Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1354 (1806b0bc31*) started at 2025-12-11T15:17:45.698 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Activating project at `~/.julia/environments/v1.14` Set-up completed after 9.92s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.8.0 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.13.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.14.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.12.2 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.07s ################################################################################ # Precompilation # ERROR: LoadError: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Nothing) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:10 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 in expression starting at /PkgEval.jl/scripts/precompile.jl:6 caused by: MethodError: no method matching setindex!(::Base.ScopedValues.ScopedValue{IO}, ::Base.DevNull) The function `setindex!` exists, but no method is defined for this combination of argument types. Stacktrace: [1] top-level scope @ /PkgEval.jl/scripts/precompile.jl:7 [2] include(mod::Module, _path::String) @ Base ./Base.jl:309 [3] exec_options(opts::Base.JLOptions) @ Base ./client.jl:344 [4] _start() @ Base ./client.jl:577 Precompilation failed after 13.79s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_el0Lgl/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_el0Lgl/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.8.0 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.13.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.14.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.12.2 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443558531181326e-15 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.0569008315563939e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.691850745534255e-16 Converged after 6 iterations. d = 1.6184142622847344e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.485546236472086e-16 Converged after 4 iterations. d = 2.1138016631127878e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2585248453105973e-15 Converged after 6 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 8.64442489944963e-16 Converged after 5 iterations. d = 0.0 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2785653431858247e-15 Converged after 4 iterations. d = 2.1138016631127878e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.545279929710839e-15 Converged after 5 iterations. d = 1.4387229126951138e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.741771048821297e-15 Converged after 5 iterations. d = 2.1647144989062977e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.6708853471768988e-15 Converged after 5 iterations. d = 1.8174569082716346e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5394136982922497e-15 Converged after 5 iterations. d = 1.6288904732141786e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:10 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 98%|████████████████████████████████▍| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001308024528524999 Iteration 10: d = 1.1525108291086297e-5 Iteration 20: d = 1.4467169507883994e-7 Iteration 30: d = 2.2796962454711427e-9 Iteration 40: d = 3.843339540216823e-11 Iteration 50: d = 6.626110380618454e-13 Iteration 60: d = 1.149999219715363e-14 Converged after 65 iterations. d = 1.5120911450486864e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011929714429800293 Iteration 10: d = 9.1817796797673e-6 Iteration 20: d = 1.2263294487511528e-7 Iteration 30: d = 1.9778323409728033e-9 Iteration 40: d = 3.339557669808751e-11 Iteration 50: d = 5.749364641005102e-13 Iteration 60: d = 1.001825367707304e-14 Converged after 64 iterations. d = 1.940565929146947e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 43%|██████████████▎ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001165432555736116 Iteration 10: d = 8.70664427529072e-6 Iteration 20: d = 1.0548667535627911e-7 Iteration 30: d = 1.7474583413983597e-9 Iteration 40: d = 3.080454926429992e-11 Iteration 50: d = 5.434257398232853e-13 Iteration 60: d = 9.535359165044824e-15 Converged after 64 iterations. d = 1.860276504269884e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▋ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011753016134877282 Iteration 10: d = 6.4531822661400376e-6 Iteration 20: d = 5.0720169298303535e-8 Iteration 30: d = 6.186652378371476e-10 Iteration 40: d = 9.323358018872985e-12 Iteration 50: d = 1.536621725413005e-13 Iteration 60: d = 2.606306013005954e-15 Converged after 61 iterations. d = 1.7397611315437484e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011265553807440426 Iteration 10: d = 8.909699107701855e-6 Iteration 20: d = 1.1884413611255615e-7 Iteration 30: d = 1.833004993149642e-9 Iteration 40: d = 2.8817500721535536e-11 Iteration 50: d = 4.543069539382094e-13 Iteration 60: d = 7.171102088775536e-15 Converged after 63 iterations. d = 2.0510927271482803e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011735301989447909 Iteration 10: d = 1.3651313123266282e-5 Iteration 20: d = 1.7404825745275722e-7 Iteration 30: d = 2.5844631482122147e-9 Iteration 40: d = 4.0057773246324514e-11 Iteration 50: d = 6.276219564900407e-13 Iteration 60: d = 9.858842060480678e-15 Converged after 64 iterations. d = 1.8623650366958597e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010791646248571056 Iteration 10: d = 1.308253051481062e-5 Iteration 20: d = 1.7457100466974027e-7 Iteration 30: d = 2.6181368425934335e-9 Iteration 40: d = 4.038235067811829e-11 Iteration 50: d = 6.269932651247207e-13 Iteration 60: d = 9.757315938202814e-15 Converged after 64 iterations. d = 1.865103045471129e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0009048443393944912 Iteration 10: d = 7.444194708368774e-6 Iteration 20: d = 9.4658182848366e-8 Iteration 30: d = 1.4352254193838148e-9 Iteration 40: d = 2.241531856450697e-11 Iteration 50: d = 3.5122887614354e-13 Iteration 60: d = 5.509580028409881e-15 Converged after 63 iterations. d = 1.5958850779446092e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0009451679826867111 Iteration 10: d = 9.285436493921506e-6 Iteration 20: d = 1.138444637836242e-7 Iteration 30: d = 1.5616469775623863e-9 Iteration 40: d = 2.2666689844306126e-11 Iteration 50: d = 3.400200372976933e-13 Iteration 60: d = 5.229984683696934e-15 Converged after 63 iterations. d = 1.5062061554827933e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0009282522851482952 Iteration 10: d = 9.602704416753767e-6 Iteration 20: d = 1.1872025589210858e-7 Iteration 30: d = 1.6875081431012055e-9 Iteration 40: d = 2.5313474711106015e-11 Iteration 50: d = 3.8922079135224113e-13 Iteration 60: d = 6.0802974338913154e-15 Converged after 63 iterations. d = 1.7672105112089892e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004761909502458158 Iteration 10: d = 4.324652599719184e-5 Iteration 20: d = 4.933392248588973e-7 Iteration 30: d = 6.4051170444400114e-9 Iteration 40: d = 8.498814734376349e-11 Iteration 50: d = 1.1353305175248765e-12 Iteration 60: d = 1.5224677460645595e-14 Converged after 65 iterations. d = 1.7725776380944362e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0032984328627220717 Iteration 10: d = 3.200085212705144e-5 Iteration 20: d = 4.045638018568767e-7 Iteration 30: d = 5.972321207330011e-9 Iteration 40: d = 9.14468376058069e-11 Iteration 50: d = 1.4180943347397926e-12 Iteration 60: d = 2.208981110673636e-14 Converged after 66 iterations. d = 1.8462873015270836e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024922987894558865 Iteration 10: d = 2.8276592254121317e-5 Iteration 20: d = 4.0891293108743176e-7 Iteration 30: d = 6.642954220033299e-9 Iteration 40: d = 1.1081788706227292e-10 Iteration 50: d = 1.8649711279852134e-12 Iteration 60: d = 3.148534271778815e-14 Converged after 67 iterations. d = 1.8102124586799654e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024554700918509352 Iteration 10: d = 3.532818938547481e-5 Iteration 20: d = 5.228051943646368e-7 Iteration 30: d = 8.392808777564555e-9 Iteration 40: d = 1.416992044089221e-10 Iteration 50: d = 2.467728647602617e-12 Iteration 60: d = 4.375965665413831e-14 Converged after 68 iterations. d = 1.779172749302712e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011265553807440426 Iteration 10: d = 8.909699107701855e-6 Iteration 20: d = 1.1884413611255615e-7 Iteration 30: d = 1.833004993149642e-9 Iteration 40: d = 2.8817500721535536e-11 Iteration 50: d = 4.543069539382094e-13 Iteration 60: d = 7.171102088775536e-15 Converged after 63 iterations. d = 2.0510927271482803e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015325167799580645 Iteration 10: d = 1.4344846327418844e-5 Iteration 20: d = 1.4428845036831215e-7 Iteration 30: d = 1.8380810219802347e-9 Iteration 40: d = 2.506554103665581e-11 Iteration 50: d = 3.4885328934696e-13 Iteration 60: d = 4.873638686378204e-15 Converged after 62 iterations. d = 2.105227507020399e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013748193388244893 Iteration 10: d = 1.1577155976382886e-5 Iteration 20: d = 1.407268321977174e-7 Iteration 30: d = 1.9471603385274076e-9 Iteration 40: d = 2.7429623605345265e-11 Iteration 50: d = 3.881597375832242e-13 Iteration 60: d = 5.531653609393999e-15 Converged after 63 iterations. d = 1.5310013522302413e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.424244436006 Iteration 2: convergence error = 4829.756212062939 Iteration 3: convergence error = 1102.1676892059163 Iteration 4: convergence error = 319.5051249878238 Iteration 5: convergence error = 94.80276463597465 Iteration 6: convergence error = 28.449634364671056 Iteration 7: convergence error = 8.573592917650103 Iteration 8: convergence error = 2.5737235830997633 Iteration 9: convergence error = 0.7708204251068764 Iteration 10: convergence error = 0.23054875323600754 Iteration 11: convergence error = 0.06890346543264059 Iteration 12: convergence error = 0.0205840737996823 Iteration 13: convergence error = 0.006147728948917575 Iteration 14: convergence error = 0.0018358496645305422 Iteration 15: convergence error = 0.0005481817629515717 Iteration 16: convergence error = 0.0001636786150811531 Iteration 17: convergence error = 4.8870610271478654e-5 Iteration 18: convergence error = 1.4591398212360218e-5 Iteration 19: convergence error = 4.356539193395292e-6 Iteration 20: convergence error = 1.3007261259190273e-6 Iteration 21: convergence error = 3.8835310078866314e-7 Iteration 22: convergence error = 1.1582051229197532e-7 Iteration 23: convergence error = 3.36679022439057e-8 Iteration 24: convergence error = 9.728182703838684e-9 Iteration 25: convergence error = 2.7987425710307434e-9 Iteration 26: convergence error = 8.05357558419928e-10 Iteration 27: convergence error = 2.3374013835564256e-10 Iteration 28: convergence error = 6.798472895752639e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015325167799580645 Iteration 10: d = 1.4344846327418844e-5 Iteration 20: d = 1.4428845036831215e-7 Iteration 30: d = 1.8380810219802347e-9 Iteration 40: d = 2.506554103665581e-11 Iteration 50: d = 3.4885328934696e-13 Iteration 60: d = 4.873638686378204e-15 Converged after 62 iterations. d = 2.105227507020399e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.51375645371 Iteration 2: convergence error = 4819.569932126989 Iteration 3: convergence error = 1092.972732818273 Iteration 4: convergence error = 320.12707527435055 Iteration 5: convergence error = 94.90872614204977 Iteration 6: convergence error = 28.297050615705302 Iteration 7: convergence error = 8.45852145011986 Iteration 8: convergence error = 2.536323689048004 Iteration 9: convergence error = 0.7587462117603536 Iteration 10: convergence error = 0.2266735180287469 Iteration 11: convergence error = 0.0676658916145243 Iteration 12: convergence error = 0.020190541695228603 Iteration 13: convergence error = 0.0060230603430682095 Iteration 14: convergence error = 0.00179648689345413 Iteration 15: convergence error = 0.0005357904769880406 Iteration 16: convergence error = 0.00015978836154317833 Iteration 17: convergence error = 4.765224775837851e-5 Iteration 18: convergence error = 1.4210665540304035e-5 Iteration 19: convergence error = 4.237812390783802e-6 Iteration 20: convergence error = 1.2637651707336772e-6 Iteration 21: convergence error = 3.7686550058424473e-7 Iteration 22: convergence error = 1.1225029084016569e-7 Iteration 23: convergence error = 3.2569460017839447e-8 Iteration 24: convergence error = 9.39098754315637e-9 Iteration 25: convergence error = 2.707110979827121e-9 Iteration 26: convergence error = 7.744347385596484e-10 Iteration 27: convergence error = 2.2168933355715126e-10 Iteration 28: convergence error = 6.161826604511589e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 6:46:17 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:35 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:20 Bin 1 ray tracing: 27%|████████ | ETA: 0:00:15 Bin 1 ray tracing: 35%|██████████▍ | ETA: 0:00:12 Bin 1 ray tracing: 43%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 76%|███████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▍ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 10%|███ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 4 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 4 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 52%|███████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 49%|██████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 7 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 44%|█████████████ | ETA: 0:00:07 Bin 7 ray tracing: 53%|███████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███ | ETA: 0:00:10 Bin 8 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 8 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 9 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 9 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 9 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 9 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:10 Bin 10 ray tracing: 18%|█████▏ | ETA: 0:00:09 Bin 10 ray tracing: 27%|███████▊ | ETA: 0:00:08 Bin 10 ray tracing: 36%|██████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:06 Bin 10 ray tracing: 54%|███████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 63%|██████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 99%|█████████████████████████████| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 27%|████████▊ | ETA: 0:00:03 Bin 8 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 67%|█████████████████████▍ | ETA: 0:00:02 Bin 10 progress: 89%|████████████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015325167799580645 Iteration 10: d = 1.4344846327418844e-5 Iteration 20: d = 1.4428845036831215e-7 Iteration 30: d = 1.8380810219802347e-9 Iteration 40: d = 2.506554103665581e-11 Iteration 50: d = 3.4885328934696e-13 Iteration 60: d = 4.873638686378204e-15 Converged after 62 iterations. d = 2.105227507020399e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013683573645813373 Iteration 10: d = 1.1331292774180768e-5 Iteration 20: d = 1.3735806742666758e-7 Iteration 30: d = 1.901357819248527e-9 Iteration 40: d = 2.6788245442817053e-11 Iteration 50: d = 3.789105815100499e-13 Iteration 60: d = 5.3877091110683996e-15 Converged after 63 iterations. d = 1.4870965957173614e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017510419355037496 Iteration 10: d = 1.882100246928382e-5 Iteration 20: d = 2.1184571597998737e-7 Iteration 30: d = 2.648918184152759e-9 Iteration 40: d = 3.420536561832508e-11 Iteration 50: d = 4.4727747402053535e-13 Iteration 60: d = 5.947931026827933e-15 Converged after 63 iterations. d = 1.5878760897994676e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001307119802665136 Iteration 10: d = 1.2861563258530979e-5 Iteration 20: d = 1.5124042288275666e-7 Iteration 30: d = 1.9452140576533288e-9 Iteration 40: d = 2.544113528068284e-11 Iteration 50: d = 3.350972388676717e-13 Iteration 60: d = 4.433968534010781e-15 Converged after 62 iterations. d = 1.8853626692701386e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001241094241069323 Iteration 10: d = 1.0797350478114262e-5 Iteration 20: d = 1.3098710732533739e-7 Iteration 30: d = 1.7230712299466541e-9 Iteration 40: d = 2.2934998775135893e-11 Iteration 50: d = 3.0659723830164615e-13 Iteration 60: d = 4.069919476645904e-15 Converged after 62 iterations. d = 1.6931491386990314e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015822118573992376 Iteration 10: d = 1.7768249190119473e-5 Iteration 20: d = 2.2523209704765362e-7 Iteration 30: d = 3.0823740385959546e-9 Iteration 40: d = 4.267942967877805e-11 Iteration 50: d = 5.935744894609042e-13 Iteration 60: d = 8.257600869051342e-15 Converged after 64 iterations. d = 1.511030109736031e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001408142740226322 Iteration 10: d = 9.39413508484171e-6 Iteration 20: d = 9.108949924987504e-8 Iteration 30: d = 1.1649621658925083e-9 Iteration 40: d = 1.5792145935369505e-11 Iteration 50: d = 2.182686656836196e-13 Iteration 60: d = 3.0392848336458582e-15 Converged after 61 iterations. d = 1.9944400138532078e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011231813463147315 Iteration 10: d = 1.1068534257462975e-5 Iteration 20: d = 1.308859679937805e-7 Iteration 30: d = 1.7444365748740994e-9 Iteration 40: d = 2.3710770285774248e-11 Iteration 50: d = 3.2376304411888566e-13 Iteration 60: d = 4.419180297718999e-15 Converged after 62 iterations. d = 1.885369748143688e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011958888430257427 Iteration 10: d = 1.0601445405169408e-5 Iteration 20: d = 1.1245652150947107e-7 Iteration 30: d = 1.4252849180315664e-9 Iteration 40: d = 1.9189691303881115e-11 Iteration 50: d = 2.647128097377054e-13 Iteration 60: d = 3.6989482530138914e-15 Converged after 62 iterations. d = 1.5641404103156904e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014507692000710099 Iteration 10: d = 1.7523350385859183e-5 Iteration 20: d = 2.2397815492983026e-7 Iteration 30: d = 3.067255843520002e-9 Iteration 40: d = 4.237605237876018e-11 Iteration 50: d = 5.86164285836263e-13 Iteration 60: d = 8.149860274206025e-15 Converged after 64 iterations. d = 1.4335383428987926e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.155476382037 Iteration 2: convergence error = 4821.703177198472 Iteration 3: convergence error = 1104.2236494581432 Iteration 4: convergence error = 324.09570635032105 Iteration 5: convergence error = 96.61229642791545 Iteration 6: convergence error = 28.958042803857097 Iteration 7: convergence error = 8.688893964829958 Iteration 8: convergence error = 2.6105191346739502 Iteration 9: convergence error = 0.7845836431486077 Iteration 10: convergence error = 0.23547956118591173 Iteration 11: convergence error = 0.07062011084576625 Iteration 12: convergence error = 0.021169582160609934 Iteration 13: convergence error = 0.006344361936953646 Iteration 14: convergence error = 0.0019010876233096496 Iteration 15: convergence error = 0.0005696147611615743 Iteration 16: convergence error = 0.00017066332998183498 Iteration 17: convergence error = 5.113139673085243e-5 Iteration 18: convergence error = 1.5318927808039007e-5 Iteration 19: convergence error = 4.5894921640865505e-6 Iteration 20: convergence error = 1.3749913705396466e-6 Iteration 21: convergence error = 4.11942892242223e-7 Iteration 22: convergence error = 1.2329473975114524e-7 Iteration 23: convergence error = 3.604714038374368e-8 Iteration 24: convergence error = 1.0460553312441334e-8 Iteration 25: convergence error = 3.0211140256142244e-9 Iteration 26: convergence error = 8.724327926756814e-10 Iteration 27: convergence error = 2.489741746103391e-10 Iteration 28: convergence error = 7.298694981727749e-11 Iteration 29: convergence error = 2.0691004465334117e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3524217762792 K, F = -7438.781754139087, relative_change = 0.032647578223720795 Iter 2: T = 936.7810481729016 K, F = -6305.596503890823, relative_change = 0.031603139574759825 Iter 3: T = 908.2544455512781 K, F = -5343.521152444182, relative_change = 0.030451729011023273 Iter 5: T = 857.1965987616541 K, F = -3833.627137558262, relative_change = 0.027833937319220976 Iter 10: T = 762.3025782055527 K, F = -1659.8453474037422, relative_change = 0.019903514928714172 Iter 15: T = 706.8035400541523 K, F = -710.5940354506685, relative_change = 0.01190935314280615 Iter 20: T = 678.2883693319615 K, F = -301.1488988377288, relative_change = 0.006092127812637104 Iter 25: T = 664.9994355695305 K, F = -126.77188976931657, relative_change = 0.002812540280182261 Iter 30: T = 659.1511510858605 K, F = -53.17508943800437, relative_change = 0.0012299307580271063 Iter 35: T = 656.6495779234908 K, F = -22.267079598624072, relative_change = 0.0005244044397966158 Iter 40: T = 655.5932360216359 K, F = -9.317446947464209, relative_change = 0.0002211175958173294 Iter 45: T = 655.1496542132443 K, F = -3.897563710308254, relative_change = 9.279361457891915e-5 Iter 50: T = 654.9638246348704 K, F = -1.6301648789796244, relative_change = 3.886357941820171e-5 Iter 55: T = 654.8860526315727 K, F = -0.6817819465192678, relative_change = 1.6263060167262838e-5 Iter 60: T = 654.853517669433 K, F = -0.28513416894092414, relative_change = 6.803129789224954e-6 Iter 65: T = 654.8399094479895 K, F = -0.11924735727995706, relative_change = 2.845451731745561e-6 Iter 70: T = 654.8342180278156 K, F = -0.049870816307157284, relative_change = 1.190054655608018e-6 Iter 75: T = 654.8318377555504 K, F = -0.02085659673777135, relative_change = 4.977042974671537e-7 Iter 80: T = 654.8308422881013 K, F = -0.008722482343083371, relative_change = 2.0814749509236578e-7 Iter 85: T = 654.8304259701233 K, F = -0.003647847071646726, relative_change = 8.705005053303132e-8 Iter 90: T = 654.830251860693 K, F = -0.0015255733481598366, relative_change = 3.640542011555993e-8 Iter 95: T = 654.8301790460008 K, F = -0.0006380130172617959, relative_change = 1.5225190094791355e-8 Iter 100: T = 654.8301485940184 K, F = -0.0002668246669517149, relative_change = 6.367357821639182e-9 Iter 105: T = 654.8301358586341 K, F = -0.00011158926213533649, relative_change = 2.6629053264703404e-9 Iter 110: T = 654.8301305325441 K, F = -4.666796246710625e-5, relative_change = 1.113658861645599e-9 Iter 115: T = 654.8301283051096 K, F = -1.951709915204436e-5, relative_change = 4.65745441353096e-10 Iter 120: T = 654.8301273735699 K, F = -8.162283449075769e-6, relative_change = 1.9478029514381664e-10 Iter 125: T = 654.8301269839889 K, F = -3.4135643648403047e-6, relative_change = 8.145944459140481e-11 Iter 130: T = 654.8301268210614 K, F = -1.4275934482332886e-6, relative_change = 3.406731413386115e-11 Iter 135: T = 654.8301267529232 K, F = -5.970361683371728e-7, relative_change = 1.4247346631680435e-11 Iter 140: T = 654.830126724427 K, F = -2.496878449553819e-7, relative_change = 5.958415027755289e-12 Iter 145: T = 654.8301267125096 K, F = -1.0442222470041784e-7, relative_change = 2.491875217440814e-12 Iter 150: T = 654.8301267075256 K, F = -4.3670803195894337e-8, relative_change = 1.0421363127029041e-12 Iter 155: T = 654.8301267054412 K, F = -1.8263374923499498e-8, relative_change = 4.35827253169556e-13 Converged in 159 iterations to T = 654.8301267046888 K Iter 1: T = 970.3441010564013 K, F = -6757.124784341582, relative_change = 0.02965589894359865 Iter 2: T = 942.8525236995857 K, F = -5723.127756424694, relative_change = 0.028331781815219788 Iter 3: T = 917.4805086365824 K, F = -4845.607232582712, relative_change = 0.02690984477980512 Iter 5: T = 872.8791513643523 K, F = -3469.4518080045395, relative_change = 0.023817492655777525 Iter 10: T = 793.7090906596525 K, F = -1493.3407940675925, relative_change = 0.015511746067948485 Iter 15: T = 750.5695392104749 K, F = -635.6806272293984, relative_change = 0.008494641311722086 Iter 20: T = 729.627634998225 K, F = -268.3244825376104, relative_change = 0.004087158100192206 Iter 25: T = 720.201584642006 K, F = -112.70506489261756, relative_change = 0.001824865491293255 Iter 30: T = 716.1260084676846 K, F = -47.22494521333678, relative_change = 0.0007854589949421345 Iter 35: T = 714.3967628050898 K, F = -19.766225894993, relative_change = 0.0003325539399748383 Iter 40: T = 713.669121754709 K, F = -8.269332861976084, relative_change = 0.00013980209686783026 Iter 45: T = 713.3640266851745 K, F = -3.45883636760031, relative_change = 5.859451680936857e-5 Iter 50: T = 713.236294016811 K, F = -1.4466147441197699, relative_change = 2.4527317468534162e-5 Iter 55: T = 713.1828504594904 K, F = -0.6050069771523447, relative_change = 1.0261538510106682e-5 Iter 60: T = 713.1604954842788 K, F = -0.2530238400701279, relative_change = 4.292184200181435e-6 Iter 65: T = 713.1511456246133 K, F = -0.10581806339846633, relative_change = 1.795162745248922e-6 Iter 70: T = 713.1472352718357 K, F = -0.0442544603537417, relative_change = 7.507794982454342e-7 Iter 75: T = 713.1455998929006 K, F = -0.01850775825657236, relative_change = 3.1398862527344734e-7 Iter 80: T = 713.1449159539285 K, F = -0.007740168054337304, relative_change = 1.3131443529270155e-7 Iter 85: T = 713.1446299217879 K, F = -0.0032370311587317513, relative_change = 5.4917377422708436e-8 Iter 90: T = 713.1445102996092 K, F = -0.0013537651639329296, relative_change = 2.2967122705341884e-8 Iter 95: T = 713.1444602721643 K, F = -0.0005661607720749418, relative_change = 9.605128431874419e-9 Iter 100: T = 713.1444393500857 K, F = -0.0002367751978229471, relative_change = 4.016980007123252e-9 Iter 105: T = 713.144430600222 K, F = -9.902221591417959e-5, relative_change = 1.6799491183278943e-9 Iter 110: T = 713.1444269409243 K, F = -4.1412273169005864e-5, relative_change = 7.025747995596866e-10 Iter 115: T = 713.1444254105623 K, F = -1.7319106589752664e-5, relative_change = 2.9382516423359124e-10 Iter 120: T = 713.1444247705467 K, F = -7.243058949613079e-6, relative_change = 1.228812227402319e-10 Iter 125: T = 713.1444245028845 K, F = -3.029133272658413e-6, relative_change = 5.1390386802309075e-11 Iter 130: T = 713.1444243909449 K, F = -1.266818593692598e-6, relative_change = 2.1492054567060507e-11 Iter 135: T = 713.1444243441305 K, F = -5.29798155457506e-7, relative_change = 8.98822524935445e-12 Iter 140: T = 713.1444243245521 K, F = -2.2156818701990488e-7, relative_change = 3.758987744241101e-12 Iter 145: T = 713.1444243163642 K, F = -9.266134437524443e-8, relative_change = 1.572034607383403e-12 Iter 150: T = 713.1444243129399 K, F = -3.8751733932862464e-8, relative_change = 6.574377616761779e-13 Iter 155: T = 713.1444243115079 K, F = -1.620713374617111e-8, relative_change = 2.7496012828306465e-13 Converged in 157 iterations to T = 713.1444243112048 K Iter 1: T = 974.3849187790523 K, F = -5836.420622425588, relative_change = 0.025615081220947706 Iter 2: T = 950.9592824429963 K, F = -4937.859711964623, relative_change = 0.024041460294161227 Iter 3: T = 929.6486021640842 K, F = -4175.835492875158, relative_change = 0.022409666399349163 Iter 5: T = 893.0197276042077 K, F = -2982.3781030739096, relative_change = 0.019055788179212087 Iter 10: T = 831.2975979661588 K, F = -1275.3439062972327, relative_change = 0.011203246098091826 Iter 15: T = 799.9516817667267 K, F = -540.0345726339175, relative_change = 0.005657379114152977 Iter 20: T = 785.4523229437572 K, F = -227.22367890490344, relative_change = 0.0025927685110944195 Iter 25: T = 779.0962669161571 K, F = -95.28767305889252, relative_change = 0.0011298102564465786 Iter 30: T = 776.3824375356052 K, F = -39.89753108425636, relative_change = 0.0004809540226020192 Iter 35: T = 775.2373789619262 K, F = -16.69398392678928, relative_change = 0.00020265844333571762 Iter 40: T = 774.7567065040107 K, F = -6.9830948987850086, relative_change = 8.502258342660575e-5 Iter 45: T = 774.5553674311527 K, F = -2.9206717266063125, relative_change = 3.560462216357789e-5 Iter 50: T = 774.4711095824512 K, F = -1.2215049786542336, relative_change = 1.4898543025225443e-5 Iter 55: T = 774.4358622352277 K, F = -0.5108558759841244, relative_change = 6.232195324820657e-6 Iter 60: T = 774.4211196747871 K, F = -0.21364741125804532, relative_change = 2.606631629352243e-6 Iter 65: T = 774.4149538627494 K, F = -0.08935014077192449, relative_change = 1.0901687536368885e-6 Iter 70: T = 774.4123751945355 K, F = -0.03736733824147587, relative_change = 4.559293365536215e-7 Iter 75: T = 774.4112967556002 K, F = -0.01562747450738311, relative_change = 1.9067644797757747e-7 Iter 80: T = 774.4108457379681 K, F = -0.006535597761074929, relative_change = 7.974340457255854e-8 Iter 85: T = 774.41065711673 K, F = -0.0027332652608399455, relative_change = 3.334968555760063e-8 Iter 90: T = 774.410578233027 K, F = -0.0011430842138159258, relative_change = 1.3947244027652172e-8 Iter 95: T = 774.4105452429118 K, F = -0.00047805147637203227, relative_change = 5.832905284246643e-9 Iter 100: T = 774.4105314460502 K, F = -0.00019992683687264368, relative_change = 2.4393908602208943e-9 Iter 105: T = 774.4105256760377 K, F = -8.361179051530332e-5, relative_change = 1.020182422809173e-9 Iter 110: T = 774.4105232629495 K, F = -3.49674515716103e-5, relative_change = 4.266525064609195e-10 Iter 115: T = 774.4105222537671 K, F = -1.4623805213553887e-5, relative_change = 1.7843116688941586e-10 Iter 120: T = 774.4105218317151 K, F = -6.1158524112814305e-6, relative_change = 7.462207470382829e-11 Iter 125: T = 774.4105216552078 K, F = -2.557722674323415e-6, relative_change = 3.120784476912693e-11 Iter 130: T = 774.4105215813904 K, F = -1.0696712168245526e-6, relative_change = 1.3051506185143574e-11 Iter 135: T = 774.410521550519 K, F = -4.473483214972873e-7, relative_change = 5.458284091607246e-12 Iter 140: T = 774.4105215376082 K, F = -1.8708534343936378e-7, relative_change = 2.282706573104261e-12 Iter 145: T = 774.4105215322088 K, F = -7.824096515118839e-8, relative_change = 9.546507607660588e-13 Iter 150: T = 774.4105215299506 K, F = -3.272092619077682e-8, relative_change = 3.9924171463207444e-13 Converged in 154 iterations to T = 774.4105215291356 K Iter 1: T = 970.4090731386963 K, F = -6742.320833586272, relative_change = 0.0295909268613037 Iter 2: T = 942.9837199551472 K, F = -5710.488139076583, relative_change = 0.028261641345586695 Iter 3: T = 917.6787871835024 K, F = -4834.8131057602195, relative_change = 0.026834962509054174 Iter 5: T = 873.2121521901076 K, F = -3461.5773636580216, relative_change = 0.023735211185189193 Iter 10: T = 794.3538559912164 K, F = -1489.7773879530412, relative_change = 0.015429699270304272 Iter 15: T = 751.4412571811934 K, F = -634.0983853705965, relative_change = 0.008436239821779278 Iter 20: T = 730.6299822293752 K, F = -267.63868409056505, relative_change = 0.004054915093501796 Iter 25: T = 721.2680218918612 K, F = -112.41306457971314, relative_change = 0.001809509723789459 Iter 30: T = 717.2212764471161 K, F = -47.10182650562491, relative_change = 0.0007786587707363686 Iter 35: T = 715.5044769229752 K, F = -19.714553517968827, relative_change = 0.00032963952292249806 Iter 40: T = 714.7821117607471 K, F = -8.247690320039158, relative_change = 0.00013857058797377397 Iter 45: T = 714.479235718804 K, F = -3.4497794633463577, relative_change = 5.807724460382483e-5 Iter 50: T = 714.3524332917164 K, F = -1.4428260323336861, relative_change = 2.4310594314295892e-5 Iter 55: T = 714.2993791614 K, F = -0.6034223164013932, relative_change = 1.0170833295097833e-5 Iter 60: T = 714.2771871173329 K, F = -0.2523610851761952, relative_change = 4.254238117043397e-6 Iter 65: T = 714.2679054093386 K, F = -0.10554088599371558, relative_change = 1.7792911267871128e-6 Iter 70: T = 714.2640235604891 K, F = -0.04413854050874488, relative_change = 7.441414281684788e-7 Iter 75: T = 714.262400102602 K, F = -0.018459279029109932, relative_change = 3.112124404500403e-7 Iter 80: T = 714.2617211492183 K, F = -0.0077198934339042236, relative_change = 1.3015339034088214e-7 Iter 85: T = 714.2614372021214 K, F = -0.0032285520642652, relative_change = 5.443181256273777e-8 Iter 90: T = 714.2613184519349 K, F = -0.0013502191051156798, relative_change = 2.276405334697091e-8 Iter 95: T = 714.261268789168 K, F = -0.000564677768045807, relative_change = 9.52020234514852e-9 Iter 100: T = 714.261248019602 K, F = -0.00023615498978424299, relative_change = 3.981462926375893e-9 Iter 105: T = 714.261239333521 K, F = -9.876283854315382e-5, relative_change = 1.6650954667097066e-9 Iter 110: T = 714.2612357008979 K, F = -4.130379804789808e-5, relative_change = 6.963628179108833e-10 Iter 115: T = 714.2612341816916 K, F = -1.7273742763834754e-5, relative_change = 2.9122726909411726e-10 Iter 120: T = 714.2612335463414 K, F = -7.224086586710143e-6, relative_change = 1.2179474049259634e-10 Iter 125: T = 714.2612332806303 K, F = -3.021199650565798e-6, relative_change = 5.0936021274392176e-11 Iter 130: T = 714.2612331695067 K, F = -1.2635017944129245e-6, relative_change = 2.130205275115415e-11 Iter 135: T = 714.2612331230335 K, F = -5.28411021050168e-7, relative_change = 8.90876411728327e-12 Iter 140: T = 714.2612331035979 K, F = -2.209878998682413e-7, relative_change = 3.7257532385345915e-12 Iter 145: T = 714.2612330954697 K, F = -9.241960330363952e-8, relative_change = 1.5581515392316663e-12 Iter 150: T = 714.2612330920705 K, F = -3.865284370352384e-8, relative_change = 6.516689723912674e-13 Iter 155: T = 714.2612330906488 K, F = -1.6165845218019115e-8, relative_change = 2.7254863372968896e-13 Converged in 157 iterations to T = 714.261233090348 K Iter 1: T = 969.3244662497839 K, F = -6989.449544952463, relative_change = 0.03067553375021609 Iter 2: T = 940.7899353642607 K, F = -5921.543599742305, relative_change = 0.029437543236600996 Iter 3: T = 914.357313266557 K, F = -5015.1116010582355, relative_change = 0.028096199910418226 Iter 5: T = 867.6118801445881 K, F = -3593.2186491589487, relative_change = 0.025135384482887657 Iter 10: T = 783.3941048569064 K, F = -1549.5420317687099, relative_change = 0.016866842646794458 Iter 15: T = 736.4877649030514 K, F = -660.7396610940564, relative_change = 0.00948626185633813 Iter 20: T = 713.3357722956033 K, F = -279.2214645089127, relative_change = 0.004644726270550887 Iter 25: T = 702.8129281490253 K, F = -117.35354962130155, relative_change = 0.002092991548225687 Iter 30: T = 698.241133243145 K, F = -49.18672200191974, relative_change = 0.0009047351459287589 Iter 35: T = 696.297114635793 K, F = -20.589911519470707, relative_change = 0.0003837744171095205 Iter 40: T = 695.4783293328463 K, F = -8.614387334122577, relative_change = 0.00016146403423991786 Iter 45: T = 695.1348808540296 K, F = -3.603244442686878, relative_change = 6.769645875555398e-5 Iter 50: T = 694.9910667711147 K, F = -1.5070258590626466, relative_change = 2.8341358534356262e-5 Iter 55: T = 694.9308904815414 K, F = -0.6302747680697139, relative_change = 1.1857930686097374e-5 Iter 60: T = 694.9057185200726 K, F = -0.2635916817279627, relative_change = 4.960044616479637e-6 Iter 65: T = 694.8951903395977 K, F = -0.11023775716112988, relative_change = 2.074510214915957e-6 Iter 70: T = 694.8907871598832 K, F = -0.04610284588842706, relative_change = 8.676129901019159e-7 Iter 75: T = 694.888945667998 K, F = -0.019280778104668217, relative_change = 3.6285101893923914e-7 Iter 80: T = 694.8881755289322 K, F = -0.008063454701243367, relative_change = 1.5174948735838119e-7 Iter 85: T = 694.8878534466737 K, F = -0.003372233583922468, relative_change = 6.34635979070163e-8 Iter 90: T = 694.8877187478688 K, F = -0.001410308450047637, relative_change = 2.654126079177109e-8 Iter 95: T = 694.8876624151923 K, F = -0.0005898078518635774, relative_change = 1.1099876807009299e-8 Iter 100: T = 694.8876388561894 K, F = -0.00024666469003598035, relative_change = 4.642101839335698e-9 Iter 105: T = 694.8876290035322 K, F = -0.00010315811991001844, relative_change = 1.9413825725676144e-9 Iter 110: T = 694.887624883033 K, F = -4.31419567149538e-5, relative_change = 8.119093809630673e-10 Iter 115: T = 694.8876231597911 K, F = -1.8042481000457578e-5, relative_change = 3.3955019355904286e-10 Iter 120: T = 694.8876224391108 K, F = -7.545581469758922e-6, relative_change = 1.4200395506351994e-10 Iter 125: T = 694.8876221377136 K, F = -3.155652409603249e-6, relative_change = 5.938775238074381e-11 Iter 130: T = 694.8876220116657 K, F = -1.3197303710965613e-6, relative_change = 2.4836645606849825e-11 Iter 135: T = 694.8876219589512 K, F = -5.519279879795391e-7, relative_change = 1.0387000362438103e-11 Iter 140: T = 694.8876219369051 K, F = -2.308236196624236e-7, relative_change = 4.343981594830636e-12 Iter 145: T = 694.8876219276854 K, F = -9.653392862851717e-8, relative_change = 1.8167187997430432e-12 Iter 150: T = 694.8876219238294 K, F = -4.037201484230479e-8, relative_change = 7.597805185335761e-13 Iter 155: T = 694.8876219222169 K, F = -1.6884322495691606e-8, relative_change = 3.177542500941493e-13 Converged in 158 iterations to T = 694.8876219217448 K Iter 1: T = 963.5578181943916 K, F = -8303.385789872027, relative_change = 0.03644218180560833 Iter 2: T = 928.9930593185899 K, F = -7045.708446974973, relative_change = 0.035872013306448625 Iter 3: T = 896.2721639723821 K, F = -5977.607599689139, relative_change = 0.0352218943058717 Iter 5: T = 836.2430419284966 K, F = -4300.2537087665305, relative_change = 0.03365255233412274 Iter 10: T = 716.4986090578076 K, F = -1879.2471368964368, relative_change = 0.02793716832795516 Iter 15: T = 636.7956754434001 K, F = -813.7833379939641, relative_change = 0.0200267622190757 Iter 20: T = 590.0896749661331 K, F = -348.4446561881211, relative_change = 0.012013852557363765 Iter 25: T = 566.0513214710737 K, F = -147.688815581953, relative_change = 0.006157364240692534 Iter 30: T = 554.836233534552 K, F = -62.17570415870601, relative_change = 0.002845784706221725 Iter 35: T = 549.897714707878 K, F = -26.08082890544972, relative_change = 0.001245135577080183 Iter 40: T = 547.7847080672253 K, F = -10.921526591182541, relative_change = 0.0005310147228006457 Iter 45: T = 546.8923387776732 K, F = -4.570040003018333, relative_change = 0.00022392800055293368 Iter 50: T = 546.5175934389766 K, F = -1.9116904108865223, relative_change = 9.397713561352837e-5 Iter 55: T = 546.3605980825176 K, F = -0.7995698386047527, relative_change = 3.935998305436491e-5 Iter 60: T = 546.2948929614475 K, F = -0.3344033281765914, relative_change = 1.6470914938908768e-5 Iter 65: T = 546.2674059260432 K, F = -0.1398538580615999, relative_change = 6.890101418908553e-6 Iter 70: T = 546.2559090550124 K, F = -0.05848897219850396, relative_change = 2.8818320552625705e-6 Iter 75: T = 546.2511006700345 K, F = -0.024460859885917535, relative_change = 1.2052706970120857e-6 Iter 80: T = 546.249089701197 K, F = -0.010229836531644249, relative_change = 5.040680648237329e-7 Iter 85: T = 546.2482486821748 K, F = -0.004278242046554165, relative_change = 2.1080894008633795e-7 Iter 90: T = 546.2478969566048 K, F = -0.0017892123084261857, relative_change = 8.816310589044526e-8 Iter 95: T = 546.2477498605311 K, F = -0.0007482700234568429, relative_change = 3.6870914411313785e-8 Iter 100: T = 546.2476883431544 K, F = -0.0003129354716459587, relative_change = 1.541986557784865e-8 Iter 105: T = 546.2476626158456 K, F = -0.00013087335345826623, relative_change = 6.448773480160735e-9 Iter 110: T = 546.2476518563765 K, F = -5.4732799577073e-5, relative_change = 2.6969543469278947e-9 Iter 115: T = 546.2476473566379 K, F = -2.2889911257928386e-5, relative_change = 1.1278986013124612e-9 Iter 120: T = 546.2476454747933 K, F = -9.57283433275502e-6, relative_change = 4.717006767712475e-10 Iter 125: T = 546.2476446877835 K, F = -4.003473652258727e-6, relative_change = 1.9727085819274593e-10 Iter 130: T = 546.2476443586465 K, F = -1.6743007226760476e-6, relative_change = 8.250104036432663e-11 Iter 135: T = 546.2476442209976 K, F = -7.002125674282489e-7, relative_change = 3.4502920876710374e-11 Iter 140: T = 546.2476441634311 K, F = -2.9283752475683933e-7, relative_change = 1.4429546714072042e-11 Iter 145: T = 546.2476441393562 K, F = -1.2246831604389996e-7, relative_change = 6.0346169405282766e-12 Iter 150: T = 546.2476441292878 K, F = -5.121818574815862e-8, relative_change = 2.523772199948361e-12 Iter 155: T = 546.247644125077 K, F = -2.142030788854221e-8, relative_change = 1.0554840390332437e-12 Iter 160: T = 546.247644123316 K, F = -8.958552372151374e-9, relative_change = 4.414319855249202e-13 Converged in 164 iterations to T = 546.2476441226803 K Iter 1: T = 966.9754659471076 K, F = -7524.671498393405, relative_change = 0.033024534052892414 Iter 2: T = 936.011773218116 K, F = -6379.053479659378, relative_change = 0.03202117718536334 Iter 3: T = 907.0783668771413 K, F = -5406.383537140553, relative_change = 0.03091137010114547 Iter 5: T = 855.1702146223896 K, F = -3879.7402733068466, relative_change = 0.02837357095136178 Iter 10: T = 758.0822107855271 K, F = -1681.1923088763604, relative_change = 0.020557186573134472 Iter 15: T = 700.7010106843231 K, F = -720.3658986345449, relative_change = 0.012470791307263878 Iter 20: T = 670.9456818855759 K, F = -305.49637822787093, relative_change = 0.00644585141067061 Iter 25: T = 656.9944720598647 K, F = -128.65280084238466, relative_change = 0.0029937385487731312 Iter 30: T = 650.8349264194325 K, F = -53.974540543938346, relative_change = 0.0013130145589331848 Iter 35: T = 648.1962363057272 K, F = -22.6038281005525, relative_change = 0.0005605660483016254 Iter 40: T = 647.0812546066065 K, F = -9.4587135191911, relative_change = 0.0002364994527506213 Iter 45: T = 646.6129158973296 K, F = -3.9567200340751514, relative_change = 9.927258139792581e-5 Iter 50: T = 646.4166914468188 K, F = -1.6549182935228188, relative_change = 4.1581285685876195e-5 Iter 55: T = 646.3345649351198 K, F = -0.6921364925444184, relative_change = 1.7401063146689153e-5 Iter 60: T = 646.3002075951242 K, F = -0.289464979089021, relative_change = 7.279305937892331e-6 Iter 65: T = 646.2858370111039 K, F = -0.1210586264778915, relative_change = 3.0446379840311066e-6 Iter 70: T = 646.2798267228849 K, F = -0.05062832342978846, relative_change = 1.2733643701547788e-6 Iter 75: T = 646.2773130893884 K, F = -0.021173397485322265, relative_change = 5.325467522459073e-7 Iter 80: T = 646.2762618474892 K, F = -0.008854972587626186, relative_change = 2.2271925967418043e-7 Iter 85: T = 646.275822203762 K, F = -0.0037032561420122234, relative_change = 9.314417740821895e-8 Iter 90: T = 646.2756383391883 K, F = -0.0015487460945557974, relative_change = 3.895406389836754e-8 Iter 95: T = 646.2755614447723 K, F = -0.0006477041393269656, relative_change = 1.6291064630751145e-8 Iter 100: T = 646.2755292865995 K, F = -0.00027087760992766663, relative_change = 6.81311949059649e-9 Iter 105: T = 646.275515837666 K, F = -0.00011328425355194849, relative_change = 2.849328272379696e-9 Iter 110: T = 646.275510213161 K, F = -4.737682836131185e-5, relative_change = 1.1916231767997238e-9 Iter 115: T = 646.2755078609259 K, F = -1.981355605640278e-5, relative_change = 4.983510681783726e-10 Iter 120: T = 646.275506877193 K, F = -8.286265784751556e-6, relative_change = 2.0841637024731653e-10 Iter 125: T = 646.2755064657842 K, F = -3.4654160846470106e-6, relative_change = 8.716223480024898e-11 Iter 130: T = 646.2755062937281 K, F = -1.4492782764441436e-6, relative_change = 3.645228465986855e-11 Iter 135: T = 646.2755062217722 K, F = -6.06105722389394e-7, relative_change = 1.5244786799974313e-11 Iter 140: T = 646.2755061916793 K, F = -2.5347985399548634e-7, relative_change = 6.375531842650841e-12 Iter 145: T = 646.2755061790942 K, F = -1.060089775406503e-7, relative_change = 2.666340544728142e-12 Iter 150: T = 646.275506173831 K, F = -4.433524630753638e-8, relative_change = 1.1151212617775358e-12 Iter 155: T = 646.2755061716298 K, F = -1.8541908120006667e-8, relative_change = 4.663665525946462e-13 Converged in 160 iterations to T = 646.2755061707091 K Iter 1: T = 965.1541727060022 K, F = -7939.65489587641, relative_change = 0.03484582729399783 Iter 2: T = 932.2813797424718 K, F = -6734.171413375238, relative_change = 0.034059628910234035 Iter 3: T = 901.3521356842966 K, F = -5710.504305296191, relative_change = 0.03317586806970117 Iter 5: T = 845.2113666553296 K, F = -4103.281362114256, relative_change = 0.03109669315062306 Iter 10: T = 736.7213925400231 K, F = -1785.6600183993924, relative_change = 0.024124188183922857 Iter 15: T = 668.821590431251 K, F = -768.9283309203092, relative_change = 0.01581985644268466 Iter 20: T = 631.6386406235113 K, F = -327.44177091522096, relative_change = 0.008715488998080315 Iter 25: T = 613.5213692219235 K, F = -138.25006954150678, relative_change = 0.004209651486984964 Iter 30: T = 605.3492166129366 K, F = -58.07728478629939, relative_change = 0.001883345797996616 Iter 35: T = 601.8120755476506 K, F = -24.336673693232417, relative_change = 0.0008113861915205348 Iter 40: T = 600.3105749973669 K, F = -10.186507058512863, relative_change = 0.00034367127502349664 Iter 45: T = 599.6786366988317 K, F = -4.261642700148914, relative_change = 0.00014450081076159633 Iter 50: T = 599.4136462224437 K, F = -1.7825375924324107, relative_change = 6.056830063921801e-5 Iter 55: T = 599.3026999098964 K, F = -0.745525422550653, relative_change = 2.5354311019088784e-5 Iter 60: T = 599.2562790828357 K, F = -0.311795846843236, relative_change = 1.0607665863532945e-5 Iter 65: T = 599.2368615305531 K, F = -0.13039818346653792, relative_change = 4.436985842154977e-6 Iter 70: T = 599.2287402120334 K, F = -0.05453432891264176, relative_change = 1.8557287531105904e-6 Iter 75: T = 599.2253436630931 K, F = -0.022806951581828605, relative_change = 7.76110366040914e-7 Iter 80: T = 599.2239231653778 K, F = -0.009538147210124692, relative_change = 3.245825485869943e-7 Iter 85: T = 599.2233290927035 K, F = -0.003988968416464067, relative_change = 1.3574498459418244e-7 Iter 90: T = 599.2230806437927 K, F = -0.0016682344647189207, relative_change = 5.677029374146226e-8 Iter 95: T = 599.2229767393823 K, F = -0.0006976756176530485, relative_change = 2.3742035838159953e-8 Iter 100: T = 599.2229332852978 K, F = -0.00029177628299059677, relative_change = 9.929206616780787e-9 Iter 105: T = 599.2229151122774 K, F = -0.00012202432781355244, relative_change = 4.152513445086841e-9 Iter 110: T = 599.2229075121026 K, F = -5.1032030678299645e-5, relative_change = 1.7366308023572138e-9 Iter 115: T = 599.2229043336187 K, F = -2.1342204741814363e-5, relative_change = 7.262797617144316e-10 Iter 120: T = 599.2229030043387 K, F = -8.925565299910954e-6, relative_change = 3.037388866834834e-10 Iter 125: T = 599.2229024484179 K, F = -3.732778252107938e-6, relative_change = 1.2702723888544393e-10 Iter 130: T = 599.2229022159252 K, F = -1.561092094870542e-6, relative_change = 5.312429655086467e-11 Iter 135: T = 599.222902118694 K, F = -6.528676423922519e-7, relative_change = 2.2217224969408017e-11 Iter 140: T = 599.2229020780308 K, F = -2.7303755467666946e-7, relative_change = 9.291526161536767e-12 Iter 145: T = 599.2229020610249 K, F = -1.1418734308099587e-7, relative_change = 3.885819615375642e-12 Iter 150: T = 599.2229020539128 K, F = -4.7754557530588215e-8, relative_change = 1.6250977681020538e-12 Iter 155: T = 599.2229020509384 K, F = -1.9970849085559905e-8, relative_change = 6.79612249700465e-13 Iter 160: T = 599.2229020496945 K, F = -8.352083802343202e-9, relative_change = 2.8422319142943107e-13 Converged in 162 iterations to T = 599.2229020494314 K Iter 1: T = 979.9679091147704 K, F = -4564.33096363737, relative_change = 0.020032090885229607 Iter 2: T = 961.9870007156902 K, F = -3855.687333292234, relative_change = 0.018348466548586 Iter 3: T = 945.9376196569252 K, F = -3255.5472716763134, relative_change = 0.016683573735221762 Iter 5: T = 919.1141266155432 K, F = -2317.7712379930126, relative_change = 0.013499503239454176 Iter 10: T = 876.4578007682934 K, F = -984.1627127506958, relative_change = 0.007113227571469437 Iter 15: T = 856.2285735116332 K, F = -414.76865644025617, relative_change = 0.003341578449511657 Iter 20: T = 847.2419983171355 K, F = -174.07578655855588, relative_change = 0.0014738820635591926 Iter 25: T = 843.3809878924021 K, F = -72.91303218705434, relative_change = 0.000630854280612386 Iter 30: T = 841.7474086560218 K, F = -30.513159080842538, relative_change = 0.00026644769022369906 Iter 35: T = 841.0608584767764 K, F = -12.764505043277893, relative_change = 0.00011189599709139713 Iter 40: T = 840.7731407398693 K, F = -5.3388893337548975, relative_change = 4.687796263397017e-5 Iter 45: T = 840.6527094250163 K, F = -2.2328960317877806, relative_change = 1.961925346498141e-5 Iter 50: T = 840.6023253366508 K, F = -0.9338428194048046, relative_change = 8.207515064452919e-6 Iter 55: T = 840.5812509109226 K, F = -0.3905475491111027, relative_change = 3.432919835344199e-6 Iter 60: T = 840.572436774871 K, F = -0.16333223154537402, relative_change = 1.435764871630351e-6 Iter 65: T = 840.5687505000382 K, F = -0.06830759168339551, relative_change = 6.004674491178703e-7 Iter 70: T = 840.5672088387611 K, F = -0.028567068416609054, relative_change = 2.511250078264837e-7 Iter 75: T = 840.5665640946096 K, F = -0.011947092286317629, relative_change = 1.0502388824760887e-7 Iter 80: T = 840.5662944543819 K, F = -0.004996417215020976, relative_change = 4.392231616859165e-8 Iter 85: T = 840.566181687527 K, F = -0.0020895614435074705, relative_change = 1.836884972766742e-8 Iter 90: T = 840.5661345270655 K, F = -0.0008738795666327626, relative_change = 7.682074522161808e-9 Iter 95: T = 840.5661148039945 K, F = -0.00036546687372718267, relative_change = 3.212735690603938e-9 Iter 100: T = 840.5661065555703 K, F = -0.00015284261367831675, relative_change = 1.3436045186375968e-9 Iter 105: T = 840.5661031059807 K, F = -6.392060571336344e-5, relative_change = 5.619114609584297e-10 Iter 110: T = 840.5661016633211 K, F = -2.6732362895298678e-5, relative_change = 2.349981049847621e-10 Iter 115: T = 840.5661010599837 K, F = -1.117979429587912e-5, relative_change = 9.827902205725933e-11 Iter 120: T = 840.5661008076606 K, F = -4.675523923802771e-6, relative_change = 4.110146460054125e-11 Iter 125: T = 840.5661007021362 K, F = -1.9553589467591337e-6, relative_change = 1.718911460819658e-11 Iter 130: T = 840.5661006580045 K, F = -8.177544645882051e-7, relative_change = 7.188693022313119e-12 Iter 135: T = 840.5661006395483 K, F = -3.419947576244198e-7, relative_change = 3.006397928132832e-12 Iter 140: T = 840.5661006318296 K, F = -1.430278540048846e-7, relative_change = 1.2573252495191663e-12 Iter 145: T = 840.5661006286016 K, F = -5.981826345369257e-8, relative_change = 5.258487135066982e-13 Converged in 150 iterations to T = 840.5661006272516 K Iter 1: T = 976.3201329477456 K, F = -5395.480233224894, relative_change = 0.02367986705225435 Iter 2: T = 954.8042320269005 K, F = -4562.381400772152, relative_change = 0.022037751957325036 Iter 3: T = 935.361637716082 K, F = -3856.1751496724783, relative_change = 0.02036291174531653 Iter 5: T = 902.2791425099828 K, F = -2750.9522336595387, relative_change = 0.017007959229495634 Iter 10: T = 847.727548486109 K, F = -1173.2457487833526, relative_change = 0.009592630167042189 Iter 15: T = 820.7540083369162 K, F = -495.862532250751, relative_change = 0.004705713814453727 Iter 20: T = 808.481157932206 K, F = -208.41925082058577, relative_change = 0.0021226241199169306 Iter 25: T = 803.1462030500616 K, F = -87.35810554115352, relative_change = 0.0009179809672614092 Iter 30: T = 800.8771236414857 K, F = -36.56923375650066, relative_change = 0.000389474596728252 Iter 35: T = 799.9213281889255 K, F = -15.299892002833806, relative_change = 0.00016387690955753357 Iter 40: T = 799.5203914035772 K, F = -6.399687813365299, relative_change = 6.87106907509569e-5 Iter 45: T = 799.3525017693167 K, F = -2.676616969735774, relative_change = 2.876642627533579e-5 Iter 50: T = 799.2822509660023 K, F = -1.1194266354819875, relative_change = 1.2035857539573565e-5 Iter 55: T = 799.2528647017357 K, F = -0.46816344086559936, relative_change = 5.0344834913564986e-6 Iter 60: T = 799.2405738708793 K, F = -0.19579256587042282, relative_change = 2.1056462950965975e-6 Iter 65: T = 799.2354334984782 K, F = -0.08188296837396769, relative_change = 8.806353197481667e-7 Iter 70: T = 799.2332836983418 K, F = -0.03424446657621827, relative_change = 3.6829726120807825e-7 Iter 75: T = 799.2323846201276 K, F = -0.014321450360571975, relative_change = 1.540271968741797e-7 Iter 80: T = 799.2320086138104 K, F = -0.005989402532421639, relative_change = 6.441616779324585e-8 Iter 85: T = 799.2318513632907 K, F = -0.002504839834620909, relative_change = 2.6939637695298345e-8 Iter 90: T = 799.2317855992126 K, F = -0.0010475539608529871, relative_change = 1.1266482925490867e-8 Iter 95: T = 799.2317580958841 K, F = -0.000438099581064999, relative_change = 4.71177852683477e-9 Iter 100: T = 799.2317465936626 K, F = -0.00018321847597202456, relative_change = 1.9705221763961264e-9 Iter 105: T = 799.231741783296 K, F = -7.662415447529103e-5, relative_change = 8.240959279187977e-10 Iter 110: T = 799.2317397715433 K, F = -3.204513593746405e-5, relative_change = 3.4464675705722296e-10 Iter 115: T = 799.2317389302042 K, F = -1.3401657320111227e-5, relative_change = 1.441353772607564e-10 Iter 120: T = 799.2317385783464 K, F = -5.604734886976992e-6, relative_change = 6.027915501629743e-11 Iter 125: T = 799.2317384311951 K, F = -2.3439674862180127e-6, relative_change = 2.5209467071682508e-11 Iter 130: T = 799.2317383696547 K, F = -9.80277120810058e-7, relative_change = 1.0542920903360282e-11 Iter 135: T = 799.2317383439178 K, F = -4.0996366679202367e-7, relative_change = 4.409176161666266e-12 Iter 140: T = 799.2317383331542 K, F = -1.7145099118209828e-7, relative_change = 1.8439624886225212e-12 Iter 145: T = 799.2317383286529 K, F = -7.170421290059181e-8, relative_change = 7.711817701188388e-13 Iter 150: T = 799.2317383267704 K, F = -2.9990528616075096e-8, relative_change = 3.2254937345547453e-13 Converged in 153 iterations to T = 799.2317383262191 K Iter 1: T = 980.5860543690306 K, F = -4423.485979446224, relative_change = 0.019413945630969313 Iter 2: T = 963.195900604733 K, F = -3736.070469324556, relative_change = 0.017734449400759165 Iter 3: T = 947.7055399729948 K, F = -3154.011512318934, relative_change = 0.01608225348759558 Iter 5: T = 921.8914539578711 K, F = -2244.7441654255836, relative_change = 0.012946339070797648 Iter 10: T = 881.070497079959 K, F = -952.5116800813703, relative_change = 0.006751273274340018 Iter 15: T = 861.8306897951076 K, F = -401.26604818948925, relative_change = 0.0031519622761722248 Iter 20: T = 853.3122881013977 K, F = -168.37442446123438, relative_change = 0.0013859669242605333 Iter 25: T = 849.658248674637 K, F = -70.51842789148247, relative_change = 0.0005923973232477579 Iter 30: T = 848.1133272373448 K, F = -29.509861394518325, relative_change = 0.00025005393222080313 Iter 35: T = 847.4642336339743 K, F = -12.344586843322825, relative_change = 0.00010498444913061231 Iter 40: T = 847.1922478136426 K, F = -5.163216990694919, relative_change = 4.397768018315736e-5 Iter 45: T = 847.0784075798873 K, F = -2.1594176729358656, relative_change = 1.8404601937133112e-5 Iter 50: T = 847.0307820299464 K, F = -0.903111526251722, relative_change = 7.699232205349267e-6 Iter 55: T = 847.0108616202551 K, F = -0.37769504630924433, relative_change = 3.2202971791454935e-6 Iter 60: T = 847.0025301708883 K, F = -0.15795710733015267, relative_change = 1.3468343187514977e-6 Iter 65: T = 846.9990457724817 K, F = -0.06605964109258089, relative_change = 5.632740173130821e-7 Iter 70: T = 846.9975885402765 K, F = -0.027626946979823153, relative_change = 2.3556998841236343e-7 Iter 75: T = 846.9969791057106 K, F = -0.011553921985791638, relative_change = 9.851854403967486e-8 Iter 80: T = 846.9967242324327 K, F = -0.004831988652983954, relative_change = 4.1201694934254625e-8 Iter 85: T = 846.9966176413028 K, F = -0.002020795445999868, relative_change = 1.7231051924759718e-8 Iter 90: T = 846.9965730636052 K, F = -0.0008451208050033188, relative_change = 7.206233640169555e-9 Iter 95: T = 846.9965544206772 K, F = -0.0003534396173814347, relative_change = 3.013733317633131e-9 Iter 100: T = 846.9965466239815 K, F = -0.00014781266921803926, relative_change = 1.2603793225422813e-9 Iter 105: T = 846.9965433633101 K, F = -6.181702213314821e-5, relative_change = 5.271056826051655e-10 Iter 110: T = 846.9965419996585 K, F = -2.5852613578347672e-5, relative_change = 2.2044186474157735e-10 Iter 115: T = 846.9965414293631 K, F = -1.0811871944405027e-5, relative_change = 9.21914224722237e-11 Iter 120: T = 846.9965411908588 K, F = -4.521655453393336e-6, relative_change = 3.855556659198407e-11 Iter 125: T = 846.9965410911134 K, F = -1.8910094683466383e-6, relative_change = 1.612439122690704e-11 Iter 130: T = 846.9965410493987 K, F = -7.908426475911057e-7, relative_change = 6.743412164308995e-12 Iter 135: T = 846.9965410319531 K, F = -3.307396434504284e-7, relative_change = 2.8201738258237122e-12 Iter 140: T = 846.9965410246573 K, F = -1.3832180290052065e-7, relative_change = 1.1794519823120659e-12 Iter 145: T = 846.996541021606 K, F = -5.784949164144848e-8, relative_change = 4.932750742302911e-13 Converged in 150 iterations to T = 846.9965410203299 K Iter 1: T = 967.3197025091564 K, F = -7446.236870277068, relative_change = 0.03268029749084356 Iter 2: T = 936.714314151351 K, F = -6311.971896057562, relative_change = 0.03163937246229683 Iter 3: T = 908.1524857099433 K, F = -5348.976414264945, relative_change = 0.030491504197076597 Iter 5: T = 857.021173017634 K, F = -3837.627643321874, relative_change = 0.027880463304402164 Iter 10: T = 761.938801947386 K, F = -1661.6947185518588, relative_change = 0.019959227557564133 Iter 15: T = 706.2798379071709 K, F = -711.4388393008196, relative_change = 0.011956622411815165 Iter 20: T = 677.660257933802 K, F = -301.52400631409586, relative_change = 0.006121631714342923 Iter 25: T = 664.3159097610644 K, F = -126.93396792805338, relative_change = 0.0028275717615668 Iter 30: T = 658.4416675887336 K, F = -53.24393191097377, relative_change = 0.0012368046118468219 Iter 35: T = 655.9286774490856 K, F = -22.29606877107378, relative_change = 0.0005273926301530454 Iter 40: T = 654.8674563121241 K, F = -9.329606313553477, relative_change = 0.00022238800435017174 Iter 45: T = 654.4218151695108 K, F = -3.9026552337995946, relative_change = 9.332860333540347e-5 Iter 50: T = 654.2351210307341 K, F = -1.6322953281416264, relative_change = 3.908796820588124e-5 Iter 55: T = 654.1569868741012 K, F = -0.6826731209389822, relative_change = 1.635701630529557e-5 Iter 60: T = 654.1243003527908 K, F = -0.2855069028870708, relative_change = 6.842443345414264e-6 Iter 65: T = 654.1106287295809 K, F = -0.11940324504474664, relative_change = 2.8618966264362795e-6 Iter 70: T = 654.1049107908974 K, F = -0.04993601147643001, relative_change = 1.1969327185268124e-6 Iter 75: T = 654.1025194277265 K, F = -0.020883862317949364, relative_change = 5.00580892473958e-7 Iter 80: T = 654.1015193218324 K, F = -0.008733885165756905, relative_change = 2.0935054017586977e-7 Iter 85: T = 654.1011010639846 K, F = -0.003652615873779963, relative_change = 8.755318162497785e-8 Iter 90: T = 654.1009261432746 K, F = -0.001527567718930145, relative_change = 3.661583611423705e-8 Iter 95: T = 654.1008529892952 K, F = -0.000638847088524741, relative_change = 1.53131887124096e-8 Iter 100: T = 654.1008223954186 K, F = -0.0002671734864324593, relative_change = 6.404159933181024e-9 Iter 105: T = 654.1008096006925 K, F = -0.00011173514333573387, relative_change = 2.6782964293148928e-9 Iter 110: T = 654.1008042497851 K, F = -4.672897204360815e-5, relative_change = 1.1200956127866197e-9 Iter 115: T = 654.1008020119716 K, F = -1.95426140268129e-5, relative_change = 4.684373662218804e-10 Iter 120: T = 654.1008010760912 K, F = -8.172954810203859e-6, relative_change = 1.9590610787121625e-10 Iter 125: T = 654.100800684695 K, F = -3.418027317902972e-6, relative_change = 8.19302744118322e-11 Iter 130: T = 654.1008005210083 K, F = -1.4294597331376835e-6, relative_change = 3.426421659146477e-11 Iter 135: T = 654.1008004525526 K, F = -5.978166284226205e-7, relative_change = 1.4329692522010613e-11 Iter 140: T = 654.1008004239236 K, F = -2.500144619665967e-7, relative_change = 5.992858338913753e-12 Iter 145: T = 654.1008004119506 K, F = -1.0455865862013525e-7, relative_change = 2.5062759343723067e-12 Iter 150: T = 654.1008004069433 K, F = -4.3726912202224355e-8, relative_change = 1.048136129394983e-12 Iter 155: T = 654.1008004048493 K, F = -1.8287934722138743e-8, relative_change = 4.383626501211693e-13 Converged in 159 iterations to T = 654.1008004040933 K Iter 1: T = 973.3500784956237 K, F = -6072.209965392013, relative_change = 0.026649921504376214 Iter 2: T = 948.893319322491 K, F = -5138.803383471521, relative_change = 0.025126375097161553 Iter 3: T = 926.5636090951002 K, F = -4347.063381149587, relative_change = 0.023532371629862638 Iter 5: T = 887.968805862193 K, F = -3106.6108171899104, relative_change = 0.020209656191918987 Iter 10: T = 822.1234247641432 K, F = -1330.5144793619086, relative_change = 0.01217058954326195 Iter 15: T = 788.1464674909957 K, F = -564.0476182785126, relative_change = 0.006255866628112121 Iter 20: T = 772.2675559644904 K, F = -237.48538728122483, relative_change = 0.0028961604766555883 Iter 25: T = 765.2690407636735 K, F = -99.62335642433796, relative_change = 0.0012682145273871634 Iter 30: T = 762.2733773294848 K, F = -41.71898558446036, relative_change = 0.0005410557665834674 Iter 35: T = 761.0080083502211 K, F = -17.457215528934462, relative_change = 0.00022819838113639023 Iter 40: T = 760.4765819070333 K, F = -7.302548918721796, relative_change = 9.577572655732068e-5 Iter 45: T = 760.2539393273142 K, F = -3.054317164573454, relative_change = 4.011440799479709e-5 Iter 50: T = 760.160758465255 K, F = -1.277405150368042, relative_change = 1.678681624048112e-5 Iter 55: T = 760.1217770183456 K, F = -0.5342354051552103, relative_change = 7.0222837325338895e-6 Iter 60: T = 760.1054723946556 K, F = -0.2234252562252329, relative_change = 2.9371242853715274e-6 Iter 65: T = 760.0986532359497 K, F = -0.09343939545708424, relative_change = 1.2283966687164011e-6 Iter 70: T = 760.0958013175585 K, F = -0.039077520933075705, relative_change = 5.137399898322146e-7 Iter 75: T = 760.0946085998975 K, F = -0.016342694655456347, relative_change = 2.148539188930168e-7 Iter 80: T = 760.0941097891458 K, F = -0.0068347116007793085, relative_change = 8.985477555316103e-8 Iter 85: T = 760.0939011801859 K, F = -0.002858358282655349, relative_change = 3.75783928503212e-8 Iter 90: T = 760.0938139373668 K, F = -0.0011953996145168677, relative_change = 1.571574184693292e-8 Iter 95: T = 760.0937774513674 K, F = -0.0004999304019057682, relative_change = 6.572512520512945e-9 Iter 100: T = 760.093762192485 K, F = -0.00020907686621840504, relative_change = 2.7487035136801406e-9 Iter 105: T = 760.0937558110377 K, F = -8.743844302472326e-5, relative_change = 1.1495406905944396e-9 Iter 110: T = 760.0937531422402 K, F = -3.65678004662362e-5, relative_change = 4.807516448150943e-10 Iter 115: T = 760.0937520261172 K, F = -1.529309026859771e-5, relative_change = 2.0105607279071098e-10 Iter 120: T = 760.0937515593412 K, F = -6.395752233268048e-6, relative_change = 8.408404107595854e-11 Iter 125: T = 760.0937513641298 K, F = -2.6747791894710105e-6, relative_change = 3.516493999591563e-11 Iter 130: T = 760.0937512824903 K, F = -1.118625867935208e-6, relative_change = 1.4706414532751145e-11 Iter 135: T = 760.0937512483475 K, F = -4.678224256871033e-7, relative_change = 6.150394621252958e-12 Iter 140: T = 760.0937512340687 K, F = -1.9564861597487493e-7, relative_change = 2.572164414067456e-12 Iter 145: T = 760.0937512280971 K, F = -8.182190058825256e-8, relative_change = 1.0757008422659516e-12 Iter 150: T = 760.0937512255996 K, F = -3.421772754030883e-8, relative_change = 4.498555774368988e-13 Converged in 155 iterations to T = 760.0937512245553 K Iter 1: T = 970.0481715459609 K, F = -6824.552604797075, relative_change = 0.029951828454039098 Iter 2: T = 942.2546079464482 K, F = -5780.703146120513, relative_change = 0.028651735465073058 Iter 3: T = 916.5762966092408 K, F = -4894.781805213655, relative_change = 0.027251988072704434 Iter 5: T = 871.3584644166394 K, F = -3505.3359178130877, relative_change = 0.024194800198054645 Iter 10: T = 790.7537669814102 K, F = -1509.597602597589, relative_change = 0.0158917541378629 Iter 15: T = 746.5614771788561 K, F = -642.9086964794745, relative_change = 0.00876753092900164 Iter 20: T = 725.0099416110103 K, F = -271.46060438500126, relative_change = 0.004238685420544771 Iter 25: T = 715.283717914147 K, F = -114.04115333759707, relative_change = 0.0018972479775300104 Iter 30: T = 711.0728693228226 K, F = -47.788452314648225, relative_change = 0.0008175580267661187 Iter 35: T = 709.2851799920601 K, F = -20.00275728995911, relative_change = 0.0003463192521875236 Iter 40: T = 708.532756187826 K, F = -8.368407445707371, relative_change = 0.00014562025101869862 Iter 45: T = 708.2172360039546 K, F = -3.500297748594642, relative_change = 6.103859217026178e-5 Iter 50: T = 708.0851327390227 K, F = -1.4639591631574491, relative_change = 2.5551366647523672e-5 Iter 55: T = 708.0298594707165 K, F = -0.6122614565329295, relative_change = 1.0690142446936594e-5 Iter 60: T = 708.0067389601048 K, F = -0.25605789631924486, relative_change = 4.471490011934888e-6 Iter 65: T = 707.9970688869217 K, F = -0.1070869675564865, relative_change = 1.870160817158878e-6 Iter 70: T = 707.9930246069731 K, F = -0.04478513570313902, relative_change = 7.82146378827154e-7 Iter 75: T = 707.9913332163369 K, F = -0.018729693808636094, relative_change = 3.271069426467606e-7 Iter 80: T = 707.990625852295 K, F = -0.007832984288952183, relative_change = 1.3680072707104864e-7 Iter 85: T = 707.9903300234566 K, F = -0.0032758480400517653, relative_change = 5.721181974200942e-8 Iter 90: T = 707.9902063041726 K, F = -0.0013699988523614426, relative_change = 2.3926687575703366e-8 Iter 95: T = 707.9901545632677 K, F = -0.0005729498960077573, relative_change = 1.0006430227769636e-8 Iter 100: T = 707.9901329245992 K, F = -0.0002396144895766561, relative_change = 4.184809242695735e-9 Iter 105: T = 707.9901238750491 K, F = -0.00010020964172785529, relative_change = 1.75013731920671e-9 Iter 110: T = 707.990120090419 K, F = -4.190887049781988e-5, relative_change = 7.319283740178057e-10 Iter 115: T = 707.9901185076415 K, F = -1.7526790306310325e-5, relative_change = 3.061011932512065e-10 Iter 120: T = 707.990117845705 K, F = -7.329911644315956e-6, relative_change = 1.2801515117864122e-10 Iter 125: T = 707.9901175688752 K, F = -3.065456637862951e-6, relative_change = 5.35374660296836e-11 Iter 130: T = 707.9901174531017 K, F = -1.282009930214656e-6, relative_change = 2.238999641823984e-11 Iter 135: T = 707.9901174046839 K, F = -5.361520948321541e-7, relative_change = 9.36376794275096e-12 Iter 140: T = 707.9901173844349 K, F = -2.2422474954542082e-7, relative_change = 3.916031555762117e-12 Iter 145: T = 707.9901173759666 K, F = -9.377400345123021e-8, relative_change = 1.6377405143301912e-12 Iter 150: T = 707.9901173724251 K, F = -3.9216972891331636e-8, relative_change = 6.849150403230407e-13 Iter 155: T = 707.9901173709438 K, F = -1.6400192870413832e-8, relative_change = 2.8642544115738874e-13 Converged in 157 iterations to T = 707.9901173706304 K Iter 1: T = 973.5069121687969 K, F = -6036.475263772187, relative_change = 0.02649308783120312 Iter 2: T = 949.2068697176445 K, F = -5108.342526587795, relative_change = 0.02496134557177034 Iter 3: T = 927.0325120123304 K, F = -4321.100049196947, relative_change = 0.023360932598296715 Iter 5: T = 888.7388759210618 K, F = -3087.7610237715144, relative_change = 0.020032028381086742 Iter 10: T = 823.5323285308273 K, F = -1322.1259863027674, relative_change = 0.01201870728204131 Iter 15: T = 789.9688915318831 K, F = -560.3892326617489, relative_change = 0.006160507499463526 Iter 20: T = 774.3088678336297 K, F = -235.91996904957963, relative_change = 0.002847411488763775 Iter 25: T = 767.4128052695551 K, F = -98.96149968170668, relative_change = 0.0012458844700486552 Iter 30: T = 764.4621925164878 K, F = -41.4408470495671, relative_change = 0.0005313411936104758 Iter 35: T = 763.2160750445112 K, F = -17.340653074138476, relative_change = 0.00022406696050845758 Iter 40: T = 762.6927736443167 K, F = -7.253758332750533, relative_change = 9.40356825966819e-5 Iter 45: T = 762.4735421178827 K, F = -3.0339048388013294, relative_change = 3.938454430025127e-5 Iter 50: T = 762.3817900949259 K, F = -1.268867153852709, relative_change = 1.648120011621381e-5 Iter 55: T = 762.3434066079619 K, F = -0.5306644823012987, relative_change = 6.89440514468645e-6 Iter 60: T = 762.3273521286969 K, F = -0.22193181326925293, relative_change = 2.883632334580159e-6 Iter 65: T = 762.3206375957002 K, F = -0.09281481271520209, relative_change = 1.2060236670536567e-6 Iter 70: T = 762.3178294351858 K, F = -0.03881631173385547, relative_change = 5.043829784067135e-7 Iter 75: T = 762.3166550179685 K, F = -0.01623345363211126, relative_change = 2.109406428830086e-7 Iter 80: T = 762.316163860747 K, F = -0.0067890256626435, relative_change = 8.821818593715356e-8 Iter 85: T = 762.3159584525962 K, F = -0.002839251870345727, relative_change = 3.6893949618806874e-8 Iter 90: T = 762.3158725483959 K, F = -0.0011874090845641616, relative_change = 1.5429499194815036e-8 Iter 95: T = 762.3158366222232 K, F = -0.0004965886684010767, relative_change = 6.45280238976903e-9 Iter 100: T = 762.315821597467 K, F = -0.00020767931433962605, relative_change = 2.698639310373199e-9 Iter 105: T = 762.3158153139341 K, F = -8.685396956875646e-5, relative_change = 1.1286032337119237e-9 Iter 110: T = 762.3158126860856 K, F = -3.6323367407442575e-5, relative_change = 4.719953594720865e-10 Iter 115: T = 762.3158115870879 K, F = -1.5190866320180518e-5, relative_change = 1.9739410111057266e-10 Iter 120: T = 762.3158111274739 K, F = -6.35300129969707e-6, relative_change = 8.255256534263174e-11 Iter 125: T = 762.3158109352579 K, F = -2.656900233932724e-6, relative_change = 3.4524458612083e-11 Iter 130: T = 762.315810854871 K, F = -1.1111486728498932e-6, relative_change = 1.4438557344757614e-11 Iter 135: T = 762.3158108212521 K, F = -4.6469580627928053e-7, relative_change = 6.038379212596147e-12 Iter 140: T = 762.3158108071923 K, F = -1.943411607197021e-7, relative_change = 2.5253200250303807e-12 Iter 145: T = 762.3158108013123 K, F = -8.127635775512232e-8, relative_change = 1.0561263144049618e-12 Iter 150: T = 762.3158107988531 K, F = -3.398985048974623e-8, relative_change = 4.416730340404599e-13 Converged in 154 iterations to T = 762.3158107979656 K Iter 1: T = 964.3310939888469 K, F = -8127.194164530238, relative_change = 0.035668906011153155 Iter 2: T = 930.5881127080044 K, F = -6894.767219167328, relative_change = 0.03499107463316207 Iter 3: T = 898.7401116282965 K, F = -5848.15886955546, relative_change = 0.03422352020705528 Iter 5: T = 840.6161057846749 K, F = -4204.716384675873, relative_change = 0.03239381075611932 Iter 10: T = 726.4858480602593 K, F = -1833.65849756191, relative_change = 0.025997727834966785 Iter 15: T = 652.8673321118512 K, F = -791.7434516250019, relative_change = 0.017796831827237913 Iter 20: T = 611.2457819051963 K, F = -338.0118133859845, relative_change = 0.010197444701437769 Iter 25: T = 590.4576482269331 K, F = -142.9586300043595, relative_change = 0.005056658622424087 Iter 30: T = 580.9413512326939 K, F = -60.11101435953205, relative_change = 0.002294261017349457 Iter 35: T = 576.791925868935 K, F = -25.19989285372722, relative_change = 0.0009949419132627368 Iter 40: T = 575.02460421995 K, F = -10.549852578576731, relative_change = 0.0004226393870571036 Iter 45: T = 574.2797088607455 K, F = -4.414016018870785, relative_change = 0.00017792377503447613 Iter 50: T = 573.9671595147047 K, F = -1.8463357090395378, relative_change = 7.461664298116799e-5 Iter 55: T = 573.8362672761922 K, F = -0.7722195109518735, relative_change = 3.1241887702464e-5 Iter 60: T = 573.7814949540293 K, F = -0.32296190283047405, relative_change = 1.307209319853846e-5 Iter 65: T = 573.7585829778384 K, F = -0.13506835862904135, relative_change = 5.4680191202249574e-6 Iter 70: T = 573.7489999469329 K, F = -0.05648752143023347, relative_change = 2.286985731298283e-6 Iter 75: T = 573.7449920394821 K, F = -0.023623812173114933, relative_change = 9.564788258913506e-7 Iter 80: T = 573.7433158550772 K, F = -0.00987977018989411, relative_change = 4.000168287267817e-7 Iter 85: T = 573.7426148495564 K, F = -0.004131839598149223, relative_change = 1.672928575607175e-7 Iter 90: T = 573.742321679769 K, F = -0.0017279849641734235, relative_change = 6.996405326493576e-8 Iter 95: T = 573.7421990725043 K, F = -0.0007226640011605556, relative_change = 2.9259834522867587e-8 Iter 100: T = 573.7421477966541 K, F = -0.00030222672483443125, relative_change = 1.223681780946313e-8 Iter 105: T = 573.7421263524765 K, F = -0.00012639482806525715, relative_change = 5.11758435379909e-9 Iter 110: T = 573.7421173842644 K, F = -5.285982736702444e-5, relative_change = 2.140235085169015e-9 Iter 115: T = 573.7421136336508 K, F = -2.2106610862826503e-5, relative_change = 8.950718913021874e-10 Iter 120: T = 573.7421120650993 K, F = -9.245248435152398e-6, relative_change = 3.743297496602468e-10 Iter 125: T = 573.7421114091123 K, F = -3.866473350933042e-6, relative_change = 1.565491743735171e-10 Iter 130: T = 573.7421111347708 K, F = -1.6170048393604475e-6, relative_change = 6.547071456603802e-11 Iter 135: T = 573.7421110200378 K, F = -6.762505043722555e-7, relative_change = 2.7380625407749686e-11 Iter 140: T = 573.7421109720551 K, F = -2.828153432554714e-7, relative_change = 1.1450876452230745e-11 Iter 145: T = 573.7421109519883 K, F = -1.1827680140852337e-7, relative_change = 4.788895201828314e-12 Iter 150: T = 573.742110943596 K, F = -4.946422454965571e-8, relative_change = 2.0027510450365483e-12 Iter 155: T = 573.7421109400863 K, F = -2.0686314938789252e-8, relative_change = 8.375657202759137e-13 Iter 160: T = 573.7421109386185 K, F = -8.651378391455466e-9, relative_change = 3.5028462030807863e-13 Converged in 163 iterations to T = 573.7421109381887 K Iter 1: T = 963.6062302159238 K, F = -8292.35506471422, relative_change = 0.03639376978407624 Iter 2: T = 929.0930408852066 K, F = -7036.256776108809, relative_change = 0.03581669384078553 Iter 3: T = 896.4270735605287 K, F = -5969.499762994017, relative_change = 0.03515898396306458 Iter 5: T = 836.5184407129027 K, F = -4294.2655581948065, relative_change = 0.033572574016839274 Iter 10: T = 717.1350224676132 K, F = -1876.37824616524, relative_change = 0.027810173262321904 Iter 15: T = 637.8360104785753 K, F = -812.384460271153, relative_change = 0.01987458421785658 Iter 20: T = 591.4801081204926 K, F = -347.7747981370768, relative_change = 0.011884640436120596 Iter 25: T = 567.6725792333366 K, F = -147.38206743654897, relative_change = 0.006076668164393892 Iter 30: T = 556.5805555041989 K, F = -62.04098707067663, relative_change = 0.002804658437976602 Iter 35: T = 551.6997991888069 K, F = -26.023171760475698, relative_change = 0.0012263255791372853 Iter 40: T = 549.6122202057538 K, F = -10.89716643843097, relative_change = 0.0005228370714411769 Iter 45: T = 548.7307218289551 K, F = -4.559807706641906, relative_change = 0.00022045121836406664 Iter 50: T = 548.3605653841192 K, F = -1.9074032415200621, relative_change = 9.251298901203524e-5 Iter 55: T = 548.2054966853966 K, F = -0.7977755037333008, relative_change = 3.874587681262585e-5 Iter 60: T = 548.1405986385262 K, F = -0.3336526723311544, relative_change = 1.621377558767006e-5 Iter 65: T = 548.1134493630391 K, F = -0.13953988218045876, relative_change = 6.7825078911661055e-6 Iter 70: T = 548.1020937878241 K, F = -0.058357656273780645, relative_change = 2.8368255705150285e-6 Iter 75: T = 548.0973445015446 K, F = -0.024405940693326633, relative_change = 1.1864467705481284e-6 Iter 80: T = 548.0953582497308 K, F = -0.010206868441079042, relative_change = 4.96195380617697e-7 Iter 85: T = 548.09452756788 K, F = -0.0042686364760969875, relative_change = 2.0751643818559648e-7 Iter 90: T = 548.0941801654768 K, F = -0.001785195137448875, relative_change = 8.678613331451805e-8 Iter 95: T = 548.0940348774097 K, F = -0.0007465899928856823, relative_change = 3.629504644306979e-8 Iter 100: T = 548.0939741161643 K, F = -0.00031223286306339415, relative_change = 1.5179030465254422e-8 Iter 105: T = 548.0939487050787 K, F = -0.00013057951418224412, relative_change = 6.348053314947148e-9 Iter 110: T = 548.093938077858 K, F = -5.460991265685e-5, relative_change = 2.654831971478779e-9 Iter 115: T = 548.0939336334271 K, F = -2.283851835910289e-5, relative_change = 1.1102825130425664e-9 Iter 120: T = 548.093931774713 K, F = -9.551341117436385e-6, relative_change = 4.6433341354571335e-10 Iter 125: T = 548.0939309973766 K, F = -3.994485259839475e-6, relative_change = 1.9418979657180914e-10 Iter 130: T = 548.0939306722851 K, F = -1.6705404923544886e-6, relative_change = 8.121244620749341e-11 Iter 135: T = 548.093930536328 K, F = -6.98639669172163e-7, relative_change = 3.3963999602369756e-11 Iter 140: T = 548.0939304794692 K, F = -2.9218040473177886e-7, relative_change = 1.4204196516339064e-11 Iter 145: T = 548.0939304556902 K, F = -1.2219328926477147e-7, relative_change = 5.940362412895243e-12 Iter 150: T = 548.0939304457454 K, F = -5.110240716699188e-8, relative_change = 2.484316615061518e-12 Iter 155: T = 548.0939304415864 K, F = -2.1371529684843793e-8, relative_change = 1.0389656619062405e-12 Iter 160: T = 548.0939304398471 K, F = -8.938009360415222e-9, relative_change = 4.3451661852702547e-13 Converged in 164 iterations to T = 548.0939304392192 K Iter 1: T = 969.3469006422885 K, F = -6984.337847279686, relative_change = 0.030653099357711548 Iter 2: T = 940.8353916034943 K, F = -5917.176828812484, relative_change = 0.029413112085985404 Iter 3: T = 914.4262653236153 K, F = -5011.37992316314, relative_change = 0.02806986909247651 Iter 5: T = 867.7286186174438 K, F = -3590.4916156758977, relative_change = 0.02510583956143225 Iter 10: T = 783.625148005402 K, F = -1548.299678264501, relative_change = 0.01683559495639871 Iter 15: T = 736.8060842510241 K, F = -660.1834829640425, relative_change = 0.00946280656806563 Iter 20: T = 713.7062182925355 K, F = -278.97883054411125, relative_change = 0.004631313868427136 Iter 25: T = 703.2095193416475 K, F = -117.24985145018046, relative_change = 0.0020864838906592314 Iter 30: T = 698.649616400469 K, F = -49.142918683120726, relative_change = 0.0009018281110878898 Iter 35: T = 696.710757342704 K, F = -20.571512401522725, relative_change = 0.0003825237684163052 Iter 40: T = 695.8941639245826 K, F = -8.606678301832304, relative_change = 0.00016093470179758953 Iter 45: T = 695.5516382003511 K, F = -3.600017909382595, relative_change = 6.747396977134795e-5 Iter 50: T = 695.4082110970315 K, F = -1.505676041191442, relative_change = 2.8248114739364305e-5 Iter 55: T = 695.3481968351983 K, F = -0.6297101804913261, relative_change = 1.1818900614284852e-5 Iter 60: T = 695.3230926686389 K, F = -0.26335555087423806, relative_change = 4.943715751323787e-6 Iter 65: T = 695.3125928465752 K, F = -0.11013900203988974, relative_change = 2.067680234615773e-6 Iter 70: T = 695.3082015276966 K, F = -0.046061544901170426, relative_change = 8.647564264134563e-7 Iter 75: T = 695.3063649963311 K, F = -0.019263505464898634, relative_change = 3.616563376269364e-7 Iter 80: T = 695.3055969318449 K, F = -0.008056231065476593, relative_change = 1.5124985174837923e-7 Iter 85: T = 695.3052757172059 K, F = -0.003369212571368907, relative_change = 6.32546433494555e-8 Iter 90: T = 695.3051413812505 K, F = -0.001409045025746014, relative_change = 2.6453873320641026e-8 Iter 95: T = 695.3050852003222 K, F = -0.0005892794725570472, relative_change = 1.1063330290807683e-8 Iter 100: T = 695.3050617047822 K, F = -0.00024644371530768705, relative_change = 4.626817641152552e-9 Iter 105: T = 695.3050518786661 K, F = -0.00010306570548501703, relative_change = 1.9349905345574974e-9 Iter 110: T = 695.3050477692668 K, F = -4.310330872803192e-5, relative_change = 8.092361697937061e-10 Iter 115: T = 695.3050460506668 K, F = -1.802631741631977e-5, relative_change = 3.384322146863246e-10 Iter 120: T = 695.3050453319279 K, F = -7.538821581665189e-6, relative_change = 1.4153640134257036e-10 Iter 125: T = 695.3050450313426 K, F = -3.1528255266533023e-6, relative_change = 5.91922192597391e-11 Iter 130: T = 695.3050449056343 K, F = -1.3185487011124764e-6, relative_change = 2.475488200291366e-11 Iter 135: T = 695.3050448530616 K, F = -5.5143301047611e-7, relative_change = 1.0352790989247832e-11 Iter 140: T = 695.3050448310751 K, F = -2.306155938436305e-7, relative_change = 4.3296556370871414e-12 Iter 145: T = 695.3050448218801 K, F = -9.644670362352059e-8, relative_change = 1.8107232346633192e-12 Iter 150: T = 695.3050448180346 K, F = -4.0335423556747685e-8, relative_change = 7.572709680282007e-13 Iter 155: T = 695.3050448164264 K, F = -1.6869618146841958e-8, relative_change = 3.1671595183555934e-13 Converged in 158 iterations to T = 695.3050448159555 K Iter 1: T = 966.5681204417865 K, F = -7617.485559266414, relative_change = 0.03343187955821345 Iter 2: T = 935.179400032548 K, F = -6458.448792103391, relative_change = 0.032474400660857494 Iter 3: T = 905.8039945250938 K, F = -5474.345326992163, relative_change = 0.03141151901595751 Iter 5: T = 852.9672583964497 K, F = -3929.6295548781895, relative_change = 0.02896572055489465 Iter 10: T = 753.4476835127533 K, F = -1704.3620497400946, relative_change = 0.021293775601871345 Iter 15: T = 693.9299075404388 K, F = -731.0251774067103, relative_change = 0.013121805173910732 Iter 20: T = 662.735895838938 K, F = -310.2615470668578, relative_change = 0.006865191527400762 Iter 25: T = 648.0050178612919 K, F = -130.7210084508419, relative_change = 0.003211366469956197 Iter 30: T = 641.4761033592883 K, F = -54.85506723099061, relative_change = 0.0014134468456720953 Iter 35: T = 638.6740819443582 K, F = -22.975014089711124, relative_change = 0.0006044055662850714 Iter 40: T = 637.4891325464004 K, F = -9.614479202871303, relative_change = 0.00025517062826192354 Iter 45: T = 636.9912332636605 K, F = -4.021957331428439, relative_change = 0.00010714122172252722 Iter 50: T = 636.7825932242063 K, F = -1.6822178883119359, relative_change = 4.488265145992993e-5 Iter 55: T = 636.6952650450943 K, F = -0.7035564157788001, relative_change = 1.8783595404373872e-5 Iter 60: T = 636.6587306719821 K, F = -0.29424143627263427, relative_change = 7.85782352994827e-6 Iter 65: T = 636.6434493407137 K, F = -0.12305628696060322, relative_change = 3.286638019077805e-6 Iter 70: T = 636.6370581170779 K, F = -0.05146378447597749, relative_change = 1.37458165888995e-6 Iter 75: T = 636.6343851630871 K, F = -0.021522799997253983, relative_change = 5.748787775949444e-7 Iter 80: T = 636.6332672899235 K, F = -0.009001097367312583, relative_change = 2.4042332368330033e-7 Iter 85: T = 636.6327997799378 K, F = -0.0037643673532086197, relative_change = 1.0054828182949775e-7 Iter 90: T = 636.6326042613152 K, F = -0.0015743035477842615, relative_change = 4.20505581435846e-8 Iter 95: T = 636.6325224930287 K, F = -0.0006583925732183693, relative_change = 1.758605711724149e-8 Iter 100: T = 636.6324882965436 K, F = -0.00027534764140163537, relative_change = 7.354701107062101e-9 Iter 105: T = 636.6324739951632 K, F = -0.00011515367296727197, relative_change = 3.0758241920037376e-9 Iter 110: T = 636.6324680141548 K, F = -4.815864136187287e-5, relative_change = 1.2863464704465057e-9 Iter 115: T = 636.6324655128257 K, F = -2.0140519173983407e-5, relative_change = 5.379654721230109e-10 Iter 120: T = 636.6324644667399 K, F = -8.423005488922275e-6, relative_change = 2.2498358263994778e-10 Iter 125: T = 636.6324640292544 K, F = -3.5226016122935633e-6, relative_change = 9.409082477534743e-11 Iter 130: T = 636.6324638462926 K, F = -1.473193799450545e-6, relative_change = 3.93498996168456e-11 Iter 135: T = 636.6324637697759 K, F = -6.161076904764862e-7, relative_change = 1.6456609983242773e-11 Iter 140: T = 636.6324637377757 K, F = -2.5766297101492697e-7, relative_change = 6.882334188770873e-12 Iter 145: T = 636.6324637243928 K, F = -1.0775815634245234e-7, relative_change = 2.8782856949430913e-12 Iter 150: T = 636.6324637187959 K, F = -4.506547351956769e-8, relative_change = 1.203726123156921e-12 Iter 155: T = 636.6324637164553 K, F = -1.8847781113606743e-8, relative_change = 5.034356619050754e-13 Converged in 160 iterations to T = 636.6324637154763 K Iter 1: T = 966.583375267394 K, F = -7614.009732740685, relative_change = 0.03341662473260606 Iter 2: T = 935.2105921274006 K, F = -6455.475183397627, relative_change = 0.03245739989197982 Iter 3: T = 905.8517843367184 K, F = -5471.799611014655, relative_change = 0.03139272377561217 Iter 5: T = 853.050007100132 K, F = -3927.760130897802, relative_change = 0.028943373918188506 Iter 10: T = 753.6226609110128 K, F = -1703.4924113550553, relative_change = 0.02126560242245076 Iter 15: T = 694.1869215001321 K, F = -730.6240547723863, relative_change = 0.013096537942089937 Iter 20: T = 663.0487721396678 K, F = -310.0817665138088, relative_change = 0.006848728441060883 Iter 25: T = 648.3484005709569 K, F = -130.64284422596754, relative_change = 0.003202764192435972 Iter 30: T = 641.8339991740263 K, F = -54.821758988459806, relative_change = 0.0014094635819474064 Iter 35: T = 639.0384081196531 K, F = -22.960967064722556, relative_change = 0.0006026641825404649 Iter 40: T = 637.8562157884681 K, F = -9.60858337348312, relative_change = 0.0002544284860374372 Iter 45: T = 637.3594817772581 K, F = -4.019487863807303, relative_change = 0.00010682837124044664 Iter 50: T = 637.1513312360897 K, F = -1.6811844655615773, relative_change = 4.475137647925813e-5 Iter 55: T = 637.064208152253 K, F = -0.7031241099794762, relative_change = 1.8728617896252336e-5 Iter 60: T = 637.0277596192686 K, F = -0.2940606205030566, relative_change = 7.834817836298725e-6 Iter 65: T = 637.0125141990676 K, F = -0.1229806640912639, relative_change = 3.277014410525752e-6 Iter 70: T = 637.0061379959163 K, F = -0.0514321574675865, relative_change = 1.3705565392752673e-6 Iter 75: T = 637.0034713240298 K, F = -0.02150957309607021, relative_change = 5.731953525097221e-7 Iter 80: T = 637.0023560781797 K, F = -0.008995565699850272, relative_change = 2.3971928260467784e-7 Iter 85: T = 637.0018896669791 K, F = -0.003762053942396315, relative_change = 1.0025384129079129e-7 Iter 90: T = 637.0016946078832 K, F = -0.0015733360503593086, relative_change = 4.192741918700733e-8 Iter 95: T = 637.0016130317766 K, F = -0.0006579879551501522, relative_change = 1.7534558894598283e-8 Iter 100: T = 637.0015789156636 K, F = -0.00027517842515761837, relative_change = 7.33316392044483e-9 Iter 105: T = 637.0015646478957 K, F = -0.00011508290582001868, relative_change = 3.066817110863729e-9 Iter 110: T = 637.0015586809445 K, F = -4.812904644740934e-5, relative_change = 1.282579621234433e-9 Iter 115: T = 637.0015561854941 K, F = -2.0128141608066752e-5, relative_change = 5.36390114222088e-10 Iter 120: T = 637.0015551418669 K, F = -8.417829136686539e-6, relative_change = 2.243247516471837e-10 Iter 125: T = 637.0015547054097 K, F = -3.5204374955744022e-6, relative_change = 9.381531231354741e-11 Iter 130: T = 637.001554522878 K, F = -1.4722888787566113e-6, relative_change = 3.9234680728854497e-11 Iter 135: T = 637.0015544465411 K, F = -6.15729464525927e-7, relative_change = 1.6408429974835256e-11 Iter 140: T = 637.0015544146161 K, F = -2.575056497478023e-7, relative_change = 6.862207619498357e-12 Iter 145: T = 637.0015544012647 K, F = -1.0769207187122376e-7, relative_change = 2.869860746557576e-12 Iter 150: T = 637.001554395681 K, F = -4.503835177027682e-8, relative_change = 1.2002164652856051e-12 Iter 155: T = 637.0015543933458 K, F = -1.8835780546400116e-8, relative_change = 5.019502948065218e-13 Converged in 160 iterations to T = 637.0015543923691 K Iter 1: T = 976.2910846822375 K, F = -5402.098908152965, relative_change = 0.02370891531776253 Iter 2: T = 954.74669534195 K, F = -4568.014584249526, relative_change = 0.022067587913393392 Iter 3: T = 935.2764160018519 K, F = -3860.9681301084497, relative_change = 0.02039313614290621 Iter 5: T = 902.1418968425992 K, F = -2754.4175457322135, relative_change = 0.01703768694768599 Iter 10: T = 847.4874857410473 K, F = -1174.7685069675686, relative_change = 0.009615094537469367 Iter 15: T = 820.4529762757244 K, F = -496.51908821369625, relative_change = 0.0047186181459728666 Iter 20: T = 808.1496213989881 K, F = -208.69816373388508, relative_change = 0.002128900618591498 Iter 25: T = 802.8008038626654 K, F = -87.47559479255963, relative_change = 0.0009207879768854878 Iter 30: T = 800.5257118413683 K, F = -36.618524137234076, relative_change = 0.0003906828270862416 Iter 35: T = 799.5673624324164 K, F = -15.32053349759977, relative_change = 0.00016438839977620732 Iter 40: T = 799.1653505212263 K, F = -6.4083252146343925, relative_change = 6.892570002524691e-5 Iter 45: T = 798.9970100164956 K, F = -2.6802300910349106, relative_change = 2.8856538841443774e-5 Iter 50: T = 798.9265704361263 K, F = -1.1209378360680728, relative_change = 1.2073577547675406e-5 Iter 55: T = 798.8971051849197 K, F = -0.46879546926804383, relative_change = 5.050264376652065e-6 Iter 60: T = 798.8847813141102 K, F = -0.19605689229314716, relative_change = 2.1122470869450658e-6 Iter 65: T = 798.879627122839 K, F = -0.08199351364549079, relative_change = 8.833960311679215e-7 Iter 70: T = 798.877471543282 K, F = -0.03429069807230789, relative_change = 3.6945185545746155e-7 Iter 75: T = 798.8765700480093 K, F = -0.014340784951223373, relative_change = 1.5451006755298668e-7 Iter 80: T = 798.876193030843 K, F = -0.005997488491784275, relative_change = 6.461811103080439e-8 Iter 85: T = 798.8760353575731 K, F = -0.0025082214790852486, relative_change = 2.702409292731991e-8 Iter 90: T = 798.8759694166956 K, F = -0.0010489682052385874, relative_change = 1.1301803143457318e-8 Iter 95: T = 798.8759418394276 K, F = -0.0004386910358111784, relative_change = 4.726549877935591e-9 Iter 100: T = 798.8759303062836 K, F = -0.00018346583245121284, relative_change = 1.9766997654284495e-9 Iter 105: T = 798.8759254829849 K, F = -7.67276011375273e-5, relative_change = 8.266794612598455e-10 Iter 110: T = 798.8759234658238 K, F = -3.2088399828156255e-5, relative_change = 3.457272351574443e-10 Iter 115: T = 798.8759226222229 K, F = -1.3419751920484835e-5, relative_change = 1.4458725820362958e-10 Iter 120: T = 798.8759222694189 K, F = -5.612297344192996e-6, relative_change = 6.046808404020964e-11 Iter 125: T = 798.875922121872 K, F = -2.3471288267407076e-6, relative_change = 2.528846469979211e-11 Iter 130: T = 798.8759220601662 K, F = -9.815964305825986e-7, relative_change = 1.0575928517664297e-11 Iter 135: T = 798.8759220343602 K, F = -4.105163590173433e-7, relative_change = 4.4229904813225075e-12 Iter 140: T = 798.8759220235678 K, F = -1.7168357979713278e-7, relative_change = 1.849755369331954e-12 Iter 145: T = 798.8759220190543 K, F = -7.18018073886384e-8, relative_change = 7.736079298054304e-13 Iter 150: T = 798.8759220171667 K, F = -3.0027188402392824e-8, relative_change = 3.2351930825894213e-13 Converged in 153 iterations to T = 798.8759220166139 K Iter 1: T = 965.2991112842973 K, F = -7906.630502939693, relative_change = 0.03470088871570274 Iter 2: T = 932.5790720991465 K, F = -6705.898724169091, relative_change = 0.03389626987392323 Iter 3: T = 901.8105209074714 K, F = -5686.2782536369805, relative_change = 0.03299296768735982 Iter 5: T = 846.0143409194583 K, F = -4085.4462570622486, relative_change = 0.03087269524608958 Iter 10: T = 738.4841527579568 K, F = -1777.2610780685072, relative_change = 0.023812692912469687 Iter 15: T = 671.5212535339475 K, F = -764.972267403601, relative_change = 0.015506661325840559 Iter 20: T = 635.0368147834747 K, F = -325.62859698016007, relative_change = 0.008490916143624069 Iter 25: T = 617.3268477317343 K, F = -137.44906442627413, relative_change = 0.004085075235393407 Iter 30: T = 609.3558285842798 K, F = -57.732961619478644, relative_change = 0.001823868136460946 Iter 35: T = 605.9094374685917 K, F = -24.19086308363552, relative_change = 0.000785016309843187 Iter 40: T = 604.4471646599156 K, F = -10.125195910331302, relative_change = 0.00033236403312718955 Iter 45: T = 603.8318641910599 K, F = -4.235942543641979, relative_change = 0.0001397218179900129 Iter 50: T = 603.5738731994119 K, F = -1.7717790578361126, relative_change = 5.8560791491730285e-5 Iter 55: T = 603.4658614395148 K, F = -0.7410242457474492, relative_change = 2.451318647078975e-5 Iter 60: T = 603.4206691554111 K, F = -0.309913080566468, relative_change = 1.0255624084501531e-5 Iter 65: T = 603.4017656182749 K, F = -0.1296107320551649, relative_change = 4.289709898612716e-6 Iter 70: T = 603.3938593061938 K, F = -0.05420499752038177, relative_change = 1.794127819680445e-6 Iter 75: T = 603.3905526823654 K, F = -0.022669219544362296, relative_change = 7.503466549769223e-7 Iter 80: T = 603.3891697936043 K, F = -0.009480545727269585, relative_change = 3.138076006941461e-7 Iter 85: T = 603.3885914496534 K, F = -0.003964878735884081, relative_change = 1.3123872788486503e-7 Iter 90: T = 603.3883495787194 K, F = -0.0016581598639948125, relative_change = 5.488571554974556e-8 Iter 95: T = 603.3882484253036 K, F = -0.0006934622970428683, relative_change = 2.2953881338249297e-8 Iter 100: T = 603.3882061217191 K, F = -0.0002900142209527612, relative_change = 9.599590726948544e-9 Iter 105: T = 603.3881884298517 K, F = -0.00012128741114669772, relative_change = 4.014664060425679e-9 Iter 110: T = 603.3881810309008 K, F = -5.072384281556985e-5, relative_change = 1.678980520085281e-9 Iter 115: T = 603.3881779365713 K, F = -2.1213317608126392e-5, relative_change = 7.021697474602517e-10 Iter 120: T = 603.3881766424856 K, F = -8.871662248333134e-6, relative_change = 2.9365575998756756e-10 Iter 125: T = 603.3881761012836 K, F = -3.710235518206151e-6, relative_change = 1.228103601091223e-10 Iter 130: T = 603.3881758749465 K, F = -1.5516646263979972e-6, relative_change = 5.1360753499814643e-11 Iter 135: T = 603.3881757802895 K, F = -6.489248297048e-7, relative_change = 2.1479685543028817e-11 Iter 140: T = 603.3881757407029 K, F = -2.7138795405390326e-7, relative_change = 8.983055738083569e-12 Iter 145: T = 603.3881757241473 K, F = -1.1349784206915459e-7, relative_change = 3.7568264411253135e-12 Iter 150: T = 603.3881757172236 K, F = -4.74667887218061e-8, relative_change = 1.5711707262811063e-12 Iter 155: T = 603.388175714328 K, F = -1.9850932286846756e-8, relative_change = 6.570742310373836e-13 Iter 160: T = 603.388175713117 K, F = -8.30259222484031e-9, relative_change = 2.7481930435180587e-13 Converged in 162 iterations to T = 603.3881757128607 K Iter 1: T = 964.6854462881146 K, F = -8046.454656066021, relative_change = 0.03531455371188539 Iter 2: T = 931.3176684876883 K, F = -6825.618972932669, relative_change = 0.03458928288886053 Iter 3: T = 899.8665112058759 K, F = -5788.87918087947, relative_change = 0.03377060088732562 Iter 5: T = 842.6018761125466 K, F = -4161.01451400809, relative_change = 0.03183008898620313 Iter 10: T = 730.9404024765918 K, F = -1812.929933747476, relative_change = 0.025168557979044125 Iter 15: T = 659.8709982314443 K, F = -781.8454547918224, relative_change = 0.016901619876391976 Iter 20: T = 620.2661816516486 K, F = -333.40092706771867, relative_change = 0.009512270602049972 Iter 25: T = 600.7097459301192 K, F = -140.89581599739034, relative_change = 0.004659579591181604 Iter 30: T = 591.8188617165439 K, F = -59.2178280338849, relative_change = 0.002100195133164019 Iter 35: T = 587.95560241643 K, F = -24.820321367672026, relative_change = 0.0009079525379320961 Iter 40: T = 586.3127722995441 K, F = -10.389997538032489, relative_change = 0.0003851584991732152 Iter 45: T = 585.620824762651 K, F = -4.346963339346241, relative_change = 0.00016204982704224664 Iter 50: T = 585.3305766853331 K, F = -1.8182582576117552, relative_change = 6.794267659106057e-5 Iter 55: T = 585.2090389562252 K, F = -0.76047099980622, relative_change = 2.8444546501819267e-5 Iter 60: T = 585.1581836909991 K, F = -0.31804745140392177, relative_change = 1.1901123120635081e-5 Iter 65: T = 585.1369107312765 K, F = -0.13301288666349725, relative_change = 4.978114860119258e-6 Iter 70: T = 585.1280133065277 K, F = -0.0556278653193826, relative_change = 2.08206857045787e-6 Iter 75: T = 585.1242921539833 K, F = -0.023264287916096638, relative_change = 8.707741882691093e-7 Iter 80: T = 585.1227358984921 K, F = -0.009729411837644364, relative_change = 3.641731053856904e-7 Iter 85: T = 585.1220850494775 K, F = -0.004068957761697467, relative_change = 1.5230240591195685e-7 Iter 90: T = 585.1218128558804 K, F = -0.0017016869985718164, relative_change = 6.3694836163526e-8 Iter 95: T = 585.1216990211334 K, F = -0.0007116658726641911, relative_change = 2.6637967608674706e-8 Iter 100: T = 585.1216514140592 K, F = -0.000297627175144477, relative_change = 1.114032079738463e-8 Iter 105: T = 585.1216315042082 K, F = -0.00012447124039238755, relative_change = 4.6590160054518e-9 Iter 110: T = 585.12162317767 K, F = -5.205535998387134e-5, relative_change = 1.9484562940084655e-9 Iter 115: T = 585.1216196954122 K, F = -2.1770172906609986e-5, relative_change = 8.148677030866933e-10 Iter 120: T = 585.1216182390903 K, F = -9.104545787730345e-6, relative_change = 3.4078738985829003e-10 Iter 125: T = 585.121617630039 K, F = -3.8076288734756325e-6, relative_change = 1.4252132308674722e-10 Iter 130: T = 585.1216173753267 K, F = -1.5923967646713777e-6, relative_change = 5.960415308102576e-11 Iter 135: T = 585.1216172688028 K, F = -6.659589549262712e-7, relative_change = 2.4927154092592966e-11 Iter 140: T = 585.1216172242533 K, F = -2.785119223580601e-7, relative_change = 1.0424831074655047e-11 Iter 145: T = 585.1216172056221 K, F = -1.1647662917502188e-7, relative_change = 4.3597745231094746e-12 Iter 150: T = 585.1216171978303 K, F = -4.871149500429439e-8, relative_change = 1.823293963947437e-12 Iter 155: T = 585.1216171945717 K, F = -2.0372123155087962e-8, relative_change = 7.625380657928049e-13 Iter 160: T = 585.121617193209 K, F = -8.519397465267531e-9, relative_change = 3.18885018292008e-13 Converged in 163 iterations to T = 585.1216171928099 K Iter 1: T = 964.2850009507849 K, F = -8137.69650709844, relative_change = 0.03571499904921505 Iter 2: T = 930.4931509703678 K, F = -6903.7627453274845, relative_change = 0.0350434259032323 Iter 3: T = 898.5933844460997 K, F = -5855.871629999709, relative_change = 0.03428264516616952 Iter 5: T = 840.3569704501621 K, F = -4210.404567798724, relative_change = 0.032467734722096485 Iter 10: T = 725.9009212739263 K, F = -1836.3621339191573, relative_change = 0.026108219227254408 Iter 15: T = 651.9404501183088 K, F = -793.0398268042671, relative_change = 0.017918653771010314 Iter 20: T = 610.0434780615416 K, F = -338.61885559435956, relative_change = 0.010292559471903806 Iter 25: T = 589.0846967398652 K, F = -143.23134611452937, relative_change = 0.005112543221320254 Iter 30: T = 579.4809799285357 K, F = -60.22939016946969, relative_change = 0.0023217787834510888 Iter 35: T = 575.2913730637129 K, F = -25.250259178995606, relative_change = 0.0010073204341877172 Iter 40: T = 573.5065348101062 K, F = -10.57107569389365, relative_change = 0.0004279812440272922 Iter 45: T = 572.7541826714397 K, F = -4.422920338484431, relative_change = 0.0001801876813152862 Iter 50: T = 572.4384913695978 K, F = -1.8500646492101938, relative_change = 7.5568738389855e-5 Iter 55: T = 572.3062809896679 K, F = -0.7737798849272481, relative_change = 3.164099855627146e-5 Iter 60: T = 572.250956678476 K, F = -0.32361462522500384, relative_change = 1.3239169760186915e-5 Iter 65: T = 572.2278137266007 K, F = -0.13534136212444609, relative_change = 5.537921184711409e-6 Iter 70: T = 572.218134076629 K, F = -0.05660169950929961, relative_change = 2.316224622801572e-6 Iter 75: T = 572.2140857580334 K, F = -0.023671563640935783, relative_change = 9.687077564837692e-7 Iter 80: T = 572.2123926725237 K, F = -0.00989974057040155, relative_change = 4.0513126697913124e-7 Iter 85: T = 572.2116845986396 K, F = -0.00414019147537531, relative_change = 1.6943180355345252e-7 Iter 90: T = 572.2113884727576 K, F = -0.0017314778235323347, relative_change = 7.085859072049824e-8 Iter 95: T = 572.211264629215 K, F = -0.0007241247573103182, relative_change = 2.963394158548723e-8 Iter 100: T = 572.2112128363381 K, F = -0.00030283763081884185, relative_change = 1.239327400177865e-8 Iter 105: T = 572.2111911759334 K, F = -0.0001266503160584076, relative_change = 5.18301621879859e-9 Iter 110: T = 572.2111821172928 K, F = -5.296667547816103e-5, relative_change = 2.1675994762106298e-9 Iter 115: T = 572.2111783288609 K, F = -2.2151297156880467e-5, relative_change = 9.065160536249735e-10 Iter 120: T = 572.2111767444933 K, F = -9.263937358616747e-6, relative_change = 3.791158588406522e-10 Iter 125: T = 572.2111760818918 K, F = -3.874288553695759e-6, relative_change = 1.5855075263026727e-10 Iter 130: T = 572.211175804784 K, F = -1.6202740851789521e-6, relative_change = 6.630783244569576e-11 Iter 135: T = 572.2111756888942 K, F = -6.776178060885485e-7, relative_change = 2.7730720624776806e-11 Iter 140: T = 572.2111756404277 K, F = -2.833876454610973e-7, relative_change = 1.1597309807022722e-11 Iter 145: T = 572.2111756201584 K, F = -1.1851625425496337e-7, relative_change = 4.850139870275904e-12 Iter 150: T = 572.2111756116816 K, F = -4.9564642834454276e-8, relative_change = 2.028375364168742e-12 Iter 155: T = 572.2111756081364 K, F = -2.0728310345941026e-8, relative_change = 8.4828199384429e-13 Iter 160: T = 572.2111756066538 K, F = -8.667926321148656e-9, relative_change = 3.5472480388300973e-13 Converged in 163 iterations to T = 572.2111756062197 K Iter 1: T = 980.0711834881084 K, F = -4540.799799433012, relative_change = 0.01992881651189159 Iter 2: T = 962.1891389210201 K, F = -3835.699986789679, relative_change = 0.018245658956572347 Iter 3: T = 946.233469558469 K, F = -3238.578632425334, relative_change = 0.016582674566918844 Iter 5: T = 919.5796082070559 K, F = -2305.5630411584766, relative_change = 0.01340629768450456 Iter 10: T = 877.2332463362819 K, F = -978.8673418250369, relative_change = 0.007051721103675614 Iter 15: T = 857.1720220797066 K, F = -412.5083500681561, relative_change = 0.0033091927876747976 Iter 20: T = 848.2651821686027 K, F = -173.12110380530524, relative_change = 0.0014588282567292643 Iter 25: T = 844.4394722622453 K, F = -72.51200318291109, relative_change = 0.000624261648214457 Iter 30: T = 842.8210240372077 K, F = -30.34512439227393, relative_change = 0.00026363592146631424 Iter 35: T = 842.1408682479712 K, F = -12.69417426554313, relative_change = 0.00011071031411155728 Iter 40: T = 841.8558364952927 K, F = -5.309466194557718, relative_change = 4.638037182713712e-5 Iter 45: T = 841.7365305620543 K, F = -2.2205891759458303, relative_change = 1.941085235832806e-5 Iter 50: T = 841.6866174847863 K, F = -0.9286956393460815, relative_change = 8.120306207430448e-6 Iter 55: T = 841.6657401050877 K, F = -0.3883948834057025, relative_change = 3.396438769453823e-6 Iter 60: T = 841.6570083871607 K, F = -0.1624319516743542, relative_change = 1.4205064305953827e-6 Iter 65: T = 841.6533565825174 K, F = -0.06793108225015065, relative_change = 5.940859028362859e-7 Iter 70: T = 841.6518293374256 K, F = -0.028409607390521785, relative_change = 2.4845611930143e-7 Iter 75: T = 841.6511906223545 K, F = -0.011881240157675554, relative_change = 1.0390771853173646e-7 Iter 80: T = 841.6509235035707 K, F = -0.004968877061785504, relative_change = 4.34555191629797e-8 Iter 85: T = 841.6508117912156 K, F = -0.0020780438235294962, relative_change = 1.8173629401631894e-8 Iter 90: T = 841.6507650717588 K, F = -0.000869062759196737, relative_change = 7.600430995667074e-9 Iter 95: T = 841.6507455331213 K, F = -0.00036345242831803404, relative_change = 3.1785913937046107e-9 Iter 100: T = 841.6507373618292 K, F = -0.0001520001468693355, relative_change = 1.329324949761423e-9 Iter 105: T = 841.6507339444972 K, F = -6.356827788311925e-5, relative_change = 5.559395907009549e-10 Iter 110: T = 841.6507325153282 K, F = -2.658501367558408e-5, relative_change = 2.3250058414750802e-10 Iter 115: T = 841.6507319176326 K, F = -1.1118170417878659e-5, relative_change = 9.723452306976996e-11 Iter 120: T = 841.6507316676692 K, F = -4.649753801322376e-6, relative_change = 4.0664657664873066e-11 Iter 125: T = 841.6507315631314 K, F = -1.9445828496333917e-6, relative_change = 1.7006447933996027e-11 Iter 130: T = 841.6507315194126 K, F = -8.13248734576888e-7, relative_change = 7.112308055168754e-12 Iter 135: T = 841.6507315011288 K, F = -3.401125576729669e-7, relative_change = 2.9744716235067084e-12 Iter 140: T = 841.6507314934823 K, F = -1.4223913047395342e-7, relative_change = 1.2439595299276195e-12 Iter 145: T = 841.6507314902844 K, F = -5.948903836205943e-8, relative_change = 5.202644022883943e-13 Converged in 150 iterations to T = 841.6507314889469 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 1 ray tracing: 25%|███████▍ | ETA: 0:00:13 Bin 1 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 49%|██████████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 55%|████████████████▍ | ETA: 0:00:08 Bin 1 ray tracing: 61%|██████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 2 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 2 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 51%|███████████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 2 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██ | ETA: 0:00:14 Bin 3 ray tracing: 13%|████ | ETA: 0:00:13 Bin 3 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 3 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 3 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 3 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 3 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 64%|███████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 4 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 4 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 4 ray tracing: 42%|████████████▊ | ETA: 0:00:08 Bin 4 ray tracing: 50%|██████████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 5 ray tracing: 36%|██████████▋ | ETA: 0:00:09 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 57%|█████████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 65%|███████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██ | ETA: 0:00:14 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 6 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 6 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 6 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 6 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 6 ray tracing: 50%|███████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 7 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 7 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 7 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 42%|████████████▊ | ETA: 0:00:08 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████ | ETA: 0:00:10 Bin 8 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 48%|██████████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 9 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 9 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 9 ray tracing: 