484 K, F = -6.171681760092085e-7, relative_change = 1.659270786960529e-11 Iter 140: T = 635.595988983836 K, F = -2.581073429985814e-7, relative_change = 6.939275077503262e-12 Iter 145: T = 635.5959889703645 K, F = -1.0794383448198275e-7, relative_change = 2.9020947322318685e-12 Iter 150: T = 635.5959889647305 K, F = -4.514283707957034e-8, relative_change = 1.2136755222830122e-12 Iter 155: T = 635.5959889623742 K, F = -1.8879185603726256e-8, relative_change = 5.075712323507089e-13 Converged in 160 iterations to T = 635.5959889613888 K Iter 1: T = 966.4887484461515 K, F = -7635.570543974119, relative_change = 0.033511251553848494 Iter 2: T = 935.0170797728259 K, F = -6473.92108367655, relative_change = 0.03256289193632449 Iter 3: T = 905.5552582629628 K, F = -5487.591619746431, relative_change = 0.03150939394285849 Iter 5: T = 852.5363957976989 K, F = -3939.3576968925468, relative_change = 0.02908220837998635 Iter 10: T = 752.5354558646779 K, F = -1708.8893204855892, relative_change = 0.021441120391643264 Iter 15: T = 692.5882119499374 K, F = -733.1147461970218, relative_change = 0.013254435785723509 Iter 20: T = 661.1009315394645 K, F = -311.1986860250839, relative_change = 0.006951859961226809 Iter 25: T = 646.2095867029974 K, F = -131.128633411241, relative_change = 0.0032567315866693573 Iter 30: T = 639.6042495592903 K, F = -55.028809736076624, relative_change = 0.0014344714117056556 Iter 35: T = 636.7683499206316 K, F = -23.048294189592255, relative_change = 0.0006136006250703475 Iter 40: T = 635.5688716495822 K, F = -9.64523785846782, relative_change = 0.00025909004721341575 Iter 45: T = 635.0648311500883 K, F = -4.034840854146591, relative_change = 0.00010879357539438181 Iter 50: T = 634.8536112484962 K, F = -1.6876094309177292, relative_change = 4.557601572933776e-5 Iter 55: T = 634.7652021120414 K, F = -0.7058118369466959, relative_change = 1.9073977696357114e-5 Iter 60: T = 634.7282153140999 K, F = -0.2951847877864099, relative_change = 7.97933653101536e-6 Iter 65: T = 634.7127447111164 K, F = -0.12345082663098755, relative_change = 3.337468748630298e-6 Iter 70: T = 634.7062743208973 K, F = -0.051628788967504835, relative_change = 1.39584187113923e-6 Iter 75: T = 634.7035682565906 K, F = -0.021591807421536102, relative_change = 5.837704360508463e-7 Iter 80: T = 634.7024365359642 K, F = -0.009029957197325245, relative_change = 2.44141988578306e-7 Iter 85: T = 634.701963234746 K, F = -0.003776436897012958, relative_change = 1.0210348365664452e-7 Iter 90: T = 634.7017652941505 K, F = -0.001579351177309285, relative_change = 4.270096414968543e-8 Iter 95: T = 634.7016825129641 K, F = -0.0006605035527199599, relative_change = 1.7858065035920726e-8 Iter 100: T = 634.701647892872 K, F = -0.00027623047820496405, relative_change = 7.468458126250309e-9 Iter 105: T = 634.701633414334 K, F = -0.00011552288486871287, relative_change = 3.123398719703216e-9 Iter 110: T = 634.7016273592362 K, F = -4.831305039165734e-5, relative_change = 1.306242713413158e-9 Iter 115: T = 634.701624826922 K, F = -2.0205095147496355e-5, relative_change = 5.462863263159378e-10 Iter 120: T = 634.7016237678779 K, F = -8.450011954264092e-6, relative_change = 2.2846346383394718e-10 Iter 125: T = 634.701623324973 K, F = -3.533895929774822e-6, relative_change = 9.55461497566214e-11 Iter 130: T = 634.7016231397448 K, F = -1.477916744152541e-6, relative_change = 3.9958521011062936e-11 Iter 135: T = 634.7016230622802 K, F = -6.180828786561676e-7, relative_change = 1.6711142765943785e-11 Iter 140: T = 634.7016230298835 K, F = -2.584893484813833e-7, relative_change = 6.98879156204696e-12 Iter 145: T = 634.7016230163348 K, F = -1.0810274159167577e-7, relative_change = 2.92278011757704e-12 Iter 150: T = 634.7016230106686 K, F = -4.520901714100134e-8, relative_change = 1.2223188283201633e-12 Iter 155: T = 634.701623008299 K, F = -1.8906446908051322e-8, relative_change = 5.111747057159223e-13 Converged in 160 iterations to T = 634.701623007308 K Iter 1: T = 976.5215789322925 K, F = -5349.580574021292, relative_change = 0.023478421067707502 Iter 2: T = 955.2030934272414 K, F = -4523.318418245262, relative_change = 0.02183104394719099 Iter 3: T = 935.9521967587065 K, F = -3822.940823519978, relative_change = 0.02015372102645022 Iter 5: T = 903.2294934455698 