Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1367 (f40b117265*) started at 2025-12-14T15:19:22.354 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.85s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.2+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.72s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 13.08s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_Hv2tGu/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Hv2tGu/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.2+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:02:07 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011464030656186505 Iteration 10: d = 1.1247504095892327e-5 Iteration 20: d = 1.505671137591634e-7 Iteration 30: d = 2.3124356776741845e-9 Iteration 40: d = 3.789922354052447e-11 Iteration 50: d = 6.46661562206488e-13 Iteration 60: d = 1.133059180401948e-14 Converged after 65 iterations. d = 1.52296045217692e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012444965872439138 Iteration 10: d = 1.4643774093106936e-5 Iteration 20: d = 1.8865174759970496e-7 Iteration 30: d = 2.6383659938029335e-9 Iteration 40: d = 3.9094548415692404e-11 Iteration 50: d = 6.115208042657823e-13 Iteration 60: d = 9.963875899445912e-15 Converged after 64 iterations. d = 1.9233706124772723e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010953944027042553 Iteration 10: d = 8.772397869642367e-6 Iteration 20: d = 1.1103730069407671e-7 Iteration 30: d = 1.6308269709351806e-9 Iteration 40: d = 2.575313215384574e-11 Iteration 50: d = 4.255803499218371e-13 Iteration 60: d = 7.231347042762518e-15 Converged after 63 iterations. d = 2.1206034385021274e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 72%|███████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012008173231640707 Iteration 10: d = 1.2277486047673817e-5 Iteration 20: d = 1.7071217753178121e-7 Iteration 30: d = 2.749706802273163e-9 Iteration 40: d = 4.708882238463433e-11 Iteration 50: d = 8.317395113438145e-13 Iteration 60: d = 1.492389569433797e-14 Converged after 65 iterations. d = 2.0209306618941057e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011294070581340898 Iteration 10: d = 1.2814838381798741e-5 Iteration 20: d = 1.8993427127461329e-7 Iteration 30: d = 2.9447256011786694e-9 Iteration 40: d = 4.566845275599527e-11 Iteration 50: d = 7.074374137140518e-13 Iteration 60: d = 1.093075502438344e-14 Converged after 64 iterations. d = 2.0491166058448356e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012058913508949203 Iteration 10: d = 1.2460255839196393e-5 Iteration 20: d = 1.4681616227059996e-7 Iteration 30: d = 2.0257424537450007e-9 Iteration 40: d = 2.985746651470694e-11 Iteration 50: d = 4.5246728264746367e-13 Iteration 60: d = 6.945735784584876e-15 Converged after 63 iterations. d = 1.9803604610084427e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▏ | ETA: 0:00:01 Bin 1 progress: 88%|█████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011855428980872803 Iteration 10: d = 8.421199994819585e-6 Iteration 20: d = 7.999214633748038e-8 Iteration 30: d = 9.9414335686366e-10 Iteration 40: d = 1.410804729964775e-11 Iteration 50: d = 2.1147460024615074e-13 Iteration 60: d = 3.2392125413052496e-15 Converged after 61 iterations. d = 2.135453026492996e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011364863063637622 Iteration 10: d = 1.0543190959603682e-5 Iteration 20: d = 1.318698095082421e-7 Iteration 30: d = 1.95428494727735e-9 Iteration 40: d = 2.998778179981199e-11 Iteration 50: d = 4.629945459555477e-13 Iteration 60: d = 7.130021362826523e-15 Converged after 63 iterations. d = 2.0468480323817924e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 95%|███████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012251352225089824 Iteration 10: d = 1.121657684750787e-5 Iteration 20: d = 1.305901099847242e-7 Iteration 30: d = 1.857127620129369e-9 Iteration 40: d = 2.8146672347344076e-11 Iteration 50: d = 4.3513085700251744e-13 Iteration 60: d = 6.7839936336042575e-15 Converged after 63 iterations. d = 1.9473548208964772e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00114980028605856 Iteration 10: d = 9.317557277970837e-6 Iteration 20: d = 1.1338929996346698e-7 Iteration 30: d = 1.6611651688479115e-9 Iteration 40: d = 2.5288999483683602e-11 Iteration 50: d = 3.8829826210503886e-13 Iteration 60: d = 5.955519800429797e-15 Converged after 63 iterations. d = 1.6969171144556437e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004356457756920854 Iteration 10: d = 4.196565760090063e-5 Iteration 20: d = 4.92481145641622e-7 Iteration 30: d = 6.839566080435292e-9 Iteration 40: d = 9.737708900757258e-11 Iteration 50: d = 1.3883343813577943e-12 Iteration 60: d = 1.9771342835736777e-14 Converged after 66 iterations. d = 1.5412631821226667e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004389398237138511 Iteration 10: d = 6.520813467403006e-5 Iteration 20: d = 9.661098281934073e-7 Iteration 30: d = 1.515243060034993e-8 Iteration 40: d = 2.4079336562988506e-10 Iteration 50: d = 3.8428997604597966e-12 Iteration 60: d = 6.143769986137482e-14 Converged after 69 iterations. d = 1.470842696945219e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002277313427123047 Iteration 10: d = 2.6682611685008126e-5 Iteration 20: d = 4.330546236365728e-7 Iteration 30: d = 7.45312295159762e-9 Iteration 40: d = 1.2848136382201086e-10 Iteration 50: d = 2.210560745495762e-12 Iteration 60: d = 3.799214678340656e-14 Converged after 68 iterations. d = 1.5277389946518355e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001993288861691181 Iteration 10: d = 2.1676960706198764e-5 Iteration 20: d = 3.724415839901784e-7 Iteration 30: d = 6.815419785721757e-9 Iteration 40: d = 1.231703349024325e-10 Iteration 50: d = 2.2014742227181964e-12 Iteration 60: d = 3.908640861587073e-14 Converged after 68 iterations. d = 1.5513674026011971e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011294070581340898 Iteration 10: d = 1.2814838381798741e-5 Iteration 20: d = 1.8993427127461329e-7 Iteration 30: d = 2.9447256011786694e-9 Iteration 40: d = 4.566845275599527e-11 Iteration 50: d = 7.074374137140518e-13 Iteration 60: d = 1.093075502438344e-14 Converged after 64 iterations. d = 2.0491166058448356e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017035198287907582 Iteration 10: d = 1.3767084462330046e-5 Iteration 20: d = 1.2727206044191843e-7 Iteration 30: d = 1.604840086694378e-9 Iteration 40: d = 2.2115447736179913e-11 Iteration 50: d = 3.120269912057858e-13 Iteration 60: d = 4.4447894161792014e-15 Converged after 62 iterations. d = 1.915956778331194e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014637799032840592 Iteration 10: d = 1.3407988647885501e-5 Iteration 20: d = 1.3502949043616253e-7 Iteration 30: d = 1.6516862875717111e-9 Iteration 40: d = 2.1296706411008813e-11 Iteration 50: d = 2.7995469439771046e-13 Iteration 60: d = 3.733162004967917e-15 Converged after 62 iterations. d = 1.5461805338193013e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.647719441224 Iteration 2: convergence error = 4828.648561703598 Iteration 3: convergence error = 1101.1572320128505 Iteration 4: convergence error = 320.9842660911838 Iteration 5: convergence error = 95.36742328330479 Iteration 6: convergence error = 28.469770897905846 Iteration 7: convergence error = 8.560009940102873 Iteration 8: convergence error = 2.567856374844723 Iteration 9: convergence error = 0.7684934641708878 Iteration 10: convergence error = 0.22967821097040542 Iteration 11: convergence error = 0.06859061674595068 Iteration 12: convergence error = 0.020474822455071262 Iteration 13: convergence error = 0.00611037822795879 Iteration 14: convergence error = 0.0018232861048090854 Iteration 15: convergence error = 0.0005440095687845314 Iteration 16: convergence error = 0.0001623073187602131 Iteration 17: convergence error = 4.8423716179968324e-5 Iteration 18: convergence error = 1.444678719053627e-5 Iteration 19: convergence error = 4.31003536505159e-6 Iteration 20: convergence error = 1.2858463378506713e-6 Iteration 21: convergence error = 3.8360667531378567e-7 Iteration 22: convergence error = 1.1432143764977809e-7 Iteration 23: convergence error = 3.319814823043998e-8 Iteration 24: convergence error = 9.57948032009881e-9 Iteration 25: convergence error = 2.752358341240324e-9 Iteration 26: convergence error = 7.903508958406746e-10 Iteration 27: convergence error = 2.2873791749589145e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017035198287907582 Iteration 10: d = 1.3767084462330046e-5 Iteration 20: d = 1.2727206044191843e-7 Iteration 30: d = 1.604840086694378e-9 Iteration 40: d = 2.2115447736179913e-11 Iteration 50: d = 3.120269912057858e-13 Iteration 60: d = 4.4447894161792014e-15 Converged after 62 iterations. d = 1.915956778331194e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.725978139162 Iteration 2: convergence error = 4830.538164851641 Iteration 3: convergence error = 1095.83132950676 Iteration 4: convergence error = 319.73688940502257 Iteration 5: convergence error = 94.74922619192421 Iteration 6: convergence error = 28.226229345077854 Iteration 7: convergence error = 8.442882874759107 Iteration 8: convergence error = 2.5286632014881434 Iteration 9: convergence error = 0.75553670612112 Iteration 10: convergence error = 0.22543576412112998 Iteration 11: convergence error = 0.06721241202217243 Iteration 12: convergence error = 0.020030065794799157 Iteration 13: convergence error = 0.005967669826532074 Iteration 14: convergence error = 0.0017777224402379943 Iteration 15: convergence error = 0.0005295253592976223 Iteration 16: convergence error = 0.00015772066467434342 Iteration 17: convergence error = 4.6976241492302506e-5 Iteration 18: convergence error = 1.3991386140332907e-5 Iteration 19: convergence error = 4.1671571580081945e-6 Iteration 20: convergence error = 1.2411251191224437e-6 Iteration 21: convergence error = 3.696479780046502e-7 Iteration 22: convergence error = 1.099551809602417e-7 Iteration 23: convergence error = 3.1830040825298056e-8 Iteration 24: convergence error = 9.169525583274662e-9 Iteration 25: convergence error = 2.6409452402731404e-9 Iteration 26: convergence error = 7.512426236644387e-10 Iteration 27: convergence error = 2.141860022675246e-10 Iteration 28: convergence error = 6.298250809777528e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:18:31 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:32 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:20 Bin 1 ray tracing: 26%|████████ | ETA: 0:00:15 Bin 1 ray tracing: 35%|██████████▍ | ETA: 0:00:12 Bin 1 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 51%|███████████████▏ | ETA: 0:00:08 Bin 1 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▍ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▊ | ETA: 0:00:09 Bin 2 ray tracing: 40%|████████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 60%|█████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 67%|████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 4 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 51%|███████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 5 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:10 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:09 Bin 6 ray tracing: 35%|██████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 57%|█████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 70%|████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███ | ETA: 0:00:10 Bin 8 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 9 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 9 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:09 Bin 10 ray tracing: 36%|██████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 45%|█████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 55%|███████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 63%|██████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 71%|████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▊| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 2 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 2 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 3 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 3 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 4 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 5 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 6 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 33%|███████████ | ETA: 0:00:02 Bin 7 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 8 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 9 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 36%|███████████▍ | ETA: 0:00:02 Bin 10 progress: 73%|███████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017035198287907582 Iteration 10: d = 1.3767084462330046e-5 Iteration 20: d = 1.2727206044191843e-7 Iteration 30: d = 1.604840086694378e-9 Iteration 40: d = 2.2115447736179913e-11 Iteration 50: d = 3.120269912057858e-13 Iteration 60: d = 4.4447894161792014e-15 Converged after 62 iterations. d = 1.915956778331194e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014614177828557139 Iteration 10: d = 1.347210465640899e-5 Iteration 20: d = 1.3629634316122573e-7 Iteration 30: d = 1.6710677718095733e-9 Iteration 40: d = 2.1579506964049003e-11 Iteration 50: d = 2.8400950388212854e-13 Iteration 60: d = 3.722367364853622e-15 Converged after 62 iterations. d = 1.5988395013798462e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010275350318356574 Iteration 10: d = 7.68563401413534e-6 Iteration 20: d = 8.892463909976963e-8 Iteration 30: d = 1.241861804991272e-9 Iteration 40: d = 1.7614840793863923e-11 Iteration 50: d = 2.4988433254989633e-13 Iteration 60: d = 3.5188288253214433e-15 Converged after 62 iterations. d = 1.5113913517453209e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010259613946947564 Iteration 10: d = 7.583823404988151e-6 Iteration 20: d = 7.529259175177812e-8 Iteration 30: d = 9.34905193520637e-10 Iteration 40: d = 1.2200983941845044e-11 Iteration 50: d = 1.6133583254940773e-13 Converged after 60 iterations. d = 2.1264986699664146e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016251128124580788 Iteration 10: d = 1.8755574512228646e-5 Iteration 20: d = 2.299499741352399e-7 Iteration 30: d = 3.0910515606313947e-9 Iteration 40: d = 4.274023503426175e-11 Iteration 50: d = 5.978151359195977e-13 Iteration 60: d = 8.400600343754773e-15 Converged after 64 iterations. d = 1.5513661035319544e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016773852451444408 Iteration 10: d = 1.9595783685613905e-5 Iteration 20: d = 2.3587957108973438e-7 Iteration 30: d = 3.158842153312916e-9 Iteration 40: d = 4.35297943354987e-11 Iteration 50: d = 6.064399132007558e-13 Iteration 60: d = 8.458906904814512e-15 Converged after 64 iterations. d = 1.5282200068460657e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001432449831521631 Iteration 10: d = 1.759818425645004e-5 Iteration 20: d = 2.1730214785299744e-7 Iteration 30: d = 2.9208405091338468e-9 Iteration 40: d = 4.045841028998961e-11 Iteration 50: d = 5.676655487347468e-13 Iteration 60: d = 8.023937814221527e-15 Converged after 64 iterations. d = 1.4307814038172564e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014833003953009431 Iteration 10: d = 2.0388749051211857e-5 Iteration 20: d = 2.715517808403537e-7 Iteration 30: d = 3.767411183499651e-9 Iteration 40: d = 5.2696282684020905e-11 Iteration 50: d = 7.395056219854796e-13 Iteration 60: d = 1.0399044727353771e-14 Converged after 64 iterations. d = 1.8902476147425453e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013697733332805693 Iteration 10: d = 1.3904687544762356e-5 Iteration 20: d = 1.5652500519229329e-7 Iteration 30: d = 2.03333606609012e-9 Iteration 40: d = 2.7586154255956812e-11 Iteration 50: d = 3.808191435597659e-13 Iteration 60: d = 5.246501152407513e-15 Converged after 63 iterations. d = 1.4733716810531697e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016119462379654151 Iteration 10: d = 1.4564862389800047e-5 Iteration 20: d = 1.4392880894955753e-7 Iteration 30: d = 1.8329752894242801e-9 Iteration 40: d = 2.5036509579621297e-11 Iteration 50: d = 3.4754896060002705e-13 Iteration 60: d = 4.823174726451783e-15 Converged after 62 iterations. d = 2.0139365589486823e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.162804044692 Iteration 2: convergence error = 4793.970283088398 Iteration 3: convergence error = 1086.265379666155 Iteration 4: convergence error = 317.02717572888923 Iteration 5: convergence error = 95.07218772558736 Iteration 6: convergence error = 28.94206126995232 Iteration 7: convergence error = 8.749984981527177 Iteration 8: convergence error = 2.6340561696958957 Iteration 9: convergence error = 0.7909500768810176 Iteration 10: convergence error = 0.23716254086002664 Iteration 11: convergence error = 0.07105368309066762 Iteration 12: convergence error = 0.02127768339278191 Iteration 13: convergence error = 0.006370101352331403 Iteration 14: convergence error = 0.0019067858975176932 Iteration 15: convergence error = 0.0005707149134650535 Iteration 16: convergence error = 0.0001708104098270269 Iteration 17: convergence error = 5.11206721967028e-5 Iteration 18: convergence error = 1.5299287042580545e-5 Iteration 19: convergence error = 4.57869623460283e-6 Iteration 20: convergence error = 1.370277686874033e-6 Iteration 21: convergence error = 4.100841124454746e-7 Iteration 22: convergence error = 1.2259465620445553e-7 Iteration 23: convergence error = 3.5734956327360123e-8 Iteration 24: convergence error = 1.0337316780351102e-8 Iteration 25: convergence error = 2.9831426218152046e-9 Iteration 26: convergence error = 8.596998668508604e-10 Iteration 27: convergence error = 2.462456905050203e-10 Iteration 28: convergence error = 7.071321306284517e-11 Iteration 29: convergence error = 2.000888343900442e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2675949186148 K, F = -7458.109634349098, relative_change = 0.03273240508138521 Iter 2: T = 936.6080209072036 K, F = -6322.125354642007, relative_change = 0.03169709620427307 Iter 3: T = 907.9900600383972 K, F = -5357.66471385125, relative_change = 0.030554896210569355 Iter 5: T = 856.7416153469496 K, F = -3843.999516678321, relative_change = 0.02795468140178921 Iter 10: T = 761.3584740123471 K, F = -1664.6413333899402, relative_change = 0.020048350009258607 Iter 15: T = 705.4434918331352 K, F = -712.7855527710033, relative_change = 0.012032461633014826 Iter 20: T = 676.6563978735029 K, F = -302.12225444830426, relative_change = 0.006169073740915111 Iter 25: T = 663.2230122853538 K, F = -127.19254145232242, relative_change = 0.0028517734824384444 Iter 30: T = 657.3070296233467 K, F = -53.35377817562758, relative_change = 0.0012478789873374369 Iter 35: T = 654.7756739509138 K, F = -22.342327800336985, relative_change = 0.0005322082303440754 Iter 40: T = 653.706602716091 K, F = -9.34901005674496, relative_change = 0.0002244355740398059 Iter 45: T = 653.257648122812 K, F = -3.9107803250201654, relative_change = 9.41909114098468e-5 Iter 50: T = 653.0695628729005 K, F = -1.6356951343194293, relative_change = 3.9449651470994536e-5 Iter 55: T = 652.9908459903208 K, F = -0.684095275308652, relative_change = 1.650846181004742e-5 Iter 60: T = 652.9579156001541 K, F = -0.2861017199441569, relative_change = 6.905812107232024e-6 Iter 65: T = 652.9441419590345 K, F = -0.11965201428627426, relative_change = 2.8884038769704895e-6 Iter 70: T = 652.9383813501614 K, F = -0.050040051430992605, relative_change = 1.2080193605008807e-6 Iter 75: T = 652.9359721409189 K, F = -0.020927373364683144, relative_change = 5.052176322894423e-7 Iter 80: T = 652.934964571429 K, F = -0.00875208205649386, relative_change = 2.1128971052261633e-7 Iter 85: T = 652.9345431921893 K, F = -0.0036602260404390297, relative_change = 8.83641711520334e-8 Iter 90: T = 652.9343669660709 K, F = -0.001530750383011148, relative_change = 3.6955002547431805e-8 Iter 95: T = 652.9342932661532 K, F = -0.000640178114896861, relative_change = 1.545503227901372e-8 Iter 100: T = 652.9342624439587 K, F = -0.00026773013682507285, relative_change = 6.463480616358098e-9 Iter 105: T = 652.9342495537473 K, F = -0.00011196794094142648, relative_change = 2.7031050464957112e-9 Iter 110: T = 652.9342441629068 K, F = -4.6826330786342574e-5, relative_change = 1.1304708737942087e-9 Iter 115: T = 652.9342419083928 K, F = -1.9583330400141374e-5, relative_change = 4.727764191946072e-10 Iter 120: T = 652.934240965528 K, F = -8.189981947015479e-6, relative_change = 1.9772072909372095e-10 Iter 125: T = 652.9342405712108 K, F = -3.4251477119551232e-6, relative_change = 8.268915721547326e-11 Iter 130: T = 652.9342404063027 K, F = -1.432438070270159e-6, relative_change = 3.458160257526995e-11 Iter 135: T = 652.9342403373361 K, F = -5.990626548157962e-7, relative_change = 1.4462437914008323e-11 Iter 140: T = 652.9342403084935 K, F = -2.5053498348137637e-7, relative_change = 6.04836007639748e-12 Iter 145: T = 652.9342402964311 K, F = -1.0477715012280342e-7, relative_change = 2.5295067498001457e-12 Iter 150: T = 652.9342402913865 K, F = -4.38178390793631e-8, relative_change = 1.057840565305281e-12 Iter 155: T = 652.9342402892768 K, F = -1.8325262973739598e-8, relative_change = 4.424044396323664e-13 Converged in 159 iterations to T = 652.9342402885153 K Iter 1: T = 970.3823081439122 K, F = -6748.419263107923, relative_change = 0.02961769185608785 Iter 2: T = 942.9296775569704 K, F = -5715.694927279564, relative_change = 0.02829053081094541 Iter 3: T = 917.5971177160974 K, F = -4839.259604789737, relative_change = 0.026865799691984396 Iter 5: T = 873.0750116064545 K, F = -3464.8210359540763, relative_change = 0.023769082544298645 Iter 10: T = 794.0884239510793 K, F = -1491.2450674033782, relative_change = 0.015463438617727107 Iter 15: T = 751.0825118956541 K, F = -634.7499814453181, relative_change = 0.008460233642615373 Iter 20: T = 730.2175617278153 K, F = -267.9210783498241, relative_change = 0.004068154015147911 Iter 25: T = 720.8292767326793 K, F = -112.53329555485989, relative_change = 0.001815812815318057 Iter 30: T = 716.7706913821529 K, F = -47.15251908736532, relative_change = 0.0007814496608793319 Iter 35: T = 715.0487810305275 K, F = -19.735828693531317, relative_change = 0.00033083555776693314 Iter 40: T = 714.3242494785443 K, F = -8.256601199184034, relative_change = 0.00013907596793032994 Iter 45: T = 714.0204622714416 K, F = -3.4535084517788217, relative_change = 5.8289517567360034e-5 Iter 50: T = 713.893277876137 K, F = -1.4443859525905034, relative_change = 2.43995305590477e-5 Iter 55: T = 713.8400638428546 K, F = -0.6040747659725565, relative_change = 1.0208055737565499e-5 Iter 60: T = 713.8178048975617 K, F = -0.2526339600311838, relative_change = 4.269809930867049e-6 Iter 65: T = 713.808495205794 K, F = -0.10565500772808767, relative_change = 1.7858043102446505e-6 Iter 70: T = 713.8046016529424 K, F = -0.04418626796720082, relative_change = 7.46865470567721e-7 Iter 75: T = 713.8029733001525 K, F = -0.018479239291564586, relative_change = 3.123516940064312e-7 Iter 80: T = 713.8022922996357 K, F = -0.007728241064420049, relative_change = 1.3062984438794714e-7 Iter 85: T = 713.8020074963989 K, F = -0.0032320431460842736, relative_change = 5.4631072161324047e-8 Iter 90: T = 713.8018883881637 K, F = -0.0013516791182465182, relative_change = 2.2847386243447354e-8 Iter 95: T = 713.8018385756561 K, F = -0.0005652883608066039, relative_change = 9.555053144727494e-9 Iter 100: T = 713.801817743467 K, F = -0.00023641034581400877, relative_change = 3.9960379316419484e-9 Iter 105: T = 713.8018090311961 K, F = -9.886962964000823e-5, relative_change = 1.6711908775721965e-9 Iter 110: T = 713.8018053876202 K, F = -4.1348460289136746e-5, relative_change = 6.989120073356456e-10 Iter 115: T = 713.8018038638332 K, F = -1.7292419612902066e-5, relative_change = 2.9229334639475456e-10 Iter 120: T = 713.8018032265672 K, F = -7.231895153725354e-6, relative_change = 1.222405476828917e-10 Iter 125: T = 713.8018029600552 K, F = -3.0244659653400063e-6, relative_change = 5.112247465565139e-11 Iter 130: T = 713.8018028485966 K, F = -1.2648681334548328e-6, relative_change = 2.1380035313470513e-11 Iter 135: T = 713.8018028019833 K, F = -5.289830439236809e-7, relative_change = 8.941387535743174e-12 Iter 140: T = 713.8018027824891 K, F = -2.2122728926543545e-7, relative_change = 3.7393994945267265e-12 Iter 145: T = 713.8018027743364 K, F = -9.252099597567565e-8, relative_change = 1.5638801467582748e-12 Iter 150: T = 713.8018027709268 K, F = -3.869321851812657e-8, relative_change = 6.540305323989686e-13 Iter 155: T = 713.8018027695008 K, F = -1.6180775941343484e-8, relative_change = 2.73503262559776e-13 Converged in 157 iterations to T = 713.801802769199 K Iter 1: T = 974.4778478941585 K, F = -5815.2466351502435, relative_change = 0.025522152105841564 Iter 2: T = 951.144467743954 K, F = -4919.820318375487, relative_change = 0.023944495198764914 Iter 3: T = 929.9246044369211 K, F = -4160.469141753556, relative_change = 0.02230982151151536 Iter 5: T = 893.4698467575208 K, F = -2971.2385030034334, relative_change = 0.018954234676142854 Iter 10: T = 832.1076528419023 K, F = -1270.4098634314187, relative_change = 0.011120247813197724 Iter 15: T = 800.9872279217842 K, F = -537.89231273289, relative_change = 0.005606993231447576 Iter 20: T = 786.6046753009774 K, F = -226.309672434151, relative_change = 0.002567502335550667 Iter 25: T = 780.302665187223 K, F = -94.9018149700704, relative_change = 0.0011183448947449765 Iter 30: T = 777.6124727993143 K, F = -39.73549079503969, relative_change = 0.0004759869908392466 Iter 35: T = 776.4774910008113 K, F = -16.626096558537714, relative_change = 0.00020054987933921343 Iter 40: T = 776.0010670897856 K, F = -6.954682341517256, relative_change = 8.413519282071008e-5 Iter 45: T = 775.801510874436 K, F = -2.908785522385577, relative_change = 3.5232524905089816e-5 Iter 50: T = 775.7179997033043 K, F = -1.2165333718652773, relative_change = 1.4742755622194993e-5 Iter 55: T = 775.6830648122112 K, F = -0.5087765761349619, relative_change = 6.167013072804195e-6 Iter 60: T = 775.6684529573267 K, F = -0.21277780319379724, relative_change = 2.5793663659972078e-6 Iter 65: T = 775.6623418136294 K, F = -0.08898645679136596, relative_change = 1.0787651734881334e-6 Iter 70: T = 775.6597860093681 K, F = -0.03721524064182702, relative_change = 4.511600619439735e-7 Iter 75: T = 775.6587171325859 K, F = -0.015563865370082808, relative_change = 1.8868185221941752e-7 Iter 80: T = 775.6582701139909 K, F = -0.006508995642666493, relative_change = 7.890923589044996e-8 Iter 85: T = 775.6580831652032 K, F = -0.0027221399329006024, relative_change = 3.300082537768784e-8 Iter 90: T = 775.6580049809398 K, F = -0.0011384314688565045, relative_change = 1.3801346390859645e-8 Iter 95: T = 775.6579722833388 K, F = -0.0004761056433030264, relative_change = 5.771889130312824e-9 Iter 100: T = 775.6579586088102 K, F = -0.0001991130670032648, relative_change = 2.4138731808202238e-9 Iter 105: T = 775.6579528899588 K, F = -8.327146346875924e-5, relative_change = 1.0095106387354476e-9 Iter 110: T = 775.6579504982666 K, F = -3.482511904506769e-5, relative_change = 4.2218939385569365e-10 Iter 115: T = 775.6579494980325 K, F = -1.4564280242046479e-5, relative_change = 1.765646422379564e-10 Iter 120: T = 775.6579490797226 K, F = -6.09095414727534e-6, relative_change = 7.384142057072865e-11 Iter 125: T = 775.6579489047804 K, F = -2.5473094968919696e-6, relative_change = 3.088136070929707e-11 Iter 130: T = 775.6579488316174 K, F = -1.0653144795202962e-6, relative_change = 1.291494447997697e-11 Iter 135: T = 775.65794880102 K, F = -4.4552936240283003e-7, relative_change = 5.4012097754493716e-12 Iter 140: T = 775.6579487882236 K, F = -1.8632559362075085e-7, relative_change = 2.258849141462249e-12 Iter 145: T = 775.6579487828722 K, F = -7.792422418440026e-8, relative_change = 9.446853944396795e-13 Iter 150: T = 775.657948780634 K, F = -3.258960012963996e-8, relative_change = 3.950879149039584e-13 Converged in 154 iterations to T = 775.6579487798261 K Iter 1: T = 970.4007417048991 K, F = -6744.219158702189, relative_change = 0.02959925829510084 Iter 2: T = 942.9668980928602 K, F = -5712.108905301927, relative_change = 0.02827063339197401 Iter 3: T = 917.6533666236719 K, F = -4836.197201432897, relative_change = 0.026844559995037685 Iter 5: T = 873.1694686086482 K, F = -3462.5870309958664, relative_change = 0.02374575106854633 Iter 10: T = 794.2712585150508 K, F = -1490.2342108934085, relative_change = 0.015440192772472524 Iter 15: T = 751.3296398691838 K, F = -634.3011845262145, relative_change = 0.00844369900079009 Iter 20: T = 730.5016773361332 K, F = -267.72657042183386, relative_change = 0.004059029622224225 Iter 25: T = 721.1315341410001 K, F = -112.45048160053456, relative_change = 0.0018114683713626968 Iter 30: T = 717.0811086587962 K, F = -47.11760229699267, relative_change = 0.0007795259630086232 Iter 35: T = 715.3627206686422 K, F = -19.721174420354075, relative_change = 0.0003300111465809139 Iter 40: T = 714.6396821952405 K, F = -8.250463406571438, relative_change = 0.00013872761410700283 Iter 45: T = 714.336522966396 K, F = -3.4509399319936165, relative_change = 5.814319937907271e-5 Iter 50: T = 714.2096018253054 K, F = -1.4433114824011204, relative_change = 2.4338227398387e-5 Iter 55: T = 714.1564979979308 K, F = -0.6036253598729773, relative_change = 1.0182398545039346e-5 Iter 60: T = 714.1342851613018 K, F = -0.2524460043121581, relative_change = 4.259076376855528e-6 Iter 65: T = 714.1249947560945 K, F = -0.1055764008756006, relative_change = 1.7813148131978678e-6 Iter 70: T = 714.1211092697017 K, F = -0.04415339337581958, relative_change = 7.449878049310519e-7 Iter 75: T = 714.119484290504 K, F = -0.018465490695500075, relative_change = 3.1156641351520386e-7 Iter 80: T = 714.118804700882 K, F = -0.007722491230961359, relative_change = 1.3030142754573516e-7 Iter 85: T = 714.1185204877013 K, F = -0.0032296384946294276, relative_change = 5.4493723740414686e-8 Iter 90: T = 714.1184016262351 K, F = -0.0013506734638819573, relative_change = 2.278994539322065e-8 Iter 95: T = 714.1183519169297 K, F = -0.0005648677862797324, relative_change = 9.531030714980914e-9 Iter 100: T = 714.1183311279008 K, F = -0.0002362344566374519, relative_change = 3.98599146368632e-9 Iter 105: T = 714.11832243368 K, F = -9.8796071237639e-5, relative_change = 1.666989333525727e-9 Iter 110: T = 714.1183187976529 K, F = -4.131769760562509e-5, relative_change = 6.9715487672014e-10 Iter 115: T = 714.1183172770229 K, F = -1.7279555649674094e-5, relative_change = 2.9155851630072996e-10 Iter 120: T = 714.1183166410773 K, F = -7.2265167987417556e-6, relative_change = 1.2193325844212607e-10 Iter 125: T = 714.1183163751172 K, F = -3.0222146022440555e-6, relative_change = 5.0993927652751384e-11 Iter 130: T = 714.1183162638895 K, F = -1.263925443195646e-6, relative_change = 2.1326256119843167e-11 Iter 135: T = 714.1183162173727 K, F = -5.285879055572096e-7, relative_change = 8.918881346955892e-12 Iter 140: T = 714.118316197919 K, F = -2.210630615229192e-7, relative_change = 3.730004405029011e-12 Iter 145: T = 714.1183161897831 K, F = -9.245092669196708e-8, relative_change = 1.5599275675145048e-12 Iter 150: T = 714.1183161863805 K, F = -3.866343778469172e-8, relative_change = 6.523694744298456e-13 Iter 155: T = 714.1183161849576 K, F = -1.6169864891502073e-8, relative_change = 2.728346692737064e-13 Converged in 157 iterations to T = 714.1183161846565 K Iter 1: T = 969.3701289215294 K, F = -6979.045261758841, relative_change = 0.03062987107847061 Iter 2: T = 940.8824528705803 K, F = -5912.655585279929, relative_change = 0.0293878212263905 Iter 3: T = 914.4976462283879 K, F = -5007.516295677339, relative_change = 0.028042617397841623 Iter 5: T = 867.8494475895594 K, F = -3587.6682652226827, relative_change = 0.02507527555492338 Iter 10: T = 783.8641680274442 K, F = -1547.0136426740996, relative_change = 0.016803312453616336 Iter 15: T = 737.1352489618247 K, F = -659.6078611150227, relative_change = 0.009438604407144708 Iter 20: T = 714.0891760680946 K, F = -278.72775392644644, relative_change = 0.004617485931829436 Iter 25: T = 703.6194438838257 K, F = -117.14255503954713, relative_change = 0.00207977762592044 Iter 30: T = 699.0718033141783 K, F = -49.09759750764823, relative_change = 0.0008988329884402355 Iter 35: T = 697.1382638640965 K, F = -20.552476116722126, relative_change = 0.0003812353428004917 Iter 40: T = 696.3239302068441 K, F = -8.598702374433124, relative_change = 0.00016038940207982892 Iter 45: T = 695.982355790639 K, F = -3.5966796825495746, relative_change = 6.724477326724267e-5 Iter 50: T = 695.8393276377022 K, F = -1.5042794986242354, relative_change = 2.8152060539577e-5 Iter 55: T = 695.7794804150931 K, F = -0.629126049791531, relative_change = 1.1778694279381427e-5 Iter 60: T = 695.7544461402082 K, F = -0.2631112464505782, relative_change = 4.926894798131206e-6 Iter 65: T = 695.7439755536062 K, F = -0.11003682856517466, relative_change = 2.0606444291244126e-6 Iter 70: T = 695.7395964623842 K, F = -0.04601881430666799, relative_change = 8.618137792767687e-7 Iter 75: T = 695.7377650449519 K, F = -0.019245634945151746, relative_change = 3.6042565434680183e-7 Iter 80: T = 695.7369991192054 K, F = -0.008048757385211602, relative_change = 1.5073515946790632e-7 Iter 85: T = 695.7366787990184 K, F = -0.003366086986981709, relative_change = 6.303939188289761e-8 Iter 90: T = 695.7365448371346 K, F = -0.0014077378685383168, relative_change = 2.63638524079268e-8 Iter 95: T = 695.7364888126477 K, F = -0.0005887328054124952, relative_change = 1.102568247056918e-8 Iter 100: T = 695.7364653825334 K, F = -0.00024621509300737365, relative_change = 4.61107287596751e-9 Iter 105: T = 695.736455583779 K, F = -0.00010297009304294225, relative_change = 1.9284058873272716e-9 Iter 110: T = 695.7364514858227 K, F = -4.306332325820783e-5, relative_change = 8.064824064322781e-10 Iter 115: T = 695.7364497720084 K, F = -1.8009596005064132e-5, relative_change = 3.3728057651965964e-10 Iter 120: T = 695.7364490552708 K, F = -7.53182646484607e-6, relative_change = 1.4105473460120384e-10 Iter 125: T = 695.7364487555226 K, F = -3.1499012941305082e-6, relative_change = 5.899080310051162e-11 Iter 130: T = 695.7364486301643 K, F = -1.3173264815646846e-6, relative_change = 2.4670661047233655e-11 Iter 135: T = 695.736448577738 K, F = -5.50921348208e-7, relative_change = 1.0317559117203086e-11 Iter 140: T = 695.7364485558128 K, F = -2.3040267038698659e-7, relative_change = 4.314941108323793e-12 Iter 145: T = 695.7364485466433 K, F = -9.635821418552126e-8, relative_change = 1.8045798637729153e-12 Iter 150: T = 695.7364485428085 K, F = -4.029834321794823e-8, relative_change = 7.547003577340548e-13 Iter 155: T = 695.7364485412047 K, F = -1.6853459960941564e-8, relative_change = 3.156286647549765e-13 Converged in 158 iterations to T = 695.7364485407352 K Iter 1: T = 963.5897034979652 K, F = -8296.120693122042, relative_change = 0.03641029650203479 Iter 2: T = 929.0589113652959 K, F = -7039.483326014408, relative_change = 0.03583557608317901 Iter 3: T = 896.3741971270756 K, F = -5972.267533613947, relative_change = 0.035180453939340085 Iter 5: T = 836.4244505831805 K, F = -4296.30966679889, relative_change = 0.033599858863901294 Iter 10: T = 716.9179380117971 K, F = -1877.357390771746, relative_change = 0.027853438923507935 Iter 15: T = 637.4814048350205 K, F = -812.8617032656216, relative_change = 0.019926328557776093 Iter 20: T = 591.0065156827172 K, F = -348.0032003068526, relative_change = 0.011928485985190324 Iter 25: T = 567.1206583371553 K, F = -147.48660758202553, relative_change = 0.006104008436465084 Iter 30: T = 555.9869165268938 K, F = -62.086884408395306, relative_change = 0.002818579773817421 Iter 35: T = 551.0865897760448 K, F = -26.042812075645614, relative_change = 0.0012326900165007537 Iter 40: T = 548.990397906944 K, F = -10.905463867974177, relative_change = 0.0005256034679218971 Iter 45: T = 548.1052177406846 K, F = -4.563292867920386, relative_change = 0.00022162727023634587 Iter 50: T = 547.7335071927855 K, F = -1.9088634489225036, relative_change = 9.300823156076552e-5 Iter 55: T = 547.577786013694 K, F = -0.7983866496763736, relative_change = 3.895359299639739e-5 Iter 60: T = 547.5126146460788 K, F = -0.33390834321444884, relative_change = 1.630075022300036e-5 Iter 65: T = 547.4853509864886 K, F = -0.13964682121418603, relative_change = 6.81890015466836e-6 Iter 70: T = 547.4739475608038 K, F = -0.058402381977963325, relative_change = 2.8520484753867706e-6 Iter 75: T = 547.4691782604943 K, F = -0.02442464595797536, relative_change = 1.1928137354506033e-6 Iter 80: T = 547.4671836381557 K, F = -0.010214691282709853, relative_change = 4.988582200529595e-7 Iter 85: T = 547.4663494555784 K, F = -0.004271908096277033, relative_change = 2.0863008674588517e-7 Iter 90: T = 547.4660005891167 K, F = -0.0017865633694687522, relative_change = 8.725187741439657e-8 Iter 95: T = 547.4658546887606 K, F = -0.0007471622046504034, relative_change = 3.648982673440354e-8 Iter 100: T = 547.4657936714482 K, F = -0.0003124721686563747, relative_change = 1.5260489988325573e-8 Iter 105: T = 547.4657681532723 K, F = -0.00013067959503137994, relative_change = 6.3821206950101935e-9 Iter 110: T = 547.4657574812651 K, F = -5.465176779925751e-5, relative_change = 2.6690793660391444e-9 Iter 115: T = 547.465753018104 K, F = -2.2856022300371537e-5, relative_change = 1.1162409257000431e-9 Iter 120: T = 547.4657511515567 K, F = -9.558661446640304e-6, relative_change = 4.668252915848565e-10 Iter 125: T = 547.4657503709443 K, F = -3.997546656031581e-6, relative_change = 1.9523192723286966e-10 Iter 130: T = 547.4657500444829 K, F = -1.671821706794585e-6, relative_change = 8.164832153776184e-11 Iter 135: T = 547.4657499079527 K, F = -6.991757396657139e-7, relative_change = 3.4146300074581515e-11 Iter 140: T = 547.4657498508543 K, F = -2.92403861096302e-7, relative_change = 1.4280401081553562e-11 Iter 145: T = 547.465749826975 K, F = -1.222867425099139e-7, relative_change = 5.972232116954616e-12 Iter 150: T = 547.4657498169883 K, F = -5.1141257284559316e-8, relative_change = 2.4976334557120793e-12 Iter 155: T = 547.4657498128119 K, F = -2.1387782989101822e-8, relative_change = 1.0445351791372343e-12 Iter 160: T = 547.4657498110653 K, F = -8.945500479251578e-9, relative_change = 4.368797808763242e-13 Converged in 164 iterations to T = 547.4657498104349 K Iter 1: T = 966.8344025113167 K, F = -7556.812936424317, relative_change = 0.033165597488683245 Iter 2: T = 935.7236501755019 K, F = -6406.546095731811, relative_change = 0.03217795338581847 Iter 3: T = 906.6374628710171 K, F = -5429.91494330898, relative_change = 0.03108416389713942 Iter 5: T = 854.4088945022453 K, F = -3897.0099811925506, relative_change = 0.028577562679175435 Iter 10: T = 756.4861087348372 K, F = -1689.2038319536807, relative_change = 0.020808619239631912 Iter 15: T = 698.3775054855892 K, F = -724.0451756593706, relative_change = 0.012690788653500332 Iter 20: T = 668.1361244475526 K, F = -307.1383617396316, relative_change = 0.006586441722911019 Iter 25: T = 653.922892984379 K, F = -129.36464704265802, relative_change = 0.0030663585542383843 Iter 30: T = 647.6395721599295 K, F = -54.277421629200276, relative_change = 0.001346449190296642 Iter 35: T = 644.9462251107017 K, F = -22.731471818794667, relative_change = 0.0005751450648990325 Iter 40: T = 643.8078438055892 K, F = -9.512271771173205, relative_change = 0.00024270578142751266 Iter 45: T = 643.3296216093871 K, F = -3.979149961312712, relative_change = 0.00010188762069971627 Iter 50: T = 643.1292465038865 K, F = -1.6643042499284655, relative_change = 4.267836134874963e-5 Iter 55: T = 643.0453811037709 K, F = -0.6960627746427288, relative_change = 1.7860476154355245e-5 Iter 60: T = 643.0102960079079 K, F = -0.2911071657577291, relative_change = 7.4715435383676256e-6 Iter 65: T = 642.9956209745668 K, F = -0.12174543805696508, relative_change = 3.125052524075623e-6 Iter 70: T = 642.989483345712 K, F = -0.050915561394345, relative_change = 1.3069979240690586e-6 Iter 75: T = 642.9869164539906 K, F = -0.021293524735181812, relative_change = 5.466132716657864e-7 Iter 80: T = 642.9858429383672 K, F = -0.008905211396035284, relative_change = 2.2860214499626487e-7 Iter 85: T = 642.9853939794153 K, F = -0.003724266640069862, relative_change = 9.560448762600419e-8 Iter 90: T = 642.985206219088 K, F = -0.0015575329407765404, relative_change = 3.9982998044296224e-8 Iter 95: T = 642.9851276954189 K, F = -0.0006513789039726547, relative_change = 1.6721377702308824e-8 Iter 100: T = 642.9850948558724 K, F = -0.0002724144410891638, relative_change = 6.99308166241317e-9 Iter 105: T = 642.9850811219801 K, F = -0.00011392697263606921, relative_change = 2.924590565130525e-9 Iter 110: T = 642.9850753783021 K, F = -4.764562136716499e-5, relative_change = 1.2230987747872838e-9 Iter 115: T = 642.9850729762272 K, F = -1.992596793187751e-5, relative_change = 5.115145253243122e-10 Iter 120: T = 642.9850719716508 K, F = -8.333276988681249e-6, relative_change = 2.1392146517254252e-10 Iter 125: T = 642.985071551525 K, F = -3.4850756635562696e-6, relative_change = 8.946450424208739e-11 Iter 130: T = 642.9850713758234 K, F = -1.4575007238337712e-6, relative_change = 3.741513598211402e-11 Iter 135: T = 642.9850713023428 K, F = -6.095436315134428e-7, relative_change = 1.564744188430108e-11 Iter 140: T = 642.9850712716125 K, F = -2.5491882627015627e-7, relative_change = 6.543957337853313e-12 Iter 145: T = 642.9850712587606 K, F = -1.0660986388133509e-7, relative_change = 2.7367551126288497e-12 Iter 150: T = 642.9850712533859 K, F = -4.458589819567038e-8, relative_change = 1.1445534249891246e-12 Iter 155: T = 642.9850712511379 K, F = -1.8645424260110843e-8, relative_change = 4.786420160021073e-13 Converged in 160 iterations to T = 642.9850712501978 K Iter 1: T = 965.1328348927549 K, F = -7944.516736922299, relative_change = 0.03486716510724509 Iter 2: T = 932.237541434452 K, F = -6738.3338907729285, relative_change = 0.034083695289424204 Iter 3: T = 901.2846126927242 K, F = -5714.071210367455, relative_change = 0.03320283443434389 Iter 5: T = 845.0929972008611 K, F = -4105.907717341811, relative_change = 0.031129780095930155 Iter 10: T = 736.4609043805913 K, F = -1786.8978225616925, relative_change = 0.024170491489851384 Iter 15: T = 668.4215080607413 K, F = -769.5122219311073, relative_change = 0.01586677581044423 Iter 20: T = 631.1338192385814 K, F = -327.7098358935002, relative_change = 0.008749364097975292 Iter 25: T = 612.9551794615554 K, F = -138.3686424973379, relative_change = 0.00422852717199097 Iter 30: T = 604.7526363086808 K, F = -58.12829136565308, relative_change = 0.0018923789887705786 Iter 35: T = 601.2017639869596 K, F = -24.358280851424396, relative_change = 0.0008153954977157608 Iter 40: T = 599.6943241669558 K, F = -10.195593921257293, relative_change = 0.0003453912621473921 Iter 45: T = 599.0598661279486 K, F = -4.2654519425086885, relative_change = 0.00014522790947489055 Iter 50: T = 598.7938154806669 K, F = -1.7841322518058713, relative_change = 6.087375888363621e-5 Iter 55: T = 598.6824246668225 K, F = -0.7461926069936979, relative_change = 2.5482299323949152e-5 Iter 60: T = 598.6358177466007 K, F = -0.31207492018794614, relative_change = 1.0661234518871684e-5 Iter 65: T = 598.6163223333631 K, F = -0.13051490382048125, relative_change = 4.459396318962753e-6 Iter 70: T = 598.608168446412 K, F = -0.05458314425454103, relative_change = 1.8651023813485653e-6 Iter 75: T = 598.6047582759063 K, F = -0.022827367001722998, relative_change = 7.800307565554687e-7 Iter 80: T = 598.6033320813045 K, F = -0.009546685228329743, relative_change = 3.26222142471779e-7 Iter 85: T = 598.6027356260919 K, F = -0.0039925391255772325, relative_change = 1.3643068928792587e-7 Iter 90: T = 598.6024861807697 K, F = -0.0016697277798222165, relative_change = 5.705706486680094e-8 Iter 95: T = 598.6023818596468 K, F = -0.0006983001388298216, relative_change = 2.386196711662289e-8 Iter 100: T = 598.6023382312882 K, F = -0.0002920374645508095, relative_change = 9.979363323164011e-9 Iter 105: T = 598.6023199853843 K, F = -0.000122133557580395, relative_change = 4.173489602751504e-9 Iter 110: T = 598.6023123547286 K, F = -5.107771268109129e-5, relative_change = 1.7454033106661968e-9 Iter 115: T = 598.6023091634972 K, F = -2.1361309278933316e-5, relative_change = 7.299485220631932e-10 Iter 120: T = 598.6023078288862 K, F = -8.933555009027483e-6, relative_change = 3.052732049182017e-10 Iter 125: T = 598.6023072707359 K, F = -3.7361197667284962e-6, relative_change = 1.276689133338302e-10 Iter 130: T = 598.6023070373107 K, F = -1.5624892820698122e-6, relative_change = 5.339264305293584e-11 Iter 135: T = 598.6023069396896 K, F = -6.534524514267837e-7, relative_change = 2.2329467420069196e-11 Iter 140: T = 598.6023068988633 K, F = -2.732818299988615e-7, relative_change = 9.33845715646787e-12 Iter 145: T = 598.6023068817891 K, F = -1.1428958657244692e-7, relative_change = 3.905449578505101e-12 Iter 150: T = 598.6023068746485 K, F = -4.779712337033004e-8, relative_change = 1.6333006438227471e-12 Iter 155: T = 598.6023068716622 K, F = -1.998931331570475e-8, relative_change = 6.830653396425346e-13 Iter 160: T = 598.6023068704134 K, F = -8.359310521566243e-9, relative_change = 2.8565039681286646e-13 Converged in 162 iterations to T = 598.6023068701492 K Iter 1: T = 980.1490836594793 K, F = -4523.050171283961, relative_change = 0.0198509163405207 Iter 2: T = 962.3415683725132 K, F = -3820.624212243533, relative_change = 0.018168170111918163 Iter 3: T = 946.4565021010617 K, F = -3225.7804437218165, relative_change = 0.016506682027999563 Iter 5: T = 919.9303307117724 K, F = -2296.3563479039653, relative_change = 0.01333620288193803 Iter 10: T = 877.816883953153 K, F = -974.8750028321812, relative_change = 0.007005604909400466 Iter 15: T = 857.8816578187516 K, F = -410.8045754970708, relative_change = 0.0032849550631145617 Iter 20: T = 849.0345527679441 K, F = -172.4015604357615, relative_change = 0.0014475721836048274 Iter 25: T = 845.235274991107 K, F = -72.2097634497718, relative_change = 0.0006193342424582418 Iter 30: T = 843.6281538523159 K, F = -30.218486121859474, relative_change = 0.0002615347545920279 Iter 35: T = 842.9527844305044 K, F = -12.641170432568433, relative_change = 0.00010982434989043394 Iter 40: T = 842.6697631220754 K, F = -5.287291936187252, relative_change = 4.600857480276749e-5 Iter 45: T = 842.5512995157669 K, F = -2.211314334970844, relative_change = 1.9255138345638566e-5 Iter 50: T = 842.5017389788069 K, F = -0.9248165622536897, relative_change = 8.055145497677505e-6 Iter 55: T = 842.4810090827922 K, F = -0.3867725671715403, relative_change = 3.369180912990751e-6 Iter 60: T = 842.4723390525473 K, F = -0.16175347267821505, relative_change = 1.4091056677005336e-6 Iter 65: T = 842.4687130478717 K, F = -0.06764733301377834, relative_change = 5.893177574392267e-7 Iter 70: T = 842.4671965928866 K, F = -0.028290939855263764, relative_change = 2.464619871606338e-7 Iter 75: T = 842.4665623904111 K, F = -0.011831611938984077, relative_change = 1.0307374221612467e-7 Iter 80: T = 842.4662971588564 K, F = -0.004948121940679284, relative_change = 4.3106739175897055e-8 Iter 85: T = 842.4661862357643 K, F = -0.0020693637801485476, relative_change = 1.8027765225198405e-8 Iter 90: T = 842.466139846387 K, F = -0.0008654326610348928, relative_change = 7.539428819348398e-9 Iter 95: T = 842.4661204457927 K, F = -0.0003619342765588396, relative_change = 3.1530795375010907e-9 Iter 100: T = 842.4661123322321 K, F = -0.00015136523862291362, relative_change = 1.3186555940861716e-9 Iter 105: T = 842.466108939044 K, F = -6.330275135701946e-5, relative_change = 5.514775357816966e-10 Iter 110: T = 842.4661075199723 K, F = -2.6473967546625232e-5, relative_change = 2.3063450148837546e-10 Iter 115: T = 842.4661069264995 K, F = -1.1071731303768928e-5, relative_change = 9.645411984152085e-11 Iter 120: T = 842.466106678302 K, F = -4.630327912646948e-6, relative_change = 4.0338244468272994e-11 Iter 125: T = 842.466106574503 K, F = -1.9364595056359235e-6, relative_change = 1.686994495005928e-11 Iter 130: T = 842.4661065310929 K, F = -8.098509003406917e-7, relative_change = 7.05521601153682e-12 Iter 135: T = 842.4661065129383 K, F = -3.386889741996413e-7, relative_change = 2.950572596689375e-12 Iter 140: T = 842.4661065053458 K, F = -1.4164274353412054e-7, relative_change = 1.2339557217568644e-12 Iter 145: T = 842.4661065021705 K, F = -5.923602386381788e-8, relative_change = 5.160492430350876e-13 Converged in 150 iterations to T = 842.4661065008427 K Iter 1: T = 976.3266615813809 K, F = -5393.992677840754, relative_change = 0.023673338418619044 Iter 2: T = 954.8171627268919 K, F = -4561.115347916821, relative_change = 0.02203104729276737 Iter 3: T = 935.3807891859365 K, F = -3855.0979432857166, relative_change = 0.020356120836209638 Iter 5: T = 902.3099814762443 K, F = -2750.1734355796907, relative_change = 0.01700128200024974 Iter 10: T = 847.781476510651 K, F = -1172.9035465030493, relative_change = 0.00958758795618476 Iter 15: T = 820.8216212364237 K, F = -495.71499621683586, relative_change = 0.0047028187875441515 Iter 20: T = 808.5556156680011 K, F = -208.35657795084015, relative_change = 0.0021212163832410656 Iter 25: T = 803.223770924927 K, F = -87.33170569116415, relative_change = 0.0009173514689426917 Iter 30: T = 800.9560403747496 K, F = -36.55815828940045, relative_change = 0.00038920365436617834 Iter 35: T = 800.0008178546424 K, F = -15.295253908953592, relative_change = 0.00016376221192656394 Iter 40: T = 799.6001222505975 K, F = -6.397747013036012, relative_change = 6.866247709515201e-5 Iter 45: T = 799.4323337588565 K, F = -2.6758051118061044, relative_change = 2.874621952646471e-5 Iter 50: T = 799.3621253032774 K, F = -1.1190870731590508, relative_change = 1.2027399258419735e-5 Iter 55: T = 799.3327567578741 K, F = -0.46802142596145546, relative_change = 5.030944810573596e-6 Iter 60: T = 799.3204733387515 K, F = -0.19573317251108535, relative_change = 2.1041661444061766e-6 Iter 65: T = 799.3153360662874 K, F = -0.08185812918199453, relative_change = 8.800162624514035e-7 Iter 70: T = 799.3131875626274 K, F = -0.034234078498918685, relative_change = 3.680383569611587e-7 Iter 75: T = 799.3122890266231 K, F = -0.014317105938997932, relative_change = 1.5391891880459428e-7 Iter 80: T = 799.3119132470658 K, F = -0.0059875856402419325, relative_change = 6.437088437018438e-8 Iter 85: T = 799.3117560913802 K, F = -0.0025040799887546816, relative_change = 2.6920699592311237e-8 Iter 90: T = 799.3116903669629 K, F = -0.001047236184983369, relative_change = 1.1258562786350664e-8 Iter 95: T = 799.311662880221 K, F = -0.000437966683708213, relative_change = 4.7084662322565925e-9 Iter 100: T = 799.3116513849362 K, F = -0.00018316289827868815, relative_change = 1.969136951921711e-9 Iter 105: T = 799.3116465774707 K, F = -7.660091189665152e-5, relative_change = 8.23516617740837e-10 Iter 110: T = 799.3116445669311 K, F = -3.203541598595372e-5, relative_change = 3.4440448662306603e-10 Iter 115: T = 799.3116437260994 K, F = -1.3397592833697125e-5, relative_change = 1.4403406239544385e-10 Iter 120: T = 799.3116433744536 K, F = -5.603032442902389e-6, relative_change = 6.023675567638768e-11 Iter 125: T = 799.3116432273912 K, F = -2.3432561894187742e-6, relative_change = 2.519174253071682e-11 Iter 130: T = 799.3116431658879 K, F = -9.79976413462147e-7, relative_change = 1.053547350675367e-11 Iter 135: T = 799.3116431401666 K, F = -4.0983915883252564e-7, relative_change = 4.406075025129799e-12 Iter 140: T = 799.3116431294095 K, F = -1.7140044206165328e-7, relative_change = 1.8426819176179545e-12 Iter 145: T = 799.3116431249108 K, F = -7.168087245990051e-8, relative_change = 7.706225604538738e-13 Iter 150: T = 799.3116431230294 K, F = -2.997824188888387e-8, relative_change = 3.2228834178182984e-13 Converged in 153 iterations to T = 799.3116431224786 K Iter 1: T = 980.6917726974484 K, F = -4399.397957752158, relative_change = 0.019308227302551606 Iter 2: T = 963.4024146867139 K, F = -3715.6170100312534, relative_change = 0.017629757373388732 Iter 3: T = 948.0072082780589 K, F = -3136.65342840124, relative_change = 0.01598003718276051 Iter 5: T = 922.3643433121161 K, F = -2232.265407140632, relative_change = 0.012852857311808128 Iter 10: T = 881.852559731738 K, F = -947.1090896614388, relative_change = 0.00669082976178086 Iter 15: T = 862.7781634119594 K, F = -398.96301873798615, relative_change = 0.003120523747089378 Iter 20: T = 854.3377013533016 K, F = -167.4023916208158, relative_change = 0.0013714425923390787 Iter 25: T = 850.7180479368927 K, F = -70.11024786328272, relative_change = 0.0005860542084583689 Iter 30: T = 849.1878427815999 K, F = -29.338855642828136, relative_change = 0.000247351835686636 Iter 35: T = 848.544964179589 K, F = -12.273017050653102, relative_change = 0.00010384559510011516 Iter 40: T = 848.2755882584324 K, F = -5.1332763032457445, relative_change = 4.3499844598659035e-5 Iter 45: T = 848.1628413990519 K, F = -2.1468944816463367, relative_change = 1.820449275182284e-5 Iter 50: T = 848.115673441467 K, F = -0.8978738912925941, relative_change = 7.615496397985322e-6 Iter 55: T = 848.0959444601586 K, F = -0.3755045546391259, relative_change = 3.1852695066369005e-6 Iter 60: T = 848.08769307854 K, F = -0.1570410087781675, relative_change = 1.332183865628396e-6 Iter 65: T = 848.0842421671906 K, F = -0.065676516202686, relative_change = 5.571467670924064e-7 Iter 70: T = 848.0827989399822 K, F = -0.027466719306123988, relative_change = 2.3300745445368956e-7 Iter 75: T = 848.0821953625272 K, F = -0.011486912812454175, relative_change = 9.744685391321516e-8 Iter 80: T = 848.0819429387725 K, F = -0.0048039646048412266, relative_change = 4.0753499927445786e-8 Iter 85: T = 848.0818373720642 K, F = -0.0020090754557211543, relative_change = 1.7043611204524468e-8 Iter 90: T = 848.0817932227922 K, F = -0.0008402193645358214, relative_change = 7.127843647870613e-9 Iter 95: T = 848.0817747590369 K, F = -0.0003513897747449146, relative_change = 2.9809496652776086e-9 Iter 100: T = 848.0817670372735 K, F = -0.00014695540186737688, relative_change = 1.2466688176005882e-9 Iter 105: T = 848.0817638079398 K, F = -6.145850450578472e-5, relative_change = 5.213718009629643e-10 Iter 110: T = 848.0817624573939 K, F = -2.5702681279771156e-5, relative_change = 2.1804392146829885e-10 Iter 115: T = 848.0817618925794 K, F = -1.074916776122592e-5, relative_change = 9.118856795905887e-11 Iter 120: T = 848.0817616563672 K, F = -4.495430590667482e-6, relative_change = 3.813615040455847e-11 Iter 125: T = 848.0817615575805 K, F = -1.8800433589927223e-6, relative_change = 1.5948998633022214e-11 Iter 130: T = 848.0817615162667 K, F = -7.862559121551982e-7, relative_change = 6.670055991578871e-12 Iter 135: T = 848.0817614989888 K, F = -3.2882325351479835e-7, relative_change = 2.789510995825316e-12 Iter 140: T = 848.0817614917629 K, F = -1.3751762240055143e-7, relative_change = 1.1666052072694737e-12 Iter 145: T = 848.081761488741 K, F = -5.7508940720651935e-8, relative_change = 4.878664169671775e-13 Converged in 150 iterations to T = 848.0817614874773 K Iter 1: T = 967.3060393304261 K, F = -7449.35003854783, relative_change = 0.03269396066957397 Iter 2: T = 936.6864446755964 K, F = -6314.63421679931, relative_change = 0.03165450582322919 Iter 3: T = 908.1099016204338 K, F = -5351.254529460613, relative_change = 0.03050812063908913 Iter 5: T = 856.9478914200465 K, F = -3839.298322441676, relative_change = 0.027899909542029862 Iter 10: T = 761.7867514764134 K, F = -1662.4671901810455, relative_change = 0.019982549218101785 Iter 15: T = 706.0608146923184 K, F = -711.7918065158121, relative_change = 0.01197644149710241 Iter 20: T = 677.3974581550139 K, F = -301.6807704178542, relative_change = 0.006134017167452707 Iter 25: T = 664.0298573185144 K, F = -127.0017146551584, relative_change = 0.0028338862677370494 Iter 30: T = 658.1447182708179 K, F = -53.27270973729853, relative_change = 0.0012396932106456403 Iter 35: T = 655.6269343894633 K, F = -22.30818743333179, relative_change = 0.0005286485508211898 Iter 40: T = 654.5636643852337 K, F = -9.334689515385882, relative_change = 0.00022292198588855949 Iter 45: T = 654.1171584630462 K, F = -3.9047837520925692, relative_change = 9.355347758917099e-5 Iter 50: T = 653.9301012621846 K, F = -1.6331859680774143, relative_change = 3.9182287681890834e-5 Iter 55: T = 653.8518150224459 K, F = -0.6830456792601676, relative_change = 1.639650997970272e-5 Iter 60: T = 653.819064855016 K, F = -0.28566272559286265, relative_change = 6.858968503316609e-6 Iter 65: T = 653.8053666066859 K, F = -0.11946841447582884, relative_change = 2.8688091203716285e-6 Iter 70: T = 653.7996375317375 K, F = -0.049963266550961116, relative_change = 1.1998238641855713e-6 Iter 75: T = 653.7972415110166 K, F = -0.02089526079369214, relative_change = 5.017900492958622e-7 Iter 80: T = 653.7962394572389 K, F = -0.008738652156852156, relative_change = 2.0985623187157667e-7 Iter 85: T = 653.795820384756 K, F = -0.0036546094893952774, relative_change = 8.77646693283632e-8 Iter 90: T = 653.7956451233545 K, F = -0.0015284014731521967, relative_change = 3.6704283037922734e-8 Iter 95: T = 653.7955718268935 K, F = -0.0006391957731045617, relative_change = 1.5350178279300977e-8 Iter 100: T = 653.7955411734295 K, F = -0.0002673193096004445, relative_change = 6.419629397593626e-9 Iter 105: T = 653.7955283537833 K, F = -0.0001117961291353664, relative_change = 2.684765964744119e-9 Iter 110: T = 653.7955229924539 K, F = -4.675447680874134e-5, relative_change = 1.1228012446144372e-9 Iter 115: T = 653.7955207502819 K, F = -1.9553280214967828e-5, relative_change = 4.695688887705502e-10 Iter 120: T = 653.7955198125787 K, F = -8.17741555603213e-6, relative_change = 1.9637932457706497e-10 Iter 125: T = 653.79551942042 K, F = -3.4198927620909814e-6, relative_change = 8.212817705808381e-11 Iter 130: T = 653.7955192564147 K, F = -1.4302403839594469e-6, relative_change = 3.434699383904416e-11 Iter 135: T = 653.7955191878256 K, F = -5.981437037894111e-7, relative_change = 1.4364325290763094e-11 Iter 140: T = 653.7955191591408 K, F = -2.5015058635613485e-7, relative_change = 6.007326286444207e-12 Iter 145: T = 653.7955191471445 K, F = -1.0461656252402918e-7, relative_change = 2.5123500018832684e-12 Iter 150: T = 653.7955191421275 K, F = -4.375170781223403e-8, relative_change = 1.0506902593289763e-12 Iter 155: T = 653.7955191400295 K, F = -1.8298597526111848e-8, relative_change = 4.394378903532692e-13 Converged in 159 iterations to T = 653.7955191392721 K Iter 1: T = 973.4432457308691 K, F = -6050.981722216462, relative_change = 0.02655675426913096 Iter 2: T = 949.079603586315 K, F = -5120.707766887742, relative_change = 0.02502831290001065 Iter 3: T = 926.8422203481969 K, F = -4331.63926496569, relative_change = 0.023430472169130037 Iter 5: T = 888.4264663133828 K, F = -3095.4121254724255, relative_change = 0.02010401568400854 Iter 10: T = 822.9612012583337 K, F = -1325.5300905237518, relative_change = 0.012080127931954123 Iter 15: T = 789.2305597108092 K, F = -561.87350130281, relative_change = 0.006199007087695455 Iter 20: T = 773.4821240792122 K, F = -236.55499235141818, relative_change = 0.0028670742511750533 Iter 25: T = 766.5447031529267 K, F = -99.22996603869763, relative_change = 0.0012548870115160725 Iter 30: T = 763.5759091417546 K, F = -41.55366327771712, relative_change = 0.0005352568762580113 Iter 35: T = 762.3220232018115 K, F = -17.38793142762958, relative_change = 0.0002257320734674511 Iter 40: T = 761.7954433099897 K, F = -7.273547923569179, relative_change = 9.47369566579664e-5 Iter 45: T = 761.5748354378703 K, F = -3.0421841090420862, relative_change = 3.967868984832089e-5 Iter 50: T = 761.4825068895663 K, F = -1.272330174108798, relative_change = 1.660436696571599e-5 Iter 55: T = 761.443882131382 K, F = -0.5321128516084526, relative_change = 6.945941555065111e-6 Iter 60: T = 761.4277267213522 K, F = -0.22253755486238613, relative_change = 2.9051901254238254e-6 Iter 65: T = 761.4209699729599 K, F = -0.09306814392436735, relative_change = 1.2150402058410616e-6 Iter 70: T = 761.4181441565983 K, F = -0.038922258369167295, relative_change = 5.081539448688702e-7 Iter 75: T = 761.4169623553435 K, F = -0.01627776186785812, relative_change = 2.1251773098068897e-7 Iter 80: T = 761.4164681100028 K, F = -0.0068075559119517015, relative_change = 8.887774737545398e-8 Iter 85: T = 761.4162614103591 K, F = -0.0028470014453735315, relative_change = 3.7169786860813206e-8 Iter 90: T = 761.4161749660402 K, F = -0.001190650049999853, relative_change = 1.5544857758561946e-8 Iter 95: T = 761.4161388139833 K, F = -0.0004979440774144361, relative_change = 6.50104672229586e-9 Iter 100: T = 761.4161236947594 K, F = -0.00020824616123860107, relative_change = 2.7188156529004193e-9 Iter 105: T = 761.4161173717191 K, F = -8.709103013315733e-5, relative_change = 1.1370412011776093e-9 Iter 110: T = 761.4161147273481 K, F = -3.642250807034397e-5, relative_change = 4.755242066569286e-10 Iter 115: T = 761.4161136214407 K, F = -1.5232328584469101e-5, relative_change = 1.9886991312537285e-10 Iter 120: T = 761.416113158937 K, F = -6.370342001460472e-6, relative_change = 8.316977650842856e-11 Iter 125: T = 761.4161129655124 K, F = -2.6641540797900376e-6, relative_change = 3.4782606588053593e-11 Iter 130: T = 761.4161128846199 K, F = -1.114181248929036e-6, relative_change = 1.4546504034009171e-11 Iter 135: T = 761.4161128507898 K, F = -4.6596426661604795e-7, relative_change = 6.0835264387940275e-12 Iter 140: T = 761.4161128366416 K, F = -1.9487313696053832e-7, relative_change = 2.5442205893266605e-12 Iter 145: T = 761.4161128307245 K, F = -8.149669838974916e-8, relative_change = 1.064002875137192e-12 Iter 150: T = 761.41611282825 K, F = -3.408202331467436e-8, relative_change = 4.449673608180025e-13 Converged in 154 iterations to T = 761.4161128273569 K Iter 1: T = 969.9787242172067 K, F = -6840.376244715167, relative_change = 0.030021275782793226 Iter 2: T = 942.1142077887026 K, F = -5794.2159702267945, relative_change = 0.02872693568716302 Iter 3: T = 916.3638363724256 K, F = -4906.324325138008, relative_change = 0.027332536972048672 Iter 5: T = 871.000651179927 K, F = -3513.761375749423, relative_change = 0.02428395248622583 Iter 10: T = 790.0557557634842 K, F = -1513.4190328205614, relative_change = 0.015982460248436692 Iter 15: T = 745.6117866576839 K, F = -644.6101178444873, relative_change = 0.008833256992719564 Iter 20: T = 723.9135962040907 K, F = -272.19961041561237, relative_change = 0.0042753959196519305 Iter 25: T = 714.1148961591332 K, F = -114.35618739090957, relative_change = 0.001914838207381753 Iter 30: T = 709.8713265664425 K, F = -47.92136031754724, relative_change = 0.0008253698464584382 Iter 35: T = 708.0694886196673 K, F = -20.0585526739984, relative_change = 0.00034967136735706607 Iter 40: T = 707.3110630147713 K, F = -8.391779482180747, relative_change = 0.00014703746154270145 Iter 45: T = 706.9930177294244 K, F = -3.51007886807942, relative_change = 6.163399757917264e-5 Iter 50: T = 706.8598557801109 K, F = -1.4680509120312566, relative_change = 2.5800848854187946e-5 Iter 55: T = 706.8041392912139 K, F = -0.6139728793339025, relative_change = 1.0794562410715147e-5 Iter 60: T = 706.7808333388224 K, F = -0.2567736695736879, relative_change = 4.515174309442495e-6 Iter 65: T = 706.7710856973864 K, F = -0.10738631874449073, relative_change = 1.888432670387587e-6 Iter 70: T = 706.7670089749687 K, F = -0.04491032904128567, relative_change = 7.897883335873309e-7 Iter 75: T = 706.7653040160675 K, F = -0.01878205135081734, relative_change = 3.303029776921372e-7 Iter 80: T = 706.7645909775383 K, F = -0.00785488087233388, relative_change = 1.381373607941786e-7 Iter 85: T = 706.7642927755485 K, F = -0.0032850054590004563, relative_change = 5.777081832963267e-8 Iter 90: T = 706.7641680637818 K, F = -0.001373828595805704, relative_change = 2.4160467887511923e-8 Iter 95: T = 706.7641159078082 K, F = -0.0005745515394725009, relative_change = 1.0104199999007884e-8 Iter 100: T = 706.7640940955531 K, F = -0.00024028431824507646, relative_change = 4.225697780135879e-9 Iter 105: T = 706.7640849734069 K, F = -0.00010048977032772743, relative_change = 1.7672373652858663e-9 Iter 110: T = 706.7640811584163 K, F = -4.2026022685437425e-5, relative_change = 7.390798015614617e-10 Iter 115: T = 706.7640795629417 K, F = -1.757578615857458e-5, relative_change = 3.090920305071311e-10 Iter 120: T = 706.7640788956951 K, F = -7.350403444128517e-6, relative_change = 1.292659750924493e-10 Iter 125: T = 706.7640786166446 K, F = -3.0740273336826718e-6, relative_change = 5.40605892610874e-11 Iter 130: T = 706.7640784999423 K, F = -1.2855941543543636e-6, relative_change = 2.2608770204519978e-11 Iter 135: T = 706.7640784511361 K, F = -5.376515858079856e-7, relative_change = 9.455271025038023e-12 Iter 140: T = 706.7640784307248 K, F = -2.2485350881229493e-7, relative_change = 3.954328273482758e-12 Iter 145: T = 706.7640784221885 K, F = -9.403640188754281e-8, relative_change = 1.653746942647436e-12 Iter 150: T = 706.7640784186184 K, F = -3.9326605860701136e-8, relative_change = 6.916072170240578e-13 Iter 155: T = 706.7640784171253 K, F = -1.6445792283548144e-8, relative_change = 2.8921968688024687e-13 Converged in 157 iterations to T = 706.7640784168094 K Iter 1: T = 973.3774469320282 K, F = -6065.974041123162, relative_change = 0.026622553067971795 Iter 2: T = 948.9480472981162 K, F = -5133.487593836194, relative_change = 0.025097560777590015 Iter 3: T = 926.645470721643 K, F = -4342.532281931531, relative_change = 0.023502421065066625 Iter 5: T = 888.1033069893417 K, F = -3103.3208457285637, relative_change = 0.02017858699968949 Iter 10: T = 822.3697749820401 K, F = -1329.049921577624, relative_change = 0.012143943957333939 Iter 15: T = 788.4653770504713 K, F = -563.4086996432169, relative_change = 0.006239099161335357 Iter 20: T = 772.624929799905 K, F = -237.21193893038154, relative_change = 0.00288757738126136 Iter 25: T = 765.6444324749577 K, F = -99.50773042999829, relative_change = 0.0012642803919390656 Iter 30: T = 762.656694865017 K, F = -41.67039253002489, relative_change = 0.0005393437439734955 Iter 35: T = 761.3947133880799 K, F = -17.436850682536587, relative_change = 0.00022747019956976757 Iter 40: T = 760.864716731618 K, F = -7.294024544632312, relative_change = 9.546901963652489e-5 Iter 45: T = 760.642674422502 K, F = -3.0507508417849007, relative_change = 3.998575650319341e-5 Iter 50: T = 760.549745007958 K, F = -1.275913438857681, relative_change = 1.673294544377137e-5 Iter 55: T = 760.5108687907647 K, F = -0.5336115128451492, relative_change = 6.99974255133313e-6 Iter 60: T = 760.4946081878908 K, F = -0.22316432988100243, relative_change = 2.9276952342970204e-6 Iter 65: T = 760.4878074414013 K, F = -0.09333027169493935, relative_change = 1.2244529665625793e-6 Iter 70: T = 760.4849632236014 K, F = -0.039031883853808735, relative_change = 5.120906234515706e-7 Iter 75: T = 760.4837737264863 K, F = -0.016323608643805, relative_change = 2.1416412312454818e-7 Iter 80: T = 760.4832762626173 K, F = -0.0068267295970159125, relative_change = 8.956629280861385e-8 Iter 85: T = 760.4830682169418 K, F = -0.0028550201100541184, relative_change = 3.745774555603188e-8 Iter 90: T = 760.4829812096955 K, F = -0.0011940035542602478, relative_change = 1.5665285695863778e-8 Iter 95: T = 760.4829448222154 K, F = -0.0004993465532739938, relative_change = 6.551411151516604e-9 Iter 100: T = 760.4829296045348 K, F = -0.00020883269277993666, relative_change = 2.7398786547314564e-9 Iter 105: T = 760.4829232403187 K, F = -8.733632466662034e-5, relative_change = 1.1458500011942138e-9 Iter 110: T = 760.4829205787275 K, F = -3.652509559570749e-5, relative_change = 4.792081838699742e-10 Iter 115: T = 760.4829194656184 K, F = -1.5275231857292404e-5, relative_change = 2.0041059573294284e-10 Iter 120: T = 760.4829190001028 K, F = -6.388285449410169e-6, relative_change = 8.381411871981048e-11 Iter 125: T = 760.4829188054185 K, F = -2.671656369246378e-6, relative_change = 3.505205366240505e-11 Iter 130: T = 760.4829187239993 K, F = -1.1173206262427016e-6, relative_change = 1.465921404412597e-11 Iter 135: T = 760.4829186899487 K, F = -4.672760274271326e-7, relative_change = 6.1306478591003615e-12 Iter 140: T = 760.4829186757084 K, F = -1.9542021578722313e-7, relative_change = 2.5639075350051158e-12 Iter 145: T = 760.482918669753 K, F = -8.172754351054579e-8, relative_change = 1.0722629886977123e-12 Iter 150: T = 760.4829186672623 K, F = -3.4179051700000684e-8, relative_change = 4.484281620741338e-13 Converged in 155 iterations to T = 760.4829186662207 K Iter 1: T = 964.3818563619684 K, F = -8115.627909527006, relative_change = 0.035618143638031584 Iter 2: T = 930.6926773969662 K, F = -6884.860674671755, relative_change = 0.03493344336867882 Iter 3: T = 898.9016469635139 K, F = -5839.665279473428, relative_change = 0.034158461977339204 Iter 5: T = 840.901269592492 K, F = -4198.452930943778, relative_change = 0.032312557970901046 Iter 10: T = 727.1285505481417 K, F = -1830.682947106564, relative_change = 0.02587675778442988 Iter 15: T = 653.883798066172 K, F = -790.3181608834724, relative_change = 0.017664149002487646 Iter 20: T = 612.5619469722335 K, F = -337.3452717450105, relative_change = 0.010094368225849661 Iter 25: T = 591.9588283316562 K, F = -142.65950092795924, relative_change = 0.004996308060969506 Iter 30: T = 582.5370970428446 K, F = -59.98125538178938, relative_change = 0.002264601318144603 Iter 35: T = 578.431087185503 K, F = -25.144700378022257, relative_change = 0.0009816120750711277 Iter 40: T = 576.6826818306504 K, F = -10.526599092017491, relative_change = 0.00041688932667657597 Iter 45: T = 575.9458372140268 K, F = -4.404260429586427, relative_change = 0.000175487293207712 Iter 50: T = 575.6366797558842 K, F = -1.8422503795457494, relative_change = 7.35920453813893e-5 Iter 55: T = 575.5072104528558 K, F = -0.7705100243264476, relative_change = 3.081239774249446e-5 Iter 60: T = 575.453033993128 K, F = -0.32224680811880707, relative_change = 1.2892301598231049e-5 Iter 65: T = 575.4303713492827 K, F = -0.13476926825164, relative_change = 5.39279770087661e-6 Iter 70: T = 575.4208926158672 K, F = -0.05636243314830469, relative_change = 2.255521911652043e-6 Iter 75: T = 575.416928331023 K, F = -0.023571497865549296, relative_change = 9.433193494736142e-7 Iter 80: T = 575.4152703908393 K, F = -0.009857891565803523, relative_change = 3.945132156572958e-7 Iter 85: T = 575.4145770153966 K, F = -0.0041226896697355575, relative_change = 1.6499115238992348e-7 Iter 90: T = 575.4142870366212 K, F = -0.0017241583494683743, relative_change = 6.900144766793956e-8 Iter 95: T = 575.4141657638796 K, F = -0.0007210636640653245, relative_change = 2.8857260483036548e-8 Iter 100: T = 575.4141150461436 K, F = -0.00030155744460413914, relative_change = 1.2068456385899592e-8 Iter 105: T = 575.414093835376 K, F = -0.00012611492602215835, relative_change = 5.047173527462296e-9 Iter 110: T = 575.4140849647788 K, F = -5.2742767701507987e-5, relative_change = 2.1107883804256627e-9 Iter 115: T = 575.4140812549891 K, F = -2.20576554209595e-5, relative_change = 8.827569393890851e-10 Iter 120: T = 575.4140797035107 K, F = -9.224774772886857e-6, relative_change = 3.691794932049733e-10 Iter 125: T = 575.414079054664 K, F = -3.857911581972573e-6, relative_change = 1.5439529802879154e-10 Iter 130: T = 575.4140787833085 K, F = -1.6134247162180593e-6, relative_change = 6.456995842797874e-11 Iter 135: T = 575.4140786698243 K, F = -6.747538747187143e-7, relative_change = 2.7003943377501588e-11 Iter 140: T = 575.414078622364 K, F = -2.821898719695959e-7, relative_change = 1.1293361346817575e-11 Iter 145: T = 575.4140786025155 K, F = -1.1801547222800579e-7, relative_change = 4.723030501777395e-12 Iter 150: T = 575.4140785942145 K, F = -4.93548548696765e-8, relative_change = 1.975202747364608e-12 Iter 155: T = 575.4140785907431 K, F = -2.0641809539423406e-8, relative_change = 8.260941911728162e-13 Iter 160: T = 575.4140785892912 K, F = -8.633039672023557e-9, relative_change = 3.4549800063255573e-13 Converged in 163 iterations to T = 575.4140785888661 K Iter 1: T = 963.5906587273645 K, F = -8295.90304319477, relative_change = 0.03640934127263556 Iter 2: T = 929.0608840721425 K, F = -7039.29683358344, relative_change = 0.03583448463565045 Iter 3: T = 896.3772535075069 K, F = -5972.107557475031, relative_change = 0.03517921282121019 Iter 5: T = 836.4298838190903 K, F = -4296.191516223091, relative_change = 0.03359828132060284 Iter 10: T = 716.9304901471126 K, F = -1877.30079070211, relative_change = 0.027850935743831514 Iter 15: T = 637.5019159306726 K, F = -812.8341105815033, relative_change = 0.019923332000343384 Iter 20: T = 591.0339189521861 K, F = -347.9899912320061, relative_change = 0.011925944333595638 Iter 25: T = 567.1526020914939 K, F = -147.48056030043958, relative_change = 0.006102422382147259 Iter 30: T = 556.0212797608847 K, F = -62.0842290042169, relative_change = 0.002817771825292389 Iter 35: T = 551.1220883163712 K, F = -26.041675691339673, relative_change = 0.0012323205674813177 Iter 40: T = 549.0263961541405 K, F = -10.904983763546088, relative_change = 0.0005254428662456458 Iter 45: T = 548.1414296115581 K, F = -4.563091207024078, relative_change = 0.00022155899238169365 Iter 50: T = 547.7698092374734 K, F = -1.9087789568050386, relative_change = 9.297947884617326e-5 Iter 55: T = 547.614125917664 K, F = -0.7983512867847073, relative_change = 3.894153335490443e-5 Iter 60: T = 547.5489704091775 K, F = -0.3338935492490081, relative_change = 1.6295700611087065e-5 Iter 65: T = 547.5217133866078 K, F = -0.13964063336321159, relative_change = 6.816787273776122e-6 Iter 70: T = 547.5103127373994 K, F = -0.05839979399730233, relative_change = 2.851164655568397e-6 Iter 75: T = 547.505544598385 K, F = -0.02442356360804321, relative_change = 1.192444078608131e-6 Iter 80: T = 547.503550461738 K, F = -0.010214238627545169, relative_change = 4.987036194497556e-7 Iter 85: T = 547.502716482287 K, F = -0.004271718788984635, relative_change = 2.085654298876333e-7 Iter 90: T = 547.5023677007758 K, F = -0.0017864841991228064, relative_change = 8.722483698602083e-8 Iter 95: T = 547.5022218359474 K, F = -0.000747129094792659, relative_change = 3.647851808093209e-8 Iter 100: T = 547.502160833493 K, F = -0.000312458321930692, relative_change = 1.5255760579583082e-8 Iter 105: T = 547.5021353215308 K, F = -0.0001306738034513033, relative_change = 6.380142764021746e-9 Iter 110: T = 547.5021246521222 K, F = -5.464934536320021e-5, relative_change = 2.6682521554985e-9 Iter 115: T = 547.502120190048 K, F = -2.2855009389116665e-5, relative_change = 1.115894985151575e-9 Iter 120: T = 547.5021183239552 K, F = -9.558237247103696e-6, relative_change = 4.666805864050915e-10 Iter 125: T = 547.5021175435329 K, F = -3.997369323494038e-6, relative_change = 1.9517141334725597e-10 Iter 130: T = 547.502117217151 K, F = -1.6717477360206345e-6, relative_change = 8.162302327372444e-11 Iter 135: T = 547.5021170806541 K, F = -6.991447894788561e-7, relative_change = 3.4135719320253186e-11 Iter 140: T = 547.5021170235696 K, F = -2.923904083296236e-7, relative_change = 1.4275951227596894e-11 Iter 145: T = 547.5021169996961 K, F = -1.2228162191152414e-7, relative_change = 5.970395816933816e-12 Iter 150: T = 547.5021169897119 K, F = -5.1139490114815445e-8, relative_change = 2.4968837762803317e-12 Iter 155: T = 547.5021169855363 K, F = -2.1386335286033287e-8, relative_change = 1.044187055675334e-12 Iter 160: T = 547.5021169837901 K, F = -8.94371834925245e-9, relative_change = 4.366767286275607e-13 Converged in 164 iterations to T = 547.5021169831598 K Iter 1: T = 969.3418431919016 K, F = -6985.490192161196, relative_change = 0.030658156808098348 Iter 2: T = 940.8251445640279 K, F = -5918.161238175551, relative_change = 0.029418619270547904 Iter 3: T = 914.4107221856658 K, F = -5012.2211575989795, relative_change = 0.02807580402265126 Iter 5: T = 867.7023052829725 K, F = -3591.106363465374, relative_change = 0.025112497768737606 Iter 10: T = 783.5730797823834 K, F = -1548.5797223209786, relative_change = 0.016842633327785368 Iter 15: T = 736.7343593544016 K, F = -660.3088440934673, relative_change = 0.00946808725899011 Iter 20: T = 713.6227571299625 K, F = -279.03351632117483, relative_change = 0.00463433255655263 Iter 25: T = 703.1201727994334 K, F = -117.2732225100704, relative_change = 0.0020879482984560945 Iter 30: T = 698.5575932064053 K, F = -49.152790718783805, relative_change = 0.0009024822238228835 Iter 35: T = 696.6175728876934 K, F = -20.5756590124101, relative_change = 0.00038280516725200706 Iter 40: T = 695.8004861515758 K, F = -8.60841568124347, relative_change = 0.00016105380100941654 Iter 45: T = 695.4577527487676 K, F = -3.6007450699721946, relative_change = 6.752402922521289e-5 Iter 50: T = 695.3142385506981 K, F = -1.5059802481128335, relative_change = 2.8269094298950077e-5 Iter 55: T = 695.2541878224873 K, F = -0.629837420920667, relative_change = 1.1827682247368297e-5 Iter 60: T = 695.229068397842 K, F = -0.26340876739604596, relative_change = 4.947389688550352e-6 Iter 65: T = 695.2185621933677 K, F = -0.11016125836229335, relative_change = 2.0692169559033744e-6 Iter 70: T = 695.2141682050618 K, F = -0.046070852855716216, relative_change = 8.653991430562258e-7 Iter 75: T = 695.2123305572701 K, F = -0.0192673981794258, relative_change = 3.6192513665628737e-7 Iter 80: T = 695.2115620258743 K, F = -0.008057859047446048, relative_change = 1.5136226796874662e-7 Iter 85: T = 695.2112406159667 K, F = -0.003369893413217806, relative_change = 6.330165737411797e-8 Iter 90: T = 695.2111061983476 K, F = -0.0014093297627787438, relative_change = 2.6473535200124908e-8 Iter 95: T = 695.2110499832665 K, F = -0.000589398553473508, relative_change = 1.1071553139287557e-8 Iter 100: T = 695.2110264734436 K, F = -0.00024649351754468807, relative_change = 4.6302565578029525e-9 Iter 105: T = 695.2110166413539 K, F = -0.00010308653301971393, relative_change = 1.936428724090153e-9 Iter 110: T = 695.2110125294564 K, F = -4.3112018735302904e-5, relative_change = 8.09837631919227e-10 Iter 115: T = 695.2110108098118 K, F = -1.8029961418641882e-5, relative_change = 3.386837791214239e-10 Iter 120: T = 695.2110100906359 K, F = -7.54034544969695e-6, relative_change = 1.4164160677137875e-10 Iter 125: T = 695.211009789868 K, F = -3.153463472571616e-6, relative_change = 5.92362295666275e-11 Iter 130: T = 695.2110096640831 K, F = -1.3188149495801937e-6, relative_change = 2.4773277336496776e-11 Iter 135: T = 695.2110096114784 K, F = -5.515439382985932e-7, relative_change = 1.0360476241194064e-11 Iter 140: T = 695.2110095894785 K, F = -2.3066183574282917e-7, relative_change = 4.332866891250428e-12 Iter 145: T = 695.2110095802778 K, F = -9.646457022061128e-8, relative_change = 1.8120385679229929e-12 Iter 150: T = 695.21100957643 K, F = -4.0341212037553476e-8, relative_change = 7.577894342301592e-13 Iter 155: T = 695.2110095748209 K, F = -1.6871396613105105e-8, relative_change = 3.169207232136943e-13 Converged in 158 iterations to T = 695.2110095743498 K Iter 1: T = 966.5256975222584 K, F = -7627.151661835519, relative_change = 0.03347430247774161 Iter 2: T = 935.0926480564578 K, F = -6466.718376611403, relative_change = 0.032521690366206335 Iter 3: T = 905.6710666006836 K, F = -5481.425079800899, relative_change = 0.03146381432569859 Iter 5: T = 852.7370357698852 K, F = -3934.8287835775645, relative_change = 0.029027935972624295 Iter 10: T = 752.960491914905 K, F = -1706.781277554479, relative_change = 0.02137237017680907 Iter 15: T = 693.2137231007515 K, F = -732.1414918740962, relative_change = 0.013192449823743561 Iter 20: T = 661.8635129008227 K, F = -310.76206914071764, relative_change = 0.006911302049401416 Iter 25: T = 647.0472338528265 K, F = -130.93868153702587, relative_change = 0.003235485650381907 Iter 30: T = 640.477664152223 K, F = -54.947837765890476, relative_change = 0.0014246210899267477 Iter 35: T = 637.6576239050571 K, F = -23.01414062581962, relative_change = 0.0006092918407352436 Iter 40: T = 636.4649477222497 K, F = -9.630901901798511, relative_change = 0.00025725327529864487 Iter 45: T = 635.9637825272019 K, F = -4.028836062411656, relative_change = 0.00010801920153307186 Iter 50: T = 635.7537705339403 K, F = -1.685096514484902, relative_change = 4.525106682208258e-5 Iter 55: T = 635.6658675127352 K, F = -0.7047606175543528, relative_change = 1.8937887686336958e-5 Iter 60: T = 635.6290925454048 K, F = -0.29474510490382844, relative_change = 7.92238834323516e-6 Iter 65: T = 635.6137105617793 K, F = -0.12326693718185577, relative_change = 3.313646434785172e-6 Iter 70: T = 635.607277238355 K, F = -0.05155188266204891, relative_change = 1.3858780625282432e-6 Iter 75: T = 635.6045866767205 K, F = -0.02155964401692001, relative_change = 5.796032717098812e-7 Iter 80: T = 635.6034614396533 K, F = -0.009016506030085747, relative_change = 2.4239919909211013e-7 Iter 85: T = 635.6029908499645 K, F = -0.003770811450835021, relative_change = 1.0137462277827217e-7 Iter 90: T = 635.6027940433677 K, F = -0.001576998548068309, relative_change = 4.239614488590715e-8 Iter 95: T = 635.602711736434 K, F = -0.0006595196553454419, relative_change = 1.7730585824592426e-8 Iter 100: T = 635.6026773146801 K, F = -0.00027581900137130244, relative_change = 7.415144790858196e-9 Iter 105: T = 635.6026629190897 K, F = -0.00011535080183316948, relative_change = 3.101102481388843e-9 Iter 110: T = 635.6026568986814 K, F = -4.8241083516809e-5, relative_change = 1.2969181676051618e-9 Iter 115: T = 635.6026543808747 K, F = -2.0174996998689743e-5, relative_change = 5.423866697217514e-10 Iter 120: T = 635.6026533278979 K, F = -8.437424792895332e-6, relative_change = 2.268325874268401e-10 Iter 125: T = 635.6026528875303 K, F = -3.5286318748606327e-6, relative_change = 9.486409900395864e-11 Iter 130: T = 635.6026527033634 K, F = -1.4757161421741216e-6, relative_change = 3.9673303243511546e-11 Iter 135: T = 635.6026526263425 K, F = -6.171614272965087e-7, relative_change = 1.6591830752346527e-11 Iter 140: T = 635.6026525941315 K, F = -2.5810419579386235e-7, relative_change = 6.938899524026932e-12 Iter 145: T = 635.6026525806606 K, F = -1.079425498984321e-7, relative_change = 2.9019385209307516e-12 Iter 150: T = 635.6026525750268 K, F = -4.514302237579315e-8, relative_change = 1.213629617906443e-12 Iter 155: T = 635.6026525726705 K, F = -1.887853473547807e-8, relative_change = 5.075324533507948e-13 Converged in 160 iterations to T = 635.6026525716852 K Iter 1: T = 966.5389603079425 K, F = -7624.129723501238, relative_change = 0.03346103969205754 Iter 2: T = 935.1197708595006 K, F = -6464.13301553057, relative_change = 0.03250690426222618 Iter 3: T = 905.712628435545 K, F = -5479.2116803585395, relative_change = 0.03144746089255121 Iter 5: T = 852.8090270749985 K, F = -3933.2032638729734, relative_change = 0.029008474252585667 Iter 10: T = 753.1128969467923 K, F = -1706.0248205929709, relative_change = 0.021347759926729493 Iter 15: T = 693.4378540154992 K, F = -731.792366963729, relative_change = 0.01317030406495972 Iter 20: T = 662.1366111859996 K, F = -310.60550065445364, relative_change = 0.0068968343584056265 Iter 25: T = 647.3471209536768 K, F = -130.87058189175727, relative_change = 0.003227913931238352 Iter 30: T = 640.7903082877035 K, F = -54.91881214718612, relative_change = 0.0014211122268546548 Iter 35: T = 637.9759229920777 K, F = -23.00189848385267, relative_change = 0.0006077572984921718 Iter 40: T = 636.7856719198016 K, F = -9.62576339503121, relative_change = 0.0002565991822964687 Iter 45: T = 636.2855317871874 K, F = -4.026683759201665, relative_change = 0.00010774344992494648 Iter 50: T = 636.0759504105765 K, F = -1.684195811611827, relative_change = 4.513535563860741e-5 Iter 55: T = 635.9882278166571 K, F = -0.7043838304557815, relative_change = 1.888942767433816e-5 Iter 60: T = 635.951528365472 K, F = -0.29458751010980955, relative_change = 7.902109838389316e-6 Iter 65: T = 635.9361779739821 K, F = -0.12320102602069116, relative_change = 3.3051636306451644e-6 Iter 70: T = 635.9297578645827 K, F = -0.051524317278377585, relative_change = 1.3823300866641841e-6 Iter 75: T = 635.9270728295289 K, F = -0.02154811574807508, relative_change = 5.781194018293666e-7 Iter 80: T = 635.9259499037994 K, F = -0.009011684753214344, relative_change = 2.417786157832783e-7 Iter 85: T = 635.9254802807492 K, F = -0.0037687951309698375, relative_change = 1.0111508543279611e-7 Iter 90: T = 635.925283878414 K, F = -0.0015761552971900739, relative_change = 4.228760289071598e-8 Iter 95: T = 635.9252017405477 K, F = -0.0006591669972477177, relative_change = 1.76851921947673e-8 Iter 100: T = 635.9251673894998 K, F = -0.00027567151505880627, relative_change = 7.396160609695625e-9 Iter 105: T = 635.9251530234793 K, F = -0.00011528912006242287, relative_change = 3.0931630352223553e-9 Iter 110: T = 635.9251470154377 K, F = -4.821528643089712e-5, relative_change = 1.293597768360692e-9 Iter 115: T = 635.9251445028029 K, F = -2.0164208578921095e-5, relative_change = 5.409980452261942e-10 Iter 120: T = 635.925143451989 K, F = -8.432912232680945e-6, relative_change = 2.262518289016856e-10 Iter 125: T = 635.9251430125261 K, F = -3.526744848159069e-6, relative_change = 9.462122367390328e-11 Iter 130: T = 635.9251428287374 K, F = -1.474926538236332e-6, relative_change = 3.957171841958317e-11 Iter 135: T = 635.9251427518749 K, F = -6.168328503530773e-7, relative_change = 1.6549390933974732e-11 Iter 140: T = 635.92514271973 K, F = -2.5796622010743064e-7, relative_change = 6.921135641367627e-12 Iter 145: T = 635.9251427062867 K, F = -1.0788538040706896e-7, relative_change = 2.8945237530792237e-12 Iter 150: T = 635.9251427006645 K, F = -4.511905749016165e-8, relative_change = 1.2105271644271823e-12 Iter 155: T = 635.9251426983133 K, F = -1.8869908524621337e-8, relative_change = 5.062724739915759e-13 Converged in 160 iterations to T = 635.92514269733 K Iter 1: T = 976.3111464324238 K, F = -5397.527819289352, relative_change = 0.023688853567576166 Iter 2: T = 954.7864327683288 K, F = -4564.124100923449, relative_change = 0.022046981377554967 Iter 3: T = 935.3352748244905 K, F = -3857.6579128453604, relative_change = 0.02037226051426099 Iter 5: T = 902.2366890745299 K, F = -2752.0242525233602, relative_change = 0.017017152751014113 Iter 10: T = 847.6533019644991 K, F = -1173.716806125212, relative_change = 0.009599574664863511 Iter 15: T = 820.6609140678422 K, F = -496.06562767486395, relative_change = 0.004709701893900178 Iter 20: T = 808.3786352564414 K, F = -208.50552648693636, relative_change = 0.0021245635846893064 Iter 25: T = 803.0393960349704 K, F = -87.39444793468348, relative_change = 0.0009188482850744148 Iter 30: T = 800.768458464259 K, F = -36.584480448218244, relative_change = 0.0003898479077750016 Iter 35: T = 799.8118737402168 K, F = -15.306276897697414, relative_change = 0.0001640349443664344 Iter 40: T = 799.4106047017477 K, F = -6.402359560466333, relative_change = 6.877712166372138e-5 Iter 45: T = 799.2425757324858 K, F = -2.6777345909660832, relative_change = 2.8794268079696143e-5 Iter 50: T = 799.1722665904264 K, F = -1.1198940843934, relative_change = 1.2047511763986438e-5 Iter 55: T = 799.1428559164323 K, F = -0.46835894169659154, relative_change = 5.0393592565829696e-6 Iter 60: T = 799.1305548750769 K, F = -0.19587432807122862, relative_change = 2.107685718428496e-6 Iter 65: T = 799.125410232163 K, F = -0.0819171625516325, relative_change = 8.814882869419993e-7 Iter 70: T = 799.123258645984 K, F = -0.034258767033619075, relative_change = 3.6865399207478627e-7 Iter 75: T = 799.1223588208145 K, F = -0.014327430991288082, relative_change = 1.5417638770726832e-7 Iter 80: T = 799.1219825021096 K, F = -0.005991903703593371, relative_change = 6.447856146649184e-8 Iter 85: T = 799.1218251209455 K, F = -0.0025058858540721873, relative_change = 2.6965731522303612e-8 Iter 90: T = 799.1217593022303 K, F = -0.0010479914204747365, relative_change = 1.127739570360777e-8 Iter 95: T = 799.1217317760518 K, F = -0.0004382825318972605, relative_change = 4.7163423824267015e-9 Iter 100: T = 799.1217202642742 K, F = -0.0001832949901726666, relative_change = 1.972430856847231e-9 Iter 105: T = 799.1217154499111 K, F = -7.665615318963592e-5, relative_change = 8.248941562073309e-10 Iter 110: T = 799.121713436487 K, F = -3.2058518094291166e-5, relative_change = 3.449805847218186e-10 Iter 115: T = 799.121712594449 K, F = -1.3407254708108773e-5, relative_change = 1.442749966894443e-10 Iter 120: T = 799.1217122422986 K, F = -5.607074828661851e-6, relative_change = 6.033753528608005e-11 Iter 125: T = 799.1217120950251 K, F = -2.3449454140678228e-6, relative_change = 2.523387525812054e-11 Iter 130: T = 799.1217120334337 K, F = -9.80685219587052e-7, relative_change = 1.055311921512714e-11 Iter 135: T = 799.1217120076753 K, F = -4.1013449669780044e-7, relative_change = 4.413442919405711e-12 Iter 140: T = 799.121711996903 K, F = -1.7152375331175307e-7, relative_change = 1.845761087417194e-12 Iter 145: T = 799.1217119923978 K, F = -7.173412885919106e-8, relative_change = 7.71928442184731e-13 Iter 150: T = 799.1217119905136 K, F = -2.99991490537721e-8, relative_change = 3.2281978974975386e-13 Converged in 153 iterations to T = 799.121711989962 K Iter 1: T = 965.2405660906941 K, F = -7919.970080993032, relative_change = 0.034759433909305915 Iter 2: T = 932.4588421985092 K, F = -6717.318683840548, relative_change = 0.03396223184542867 Iter 3: T = 901.6254213853618 K, F = -5696.063405026649, relative_change = 0.033066790101372964 Iter 5: T = 845.690216542473 K, F = -4092.6494463209124, relative_change = 0.030963018389204455 Iter 10: T = 737.7735042067862 K, F = -1780.6518026727979, relative_change = 0.023937884837567862 Iter 15: T = 670.4345129838109 K, F = -766.5681472104571, relative_change = 0.0156320272361886 Iter 20: T = 633.6706051548654 K, F = -326.35939842793726, relative_change = 0.008580486126663251 Iter 25: T = 615.7980871345701 K, F = -137.77170035604635, relative_change = 0.004134645840531446 Iter 30: T = 607.7469160606031 K, F = -57.871600421204576, relative_change = 0.0018475060647472077 Iter 35: T = 604.2643874608311 K, F = -24.249562188509987, relative_change = 0.0007954903885745638 Iter 40: T = 602.7864989722282 K, F = -10.149876070016276, relative_change = 0.00033685413061593504 Iter 45: T = 602.1645763082712 K, F = -4.246287526284169, relative_change = 0.00014161935018287716 Iter 50: T = 601.903799548709 K, F = -1.7761095871384143, relative_change = 5.935785106689717e-5 Iter 55: T = 601.7946198780987 K, F = -0.7428360503330397, relative_change = 2.484713948131793e-5 Iter 60: T = 601.7489386564151 K, F = -0.3106709259559575, relative_change = 1.0395394684432971e-5 Iter 65: T = 601.7298305515916 K, F = -0.12992769428674783, relative_change = 4.3481824440021764e-6 Iter 70: T = 601.7218386714343 K, F = -0.054337558800544195, relative_change = 1.8185850277168353e-6 Iter 75: T = 601.7184962593159 K, F = -0.0227246589349418, relative_change = 7.605755271764573e-7 Iter 80: T = 601.7170984029924 K, F = -0.009503731261298332, relative_change = 3.1808553790093386e-7 Iter 85: T = 601.7165137993458 K, F = -0.00397457522330702, relative_change = 1.330278299064243e-7 Iter 90: T = 601.7162693105178 K, F = -0.00166221505431019, relative_change = 5.563394245662322e-8 Iter 95: T = 601.7161670622648 K, F = -0.0006951582262382794, relative_change = 2.326679928973909e-8 Iter 100: T = 601.716124300806 K, F = -0.0002907234789002455, relative_change = 9.730456845191891e-9 Iter 105: T = 601.71610641745 K, F = -0.0001215840312361327, relative_change = 4.069393847668866e-9 Iter 110: T = 601.7160989384164 K, F = -5.084789406917256e-5, relative_change = 1.7018692128647e-9 Iter 115: T = 601.7160958105952 K, F = -2.1265196548325704e-5, relative_change = 7.117420469278579e-10 Iter 120: T = 601.716094502503 K, F = -8.893359134953815e-6, relative_change = 2.9765902637697927e-10 Iter 125: T = 601.7160939554432 K, F = -3.7193091148579605e-6, relative_change = 1.2448456403435283e-10 Iter 130: T = 601.7160937266563 K, F = -1.5554599337441744e-6, relative_change = 5.2060946292966806e-11 Iter 135: T = 601.7160936309749 K, F = -6.505120678235166e-7, relative_change = 2.1772514429224495e-11 Iter 140: T = 601.7160935909598 K, F = -2.720519295951185e-7, relative_change = 9.105526027059694e-12 Iter 145: T = 601.716093574225 K, F = -1.137764626402138e-7, relative_change = 3.808076434216978e-12 Iter 150: T = 601.7160935672263 K, F = -4.758275312655158e-8, relative_change = 1.5925856425982391e-12 Iter 155: T = 601.7160935642993 K, F = -1.9899531300549e-8, relative_change = 6.660335050419417e-13 Iter 160: T = 601.7160935630753 K, F = -8.323012889999148e-9, relative_change = 2.7856964890103436e-13 Converged in 162 iterations to T = 601.7160935628162 K Iter 1: T = 964.5364366117785 K, F = -8080.406652564, relative_change = 0.0354635633882215 Iter 2: T = 931.0109860005199 K, F = -6854.695138940107, relative_change = 0.034758096572304505 Iter 3: T = 899.3931912281026 K, F = -5813.803992827909, relative_change = 0.03396071071969021 Iter 5: T = 841.7682103531025 K, F = -4179.385785535146, relative_change = 0.0320661564106047 Iter 10: T = 729.0762292045872 K, F = -1821.6345034074784, relative_change = 0.025512928506835952 Iter 15: T = 656.9517379377536 K, F = -785.9932134757184, relative_change = 0.0172694003784267 Iter 20: T = 616.5198719650867 K, F = -335.32810261689036, relative_change = 0.009790859627146615 Iter 25: T = 596.4620783132367 K, F = -141.7561973023359, relative_change = 0.004819875688682706 Iter 30: T = 587.3177909578691 K, F = -59.58991205202787, relative_change = 0.002178231090985975 Iter 35: T = 583.3388559916684 K, F = -24.978348499268893, relative_change = 0.0009428670235827137 Iter 40: T = 581.6457575198467 K, F = -10.456532109036733, relative_change = 0.00040018967425838 Iter 45: T = 580.9324402755608 K, F = -4.374868640507052, relative_change = 0.00016841361041351475 Iter 50: T = 580.6331932231747 K, F = -1.8299426704126367, relative_change = 7.061783789037533e-5 Iter 55: T = 580.5078810947929 K, F = -0.7653600337859028, relative_change = 2.9565749681104507e-5 Iter 60: T = 580.4554454138809 K, F = -0.32009253706405305, relative_change = 1.2370447734385635e-5 Iter 65: T = 580.4335111696859 K, F = -0.13386824174051165, relative_change = 5.174466259897834e-6 Iter 70: T = 580.424337129112 K, F = -0.0559855982952171, relative_change = 2.1641980611125356e-6 Iter 75: T = 580.4205002822459 K, F = -0.02341389843851993, relative_change = 9.051239944687569e-7 Iter 80: T = 580.4188956402096 K, F = -0.009791981149969209, relative_change = 3.785390020062128e-7 Iter 85: T = 580.4182245550494 K, F = -0.004095125066638616, relative_change = 1.5831046497474623e-7 Iter 90: T = 580.4179438983994 K, F = -0.001712630489075051, relative_change = 6.620749032234951e-8 Iter 95: T = 580.4178265242931 K, F = -0.0007162425720902976, relative_change = 2.7688791667364888e-8 Iter 100: T = 580.4177774370149 K, F = -0.0002995412062199443, relative_change = 1.1579788353113132e-8 Iter 105: T = 580.4177569081246 K, F = -0.00012527171067661103, relative_change = 4.842806633660458e-9 Iter 110: T = 580.4177483226968 K, F = -5.2390125891199624e-5, relative_change = 2.025319728621155e-9 Iter 115: T = 580.4177447321682 K, F = -2.1910176516592994e-5, relative_change = 8.47012930560569e-10 Iter 120: T = 580.4177432305662 K, F = -9.163097589748315e-6, relative_change = 3.5423093155925705e-10 Iter 125: T = 580.4177426025783 K, F = -3.832116725888124e-6, relative_change = 1.4814360224279107e-10 Iter 130: T = 580.4177423399462 K, F = -1.6026368468979868e-6, relative_change = 6.195541865780096e-11 Iter 135: T = 580.4177422301104 K, F = -6.702420181081692e-7, relative_change = 2.5910501778195842e-11 Iter 140: T = 580.4177421841758 K, F = -2.803038199328256e-7, relative_change = 1.0836104617912693e-11 Iter 145: T = 580.4177421649653 K, F = -1.1722576737094315e-7, relative_change = 4.531763711430041e-12 Iter 150: T = 580.4177421569312 K, F = -4.902461925304635e-8, relative_change = 1.8952146400479855e-12 Iter 155: T = 580.4177421535713 K, F = -2.0502799680244266e-8, relative_change = 7.926059744895706e-13 Iter 160: T = 580.4177421521663 K, F = -8.574499665847668e-9, relative_change = 3.3147666511303746e-13 Converged in 163 iterations to T = 580.4177421517549 K Iter 1: T = 964.2831959313203 K, F = -8138.107782500493, relative_change = 0.03571680406867977 Iter 2: T = 930.4894319383237 K, F = -6904.115017668587, relative_change = 0.03504547640733076 Iter 3: T = 898.5876375791446 K, F = -5856.173673035185, relative_change = 0.034284961509690376 Iter 5: T = 840.346818701866 K, F = -4210.627335858657, relative_change = 0.032470632426508876 Iter 10: T = 725.8779892411112 K, F = -1836.468044023899, relative_change = 0.026112558743108763 Iter 15: T = 651.9040767810098 K, F = -793.0906359670703, relative_change = 0.01792345067256778 Iter 20: T = 609.9962545665416 K, F = -338.64266301552476, relative_change = 0.01029631410625702 Iter 25: T = 589.0307384226605 K, F = -143.24204738342252, relative_change = 0.005114753117103413 Iter 30: T = 579.4235675745348 K, F = -60.23403665805373, relative_change = 0.0023228679909349445 Iter 35: T = 575.2323721777962 K, F = -25.25223646748945, relative_change = 0.0010078106249012749 Iter 40: T = 573.4468412385661 K, F = -10.571908932634615, relative_change = 0.00042819282503057384 Iter 45: T = 572.6941941906604 K, F = -4.423269940756034, relative_change = 0.00018027735822253452 Iter 50: T = 572.3783786209632 K, F = -1.8502110571094235, relative_change = 7.560645378012998e-5 Iter 55: T = 572.246116105975 K, F = -0.7738411496038787, relative_change = 3.1656808793166646e-5 Iter 60: T = 572.1907699623501 K, F = -0.32364025300297894, relative_change = 1.324578831511385e-5 Iter 65: T = 572.1676178748227 K, F = -0.13535208104343638, relative_change = 5.540690285828618e-6 Iter 70: T = 572.1579344033252 K, F = -0.056606182477851374, relative_change = 2.3173828938710456e-6 Iter 75: T = 572.1538844863668 K, F = -0.023673438505617372, relative_change = 9.69192194277864e-7 Iter 80: T = 572.1521907323754 K, F = -0.009900524666718091, relative_change = 4.053338707566059e-7 Iter 85: T = 572.1514823789197 K, F = -0.0041405193953271135, relative_change = 1.6951653596310913e-7 Iter 90: T = 572.1511861361164 K, F = -0.0017316149638776923, relative_change = 7.089402701853148e-8 Iter 95: T = 572.1510622436759 K, F = -0.0007241821107441537, relative_change = 2.96487614878546e-8 Iter 100: T = 572.1510104303494 K, F = -0.00030286161725839866, relative_change = 1.2399471889900593e-8 Iter 105: T = 572.1509887613925 K, F = -0.00012666034750502542, relative_change = 5.185608251876822e-9 Iter 110: T = 572.150979699175 K, F = -5.2970870667079506e-5, relative_change = 2.1686834922248582e-9 Iter 115: T = 572.1509759092471 K, F = -2.2153050435402832e-5, relative_change = 9.069693530001174e-10 Iter 120: T = 572.1509743242541 K, F = -9.264670242870032e-6, relative_change = 3.793054194166106e-10 Iter 125: T = 572.1509736613912 K, F = -3.87459612355423e-6, relative_change = 1.5863007287841022e-10 Iter 130: T = 572.1509733841739 K, F = -1.6204025095056807e-6, relative_change = 6.634099673139307e-11 Iter 135: T = 572.1509732682384 K, F = -6.776724787438404e-7, relative_change = 2.7744629792251783e-11 Iter 140: T = 572.1509732197528 K, F = -2.8341153984756673e-7, relative_change = 1.1603168937405543e-11 Iter 145: T = 572.1509731994754 K, F = -1.1852611586649076e-7, relative_change = 4.852584855454864e-12 Iter 150: T = 572.1509731909952 K, F = -4.956850502280119e-8, relative_change = 2.0293871526938317e-12 Iter 155: T = 572.1509731874487 K, F = -2.0730231531373988e-8, relative_change = 8.487176590060292e-13 Iter 160: T = 572.1509731859654 K, F = -8.66900401463866e-9, relative_change = 3.5491821604469793e-13 Converged in 163 iterations to T = 572.1509731855313 K Iter 1: T = 980.1388850447923 K, F = -4525.373935341762, relative_change = 0.019861114955207617 Iter 2: T = 962.3216146090789 K, F = -3822.5978817215046, relative_change = 0.018178311979632607 Iter 3: T = 946.4273091512698 K, F = -3227.4559062147127, relative_change = 0.01651662522852695 Iter 5: T = 919.8844335934247 K, F = -2297.5615821537044, relative_change = 0.013345369356983326 Iter 10: T = 877.7405372670186 K, F = -975.397579604816, relative_change = 0.007011628854442212 Iter 15: T = 857.7888509436743 K, F = -411.02757443777625, relative_change = 0.003288118971108341 Iter 20: T = 848.9339453685916 K, F = -172.49573426583467, relative_change = 0.0014490410105045058 Iter 25: T = 845.1312165997422 K, F = -72.24931983624593, relative_change = 0.000619977129502707 Iter 30: T = 843.5226167185593 K, F = -30.23506008662622, relative_change = 0.00026180887898941845 Iter 35: T = 842.8466224633434 K, F = -12.64810736034154, relative_change = 0.00010993993208266087 Iter 40: T = 842.56333870682 K, F = -5.290194009285094, relative_change = 4.6057078565830385e-5 Iter 45: T = 842.4447651419092 K, F = -2.2125281861415314, relative_change = 1.9275452326151548e-5 Iter 50: T = 842.3951585839437 K, F = -0.9253242389946335, relative_change = 8.063646149442839e-6 Iter 55: T = 842.3744094352664 K, F = -0.3869848888426438, relative_change = 3.372736880112888e-6 Iter 60: T = 842.365731352256 K, F = -0.16184226904737953, relative_change = 1.4105929718704129e-6 Iter 65: T = 842.3621019796299 K, F = -0.06768446887497825, relative_change = 5.899397931359691e-7 Iter 70: T = 842.3605841160949 K, F = -0.028306470544619655, relative_change = 2.4672213470563497e-7 Iter 75: T = 842.3599493245413 K, F = -0.011838107062100978, relative_change = 1.0318253984915236e-7 Iter 80: T = 842.359683846626 K, F = -0.004950838279947245, relative_change = 4.315223979472531e-8 Iter 85: T = 842.3595728205029 K, F = -0.002070499786013702, relative_change = 1.804679415465143e-8 Iter 90: T = 842.3595263880368 K, F = -0.0008659077536696813, relative_change = 7.547386961474299e-9 Iter 95: T = 842.3595069694222 K, F = -0.0003621329691245734, relative_change = 3.1564077557924943e-9 Iter 100: T = 842.3594988483252 K, F = -0.00015144833316682593, relative_change = 1.3200474856195803e-9 Iter 105: T = 842.3594954519853 K, F = -6.33375000054226e-5, relative_change = 5.520596198344775e-10 Iter 110: T = 842.3594940315954 K, F = -2.648849973163614e-5, relative_change = 2.3087793499875655e-10 Iter 115: T = 842.3594934375715 K, F = -1.1077806319148564e-5, relative_change = 9.655590470509266e-11 Iter 120: T = 842.3594931891436 K, F = -4.632872379062292e-6, relative_change = 4.0380845420496395e-11 Iter 125: T = 842.3594930852481 K, F = -1.937524112261002e-6, relative_change = 1.688776536889579e-11 Iter 130: T = 842.3594930417977 K, F = -8.10297856368436e-7, relative_change = 7.062683759151462e-12 Iter 135: T = 842.3594930236262 K, F = -3.388750986488276e-7, relative_change = 2.9536887417921378e-12 Iter 140: T = 842.3594930160266 K, F = -1.4172059770167778e-7, relative_change = 1.235259054437836e-12 Iter 145: T = 842.3594930128484 K, F = -5.9268517871302606e-8, relative_change = 5.165937381880358e-13 Converged in 150 iterations to T = 842.3594930115191 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:09 Bin 1 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 1 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 2 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 2 ray tracing: 29%|████████▊ | ETA: 0:00:09 Bin 2 ray tracing: 36%|██████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 49%|██████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 62%|██████████████████▋ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 3 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▋ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 38%|███████████▍ | ETA: 0:00:09 Bin 3 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 3 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 56%|█████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 3 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:14 Bin 4 ray tracing: 13%|████ | ETA: 0:00:13 Bin 4 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 4 ray tracing: 37%|███████████ | ETA: 0:00:09 Bin 4 ray tracing: 45%|█████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 11%|███▏ | ETA: 0:00:08 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:07 Bin 5 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 42%|████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 65%|███████████████████▍ | ETA: 0:00:03 Bin 5 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 6 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 6 ray tracing: 32%|█████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 64%|███████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 8 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 8 ray tracing: 33%|██████████ | ETA: 0:00:06 Bin 8 ray tracing: 44%|█████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 66%|███████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 9 ray tracing: 16%|████▊ | ETA: 0:00:12 Bin 9 ray tracing: 23%|██████▉ | ETA: 0:00:11 Bin 9 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 9 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 9 ray tracing: 44%|█████████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 52%|███████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 59%|█████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██ | ETA: 0:00:14 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:10 Bin 10 ray tracing: 38%|██████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 48%|█████████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 71%|████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2370655335416 K, F = -7465.065783778975, relative_change = 0.032762934466458435 Iter 2: T = 936.5457361034453 K, F = -6328.074306969761, relative_change = 0.031730927736073125 Iter 3: T = 907.8948688917842 K, F = -5362.755361730537, relative_change = 0.030592064121571637 Iter 5: T = 856.5777217177699 K, F = -3847.7332013275895, relative_change = 0.027998235143343 Iter 10: T = 761.0178977164934 K, F = -1666.3685134375733, relative_change = 0.020100793657329932 Iter 15: T = 704.9521544321792 K, F = -713.5753311148661, relative_change = 0.012077217832489976 Iter 20: T = 676.0662028768544 K, F = -302.47326025638205, relative_change = 0.00619713273858094 Iter 25: T = 662.5801965194903 K, F = -127.34429854956899, relative_change = 0.0028661054398695994 Iter 30: T = 656.6395263184463 K, F = -53.418257221723735, relative_change = 0.0012544411674265557 Iter 35: T = 654.0973043407166 K, F = -22.369483518234393, relative_change = 0.0005350625355058403 Iter 40: T = 653.0235877052626 K, F = -9.360401113235572, relative_change = 0.00022564935658785857 Iter 45: T = 652.5726721984204 K, F = -3.9155502612180175, relative_change = 9.470210661746335e-5 Iter 50: T = 652.3837636594028 K, F = -1.6376910442656571, relative_change = 3.9664069865121994e-5 Iter 55: T = 652.3047019030337 K, F = -0.6849301754888398, relative_change = 1.6598244768343017e-5 Iter 60: T = 652.2716271836051 K, F = -0.2864509178732001, relative_change = 6.943379787378529e-6 Iter 65: T = 652.2577931649477 K, F = -0.11979805875265087, relative_change = 2.904118520054752e-6 Iter 70: T = 652.2520073024376 K, F = -0.050101129972927816, relative_change = 1.2145920050940284e-6 Iter 75: T = 652.2495875312925 K, F = -0.0209529173160955, relative_change = 5.079664945224272e-7 Iter 80: T = 652.2485755445961 K, F = -0.008762764873513684, relative_change = 2.1243933570487653e-7 Iter 85: T = 652.2481523180115 K, F = -0.003664693728168189, relative_change = 8.884496132404008e-8 Iter 90: T = 652.2479753193087 K, F = -0.0015326188241629457, relative_change = 3.715607529076969e-8 Iter 95: T = 652.2479012962865 K, F = -0.0006409595200975726, relative_change = 1.553912341395558e-8 Iter 100: T = 652.2478703389656 K, F = -0.0002680569306345304, relative_change = 6.498648569433673e-9 Iter 105: T = 652.2478573922428 K, F = -0.00011210460995475513, relative_change = 2.717812705806235e-9 Iter 110: T = 652.2478519777685 K, F = -4.688348726311631e-5, relative_change = 1.1366217898051736e-9 Iter 115: T = 652.2478497133704 K, F = -1.9607232735363578e-5, relative_change = 4.753487770242947e-10 Iter 120: T = 652.2478487663723 K, F = -8.199978820899734e-6, relative_change = 1.9879653512010856e-10 Iter 125: T = 652.2478483703264 K, F = -3.429329593074293e-6, relative_change = 8.313909800855573e-11 Iter 130: T = 652.2478482046953 K, F = -1.434187055282532e-6, relative_change = 3.4769774983629617e-11 Iter 135: T = 652.2478481354262 K, F = -5.997935577650715e-7, relative_change = 1.4541120681470999e-11 Iter 140: T = 652.2478481064571 K, F = -2.508408006307583e-7, relative_change = 6.081269642460247e-12 Iter 145: T = 652.247848094342 K, F = -1.0490450669253804e-7, relative_change = 2.543256879896874e-12 Iter 150: T = 652.2478480892752 K, F = -4.387161284258312e-8, relative_change = 1.0636033161589116e-12 Iter 155: T = 652.2478480871562 K, F = -1.834652146870397e-8, relative_change = 4.447846753300966e-13 Converged in 159 iterations to T = 652.2478480863914 K Iter 1: T = 970.3494661081003 K, F = -6755.902352208491, relative_change = 0.029650533891899686 Iter 2: T = 942.8633582528026 K, F = -5722.084027058695, relative_change = 0.028325988538479382 Iter 3: T = 917.4968847490835 K, F = -4844.715879516747, relative_change = 0.02690365818301086 Iter 5: T = 872.9066606410076 K, F = -3468.80152345305, relative_change = 0.023810690723305404 Iter 10: T = 793.7623872258454 K, F = -1493.0464680094674, relative_change = 0.01550495243937765 Iter 15: T = 750.641632404891 K, F = -635.5499107133098, relative_change = 0.008489798626468995 Iter 20: T = 729.710557808587 K, F = -268.26781604541975, relative_change = 0.0040844820148063 Iter 25: T = 720.2898238034079 K, F = -112.68093506150859, relative_change = 0.001823590386279827 Iter 30: T = 716.2166398593415 K, F = -47.21477067167613, relative_change = 0.0007848941945608533 Iter 35: T = 714.4884270486159 K, F = -19.761955598012925, relative_change = 0.0003323118560091998 Iter 40: T = 713.7612238461064 K, F = -8.267544268260172, relative_change = 0.00013969979818786614 Iter 45: T = 713.4563129388393 K, F = -3.458087879648678, relative_change = 5.8551547410991904e-5 Iter 50: T = 713.3286574741354 K, F = -1.4463016338739898, relative_change = 2.4509314312159462e-5 Iter 55: T = 713.2752462367258 K, F = -0.6048760160589679, relative_change = 1.0254003619657082e-5 Iter 60: T = 713.2529047837643 K, F = -0.25296906801289126, relative_change = 4.289032011521651e-6 Iter 65: T = 713.2435605802586 K, F = -0.10579515662207084, relative_change = 1.793844286043839e-6 Iter 70: T = 713.2396525931285 K, F = -0.04424488038684127, relative_change = 7.502280720085899e-7 Iter 75: T = 713.2380182035658 K, F = -0.018503751786038358, relative_change = 3.1375800683829844e-7 Iter 80: T = 713.2373346783663 K, F = -0.007738492497914695, relative_change = 1.3121798696228838e-7 Iter 85: T = 713.2370488192713 K, F = -0.003236330418539768, relative_change = 5.4877041379073024e-8 Iter 90: T = 713.2369292694626 K, F = -0.001353472107604392, relative_change = 2.2950253689519248e-8 Iter 95: T = 713.2368792722838 K, F = -0.0005660382123294783, relative_change = 9.598073601662719e-9 Iter 100: T = 713.2368583628628 K, F = -0.00023672394401663688, relative_change = 4.014029628375198e-9 Iter 105: T = 713.2368496182925 K, F = -9.900077944702268e-5, relative_change = 1.6787152088923797e-9 Iter 110: T = 713.2368459612087 K, F = -4.1403307654230836e-5, relative_change = 7.020587549169049e-10 Iter 115: T = 713.2368444317726 K, F = -1.731535838089826e-5, relative_change = 2.936093698471202e-10 Iter 120: T = 713.2368437921442 K, F = -7.24149041453348e-6, relative_change = 1.2279095815821563e-10 Iter 125: T = 713.2368435246439 K, F = -3.0284774233946266e-6, relative_change = 5.1352639298790433e-11 Iter 130: T = 713.2368434127719 K, F = -1.2665438928749495e-6, relative_change = 2.1476261052182682e-11 Iter 135: T = 713.2368433659859 K, F = -5.296843296198617e-7, relative_change = 8.981638145913406e-12 Iter 140: T = 713.2368433464195 K, F = -2.2152060907831839e-7, relative_change = 3.7562333669405616e-12 Iter 145: T = 713.2368433382366 K, F = -9.264342748505072e-8, relative_change = 1.5709162908768596e-12 Iter 150: T = 713.2368433348142 K, F = -3.8744434216475554e-8, relative_change = 6.569733498113503e-13 Iter 155: T = 713.236843333383 K, F = -1.6203688724125698e-8, relative_change = 2.7475924931597424e-13 Converged in 157 iterations to T = 713.2368433330802 K Iter 1: T = 974.4329950384081 K, F = -5825.46640099904, relative_change = 0.025567004961591904 Iter 2: T = 951.0550937878 K, F = -4928.527039773235, relative_change = 0.02399128659399157 Iter 3: T = 929.7914112194903 K, F = -4167.885608200348, relative_change = 0.0223579924099056 Iter 5: T = 893.2526640898486 K, F = -2976.614766974302, relative_change = 0.01900320841041076 Iter 10: T = 831.7169512648261 K, F = -1272.790903408607, relative_change = 0.01116023113627402 Iter 15: T = 800.4879029021669 K, F = -538.9260077554391, relative_change = 0.005631247250794842 Iter 20: T = 786.0491101470187 K, F = -226.75067557476146, relative_change = 0.0025796592982418186 Iter 25: T = 779.7210846169381 K, F = -95.08798326918688, relative_change = 0.0011238603565645695 Iter 30: T = 777.0195157565064 K, F = -39.81367060031687, relative_change = 0.00047837617851737414 Iter 35: T = 775.8796842687016 K, F = -16.658850057387152, relative_change = 0.00020156407693170238 Iter 40: T = 775.401215689122 K, F = -6.968390459694392, relative_change = 8.456201127927283e-5 Iter 45: T = 775.2008014585703 K, F = -2.9145202156498704, relative_change = 3.541149551450437e-5 Iter 50: T = 775.1169309440078 K, F = -1.2189320035406919, relative_change = 1.4817685716150457e-5 Iter 55: T = 775.0818456816252 K, F = -0.5097797675908509, relative_change = 6.198364170640223e-6 Iter 60: T = 775.0671709239928 K, F = -0.2131973594709412, relative_change = 2.5924802959637845e-6 Iter 65: T = 775.0610334708718 K, F = -0.08916192191988392, relative_change = 1.0842500175646415e-6 Iter 70: T = 775.0584666632159 K, F = -0.037288622550051165, relative_change = 4.53453966563837e-7 Iter 75: T = 775.0573931845986 K, F = -0.015594554611529476, relative_change = 1.8964120404239294e-7 Iter 80: T = 775.0569442414466 K, F = -0.006521830260503458, relative_change = 7.93104506635923e-8 Iter 85: T = 775.0567564877834 K, F = -0.0027275075264489024, relative_change = 3.3168618619331864e-8 Iter 90: T = 775.0566779669113 K, F = -0.0011406762612451438, relative_change = 1.387151960548622e-8 Iter 95: T = 775.0566451285363 K, F = -0.0004770444409037955, relative_change = 5.8012364019610254e-9 Iter 100: T = 775.0566313951341 K, F = -0.00019950568225191034, relative_change = 2.4261465487946193e-9 Iter 105: T = 775.0566256516612 K, F = -8.34356597233521e-5, relative_change = 1.0146435065982496e-9 Iter 110: T = 775.0566232496722 K, F = -3.489378851495584e-5, relative_change = 4.243360282296775e-10 Iter 115: T = 775.0566222451316 K, F = -1.459299966088956e-5, relative_change = 1.7746240284620996e-10 Iter 120: T = 775.0566218250208 K, F = -6.10296714642633e-6, relative_change = 7.421690140883396e-11 Iter 125: T = 775.0566216493255 K, F = -2.5523342048749953e-6, relative_change = 3.1038400126563446e-11 Iter 130: T = 775.0566215758477 K, F = -1.0674183986703056e-6, relative_change = 1.2980650932020804e-11 Iter 135: T = 775.0566215451182 K, F = -4.4640724394806597e-7, relative_change = 5.428664725591801e-12 Iter 140: T = 775.0566215322668 K, F = -1.8669291856898695e-7, relative_change = 2.270333367957536e-12 Iter 145: T = 775.0566215268923 K, F = -7.807841440055086e-8, relative_change = 9.49495197222152e-13 Iter 150: T = 775.0566215246446 K, F = -3.26542716200251e-8, relative_change = 3.971017381752929e-13 Converged in 154 iterations to T = 775.0566215238332 K Iter 1: T = 970.2883275914601 K, F = -6769.832821382725, relative_change = 0.029711672408539978 Iter 2: T = 942.7398796486831 K, F = -5733.978228753242, relative_change = 0.02839202241168896 Iter 3: T = 917.3102321104931 K, F = -4854.873802119565, relative_change = 0.02697419308035053 Iter 5: T = 872.5930469354429 K, F = -3476.212552267002, relative_change = 0.023888284306730255 Iter 10: T = 793.1544445971412 K, F = -1496.40136175119, relative_change = 0.015582570373128924 Iter 15: T = 749.8188872605542 K, F = -637.0401953440984, relative_change = 0.008545201566778718 Iter 20: T = 728.7639398351149 K, F = -268.9139659260623, relative_change = 0.004115124674344353 Iter 25: T = 719.2823624202039 K, F = -112.95610443845648, relative_change = 0.0018381977268455629 Iter 30: T = 715.1817930009174 K, F = -47.3308031157191, relative_change = 0.0007913658047816273 Iter 35: T = 713.4417549923015 K, F = -19.810655829182238, relative_change = 0.00033508596635435813 Iter 40: T = 712.7095385718835 K, F = -8.28794229864527, relative_change = 0.00014087211484435007 Iter 45: T = 712.4025190183269 K, F = -3.4666240459338433, relative_change = 5.904397392721497e-5 Iter 50: T = 712.2739795682727 K, F = -1.4498725197572484, relative_change = 2.4715630761543894e-5 Iter 55: T = 712.2201982649706 K, F = -0.6063695711740346, relative_change = 1.0340353833784913e-5 Iter 60: T = 712.197701980772 K, F = -0.2535937199986585, relative_change = 4.325156292498252e-6 Iter 65: T = 712.1882930135736 K, F = -0.10605639868558381, relative_change = 1.808953919613459e-6 Iter 70: T = 712.1843579394958 K, F = -0.044354135837175845, relative_change = 7.565474559371696e-7 Iter 75: T = 712.1827122214988 K, F = -0.018549443878497218, relative_change = 3.1640091072879193e-7 Iter 80: T = 712.1820239585517 K, F = -0.007757601505375855, relative_change = 1.323232918045481e-7 Iter 85: T = 712.1817361180633 K, F = -0.003244322039985148, relative_change = 5.5339294987699654e-8 Iter 90: T = 712.1816157396104 K, F = -0.0013568143011651879, relative_change = 2.3143574021349854e-8 Iter 95: T = 712.1815653958822 K, F = -0.0005674359580587485, relative_change = 9.678922536656213e-9 Iter 100: T = 712.1815443415301 K, F = -0.00023730849615588578, relative_change = 4.047841597381447e-9 Iter 105: T = 712.181535536348 K, F = -9.924524727178419e-5, relative_change = 1.692855799115851e-9 Iter 110: T = 712.1815318539154 K, F = -4.1505547793474484e-5, relative_change = 7.079725320748703e-10 Iter 115: T = 712.1815303138783 K, F = -1.735811628944539e-5, relative_change = 2.9608257983150526e-10 Iter 120: T = 712.1815296698162 K, F = -7.2593706397228175e-6, relative_change = 1.2382525617274344e-10 Iter 125: T = 712.1815294004618 K, F = -3.035955581487393e-6, relative_change = 5.178520245634371e-11 Iter 130: T = 712.1815292878146 K, F = -1.269672778025921e-6, relative_change = 2.1657188370550207e-11 Iter 135: T = 712.1815292407042 K, F = -5.309930584118661e-7, relative_change = 9.057307435528398e-12 Iter 140: T = 712.181529221002 K, F = -2.220678813058541e-7, relative_change = 3.787878280036523e-12 Iter 145: T = 712.1815292127624 K, F = -9.28714392056662e-8, relative_change = 1.5841359198529882e-12 Iter 150: T = 712.1815292093164 K, F = -3.8839079730124126e-8, relative_change = 6.624898011937706e-13 Iter 155: T = 712.1815292078753 K, F = -1.6243450029485018e-8, relative_change = 2.7706938618557613e-13 Converged in 157 iterations to T = 712.1815292075703 K Iter 1: T = 969.3811776275221 K, F = -6976.527803588361, relative_change = 0.030618822372477865 Iter 2: T = 940.9048366551233 K, F = -5910.505041194315, relative_change = 0.029375793165380262 Iter 3: T = 914.5315951092558 K, F = -5005.678569091563, relative_change = 0.028029658811855276 Iter 5: T = 867.9069063378225 K, F = -3586.325383223672, relative_change = 0.02506074698006327 Iter 10: T = 783.9777887375262 K, F = -1546.402030397092, relative_change = 0.01678798230541752 Iter 15: T = 737.291669386537 K, F = -659.3341469447718, relative_change = 0.009427122030197226 Iter 20: T = 714.2711202191648 K, F = -278.6083785015964, relative_change = 0.004610929559265601 Iter 25: T = 703.8141781637413 K, F = -117.09154407436556, relative_change = 0.002076598987159431 Iter 30: T = 699.2723523789177 K, F = -49.07605160882937, relative_change = 0.000897413582715004 Iter 35: T = 697.3413352425999 K, F = -20.543426317265556, relative_change = 0.0003806247929802557 Iter 40: T = 696.5280730176707 K, F = -8.594910664815545, relative_change = 0.00016013100706893204 Iter 45: T = 696.1869496425361 K, F = -3.595092713341851, relative_change = 6.713616787407124e-5 Iter 50: T = 696.0441106415076 K, F = -1.503615593044469, relative_change = 2.8106545232886063e-5 Iter 55: T = 695.9843426159489 K, F = -0.6288483586916938, relative_change = 1.1759642539487632e-5 Iter 60: T = 695.9593414782368 K, F = -0.26299510609210824, relative_change = 4.918924210203497e-6 Iter 65: T = 695.9488847527998 K, F = -0.1099882561224671, relative_change = 2.057310522681348e-6 Iter 70: T = 695.9445114589728 K, F = -0.04599850052716259, relative_change = 8.604194103050618e-7 Iter 75: T = 695.9426824661664 K, F = -0.01923713944520178, relative_change = 3.598424969558409e-7 Iter 80: T = 695.9419175544423 K, F = -0.008045204460451427, relative_change = 1.5049127336410466e-7 Iter 85: T = 695.9415976583342 K, F = -0.003364601109801746, relative_change = 6.293739531309194e-8 Iter 90: T = 695.9414638738058 K, F = -0.0014071164579513296, relative_change = 2.6321196162795836e-8 Iter 95: T = 695.941407923491 K, F = -0.0005884729237893849, relative_change = 1.1007843099885933e-8 Iter 100: T = 695.9413845243964 K, F = -0.00024610640603472955, relative_change = 4.603612209942057e-9 Iter 105: T = 695.9413747386149 K, F = -0.00010292463897010329, relative_change = 1.9252857494531033e-9 Iter 110: T = 695.941370646084 K, F = -4.3044312725726286e-5, relative_change = 8.051775069153618e-10 Iter 115: T = 695.9413689345388 K, F = -1.8001647375531782e-5, relative_change = 3.3673488565784483e-10 Iter 120: T = 695.9413682187501 K, F = -7.528505238441063e-6, relative_change = 1.4082657604441575e-10 Iter 125: T = 695.9413679193987 K, F = -3.1485117930607487e-6, relative_change = 5.889537462181089e-11 Iter 130: T = 695.9413677942063 K, F = -1.316744940527137e-6, relative_change = 2.4630743575761194e-11 Iter 135: T = 695.9413677418494 K, F = -5.506798759213893e-7, relative_change = 1.0300897617711795e-11 Iter 140: T = 695.9413677199531 K, F = -2.3030004991930753e-7, relative_change = 4.30794249010603e-12 Iter 145: T = 695.9413677107957 K, F = -9.631420228028986e-8, relative_change = 1.8016324554653785e-12 Iter 150: T = 695.941367706966 K, F = -4.02792980080946e-8, relative_change = 7.534557610253622e-13 Iter 155: T = 695.9413677053644 K, F = -1.684556993897246e-8, relative_change = 3.1510955617604963e-13 Converged in 158 iterations to T = 695.9413677048956 K Iter 1: T = 963.54397682556 K, F = -8306.53955892686, relative_change = 0.03645602317443998 Iter 2: T = 928.9644708447253 K, F = -7048.4107960219, relative_change = 0.035887833677045504 Iter 3: T = 896.2278642650249 K, F = -5979.925778936116, relative_change = 0.035239890875409255 Iter 5: T = 836.164263225094 K, F = -4301.965937502091, relative_change = 0.03367544797336536 Iter 10: T = 716.3163718204082 K, F = -1880.0677461442842, relative_change = 0.027973620580773583 Iter 15: T = 636.4973495541791 K, F = -814.1837812358157, relative_change = 0.020070609175393904 Iter 20: T = 589.6903835126193 K, F = -348.6366200282199, relative_change = 0.012051231316808492 Iter 25: T = 565.5852607238394 K, F = -147.77680764598895, relative_change = 0.00618077873709501 Iter 30: T = 554.3345034328333 K, F = -62.21437221755058, relative_change = 0.0028577386239109844 Iter 35: T = 549.3792245806909 K, F = -26.097383537838805, relative_change = 0.0012506076396282158 Iter 40: T = 547.2588362826709 K, F = -10.92852193246224, relative_change = 0.0005333946166275966 Iter 45: T = 546.3633104621786 K, F = -4.572978526510116, relative_change = 0.00022493999550961258 Iter 50: T = 545.9872325433236 K, F = -1.912921638195796, relative_change = 9.44033380005271e-5 Iter 55: T = 545.8296776775321 K, F = -0.8000851573691676, relative_change = 3.953875016860717e-5 Iter 60: T = 545.7637381748433 K, F = -0.3346189116022189, relative_change = 1.654576945875357e-5 Iter 65: T = 545.7361530502235 K, F = -0.1399440300480952, relative_change = 6.921422581844579e-6 Iter 70: T = 545.7246151452038 K, F = -0.05852668537411193, relative_change = 2.8949337587089868e-6 Iter 75: T = 545.7197895972384 K, F = -0.024476632367342016, relative_change = 1.210750479067089e-6 Iter 80: T = 545.7177714502701 K, F = -0.010236432838128806, relative_change = 5.063598613797788e-7 Iter 85: T = 545.7169274292039 K, F = -0.004281000711821387, relative_change = 2.117674118387466e-7 Iter 90: T = 545.7165744481323 K, F = -0.0017903660166896096, relative_change = 8.856395283658048e-8 Iter 95: T = 545.7164268269909 K, F = -0.0007487525186271327, relative_change = 3.703855386475054e-8 Iter 100: T = 545.7163650900243 K, F = -0.00031313725711712426, relative_change = 1.5489974488207212e-8 Iter 105: T = 545.7163392708802 K, F = -0.00013095774254745507, relative_change = 6.47809387707684e-9 Iter 110: T = 545.7163284730046 K, F = -5.476809284096773e-5, relative_change = 2.7092165259766695e-9 Iter 115: T = 545.7163239572038 K, F = -2.2904670988310727e-5, relative_change = 1.1330267750686547e-9 Iter 120: T = 545.716322068642 K, F = -9.579007159837838e-6, relative_change = 4.738453468738772e-10 Iter 125: T = 545.7163212788228 K, F = -4.006055041250178e-6, relative_change = 1.9816777689191304e-10 Iter 130: T = 545.716320948511 K, F = -1.675380435856022e-6, relative_change = 8.287614971833001e-11 Iter 135: T = 545.7163208103706 K, F = -7.006636894846263e-7, relative_change = 3.4659774973578784e-11 Iter 140: T = 545.7163207525987 K, F = -2.9302591386670684e-7, relative_change = 1.4495131392689309e-11 Iter 145: T = 545.7163207284377 K, F = -1.225468591881107e-7, relative_change = 6.06203322643848e-12 Iter 150: T = 545.7163207183333 K, F = -5.125085522639239e-8, relative_change = 2.535229293932879e-12 Iter 155: T = 545.7163207141076 K, F = -2.143356214734382e-8, relative_change = 1.0602553731298041e-12 Iter 160: T = 545.7163207123403 K, F = -8.963455533361753e-9, relative_change = 4.4339582127654585e-13 Converged in 164 iterations to T = 545.7163207117025 K Iter 1: T = 966.8942774260591 K, F = -7543.170380144521, relative_change = 0.03310572257394088 Iter 2: T = 935.8459615469794 K, F = -6394.876501218974, relative_change = 0.03211138653310941 Iter 3: T = 906.8246592591341 K, F = -5419.926468172424, relative_change = 0.031010768310494433 Iter 5: T = 854.7322411332397 K, F = -3889.678895265336, relative_change = 0.02849084003480956 Iter 10: T = 757.1647116263832 K, F = -1685.801753221646, relative_change = 0.02070143351801892 Iter 15: T = 699.3664387513172 K, F = -722.4819624699363, relative_change = 0.01259672503018184 Iter 20: T = 669.3328894074085 K, F = -306.44038004235773, relative_change = 0.006526191567745368 Iter 25: T = 655.2318675334617 K, F = -129.06195063162122, relative_change = 0.0030351949976974643 Iter 30: T = 649.0015969121124 K, F = -54.148605666613854, relative_change = 0.0013320917196972212 Iter 35: T = 646.3316851258652 K, F = -22.677180253932292, relative_change = 0.0005688826662327398 Iter 40: T = 645.2033386225943 K, F = -9.48949066702523, relative_change = 0.00024003951285557658 Iter 45: T = 644.7293552260263 K, F = -3.9696092044521882, relative_change = 0.00010076412513801138 Iter 50: T = 644.530760296925 K, F = -1.6603118294611727, relative_change = 4.2207015349295895e-5 Iter 55: T = 644.4476406993793 K, F = -0.6943926826035325, relative_change = 1.766309268972675e-5 Iter 60: T = 644.4128677369494 K, F = -0.290408640819633, relative_change = 7.3889497112431045e-6 Iter 65: T = 644.3983232817826 K, F = -0.12145329389840087, relative_change = 3.0905028004402444e-6 Iter 70: T = 644.3922402693214 K, F = -0.05079338099916436, relative_change = 1.2925474176946734e-6 Iter 75: T = 644.3896962200598 K, F = -0.021242427046510803, relative_change = 5.4056965255045e-7 Iter 80: T = 644.3886322576413 K, F = -0.008883841664069358, relative_change = 2.260745884826256e-7 Iter 85: T = 644.3881872939915 K, F = -0.0037153295503097317, relative_change = 9.454742579900803e-8 Iter 90: T = 644.3880012045538 K, F = -0.0015537953404727856, relative_change = 3.9540920840342245e-8 Iter 95: T = 644.3879233796717 K, F = -0.0006498157931843496, relative_change = 1.6536495472838324e-8 Iter 100: T = 644.3878908323668 K, F = -0.0002717607302371583, relative_change = 6.915761686741083e-9 Iter 105: T = 644.3878772206933 K, F = -0.00011365358360360123, relative_change = 2.8922544379683536e-9 Iter 110: T = 644.3878715281286 K, F = -4.7531285255086875e-5, relative_change = 1.209575379363477e-9 Iter 115: T = 644.38786914743 K, F = -1.987815046783359e-5, relative_change = 5.05858860896851e-10 Iter 120: T = 644.3878681517936 K, F = -8.313281147143137e-6, relative_change = 2.1155624961937262e-10 Iter 125: T = 644.3878677354063 K, F = -3.476712783279101e-6, relative_change = 8.847533322625701e-11 Iter 130: T = 644.3878675612682 K, F = -1.4540021461839636e-6, relative_change = 3.700142421298925e-11 Iter 135: T = 644.3878674884417 K, F = -6.080814053399664e-7, relative_change = 1.5474446242168505e-11 Iter 140: T = 644.3878674579846 K, F = -2.5430639538637223e-7, relative_change = 6.4715852364067814e-12 Iter 145: T = 644.3878674452471 K, F = -1.0635356090249459e-7, relative_change = 2.706483781483108e-12 Iter 150: T = 644.3878674399202 K, F = -4.4478461469488195e-8, relative_change = 1.1318872031712612e-12 Iter 155: T = 644.3878674376924 K, F = -1.8600748774577625e-8, relative_change = 4.733515686494079e-13 Converged in 160 iterations to T = 644.3878674367608 K Iter 1: T = 965.1254161865198 K, F = -7946.207096194984, relative_change = 0.034874583813480214 Iter 2: T = 932.2222990525767 K, F = -6739.781106966612, relative_change = 0.03409206366562453 Iter 3: T = 901.2611339904099 K, F = -5715.31136903807, relative_change = 0.03321221246652517 Iter 5: T = 845.0518332571475 K, F = -4106.820886220965, relative_change = 0.031141290364380764 Iter 10: T = 736.370279177158 K, F = -1787.3282603435052, relative_change = 0.02418661719038084 Iter 15: T = 668.2822475317362 K, F = -769.7153184327191, relative_change = 0.015883138309237155 Iter 20: T = 630.9580263367845 K, F = -327.80310540892134, relative_change = 0.00876119190317781 Iter 25: T = 612.7579634218245 K, F = -138.40990757468396, relative_change = 0.004235123020410149 Iter 30: T = 604.5448058865724 K, F = -58.14604463060337, relative_change = 0.001895536830563245 Iter 35: T = 600.9891365077327 K, F = -24.365801860846332, relative_change = 0.0008167973515853965 Iter 40: T = 599.479621550886 K, F = -10.198756957773025, relative_change = 0.0003459927068116855 Iter 45: T = 598.8442830901364 K, F = -4.266777913091007, relative_change = 0.00014548217040229278 Iter 50: T = 598.5778620011737 K, F = -1.7846873442906441, relative_change = 6.098057696009843e-5 Iter 55: T = 598.4663158696834 K, F = -0.74642485084392, relative_change = 2.5527056840386467e-5 Iter 60: T = 598.4196439245499 K, F = -0.31217206442550616, relative_change = 1.0679967530675688e-5 Iter 65: T = 598.4001213049954 K, F = -0.13055553369044395, relative_change = 4.4672332936938205e-6 Iter 70: T = 598.3919560379164 K, F = -0.054600136674152644, relative_change = 1.8683803536326122e-6 Iter 75: T = 598.3885411077342 K, F = -0.02283447352539303, relative_change = 7.814017234340375e-7 Iter 80: T = 598.387112922514 K, F = -0.009549657277342194, relative_change = 3.267955111393079e-7 Iter 85: T = 598.3865156347896 K, F = -0.003993782074018903, relative_change = 1.3667048132612882e-7 Iter 90: T = 598.386265841299 K, F = -0.0016702475955469587, relative_change = 5.715734916545177e-8 Iter 95: T = 598.3861613745677 K, F = -0.0006985175331372107, relative_change = 2.3903907319437658e-8 Iter 100: T = 598.3861176853138 K, F = -0.00029212838202663516, relative_change = 9.996903249239409e-9 Iter 105: T = 598.3860994139427 K, F = -0.00012217157954208524, relative_change = 4.1808249837447876e-9 Iter 110: T = 598.3860917726364 K, F = -5.1093613682939854e-5, relative_change = 1.7484710468919826e-9 Iter 115: T = 598.3860885769508 K, F = -2.136795888457721e-5, relative_change = 7.312314729321586e-10 Iter 120: T = 598.3860872404769 K, F = -8.936335153642005e-6, relative_change = 3.0580972294989305e-10 Iter 125: T = 598.3860866815476 K, F = -3.737282460614111e-6, relative_change = 1.2789329174640268e-10 Iter 130: T = 598.3860864477966 K, F = -1.5629762026292404e-6, relative_change = 5.348650361697873e-11 Iter 135: T = 598.3860863500391 K, F = -6.536551502289711e-7, relative_change = 2.2368688995621806e-11 Iter 140: T = 598.3860863091558 K, F = -2.733657515907595e-7, relative_change = 9.35483102861678e-12 Iter 145: T = 598.3860862920579 K, F = -1.1432466245908657e-7, relative_change = 3.9122965976182775e-12 Iter 150: T = 598.3860862849074 K, F = -4.781202378456584e-8, relative_change = 1.6361720556593317e-12 Iter 155: T = 598.3860862819168 K, F = -1.9994984779003744e-8, relative_change = 6.842470316029331e-13 Iter 160: T = 598.3860862806663 K, F = -8.361895897923688e-9, relative_change = 2.861518780845523e-13 Converged in 162 iterations to T = 598.3860862804016 K Iter 1: T = 980.1256549590356 K, F = -4528.388422966504, relative_change = 0.01987434504096439 Iter 2: T = 962.2957287548028 K, F = -3825.158227738803, relative_change = 0.018191469750863755 Iter 3: T = 946.3894359825672 K, F = -3229.6294175986263, relative_change = 0.016529526523845303 Iter 5: T = 919.8248852748192 K, F = -2299.1251079152876, relative_change = 0.013357265112328376 Iter 10: T = 877.6414689645125 K, F = -976.0755321052828, relative_change = 0.0070194494464227335 Iter 15: T = 857.6684139236294 K, F = -411.31688415767115, relative_change = 0.003292227482540873 Iter 20: T = 848.8033802533569 K, F = -172.61791323840114, relative_change = 0.0014509485890863074 Iter 25: T = 844.9961704636081 K, F = -72.30063972165426, relative_change = 0.0006208120973110038 Iter 30: T = 843.3856504177717 K, F = -30.256562971256848, relative_change = 0.00026216491409361206 Iter 35: T = 842.7088447985357 K, F = -12.657107267292472, relative_change = 0.00011009005269767587 Iter 40: T = 842.4252202438215 K, F = -5.293959134457571, relative_change = 4.612007654833882e-5 Iter 45: T = 842.3065038934276 K, F = -2.2141030267625377, relative_change = 1.930183671230455e-5 Iter 50: T = 842.2568375753556 K, F = -0.9259828947191977, relative_change = 8.074687050124823e-6 Iter 55: T = 842.2360634263201 K, F = -0.3872603532830897, relative_change = 3.377355477939355e-6 Iter 60: T = 842.2273748864671 K, F = -0.16195747274486672, relative_change = 1.4125247277905113e-6 Iter 65: T = 842.2237411404208 K, F = -0.0677326486432328, relative_change = 5.907477120669355e-7 Iter 70: T = 842.2222214478265 K, F = -0.02832661993538066, relative_change = 2.4706002226860364e-7 Iter 75: T = 842.2215858913311 K, F = -0.011846533786079805, relative_change = 1.0332384956619453e-7 Iter 80: T = 842.2213200935067 K, F = -0.0049543624397914154, relative_change = 4.3211337414758564e-8 Iter 85: T = 842.2212089335934 K, F = -0.0020719736315282233, relative_change = 1.807150951477567e-8 Iter 90: T = 842.2211624451746 K, F = -0.0008665241344738561, relative_change = 7.557723234560445e-9 Iter 95: T = 842.22114300316 K, F = -0.00036239074469879284, relative_change = 3.1607304900886117e-9 Iter 100: T = 842.2211348722768 K, F = -0.00015155613809025859, relative_change = 1.3218553057671214e-9 Iter 105: T = 842.2211314718443 K, F = -6.338258762328408e-5, relative_change = 5.528156919899282e-10 Iter 110: T = 842.2211300497428 K, F = -2.650735484222011e-5, relative_change = 2.3119412408385063e-10 Iter 115: T = 842.2211294550029 K, F = -1.1085691205225956e-5, relative_change = 9.668813398880821e-11 Iter 120: T = 842.2211292062757 K, F = -4.636169870897433e-6, relative_change = 4.043614475669331e-11 Iter 125: T = 842.221129102255 K, F = -1.938901944997795e-6, relative_change = 1.6910881599748916e-11 Iter 130: T = 842.2211290587522 K, F = -8.108742037826744e-7, relative_change = 7.072352313230287e-12 Iter 135: T = 842.2211290405588 K, F = -3.3911670294095586e-7, relative_change = 2.9577372020937596e-12 Iter 140: T = 842.2211290329501 K, F = -1.4182127183737236e-7, relative_change = 1.2369489563382732e-12 Iter 145: T = 842.2211290297682 K, F = -5.9313242095626606e-8, relative_change = 5.173233320927729e-13 Converged in 150 iterations to T = 842.2211290284374 K Iter 1: T = 976.4324285066964 K, F = -5369.89358329731, relative_change = 0.023567571493303595 Iter 2: T = 955.0266082385741 K, F = -4540.605317238535, relative_change = 0.021922479880004855 Iter 3: T = 935.6909387364659 K, F = -3837.6478144727835, relative_change = 0.020246210247241558 Iter 5: T = 902.8092211795611 K, F = -2737.5583347522042, relative_change = 0.016893317573046834 Iter 10: T = 848.653791104346 K, F = -1167.3617240778506, relative_change = 0.009506241863439291 Iter 15: T = 821.9147191280608 K, F = -493.3261540411992, relative_change = 0.004656183964335319 Iter 20: T = 809.7590403090807 K, F = -207.34191760320735, relative_change = 0.002098558219555971 Iter 25: T = 804.4773016374529 K, F = -86.90432130348714, relative_change = 0.0009072233002108187 Iter 30: T = 802.2312972009219 K, F = -36.37886317095644, relative_change = 0.000384845127817983 Iter 35: T = 801.2853020486704 K, F = -15.220170964905073, relative_change = 0.00016191725698500175 Iter 40: T = 800.8884906348675 K, F = -6.366328860689816, relative_change = 6.788696586000189e-5 Iter 45: T = 800.7223310011335 K, F = -2.6626625813691813, relative_change = 2.8421200416253327e-5 Iter 50: T = 800.6528045332633 K, F = -1.11359016977387, relative_change = 1.1891351235857122e-5 Iter 55: T = 800.6237213398576 K, F = -0.46572246077400925, relative_change = 4.974026692830683e-6 Iter 60: T = 800.6115572822533 K, F = -0.19477170127257903, relative_change = 2.080358596640067e-6 Iter 65: T = 800.6064699323836 K, F = -0.08145602753388248, relative_change = 8.700590124498546e-7 Iter 70: T = 800.6043423076803 K, F = -0.034065914279746146, relative_change = 3.638740025237257e-7 Iter 75: T = 800.6034525036332 K, F = -0.014246777567836988, relative_change = 1.5217731620747716e-7 Iter 80: T = 800.603080375907 K, F = -0.005958173464455485, relative_change = 6.364252193847062e-8 Iter 85: T = 800.6029247474645 K, F = -0.0024917794613488198, relative_change = 2.6616089100997774e-8 Iter 90: T = 800.6028596617593 K, F = -0.0010420919573017606, relative_change = 1.113117093753921e-8 Iter 95: T = 800.6028324421345 K, F = -0.0004358153062888892, relative_change = 4.655189422388533e-9 Iter 100: T = 800.6028210585614 K, F = -0.00018226316726444036, relative_change = 1.946855958332662e-9 Iter 105: T = 800.602816297815 K, F = -7.62246334565786e-5, relative_change = 8.141984375970909e-10 Iter 110: T = 800.602814306814 K, F = -3.1878053336376055e-5, relative_change = 3.4050752821559286e-10 Iter 115: T = 800.6028134741535 K, F = -1.3331782434344852e-5, relative_change = 1.4240431365130606e-10 Iter 120: T = 800.602813125925 K, F = -5.575509562927294e-6, relative_change = 5.95551733700532e-11 Iter 125: T = 800.6028129802918 K, F = -2.3317470458916745e-6, relative_change = 2.4906709983392296e-11 Iter 130: T = 800.6028129193862 K, F = -9.751656877554638e-7, relative_change = 1.0416296665743224e-11 Iter 135: T = 800.6028128939147 K, F = -4.078263992068898e-7, relative_change = 4.3562246049509724e-12 Iter 140: T = 800.6028128832621 K, F = -1.7055825984879647e-7, relative_change = 1.821829311743746e-12 Iter 145: T = 800.6028128788072 K, F = -7.132878232507522e-8, relative_change = 7.619030970968901e-13 Iter 150: T = 800.6028128769441 K, F = -2.983239566489715e-8, relative_change = 3.1865670365112094e-13 Converged in 153 iterations to T = 800.6028128763986 K Iter 1: T = 980.8873656223533 K, F = -4354.831923755671, relative_change = 0.019112634377646702 Iter 2: T = 963.7843101053077 K, F = -3677.778497685907, relative_change = 0.01743630932201285 Iter 3: T = 948.564805159652 K, F = -3104.5441125549146, relative_change = 0.015791401443329935 Iter 5: T = 923.2376451180339 K, F = -2209.1862446154482, relative_change = 0.012680756904210019 Iter 10: T = 883.2943119415628 K, F = -937.1215713250006, relative_change = 0.006580093431499863 Iter 15: T = 864.5231066332217 K, F = -394.7068280883208, relative_change = 0.003063092697236783 Iter 20: T = 856.225261908426 K, F = -165.60629099177444, relative_change = 0.00134494802527461 Iter 25: T = 852.6684784463725 K, F = -69.35608031096415, relative_change = 0.0005744909241490188 Iter 30: T = 851.1651702357167 K, F = -29.022910241338437, relative_change = 0.00024242738830740625 Iter 35: T = 850.5336490336363 K, F = -12.14078864150483, relative_change = 0.00010177033302539506 Iter 40: T = 850.2690421751325 K, F = -5.077959876202603, relative_change = 4.262915852166418e-5 Iter 45: T = 850.1582931813109 K, F = -2.123757524053902, relative_change = 1.7839872316395935e-5 Iter 50: T = 850.1119613485776 K, F = -0.888197219870361, relative_change = 7.4629221032533615e-6 Iter 55: T = 850.0925821485861 K, F = -0.37145756419910025, relative_change = 3.121446120673872e-6 Iter 60: T = 850.084477067874 K, F = -0.15534849314597432, relative_change = 1.3054895402987864e-6 Iter 65: T = 850.0810873444916 K, F = -0.06496868317239546, relative_change = 5.459824226160829e-7 Iter 70: T = 850.079669707378 K, F = -0.027170694593346534, relative_change = 2.283383120112313e-7 Iter 75: T = 850.0790768321036 K, F = -0.011363111658948766, relative_change = 9.549414876041696e-8 Iter 80: T = 850.0788288841457 K, F = -0.004752189468163248, relative_change = 3.993685284981794e-8 Iter 85: T = 850.0787251892718 K, F = -0.0019874224701739163, relative_change = 1.6702079193642404e-8 Iter 90: T = 850.0786818228239 K, F = -0.000831163825172343, relative_change = 6.9850107922111634e-9 Iter 95: T = 850.0786636864552 K, F = -0.00034760264159539034, relative_change = 2.9212152599205215e-9 Iter 100: T = 850.0786561016088 K, F = -0.00014537157601424155, relative_change = 1.2216871606708421e-9 Iter 105: T = 850.0786529295353 K, F = -6.0796127889783946e-5, relative_change = 5.109241587488047e-10 Iter 110: T = 850.0786516029364 K, F = -2.5425667991019196e-5, relative_change = 2.1367459699098557e-10 Iter 115: T = 850.0786510481369 K, F = -1.0633318397790248e-5, relative_change = 8.936127189214976e-11 Iter 120: T = 850.078650816113 K, F = -4.446981575867426e-6, relative_change = 3.7371958155554334e-11 Iter 125: T = 850.0786507190778 K, F = -1.859779388491134e-6, relative_change = 1.5629387335491878e-11 Iter 130: T = 850.0786506784966 K, F = -7.777821562360288e-7, relative_change = 6.5363981665979065e-12 Iter 135: T = 850.0786506615251 K, F = -3.252782296847556e-7, relative_change = 2.733603499772946e-12 Iter 140: T = 850.0786506544274 K, F = -1.3603520043758976e-7, relative_change = 1.1432252947997424e-12 Iter 145: T = 850.0786506514589 K, F = -5.688946469462053e-8, relative_change = 4.78092985039018e-13 Converged in 150 iterations to T = 850.0786506502176 K Iter 1: T = 967.1976597869142 K, F = -7474.044420632571, relative_change = 0.03280234021308584 Iter 2: T = 936.4653328064228 K, F = -6335.753047018395, relative_change = 0.03177460849860011 Iter 3: T = 907.7719711982226 K, F = -5369.326377513512, relative_change = 0.03064006814028157 Iter 5: T = 856.3660634205327 K, F = -3852.552950016478, relative_change = 0.0280545286853431 Iter 10: T = 760.5776776096828 K, F = -1668.5987270504245, relative_change = 0.020168735324720848 Iter 15: T = 704.316500375723 K, F = -714.5955609297409, relative_change = 0.012135342953557036 Iter 20: T = 675.302161356211 K, F = -302.9268682091599, relative_change = 0.006233641213965985 Iter 25: T = 661.7477316178647 K, F = -127.5404667165548, relative_change = 0.002884773446935452 Iter 30: T = 655.7749386884554 K, F = -53.50161704808765, relative_change = 0.0012629932437842432 Iter 35: T = 653.2185733705853 K, F = -22.404593169024878, relative_change = 0.00053878326077652 Iter 40: T = 652.1388095533528 K, F = -9.375129019438278, relative_change = 0.00022723174413022626 Iter 45: T = 651.6853412636391 K, F = -3.92171755432641, relative_change = 9.536857217288238e-5 Iter 50: T = 651.4953609126657 K, F = -1.6402716703031444, relative_change = 3.9943620801449594e-5 Iter 55: T = 651.415850172205 K, F = -0.6860096678541038, relative_change = 1.6715301438900345e-5 Iter 60: T = 651.382587552657 K, F = -0.2869024171418212, relative_change = 6.992359703123094e-6 Iter 65: T = 651.3686749292373 K, F = -0.11998688860306977, relative_change = 2.9246069539291596e-6 Iter 70: T = 651.3628561893072 K, F = -0.05018010217713487, relative_change = 1.2231612909969628e-6 Iter 75: T = 651.360422667738 K, F = -0.020985944663336475, relative_change = 5.115504083410282e-7 Iter 80: T = 651.3594049303285 K, F = -0.00877657734322812, relative_change = 2.1393819504150243e-7 Iter 85: T = 651.358979298706 K, F = -0.003670470274710458, relative_change = 8.947180635719044e-8 Iter 90: T = 651.3588012941838 K, F = -0.0015350346452466246, relative_change = 3.741823007638743e-8 Iter 95: T = 651.3587268505153 K, F = -0.0006419698456332501, relative_change = 1.564875980572848e-8 Iter 100: T = 651.358695717275 K, F = -0.0002684794603548535, relative_change = 6.5444998274093635e-9 Iter 105: T = 651.3586826969806 K, F = -0.00011228131711560341, relative_change = 2.7369882576740845e-9 Iter 110: T = 651.3586772517377 K, F = -4.695738849486153e-5, relative_change = 1.1446412398644779e-9 Iter 115: T = 651.3586749744721 K, F = -1.963814059252611e-5, relative_change = 4.787026427819289e-10 Iter 120: T = 651.3586740220924 K, F = -8.212905797000403e-6, relative_change = 2.00199184784737e-10 Iter 125: T = 651.3586736237958 K, F = -3.434734773100079e-6, relative_change = 8.372567767421249e-11 Iter 130: T = 651.3586734572234 K, F = -1.4364470409256036e-6, relative_change = 3.501507686501644e-11 Iter 135: T = 651.3586733875608 K, F = -6.007385274786614e-7, relative_change = 1.4643704311297575e-11 Iter 140: T = 651.358673358427 K, F = -2.5123526442571986e-7, relative_change = 6.1241534499966395e-12 Iter 145: T = 651.358673346243 K, F = -1.0506920683495125e-7, relative_change = 2.5611848203508368e-12 Iter 150: T = 651.3586733411476 K, F = -4.3941670191394167e-8, relative_change = 1.0711296113241039e-12 Iter 155: T = 651.3586733390166 K, F = -1.8377745159003922e-8, relative_change = 4.479790354746038e-13 Converged in 160 iterations to T = 651.3586733381254 K Iter 1: T = 973.6103636303931 K, F = -6012.903749839741, relative_change = 0.026389636369606895 Iter 2: T = 949.4136080575876 K, F = -5088.251169420227, relative_change = 0.024852606829882887 Iter 3: T = 927.3415450689695 K, F = -4303.97655178511, relative_change = 0.023248100513089794 Iter 5: T = 889.2459300108405 K, F = -3075.3315255157245, relative_change = 0.019915406071219728 Iter 10: T = 824.4579895487893 K, F = -1316.5981268028272, relative_change = 0.011919585199245427 Iter 15: T = 791.1643315010227 K, F = -557.9799003033548, relative_change = 0.006098556518957127 Iter 20: T = 775.6466893076044 K, F = -234.8894376085568, relative_change = 0.0028158247717989192 Iter 25: T = 768.8171642621381 K, F = -98.52588493498803, relative_change = 0.0012314345156195826 Iter 30: T = 765.8957876468708 K, F = -41.25780239318928, relative_change = 0.0005250584719064856 Iter 35: T = 764.6621595305286 K, F = -17.263945908997595, relative_change = 0.0002213957100860837 Iter 40: T = 764.1441284821989 K, F = -7.221650917922407, relative_change = 9.291074285250515e-5 Iter 45: T = 763.9271094214151 K, F = -3.0204722893398186, relative_change = 3.891270795155387e-5 Iter 50: T = 763.8362841439441 K, F = -1.2632486520292736, relative_change = 1.628363158911427e-5 Iter 55: T = 763.7982884899159 K, F = -0.5283146090781231, relative_change = 6.8117374313860745e-6 Iter 60: T = 763.782396251987 K, F = -0.2209490422132464, relative_change = 2.84905232537458e-6 Iter 65: T = 763.7757495781228 K, F = -0.0924038015716, relative_change = 1.1915606024004414e-6 Iter 70: T = 763.7729697984845 K, F = -0.03864442116986999, relative_change = 4.983341260898555e-7 Iter 75: T = 763.7718072507291 K, F = -0.016161566804154037, relative_change = 2.084109010562166e-7 Iter 80: T = 763.7713210575005 K, F = -0.006758961708806965, relative_change = 8.716021078728673e-8 Iter 85: T = 763.7711177253582 K, F = -0.0028266787602663213, relative_change = 3.64514905505945e-8 Iter 90: T = 763.7710326893707 K, F = -0.0011821508607092746, relative_change = 1.524445733870116e-8 Iter 95: T = 763.7709971262952 K, F = -0.0004943896160701788, relative_change = 6.3754156362039676e-9 Iter 100: T = 763.7709822533906 K, F = -0.00020675964402439018, relative_change = 2.6662752347873596e-9 Iter 105: T = 763.7709760333638 K, F = -8.646935160683267e-5, relative_change = 1.1150681787289525e-9 Iter 110: T = 763.7709734320744 K, F = -3.6162515773430215e-5, relative_change = 4.663348401057821e-10 Iter 115: T = 763.770972344184 K, F = -1.5123594634181003e-5, relative_change = 1.9502678346749225e-10 Iter 120: T = 763.7709718892153 K, F = -6.324869040619241e-6, relative_change = 8.156254502852778e-11 Iter 125: T = 763.7709716989419 K, F = -2.6451360287671477e-6, relative_change = 3.411043380080473e-11 Iter 130: T = 763.7709716193673 K, F = -1.1062260200089824e-6, relative_change = 1.4265372000754609e-11 Iter 135: T = 763.7709715860883 K, F = -4.626367142712695e-7, relative_change = 5.9659461197649555e-12 Iter 140: T = 763.7709715721705 K, F = -1.9347858226659298e-7, relative_change = 2.495009067858655e-12 Iter 145: T = 763.7709715663501 K, F = -8.09161690984439e-8, relative_change = 1.043456972235556e-12 Iter 150: T = 763.7709715639159 K, F = -3.38402663668802e-8, relative_change = 4.3638820617428884e-13 Converged in 154 iterations to T = 763.7709715630372 K Iter 1: T = 969.9632639265053 K, F = -6843.898886658043, relative_change = 0.03003673607349475 Iter 2: T = 942.0829476984386 K, F = -5797.224248335527, relative_change = 0.028743682637221258 Iter 3: T = 916.3165250141762 K, F = -4908.894036303618, relative_change = 0.027350481979544528 Iter 5: T = 870.9209460554343 K, F = -3515.637267690039, relative_change = 0.02430383110759637 Iter 10: T = 789.9001316374502 K, F = -1514.2700875478436, relative_change = 0.01600273352546168 Iter 15: T = 745.3998895890284 K, F = -644.9891581322972, relative_change = 0.008847978388711012 Iter 20: T = 723.6688601572489 K, F = -272.3642872796484, relative_change = 0.004283629872771909 Iter 25: T = 713.8539169851172 K, F = -114.42639855706233, relative_change = 0.0019187865022048903 Iter 30: T = 709.6030108812496 K, F = -47.95098344645506, relative_change = 0.0008271238856971054 Iter 35: T = 707.7979999863937 K, F = -20.070988996022926, relative_change = 0.0003504241530786763 Iter 40: T = 707.0382283109002 K, F = -8.39698898428535, relative_change = 0.00014735574546231558 Iter 45: T = 706.719616680739 K, F = -3.5122590400662395, relative_change = 6.176772019621143e-5 Iter 50: T = 706.5862172797393 K, F = -1.468962948541036, relative_change = 2.5856880916216828e-5 Iter 55: T = 706.5304013805222 K, F = -0.6143543498808745, relative_change = 1.0818014559170649e-5 Iter 60: T = 706.5070538351256 K, F = -0.2569332131597273, relative_change = 4.524985581475795e-6 Iter 65: T = 706.4972887957741 K, F = -0.10745304318572213, relative_change = 1.892536439523736e-6 Iter 70: T = 706.4932047967765 K, F = -0.044938234244414677, relative_change = 7.915046799337102e-7 Iter 75: T = 706.4914967946239 K, F = -0.018793721681952813, relative_change = 3.3102079189642743e-7 Iter 80: T = 706.4907824833537 K, F = -0.007859761551667899, relative_change = 1.3843756235912575e-7 Iter 85: T = 706.490483749085 K, F = -0.003287046617658218, relative_change = 5.78963667318581e-8 Iter 90: T = 706.4903588147125 K, F = -0.001374682232822444, relative_change = 2.4212973820805533e-8 Iter 95: T = 706.4903065656425 K, F = -0.0005749085406980825, relative_change = 1.0126158623724695e-8 Iter 100: T = 706.4902847144534 K, F = -0.0002404336201754509, relative_change = 4.234881137686095e-9 Iter 105: T = 706.4902755760245 K, F = -0.00010055221186500152, relative_change = 1.771077985239734e-9 Iter 110: T = 706.4902717542243 K, F = -4.2052136244197236e-5, relative_change = 7.406859906036126e-10 Iter 115: T = 706.4902701559017 K, F = -1.7586705991612384e-5, relative_change = 3.097637374119995e-10 Iter 120: T = 706.4902694874643 K, F = -7.354971579554004e-6, relative_change = 1.2954691437903752e-10 Iter 125: T = 706.4902692079156 K, F = -3.075937779817295e-6, relative_change = 5.417808140219879e-11 Iter 130: T = 706.4902690910051 K, F = -1.2863932794537902e-6, relative_change = 2.2657909507044394e-11 Iter 135: T = 706.4902690421117 K, F = -5.379857793696985e-7, relative_change = 9.475821510998277e-12 Iter 140: T = 706.4902690216638 K, F = -2.2499205865056382e-7, relative_change = 3.962901383669304e-12 Iter 145: T = 706.4902690131123 K, F = -9.409396017900917e-8, relative_change = 1.657325539604661e-12 Iter 150: T = 706.4902690095361 K, F = -3.935220627138136e-8, relative_change = 6.931307426198886e-13 Iter 155: T = 706.4902690080404 K, F = -1.645782166104226e-8, relative_change = 2.898801167911865e-13 Converged in 157 iterations to T = 706.4902690077239 K Iter 1: T = 973.5371494528902 K, F = -6029.5856698284615, relative_change = 0.02646285054710989 Iter 2: T = 949.2673033667181 K, F = -5102.4700146517835, relative_change = 0.024929553124717726 Iter 3: T = 927.1228596075516 K, F = -4316.094900586256, relative_change = 0.0233279326914853 Iter 5: T = 888.8871542470932 K, F = -3084.1277177356455, relative_change = 0.019997896747048223 Iter 10: T = 823.8031869810441 K, F = -1320.5098348039894, relative_change = 0.011989648629726554 Iter 15: T = 790.3188459736957 K, F = -559.6847084475429, relative_change = 0.006142322870427721 Iter 20: T = 774.7006011035133 K, F = -235.61859245478954, relative_change = 0.0028381329493134644 Iter 25: T = 767.8240711654894 K, F = -98.83409761219428, relative_change = 0.001241638297141424 Iter 30: T = 764.8820426992304 K, F = -41.38731143253606, relative_change = 0.0005294946946508927 Iter 35: T = 763.6395926758047 K, F = -17.31821803331476, relative_change = 0.00022328182241318023 Iter 40: T = 763.1178389536844 K, F = -7.244367621774222, relative_change = 9.37050288089025e-5 Iter 45: T = 762.8992571450185 K, F = -3.029976105824862, relative_change = 3.924585561979045e-5 Iter 50: T = 762.8077772741709 K, F = -1.2672238609497062, relative_change = 1.6423127734362623e-5 Iter 55: T = 762.7695076802448 K, F = -0.5299771938450033, relative_change = 6.870106125397551e-6 Iter 60: T = 762.7535008456729 K, F = -0.22164437337512144, relative_change = 2.8734680147701544e-6 Iter 65: T = 762.7468062405766 K, F = -0.09269460057971646, relative_change = 1.201772445788774e-6 Iter 70: T = 762.7440064145542 K, F = -0.03876603734998063, relative_change = 5.026050002148571e-7 Iter 75: T = 762.742835482992 K, F = -0.016212428243466137, relative_change = 2.1019705950372813e-7 Iter 80: T = 762.7423457835254 K, F = -0.006780232587260793, relative_change = 8.790720845248098e-8 Iter 85: T = 762.7421409850272 K, F = -0.002835574497243809, relative_change = 3.676389472879639e-8 Iter 90: T = 762.7420553357912 K, F = -0.0011858711611921757, relative_change = 1.5375108600838584e-8 Iter 95: T = 762.7420195162479 K, F = -0.0004959454898028071, relative_change = 6.4300555745855315e-9 Iter 100: T = 762.7420045360852 K, F = -0.00020741032825255523, relative_change = 2.6891263042782425e-9 Iter 105: T = 762.741998271202 K, F = -8.674147545173483e-5, relative_change = 1.1246247686718008e-9 Iter 110: T = 762.7419956511529 K, F = -3.627631978708745e-5, relative_change = 4.703315017826097e-10 Iter 115: T = 762.7419945554171 K, F = -1.5171189986395994e-5, relative_change = 1.9669825001036392e-10 Iter 120: T = 762.7419940971673 K, F = -6.344771794730697e-6, relative_change = 8.226154398090382e-11 Iter 125: T = 762.7419939055219 K, F = -2.653459968193772e-6, relative_change = 3.4402768326126814e-11 Iter 130: T = 762.7419938253735 K, F = -1.1097102787793744e-6, relative_change = 1.4387669724316962e-11 Iter 135: T = 762.7419937918544 K, F = -4.640942775635537e-7, relative_change = 6.01709771966032e-12 Iter 140: T = 762.7419937778363 K, F = -1.9408967599776616e-7, relative_change = 2.5164209157869512e-12 Iter 145: T = 762.7419937719736 K, F = -8.116862559859328e-8, relative_change = 1.0523714160448495e-12 Iter 150: T = 762.7419937695219 K, F = -3.394440062365334e-8, relative_change = 4.4009759544670106e-13 Converged in 154 iterations to T = 762.741993768637 K Iter 1: T = 964.3886399865972 K, F = -8114.082254202429, relative_change = 0.03561136001340273 Iter 2: T = 930.7066495471255 K, F = -6883.536834444337, relative_change = 0.03492574367107836 Iter 3: T = 898.9232293046139 K, F = -5838.53027843053, relative_change = 0.034149772388514875 Iter 5: T = 840.9393597802009 K, F = -4197.615990775369, relative_change = 0.03230171243126692 Iter 10: T = 727.2143210510658 K, F = -1830.2854656914892, relative_change = 0.02586064834459766 Iter 15: T = 654.0192934270957 K, F = -790.1278823910859, relative_change = 0.017646534108820545 Iter 20: T = 612.7372087266549 K, F = -337.25635532021124, relative_change = 0.010080724275602308 Iter 25: T = 592.1585867469468 K, F = -142.61962197692537, relative_change = 0.004988336086940951 Iter 30: T = 582.7493596522328 K, F = -59.96396268061372, relative_change = 0.0022606878634469784 Iter 35: T = 578.6490866041236 K, F = -25.13734632707964, relative_change = 0.0009798542117032268 Iter 40: T = 576.9031800127402 K, F = -10.523500963221915, relative_change = 0.0004161312216495823 Iter 45: T = 576.167398719856 K, F = -4.40296071007477, relative_change = 0.00017516609294049312 Iter 50: T = 575.8586892283959 K, F = -1.8417061065910325, relative_change = 7.345697897073863e-5 Iter 55: T = 575.7294078478552 K, F = -0.7702822773330066, relative_change = 3.075578174188195e-5 Iter 60: T = 575.6753100809401 K, F = -0.3221515396082709, relative_change = 1.2868601383558863e-5 Iter 65: T = 575.6526803651294 K, F = -0.13472942197232216, relative_change = 5.382882008862783e-6 Iter 70: T = 575.6432154057195 K, F = -0.05634576828537108, relative_change = 2.251374354584066e-6 Iter 75: T = 575.6392568818728 K, F = -0.023564528302184973, relative_change = 9.415846697411231e-7 Iter 80: T = 575.6376013511021 K, F = -0.009854976790431236, relative_change = 3.9378773056686823e-7 Iter 85: T = 575.6369089833215 K, F = -0.004121470671664296, relative_change = 1.6468774211082766e-7 Iter 90: T = 575.6366194259653 K, F = -0.0017236485496447407, relative_change = 6.887455722836742e-8 Iter 95: T = 575.6364983294667 K, F = -0.0007208504595991871, relative_change = 2.8804193272578127e-8 Iter 100: T = 575.6364476854377 K, F = -0.0003014682795727808, relative_change = 1.2046263010485385e-8 Iter 105: T = 575.6364265054955 K, F = -0.00012607763667216165, relative_change = 5.037892010699173e-9 Iter 110: T = 575.6364176477897 K, F = -5.272717373561164e-5, relative_change = 2.1069067741191386e-9 Iter 115: T = 575.6364139433913 K, F = -2.205113361447575e-5, relative_change = 8.811335962312871e-10 Iter 120: T = 575.6364123941676 K, F = -9.222047382850818e-6, relative_change = 3.6850059598976677e-10 Iter 125: T = 575.6364117462638 K, F = -3.85677078296176e-6, relative_change = 1.541113681953074e-10 Iter 130: T = 575.6364114753026 K, F = -1.6129471486769908e-6, relative_change = 6.445119672772029e-11 Iter 135: T = 575.6364113619834 K, F = -6.745537210472996e-7, relative_change = 2.695425864080087e-11 Iter 140: T = 575.6364113145919 K, F = -2.82105715121439e-7, relative_change = 1.1272564623327623e-11 Iter 145: T = 575.6364112947723 K, F = -1.179799637429646e-7, relative_change = 4.714320534753866e-12 Iter 150: T = 575.6364112864835 K, F = -4.93408784940641e-8, relative_change = 1.9715950855017863e-12 Iter 155: T = 575.636411283017 K, F = -2.0634431052712898e-8, relative_change = 8.245240883117815e-13 Iter 160: T = 575.6364112815672 K, F = -8.62938792645096e-9, relative_change = 3.4481872529727577e-13 Converged in 163 iterations to T = 575.6364112811427 K Iter 1: T = 963.5200413281859 K, F = -8311.993284772096, relative_change = 0.03647995867181413 Iter 2: T = 928.9150304619154 K, F = -7053.083939597859, relative_change = 0.035915195721895304 Iter 3: T = 896.1512476452501 K, F = -5983.934633108721, relative_change = 0.0352710223672159 Iter 5: T = 836.0279912890638 K, F = -4304.927026454694, relative_change = 0.03371507148649194 Iter 10: T = 716.0009373752805 K, F = -1881.4871938529118, relative_change = 0.028036807708696695 Iter 15: T = 635.9805271165251 K, F = -814.8767775645798, relative_change = 0.020146791005046603 Iter 20: T = 588.9980398148838 K, F = -348.96905072447436, relative_change = 0.012116334260469897 Iter 25: T = 564.7766278994468 K, F = -147.92927855345502, relative_change = 0.006221635886441843 Iter 30: T = 553.4636701837395 K, F = -62.28140102853233, relative_change = 0.0028786201469399794 Iter 35: T = 548.4791457522837 K, F = -26.126085613025452, relative_change = 0.0012601714899580874 Iter 40: T = 546.3458727369352 K, F = -10.940651389675176, relative_change = 0.0005375550879660304 Iter 45: T = 545.4448364188876 K, F = -4.578073928483618, relative_change = 0.0002267093213834615 Iter 50: T = 545.0664320181521 K, F = -1.9150566224496843, relative_change = 9.514852320921329e-5 Iter 55: T = 544.9079003100453 K, F = -0.8009787414132253, relative_change = 3.9851317735574344e-5 Iter 60: T = 544.8415515983228 K, F = -0.3349927432634113, relative_change = 1.6676650770042452e-5 Iter 65: T = 544.813795218086 K, F = -0.14010039264702834, relative_change = 6.976187050702228e-6 Iter 70: T = 544.8021856710013 K, F = -0.05859208188208195, relative_change = 2.9178418733302764e-6 Iter 75: T = 544.7973301578085 K, F = -0.024503982632636534, relative_change = 1.2203317938299413e-6 Iter 80: T = 544.7952994783839 K, F = -0.010247871161381344, relative_change = 5.103670333768103e-7 Iter 85: T = 544.7944502159829 K, F = -0.004285784376139551, relative_change = 2.1344328559848634e-7 Iter 90: T = 544.7940950429029 K, F = -0.0017923666060400412, relative_change = 8.926482791205344e-8 Iter 95: T = 544.793946505034 K, F = -0.0007495891893619655, relative_change = 3.73316689913855e-8 Iter 100: T = 544.7938843846805 K, F = -0.0003134871635316061, relative_change = 1.5612558907159512e-8 Iter 105: T = 544.7938584051992 K, F = -0.00013110407736094398, relative_change = 6.529360157552679e-9 Iter 110: T = 544.7938475402685 K, F = -5.482929150779636e-5, relative_change = 2.730656686162085e-9 Iter 115: T = 544.7938429964246 K, F = -2.2930264236248332e-5, relative_change = 1.1419932688636828e-9 Iter 120: T = 544.7938410961347 K, F = -9.589710001700613e-6, relative_change = 4.77595213963853e-10 Iter 125: T = 544.7938403014108 K, F = -4.010531620135538e-6, relative_change = 1.9973604208992604e-10 Iter 130: T = 544.7938399690478 K, F = -1.6772520044783246e-6, relative_change = 8.353198769284119e-11 Iter 135: T = 544.7938398300496 K, F = -7.014466489874138e-7, relative_change = 3.4934066416452193e-11 Iter 140: T = 544.7938397719189 K, F = -2.9335312359823895e-7, relative_change = 1.4609831728833873e-11 Iter 145: T = 544.793839747608 K, F = -1.226836618961613e-7, relative_change = 6.11000024330955e-12 Iter 150: T = 544.7938397374409 K, F = -5.130811117637357e-8, relative_change = 2.55529193499773e-12 Iter 155: T = 544.7938397331889 K, F = -2.1457860627238645e-8, relative_change = 1.068663354545281e-12 Iter 160: T = 544.7938397314106 K, F = -8.97392973819855e-9, relative_change = 4.4692758631548985e-13 Converged in 165 iterations to T = 544.793839730667 K Iter 1: T = 969.3493113050474 K, F = -6983.788575476926, relative_change = 0.03065068869495259 Iter 2: T = 940.8402758536961 K, F = -5916.7076053635465, relative_change = 0.029410487136952965 Iter 3: T = 914.4336738600925 K, F = -5010.9789456960125, relative_change = 0.028067040358835386 Iter 5: T = 867.7411603314175 K, F = -3590.1985957476945, relative_change = 0.025102666337200923 Iter 10: T = 783.6499632437614 K, F = -1548.166198429471, relative_change = 0.01683224128074101 Iter 15: T = 736.8402652215548 K, F = -660.1237328985598, relative_change = 0.00946029090795216 Iter 20: T = 713.7459903962939 K, F = -278.95276668975265, relative_change = 0.004629875996685687 Iter 25: T = 703.2520949859123 K, F = -117.23871271131968, relative_change = 0.00208578641017131 Iter 30: T = 698.693467030221 K, F = -49.13821366753762, relative_change = 0.0009015165755151611 Iter 35: T = 696.7551611117327 K, F = -20.569536132021042, relative_change = 0.0003823897480709835 Iter 40: T = 695.9388026719682 K, F = -8.605850270208801, relative_change = 0.0001608779794103476 Iter 45: T = 695.596375869306 K, F = -3.599671346282584, relative_change = 6.745012843861424e-5 Iter 50: T = 695.4529902509393 K, F = -1.5055310568946336, relative_change = 2.8238123018596398e-5 Iter 55: T = 695.3929933587522 K, F = -0.6296495380131731, relative_change = 1.1814718277559039e-5 Iter 60: T = 695.367896459914 K, F = -0.26333018800916885, relative_change = 4.941966003909578e-6 Iter 65: T = 695.3573996779159 K, F = -0.1101283947336868, relative_change = 2.0669483566568814e-6 Iter 70: T = 695.353009630537 K, F = -0.046057108756014986, relative_change = 8.644503266205412e-7 Iter 75: T = 695.3511736309467 K, F = -0.01926165020863535, relative_change = 3.6152831959661403e-7 Iter 80: T = 695.3504057888586 K, F = -0.008055455172114478, relative_change = 1.5119631244456929e-7 Iter 85: T = 695.3500846672296 K, F = -0.003368888083913779, relative_change = 6.323225247996452e-8 Iter 90: T = 695.3499503701722 K, F = -0.0014089093210084558, relative_change = 2.6444509170033882e-8 Iter 95: T = 695.3498942055115 K, F = -0.0005892227188200039, relative_change = 1.1059414080689386e-8 Iter 100: T = 695.3498707167751 K, F = -0.00024641998113483776, relative_change = 4.625179851999129e-9 Iter 105: T = 695.3498608935041 K, F = -0.00010305577979441427, relative_change = 1.934305595682255e-9 Iter 110: T = 695.3498567852947 K, F = -4.3099158242076996e-5, relative_change = 8.089497306041062e-10 Iter 115: T = 695.3498550671925 K, F = -1.8024583275266792e-5, relative_change = 3.3831245321337143e-10 Iter 120: T = 695.3498543486616 K, F = -7.538095357029206e-6, relative_change = 1.414862971527882e-10 Iter 125: T = 695.3498540481634 K, F = -3.1525226621420543e-6, relative_change = 5.917128106618344e-11 Iter 130: T = 695.3498539224914 K, F = -1.3184227609652766e-6, relative_change = 2.4746138943613853e-11 Iter 135: T = 695.3498538699339 K, F = -5.513800150902526e-7, relative_change = 1.0349128423022449e-11 Iter 140: T = 695.3498538479537 K, F = -2.3059300835459595e-7, relative_change = 4.328115985272584e-12 Iter 145: T = 695.3498538387613 K, F = -9.643720078056361e-8, relative_change = 1.8100782555285609e-12 Iter 150: T = 695.3498538349169 K, F = -4.032958789146335e-8, relative_change = 7.569662900605469e-13 Iter 155: T = 695.3498538333092 K, F = -1.6866943619575636e-8, relative_change = 3.165841359666781e-13 Converged in 158 iterations to T = 695.3498538328384 K Iter 1: T = 966.4790979588508 K, F = -7637.7694166855645, relative_change = 0.03352090204114919 Iter 2: T = 934.9973410624403 K, F = -6475.802334551069, relative_change = 0.032573655201543615 Iter 3: T = 905.5250061096672 K, F = -5489.2022624206065, relative_change = 0.03152130349299564 Iter 5: T = 852.4839730694935 K, F = -3940.5406574049357, relative_change = 0.029096396438108088 Iter 10: T = 752.4243347705305 K, F = -1709.4400553573441, relative_change = 0.021459122521858037 Iter 15: T = 692.4245712764836 K, F = -733.3690948394461, relative_change = 0.01327069607796355 Iter 20: T = 660.9013316610767 K, F = -311.3128276800137, relative_change = 0.006962514561918508 Iter 25: T = 645.9902748562723 K, F = -131.1783021362259, relative_change = 0.0032623177607018134 Iter 30: T = 639.3755402996213 K, F = -55.04998481610312, relative_change = 0.0014370624729228782 Iter 35: T = 636.5354727519012 K, F = -23.057226218569305, relative_change = 0.0006147342453670711 Iter 40: T = 635.3342066622831 K, F = -9.64898716703732, relative_change = 0.0002595733342798994 Iter 45: T = 634.829410398691 K, F = -4.036411314202946, relative_change = 0.00010899733419362124 Iter 50: T = 634.6178729958926 K, F = -1.6882666480338118, relative_change = 4.566151991889968e-5 Iter 55: T = 634.5293308248399 K, F = -0.7060867687423606, relative_change = 1.9109787450449125e-5 Iter 60: T = 634.4922883460969 K, F = -0.2952997808100644, relative_change = 7.994321510912928e-6 Iter 65: T = 634.4767944490088 K, F = -0.12349892040801769, relative_change = 3.3437372061216106e-6 Iter 70: T = 634.4703143155647 K, F = -0.05164890276562367, relative_change = 1.3984636878368668e-6 Iter 75: T = 634.4676041762884 K, F = -0.021600219323655134, relative_change = 5.848669588562782e-7 Iter 80: T = 634.4664707514196 K, F = -0.009033475166867533, relative_change = 2.446005758386731e-7 Iter 85: T = 634.4659967374597 K, F = -0.003777908155702947, relative_change = 1.0229527177628221e-7 Iter 90: T = 634.4657984987857 K, F = -0.0015799664745198005, relative_change = 4.2781172456714825e-8 Iter 95: T = 634.4657155929393 K, F = -0.0006607608773093188, relative_change = 1.7891609149255424e-8 Iter 100: T = 634.4656809207129 K, F = -0.00027633809541754983, relative_change = 7.482486709491949e-9 Iter 105: T = 634.4656664203717 K, F = -0.00011556789257211042, relative_change = 3.1292656663929878e-9 Iter 110: T = 634.4656603561555 K, F = -4.833187322594856e-5, relative_change = 1.3086963428572107e-9 Iter 115: T = 634.4656578200277 K, F = -2.02129666847517e-5, relative_change = 5.473124527655802e-10 Iter 120: T = 634.4656567593888 K, F = -8.453303890432196e-6, relative_change = 2.2889260123099713e-10 Iter 125: T = 634.465656315817 K, F = -3.5352728304238745e-6, relative_change = 9.572562484430785e-11 Iter 130: T = 634.46565613031 K, F = -1.4784938778267254e-6, relative_change = 4.003361473617648e-11 Iter 135: T = 634.4656560527287 K, F = -6.183242147184131e-7, relative_change = 1.6742547114826588e-11 Iter 140: T = 634.4656560202833 K, F = -2.5859035590602986e-7, relative_change = 7.001927330667815e-12 Iter 145: T = 634.4656560067142 K, F = -1.0814566264727432e-7, relative_change = 2.9282920022562856e-12 Iter 150: T = 634.4656560010394 K, F = -4.5228101430705436e-8, relative_change = 1.224654641345882e-12 Iter 155: T = 634.4656559986662 K, F = -1.891474293858053e-8, relative_change = 5.121600729913313e-13 Converged in 160 iterations to T = 634.4656559976737 K Iter 1: T = 966.4466850981441 K, F = -7645.15471783016, relative_change = 0.03355331490185582 Iter 2: T = 934.931040503903 K, F = -6482.120916465798, relative_change = 0.03260981188118068 Iter 3: T = 905.4233839691517 K, F = -5494.612024272601, relative_change = 0.03156131870308573 Iter 5: T = 852.3078447944564 K, F = -3944.51409122952, relative_change = 0.029144089007331824 Iter 10: T = 752.0507846021864 K, F = -1711.2902479259055, relative_change = 0.021519725003718224 Iter 15: T = 691.8741407868305 K, F = -734.2238283836268, relative_change = 0.013325524666694857 Iter 20: T = 660.2296408073666 K, F = -311.69651135095074, relative_change = 0.0069984883088281755 Iter 25: T = 645.2520533467059 K, F = -131.34529558564984, relative_change = 0.0032811936051197967 Iter 30: T = 638.6055857307556 K, F = -55.12118611719582, relative_change = 0.0014458212132420298 Iter 35: T = 635.7514407537909 K, F = -23.0872617041745, relative_change = 0.000618566988272267 Iter 40: T = 634.5441355438195 K, F = -9.661595138552318, relative_change = 0.0002612074435466241 Iter 45: T = 634.0367862504788 K, F = -4.041692421402979, relative_change = 0.00010968631426849927 Iter 50: T = 633.8241762837365 K, F = -1.690476731437086, relative_change = 4.59506436452856e-5 Iter 55: T = 633.7351846994487 K, F = -0.7070113082689276, relative_change = 1.9230875201272132e-5 Iter 60: T = 633.6979541209731 K, F = -0.29568647915015733, relative_change = 8.044992117108078e-6 Iter 65: T = 633.6823815321131 K, F = -0.12366065012183641, relative_change = 3.3649335551948786e-6 Iter 70: T = 633.6758684842428 K, F = -0.051716541435942676, relative_change = 1.4073291807443542e-6 Iter 75: T = 633.6731445789579 K, F = -0.02162850686273393, relative_change = 5.885747759268584e-7 Iter 80: T = 633.6720053968396 K, F = -0.009045305395874281, relative_change = 2.461512575767449e-7 Iter 85: T = 633.6715289751047 K, F = -0.0037828557056165946, relative_change = 1.0294379034327927e-7 Iter 90: T = 633.6713297294663 K, F = -0.0015820356012594683, relative_change = 4.305239156045571e-8 Iter 95: T = 633.6712464024945 K, F = -0.0006616262117625782, relative_change = 1.8005036388567735e-8 Iter 100: T = 633.6712115541482 K, F = -0.00027669998865642587, relative_change = 7.529923362058946e-9 Iter 105: T = 633.6711969801515 K, F = -0.00011571924074815776, relative_change = 3.1491042482280546e-9 Iter 110: T = 633.6711908851318 K, F = -4.8395168714854275e-5, relative_change = 1.3169930720891903e-9 Iter 115: T = 633.6711883361215 K, F = -2.0239437489188994e-5, relative_change = 5.50782240760187e-10 Iter 120: T = 633.671187270095 K, F = -8.464373972505435e-6, relative_change = 2.3034369917836053e-10 Iter 125: T = 633.67118682427 K, F = -3.5399016849457787e-6, relative_change = 9.633246997569123e-11 Iter 130: T = 633.6711866378207 K, F = -1.4804293563264181e-6, relative_change = 4.028739479565873e-11 Iter 135: T = 633.6711865598453 K, F = -6.19132869916772e-7, relative_change = 1.684865966033956e-11 Iter 140: T = 633.671186527235 K, F = -2.58928065266506e-7, relative_change = 7.04629177552936e-12 Iter 145: T = 633.6711865135971 K, F = -1.0828682894814534e-7, relative_change = 2.9468439101350557e-12 Iter 150: T = 633.6711865078936 K, F = -4.528660391134309e-8, relative_change = 1.2323987529126392e-12 Iter 155: T = 633.6711865055083 K, F = -1.894032719551575e-8, relative_change = 5.15429146809631e-13 Converged in 160 iterations to T = 633.6711865045107 K Iter 1: T = 976.4070707719044 K, F = -5375.671367291115, relative_change = 0.02359292922809566 Iter 2: T = 954.9763999540102 K, F = -4545.522513003592, relative_change = 0.021948500230495094 Iter 3: T = 935.6165994784633 K, F = -3841.831309556547, relative_change = 0.020272543359688422 Iter 5: T = 902.6895907012605 K, F = -2740.5825111637173, relative_change = 0.016919166190167312 Iter 10: T = 848.4448831628355 K, F = -1168.690036645442, relative_change = 0.00952568647342293 Iter 15: T = 821.6530352255714 K, F = -493.89865705158724, relative_change = 0.004667319248518792 Iter 20: T = 809.4710016635782 K, F = -207.58506890127276, relative_change = 0.0021039652847737655 Iter 25: T = 804.1772977937452 K, F = -87.00673487391158, relative_change = 0.0009096395852137224 Iter 30: T = 801.9261060299424 K, F = -36.421826669061055, relative_change = 0.00038588481857751704 Iter 35: T = 800.9779079011462 K, F = -15.238162538256796, relative_change = 0.00016235733299462164 Iter 40: T = 800.5801691879899 K, F = -6.373857336944838, relative_change = 6.80719440389788e-5 Iter 45: T = 800.4136206905646 K, F = -2.6658118147297185, relative_change = 2.849872461809902e-5 Iter 50: T = 800.3439314099137 K, F = -1.114907345467177, relative_change = 1.192380155446411e-5 Iter 55: T = 800.3147800937957 K, F = -0.4662733419030256, relative_change = 4.987602840718631e-6 Iter 60: T = 800.302587540778 K, F = -0.1950020902814701, relative_change = 2.086037185190651e-6 Iter 65: T = 800.2974882727922 K, F = -0.08155237965889195, relative_change = 8.724340201832356e-7 Iter 70: T = 800.2953556636166 K, F = -0.034106210012036176, relative_change = 3.648672861141227e-7 Iter 75: T = 800.294463774973 K, F = -0.014263629743510253, relative_change = 1.525927239638636e-7 Iter 80: T = 800.2940907754385 K, F = -0.00596522124547183, relative_change = 6.38162512076089e-8 Iter 85: T = 800.2939347823944 K, F = -0.002494726929614721, relative_change = 2.66887449156934e-8 Iter 90: T = 800.2938695442083 K, F = -0.0010433246229879511, relative_change = 1.1161556483015646e-8 Iter 95: T = 800.2938422608142 K, F = -0.00043633082316163474, relative_change = 4.667897039148398e-9 Iter 100: T = 800.2938308505719 K, F = -0.00018247876116228579, relative_change = 1.95217042103016e-9 Iter 105: T = 800.2938260786722 K, F = -7.631479666292407e-5, relative_change = 8.164210016162147e-10 Iter 110: T = 800.2938240830067 K, F = -3.1915759771350416e-5, relative_change = 3.414370215035658e-10 Iter 115: T = 800.2938232483955 K, F = -1.3347551175879602e-5, relative_change = 1.4279303307010324e-10 Iter 120: T = 800.2938228993512 K, F = -5.582106101686968e-6, relative_change = 5.971776038399132e-11 Iter 125: T = 800.2938227533767 K, F = -2.334504223822087e-6, relative_change = 2.4974689021508303e-11 Iter 130: T = 800.2938226923285 K, F = -9.763190202960459e-7, relative_change = 1.0444728982590025e-11 Iter 135: T = 800.2938226667974 K, F = -4.083087633555138e-7, relative_change = 4.3681156327564375e-12 Iter 140: T = 800.2938226561199 K, F = -1.707609945666988e-7, relative_change = 1.8268130317589086e-12 Iter 145: T = 800.2938226516545 K, F = -7.141499225316039e-8, relative_change = 7.640025688860858e-13 Iter 150: T = 800.2938226497869 K, F = -2.9864391404288426e-8, relative_change = 3.1949134252464623e-13 Converged in 153 iterations to T = 800.2938226492402 K Iter 1: T = 965.2436924721165 K, F = -7919.257732011957, relative_change = 0.034756307527883404 Iter 2: T = 932.465263207139 K, F = -6716.7088358868305, relative_change = 0.03395870858376475 Iter 3: T = 901.6353078499166 K, F = -5695.540849323355, relative_change = 0.03306284595651877 Iter 5: T = 845.7075327534488 K, F = -4092.2647546502494, relative_change = 0.030958189673733597 Iter 10: T = 737.8115009671286 K, F = -1780.470670207366, relative_change = 0.023931177945896644 Iter 15: T = 670.4926735186801 K, F = -766.4828539170388, relative_change = 0.01562529374183276 Iter 20: T = 633.7437805636744 K, F = -326.32031854254177, relative_change = 0.008575664366163659 Iter 25: T = 615.8800096274967 K, F = -137.75444017938932, relative_change = 0.004131973423756494 Iter 30: T = 607.8331556271643 K, F = -57.864181896290226, relative_change = 0.001846230734662121 Iter 35: T = 604.3525743253131 K, F = -24.246420867847498, relative_change = 0.0007949250825367929 Iter 40: T = 602.875527474689 K, F = -10.148555230436246, relative_change = 0.00033661175371805434 Iter 45: T = 602.2539617590231 K, F = -4.2457338689984025, relative_change = 0.0001415169139834409 Iter 50: T = 601.9933351630971 K, F = -1.7758778177362489, relative_change = 