36%|██████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 43%|████████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 50%|██████████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 36%|██████████▌ | ETA: 0:00:09 Bin 10 ray tracing: 44%|████████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 50%|██████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 57%|████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:04 Bin 10 ray tracing: 77%|██████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████▎| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3284852411064 K, F = -7444.235716447755, relative_change = 0.03267151475889368 Iter 2: T = 936.7322280681612 K, F = -6310.260558447454, relative_change = 0.03162964560618619 Iter 3: T = 908.1798567532089 K, F = -5347.512054455425, relative_change = 0.03048082521281071 Iter 5: T = 857.068270593019 K, F = -3836.5537616713327, relative_change = 0.027867968662502563 Iter 10: T = 762.0364962970949 K, F = -1661.1982325376694, relative_change = 0.019944253991882356 Iter 15: T = 706.4205234698269 K, F = -711.2120092025798, relative_change = 0.011943907580442635 Iter 20: T = 677.8290281788005 K, F = -301.42327641099087, relative_change = 0.006113690573218805 Iter 25: T = 664.4995918745736 K, F = -126.89044032725378, relative_change = 0.0028235244903718117 Iter 30: T = 658.6323363859485 K, F = -53.22544279692685, relative_change = 0.0012349534787342322 Iter 35: T = 656.1224195200109 K, F = -22.288282950707494, relative_change = 0.000526587844743721 Iter 40: T = 655.0625118577232 K, F = -9.326340560182983, relative_change = 0.00022204584367048247 Iter 45: T = 654.6174250922166 K, F = -3.9012877510513344, relative_change = 9.318451207191198e-5 Iter 50: T = 654.4309636968421 K, F = -1.6317231306146138, relative_change = 3.902753205529693e-5 Iter 55: T = 654.3529270337924 K, F = -0.6824337685278827, relative_change = 1.6331710398172576e-5 Iter 60: T = 654.3202813130674 K, F = -0.28540679364729127, relative_change = 6.831854720911382e-6 Iter 65: T = 654.3066267579818 K, F = -0.11936137655541279, relative_change = 2.857467393643969e-6 Iter 70: T = 654.300915958237 K, F = -0.049918501292954776, relative_change = 1.1950801954155076e-6 Iter 75: T = 654.2985275808036 K, F = -0.0208765393007585, relative_change = 4.99806116309104e-7 Iter 80: T = 654.2975287236064 K, F = -0.008730822584783748, relative_change = 2.0902651450195127e-7 Iter 85: T = 654.297110987983 K, F = -0.0036513350642367604, relative_change = 8.741766933282603e-8 Iter 90: T = 654.2969362856742 K, F = -0.0015270320680898508, relative_change = 3.655916308333203e-8 Iter 95: T = 654.2968632230329 K, F = -0.0006386230715156871, relative_change = 1.528948731386412e-8 Iter 100: T = 654.2968326673551 K, F = -0.0002670798002117891, relative_change = 6.394247729519357e-9 Iter 105: T = 654.2968198886043 K, F = -0.00011169596266824566, relative_change = 2.674151027269201e-9 Iter 110: T = 654.2968145443779 K, F = -4.671258643801357e-5, relative_change = 1.1183619611958942e-9 Iter 115: T = 654.2968123093584 K, F = -1.9535761252131856e-5, relative_change = 4.677123295602908e-10 Iter 120: T = 654.2968113746466 K, F = -8.170089190406848e-6, relative_change = 1.95602895870452e-10 Iter 125: T = 654.2968109837391 K, F = -3.4168299919423717e-6, relative_change = 8.180349411690266e-11 Iter 130: T = 654.2968108202567 K, F = -1.4289583306625886e-6, relative_change = 3.421117960518165e-11 Iter 135: T = 654.2968107518865 K, F = -5.976078894520676e-7, relative_change = 1.4307534664226042e-11 Iter 140: T = 654.2968107232933 K, F = -2.4992725267125593e-7, relative_change = 5.983593749325116e-12 Iter 145: T = 654.2968107113353 K, F = -1.0452277948713729e-7, relative_change = 2.502415576417337e-12 Iter 150: T = 654.2968107063343 K, F = -4.371310846629228e-8, relative_change = 1.0465504654620525e-12 Iter 155: T = 654.2968107042427 K, F = -1.828086293453879e-8, relative_change = 4.376683856338774e-13 Converged in 159 iterations to T = 654.2968107034878 K Iter 1: T = 970.3120529408618 K, F = -6764.426977952901, relative_change = 0.02968794705913822 Iter 2: T = 942.7877995674866 K, F = -5729.362531476116, relative_change = 0.02836639335763541 Iter 3: T = 917.3826735518843 K, F = -4850.93184304268, relative_change = 0.02694681245053986 Iter 5: T = 872.7147804224246 K, F = -3473.3364846970426, relative_change = 0.02385815237516263 Iter 10: T = 793.3905161533545 K, F = -1495.0992456993429, relative_change = 0.01555239795817642 Iter 15: T = 750.1384717792712 K, F = -636.4617001907426, relative_change = 0.00852364530714731 Iter 20: T = 729.1317147947482 K, F = -268.6631185371842, relative_change = 0.004103195199952028 Iter 25: T = 719.6738160334542 K, F = -112.84927214588593, relative_change = 0.0018325092112521236 Iter 30: T = 715.5839062493678 K, F = -47.28575314601224, relative_change = 0.0007888452171283802 Iter 35: T = 713.8484715060657 K, F = -19.791747563134777, relative_change = 0.0003340054280575308 Iter 40: T = 713.1182066799553 K, F = -8.280022551251976, relative_change = 0.00014041547598027423 Iter 45: T = 712.8120080130963 K, F = -3.4633097828237425, relative_change = 5.885216261487452e-5 Iter 50: T = 712.6838126968133 K, F = -1.448486081553927, relative_change = 2.4635265441873106e-5 Iter 55: T = 712.6301754598226 K, F = -0.6057896806943975, relative_change = 1.0306718240479977e-5 Iter 60: T = 712.6077394513487 K, F = -0.25335119141553997, relative_change = 4.311084959414825e-6 Iter 65: T = 712.5983556966361 K, F = -0.10595496833144735, relative_change = 1.8030683281482878e-6 Iter 70: T = 712.5944311675007 K, F = -0.04431171610068729, relative_change = 7.540858927612019e-7 Iter 75: T = 712.5927898596609 K, F = -0.01853170337641019, relative_change = 3.1537143137488053e-7 Iter 80: T = 712.5921034411181 K, F = -0.007750182204174005, relative_change = 1.3189274699532672e-7 Iter 85: T = 712.5918163719858 K, F = -0.00324121919789766, relative_change = 5.51592352681357e-8 Iter 90: T = 712.591696316124 K, F = -0.001355516655095812, relative_change = 2.3068270764470216e-8 Iter 95: T = 712.5916461073073 K, F = -0.0005668932659251835, relative_change = 9.64742977575207e-9 Iter 100: T = 712.5916251093769 K, F = -0.00023708153673240862, relative_change = 4.034670960343672e-9 Iter 105: T = 712.5916163277909 K, F = -9.91503309557551e-5, relative_change = 1.6873476948096655e-9 Iter 110: T = 712.5916126552268 K, F = -4.146585301234573e-5, relative_change = 7.056689830090155e-10 Iter 115: T = 712.5916111193164 K, F = -1.7341515380242534e-5, relative_change = 2.951192067397807e-10 Iter 120: T = 712.5916104769805 K, F = -7.252428596338234e-6, relative_change = 1.234223732207662e-10 Iter 125: T = 712.5916102083479 K, F = -3.0330530762512353e-6, relative_change = 5.161672458745438e-11 Iter 130: T = 712.5916100960026 K, F = -1.268459728365201e-6, relative_change = 2.1586742748126854e-11 Iter 135: T = 712.5916100490183 K, F = -5.304850422271912e-7, relative_change = 9.027834219570488e-12 Iter 140: T = 712.591610029369 K, F = -2.218550408938924e-7, relative_change = 3.775545719102988e-12 Iter 145: T = 712.5916100211514 K, F = -9.278240853394237e-8, relative_change = 1.5789779847065358e-12 Iter 150: T = 712.5916100177147 K, F = -3.88030692022312e-8, relative_change = 6.603535409232251e-13 Iter 155: T = 712.5916100162774 K, F = -1.6227479360253483e-8, relative_change = 2.76160460402155e-13 Converged in 157 iterations to T = 712.5916100159733 K Iter 1: T = 974.5014461913314 K, F = -5809.869740691594, relative_change = 0.02549855380866854 Iter 2: T = 951.1914845791989 K, F = -4915.239561281441, relative_change = 0.02391988406301026 Iter 3: T = 929.9946651715691 K, F = -4156.567292383754, relative_change = 0.022284492398507046 Iter 5: T = 893.58405978861 K, F = -2968.4101586152633, relative_change = 0.01892849948268809 Iter 10: T = 832.3130046713532 K, F = -1269.1574394869297, relative_change = 0.011099268451320967 Iter 15: T = 801.2495718864561 K, F = -537.3486676375701, relative_change = 0.0055942809700253535 Iter 20: T = 786.8965066138175 K, F = -226.0777593075232, relative_change = 0.002561134430936484 Iter 25: T = 780.6081316855245 K, F = -94.80391801529284, relative_change = 0.0011154567155013772 Iter 30: T = 777.9239009093611 K, F = -39.694380671123376, relative_change = 0.00047473605534608125 Iter 35: T = 776.7914603024769 K, F = -16.608873595154783, relative_change = 0.00020001889409007774 Iter 40: T = 776.3161077442539 K, F = -6.947474150154775, relative_change = 8.391173652535097e-5 Iter 45: T = 776.1170011003384 K, F = -2.905770032050555, relative_change = 3.5138827683294625e-5 Iter 50: T = 776.0336782121474 K, F = -1.2152720933203052, relative_change = 1.4703527327630177e-5 Iter 55: T = 775.9988221099759 K, F = -0.5082490655940215, relative_change = 6.1505998021324e-6 Iter 60: T = 775.9842432137414 K, F = -0.21255718694660408, relative_change = 2.5725008225963156e-6 Iter 65: T = 775.9781458551765 K, F = -0.08889419155818001, relative_change = 1.0758936907201702e-6 Iter 70: T = 775.975595816273 K, F = -0.0371766540656171, relative_change = 4.4995913324458094e-7 Iter 75: T = 775.974529350676 K, F = -0.015547727975357861, relative_change = 1.8817960243412918e-7 Iter 80: T = 775.9740833404751 K, F = -0.006502246787942312, relative_change = 7.869918781313475e-8 Iter 85: T = 775.9738968134112 K, F = -0.002719317482273942, relative_change = 3.291298056985914e-8 Iter 90: T = 775.973818805518 K, F = -0.0011372510860856444, relative_change = 1.3764608604578189e-8 Iter 95: T = 775.9737861816772 K, F = -0.0004756119927536995, relative_change = 5.756524938472588e-9 Iter 100: T = 775.9737725379958 K, F = -0.00019890661593868764, relative_change = 2.4074476850413937e-9 Iter 105: T = 775.9737668320452 K, F = -8.318512275296008e-5, relative_change = 1.0068234144337726e-9 Iter 110: T = 775.9737644457483 K, F = -3.47890107533777e-5, relative_change = 4.2106556972164746e-10 Iter 115: T = 775.9737634477705 K, F = -1.4549177821621129e-5, relative_change = 1.7609462739208738e-10 Iter 120: T = 775.9737630304043 K, F = -6.084640461145874e-6, relative_change = 7.364488294121514e-11 Iter 125: T = 775.9737628558568 K, F = -2.5446693684427757e-6, relative_change = 3.0799170330678444e-11 Iter 130: T = 775.9737627828588 K, F = -1.0642098619007e-6, relative_change = 1.2880565634743403e-11 Iter 135: T = 775.9737627523302 K, F = -4.4506417717915525e-7, relative_change = 5.386793105510531e-12 Iter 140: T = 775.9737627395629 K, F = -1.8613193664140937e-7, relative_change = 2.2528306803946754e-12 Iter 145: T = 775.9737627342233 K, F = -7.784112965314449e-8, relative_change = 9.42142913511788e-13 Iter 150: T = 775.9737627319903 K, F = -3.255300384807924e-8, relative_change = 3.9400227137082815e-13 Converged in 154 iterations to T = 775.9737627311843 K Iter 1: T = 970.3500572075249 K, F = -6755.767669642321, relative_change = 0.029649942792475112 Iter 2: T = 942.8645519478476 K, F = -5721.969033412812, relative_change = 0.028325350274904952 Iter 3: T = 917.4986889655722 K, F = -4844.617674228002, relative_change = 0.026902976604510697 Iter 5: T = 872.9096913701773 K, F = -3468.72987836444, relative_change = 0.023809941397585188 Iter 10: T = 793.7682586140619 K, F = -1493.0140412382998, relative_change = 0.015504204150916214 Iter 15: T = 750.6495741093282 K, F = -635.5355096017457, relative_change = 0.008489265302504096 Iter 20: T = 729.7196922010495 K, F = -268.2615731705391, relative_change = 0.004084187325455361 Iter 25: T = 720.2995436626788 K, F = -112.6782767341978, relative_change = 0.001823449979097108 Iter 30: T = 716.2266231570476 K, F = -47.213649771255504, relative_change = 0.0007848320034136127 Iter 35: T = 714.4985240851015 K, F = -19.761485152457563, relative_change = 0.0003322851999876508 Iter 40: T = 713.7713690986088 K, F = -8.267347224536657, relative_change = 0.00013968853406163049 Iter 45: T = 713.4664784713303 K, F = -3.4580054211262587, relative_change = 5.8546816051145534e-5 Iter 50: T = 713.3388315083013 K, F = -1.446267139524529, relative_change = 2.450733198632279e-5 Iter 55: T = 713.2854238299623 K, F = -0.6048615884974371, relative_change = 1.0253173953849292e-5 Iter 60: T = 713.2630838660714 K, F = -0.2529630339519801, relative_change = 4.288684924482068e-6 Iter 65: T = 713.2537402854223 K, F = -0.10579263305693754, relative_change = 1.7936991107073058e-6 Iter 70: T = 713.2498325587973 K, F = -0.044243824992882264, relative_change = 7.501673545511262e-7 Iter 75: T = 713.2481982781843 K, F = -0.018503310407570916, relative_change = 3.1373261350260854e-7 Iter 80: T = 713.2475147985494 K, F = -0.007738307907696584, relative_change = 1.312073670586969e-7 Iter 85: T = 713.2472289585102 K, F = -0.00323625322040888, relative_change = 5.4872599986149505e-8 Iter 90: T = 713.2471094166709 K, F = -0.0013534398214981591, relative_change = 2.2948396227218453e-8 Iter 95: T = 713.2470594228249 K, F = -0.0005660247101340055, relative_change = 9.597296792279404e-9 Iter 100: T = 713.2470385147979 K, F = -0.00023671829697902158, relative_change = 4.01370475294152e-9 Iter 105: T = 713.2470297708105 K, F = -9.899841935501197e-5, relative_change = 1.6785793686533004e-9 Iter 110: T = 713.2470261139705 K, F = -4.140232175320335e-5, relative_change = 7.02001963854706e-10 Iter 115: T = 713.2470245846363 K, F = -1.7314945871871323e-5, relative_change = 2.9358561586560907e-10 Iter 120: T = 713.2470239450504 K, F = -7.241316432038403e-6, relative_change = 1.227809990967388e-10 Iter 125: T = 713.247023677568 K, F = -3.028405642147014e-6, relative_change = 5.1348490922424e-11 Iter 130: T = 713.2470235657036 K, F = -1.2665142955503583e-6, relative_change = 2.1474533316033608e-11 Iter 135: T = 713.2470235189206 K, F = -5.29670978632879e-7, relative_change = 8.980899087125819e-12 Iter 140: T = 713.2470234993555 K, F = -2.215153664941738e-7, relative_change = 3.755930064596893e-12 Iter 145: T = 713.247023491173 K, F = -9.263975597750829e-8, relative_change = 1.5707643680827885e-12 Iter 150: T = 713.2470234877511 K, F = -3.874331855335811e-8, relative_change = 6.569169320897285e-13 Iter 155: T = 713.2470234863199 K, F = -1.6202690300559652e-8, relative_change = 2.747266367821961e-13 Converged in 157 iterations to T = 713.247023486017 K Iter 1: T = 969.3031878383265 K, F = -6994.297851244042, relative_change = 0.03069681216167356 Iter 2: T = 940.7468182575498 K, F = -5925.685411052506, relative_change = 0.029460719761441406 Iter 3: T = 914.2919043236973 K, F = -5018.651086826667, relative_change = 0.02812118353251755 Iter 5: T = 867.501121308585 K, F = -3595.8053283116687, relative_change = 0.02516343023502309 Iter 10: T = 783.1747918241032 K, F = -1550.7206172309297, relative_change = 0.016896542643261427 Iter 15: T = 736.1854791467977 K, F = -661.2673900367178, relative_change = 0.009508581826305675 Iter 20: T = 712.9838887661019 K, F = -279.4517224822237, relative_change = 0.004657499706674068 Iter 25: T = 702.4361551950152 K, F = -117.45196732983878, relative_change = 0.0020991918548708076 Iter 30: T = 697.8530365922126 K, F = -49.22829663104204, relative_change = 0.0009075054461642088 Iter 35: T = 695.9041044115472 K, F = -20.607374847111906, relative_change = 0.00038496634712667825 Iter 40: T = 695.0832316130245 K, F = -8.621704343059552, relative_change = 0.000161968533503439 Iter 45: T = 694.738904307031 K, F = -3.606306909919565, relative_change = 6.790851328137608e-5 Iter 50: T = 694.5947216631773 K, F = -1.5083070419673532, relative_change = 2.843022991273758e-5 Iter 55: T = 694.5343910571337 K, F = -0.6308106480797466, relative_change = 1.1895130653373536e-5 Iter 60: T = 694.5091545271663 K, F = -0.26381580610059724, relative_change = 4.9756078460868075e-6 Iter 65: T = 694.4985993378601 K, F = -0.11033149091627242, relative_change = 2.0810199510699362e-6 Iter 70: T = 694.4941848617653 K, F = -0.04614204686137979, relative_change = 8.703356157909613e-7 Iter 75: T = 694.49233864543 K, F = -0.019297172488259573, relative_change = 3.6398968433493185e-7 Iter 80: T = 694.4915665305134 K, F = -0.00807031104140643, relative_change = 1.5222569623752015e-7 Iter 85: T = 694.4912436219253 K, F = -0.003375100988769697, relative_change = 6.366275507901715e-8 Iter 90: T = 694.4911085775385 K, F = -0.001411507633160114, relative_change = 2.6624550860528595e-8 Iter 95: T = 694.4910521003354 K, F = -0.000590309366213071, relative_change = 1.1134709767184938e-8 Iter 100: T = 694.4910284808898 K, F = -0.00024687442998128084, relative_change = 4.6566694164511595e-9 Iter 105: T = 694.4910186029547 K, F = -0.00010324583476706284, relative_change = 1.9474748913040918e-9 Iter 110: T = 694.491014471884 K, F = -4.31786407735224e-5, relative_change = 8.144572739254567e-10 Iter 115: T = 694.4910127442209 K, F = -1.8057822461892137e-5, relative_change = 3.4061574811209534e-10 Iter 120: T = 694.4910120216916 K, F = -7.551996931920435e-6, relative_change = 1.4244957291369698e-10 Iter 125: T = 694.4910117195212 K, F = -3.158335494135578e-6, relative_change = 5.957411625634321e-11 Iter 130: T = 694.49101159315 K, F = -1.3208530305064414e-6, relative_change = 2.49145957455169e-11 Iter 135: T = 694.4910115403001 K, F = -5.523973674037563e-7, relative_change = 1.0419597628861017e-11 Iter 140: T = 694.4910115181975 K, F = -2.3101942880909832e-7, relative_change = 4.3576049326922946e-12 Iter 145: T = 694.4910115089539 K, F = -9.661432720520224e-8, relative_change = 1.8223881471575825e-12 Iter 150: T = 694.4910115050882 K, F = -4.040509338221199e-8, relative_change = 7.621412413305609e-13 Iter 155: T = 694.4910115034716 K, F = -1.6897844457020028e-8, relative_change = 3.187356610861439e-13 Converged in 158 iterations to T = 694.4910115029982 K Iter 1: T = 963.4985797729166 K, F = -8316.883320555415, relative_change = 0.03650142022708343 Iter 2: T = 928.8706968073052 K, F = -7057.274122543195, relative_change = 0.03593973431052985 Iter 3: T = 896.0825388566658 K, F = -5987.529235068734, relative_change = 0.035298947488965046 Iter 5: T = 835.9057588525601 K, F = -4307.582254063344, relative_change = 0.03375063269720412 Iter 10: T = 715.717785511342 K, F = -1882.760351143698, relative_change = 0.028093627458328337 Iter 15: T = 635.5161101757107 K, F = -815.4987102990515, relative_change = 0.020215487846279908 Iter 20: T = 588.375238650549 K, F = -349.26763485540846, relative_change = 0.012175214710294322 Iter 25: T = 564.0486557332215 K, F = -148.06632579411524, relative_change = 0.006258671206208814 Iter 30: T = 552.6793602807528 K, F = -62.34167728043481, relative_change = 0.0028975731664495686 Iter 35: T = 547.6683255297553 K, F = -26.151902328874545, relative_change = 0.0012688576504973977 Iter 40: T = 545.5233684471547 K, F = -10.951562681943006, relative_change = 0.0005413348366693323 Iter 45: T = 544.6173342871953 K, F = -4.582657814002556, relative_change = 0.0002283169372411539 Iter 50: T = 544.2368196922653 K, F = -1.9169773187492167, relative_change = 9.58256368885731e-5 Iter 55: T = 544.0774019298814 K, F = -0.801782643390633, relative_change = 4.013533903362776e-5 Iter 60: T = 544.0106820364377 K, F = -0.33532905754597153, relative_change = 1.679558001774529e-5 Iter 65: T = 543.9827703143416 K, F = -0.14024106305738154, relative_change = 7.025950629393258e-6 Iter 70: T = 543.9710957823149 K, F = -0.05865091538549583, relative_change = 2.9386581370153347e-6 Iter 75: T = 543.9662130882978 K, F = -0.024528588111494637, relative_change = 1.2290381982893321e-6 Iter 80: T = 543.9641710409427 K, F = -0.010258161573412139, relative_change = 5.140082947048468e-7 Iter 85: T = 543.9633170242349 K, F = -0.004290087966982409, relative_change = 2.1496612883187604e-7 Iter 90: T = 543.962959862829 K, F = -0.0017941664224952747, relative_change = 8.990170339618105e-8 Iter 95: T = 543.9628104934154 K, F = -0.0007503418943363982, relative_change = 3.7598018651768304e-8 Iter 100: T = 543.9627480252993 K, F = -0.00031380195288086, relative_change = 1.5723949598110484e-8 Iter 105: T = 543.9627219003796 K, F = -0.00013123572619960777, relative_change = 6.5759451052437985e-9 Iter 110: T = 543.9627109746249 K, F = -5.488434849079682e-5, relative_change = 2.7501390648450327e-9 Iter 115: T = 543.9627064053436 K, F = -2.2953289863708592e-5, relative_change = 1.1501410398614992e-9 Iter 120: T = 543.9627044944156 K, F = -9.599340103721987e-6, relative_change = 4.810027346444415e-10 Iter 125: T = 543.9627036952426 K, F = -4.014558709047877e-6, relative_change = 2.01161091292144e-10 Iter 130: T = 543.9627033610188 K, F = -1.6789359959801242e-6, relative_change = 8.412795094708329e-11 Iter 135: T = 543.9627032212426 K, F = -7.021510261551178e-7, relative_change = 3.518331091805654e-11 Iter 140: T = 543.9627031627865 K, F = -2.936482469684254e-7, relative_change = 1.4714095962363136e-11 Iter 145: T = 543.9627031383394 K, F = -1.2280695169120115e-7, relative_change = 6.153598024409654e-12 Iter 150: T = 543.9627031281153 K, F = -5.1359660996341816e-8, relative_change = 2.573524577537114e-12 Iter 155: T = 543.9627031238394 K, F = -2.1478810147135263e-8, relative_change = 1.0762579958600563e-12 Iter 160: T = 543.9627031220513 K, F = -8.982704136073494e-9, relative_change = 4.501044091744084e-13 Converged in 165 iterations to T = 543.9627031213034 K Iter 1: T = 966.8498570047722 K, F = -7553.291615389494, relative_change = 0.03315014299522789 Iter 2: T = 935.755222652557 K, F = -6403.533986675029, relative_change = 0.032160768424317754 Iter 3: T = 906.6857881798437 K, F = -5427.336720322759, relative_change = 0.031065212107832047 Iter 5: T = 854.4923829502509 K, F = -3895.1176065232485, relative_change = 0.0285551589661997 Iter 10: T = 756.6614253423501 K, F = -1688.3254905757765, relative_change = 0.02078088724001031 Iter 15: T = 698.6331475903352 K, F = -723.6414725701541, relative_change = 0.012666411816537269 Iter 20: T = 668.4456285630094 K, F = -306.9580560573865, relative_change = 0.006570807828086246 Iter 25: T = 654.2615021967921 K, F = -129.28643860503303, relative_change = 0.003058266051773562 Iter 30: T = 647.991947969618 K, F = -54.24413586672509, relative_change = 0.0013427194758278255 Iter 35: T = 645.3046837352933 K, F = -22.717442361526828, relative_change = 0.0005735179755514028 Iter 40: T = 644.1689072982101 K, F = -9.506384800321193, relative_change = 0.00024201298417654365 Iter 45: T = 643.6917854698286 K, F = -3.9766844692332497, relative_change = 0.00010159568512975255 Iter 50: T = 643.4918724959299 K, F = -1.6632725376429485, relative_change = 4.255588249573533e-5 Iter 55: T = 643.408200706673 K, F = -0.6956311925820329, relative_change = 1.7809185951712062e-5 Iter 60: T = 643.3731966411142 K, F = -0.2909266541366641, relative_change = 7.450081437761188e-6 Iter 65: T = 643.3585555061056 K, F = -0.12166994264165826, relative_change = 3.1160747302226313e-6 Iter 70: T = 643.352432055774 K, F = -0.05088398773278585, relative_change = 1.3032429383369552e-6 Iter 75: T = 643.3498710940015 K, F = -0.0212803201529963, relative_change = 5.450428279498606e-7 Iter 80: T = 643.3488000584097 K, F = -0.008899689064177319, relative_change = 2.2794535550236485e-7 Iter 85: T = 643.3483521366464 K, F = -0.0037219571320589173, relative_change = 9.532980846752312e-8 Iter 90: T = 643.3481648100854 K, F = -0.0015565670749005944, relative_change = 3.986812355958919e-8 Iter 95: T = 643.3480864678229 K, F = -0.00065097496652472, relative_change = 1.6673335742964432e-8 Iter 100: T = 643.3480537041429 K, F = -0.0002722455096296206, relative_change = 6.972989931398712e-9 Iter 105: T = 643.3480400019789 K, F = -0.00011385632463528639, relative_change = 2.9161879910978812e-9 Iter 110: T = 643.3480342715701 K, F = -4.7616075636469635e-5, relative_change = 1.219584720371326e-9 Iter 115: T = 643.3480318750446 K, F = -1.991361197417607e-5, relative_change = 5.10044916495181e-10 Iter 120: T = 643.3480308727891 K, F = -8.328111805178118e-6, relative_change = 2.1330691424783135e-10 Iter 125: T = 643.3480304536337 K, F = -3.4829153837678817e-6, relative_change = 8.92074881776204e-11 Iter 130: T = 643.348030278338 K, F = -1.4565973103786156e-6, relative_change = 3.730764982672293e-11 Iter 135: T = 643.348030205027 K, F = -6.091652810513715e-7, relative_change = 1.5602476293522928e-11 Iter 140: T = 643.3480301743676 K, F = -2.547587580892241e-7, relative_change = 6.5251051039810004e-12 Iter 145: T = 643.3480301615455 K, F = -1.0654316345837245e-7, relative_change = 2.728877095165432e-12 Iter 150: T = 643.3480301561832 K, F = -4.4557557032920414e-8, relative_change = 1.1412472922863464e-12 Iter 155: T = 643.3480301539406 K, F = -1.863495224796452e-8, relative_change = 4.772947668453877e-13 Converged in 160 iterations to T = 643.3480301530027 K Iter 1: T = 965.1629247078142 K, F = -7937.660743938225, relative_change = 0.03483707529218575 Iter 2: T = 932.299359735538 K, F = -6732.464128607884, relative_change = 0.03404975898988769 Iter 3: T = 901.3798282357538 K, F = -5709.041315632767, relative_change = 0.03316481039797662 Iter 5: T = 845.2599059540838 K, F = -4102.204176138906, relative_change = 0.031083130266338473 Iter 10: T = 736.8281626783449 K, F = -1785.152413732152, relative_change = 0.024105229522167402 Iter 15: T = 668.9854923082646 K, F = -768.6889506625948, relative_change = 0.015800672835106395 Iter 20: T = 631.8453590762863 K, F = -327.3319052092977, relative_change = 0.00870165622422257 Iter 25: T = 613.7531523930378 K, F = -138.20148408277515, relative_change = 0.004201950046036077 Iter 30: T = 605.5934057172955 K, F = -58.05638751415168, relative_change = 0.0018796617832758699 Iter 35: T = 602.0618685243229 K, F = -24.32782185365999, relative_change = 0.0008097514035669808 Iter 40: T = 600.5627915677615 K, F = -10.182784533530114, relative_change = 0.0003429700153776171 Iter 45: T = 599.9318814285522 K, F = -4.260082224455234, relative_change = 0.0001442043750100047 Iter 50: T = 599.6673235367864 K, F = -1.7818843353695795, relative_change = 6.044376830776729e-5 Iter 55: T = 599.5565585937466 K, F = -0.7452521090008721, relative_change = 2.53021317918206e-5 Iter 60: T = 599.5102136978388 K, F = -0.31168152394736887, relative_change = 1.0585826655687736e-5 Iter 65: T = 599.490827914927 K, F = -0.13035036878258402, relative_change = 4.4278494081278815e-6 Iter 70: T = 599.4827198851971 K, F = -0.05451433163192665, relative_change = 1.851907259528972e-6 Iter 75: T = 599.4793288942176 K, F = -0.022798588371936823, relative_change = 7.745120794067804e-7 Iter 80: T = 599.4779107209832 K, F = -0.00953464959729139, relative_change = 3.2391410988294394e-7 Iter 85: T = 599.4773176204478 K, F = -0.003987505669139857, relative_change = 1.3546543270032018e-7 Iter 90: T = 599.4770695780995 K, F = -0.0016676227257645948, relative_change = 5.665338130746176e-8 Iter 95: T = 599.4769658437186 K, F = -0.0006974197803169546, relative_change = 2.3693141551824698e-8 Iter 100: T = 599.4769224607427 K, F = -0.0002916692880485239, relative_change = 9.908758403552174e-9 Iter 105: T = 599.4769043174606 K, F = -0.00012197958016824106, relative_change = 4.1439617187615126e-9 Iter 