K, F = -2726.92774783731, relative_change = 0.016802620894320074 Iter 10: T = 849.3871017533304 K, F = -1162.6934860096437, relative_change = 0.009438169661346594 Iter 15: T = 822.8327943072006 K, F = -491.3145178261718, relative_change = 0.004617261001491882 Iter 20: T = 810.7692938932001 K, F = -206.48763858243558, relative_change = 0.0020796736045842965 Iter 25: T = 805.5293845756306 K, F = -86.54452504594772, relative_change = 0.0008987875011810938 Iter 30: T = 803.3015106166661 K, F = -36.2279288688421, relative_change = 0.0003812159517236311 Iter 35: T = 802.3632144562037 K, F = -15.156965767856294, relative_change = 0.000160381226559585 Iter 40: T = 801.9696436484871 K, F = -6.33988110946658, relative_change = 6.724134251221868e-5 Iter 45: T = 801.8048429420654 K, F = -2.6515992562066613, relative_change = 2.8150623709435515e-5 Iter 50: T = 801.7358854374243 K, F = -1.1089629066935107, relative_change = 1.1778093021086701e-5 Iter 55: T = 801.7070403039642 K, F = -0.4637872056226803, relative_change = 4.926643281932966e-6 Iter 60: T = 801.6949758256003 K, F = -0.1939623407309713, relative_change = 2.0605392310833804e-6 Iter 65: T = 801.6899301244096 K, F = -0.0811175408892344, relative_change = 8.617697822810823e-7 Iter 70: T = 801.687819918285 K, F = -0.033924354705764714, relative_change = 3.6040725396178164e-7 Iter 75: T = 801.6869373990008 K, F = -0.014187575589284185, relative_change = 1.5072746418832498e-7 Iter 80: T = 801.686568317868 K, F = -0.005933414473801468, relative_change = 6.30361736117381e-8 Iter 85: T = 801.6864139635505 K, F = -0.00248142495373882, relative_change = 2.6362506491281684e-8 Iter 90: T = 801.6863494107002 K, F = -0.001037761577469265, relative_change = 1.1025119566803897e-8 Iter 95: T = 801.6863224139219 K, F = -0.0004340042915624842, relative_change = 4.6108374775711575e-9 Iter 100: T = 801.6863111235457 K, F = -0.00018150577873510265, relative_change = 1.928307436988201e-9 Iter 105: T = 801.6863064017754 K, F = -7.590788498590406e-5, relative_change = 8.064412288642544e-10 Iter 110: T = 801.6863044270747 K, F = -3.174558339735789e-5, relative_change = 3.3726335005877383e-10 Iter 115: T = 801.6863036012312 K, F = -1.3276382079041582e-5, relative_change = 1.4104756124822349e-10 Iter 120: T = 801.6863032558535 K, F = -5.552341449055476e-6, relative_change = 5.898777374367603e-11 Iter 125: T = 801.6863031114125 K, F = -2.3220533373891072e-6, relative_change = 2.46693684567001e-11 Iter 130: T = 801.6863030510056 K, F = -9.711114450361436e-7, relative_change = 1.0317035217479746e-11 Iter 135: T = 801.6863030257427 K, F = -4.061313920722398e-7, relative_change = 4.3147178390077475e-12 Iter 140: T = 801.6863030151774 K, F = -1.6984902062588958e-7, relative_change = 1.8044667651501092e-12 Iter 145: T = 801.6863030107588 K, F = -7.103200827529577e-8, relative_change = 7.546401958968082e-13 Iter 150: T = 801.686303008911 K, F = -2.9706453963385115e-8, relative_change = 3.155997526029562e-13 Converged in 153 iterations to T = 801.68630300837 K Iter 1: T = 965.1640614006175 K, F = -7937.401747401745, relative_change = 0.03483593859938256 Iter 2: T = 932.30169490328 K, F = -6732.242390388553, relative_change = 0.034048477156980485 Iter 3: T = 901.3834247642297 K, F = -5708.851306528123, relative_change = 0.03316337437556389 Iter 5: T = 845.2662096485741 K, F = -4102.064275485364, relative_change = 0.031081369094859573 Iter 10: T = 736.8420266737958 K, F = -1785.0864912132913, relative_change = 0.02410276862666504 Iter 15: T = 669.0067711487205 K, F = -768.6578651448376, relative_change = 0.01579818390227955 Iter 20: T = 631.8721927427863 K, F = -327.31763968038877, relative_change = 0.008699862266936469 Iter 25: T = 613.7832368961957 K, F = -138.19517597873906, relative_change = 0.004200951525250264 Iter 30: T = 605.6250989660183 K, F = -58.05367442909736, relative_change = 0.001879184204975967 Iter 35: T = 602.0942883960896 K, F = -24.326672646435892, relative_change = 0.0008095394914104601 Iter 40: T = 600.5955256813667 K, F = -10.182301253961931, relative_change = 0.00034287911604873934 Iter 45: T = 599.9647488505082 K, F = -4.259879635342188, relative_change = 0.00014416595061594734 Iter 50: T = 599.7002470460941 K, F = -1.7817995262637765, relative_change = 6.042762634665739e-5 