5.9314821472408775e-5 Iter 55: T = 601.8842184483862 K, F = -0.7427390824087167, relative_change = 2.482911067643921e-5 Iter 60: T = 601.8385635829226 K, F = -0.31063036594802895, relative_change = 1.0387848984308257e-5 Iter 65: T = 601.8194665053678 K, F = -0.12991073040652, relative_change = 4.345025720067856e-6 Iter 70: T = 601.8114792377828 K, F = -0.05433046409340975, relative_change = 1.8172646692573377e-6 Iter 75: T = 601.8081387548436 K, F = -0.02272169180658007, relative_change = 7.600233062078727e-7 Iter 80: T = 601.8067417053517 K, F = -0.009502490365915883, relative_change = 3.1785458701099636e-7 Iter 85: T = 601.806157439136 K, F = -0.003974056264850145, relative_change = 1.3293124252703334e-7 Iter 90: T = 601.8059130914264 K, F = -0.0016619980188631311, relative_change = 5.559354827274948e-8 Iter 95: T = 601.8058109021912 K, F = -0.0006950674595696538, relative_change = 2.324990593645075e-8 Iter 100: T = 601.8057681654142 K, F = -0.00029068551962518896, relative_change = 9.72339185255903e-9 Iter 105: T = 601.8057502923805 K, F = -0.00012156815655001152, relative_change = 4.066439193772782e-9 Iter 110: T = 601.8057428176638 K, F = -5.08412548971271e-5, relative_change = 1.700633534856584e-9 Iter 115: T = 601.8057396916479 K, F = -2.1262420109913194e-5, relative_change = 7.112252763730532e-10 Iter 120: T = 601.8057383843106 K, F = -8.892197540855129e-6, relative_change = 2.9744289155585643e-10 Iter 125: T = 601.8057378375668 K, F = -3.718823634146773e-6, relative_change = 1.2439418429799412e-10 Iter 130: T = 601.8057376089118 K, F = -1.5552570146737388e-6, relative_change = 5.202315223760851e-11 Iter 135: T = 601.8057375132855 K, F = -6.504259441042493e-7, relative_change = 2.175666633602815e-11 Iter 140: T = 601.8057374732934 K, F = -2.7201489188888317e-7, relative_change = 9.098864054815503e-12 Iter 145: T = 601.8057374565684 K, F = -1.1375971870064561e-7, relative_change = 3.805248338870395e-12 Iter 150: T = 601.8057374495738 K, F = -4.7576173611840744e-8, relative_change = 1.5914170471244042e-12 Iter 155: T = 601.8057374466487 K, F = -1.989769310428713e-8, relative_change = 6.655753416341183e-13 Iter 160: T = 601.8057374454253 K, F = -8.321560052149124e-9, relative_change = 2.783551412549551e-13 Converged in 162 iterations to T = 601.8057374451663 K Iter 1: T = 964.5254396466579 K, F = -8082.912321527544, relative_change = 0.03547456035334211 Iter 2: T = 930.9883466891328 K, F = -6856.841059459317, relative_change = 0.034770563407649516 Iter 3: T = 899.3582402046095 K, F = -5815.643628149203, relative_change = 0.03397476090544971 Iter 5: T = 841.7066065814902 K, F = -4180.741931848701, relative_change = 0.03208363469815951 Iter 10: T = 728.9381372083634 K, F = -1822.2775928265958, relative_change = 0.025538588027453065 Iter 15: T = 656.7348266488176 K, F = -786.3001416133527, relative_change = 0.017297030594517263 Iter 20: T = 616.2407454535719 K, F = -335.47099242300686, relative_change = 0.009811951108971173 Iter 25: T = 596.1450277398114 K, F = -141.82009010524675, relative_change = 0.0048320754518324585 Iter 30: T = 586.981507477021 K, F = -59.617568691936995, relative_change = 0.002184187142199214 Iter 35: T = 582.9937778429205 K, F = -24.990099756261156, relative_change = 0.0009455354305282362 Iter 40: T = 581.2968545344739 K, F = -10.461480762695363, relative_change = 0.00040133914095013233 Iter 45: T = 580.5819107489449 K, F = -4.376944337225072, relative_change = 0.0001689003860398338 Iter 50: T = 580.281978645993 K, F = -1.8308118308504384, relative_change = 7.082248699547552e-5 Iter 55: T = 580.1563791723828 K, F = -0.7657237166071276, relative_change = 2.9651525267963644e-5 Iter 60: T = 580.1038231712485 K, F = -0.32024466677303143, relative_change = 1.2406353226091939e-5 Iter 65: T = 580.0818385815966 K, F = -0.13393187001434714, relative_change = 5.189488163408249e-6 Iter 70: T = 580.0726434813829 K, F = -0.05601220941539639, relative_change = 2.1704814150507756e-6 Iter 75: T = 580.068797826325 K, F = -0.023425027705482715, relative_change = 9.07751945628283e-7 Iter 80: T = 580.0671895004576 K, F = -0.00979663557431848, relative_change = 3.7963807364176555e-7 Iter 85: T = 580.0665168746509 K, F = -0.004097071607351677, relative_change = 1.5877011526546685e-7 Iter 90: T = 580.06623557368 K, F = -0.0017134445581730717, relative_change = 6.639972257378807e-8 Iter 95: T = 580.0661179301102 K, F = -0.0007165830265199458, relative_change = 2.776918568939261e-8 Iter 100: T = 580.066068730139 K, F = -0.00029968358786747196, relative_change = 1.161341010331622e-8 Iter 105: T = 580.066048154119 K, F = -0.00012533125721236882, relative_change = 4.8568676881345285e-9 Iter 110: T = 580.0660395489809 K, F = -5.241502811298426e-5, relative_change = 2.0312001974332055e-9 Iter 115: T = 580.0660359502093 K, F = -2.1920590818680363e-5, relative_change = 8.494722089611087e-10 Iter 120: T = 580.0660344451601 K, F = -9.167452765135309e-6, relative_change = 3.5525942304924734e-10 Iter 125: T = 580.0660338157305 K, F = -3.833938638619916e-6, relative_change = 1.4857375005832625e-10 Iter 130: T = 580.0660335524956 K, F = -1.6033993911479527e-6, relative_change = 6.21353347962093e-11 Iter 135: T = 580.0660334424075 K, F = -6.705612978774589e-7, relative_change = 2.598575938887756e-11 Iter 140: T = 580.0660333963674 K, F = -2.804366802111602e-7, relative_change = 1.0867552484170133e-11 Iter 145: T = 580.0660333771128 K, F = -1.1728191889881501e-7, relative_change = 4.544938302360342e-12 Iter 150: T = 580.0660333690604 K, F = -4.904853345699678e-8, relative_change = 1.9007410561756493e-12 Iter 155: T = 580.0660333656928 K, F = -2.051319375473426e-8, relative_change = 7.949324233755467e-13 Iter 160: T = 580.0660333642844 K, F = -8.579076504755534e-9, relative_change = 3.3245852195757744e-13 Converged in 163 iterations to T = 580.0660333638721 K Iter 1: T = 964.3309846114535 K, F = -8127.2190862733605, relative_change = 0.03566901538854652 Iter 2: T = 930.5878873839463 K, F = -6894.7885650246935, relative_change = 0.034991198837298454 Iter 3: T = 898.7397635060598 K, F = -5848.177171201292, relative_change = 0.03422366045126316 Iter 5: T = 840.6154910921235 K, F = -4204.729881585094, relative_change = 0.032393986011787064 Iter 10: T = 726.4844615620875 K, F = -1833.6649111904962, relative_change = 0.0259979892947624 Iter 15: T = 652.8651370741603 K, F = -791.746525410436, relative_change = 0.017797119384510493 Iter 20: T = 611.2429370311099 K, F = -338.01325182727, relative_change = 0.010197668679652189 Iter 25: T = 590.4544014234169 K, F = -142.95927590184573, relative_change = 0.005056789999769945 Iter 30: T = 580.9378987509729 K, F = -60.11129463477389, relative_change = 0.002294325648300421 Iter 35: T = 576.7883789023584 K, F = -25.200012086973317, relative_change = 0.0009949709739084749 Iter 40: T = 575.0210160745137 K, F = -10.549902817130231, relative_change = 0.00042265192551774503 Iter 45: T = 574.2761031875275 K, F = -4.41403709622798, relative_change = 0.0001779290884547703 Iter 50: T = 573.9635464564108 K, F = -1.846344535681174, relative_change = 7.461887748385447e-5 Iter 55: T = 573.8326511197075 K, F = -0.7722232044378691, relative_change = 3.1242824374389244e-5 Iter 60: T = 573.7778775001476 K, F = -0.3229634478545459, relative_change = 1.3072485307515848e-5 Iter 65: T = 573.7549649810725 K, F = -0.135069004840515, relative_change = 5.468183171703535e-6 Iter 70: T = 573.7453817230743 K, F = -0.05648779169407331, relative_change = 2.2870543512496483e-6 Iter 75: T = 573.7413737206415 K, F = -0.0236239252025435, relative_change = 9.565075256160862e-7 Iter 80: T = 573.7396974965126 K, F = -0.00987981746133526, relative_change = 4.000288316862687e-7 Iter 85: T = 573.7389964743783 K, F = -0.004131859367499546, relative_change = 1.6729787739657114e-7 Iter 90: T = 573.7387032976429 K, F = -0.0017279932321367375, relative_change = 6.996615263824659e-8 Iter 95: T = 573.7385806874723 K, F = -0.0007226674586615633, relative_change = 2.926071249717126e-8 Iter 100: T = 573.7385294104071 K, F = -0.0003022281712840025, relative_change = 1.2237185008614067e-8 Iter 105: T = 573.738507965721 K, F = -0.0001263954316051974, relative_change = 5.117737864947304e-9 Iter 110: T = 573.7384989972963 K, F = -5.2860078930017096e-5, relative_change = 2.1402992511763785e-9 Iter 115: T = 573.738495246594 K, F = -2.210671650026974e-5, relative_change = 8.950987437370771e-10 Iter 120: T = 573.7384936780054 K, F = -9.24529272722241e-6, relative_change = 3.7434098425391236e-10 Iter 125: T = 573.7384930220029 K, F = -3.866491688153673e-6, relative_change = 1.5655386527352805e-10 Iter 130: T = 573.7384927476548 K, F = -1.617012725829703e-6, relative_change = 6.547268516754916e-11 Iter 135: T = 573.7384926329192 K, F = -6.762545289307198e-7, relative_change = 2.738147894615129e-11 Iter 140: T = 573.7384925849354 K, F = -2.8281785557915384e-7, relative_change = 1.145126698591475e-11 Iter 145: T = 573.738492564868 K, F = -1.1827778001460842e-7, relative_change = 4.789055609309083e-12 Iter 150: T = 573.7384925564755 K, F = -4.9464830176315644e-8, relative_change = 2.002826079477013e-12 Iter 155: T = 573.7384925529658 K, F = -2.0686660828772574e-8, relative_change = 8.376008501128138e-13 Iter 160: T = 573.7384925514979 K, F = -8.651027727513139e-9, relative_change = 3.502792567142762e-13 Converged in 163 iterations to T = 573.7384925510681 K Iter 1: T = 980.2685008491782 K, F = -4495.840851016007, relative_change = 0.019731499150821858 Iter 2: T = 962.5751619135174 K, F = -3797.5150177910677, relative_change = 0.018049482279940236 Iter 3: T = 946.7981868899313 K, F = -3206.163621479214, relative_change = 0.01639038243229004 Iter 5: T = 920.4673192272276 K, F = -2282.246243380623, relative_change = 0.013229100691626005 Iter 10: T = 878.7094415248561 K, F = -968.7582222750137, relative_change = 0.00693537127904802 Iter 15: T = 858.9661628751207 K, F = -408.19473049115544, relative_change = 0.0032481144973671035 Iter 20: T = 850.2099526910067 K, F = -171.2994906336108, relative_change = 0.0014304802309013259 Iter 25: T = 846.4508724904056 K, F = -71.74687118900489, relative_change = 0.0006118555097586448 Iter 30: T = 844.8609731043608 K, F = -30.024539210358324, relative_change = 0.00025834626006670245 Iter 35: T = 844.1928801153114 K, F = -12.559995730985717, relative_change = 0.00010848002137218396 Iter 40: T = 843.9129150280736 K, F = -5.253332486861407, relative_change = 4.544444372327311e-5 Iter 45: T = 843.7957318791791 K, F = -2.1971101207041865, relative_change = 1.9018875474631673e-5 Iter 50: T = 843.7467072496235 K, F = -0.9188758458455235, relative_change = 7.956278593913003e-6 Iter 55: T = 843.7262015473577 K, F = -0.38428802837033005, relative_change = 3.3278232760283623e-6 Iter 60: T = 843.7176252900169 K, F = -0.16071439833915724, relative_change = 1.3918076050364346e-6 Iter 65: T = 843.7140385044588 K, F = -0.06721277787203794, relative_change = 5.820831853208813e-7 Iter 70: T = 843.7125384517565 K, F = -0.02810920338410927, relative_change = 2.4343634748933596e-7 Iter 75: T = 843.7119111089779 K, F = -0.01175560751898308, relative_change = 1.0180837390462545e-7 Iter 80: T = 843.711648746242 K, F = -0.004916335974513908, relative_change = 4.2577545345545155e-8 Iter 85: T = 843.7115390229262 K, F = -0.002056070510753516, relative_change = 1.7806449775875332e-8 Iter 90: T = 843.7114931353101 K, F = -0.0008598732584925717, relative_change = 7.44687201915005e-9 Iter 95: T = 843.7114739445583 K, F = -0.0003596092679216678, relative_change = 3.1143711688721276e-9 Iter 100: T = 843.7114659187563 K, F = -0.00015039289218043983, relative_change = 1.3024672899305277e-9 Iter 105: T = 843.71146256227 K, F = -6.28961031976516e-5, relative_change = 5.447073823970871e-10 Iter 110: T = 843.7114611585473 K, F = -2.6303902124436007e-5, relative_change = 2.278031397510475e-10 Iter 115: T = 843.7114605714937 K, F = -1.1000608802325118e-5, relative_change = 9.527001814368512e-11 Iter 120: T = 843.7114603259809 K, F = -4.60058570084243e-6, relative_change = 3.9843057022940234e-11 Iter 125: T = 843.7114602233045 K, F = -1.924020094357104e-6, relative_change = 1.6662844116377237e-11 Iter 130: T = 843.711460180364 K, F = -8.046520445503802e-7, relative_change = 6.968633866579426e-12 Iter 135: T = 843.7114601624057 K, F = -3.365144887190752e-7, relative_change = 2.914360659122439e-12 Iter 140: T = 843.7114601548955 K, F = -1.4073475784748268e-7, relative_change = 1.2188237220347671e-12 Iter 145: T = 843.7114601517545 K, F = -5.885749976286547e-8, relative_change = 5.097313416323956e-13 Converged in 150 iterations to T = 843.711460150441 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017035198287907582 Iteration 10: d = 1.3767084462330046e-5 Iteration 20: d = 1.2727206044191843e-7 Iteration 30: d = 1.604840086694378e-9 Iteration 40: d = 2.2115447736179913e-11 Iteration 50: d = 3.120269912057858e-13 Iteration 60: d = 4.4447894161792014e-15 Converged after 62 iterations. d = 1.915956778331194e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.725978139162 Iteration 2: convergence error = 4830.538164851641 Iteration 3: convergence error = 1095.83132950676 Iteration 4: convergence error = 319.73688940502257 Iteration 5: convergence error = 94.74922619192421 Iteration 6: convergence error = 28.226229345077854 Iteration 7: convergence error = 8.442882874759107 Iteration 8: convergence error = 2.5286632014881434 Iteration 9: convergence error = 0.75553670612112 Iteration 10: convergence error = 0.22543576412112998 Iteration 11: convergence error = 0.06721241202217243 Iteration 12: convergence error = 0.020030065794799157 Iteration 13: convergence error = 0.005967669826532074 Iteration 14: convergence error = 0.0017777224402379943 Iteration 15: convergence error = 0.0005295253592976223 Iteration 16: convergence error = 0.00015772066467434342 Iteration 17: convergence error = 4.6976241492302506e-5 Iteration 18: convergence error = 1.3991386140332907e-5 Iteration 19: convergence error = 4.1671571580081945e-6 Iteration 20: convergence error = 1.2411251191224437e-6 Iteration 21: convergence error = 3.696479780046502e-7 Iteration 22: convergence error = 1.099551809602417e-7 Iteration 23: convergence error = 3.1830040825298056e-8 Iteration 24: convergence error = 9.169525583274662e-9 Iteration 25: convergence error = 2.6409452402731404e-9 Iteration 26: convergence error = 7.512426236644387e-10 Iteration 27: convergence error = 2.141860022675246e-10 Iteration 28: convergence error = 6.298250809777528e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022725546932798797 Iteration 10: d = 2.2946716688636433e-5 Iteration 20: d = 2.46880290013434e-7 Iteration 30: d = 3.0484177765199657e-9 Iteration 40: d = 3.855259027162834e-11 Iteration 50: d = 4.910509786881983e-13 Iteration 60: d = 6.291788358281231e-15 Converged after 63 iterations. d = 1.7061406927659483e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12287.289587988298 Iteration 2: convergence error = 8316.348433764231 Iteration 3: convergence error = 1954.7259079891817 Iteration 4: convergence error = 481.0079375967946 Iteration 5: convergence error = 122.5198659091277 Iteration 6: convergence error = 32.681719028792486 Iteration 7: convergence error = 8.894786841130554 Iteration 8: convergence error = 2.434596998942652 Iteration 9: convergence error = 0.6671637322640436 Iteration 10: convergence error = 0.18284669191530156 Iteration 11: convergence error = 0.05010859433696169 Iteration 12: convergence error = 0.01373123730286352 Iteration 13: convergence error = 0.0037626237049153133 Iteration 14: convergence error = 0.0010310115853826574 Iteration 15: convergence error = 0.00028250901846149645 Iteration 16: convergence error = 7.741039098618785e-5 Iteration 17: convergence error = 2.1211207695159828e-5 Iteration 18: convergence error = 5.812077006339678e-6 Iteration 19: convergence error = 1.5925627394608455e-6 Iteration 20: convergence error = 4.3637965063680895e-7 Iteration 21: convergence error = 1.2043301467201672e-7 Iteration 22: convergence error = 3.232548806408886e-8 Iteration 23: convergence error = 8.635197445983067e-9 Iteration 24: convergence error = 2.2992026060819626e-9 Iteration 25: convergence error = 6.14363671047613e-10 Iteration 26: convergence error = 1.6393641999457031e-10 Iteration 27: convergence error = 4.3655745685100555e-11 Iteration 28: convergence error = 1.2050804798491299e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022725546932798797 Iteration 10: d = 2.2946716688636433e-5 Iteration 20: d = 2.46880290013434e-7 Iteration 30: d = 3.0484177765199657e-9 Iteration 40: d = 3.855259027162834e-11 Iteration 50: d = 4.910509786881983e-13 Iteration 60: d = 6.291788358281231e-15 Converged after 63 iterations. d = 1.7061406927659483e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.344299057859 Iteration 2: convergence error = 5736.676911139088 Iteration 3: convergence error = 2015.3022664119867 Iteration 4: convergence error = 893.3283546942225 Iteration 5: convergence error = 411.2307161923545 Iteration 6: convergence error = 193.88488901873416 Iteration 7: convergence error = 91.49669104374834 Iteration 8: convergence error = 43.20096094247447 Iteration 9: convergence error = 20.39835395083628 Iteration 10: convergence error = 9.629630870168057 Iteration 11: convergence error = 4.5447988508208255 Iteration 12: convergence error = 2.144482311777665 Iteration 13: convergence error = 1.0117073597971284 Iteration 14: convergence error = 0.47723566174317966 Iteration 15: convergence error = 0.22509875023934 Iteration 16: convergence error = 0.10607374828487082 Iteration 17: convergence error = 0.049540915652869444 Iteration 18: convergence error = 0.022613592517700454 Iteration 19: convergence error = 0.01028352634057228 Iteration 20: convergence error = 0.004666351991545525 Iteration 21: convergence error = 0.0021148150449334935 Iteration 22: convergence error = 0.0009577519681442936 Iteration 23: convergence error = 0.00043356016249163076 Iteration 24: convergence error = 0.00019621694082161412 Iteration 25: convergence error = 8.878885091689881e-5 Iteration 26: convergence error = 4.017361789010465e-5 Iteration 27: convergence error = 1.8176057892560493e-5 Iteration 28: convergence error = 8.223251370509388e-6 Iteration 29: convergence error = 3.7203053580014966e-6 Iteration 30: convergence error = 1.6830895219754893e-6 Iteration 31: convergence error = 7.61438968766015e-7 Iteration 32: convergence error = 3.444761205173563e-7 Iteration 33: convergence error = 1.558400981593877e-7 Iteration 34: convergence error = 7.050130079733208e-8 Iteration 35: convergence error = 3.1893250707071275e-8 Iteration 36: convergence error = 1.4426404959522188e-8 Iteration 37: convergence error = 6.527443474624306e-9 Iteration 38: convergence error = 2.9567672754637897e-9 Iteration 39: convergence error = 1.3351382222026587e-9 Iteration 40: convergence error = 6.011759978719056e-10 Iteration 41: convergence error = 2.7330315788276494e-10 Iteration 42: convergence error = 1.2823875294998288e-10 Iteration 43: convergence error = 5.729816621169448e-11 Iteration 44: convergence error = 2.5011104298755527e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022725546932798797 Iteration 10: d = 2.2946716688636433e-5 Iteration 20: d = 2.46880290013434e-7 Iteration 30: d = 3.0484177765199657e-9 Iteration 40: d = 3.855259027162834e-11 Iteration 50: d = 4.910509786881983e-13 Iteration 60: d = 6.291788358281231e-15 Converged after 63 iterations. d = 1.7061406927659483e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.870103775762 Iteration 2: convergence error = 7354.422931892173 Iteration 3: convergence error = 1730.658565942365 Iteration 4: convergence error = 506.32955598194985 Iteration 5: convergence error = 157.22967691917302 Iteration 6: convergence error = 48.818794519380845 Iteration 7: convergence error = 15.132093079233528 Iteration 8: convergence error = 4.682549212077902 Iteration 9: convergence error = 1.4472941250614895 Iteration 10: convergence error = 0.44700998658390745 Iteration 11: convergence error = 0.13800462727749618 Iteration 12: convergence error = 0.042595582116973674 Iteration 13: convergence error = 0.013145449279363675 Iteration 14: convergence error = 0.004056506732467824 Iteration 15: convergence error = 0.001251726831014821 Iteration 16: convergence error = 0.00038623876298515825 Iteration 17: convergence error = 0.00011917790789084393 Iteration 18: convergence error = 3.677326731121866e-5 Iteration 19: convergence error = 1.1346627616148908e-5 Iteration 20: convergence error = 3.501053015497746e-6 Iteration 21: convergence error = 1.0802655197039712e-6 Iteration 22: convergence error = 3.331656444061082e-7 Iteration 23: convergence error = 1.01542809716193e-7 Iteration 24: convergence error = 3.02125044981949e-8 Iteration 25: convergence error = 8.939423423726112e-9 Iteration 26: convergence error = 2.6625457394402474e-9 Iteration 27: convergence error = 7.821654435247183e-10 Iteration 28: convergence error = 2.2737367544323206e-10 Iteration 29: convergence error = 7.366907084360719e-11 Iteration 30: convergence error = 2.3646862246096134e-11 Iteration 31: convergence error = 6.139089236967266e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022725546932798797 Iteration 10: d = 2.2946716688636433e-5 Iteration 20: d = 2.46880290013434e-7 Iteration 30: d = 3.0484177765199657e-9 Iteration 40: d = 3.855259027162834e-11 Iteration 50: d = 4.910509786881983e-13 Iteration 60: d = 6.291788358281231e-15 Converged after 63 iterations. d = 1.7061406927659483e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.759768239926 Iteration 2: convergence error = 5522.330758627885 Iteration 3: convergence error = 936.2863356016996 Iteration 4: convergence error = 170.09271537735003 Iteration 5: convergence error = 30.825542219784893 Iteration 6: convergence error = 5.608266603798256 Iteration 7: convergence error = 1.0280775687533605 Iteration 8: convergence error = 0.18799627011412667 Iteration 9: convergence error = 0.03433620272244298 Iteration 10: convergence error = 0.00626753752840159 Iteration 11: convergence error = 0.0011436968766247446 Iteration 12: convergence error = 0.0002086689419229515 Iteration 13: convergence error = 3.806886434176704e-5 Iteration 14: convergence error = 6.944842880329816e-6 Iteration 15: convergence error = 1.2669174793700222e-6 Iteration 16: convergence error = 2.3112397684599273e-7 Iteration 17: convergence error = 4.2160081648034975e-8 Iteration 18: convergence error = 7.683865987928584e-9 Iteration 19: convergence error = 1.40698830364272e-9 Iteration 20: convergence error = 2.5693225325085223e-10 Iteration 21: convergence error = 4.638422979041934e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022725546932798797 Iteration 10: d = 2.2946716688636433e-5 Iteration 20: d = 2.46880290013434e-7 Iteration 30: d = 3.0484177765199657e-9 Iteration 40: d = 3.855259027162834e-11 Iteration 50: d = 4.910509786881983e-13 Iteration 60: d = 6.291788358281231e-15 Converged after 63 iterations. d = 1.7061406927659483e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.491220076632 Iteration 2: convergence error = 2715.1092761595933 Iteration 3: convergence error = 204.35875744026532 Iteration 4: convergence error = 19.260804290409126 Iteration 5: convergence error = 1.5903559580155446 Iteration 6: convergence error = 0.12939600603997853 Iteration 7: convergence error = 0.010541789414420829 Iteration 8: convergence error = 0.0008608444519308269 Iteration 9: convergence error = 7.047679603253075e-5 Iteration 10: convergence error = 5.7773400322031965e-6 Iteration 11: convergence error = 4.7348924658568544e-7 Iteration 12: convergence error = 3.88013002387534e-8 Iteration 13: convergence error = 3.1805769332485665e-9 Iteration 14: convergence error = 2.5953391602357257e-10 Iteration 15: convergence error = 2.2282620193436742e-11 Iteration 16: convergence error = 3.183231456205249e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017035198287907582 Iteration 10: d = 1.3767084462330046e-5 Iteration 20: d = 1.2727206044191843e-7 Iteration 30: d = 1.604840086694378e-9 Iteration 40: d = 2.2115447736179913e-11 Iteration 50: d = 3.120269912057858e-13 Iteration 60: d = 4.4447894161792014e-15 Converged after 62 iterations. d = 1.915956778331194e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.343374432807 Iteration 2: convergence error = 3616.1296141691937 Iteration 3: convergence error = 592.8214061145358 Iteration 4: convergence error = 104.53973381080277 Iteration 5: convergence error = 18.575389691946157 Iteration 6: convergence error = 3.270780621227459 Iteration 7: convergence error = 0.5737868039002478 Iteration 8: convergence error = 0.10050328724582869 Iteration 9: convergence error = 0.01759283884416618 Iteration 10: convergence error = 0.0030787930236328975 Iteration 11: convergence error = 0.0005387414432789228 Iteration 12: convergence error = 9.42675944770599e-5 Iteration 13: convergence error = 1.649444357099128e-5 Iteration 14: convergence error = 2.8860818019893486e-6 Iteration 15: convergence error = 5.049821538705146e-7 Iteration 16: convergence error = 8.837309906084556e-8 Iteration 17: convergence error = 1.5461864677490667e-8 Iteration 18: convergence error = 2.6864199753617868e-9 Iteration 19: convergence error = 4.779394657816738e-10 Iteration 20: convergence error = 8.139977580867708e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 8m06.2s Testing RayTraceHeatTransfer tests passed Testing completed after 487.72s PkgEval succeeded after 553.06s