110: T = 599.476896729723 K, F = -5.101331765239303e-5, relative_change = 1.7330544009568626e-9 Iter 115: T = 599.4768935564402 K, F = -2.1334378495385664e-5, relative_change = 7.24784059857559e-10 Iter 120: T = 599.4768922293355 K, F = -8.922291232449364e-6, relative_change = 3.031133310136901e-10 Iter 125: T = 599.4768916743245 K, F = -3.7314089750828394e-6, relative_change = 1.2676562323853232e-10 Iter 130: T = 599.4768914422123 K, F = -1.5605202473567559e-6, relative_change = 5.3014912977422175e-11 Iter 135: T = 599.4768913451402 K, F = -6.52628120212384e-7, relative_change = 2.217146690980536e-11 Iter 140: T = 599.4768913045433 K, F = -2.729361098241512e-7, relative_change = 9.27234629031755e-12 Iter 145: T = 599.4768912875653 K, F = -1.1414484457628049e-7, relative_change = 3.877795895128583e-12 Iter 150: T = 599.4768912804649 K, F = -4.7736707031731385e-8, relative_change = 1.621739529912235e-12 Iter 155: T = 599.4768912774955 K, F = -1.99637344433512e-8, relative_change = 6.782197458801619e-13 Iter 160: T = 599.4768912762536 K, F = -8.349000935048423e-9, relative_change = 2.836371776355435e-13 Converged in 162 iterations to T = 599.4768912759909 K Iter 1: T = 980.1414917603131 K, F = -4524.779992730727, relative_change = 0.01985850823968684 Iter 2: T = 962.3267147540928 K, F = -3822.093420515687, relative_change = 0.0181757196853542 Iter 3: T = 946.4347709041781 K, F = -3227.027664448217, relative_change = 0.016514083633203176 Iter 5: T = 919.8961652180627 K, F = -2297.2535274535026, relative_change = 0.013343026157253714 Iter 10: T = 877.7600528941618 K, F = -975.2640088049918, relative_change = 0.007010088776572396 Iter 15: T = 857.8125747249263 K, F = -410.97057536299684, relative_change = 0.0032873100269064743 Iter 20: T = 848.9596634942193 K, F = -172.471663096613, relative_change = 0.0014486654482769158 Iter 25: T = 845.1578170526669 K, F = -72.23920906043749, relative_change = 0.0006198127477953308 Iter 30: T = 843.5495952504114 K, F = -30.230823708816928, relative_change = 0.00026173878677763915 Iter 35: T = 842.8737607507576 K, F = -12.646334250588557, relative_change = 0.00010991037821074412 Iter 40: T = 842.5905440963066 K, F = -5.289452226301667, relative_change = 4.6044676344539675e-5 Iter 45: T = 842.4719986453571 K, F = -2.212217920282226, relative_change = 1.9270258118381012e-5 Iter 50: T = 842.4224038539395 K, F = -0.9251944745157616, relative_change = 8.061472564517843e-6 Iter 55: T = 842.4016596277406 K, F = -0.38693061846102983, relative_change = 3.371827632518943e-6 Iter 60: T = 842.3929836036435 K, F = -0.16181957228910804, relative_change = 1.4102126736671367e-6 Iter 65: T = 842.3893550921277 K, F = -0.06767497677941847, relative_change = 5.897807408989643e-7 Iter 70: T = 842.3878375887277 K, F = -0.02830250082921726, relative_change = 2.4665561593294235e-7 Iter 75: T = 842.3872029477883 K, F = -0.011836446879743834, relative_change = 1.03154720701274e-7 Iter 80: T = 842.386937532862 K, F = -0.0049501439701085115, relative_change = 4.314060544409012e-8 Iter 85: T = 842.3868265330815 K, F = -0.0020702094154219086, relative_change = 1.8041928507282573e-8 Iter 90: T = 842.3867801116323 K, F = -0.0008657863175092206, relative_change = 7.545352091067118e-9 Iter 95: T = 842.3867606976252 K, F = -0.00036208217850197677, relative_change = 3.155556708665818e-9 Iter 100: T = 842.386752578455 K, F = -0.00015142709169801982, relative_change = 1.3196915655630807e-9 Iter 105: T = 842.386749182921 K, F = -6.332861744429152e-5, relative_change = 5.519107774362672e-10 Iter 110: T = 842.3867477628681 K, F = -2.6484784106717285e-5, relative_change = 2.3081568007941536e-10 Iter 115: T = 842.386747168985 K, F = -1.1076252334207837e-5, relative_change = 9.652986837769522e-11 Iter 120: T = 842.386746920616 K, F = -4.6322196491921375e-6, relative_change = 4.0369932010291734e-11 Iter 125: T = 842.3867468167451 K, F = -1.9372486586011206e-6, relative_change = 1.688317968564164e-11 Iter 130: T = 842.3867467733052 K, F = -8.101815052174999e-7, relative_change = 7.060755919586637e-12 Iter 135: T = 842.386746755138 K, F = -3.388265514825406e-7, relative_change = 2.9528834760266214e-12 Iter 140: T = 842.3867467475403 K, F = -1.4170329398766057e-7, relative_change = 1.2349484227307843e-12 Iter 145: T = 842.3867467443628 K, F = -5.9259388951460323e-8, relative_change = 5.164473376693911e-13 Converged in 150 iterations to T = 842.386746743034 K Iter 1: T = 976.4295443064518 K, F = -5370.550751066626, relative_change = 0.0235704556935482 Iter 2: T = 955.0208977322366 K, F = -4541.1645979338755, relative_change = 0.021925439166654473 Iter 3: T = 935.6824839730264 K, F = -3838.1236409908097, relative_change = 0.0202492048133508 Iter 5: T = 902.795616348524 K, F = -2737.9022961736177, relative_change = 0.01689625646480923 Iter 10: T = 848.6300371297292 K, F = -1167.5127959933545, relative_change = 0.009508451658685305 Iter 15: T = 821.8849673648159 K, F = -493.3912636766981, relative_change = 0.004657449058591813 Iter 20: T = 809.7262939888759 K, F = -207.36957011040835, relative_change = 0.0020991724234523867 Iter 25: T = 804.4431959010552 K, F = -86.91596821272888, relative_change = 0.0009074977518793354 Iter 30: T = 802.1966021361998 K, F = -36.38374913969368, relative_change = 0.00038496321622221916 Iter 35: T = 801.250356710183 K, F = -15.222217029173684, relative_change = 0.00016196724023596247 Iter 40: T = 800.8534399494418 K, F = -6.3671850244125086, relative_change = 6.790797530892214e-5 Iter 45: T = 800.6872361385385 K, F = -2.6630207226768676, relative_change = 2.843000543640114e-5 Iter 50: T = 800.617691174219 K, F = -1.1137399633595488, relative_change = 1.1895036864320189e-5 Iter 55: T = 800.588600241694 K, F = -0.46578510879875523, relative_change = 4.975568638091603e-6 Iter 60: T = 800.576432946853 K, F = -0.19479790187482848, relative_change = 2.0810035565733425e-6 Iter 65: T = 800.5713442430193 K, F = -0.08146698501762062, relative_change = 8.70328759893873e-7 Iter 70: T = 800.5692160520525 K, F = -0.034070496847407705, relative_change = 3.6398681722194493e-7 Iter 75: T = 800.5683260111836 K, F = -0.014248694053567657, relative_change = 1.5222449718395753e-7 Iter 80: T = 800.5679537844151 K, F = -0.005958974959487051, relative_change = 6.366225365202772e-8 Iter 85: T = 800.5677981145518 K, F = -0.0024921146544740758, relative_change = 2.6624341137007722e-8 Iter 90: T = 800.567733011524 K, F = -0.001042232138114385, relative_change = 1.1134622030066972e-8 Iter 95: T = 800.5677057846547 K, F = -0.00043587393215638315, relative_change = 4.656632717144368e-9 Iter 100: T = 800.5676943980517 K, F = -0.00018228768266259632, relative_change = 1.9474595333187404e-9 Iter 105: T = 800.5676896360384 K, F = -7.623488740338136e-5, relative_change = 8.144508739227699e-10 Iter 110: T = 800.5676876445074 K, F = -3.188233955675468e-5, relative_change = 3.4061307764332857e-10 Iter 115: T = 800.5676868116253 K, F = -1.3333574915175284e-5, relative_change = 1.4244845495913552e-10 Iter 120: T = 800.5676864633041 K, F = -5.576259771267189e-6, relative_change = 5.957363989527448e-11 Iter 125: T = 800.567686317632 K, F = -2.332058839815687e-6, relative_change = 2.4914412053397435e-11 Iter 130: T = 800.5676862567102 K, F = -9.752955171249411e-7, relative_change = 1.0419511712751907e-11 Iter 135: T = 800.5676862312321 K, F = -4.078804966001215e-7, relative_change = 4.357567053010018e-12 Iter 140: T = 800.5676862205768 K, F = -1.7058121748458888e-7, relative_change = 1.8223943027828116e-12 Iter 145: T = 800.5676862161206 K, F = -7.134032198319318e-8, relative_change = 7.621600916059471e-13 Iter 150: T = 800.5676862142569 K, F = -2.983543023749036e-8, relative_change = 3.1874504643415554e-13 Converged in 153 iterations to T = 800.5676862137113 K Iter 1: T = 980.808634155885 K, F = -4372.7709632834385, relative_change = 0.01919136584411503 Iter 2: T = 963.6306153821149 K, F = -3693.0090430371715, relative_change = 0.017514139023209162 Iter 3: T = 948.3404398438527 K, F = -3117.4681354576087, relative_change = 0.01586725794530629 Iter 5: T = 922.8863676622758 K, F = -2218.4749569609685, relative_change = 0.01274989922701433 Iter 10: T = 882.7147709599291 K, F = -941.1405757988732, relative_change = 0.006624498483067334 Iter 15: T = 863.8219633312282 K, F = -396.41932732829764, relative_change = 0.003086096642950117 Iter 20: T = 855.4669559773665 K, F = -166.32891494331497, relative_change = 0.0013555544916257901 Iter 25: T = 851.8849814452125 K, F = -69.65949500401626, relative_change = 0.0005791188442662306 Iter 30: T = 850.3708975248747 K, F = -29.15001889842882, relative_change = 0.0002443980628294379 Iter 35: T = 849.7348264853806 K, F = -12.193985433442634, relative_change = 0.00010260077693729869 Iter 40: T = 849.4683091622308 K, F = -5.100214167514532, relative_change = 4.2977568450155307e-5 Iter 45: T = 849.3567598411227 K, F = -2.133065718985932, relative_change = 1.7985776045529397e-5 Iter 50: T = 849.3100930656542 K, F = -0.892090225520802, relative_change = 7.523974859849081e-6 Iter 55: T = 849.2905737472431 K, F = -0.37308570193767243, relative_change = 3.146985075964713e-6 Iter 60: T = 849.2824100600966 K, F = -0.1560294061377352, relative_change = 1.3161712796536372e-6 Iter 65: T = 849.2789958255372 K, F = -0.06525345022538875, relative_change = 5.504498360509052e-7 Iter 70: T = 849.2775679373353 K, F = -0.027289787772710072, relative_change = 2.3020666960398437e-7 Iter 75: T = 849.2769707748946 K, F = -0.01141291788246468, relative_change = 9.627552379853398e-8 Iter 80: T = 849.2767210339856 K, F = -0.004773019032104475, relative_change = 4.0263634203027416e-8 Iter 85: T = 849.2766165892772 K, F = -0.001996133642425013, relative_change = 1.683874321889656e-8 Iter 90: T = 849.2765729092392 K, F = -0.000834806940998023, relative_change = 7.042165344249446e-9 Iter 95: T = 849.2765546417234 K, F = -0.0003491262352854907, relative_change = 2.9451179739240126e-9 Iter 100: T = 849.2765470020296 K, F = -0.00014600875956838344, relative_change = 1.23168354913585e-9 Iter 105: T = 849.2765438070185 K, F = -6.106260779215056e-5, relative_change = 5.151047858664746e-10 Iter 110: T = 849.2765424708266 K, F = -2.5537113051310456e-5, relative_change = 2.1542298509849064e-10 Iter 115: T = 849.2765419120153 K, F = -1.0679927811674261e-5, relative_change = 9.009248353219781e-11 Iter 120: T = 849.2765416783137 K, F = -4.466475601372366e-6, relative_change = 3.767777153427608e-11 Iter 125: T = 849.2765415805769 K, F = -1.8679355953121757e-6, relative_change = 1.5757312234696493e-11 Iter 130: T = 849.2765415397021 K, F = -7.811917983602257e-7, relative_change = 6.589886244289776e-12 Iter 135: T = 849.2765415226078 K, F = -3.267032828713212e-7, relative_change = 2.755965275728089e-12 Iter 140: T = 849.2765415154588 K, F = -1.3663243847439333e-7, relative_change = 1.1525879161027238e-12 Iter 145: T = 849.276541512469 K, F = -5.714140316470662e-8, relative_change = 4.820267539193615e-13 Converged in 150 iterations to T = 849.2765415112185 K Iter 1: T = 967.3300367879501 K, F = -7443.882195023504, relative_change = 0.032669963212049936 Iter 2: T = 936.7353926650231 K, F = -6309.958236427622, relative_change = 0.03162792734578729 Iter 3: T = 908.1846919150041 K, F = -5347.25336399522, relative_change = 0.030478938848239687 Iter 5: T = 857.0765901390696 K, F = -3836.3640539490284, relative_change = 0.02786576181782054 Iter 10: T = 762.0537512752397 K, F = -1661.1105288787833, relative_change = 0.019941610215037507 Iter 15: T = 706.4453684271583 K, F = -711.1719424051895, relative_change = 0.011941663417672325 Iter 20: T = 677.8588300767668 K, F = -301.4054847164147, relative_change = 0.006112289344661847 Iter 25: T = 664.5320252449515 K, F = -126.88275243339626, relative_change = 0.002822810454042753 Iter 30: T = 658.6660025669393 K, F = -53.22217729195775, relative_change = 0.0012346269192185923 Iter 35: T = 656.1566279602919 K, F = -22.286907849184313, relative_change = 0.0005264458769480552 Iter 40: T = 655.0969520475315 K, F = -9.32576377767179, relative_change = 0.00022198548587074886 Iter 45: T = 654.6519630955165 K, F = -3.901046232865876, relative_change = 9.31590942566837e-5 Iter 50: T = 654.4655427649026 K, F = -1.631622071927251, relative_change = 3.901687109773381e-5 Iter 55: T = 654.3875233033916 K, F = -0.6823914953060153, relative_change = 1.632724643249471e-5 Iter 60: T = 654.3548847814214 K, F = -0.2853891128578107, relative_change = 6.829986886883055e-6 Iter 65: T = 654.3412332377928 K, F = -0.1193539819547153, relative_change = 2.8566860768652785e-6 Iter 70: T = 654.3355236976245 K, F = -0.04991540873270095, relative_change = 1.1947534103095623e-6 Iter 75: T = 654.3331358469869 K, F = -0.02087524594776219, relative_change = 4.996694458181258e-7 Iter 80: T = 654.3321372101066 K, F = -0.008730281686749108, relative_change = 2.0896935636012912e-7 Iter 85: T = 654.3317195666232 K, F = -0.0036511088548104587, relative_change = 8.7393764980155e-8 Iter 90: T = 654.3315449028485 K, F = -0.0015269374640662914, relative_change = 3.6549165958529524e-8 Iter 95: T = 654.3314718563227 K, F = -0.0006385835064204315, relative_change = 1.5285306378843178e-8 Iter 100: T = 654.3314413073847 K, F = -0.0002670632535209938, relative_change = 6.392499209475526e-9 Iter 105: T = 654.3314285314524 K, F = -0.00011168904269875934, relative_change = 2.673419776463726e-9 Iter 110: T = 654.3314231884048 K, F = -4.6709691940649556e-5, relative_change = 1.1180561317748507e-9 Iter 115: T = 654.3314209538783 K, F = -1.9534550667388295e-5, relative_change = 4.675844263326735e-10 Iter 120: T = 654.3314200193727 K, F = -8.169582709660617e-6, relative_change = 1.9554940042852304e-10 Iter 125: T = 654.3314196285513 K, F = -3.4166179815331432e-6, relative_change = 8.178111703208276e-11 Iter 130: T = 654.3314194651051 K, F = -1.428871225284123e-6, relative_change = 3.42018585833442e-11 Iter 135: T = 654.33141939675 K, F = -5.975713789352355e-7, relative_change = 1.4303634536343954e-11 Iter 140: T = 654.331419368163 K, F = -2.4991198332990905e-7, relative_change = 5.981962661794181e-12 Iter 145: T = 654.3314193562076 K, F = -1.0451587800774931e-7, relative_change = 2.501721092085604e-12 Iter 150: T = 654.3314193512076 K, F = -4.3709866115460017e-8, relative_change = 1.0462514986398014e-12 Iter 155: T = 654.3314193491167 K, F = -1.8280036040430048e-8, relative_change = 4.375560211568774e-13 Converged in 159 iterations to T = 654.3314193483618 K Iter 1: T = 973.5527791212634 K, F = -6026.02443502195, relative_change = 0.02644722087873658 Iter 2: T = 949.2985392250437 K, F = -5099.434547230479, relative_change = 0.024913122756540992 Iter 3: T = 927.1695532190809 K, F = -4313.50780508975, relative_change = 0.02331088176331517 Iter 5: T = 888.9637753675227 K, F = -3082.2497743496706, relative_change = 0.019980268579467785 Iter 10: T = 823.9430959798754 K, F = -1319.6745886871977, relative_change = 0.01197465636153856 Iter 15: T = 790.4995606066674 K, F = -559.3206410855001, relative_change = 0.006132948340058677 Iter 20: T = 774.9028583163997 K, F = -235.46286524722686, relative_change = 0.002833351893358776 Iter 25: T = 768.036397267705 K, F = -98.7682689040246, relative_change = 0.0012394508201023454 Iter 30: T = 765.0987933434579 K, F = -41.35965002928958, relative_change = 0.0005285435408976908 Iter 35: T = 763.8582334995934 K, F = -17.3066261232255, relative_change = 0.0002228774061037644 Iter 40: T = 763.3372774211632 K, F = -7.239515572226899, relative_change = 9.353471571293533e-5 Iter 45: T = 763.1190304611197 K, F = -3.0279461869560977, relative_change = 3.9174420436366265e-5 Iter 50: T = 763.0276908501883 K, F = -1.2663747960210232, relative_change = 1.639321615363962e-5 Iter 55: T = 762.9894799535791 K, F = -0.529622082237809, relative_change = 6.857590346705255e-6 Iter 60: T = 762.9734976737434 K, F = -0.22149585752181844, relative_change = 2.8682326469432444e-6 Iter 65: T = 762.9668133389237 K, F = -0.09263248878507535, relative_change = 1.1995827565270828e-6 Iter 70: T = 762.9640178082623 K, F = -0.03874006133499319, relative_change = 5.01689211748984e-7 Iter 75: T = 762.9628486731078 K, F = -0.016201564743709373, relative_change = 2.0981405985053948e-7 Iter 80: T = 762.9623597249267 K, F = -0.006775689336533275, relative_change = 8.774703235327044e-8 Iter 85: T = 762.9621552406264 K, F = -0.0028336744556198834, relative_change = 3.6696906997398584e-8 Iter 90: T = 762.962069722792 K, F = -0.0011850765432056543, relative_change = 1.5347093528351225e-8 Iter 95: T = 762.9620339582023 K, F = -0.0004956131717108736, relative_change = 6.418339339633382e-9 Iter 100: T = 762.9620190010219 K, F = -0.00020727134713294237, relative_change = 2.68422641162344e-9 Iter 105: T = 762.9620127457501 K, F = -8.668335331496468e-5, relative_change = 1.1225755933818546e-9 Iter 110: T = 762.9620101297207 K, F = -3.625201364720887e-5, relative_change = 4.69474528146094e-10 Iter 115: T = 762.962009035666 K, F = -1.5161024807475165e-5, relative_change = 1.9633985260964629e-10 Iter 120: T = 762.9620085781193 K, F = -6.340521749748085e-6, relative_change = 8.21116728701964e-11 Iter 125: T = 762.9620083867677 K, F = -2.6516820570421373e-6, relative_change = 3.4340084062051165e-11 Iter 130: T = 762.9620083067422 K, F = -1.108965058560507e-6, relative_change = 1.4361432680335102e-11 Iter 135: T = 762.9620082732746 K, F = -4.6378310347705565e-7, relative_change = 6.006131364408796e-12 Iter 140: T = 762.962008259278 K, F = -1.939590625887888e-7, relative_change = 2.5118284831720644e-12 Iter 145: T = 762.9620082534245 K, F = -8.111664007159902e-8, relative_change = 1.0504850058513263e-12 Iter 150: T = 762.9620082509765 K, F = -3.392333880469778e-8, relative_change = 4.393174906139993e-13 Converged in 154 iterations to T = 762.9620082500928 K Iter 1: T = 970.0093474156788 K, F = -6833.398719813121, relative_change = 0.029990652584321143 Iter 2: T = 942.1761219895036 K, F = -5788.257351662511, relative_change = 0.028693770323274866 Iter 3: T = 916.4575343264772 K, F = -4901.2344691099825, relative_change = 0.027297006433063573 Iter 5: T = 871.1584754491112 K, F = -3510.0459175774017, relative_change = 0.02424461164441129 Iter 10: T = 790.3637591380837 K, F = -1511.7336508658877, relative_change = 0.01594239021843457 Iter 15: T = 746.0309902342449 K, F = -643.8596207248542, relative_change = 0.00880419388089952 Iter 20: T = 724.3976403488355 K, F = -271.8735967789372, relative_change = 0.004259152734300764 Iter 25: T = 714.6309970760956 K, F = -114.21720029841839, relative_change = 0.0019070524994532572 Iter 30: T = 710.4019030786584 K, F = -47.86272189667204, relative_change = 0.0008219116740602732 Iter 35: T = 708.6063249679426 K, F = -20.0339356397773, relative_change = 0.00034818733591923076 Iter 40: T = 707.8505548705273 K, F = -8.381467628705535, relative_change = 0.00014641002294781612 Iter 45: T = 707.5336268393891 K, F = -3.5057633802795696, relative_change = 6.137039176239624e-5 Iter 50: T = 707.4009333179179 K, F = -1.4662456062017484, relative_change = 2.569039419573902e-5 Iter 55: T = 707.3454129379616 K, F = -0.6132177882714219, relative_change = 1.0748331873549307e-5 Iter 60: T = 707.3221890368925 K, F = -0.2564578656166807, relative_change = 4.495833655630792e-6 Iter 65: T = 707.312475716638 K, F = -0.10725424298321207, relative_change = 1.8803430422592167e-6 Iter 70: T = 707.3084133488571 K, F = -0.044855092893622106, relative_change = 7.864049557951519e-7 Iter 75: T = 707.3067143934305 K, F = -0.01875895084782553, relative_change = 3.288879739175878e-7 Iter 80: T = 707.3060038656602 K, F = -0.007845219950199267, relative_change = 1.375455832205736e-7 Iter 85: T = 707.3057067137055 K, F = -0.0032809651434129172, relative_change = 5.752332881837341e-8 Iter 90: T = 707.3055824410771 K, F = -0.0013721388876409835, relative_change = 2.4056964641481037e-8 Iter 95: T = 707.3055304687567 K, F = -0.0005738448842085297, relative_change = 1.0060913689589636e-8 Iter 100: T = 707.3055087333076 K, F = -0.00023998878698194837, relative_change = 4.20759493027273e-9 Iter 105: T = 707.3054996432825 K, F = -0.00010036617805553316, relative_change = 1.7596665790425387e-9 Iter 110: T = 707.3054958417252 K, F = -4.1974334192840246e-5, relative_change = 7.359135953738039e-10 Iter 115: T = 707.3054942518687 K, F = -1.7554168371014534e-5, relative_change = 3.077678668733883e-10 Iter 120: T = 707.3054935869716 K, F = -7.341361958235204e-6, relative_change = 1.287121823255798e-10 Iter 125: T = 707.3054933089037 K, F = -3.070244796177235e-6, relative_change = 5.382896402296551e-11 Iter 130: T = 707.3054931926124 K, F = -1.2840142469272564e-6, relative_change = 2.2511936782039345e-11 Iter 135: T = 707.3054931439781 K, F = -5.36990814592464e-7, relative_change = 9.414773475861415e-12 Iter 140: T = 707.3054931236386 K, F = -2.2457627391059276e-7, relative_change = 3.9373760030054465e-12 Iter 145: T = 707.3054931151323 K, F = -9.392111366413047e-8, relative_change = 1.646668780714978e-12 Iter 150: T = 707.3054931115748 K, F = -3.927703062789334e-8, relative_change = 6.886232244538149e-13 Iter 155: T = 707.3054931100871 K, F = -1.6426884519304963e-8, relative_change = 2.8800380285097533e-13 Converged in 157 iterations to T = 707.3054931097723 K Iter 1: T = 973.5720794227641 K, F = -6021.626842965693, relative_change = 0.0264279205772359 Iter 2: T = 949.337108647401 K, F = -5095.6862341523, relative_change = 0.024892836686249337 Iter 3: T = 927.2272061585436 K, F = -4310.313193720297, relative_change = 0.023289832755362554 Iter 5: T = 889.0583684060504 K, F = -3079.9309028825965, relative_change = 0.019958514044776852 Iter 10: T = 824.1157707499239 K, F = -1318.6433194549973, relative_change = 0.011956169572586774 Iter 15: T = 790.7225500350704 K, F = -558.8711677048967, relative_change = 0.006121395728253239 Iter 20: T = 775.1524000258213 K, F = -235.27061658760647, relative_change = 0.002827462073832768 Iter 25: T = 768.298346760486 K, F = -98.6870042054436, relative_change = 0.001236756513573109 Iter 30: T = 765.3661946101156 K, F = -41.32550282503813, relative_change = 0.000527372099109155 Iter 35: T = 764.1279636807869 K, F = -17.292316325979492, relative_change = 0.0002223793431989124 Iter 40: T = 763.6079903709802 K, F = -7.233525905579758, relative_change = 9.332496789232765e-5 Iter 45: T = 763.3901559712309 K, F = -3.02544033353709, relative_change = 3.908644549153781e-5 Iter 50: T = 763.2989891711638 K, F = -1.2653266598730648, relative_change = 1.635637907981907e-5 Iter 55: T = 763.2608505940046 K, F = -0.5291837114680149, relative_change = 6.842176778669653e-6 Iter 60: T = 763.2448985674081 K, F = -0.22131252077996144, relative_change = 2.861785132528437e-6 Iter 65: T = 763.238226886321 K, F = -0.09255581432266946, relative_change = 1.1968860882601893e-6 Iter 70: T = 763.235436647858 K, F = -0.03870799500924338, relative_change = 5.005613907437827e-7 Iter 75: T = 763.2342697260091 K, F = -0.016188154194547, relative_change = 2.0934238423492995e-7 Iter 80: T = 763.2337817034668 K, F = -0.0067700808818073055, relative_change = 8.754977071066148e-8 Iter 85: T = 763.233577606281 K, F = -0.0028313289326133972, relative_change = 3.661440960426135e-8 Iter 90: T = 763.2334922503428 K, F = -0.001184095620170189, relative_change = 1.5312592130591144e-8 Iter 95: T = 763.2334565534597 K, F = -0.0004952029356067866, relative_change = 6.403910405740241e-9 Iter 100: T = 763.2334416245953 K, F = -0.00020709978273081298, relative_change = 2.678192074010915e-9 Iter 105: T = 763.2334353811656 K, F = -8.6611602666542e-5, relative_change = 1.1200519563791562e-9 Iter 110: T = 763.2334327700886 K, F = -3.622200551567367e-5, relative_change = 4.684190980605156e-10 Iter 115: T = 763.2334316781051 K, F = -1.5148476179116521e-5, relative_change = 1.958984737628478e-10 Iter 120: T = 763.2334312214246 K, F = -6.335272961677241e-6, relative_change = 8.192707259296322e-11 Iter 125: T = 763.2334310304352 K, F = -2.6494862401804653e-6, relative_change = 3.4262872824105204e-11 Iter 130: T = 763.2334309505612 K, F = -1.1080455927237054e-6, relative_change = 1.4329127160567338e-11 Iter 135: T = 763.2334309171571 K, F = -4.633989145741424e-7, relative_change = 5.992625229493761e-12 Iter 140: T = 763.2334309031871 K, F = -1.938006737312037e-7, relative_change = 2.5062095971092193e-12 Iter 145: T = 763.2334308973445 K, F = -8.105053916906968e-8, relative_change = 1.048136908984836e-12 Iter 150: T = 763.2334308949011 K, F = -3.389484581894919e-8, relative_change = 4.383245230932412e-13 Converged in 154 iterations to T = 763.2334308940192 K Iter 1: T = 964.3115706441336 K, F = -8131.642577194669, relative_change = 0.0356884293558665 Iter 2: T = 930.5478921319949 K, F = -6898.577372496776, relative_change = 0.03501324627846727 Iter 3: T = 898.6779691725807 K, F = -5851.425664215421, relative_change = 0.0342485574669311 Iter 5: T = 840.5063689247085 K, F = -4207.1255925134155, relative_change = 0.032425105388477836 Iter 10: T = 726.2382506292543 K, F = -1834.8034518124969, relative_change = 0.026044452315276603 Iter 15: T = 652.475195415135 K, F = -792.2922938193561, relative_change = 0.017848273831239065 Iter 20: T = 610.7373722801411 K, F = -338.26872251394127, relative_change = 0.010237553274780075 Iter 25: T = 589.8772701242899 K, F = -143.07401349225836, relative_change = 0.005080201438296206 Iter 30: T = 580.324128118637 K, F = -60.161089231426374, relative_change = 0.0023058473716444884 Iter 35: T = 576.1577728559294 K, F = -25.221196779181874, relative_change = 0.0010001525598000503 Iter 40: T = 574.3830719379312 K, F = -10.558829173261753, relative_change = 0.00042488774806247306 Iter 45: T = 573.6350354449606 K, F = -4.4177821543153, relative_change = 0.0001788765957672371 Iter 50: T = 573.3211626013241 K, F = -1.8479128754581717, relative_change = 7.501734758821131e-5 Iter 55: T = 573.1897151237464 K, F = -0.7728794738258398, relative_change = 3.140985845555598e-5 Iter 60: T = 573.134710289074 K, F = -0.32323797255094444, relative_change = 1.3142409188493802e-5 Iter 65: T = 573.1117010199608 K, F = -0.13518382572461715, relative_change = 5.497438120742859e-6 Iter 70: T = 573.1020772906447 K, F = -0.05653581314986031, relative_change = 2.299291210798532e-6 Iter 75: T = 573.098052360997 K, F = -0.023644008696568908, relative_change = 9.616254920932178e-7 Iter 80: T = 573.0963690574201 K, F = -0.009888216678806239, relative_change = 4.02169290333989e-7 Iter 85: T = 573.0956650745266 K, F = -0.004135372031121465, relative_change = 1.6819305394985008e-7 Iter 90: T = 573.0953706595575 K, F = -0.0017294622720187003, relative_change = 7.034052812602305e-8 Iter 95: T = 573.0952475315413 K, F = -0.0007232818280642483, relative_change = 2.941728110090696e-8 Iter 100: T = 573.0951960379065 K, F = -0.00030248510739883105, relative_change = 1.2302663905538396e-8 Iter 105: T = 573.0951745026485 K, F = -0.00012650288579874047, relative_change = 5.145121949550656e-9 Iter 110: T = 573.0951654963457 K, F = -5.290501749644072e-5, relative_change = 2.1517516016286618e-9 Iter 115: T = 573.0951617298022 K, F = -2.212551068381252e-5, relative_change = 8.998882675659319e-10 Iter 120: T = 573.0951601545886 K, F = -9.25315321731457e-6, relative_change = 3.763440422329604e-10 Iter 125: T = 573.0951594958154 K, F = -3.869779458764988e-6, relative_change = 1.5739158509844268e-10 Iter 130: T = 573.0951592203086 K, F = -1.6183875289899063e-6, relative_change = 6.582302216146242e-11 Iter 135: T = 573.0951591050884 K, F = -6.768289554925921e-7, relative_change = 2.752797249207498e-11 Iter 140: T = 573.0951590569018 K, F = -2.83057407957088e-7, relative_change = 1.1512504717486487e-11 Iter 145: T = 573.0951590367497 K, F = -1.1837786861867983e-7, relative_change = 4.814662089159331e-12 Iter 150: T = 573.095159028322 K, F = -4.95074333195511e-8, relative_change = 2.013565247738389e-12 Iter 155: T = 573.0951590247973 K, F = -2.0704855940856248e-8, relative_change = 8.421074490786507e-13 Iter 160: T = 573.0951590233233 K, F = -8.658869010691461e-9, relative_change = 3.5217333148405915e-13 Converged in 163 iterations to T = 573.0951590228917 K Iter 1: T = 963.541890766619 K, F = -8307.014869440933, relative_change = 0.03645810923338103 Iter 2: T = 928.9601621068563 K, F = -7048.818073857302, relative_change = 0.03589021815361709 Iter 3: T = 896.221187391578 K, F = -5980.27515945993, relative_change = 0.03524260355904507 Iter 5: T = 836.1523887908628 K, F = -4302.223997318566, relative_change = 0.03367889974677137 Iter 10: T = 716.2888956104064 K, F = -1880.1914360688088, relative_change = 0.027979119919405243 Iter 15: T = 636.4523539656356 K, F = -814.2441519062245, relative_change = 0.020077230571644813 Iter 20: T = 589.6301373572768 K, F = -348.6655685969431, relative_change = 0.012056881753785165 Iter 25: T = 565.5149213898017 K, F = -147.79008040177393, relative_change = 0.006184321000607577 Iter 30: T = 554.2587693499254 K, F = -62.220205855623654, relative_change = 0.002859547891581713 Iter 35: T = 549.3009549535577 K, F = -26.09988124856602, relative_change = 0.0012514360393184967 Iter 40: T = 547.1794497738309 K, F = -10.929577406935516, relative_change = 0.0005337549377426991 Iter 45: T = 546.2834463268689 K, F = -4.57342190543747, relative_change = 0.0002250932203346457 Iter 50: T = 545.9071667653651 K, F = -1.9131074131317582, relative_change = 9.446786991777086e-5 Iter 55: T = 545.7495272351588 K, F = -0.8001629119702391, relative_change = 3.956581776198483e-5 Iter 60: T = 545.6835522659135 K, F = -0.33465144025258886, relative_change = 1.655710341253093e-5 Iter 65: T = 545.6559522984356 K, F = -0.13995763579940468, relative_change = 6.926165022110223e-6 Iter 70: T = 545.6444081841488 K, F = -0.058532375790664254, relative_change = 2.8969175318031138e-6 Iter 75: T = 545.6395800390776 K, F = -0.024479012224649654, relative_change = 1.2115801915120236e-6 Iter 80: T = 545.6375608059134 K, F = -0.010237428132593956, relative_change = 5.067068701111948e-7 Iter 85: T = 545.6367163305775 K, F = -0.004281416958052897, relative_change = 2.1191253734658575e-7 Iter 90: T = 545.6363631595231 K, F = -0.0017905400964469131, relative_change = 8.862464647278329e-8 Iter 95: T = 545.6362154589284 K, F = -0.0007488253206658912, relative_change = 3.706393672601484e-8 Iter 100: T = 545.6361536887335 K, F = -0.00031316770460687593, relative_change = 1.5500589955684258e-8 Iter 105: T = 545.6361278556928 K, F = -0.00013097047641080772, relative_change = 6.482533412203986e-9 Iter 110: T = 545.6361170520054 K, F = -5.477341770587785e-5, relative_change = 2.711073163819159e-9 Iter 115: T = 545.636112533774 K, F = -2.2906897067576093e-5, relative_change = 1.1338032015459079e-9 Iter 120: T = 545.6361106441957 K, F = -9.579937612969047e-6, relative_change = 4.741700319878276e-10 Iter 125: T = 545.6361098539516 K, F = -4.006444507209661e-6, relative_change = 1.9830358087804286e-10 Iter 130: T = 545.6361095234619 K, F = -1.6755425827630344e-6, relative_change = 8.293290832701392e-11 Iter 135: T = 545.6361093852472 K, F = -7.007314316020974e-7, relative_change = 3.468350864181893e-11 Iter 140: T = 545.6361093274442 K, F = -2.9305430893078466e-7, relative_change = 1.4505060288520115e-11 Iter 145: T = 545.6361093032704 K, F = -1.2255879766609468e-7, relative_change = 6.066188741248239e-12 Iter 150: T = 545.6361092931606 K, F = -5.125657465132605e-8, relative_change = 2.537003152881527e-12 Iter 155: T = 545.6361092889325 K, F = -2.1435960700921797e-8, relative_change = 1.0609975452950492e-12 Iter 160: T = 545.6361092871642 K, F = -8.965074987932198e-9, relative_change = 4.4373670433720406e-13 Converged in 164 iterations to T = 545.636109286526 K Iter 1: T = 969.3623759818628 K, F = -6980.811776436831, relative_change = 0.030637624018137233 Iter 2: T = 940.8667455564071 K, F = -5914.1646417527345, relative_change = 0.029396262049672155 Iter 3: T = 914.4738225727169 K, F = -5008.805853061261, relative_change = 0.028051712007402193 Iter 5: T = 867.8091228942926 K, F = -3588.6105985051945, relative_change = 0.025085473965063682 Iter 10: T = 783.784412428363 K, F = -1547.4428530455298, relative_change = 0.016814079424086047 Iter 15: T = 737.0254304543923 K, F = -659.7999604800823, relative_change = 0.009446673022224414 Iter 20: T = 713.9614230623542 K, F = -278.81153997549427, relative_change = 0.004622094643153782 Iter 25: T = 703.4827018206688 K, F = -117.17835948294756, relative_change = 0.0020820124168021152 Iter 30: T = 698.9309741021272 K, F = -49.11272079348309, relative_change = 0.000899831009723014 Iter 35: T = 696.9956616564866 K, F = -20.55882831671737, relative_change = 0.0003816646526839605 Iter 40: T = 696.180574847074 K, F = -8.601363846159959, relative_change = 0.00016057109624054584 Iter 45: T = 695.8386833733284 K, F = -3.597793607561239, relative_change = 6.732114123285861e-5 Iter 50: T = 695.6955222562867 K, F = -1.5047455073589777, relative_change = 2.8184065592948553e-5 Iter 55: T = 695.6356193621156 K, F = -0.629320966833926, relative_change = 1.1792090930565481e-5 Iter 60: T = 695.6105617934414 K, F = -0.26319276774677874, relative_change = 4.932499495740097e-6 Iter 65: T = 695.600081463125 K, F = -0.11007092256085632, relative_change = 2.062988740717499e-6 Iter 70: T = 695.5956982966198 K, F = -0.04603307296560177, relative_change = 8.627942613782832e-7 Iter 75: T = 695.5938651747953 K, F = -0.01925159811299748, relative_change = 3.608357147166064e-7 Iter 80: T = 695.5930985362409 K, F = -0.008051251259090897, relative_change = 1.5090665356711913e-7 Iter 85: T = 695.5927779179472 K, F = -0.0033671299544649758, relative_change = 6.31111130793389e-8 Iter 90: T = 695.5926438313915 K, F = -0.0014081740517774, relative_change = 2.6393847158644724e-8 Iter 95: T = 695.5925877547652 K, F = -0.0005889152219004101, relative_change = 1.1038226633074905e-8 Iter 100: T = 695.5925643028455 K, F = -0.0002462913825372892, relative_change = 4.616319010811175e-9 Iter 105: T = 695.5925544949718 K, F = -0.00010300199736135163, relative_change = 1.9305998674931385e-9 Iter 110: T = 695.5925503932017 K, F = -4.3076664951624544e-5, relative_change = 8.073999350783924e-10 Iter 115: T = 695.5925486777925 K, F = -1.8015176072250227e-5, relative_change = 3.376643056810353e-10 Iter 120: T = 695.592547960388 K, F = -7.534163290023876e-6, relative_change = 1.4121527419453303e-10 Iter 125: T = 695.5925476603608 K, F = -3.150878366220411e-6, relative_change = 5.905793864892142e-11 Iter 130: T = 695.5925475348857 K, F = -1.3177346439574578e-6, relative_change = 2.4698729300231868e-11 Iter 135: T = 695.5925474824105 K, F = -5.510913939632545e-7, relative_change = 1.0329285358391259e-11 Iter 140: T = 695.5925474604647 K, F = -2.3047222597050165e-7, relative_change = 4.319815942814876e-12 Iter 145: T = 695.5925474512868 K, F = -9.638631925934504e-8, relative_change = 1.8066001527021804e-12 Iter 150: T = 695.5925474474485 K, F = -4.0309428572804507e-8, relative_change = 7.555327392566551e-13 Iter 155: T = 695.5925474458434 K, F = -1.6857735540831698e-8, relative_change = 3.1597002393533664e-13 Converged in 158 iterations to T = 695.5925474453734 K Iter 1: T = 966.4780461142033 K, F = -7638.009080489065, relative_change = 0.033521953885796714 Iter 2: T = 934.9951896244166 K, F = -6476.007380073622, relative_change = 0.032574828384737575 Iter 3: T = 905.521708684763 K, F = -5489.377813827279, relative_change = 0.03152260168471353 Iter 5: T = 852.4782588366793 K, F = -3940.669595019448, relative_change = 0.029097943176261874 Iter 10: T = 752.412220519119 K, F = -1709.500085854913, relative_change = 0.02146108579209478 Iter 15: T = 692.4067287209448 K, F = -733.3968210827747, relative_change = 0.013272470125843778 Iter 20: T = 660.8795657777151 K, F = -311.3252710552103, relative_change = 0.006963677398414468 Iter 25: T = 645.9663578183547 K, F = -131.18371714499187, relative_change = 0.0032629275544318057 Iter 30: T = 639.3505976012726 K, F = -55.05229343890296, relative_change = 0.001437345344778676 Iter 35: T = 636.5100751291542 K, F = -23.058200049425654, relative_change = 0.000614858010825115 Iter 40: T = 635.3086138952384 K, F = -9.649395944553115, relative_change = 0.0002596260992361225 Iter 45: T = 634.8037351374138 K, F = -4.036582537846441, relative_change = 0.00010901958062832326 Iter 50: T = 634.5921630781088 K, F = -1.6883383029747339, relative_change = 4.567085531981063e-5 Iter 55: T = 634.5036063857767 K, F = -0.7061167439639412, relative_change = 1.9113697187537805e-5 Iter 60: T = 634.4665578292378 K, F = -0.29531231825394827, relative_change = 7.995957583804164e-6 Iter 65: T = 634.4510613894984 K, F = -0.12350416396918668, relative_change = 3.3444216018077688e-6 Iter 70: T = 634.4445801925393 K, F = -0.05165109572986459, relative_change = 1.398749940113745e-6 Iter 75: T = 634.4418696084625 K, F = -0.02160113645460282, relative_change = 5.849866781770864e-7 Iter 80: T = 634.4407359975684 K, F = -0.00903385872364798, relative_change = 2.446506448093219e-7 Iter 85: T = 634.4402619058096 K, F = -0.003778068564601944, relative_change = 1.0231621139457817e-7 Iter 90: T = 634.4400636345993 K, F = -0.0015800335603842197, relative_change = 4.278992970759451e-8 Iter 95: T = 634.4399807151456 K, F = -0.0006607889338983708, relative_change = 1.789527155382344e-8 Iter 100: T = 634.4399460372283 K, F = -0.0002763498282928323, relative_change = 7.4840183519983e-9 Iter 105: T = 634.4399315345071 K, F = -0.00011557279862134395, relative_change = 3.1299061966185953e-9 Iter 110: T = 634.4399254692955 K, F = -4.833392368602807e-5, relative_change = 1.3089641848421732e-9 Iter 115: T = 634.4399229327516 K, F = -2.0213824079684528e-5, relative_change = 5.474244639133891e-10 Iter 120: T = 634.4399218719386 K, F = -8.453661850593708e-6, relative_change = 2.2893942903940736e-10 Iter 125: T = 634.439921428294 K, F = -3.5354224651729105e-6, relative_change = 9.574520693983062e-11 Iter 130: T = 634.4399212427564 K, F = -1.478554948253219e-6, relative_change = 4.0041763349092386e-11 Iter 135: T = 634.4399211651624 K, F = -6.183480089072546e-7, relative_change = 1.6745907674053936e-11 Iter 140: T = 634.4399211327118 K, F = -2.586007318283734e-7, relative_change = 7.0033442629631e-12 Iter 145: T = 634.4399211191405 K, F = -1.0814986917129232e-7, relative_change = 2.9288809839130328e-12 Iter 150: T = 634.4399211134648 K, F = -4.5228313205747384e-8, relative_change = 1.2248590544165095e-12 Iter 155: T = 634.4399211110913 K, F = -1.8916047450634466e-8, relative_change = 5.122784899957396e-13 Converged in 160 iterations to T = 634.4399211100986 K Iter 1: T = 966.5131207841013 K, F = -7630.017283588192, relative_change = 0.03348687921589876 Iter 2: T = 935.0669271397264 K, F = -6469.170020653647, relative_change = 0.03253571314051432 Iter 3: T = 905.6316510831629 K, F = -5483.524018295955, relative_change = 0.03147932538540643 Iter 5: T = 852.6687547417924 K, F = -3936.370279759108, relative_change = 0.029046400373920745 Iter 10: T = 752.8158920283405 K, F = -1707.4987124492718, relative_change = 0.02139574029442607 Iter 15: T = 693.0009934224149 K, F = -732.4726659414408, relative_change = 0.013213500662321338 Iter 20: T = 661.6042350493915 K, F = -310.9106138509892, relative_change = 0.006925065388009944 Iter 25: T = 646.7624770557773 K, F = -131.00329906090386, relative_change = 0.0032426921907172195 Iter 30: T = 640.1807705127142 K, F = -54.97538099766428, relative_change = 0.001427961521986436 Iter 35: T = 637.3553494744165 K, F = -23.02575788948345, relative_change = 0.0006107528810245152 Iter 40: T = 636.1603656093739 K, F = -9.635778186744837, relative_change = 0.00025787606763418215 Iter 45: T = 635.6582249610448 K, F = -4.030878543441531, relative_change = 0.000108281762688921 Iter 50: T = 635.4478031866894 K, F = -1.685951260633606, relative_change = 4.536124393906189e-5 Iter 55: T = 635.3597284674235 K, F = -0.7051181801331375, relative_change = 1.8984030185735737e-5 Iter 60: T = 635.3228816373386 K, F = -0.2948946589210112, relative_change = 7.941697093643964e-6 Iter 65: T = 635.3074695899464 K, F = -0.1233294854473827, relative_change = 3.3217235810781996e-6 Iter 70: T = 635.3010236917627 K, F = -0.05157804161545887, relative_change = 1.3892563707835352e-6 Iter 75: T = 635.2983278709104 K, F = -0.02157058409533802, relative_change = 5.810161816641112e-7 Iter 80: T = 635.2972004343225 K, F = -0.009021081316846535, relative_change = 2.42990105575434e-7 Iter 85: T = 635.2967289247586 K, F = -0.003772724892271706, relative_change = 1.0162174877049049e-7 Iter 90: T = 635.2965317334574 K, F = -0.0015777987716246167, relative_change = 4.249949622729875e-8 Iter 95: T = 635.2964492656356 K, F = -0.0006598543186766004, relative_change = 1.7773808652341103e-8 Iter 100: T = 635.2964147765962 K, F = -0.00027595896066962, relative_change = 7.433221078876909e-9 Iter 105: T = 635.2964003528662 K, F = -0.00011540933457171443, relative_change = 3.108662205008475e-9 Iter 110: T = 635.2963943206896 K, F = -4.8265561821414504e-5, relative_change = 1.3000797134591027e-9 Iter 115: T = 635.2963917979613 K, F = -2.018523479668799e-5, relative_change = 5.437088842726481e-10 Iter 120: T = 635.2963907429262 K, F = -8.44170618141682e-6, relative_change = 2.2738554848510603e-10 Iter 125: T = 635.2963903016978 K, F = -3.53042149370264e-6, relative_change = 9.509532944309386e-11 Iter 130: T = 635.2963901171709 K, F = -1.4764646771303624e-6, relative_change = 3.9770009141234563e-11 Iter 135: T = 635.2963900399996 K, F = -6.174745479370358e-7, relative_change = 1.6632276281655655e-11 Iter 140: T = 635.2963900077256 K, F = -2.5823531135671374e-7, relative_change = 6.9558187613605505e-12 Iter 145: T = 635.2963899942282 K, F = -1.0799741184674971e-7, relative_change = 2.909015113507477e-12 Iter 150: T = 635.2963899885835 K, F = -4.5166156537046476e-8, relative_change = 1.2165942659562454e-12 Iter 155: T = 635.2963899862228 K, F = -1.8889583119907627e-8, relative_change = 5.088092561416086e-13 Converged in 160 iterations to T = 635.2963899852356 K Iter 1: T = 976.5461590134333 K, F = -5343.979979151661, relative_change = 0.023453840986566672 Iter 2: T = 955.2517440744094 K, F = -4518.552312156524, relative_change = 0.021805845778490207 Iter 3: T = 936.0242028296286 K, F = -3818.886153547087, relative_change = 0.020128245108216345 Iter 5: T = 903.3452828831815 K, F = -2723.99715986111, relative_change = 0.01677766354937156 Iter 10: T = 849.5889725450447 K, F = -1161.4068548271948, relative_change = 0.009419480015055638 Iter 15: T = 823.0853948446094 K, F = -490.76018518726374, relative_change = 0.004606590690862448 Iter 20: T = 811.047179558687 K, F = -206.25225678750627, relative_change = 0.0020745008174656893 Iter 25: T = 805.8187388327553 K, F = -86.44539482067992, relative_change = 0.0008964776932532193 Iter 30: T = 803.5958347262629 K, F = -36.18634482314281, relative_change = 0.0003802224143583578 Iter 35: T = 802.6596487819048 K, F = -15.139552231580305, relative_change = 0.00015996074731597118 Iter 40: T = 802.2669661558641 K, F = -6.332594575639063, relative_change = 6.706461233703753e-5 Iter 45: T = 802.1025378963886 K, F = -2.648551241272157, relative_change = 2.8076558148169535e-5 Iter 50: T = 802.0337363287912 K, F = -1.107688067924119, relative_change = 1.174709076559734e-5 Iter 55: T = 802.0049564407661 K, F = -0.46325403138075816, relative_change = 4.9136730147142044e-6 Iter 60: T = 801.9929192541953 K, F = -0.19373935714199308, relative_change = 2.0551140786451774e-6 Iter 65: T = 801.9878849676983 K, F = -0.08102428583435073, relative_change = 8.595007732528921e-7 Iter 70: T = 801.9857795354993 K, F = -0.033885354212160546, relative_change = 3.594583018259387e-7 Iter 75: T = 801.9848990127567 K, F = -0.014171265094137353, relative_change = 1.5033059659028272e-7 Iter 80: T = 801.9845307666064 K, F = -0.0059265932268612875, relative_change = 6.28701980686616e-8 Iter 85: T = 801.9843767614897 K, F = -0.0024785722280846745, relative_change = 2.629309342093672e-8 Iter 90: T = 801.9843123546793 K, F = -0.00103656853385381, relative_change = 1.09960901725722e-8 Iter 95: T = 801.9842854189766 K, F = -0.000433505345663443, relative_change = 4.598697025626438e-9 Iter 100: T = 801.984274154143 K, F = -0.00018129711363323864, relative_change = 1.9232301546403453e-9 Iter 105: T = 801.9842694430549 K, F = -7.582061787614336e-5, relative_change = 8.043178393689663e-10 Iter 110: T = 801.9842674728217 K, F = -3.170908972749409e-5, relative_change = 3.3637534948552953e-10 Iter 115: T = 801.9842666488465 K, F = -1.3261120127561199e-5, relative_change = 1.406761902544054e-10 Iter 120: T = 801.9842663042502 K, F = -5.54595741730779e-6, relative_change = 5.883244815455987e-11 Iter 125: T = 801.984266160136 K, F = -2.3193876401705893e-6, relative_change = 2.4604453828217884e-11 Iter 130: T = 801.9842660998657 K, F = -9.699958105624518e-7, relative_change = 1.0289878556623245e-11 Iter 135: T = 801.98426607466 K, F = -4.056649021144665e-7, relative_change = 4.303361450238148e-12 Iter 140: T = 801.9842660641186 K, F = -1.6965510152289198e-7, relative_change = 1.7997298261941686e-12 Iter 145: T = 801.9842660597101 K, F = -7.095260023959327e-8, relative_change = 7.526771064018928e-13 Iter 150: T = 801.9842660578663 K, F = -2.967260082087364e-8, relative_change = 3.1477193577262604e-13 Converged in 153 iterations to T = 801.9842660573265 K Iter 1: T = 965.2028524666771 K, F = -7928.563166100227, relative_change = 0.03479714753332293 Iter 2: T = 932.3813801322399 K, F = -6724.675374731038, relative_change = 0.03400474029947025 Iter 3: T = 901.5061434869368 K, F = -5702.367161947334, relative_change = 0.03311438570440348 Iter 5: T = 845.4812630509484 K, F = -4097.290285851319, relative_change = 0.0310213149985212 Iter 10: T = 737.3147263880953 K, F = -1782.837377554487, relative_change = 0.02401898237921823 Iter 15: T = 669.7317823783851 K, F = -767.5976813798897, relative_change = 0.015713601945712627 Iter 20: T = 632.7859326533568 K, F = -326.8313063685373, relative_change = 0.008638999205026287 Iter 25: T = 614.8072973135597 K, F = -137.98018912606074, relative_change = 0.004167111776692565 Iter 30: T = 606.7037163699116 K, F = -57.96122559671441, relative_change = 0.0018630083653514186 Iter 35: T = 603.1975391848807 K, F = -24.287516464192887, relative_change = 0.0008023638134342146 Iter 40: T = 601.7094279979374 K, F = -10.165835393826814, relative_change = 0.00033980147978668595 Iter 45: T = 601.0831694792791 K, F = -4.252977313212504, relative_change = 0.00014286505599462798 Iter 50: T = 600.8205686283956 K, F = -1.7789100528750414, relative_change = 5.9881136232706714e-5 Iter 55: T = 600.7106242008109 K, F = -0.7440077153876594, relative_change = 2.506639066292261e-5 Iter 60: T = 600.6646228152576 K, F = -0.3111610137949066, relative_change = 1.0487159490911968e-5 Iter 65: T = 600.6453807556983 K, F = -0.1301326694910872, relative_change = 4.386572070817435e-6 Iter 70: T = 600.6373328438541 K, F = -0.054423284436024455, relative_change = 1.834642213210512e-6 Iter 75: T = 600.6339669968279 K, F = -0.022760510867006423, relative_change = 7.672912161526621e-7 Iter 80: T = 600.6325593394336 K, F = -0.009518725045712606, relative_change = 3.2089418609056e-7 Iter 85: T = 600.6319706368072 K, F = -0.003980845817529444, relative_change = 1.3420245184303953e-7 Iter 90: T = 600.6317244337273 K, F = -0.001664837493118354, relative_change = 5.6125185390793577e-8 Iter 95: T = 600.6316214685523 K, F = -0.0006962549625109116, relative_change = 2.3472243330146227e-8 Iter 100: T = 600.6315784072677 K, F = -0.0002911821478666643, relative_change = 9.816376082041281e-9 Iter 105: T = 600.631560398521 K, F = -0.00012177585242306721, relative_change = 4.105326320634667e-9 Iter 110: T = 600.6315528670475 K, F = -5.092811639723083e-5, relative_change = 1.716896618067856e-9 Iter 115: T = 600.6315497172952 K, F = -2.1298747083620118e-5, relative_change = 7.180267077757976e-10 Iter 120: T = 600.6315484000312 K, F = -8.907389928980436e-6, relative_change = 3.002873317970972e-10 Iter 125: T = 600.6315478491357 K, F = -3.725176825841725e-6, relative_change = 1.2558374824813957e-10 Iter 130: T = 600.6315476187445 K, F = -1.5579138557542116e-6, relative_change = 5.252063753145805e-11 Iter 135: T = 600.6315475223922 K, F = -6.515385808647522e-7, relative_change = 2.196477137879156e-11 Iter 140: T = 600.6315474820966 K, F = -2.724813932264425e-7, relative_change = 9.185935698790848e-12 Iter 145: T = 600.6315474652445 K, F = -1.1395512028444799e-7, relative_change = 3.841672986275534e-12 Iter 150: T = 600.6315474581967 K, F = -4.765765088121654e-8, relative_change = 1.606642242427912e-12 Iter 155: T = 600.6315474552492 K, F = -1.993175258174773e-8, relative_change = 6.719423864181072e-13 Iter 160: T = 600.6315474540165 K, F = -8.335985623997288e-9, relative_change = 2.8102406200445355e-13 Converged in 162 iterations to T = 600.6315474537556 K Iter 1: T = 964.5598872795821 K, F = -8075.063395597598, relative_change = 0.035440112720417874 Iter 2: T = 931.0592608171364 K, F = -6850.119074836456, relative_change = 0.034731515278880146 Iter 3: T = 899.4677140231598 K, F = -5809.881111445946, relative_change = 0.03393075835607988 Iter 5: T = 841.8995420772434 K, F = -4176.494004282234, relative_change = 0.032028910501706725 Iter 10: T = 729.3704682109529 K, F = -1820.2634539182054, relative_change = 0.025458323643009526 Iter 15: T = 657.4136142975786 K, F = -785.3390797229237, relative_change = 0.017210706889752805 Iter 20: T = 617.113870568572 K, F = -335.02370312563824, relative_change = 0.009746131566211017 Iter 25: T = 597.1365160673148 K, F = -141.62013270363758, relative_change = 0.004794033959312432 Iter 30: T = 588.0329925280013 K, F = -59.5310269906394, relative_change = 0.002165622808257746 Iter 35: T = 584.07269065878 K, F = -24.953330809164907, relative_change = 0.0009372199854769307 Iter 40: T = 582.3876943913531 K, F = -10.44599720117563, relative_change = 0.0003977574245289453 Iter 45: T = 581.6778224118402 K, F = -4.370449891771098, relative_change = 0.00016738366015705278 Iter 50: T = 581.380026355422 K, F = -1.8280924142720192, relative_change = 7.01848387906105e-5 Iter 55: T = 581.2553228406927 K, F = -0.7645858336939315, relative_change = 2.9384266441230795e-5 Iter 60: T = 581.2031420034572 K, F = -0.3197686871055036, relative_change = 1.229447952413316e-5 Iter 65: T = 581.1813143929652 K, F = -0.13373279152799783, relative_change = 5.142683235095555e-6 Iter 70: T = 581.1721849575109 K, F = -0.05592894924847128, relative_change = 2.1509038837832016e-6 Iter 75: T = 581.1683667667236 K, F = -0.023390206755075194, relative_change = 8.995638369734343e-7 Iter 80: T = 581.1667699271768 K, F = -0.009782072939250486, relative_change = 3.7621361235921506e-7 Iter 85: T = 581.1661021051626 K, F = -0.004090981323175036, relative_change = 1.5733794782154562e-7 Iter 90: T = 581.1658228132083 K, F = -0.0017108975245035407, relative_change = 6.580077005181575e-8 Iter 95: T = 581.1657060098355 K, F = -0.0007155178258585471, relative_change = 2.751869606637191e-8 Iter 100: T = 581.1656571612452 K, F = -0.00029923810781462556, relative_change = 1.1508652248859703e-8 Iter 105: T = 581.1656367321771 K, F = -0.00012514495188831187, relative_change = 4.813056677621046e-9 Iter 110: T = 581.1656281884959 K, F = -5.233711332813806e-5, relative_change = 2.0128779197324067e-9 Iter 115: T = 581.1656246154263 K, F = -2.1888005072134842e-5, relative_change = 8.418095803271011e-10 Iter 120: T = 581.1656231211259 K, F = -9.153824772067942e-6, relative_change = 3.520548107831557e-10 Iter 125: T = 581.1656224961916 K, F = -3.828238311853749e-6, relative_change = 1.472335067549895e-10 Iter 130: T = 581.1656222348366 K, F = -1.6010145808542653e-6, relative_change = 6.157479561286426e-11 Iter 135: T = 581.165622125535 K, F = -6.695633349984575e-7, relative_change = 2.575131171966908e-11 Iter 140: T = 581.1656220798236 K, F = -2.8001919261111397e-7, relative_change = 1.0769498779582515e-11 Iter 145: T = 581.1656220607066 K, F = -1.1710675323906017e-7, relative_change = 4.503909266097864e-12 Iter 150: T = 581.1656220527117 K, F = -4.897502692280398e-8, relative_change = 1.8835726504104227e-12 Iter 155: T = 581.1656220493682 K, F = -2.048240027585635e-8, relative_change = 7.877502351602549e-13 Iter 160: T = 581.1656220479698 K, F = -8.565918419023433e-9, relative_change = 3.294440181886566e-13 Converged in 163 iterations to T = 581.1656220475604 K Iter 1: T = 964.3800341239125 K, F = -8116.0431082014375, relative_change = 0.03561996587608748 Iter 2: T = 930.6889241012456 K, F = -6885.2162894918465, relative_change = 0.03493551175940042 Iter 3: T = 898.8958492714421 K, F = -5839.97016850221, relative_change = 0.034160796380493796 Iter 5: T = 840.8910369808417 K, F = -4198.677755424611, relative_change = 0.032315471841472744 Iter 10: T = 727.105505921453 K, F = -1830.7897260396794, relative_change = 0.025881087410074718 Iter 15: T = 653.8473872739827 K, F = -790.3692816879461, relative_change = 0.01766888541046591 Iter 20: T = 612.5148426779314 K, F = -337.36916301615787, relative_change = 0.010098038513162143 Iter 25: T = 591.9051345926013 K, F = -142.67021713252905, relative_change = 0.004998453215711475 Iter 30: T = 582.4800390925064 K, F = -59.98590250051812, relative_change = 0.002265654554248103 Iter 35: T = 578.372485609974 K, F = -25.146676706892002, relative_change = 0.000982085210047554 Iter 40: T = 576.6234078720274 K, F = -10.52743169370228, relative_change = 0.0004170933804280434 Iter 45: T = 575.8862771237198 K, F = -4.404609722451689, relative_change = 0.00017557374970702825 Iter 50: T = 575.576999120382 K, F = -1.8423966503960851, relative_change = 7.362840102782188e-5 Iter 55: T = 575.4474792483353 K, F = -0.7705712303392607, relative_change = 3.082763703695927e-5 Iter 60: T = 575.3932816127258 K, F = -0.3222724111256137, relative_change = 1.2898680977728934e-5 Iter 65: T = 575.3706101080891 K, F = -0.13477997677160147, relative_change = 5.395466705907367e-6 Iter 70: T = 575.3611276681472 K, F = -0.05636691176140313, relative_change = 2.256638309097923e-6 Iter 75: T = 575.3571618330429 K, F = -0.023573370906501273, relative_change = 9.437862730314756e-7 Iter 80: T = 575.3555032444963 K, F = -0.009858674899231035, relative_change = 3.9470849439808464e-7 Iter 85: T = 575.3548095978961 K, F = -0.004123017269473728, relative_change = 1.6507282127054582e-7 Iter 90: T = 575.3545195057185 K, F = -0.0017242953563845198, relative_change = 6.903560276973126e-8 Iter 95: T = 575.3543981855506 K, F = -0.0007211209617174474, relative_change = 2.8871544572965305e-8 Iter 100: T = 575.3543474479804 K, F = -0.00030158140642772, relative_change = 1.2074430138479793e-8 Iter 105: T = 575.3543262289179 K, F = -0.00012612494732688884, relative_change = 5.04967183039683e-9 Iter 110: T = 575.3543173548518 K, F = -5.274695964530007e-5, relative_change = 2.1118332373070115e-9 Iter 115: T = 575.3543136436111 K, F = -2.2059407545127474e-5, relative_change = 8.831938711348893e-10 Iter 120: T = 575.354312091526 K, F = -9.22550782433973e-6, relative_change = 3.693622349802351e-10 Iter 125: T = 575.3543114424256 K, F = -3.858217996755009e-6, relative_change = 1.544717165831119e-10 Iter 130: T = 575.3543111709639 K, F = -1.6135528843608249e-6, relative_change = 6.460191845415682e-11 Iter 135: T = 575.3543110574354 K, F = -6.748072280404749e-7, relative_change = 2.701729951439923e-11 Iter 140: T = 575.3543110099564 K, F = -2.822125551582566e-7, relative_change = 1.1298961859923548e-11 Iter 145: T = 575.3543109901002 K, F = -1.1802443916630878e-7, relative_change = 4.725351911258101e-12 Iter 150: T = 575.3543109817962 K, F = -4.93598457662614e-8, relative_change = 1.9762232567644073e-12 Iter 155: T = 575.3543109783232 K, F = -2.0642890286026727e-8, relative_change = 8.264806998067796e-13 Iter 160: T = 575.3543109768708 K, F = -8.633406545222044e-9, relative_change = 3.456562421458613e-13 Converged in 163 iterations to T = 575.3543109764456 K Iter 1: T = 980.2456786377978 K, F = -4501.04091358854, relative_change = 0.019754321362202176 Iter 2: T = 962.5305259516527 K, F = -3801.9313760363575, relative_change = 0.018072155860725636 Iter 3: T = 946.7329063274852 K, F = -3209.912452805197, relative_change = 0.016412590768015788 Iter 5: T = 920.3647544994458 K, F = -2284.942562430469, relative_change = 0.013249536706482094 Iter 10: T = 878.539060609018 K, F = -969.9269141318156, relative_change = 0.006948751034880852 Iter 15: T = 858.7592099962719 K, F = -408.69332399591343, relative_change = 0.003255125991001698 Iter 20: T = 849.9856913779699 K, F = -171.5100218388079, relative_change = 0.0014337315987756353 Iter 25: T = 846.2189587478706 K, F = -71.83529632772917, relative_change = 0.000613277862095574 Iter 30: T = 844.6257812493147 K, F = -30.06158796515006, relative_change = 0.00025895261034066707 Iter 35: T = 843.9563032841992 K, F = -12.575502070057162, relative_change = 0.00010873565959443854 Iter 40: T = 843.6757564971765 K, F = -5.259819552583913, relative_change = 4.555171736581629e-5 Iter 45: T = 843.5583296372359 K, F = -2.199823462397984, relative_change = 1.9063802264126527e-5 Iter 50: T = 843.5092030081584 K, F = -0.9200106631086755, relative_change = 7.97507866737804e-6 Iter 55: T = 843.4886546350549 K, F = -0.3847626339380461, relative_change = 3.3356876433082343e-6 Iter 60: T = 843.4800605299121 K, F = -0.1609128860562874, relative_change = 1.3950969188621699e-6 Iter 65: T = 843.4764662797793 K, F = -0.06729578815670423, relative_change = 5.834588753909094e-7 Iter 70: T = 843.4749631052308 K, F = -0.02814391933639193, relative_change = 2.4401168794287235e-7 Iter 75: T = 843.4743344568463 K, F = -0.011770126155690619, relative_change = 1.0204898998218484e-7 Iter 80: T = 843.4740715480883 K, F = -0.0049224078444378705, relative_change = 4.2678174189226594e-8 Iter 85: T = 843.4739615964191 K, F = -0.0020586098370876105, relative_change = 1.7848533994234144e-8 Iter 90: T = 843.4739156133029 K, F = -0.0008609352368540435, relative_change = 7.46447216642584e-9 Iter 95: T = 843.4738963826118 K, F = -0.0003600534003569411, relative_change = 3.121731765754024e-9 Iter 100: T = 843.4738883401068 K, F = -0.00015057863443601605, relative_change = 1.3055455863970915e-9 Iter 105: T = 843.473884976635 K, F = -6.297378411690424e-5, relative_change = 5.459947739694101e-10 Iter 110: T = 843.4738835699908 K, F = -2.6336385881009505e-5, relative_change = 2.2834151341067648e-10 Iter 115: T = 843.4738829817154 K, F = -1.1014191898084391e-5, relative_change = 9.54951551332392e-11 Iter 120: T = 843.4738827356916 K, F = -4.606266118312163e-6, relative_change = 3.993721030415276e-11 Iter 125: T = 843.4738826328016 K, F = -1.9263958470627784e-6, relative_change = 1.6702221309364373e-11 Iter 130: T = 843.4738825897717 K, F = -8.056423210778263e-7, relative_change = 6.9850733776326366e-12 Iter 135: T = 843.4738825717761 K, F = -3.3693095846665244e-7, relative_change = 2.921256004992549e-12 Iter 140: T = 843.4738825642501 K, F = -1.40906436962851e-7, relative_change = 1.2216858225512694e-12 Iter 145: T = 843.4738825611026 K, F = -5.893001642220952e-8, relative_change = 5.109345402437976e-13 Converged in 150 iterations to T = 843.4738825597864 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015325167799580645 Iteration 10: d = 1.4344846327418844e-5 Iteration 20: d = 1.4428845036831215e-7 Iteration 30: d = 1.8380810219802347e-9 Iteration 40: d = 2.506554103665581e-11 Iteration 50: d = 3.4885328934696e-13 Iteration 60: d = 4.873638686378204e-15 Converged after 62 iterations. d = 2.105227507020399e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.51375645371 Iteration 2: convergence error = 4819.569932126989 Iteration 3: convergence error = 1092.972732818273 Iteration 4: convergence error = 320.12707527435055 Iteration 5: convergence error = 94.90872614204977 Iteration 6: convergence error = 28.297050615705302 Iteration 7: convergence error = 8.45852145011986 Iteration 8: convergence error = 2.536323689048004 Iteration 9: convergence error = 0.7587462117603536 Iteration 10: convergence error = 0.2266735180287469 Iteration 11: convergence error = 0.0676658916145243 Iteration 12: convergence error = 0.020190541695228603 Iteration 13: convergence error = 0.0060230603430682095 Iteration 14: convergence error = 0.00179648689345413 Iteration 15: convergence error = 0.0005357904769880406 Iteration 16: convergence error = 0.00015978836154317833 Iteration 17: convergence error = 4.765224775837851e-5 Iteration 18: convergence error = 1.4210665540304035e-5 Iteration 19: convergence error = 4.237812390783802e-6 Iteration 20: convergence error = 1.2637651707336772e-6 Iteration 21: convergence error = 3.7686550058424473e-7 Iteration 22: convergence error = 1.1225029084016569e-7 Iteration 23: convergence error = 3.2569460017839447e-8 Iteration 24: convergence error = 9.39098754315637e-9 Iteration 25: convergence error = 2.707110979827121e-9 Iteration 26: convergence error = 7.744347385596484e-10 Iteration 27: convergence error = 2.2168933355715126e-10 Iteration 28: convergence error = 6.161826604511589e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015141877670966613 Iteration 10: d = 1.6618015301897447e-5 Iteration 20: d = 1.921301055972716e-7 Iteration 30: d = 2.466479520761073e-9 Iteration 40: d = 3.22461761602178e-11 Iteration 50: d = 4.233457220613684e-13 Iteration 60: d = 5.5699409407283235e-15 Converged after 63 iterations. d = 1.4754447394834721e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12291.473788020217 Iteration 2: convergence error = 8303.685804007575 Iteration 3: convergence error = 1942.9226836317473 Iteration 4: convergence error = 476.6363027786481 Iteration 5: convergence error = 121.31039748429407 Iteration 6: convergence error = 32.36457720815474 Iteration 7: convergence error = 8.813415388602607 Iteration 8: convergence error = 2.4140849393327244 Iteration 9: convergence error = 0.6620761466938347 Iteration 10: convergence error = 0.1816053145330443 Iteration 11: convergence error = 0.04981125699691802 Iteration 12: convergence error = 0.013661640488862759 Iteration 13: convergence error = 0.0037468301904937107 Iteration 14: convergence error = 0.0010275855013333057 Iteration 15: convergence error = 0.0002818178943471139 Iteration 16: convergence error = 7.728899890935281e-5 Iteration 17: convergence error = 2.1196600073380978e-5 Iteration 18: convergence error = 5.8131915920967e-6 Iteration 19: convergence error = 1.5942709978844505e-6 Iteration 20: convergence error = 4.372318471723702e-7 Iteration 21: convergence error = 1.207815785164712e-7 Iteration 22: convergence error = 3.2463049137732014e-8 Iteration 23: convergence error = 8.679990060045384e-9 Iteration 24: convergence error = 2.315118763362989e-9 Iteration 25: convergence error = 6.202753866091371e-10 Iteration 26: convergence error = 1.6552803572267294e-10 Iteration 27: convergence error = 4.4565240386873484e-11 Iteration 28: convergence error = 1.2050804798491299e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015141877670966613 Iteration 10: d = 1.6618015301897447e-5 Iteration 20: d = 1.921301055972716e-7 Iteration 30: d = 2.466479520761073e-9 Iteration 40: d = 3.22461761602178e-11 Iteration 50: d = 4.233457220613684e-13 Iteration 60: d = 5.5699409407283235e-15 Converged after 63 iterations. d = 1.4754447394834721e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.118862346766 Iteration 2: convergence error = 5727.521543051193 Iteration 3: convergence error = 2012.629805859176 Iteration 4: convergence error = 894.5721433702552 Iteration 5: convergence error = 408.2419910349281 Iteration 6: convergence error = 192.42487290852569 Iteration 7: convergence error = 90.81667424278521 Iteration 8: convergence error = 42.89194014592886 Iteration 9: convergence error = 20.260168462940328 Iteration 10: convergence error = 9.568607292578236 Iteration 11: convergence error = 4.51814801853061 Iteration 12: convergence error = 2.13296951734128 Iteration 13: convergence error = 1.0067917232786385 Iteration 14: convergence error = 0.47516464392765556 Iteration 15: convergence error = 0.224240152067523 Iteration 16: convergence error = 0.1057264758637757 Iteration 17: convergence error = 0.04940558584530663 Iteration 18: convergence error = 0.022555475352419307 Iteration 19: convergence error = 0.010261380392876163 Iteration 20: convergence error = 0.0046588478085141105 Iteration 21: convergence error = 0.002112712143571116 Iteration 22: convergence error = 0.0009574236828484572 Iteration 23: convergence error = 0.00043370348703319905 Iteration 24: convergence error = 0.00019641647304524668 Iteration 25: convergence error = 8.89407679096621e-5 Iteration 26: convergence error = 4.027045406473917e-5 Iteration 27: convergence error = 1.8232638012705138e-5 Iteration 28: convergence error = 8.254648946603993e-6 Iteration 29: convergence error = 3.7371369216998573e-6 Iteration 30: convergence error = 1.6918916116992477e-6 Iteration 31: convergence error = 7.659632501599845e-7 Iteration 32: convergence error = 3.4676349969231524e-7 Iteration 33: convergence error = 1.5699106370448135e-7 Iteration 34: convergence error = 7.10715539753437e-8 Iteration 35: convergence error = 3.217655830667354e-8 Iteration 36: convergence error = 1.4571014617104083e-8 Iteration 37: convergence error = 6.588834366993979e-9 Iteration 38: convergence error = 2.9890543373767287e-9 Iteration 39: convergence error = 1.350144884781912e-9 Iteration 40: convergence error = 6.157279131002724e-10 Iteration 41: convergence error = 2.778506313916296e-10 Iteration 42: convergence error = 1.2505552149377763e-10 Iteration 43: convergence error = 5.547917680814862e-11 Iteration 44: convergence error = 3.001332515850663e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015141877670966613 Iteration 10: d = 1.6618015301897447e-5 Iteration 20: d = 1.921301055972716e-7 Iteration 30: d = 2.466479520761073e-9 Iteration 40: d = 3.22461761602178e-11 Iteration 50: d = 4.233457220613684e-13 Iteration 60: d = 5.5699409407283235e-15 Converged after 63 iterations. d = 1.4754447394834721e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.827593384945 Iteration 2: convergence error = 7344.91494168232 Iteration 3: convergence error = 1730.7064755111505 Iteration 4: convergence error = 502.90982150915534 Iteration 5: convergence error = 156.08438274283935 Iteration 6: convergence error = 48.469738330383734 Iteration 7: convergence error = 15.030110647669062 Iteration 8: convergence error = 4.653533201447317 Iteration 9: convergence error = 1.4392113842554863 Iteration 10: convergence error = 0.4448040814486376 Iteration 11: convergence error = 0.13741629152309542 Iteration 12: convergence error = 0.042443142557658575 Iteration 13: convergence error = 0.013107502466482401 Iteration 14: convergence error = 0.0040476235276400985 Iteration 15: convergence error = 0.0012498617529672629 Iteration 16: convergence error = 0.0003859343464682752 Iteration 17: convergence error = 0.00011916780704268604 Iteration 18: convergence error = 3.679603833006695e-5 Iteration 19: convergence error = 1.1361648375896038e-5 Iteration 20: convergence error = 3.508173904265277e-6 Iteration 21: convergence error = 1.083218649000628e-6 Iteration 22: convergence error = 3.343116077303421e-7 Iteration 23: convergence error = 1.0198527888860554e-7 Iteration 24: convergence error = 3.035074769286439e-8 Iteration 25: convergence error = 8.998995326692238e-9 Iteration 26: convergence error = 2.6634552341420203e-9 Iteration 27: convergence error = 7.889866537880152e-10 Iteration 28: convergence error = 2.3374013835564256e-10 Iteration 29: convergence error = 7.457856554538012e-11 Iteration 30: convergence error = 2.4101609596982598e-11 Iteration 31: convergence error = 9.094947017729282e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015141877670966613 Iteration 10: d = 1.6618015301897447e-5 Iteration 20: d = 1.921301055972716e-7 Iteration 30: d = 2.466479520761073e-9 Iteration 40: d = 3.22461761602178e-11 Iteration 50: d = 4.233457220613684e-13 Iteration 60: d = 5.5699409407283235e-15 Converged after 63 iterations. d = 1.4754447394834721e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.754276998556 Iteration 2: convergence error = 5515.251148111079 Iteration 3: convergence error = 934.9312582162399 Iteration 4: convergence error = 170.28229970076904 Iteration 5: convergence error = 30.899240037006166 Iteration 6: convergence error = 5.621273428516133 Iteration 7: convergence error = 1.024013622116172 Iteration 8: convergence error = 0.18719164428694057 Iteration 9: convergence error = 0.03421572425895647 Iteration 10: convergence error = 0.006250552889014216 Iteration 11: convergence error = 0.0011415284525355673 Iteration 12: convergence error = 0.00020844496702920878 Iteration 13: convergence error = 3.8059473808971234e-5 Iteration 14: convergence error = 6.948925602046074e-6 Iteration 15: convergence error = 1.2687291928159539e-6 Iteration 16: convergence error = 2.3162738216342404e-7 Iteration 17: convergence error = 4.228559191687964e-8 Iteration 18: convergence error = 7.718426786595955e-9 Iteration 19: convergence error = 1.4142642612569034e-9 Iteration 20: convergence error = 2.5920599000528455e-10 Iteration 21: convergence error = 4.638422979041934e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015141877670966613 Iteration 10: d = 1.6618015301897447e-5 Iteration 20: d = 1.921301055972716e-7 Iteration 30: d = 2.466479520761073e-9 Iteration 40: d = 3.22461761602178e-11 Iteration 50: d = 4.233457220613684e-13 Iteration 60: d = 5.5699409407283235e-15 Converged after 63 iterations. d = 1.4754447394834721e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.491217713457 Iteration 2: convergence error = 2712.5298952415174 Iteration 3: convergence error = 204.52273841551857 Iteration 4: convergence error = 19.258835182431497 Iteration 5: convergence error = 1.5915036087194792 Iteration 6: convergence error = 0.1296092137558711 Iteration 7: convergence error = 0.010569287910997635 Iteration 8: convergence error = 0.0008639758286589476 Iteration 9: convergence error = 7.091699621959396e-5 Iteration 10: convergence error = 5.8186502750692644e-6 Iteration 11: convergence error = 4.77312365658603e-7 Iteration 12: convergence error = 3.9150621748236314e-8 Iteration 13: convergence error = 3.212049116360283e-9 Iteration 14: convergence error = 2.6235656433667127e-10 Iteration 15: convergence error = 2.1941559680271894e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346345 Iteration 2: convergence error = 858.4060420534043 Iteration 3: convergence error = 199.12106737711986 Iteration 4: convergence error = 59.265629268140856 Iteration 5: convergence error = 17.98548291103714 Iteration 6: convergence error = 5.463033078096942 Iteration 7: convergence error = 1.660989611064906 Iteration 8: convergence error = 0.5052487627306164 Iteration 9: convergence error = 0.15371874094194027 Iteration 10: convergence error = 0.046771316975991795 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.00433023651169151 Iteration 13: convergence error = 0.0013175920927324114 Iteration 14: convergence error = 0.0004009136252989265 Iteration 15: convergence error = 0.00012198904050819692 Iteration 16: convergence error = 3.711853867116588e-5 Iteration 17: convergence error = 1.1294342129986035e-5 Iteration 18: convergence error = 3.4366162253718358e-6 Iteration 19: convergence error = 1.0456861900820513e-6 Iteration 20: convergence error = 3.181812644470483e-7 Iteration 21: convergence error = 9.681605206424138e-8 Iteration 22: convergence error = 2.9460807127179578e-8 Iteration 23: convergence error = 8.963411346485373e-9 Iteration 24: convergence error = 2.730530468397774e-9 Iteration 25: convergence error = 8.295728548546322e-10 Iteration 26: convergence error = 2.538627086323686e-10 Iteration 27: convergence error = 7.707967597525567e-11 Iteration 28: convergence error = 2.4556356947869062e-11 Iteration 29: convergence error = 8.640199666842818e-12 Converged after 29 iterations Energy conservation errors by band: [4.6852026882886333e-26, 1.7771458472818954e-26, 2.50416005753358e-26, 4.13994203059987e-26, 6.522933053091502e-26, 4.828087799349512e-20, -1.176836406102666e-14, 1.1084466677857563e-12, -1.4779288903810084e-12, -7.389644451905042e-13, -1.1368683772161603e-13, 7.993605777301127e-15, 2.220446049250313e-16, 1.5612511283791264e-16, 6.451002926288751e-18, 2.0328790734103208e-20, 1.3923104070492562e-20, 4.793511649744795e-22, 1.0481929324695398e-23, 1.318298825299594e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015325167799580645 Iteration 10: d = 1.4344846327418844e-5 Iteration 20: d = 1.4428845036831215e-7 Iteration 30: d = 1.8380810219802347e-9 Iteration 40: d = 2.506554103665581e-11 Iteration 50: d = 3.4885328934696e-13 Iteration 60: d = 4.873638686378204e-15 Converged after 62 iterations. d = 2.105227507020399e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.284646708902 Iteration 2: convergence error = 3608.067750409683 Iteration 3: convergence error = 590.8190034181464 Iteration 4: convergence error = 104.79859235389313 Iteration 5: convergence error = 18.638298659179327 Iteration 6: convergence error = 3.285739563389825 Iteration 7: convergence error = 0.5771746455734501 Iteration 8: convergence error = 0.10123826551102866 Iteration 9: convergence error = 0.01774702549482754 Iteration 10: convergence error = 0.0031103166932098247 Iteration 11: convergence error = 0.0005450593819205096 Iteration 12: convergence error = 9.551416678732494e-5 Iteration 13: convergence error = 1.6737321402615635e-5 Iteration 14: convergence error = 2.93293646791426e-6 Iteration 15: convergence error = 5.139413588040043e-7 Iteration 16: convergence error = 9.006112122733612e-8 Iteration 17: convergence error = 1.5792920748936012e-8 Iteration 18: convergence error = 2.7469013730296865e-9 Iteration 19: convergence error = 4.877165338257328e-10 Iteration 20: convergence error = 8.344613888766617e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.4924275130247 Iteration 2: convergence error = 871.3046026617826 Iteration 3: convergence error = 207.75299581225215 Iteration 4: convergence error = 62.495505504907555 Iteration 5: convergence error = 18.979315309184585 Iteration 6: convergence error = 5.766215594047026 Iteration 7: convergence error = 1.7533061530645 Iteration 8: convergence error = 0.5333443699004192 Iteration 9: convergence error = 0.16226812526360845 Iteration 10: convergence error = 0.04937275062957269 Iteration 11: convergence error = 0.015022831427586425 Iteration 12: convergence error = 0.004571091655407145 Iteration 13: convergence error = 0.0013908789693459767 Iteration 14: convergence error = 0.00042321318755966786 Iteration 15: convergence error = 0.00012877429912805383 Iteration 16: convergence error = 3.918314223483321e-5 Iteration 17: convergence error = 1.192255740534165e-5 Iteration 18: convergence error = 3.6277690469432855e-6 Iteration 19: convergence error = 1.1038503089366714e-6 Iteration 20: convergence error = 3.358788944751723e-7 Iteration 21: convergence error = 1.0220196600130294e-7 Iteration 22: convergence error = 3.1098920771910343e-8 Iteration 23: convergence error = 9.464429240324534e-9 Iteration 24: convergence error = 2.8813929020543583e-9 Iteration 25: convergence error = 8.774350135354325e-10 Iteration 26: convergence error = 2.6773250283440575e-10 Iteration 27: convergence error = 8.174083632184193e-11 Iteration 28: convergence error = 2.546585164964199e-11 Iteration 29: convergence error = 8.526512829121202e-12 Converged after 29 iterations Energy conservation errors by band: [3.473512337869159e-26, 2.928251680180396e-26, 6.54312789226516e-26, 3.0090310368750274e-26, 3.4028304007613565e-26, 3.3881317890172014e-20, -1.4654943925052066e-14, 3.552713678800501e-13, -3.268496584496461e-13, 2.0463630789890885e-12, 7.815970093361102e-14, 2.220446049250313e-14, 1.6653345369377348e-15, 1.8735013540549517e-16, 3.7947076036992655e-18, -1.3976043629695956e-19, 2.2658131339052534e-20, 1.5923226791645783e-22, -7.302453845194697e-25, 1.6176561218948528e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729989 Iteration 2: convergence error = 2115.1156110176375 Iteration 3: convergence error = 714.8959934551624 Iteration 4: convergence error = 296.0190747132401 Iteration 5: convergence error = 115.88799395378715 Iteration 6: convergence error = 44.115249236190266 Iteration 7: convergence error = 16.5995810251261 Iteration 8: convergence error = 6.21598340493324 Iteration 9: convergence error = 2.323124567003333 Iteration 10: convergence error = 0.8675636398231745 Iteration 11: convergence error = 0.32389343048794217 Iteration 12: convergence error = 0.12090784413680922 Iteration 13: convergence error = 0.04513241840777482 Iteration 14: convergence error = 0.016846741615609062 Iteration 15: convergence error = 0.0062884074734483875 Iteration 16: convergence error = 0.002347277756598487 Iteration 17: convergence error = 0.0008761691049130604 Iteration 18: convergence error = 0.0003270478227932472 Iteration 19: convergence error = 0.00012207719078105583 Iteration 20: convergence error = 4.556777048492222e-5 Iteration 21: convergence error = 1.7009089560815482e-5 Iteration 22: convergence error = 6.3489862895949045e-6 Iteration 23: convergence error = 2.369887170061702e-6 Iteration 24: convergence error = 8.846072887536138e-7 Iteration 25: convergence error = 3.3019910006260034e-7 Iteration 26: convergence error = 1.2325517673161812e-7 Iteration 27: convergence error = 4.600769898388535e-8 Iteration 28: convergence error = 1.7175352695630863e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.956249075708911e-10 Iteration 32: convergence error = 3.3514879760332406e-10 Iteration 33: convergence error = 1.2505552149377763e-10 Iteration 34: convergence error = 4.8203219193965197e-11 Iteration 35: convergence error = 1.887201506178826e-11 Converged after 35 iterations Energy conservation errors by band: [-2.3022116657970009e-26, -1.308625578453032e-25, -1.0743654440386004e-25, -8.320273739547056e-26, -1.0057029908481635e-25, -6.945670167485263e-20, -9.769962616701378e-15, -1.4068746168049984e-12, -7.837286375433905e-12, -1.0373923942097463e-12, -8.881784197001252e-15, -1.5543122344752192e-15, 9.71445146547012e-16, 2.927345865710862e-18, 1.4365678785432934e-18, 4.1504614415460717e-20, 5.717472393966527e-21, 1.2904017555827232e-22, -3.9291079096268815e-24, 5.551115123125783e-17] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4646130478247967e-15 Converged after 4 iterations. d = 1.8817279035324215e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3476831790190225e-15 Converged after 4 iterations. d = 1.7665135137169624e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.362166223825 Iteration 2: convergence error = 864.8522700482426 Iteration 3: convergence error = 203.43244494690714 Iteration 4: convergence error = 60.87736397590493 Iteration 5: convergence error = 18.481426659698172 Iteration 6: convergence error = 5.614330618626127 Iteration 7: convergence error = 1.7070587705939033 Iteration 8: convergence error = 0.5192694771479864 Iteration 9: convergence error = 0.15798519284180657 Iteration 10: convergence error = 0.04806952669321163 Iteration 11: convergence error = 0.01462628739034244 Iteration 12: convergence error = 0.00445043197044015 Iteration 13: convergence error = 0.0013541649042281279 Iteration 14: convergence error = 0.00041204191563792847 Iteration 15: convergence error = 0.00012537513089228014 Iteration 16: convergence error = 3.814885076280916e-5 Iteration 17: convergence error = 1.1607843816818786e-5 Iteration 18: convergence error = 3.5320085771672893e-6 Iteration 19: convergence error = 1.074713281923323e-6 Iteration 20: convergence error = 3.270117758802371e-7 Iteration 21: convergence error = 9.950326784746721e-8 Iteration 22: convergence error = 3.0277988116722554e-8 Iteration 23: convergence error = 9.213749763148371e-9 Iteration 24: convergence error = 2.8026079235132784e-9 Iteration 25: convergence error = 8.545839591533877e-10 Iteration 26: convergence error = 2.629576556500979e-10 Iteration 27: convergence error = 8.01492205937393e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.86757334228605e-12 Converged after 29 iterations Energy conservation errors by band: [4.281305904815475e-26, 4.52364397489937e-26, 4.119747191426212e-26, 5.634360129450555e-26, 9.895471195092372e-26, -6.606856988583543e-20, 2.4424906541753444e-15, -8.526512829121202e-14, 3.126388037344441e-12, 5.684341886080801e-13, 2.984279490192421e-13, 3.552713678800501e-14, 8.326672684688674e-16, 1.3010426069826053e-16, 2.0599841277224584e-18, 3.9810548520952116e-19, 2.3002238473874594e-20, 5.438712527536157e-22, -1.2782525403358506e-23, 3.1963148993622903e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m00.3s Testing RayTraceHeatTransfer tests passed Testing completed after 565.17s PkgEval succeeded after 617.45s