Iter 55: T = 599.5895056186961 K, F = -0.7452166260908679, relative_change = 2.5295368301562534e-5 Iter 60: T = 599.5431705677044 K, F = -0.3116666819910034, relative_change = 1.0582995852296837e-5 Iter 65: T = 599.5237889038742 K, F = -0.13034416124780224, relative_change = 4.426665141803685e-6 Iter 70: T = 599.515682597112 K, F = -0.05451173548741706, relative_change = 1.8514119168662066e-6 Iter 75: T = 599.5122923267539 K, F = -0.022797502620195254, relative_change = 7.743049092608029e-7 Iter 80: T = 599.5108744549018 K, F = -0.009534195520407074, relative_change = 3.2382746675887585e-7 Iter 85: T = 599.5102814804097 K, F = -0.0039873157686882155, relative_change = 1.3542919715721002e-7 Iter 90: T = 599.5100334907745 K, F = -0.0016675433072636525, relative_change = 5.663822711375894e-8 Iter 95: T = 599.509929778439 K, F = -0.0006973865663711387, relative_change = 2.3686803870170736e-8 Iter 100: T = 599.5098864046827 K, F = -0.0002916553979431802, relative_change = 9.906107919863188e-9 Iter 105: T = 599.5098682652565 K, F = -0.00012197377258643671, relative_change = 4.1428533029439315e-9 Iter 110: T = 599.5098606791312 K, F = -5.10108892129435e-5, relative_change = 1.732590860413648e-9 Iter 115: T = 599.5098575065227 K, F = -2.133336178483658e-5, relative_change = 7.245901640189662e-10 Iter 120: T = 599.5098561797001 K, F = -8.921867226008295e-6, relative_change = 3.0303228201760116e-10 Iter 125: T = 599.5098556248072 K, F = -3.7312321940485838e-6, relative_change = 1.2673174603927112e-10 Iter 130: T = 599.5098553927443 K, F = -1.5604460949503185e-6, relative_change = 5.3000737636509e-11 Iter 135: T = 599.5098552956927 K, F = -6.525970853710206e-7, relative_change = 2.2165537818119277e-11 Iter 140: T = 599.5098552551046 K, F = -2.729238354204355e-7, relative_change = 9.269890615567822e-12 Iter 145: T = 599.5098552381302 K, F = -1.141402846127626e-7, relative_change = 3.876788378350234e-12 Iter 150: T = 599.5098552310312 K, F = -4.773443262884314e-8, relative_change = 1.6213056967652056e-12 Iter 155: T = 599.5098552280623 K, F = -1.9962879738155692e-8, relative_change = 6.780415909775951e-13 Iter 160: T = 599.5098552268208 K, F = -8.348748969932984e-9, relative_change = 2.835662543957556e-13 Converged in 162 iterations to T = 599.5098552265581 K Iter 1: T = 964.5372176117476 K, F = -8080.228700978133, relative_change = 0.03546278238825247 Iter 2: T = 931.0125938035842 K, F = -6854.542737009658, relative_change = 0.03475721122630437 Iter 3: T = 899.3956733316783 K, F = -5813.673343597708, relative_change = 0.033959712985983735 Iter 5: T = 841.772585014329 K, F = -4179.289474358527, relative_change = 0.03206491540556778 Iter 10: T = 729.0860337334494 K, F = -1821.5888350790296, relative_change = 0.025511107469110325 Iter 15: T = 656.9671351359402 K, F = -785.9714199031546, relative_change = 0.017267440683458316 Iter 20: T = 616.5396813858839 K, F = -335.3179581599865, relative_change = 0.00978936456230001 Iter 25: T = 596.4845761405016 K, F = -141.75166177061075, relative_change = 0.004819011254882193 Iter 30: T = 587.3416518427923 K, F = -59.58794893744765, relative_change = 0.002177809156414001 Iter 35: T = 583.3633400835624 K, F = -24.977514403633872, relative_change = 0.0009426780093638603 Iter 40: T = 581.6705126308294 K, F = -10.456180862549909, relative_change = 0.00040010825647823414 Iter 45: T = 580.9573106365101 K, F = -4.374721312272057, relative_change = 0.00016837913231365853 Iter 50: T = 580.6581121234303 K, F = -1.8298809795518094, relative_change = 7.060334280377141e-5 Iter 55: T = 580.5328203548204 K, F = -0.7653342205081273, relative_change = 2.9559674304875428e-5 Iter 60: T = 580.48039319915 K, F = -0.3200817392907356, relative_change = 1.2367904597487898e-5 Iter 65: T = 580.4584625221595 K, F = -0.1338637255718406, relative_change = 5.1734022796715995e-6 Iter 70: T = 580.4492899737562 K, F = -0.05598370950720566, relative_change = 2.163753020117429e-6 Iter 75: T = 580.4454537509905 K, F = -0.023413108513257064, relative_change = 9.049378604992407e-7 Iter 80: T = 580.4438493699702 K, F = -0.009791650792492002, relative_change = 3.78461156396967e-7 Iter 85: T = 580.4431783939717 K, F = -0.004094986906750642, relative_change = 1.5827790862499485e-7 Iter 90: T = 580.4428977829749 K, F = -0.0017125727104412847, relative_change = 6.619387486079348e-8 Iter 95: T = 580.4427804279611 K, F = -0.0007162184088292944, relative_change = 2.7683097524989166e-8 Iter 100: T = 580.4427313486678 K, F = -0.0002995311011045332, relative_change = 1.1577407002413912e-8 Iter 105: T = 580.4427108231168 K, F = -0.00012526748570029778, relative_change = 4.841810766674328e-9 Iter 110: T = 580.4427022390854 K, F = -5.238835877680037e-5, relative_change = 2.0249032381801074e-9 Iter 115: T = 580.4426986491409 K, F = -2.1909436739186994e-5, relative_change = 8.468387203200796e-10 Iter 120: T = 580.4426971477832 K, F = -9.162788008554301e-6, relative_change = 3.5415806712194684e-10 Iter 125: T = 580.4426965198974 K, F = -3.8319874768322215e-6, relative_change = 1.481131380266226e-10 Iter 130: T = 580.4426962573082 K, F = -1.6025829621124643e-6, relative_change = 6.194268468067493e-11 Iter 135: T = 580.4426961474902 K, F = -6.702194097485403e-7, relative_change = 2.59051734504858e-11 Iter 140: T = 580.442696101563 K, F = -2.802944440438715e-7, relative_change = 1.0833879304724308e-11 Iter 145: T = 580.4426960823557 K, F = -1.1722299619876253e-7, relative_change = 4.5308775102115426e-12 Iter 150: T = 580.442696074323 K, F = -4.902363315295588e-8, relative_change = 1.8948507045460455e-12 Iter 155: T = 580.4426960709635 K, F = -2.0502052111570634e-8, relative_change = 7.924408166182075e-13 Iter 160: T = 580.4426960695586 K, F = -8.573805776457277e-9, relative_change = 3.3139285834053557e-13 Converged in 163 iterations to T = 580.4426960691472 K Iter 1: T = 964.308152332866 K, F = -8132.421442668621, relative_change = 0.03569184766713399 Iter 2: T = 930.5408497059449 K, F = -6899.244490149726, relative_change = 0.03501712864837952 Iter 3: T = 898.6670878611558 K, F = -5851.997649918231, relative_change = 0.03425294209798678 Iter 5: T = 840.4871517212142 K, F = -4207.547432121963, relative_change = 0.03243058726766766 Iter 10: T = 726.1948755634558 K, F = -1835.0039515048197, relative_change = 0.026052644655802037 Iter 15: T = 652.4064678426065 K, F = -792.3884282868679, relative_change = 0.01785730445917063 Iter 20: T = 610.6482285149713 K, F = -338.31373630010046, relative_change = 0.010244602720387111 Iter 25: T = 589.7754785755286 K, F = -143.09423527822491, relative_change = 0.0050843427558193745 Iter 30: T = 580.2158579143052 K, F = -60.16986653178363, relative_change = 0.0023078864127744304 Iter 35: T = 576.0465249517665 K, F = -25.22493128341813, relative_change = 0.001001069762902628 Iter 40: T = 574.270525972069 K, F = -10.560402791693516, relative_change = 0.0004252835536240406 Iter 45: T = 573.521936902332 K, F = -4.4184423763394705, relative_change = 0.00017904433900645784 Iter 50: T = 573.2078312283127 K, F = -1.8481893621575567, relative_change = 7.508789251055043e-5 Iter 55: T = 573.0762860718145 K, F = -0.7729951695595706, relative_change = 3.143943029127959e-5 Iter 60: T = 573.0212403328401 K, F = -0.32328636939916683, relative_change = 1.3154788601368865e-5 Iter 65: T = 572.9982139476326 K, F = -0.13520406787942027, relative_change = 5.502617460794875e-6 Iter 70: T = 572.9885830585116 K, F = -0.05654427901330836, relative_change = 2.301457643927713e-6 Iter 75: T = 572.9845551342594 K, F = -0.02364754928386109, relative_change = 9.625315852645085e-7 Iter 80: T = 572.9828705782527 K, F = -0.009889697406378795, relative_change = 4.025482407158533e-7 Iter 85: T = 572.982166071569 K, F = -0.004135991291210728, relative_change = 1.6835153752219762e-7 Iter 90: T = 572.9818714375432 K, F = -0.0017297212537787376, relative_change = 7.040680817442431e-8 Iter 95: T = 572.9817482179146 K, F = -0.0007233901381970553, relative_change = 2.944500030242481e-8 Iter 100: T = 572.9816966859663 K, F = -0.00030253040436423184, relative_change = 1.2314256432104052e-8 Iter 105: T = 572.9816751346851 K, F = -0.0001265218292009762, relative_change = 5.149970070968247e-9 Iter 110: T = 572.9816661216812 K, F = -5.291293992609747e-5, relative_change = 2.1537791471598656e-9 Iter 115: T = 572.9816623523352 K, F = -2.2128823424838462e-5, relative_change = 9.007361904832799e-10 Iter 120: T = 572.9816607759495 K, F = -9.254537659542095e-6, relative_change = 3.7669861362662317e-10 Iter 125: T = 572.9816601166863 K, F = -3.870358218693859e-6, relative_change = 1.5753986172432334e-10 Iter 130: T = 572.9816598409745 K, F = -1.6186302029264077e-6, relative_change = 6.588505883108354e-11 Iter 135: T = 572.9816597256686 K, F = -6.769304332632231e-7, relative_change = 2.7553916504334433e-11 Iter 140: T = 572.9816596774463 K, F = -2.8310038879819643e-7, relative_change = 1.1523376842155368e-11 Iter 145: T = 572.9816596572791 K, F = -1.1839604235897028e-7, relative_change = 4.819217023129406e-12 Iter 150: T = 572.9816596488449 K, F = -4.9514424060870255e-8, relative_change = 2.015445369515238e-12 Iter 155: T = 572.9816596453177 K, F = -2.0706943659742905e-8, relative_change = 8.428597223661492e-13 Iter 160: T = 572.9816596438426 K, F = -8.660471229049449e-9, relative_change = 3.5251761417390835e-13 Converged in 163 iterations to T = 572.9816596434107 K Iter 1: T = 980.1862114643145 K, F = -4514.590565634608, relative_change = 0.01981378853568553 Iter 2: T = 962.4142040798076 K, F = -3813.43920956312, relative_change = 0.01813125626196783 Iter 3: T = 946.5627624068273 K, F = -3219.6811265610722, relative_change = 0.01647049846706733 Iter 5: T = 920.0973694032301 K, F = -2291.968969266581, relative_change = 0.013302858642630555 Iter 10: T = 878.0946632524092 K, F = -972.9728197816318, relative_change = 0.006983709224071324 Iter 15: T = 858.2192703862258 K, F = -409.9928994862188, relative_change = 0.003273460415106642 Iter 20: T = 849.4005125287865 K, F = -172.05879420044394, relative_change = 0.0014422371233754677 Iter 25: T = 845.6137740064445 K, F = -72.06579122736719, relative_change = 0.0006169994055064728 Iter 30: T = 844.0120255878965 K, F = -30.158162696155177, relative_change = 0.00026053923622024585 Iter 35: T = 843.3389263170857 K, F = -12.615922507975954, relative_change = 0.00010940460646806053 Iter 40: T = 843.0568585273074 K, F = -5.27672944387337, relative_change = 4.583243205025722e-5 Iter 45: T = 842.9387944175074 K, F = -2.2068963593994657, relative_change = 1.9181367823796372e-5 Iter 50: T = 842.8894010816157 K, F = -0.9229688044158922, relative_change = 8.024275299939036e-6 Iter 55: T = 842.8687411332936 K, F = -0.3859997939348948, relative_change = 3.356267392547183e-6 Iter 60: T = 842.8601003598951 K, F = -0.16143028638508317, relative_change = 1.4037045132500735e-6 Iter 65: T = 842.8564865914617 K, F = -0.06751217207034954, relative_change = 5.870588311483576e-7 Iter 70: T = 842.8549752539383 K, F = -0.028234413837605388, relative_change = 2.4551725992614683e-7 Iter 75: T = 842.854343191667 K, F = -0.011807972064149963, relative_change = 1.0267864296210596e-7 Iter 80: T = 842.854078855175 K, F = -0.004938235457847773, relative_change = 4.294150340427335e-8 Iter 85: T = 842.8539683064093 K, F = -0.002065229134759594, relative_change = 1.7958661562500366e-8 Iter 90: T = 842.8539220735801 K, F = -0.0008637035023451034, relative_change = 7.510528821670487e-9 Iter 95: T = 842.853902738456 K, F = -0.00036121112336218175, relative_change = 3.1409932247207965e-9 Iter 100: T = 842.8538946522757 K, F = -0.0001510628045704454, relative_change = 1.313600929341947e-9 Iter 105: T = 842.8538912705385 K, F = -6.317626930751885e-5, relative_change = 5.49363610030054e-10 Iter 110: T = 842.8538898562556 K, F = -2.642107026673557e-5, relative_change = 2.2975042397489729e-10 Iter 115: T = 842.8538892647856 K, F = -1.104960628039997e-5, relative_change = 9.608436412797365e-11 Iter 120: T = 842.8538890174258 K, F = -4.621077112965111e-6, relative_change = 4.0183626940049746e-11 Iter 125: T = 842.853888913977 K, F = -1.932590164788195e-6, relative_change = 1.6805277288569423e-11 Iter 130: T = 842.8538888707134 K, F = -8.082323010860648e-7, relative_change = 7.028167784418997e-12 Iter 135: T = 842.85388885262 K, F = -3.380095774385694e-7, relative_change = 2.9392391519485623e-12 Iter 140: T = 842.8538888450532 K, F = -1.413581842690803e-7, relative_change = 1.229212239541678e-12 Iter 145: T = 842.8538888418888 K, F = -5.911931211244337e-8, relative_change = 5.140854236276039e-13 Converged in 150 iterations to T = 842.8538888405652 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015139661905976152 Iteration 10: d = 1.3243418185363813e-5 Iteration 20: d = 1.5477365028222855e-7 Iteration 30: d = 2.1359213604968953e-9 Iteration 40: d = 3.00443472860951e-11 Iteration 50: d = 4.231645810132254e-13 Iteration 60: d = 5.957617946828341e-15 Converged after 63 iterations. d = 1.6514239743239764e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.30498011232 Iteration 2: convergence error = 4825.765352699584 Iteration 3: convergence error = 1091.4156941623478 Iteration 4: convergence error = 319.15584714206693 Iteration 5: convergence error = 94.57261994518853 Iteration 6: convergence error = 28.30655152529016 Iteration 7: convergence error = 8.517497923377277 Iteration 8: convergence error = 2.552715491428444 Iteration 9: convergence error = 0.7632374079066722 Iteration 10: convergence error = 0.2278875023484943 Iteration 11: convergence error = 0.0679894053228054 Iteration 12: convergence error = 0.02027535398588043 Iteration 13: convergence error = 0.00604484662176219 Iteration 14: convergence error = 0.0018019342574007169 Iteration 15: convergence error = 0.0005371013646708889 Iteration 16: convergence error = 0.00016008571719794418 Iteration 17: convergence error = 4.771300496031472e-5 Iteration 18: convergence error = 1.4220465573089314e-5 Iteration 19: convergence error = 4.238251221977407e-6 Iteration 20: convergence error = 1.2631601293833228e-6 Iteration 21: convergence error = 3.7646213968400843e-7 Iteration 22: convergence error = 1.1206429917365313e-7 Iteration 23: convergence error = 3.248896973673254e-8 Iteration 24: convergence error = 9.358927854918875e-9 Iteration 25: convergence error = 2.6961970434058458e-9 Iteration 26: convergence error = 7.680682756472379e-10 Iteration 27: convergence error = 2.212345862062648e-10 Iteration 28: convergence error = 6.366462912410498e-11 Iteration 29: convergence error = 1.8189894035458565e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017932734498399617 Iteration 10: d = 2.3330799875522546e-5 Iteration 20: d = 2.640608767748907e-7 Iteration 30: d = 3.1853687922546515e-9 Iteration 40: d = 3.9187664134227275e-11 Iteration 50: d = 4.880124797512264e-13 Iteration 60: d = 6.163874934209794e-15 Converged after 63 iterations. d = 1.5976997377165732e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12282.772053262204 Iteration 2: convergence error = 8327.481185906778 Iteration 3: convergence error = 1957.0945851786616 Iteration 4: convergence error = 482.5731084050344 Iteration 5: convergence error = 123.1531482620228 Iteration 6: convergence error = 32.910145571941484 Iteration 7: convergence error = 8.973476526061859 Iteration 8: convergence error = 2.460794033146385 Iteration 9: convergence error = 0.6756467893862919 Iteration 10: convergence error = 0.18553394762489006 Iteration 11: convergence error = 0.05094521036767219 Iteration 12: convergence error = 0.013988113240429811 Iteration 13: convergence error = 0.0038406136477533437 Iteration 14: convergence error = 0.001054471732231832 Iteration 15: convergence error = 0.00028951160516044183 Iteration 16: convergence error = 7.948690836201422e-5 Iteration 17: convergence error = 2.182351317969733e-5 Iteration 18: convergence error = 5.99174768467492e-6 Iteration 19: convergence error = 1.645060365262907e-6 Iteration 20: convergence error = 4.5166029849497136e-7 Iteration 21: convergence error = 1.2485611478041392e-7 Iteration 22: convergence error = 3.362561074027326e-8 Iteration 23: convergence error = 8.998767953016795e-9 Iteration 24: convergence error = 2.406522980891168e-9 Iteration 25: convergence error = 6.425580068025738e-10 Iteration 26: convergence error = 1.7348611436318606e-10 Iteration 27: convergence error = 4.501998773775995e-11 Iteration 28: convergence error = 1.2050804798491299e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017932734498399617 Iteration 10: d = 2.3330799875522546e-5 Iteration 20: d = 2.640608767748907e-7 Iteration 30: d = 3.1853687922546515e-9 Iteration 40: d = 3.9187664134227275e-11 Iteration 50: d = 4.880124797512264e-13 Iteration 60: d = 6.163874934209794e-15 Converged after 63 iterations. d = 1.5976997377165732e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.08059751631 Iteration 2: convergence error = 5731.002842825421 Iteration 3: convergence error = 2019.115535932599 Iteration 4: convergence error = 895.9072269625976 Iteration 5: convergence error = 412.37520990954135 Iteration 6: convergence error = 194.69207774920278 Iteration 7: convergence error = 91.99152881155669 Iteration 8: convergence error = 43.48536089955405 Iteration 9: convergence error = 20.555899912657424 Iteration 10: convergence error = 9.714823929884915 Iteration 11: convergence error = 4.5900765905366825 Iteration 12: convergence error = 2.168231529476998 Iteration 13: convergence error = 1.0240353032013445 Iteration 14: convergence error = 0.4835809129340305 Iteration 15: convergence error = 0.22834171607655662 Iteration 16: convergence error = 0.10772844227858513 Iteration 17: convergence error = 0.050394031858559174 Iteration 18: convergence error = 0.023032328078443243 Iteration 19: convergence error = 0.0104868614021143 Iteration 20: convergence error = 0.0047643154284742195 Iteration 21: convergence error = 0.0021617399147544347 Iteration 22: convergence error = 0.0009801312216950464 Iteration 23: convergence error = 0.00044419677897167276 Iteration 24: convergence error = 0.00020125838955209474 Iteration 25: convergence error = 9.11727611310198e-5 Iteration 26: convergence error = 4.129861417823122e-5 Iteration 27: convergence error = 1.8705999082158087e-5 Iteration 28: convergence error = 8.472497029288206e-6 Iteration 29: convergence error = 3.837351869151462e-6 Iteration 30: convergence error = 1.7379893506586086e-6 Iteration 31: convergence error = 7.87153112469241e-7 Iteration 32: convergence error = 3.5650600693770684e-7 Iteration 33: convergence error = 1.6146304915309884e-7 Iteration 34: convergence error = 7.312746674870141e-8 Iteration 35: convergence error = 3.311924956506118e-8 Iteration 36: convergence error = 1.4998931874288246e-8 Iteration 37: convergence error = 6.7984728957526386e-9 Iteration 38: convergence error = 3.0768205760978162e-9 Iteration 39: convergence error = 1.393345883116126e-9 Iteration 40: convergence error = 6.293703336268663e-10 Iteration 41: convergence error = 2.8330759960226715e-10 Iteration 42: convergence error = 1.3278622645884752e-10 Iteration 43: convergence error = 6.184563972055912e-11 Iteration 44: convergence error = 2.8194335754960775e-11 Iteration 45: convergence error = 1.1368683772161603e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017932734498399617 Iteration 10: d = 2.3330799875522546e-5 Iteration 20: d = 2.640608767748907e-7 Iteration 30: d = 3.1853687922546515e-9 Iteration 40: d = 3.9187664134227275e-11 Iteration 50: d = 4.880124797512264e-13 Iteration 60: d = 6.163874934209794e-15 Converged after 63 iterations. d = 1.5976997377165732e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.789929408036 Iteration 2: convergence error = 7349.009785379136 Iteration 3: convergence error = 1734.7066049448645 Iteration 4: convergence error = 507.5784673903163 Iteration 5: convergence error = 157.9019837147498 Iteration 6: convergence error = 49.1058680414244 Iteration 7: convergence error = 15.244023930052208 Iteration 8: convergence error = 4.724111011989407 Iteration 9: convergence error = 1.4622574821328271 Iteration 10: convergence error = 0.4522826533166153 Iteration 11: convergence error = 0.13983319170120012 Iteration 12: convergence error = 0.04322194098176624 Iteration 13: convergence error = 0.01335788898904866 Iteration 14: convergence error = 0.004127975344999868 Iteration 15: convergence error = 0.0012756068986163882 Iteration 16: convergence error = 0.00039417177822542726 Iteration 17: convergence error = 0.00012180015073681716 Iteration 18: convergence error = 3.763626409636345e-5 Iteration 19: convergence error = 1.1629561868176097e-5 Iteration 20: convergence error = 3.593496330722701e-6 Iteration 21: convergence error = 1.1103834367531817e-6 Iteration 22: convergence error = 3.4295680961804464e-7 Iteration 23: convergence error = 1.0476060197106563e-7 Iteration 24: convergence error = 3.120339897577651e-8 Iteration 25: convergence error = 9.276845958083868e-9 Iteration 26: convergence error = 2.7398527890909463e-9 Iteration 27: convergence error = 8.135430107358843e-10 Iteration 28: convergence error = 2.4283508537337184e-10 Iteration 29: convergence error = 7.048583938740194e-11 Iteration 30: convergence error = 2.3646862246096134e-11 Iteration 31: convergence error = 9.094947017729282e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017932734498399617 Iteration 10: d = 2.3330799875522546e-5 Iteration 20: d = 2.640608767748907e-7 Iteration 30: d = 3.1853687922546515e-9 Iteration 40: d = 3.9187664134227275e-11 Iteration 50: d = 4.880124797512264e-13 Iteration 60: d = 6.163874934209794e-15 Converged after 63 iterations. d = 1.5976997377165732e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.738574315462 Iteration 2: convergence error = 5518.952996156013 Iteration 3: convergence error = 939.1882105232894 Iteration 4: convergence error = 170.87273193024453 Iteration 5: convergence error = 31.01598455085832 Iteration 6: convergence error = 5.6469460165644705 Iteration 7: convergence error = 1.0364747926955715 Iteration 8: convergence error = 0.18985718003477814 Iteration 9: convergence error = 0.034735198284124635 Iteration 10: convergence error = 0.0063511443763673014 Iteration 11: convergence error = 0.0011609207099354535 Iteration 12: convergence error = 0.0002121708193953964 Iteration 13: convergence error = 3.877339941027458e-5 Iteration 14: convergence error = 7.08537891114247e-6 Iteration 15: convergence error = 1.2947439245181158e-6 Iteration 16: convergence error = 2.3661050363443792e-7 Iteration 17: convergence error = 4.322055247030221e-8 Iteration 18: convergence error = 7.890776032581925e-9 Iteration 19: convergence error = 1.451098796678707e-9 Iteration 20: convergence error = 2.632987161632627e-10 Iteration 21: convergence error = 4.729372449219227e-11 Iteration 22: convergence error = 9.549694368615746e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017932734498399617 Iteration 10: d = 2.3330799875522546e-5 Iteration 20: d = 2.640608767748907e-7 Iteration 30: d = 3.1853687922546515e-9 Iteration 40: d = 3.9187664134227275e-11 Iteration 50: d = 4.880124797512264e-13 Iteration 60: d = 6.163874934209794e-15 Converged after 63 iterations. d = 1.5976997377165732e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4878634034494 Iteration 2: convergence error = 2714.236443638532 Iteration 3: convergence error = 204.9814704347629 Iteration 4: convergence error = 19.383062600737098 Iteration 5: convergence error = 1.6043149720975696 Iteration 6: convergence error = 0.13081440887501192 Iteration 7: convergence error = 0.01067906391193559 Iteration 8: convergence error = 0.0008737762439815457 Iteration 9: convergence error = 7.160170715718145e-5 Iteration 10: convergence error = 5.873805757414104e-6 Iteration 11: convergence error = 4.820838374194909e-7 Iteration 12: convergence error = 3.9571264065206154e-8 Iteration 13: convergence error = 3.2491133605074987e-9 Iteration 14: convergence error = 2.6589256841882805e-10 Iteration 15: convergence error = 2.2168933355715126e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015139661905976152 Iteration 10: d = 1.3243418185363813e-5 Iteration 20: d = 1.5477365028222855e-7 Iteration 30: d = 2.1359213604968953e-9 Iteration 40: d = 3.00443472860951e-11 Iteration 50: d = 4.231645810132254e-13 Iteration 60: d = 5.957617946828341e-15 Converged after 63 iterations. d = 1.6514239743239764e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.219115672338 Iteration 2: convergence error = 3614.0292934763193 Iteration 3: convergence error = 590.0374416619865 Iteration 4: convergence error = 104.48136228778253 Iteration 5: convergence error = 18.570883504676658 Iteration 6: convergence error = 3.272063486989964 Iteration 7: convergence error = 0.5744386765754825 Iteration 8: convergence error = 0.10069612908068848 Iteration 9: convergence error = 0.017640603448398906 Iteration 10: convergence error = 0.0030896168475464947 Iteration 11: convergence error = 0.0005410673879850947 Iteration 12: convergence error = 9.475019896854064e-5 Iteration 13: convergence error = 1.6592116026004078e-5 Iteration 14: convergence error = 2.9054931474092882e-6 Iteration 15: convergence error = 5.087833869765745e-7 Iteration 16: convergence error = 8.909773896448314e-8 Iteration 17: convergence error = 1.5610112313879654e-8 Iteration 18: convergence error = 2.7137048164149746e-9 Iteration 19: convergence error = 4.81122697237879e-10 Iteration 20: convergence error = 8.185452315956354e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m46.4s Testing RayTraceHeatTransfer tests passed Testing completed after 540.05s PkgEval succeeded after 598.84s