Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.1299 (6d6224db99*) started at 2025-11-27T14:48:11.343 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.36s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.4 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 ⌅ [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.64s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 21241.5 ms ✓ AbstractAlgebra 1465.2 ms ✓ FLINT_jll 33258.5 ms ✓ Nemo 132384.7 ms ✓ Groebner 10159.5 ms ✓ ParamPunPam 10586.4 ms ✓ RationalFunctionFields 12408.6 ms ✓ StructuralIdentifiability 7 dependencies successfully precompiled in 226 seconds. 28 already precompiled. Precompilation completed after 231.61s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_voSx6i/Project.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_voSx6i/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 ⌅ [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Installed ModelingToolkit ─ v10.30.0 Updating `/tmp/jl_voSx6i/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.30.0 Updating `/tmp/jl_voSx6i/Manifest.toml` [47edcb42] + ADTypes v1.19.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.2 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.3 [70df07ce] + BracketingNonlinearSolve v1.6.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.192.0 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.12 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.17 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.15.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.3.0 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.13 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.2.0 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.2 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.5.1 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.30.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.4.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.3 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.127.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.5.0 [c0aeaf25] + SciMLOperators v1.13.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.8 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 ⌅ [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_voSx6i/Project.toml` ⌅ [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_voSx6i/Manifest.toml` WARNING: importing deprecated binding DataStructures.IntDisjointSets into Graphs. , use IntDisjointSet instead. 1 dependency had output during precompilation: ┌ Graphs │ WARNING: importing deprecated binding DataStructures.IntDisjointSets into Graphs. │ , use IntDisjointSet instead. └ WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logexpm1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:125 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:123 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logmxp1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:127 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.cloglog), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:187 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log2mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:124 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logabssinh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:120 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logit), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:118 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logcosh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:119 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.cexpexp), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:188 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logsubexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:130 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1pexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:122 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logistic), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:117 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1pmx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:126 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logaddexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:129 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1psq), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:121 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1pmx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:126 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:123 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logaddexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:129 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s11", N} where N where var"#s11"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:140 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logabssinh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:120 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xexpx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:92 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logit), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:118 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logcosh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:119 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.softmax), AbstractArray{var"#s12", N} where N where var"#s12"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:165 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.cexpexp), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:188 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xexpy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:111 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1psq), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:121 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logexpm1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:125 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logmxp1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:127 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.cloglog), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:187 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log2mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:124 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logsubexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:130 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1pexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:122 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logistic), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:117 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xlogy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:45 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xlog1py), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:70 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xlogx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:20 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.rrule), typeof(LogExpFunctions.softmax), AbstractArray{var"#s11", N} where N where var"#s11"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:165 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.rrule), typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s3", N} where N where var"#s3"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:140 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.frule), Any, typeof(LogExpFunctions.softmax), AbstractArray{var"#s1", N} where N where var"#s1"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:155 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.frule), Any, typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s1", N} where N where var"#s1"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:135 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xlog1py), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:65 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:123 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logaddexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:129 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s2", N} where N where var"#s2"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:135 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logabssinh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:120 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xexpx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:87 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logit), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:118 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logcosh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:119 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.softmax), AbstractArray{var"#s2", N} where N where var"#s2"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:155 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.cexpexp), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:188 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xexpy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:106 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1psq), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:121 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logexpm1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:125 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logmxp1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:127 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.cloglog), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:187 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log2mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:124 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logsubexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:130 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1pexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:122 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logistic), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:117 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1pmx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:126 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xlogy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:40 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xlogx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:15 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `LogExpFunctionsChainRulesCoreExt` └ @ Base loading.jl:2638 WARNING: Method definition _getoperation(SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti where Tv) in module SparseArraysExt overwritten in module SparseArraysExt. WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(Latexify.apply_recipe), SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti where Tv) in module SparseArraysExt at /home/pkgeval/.julia/packages/Latexify/IJYMW/src/recipes.jl:168 overwritten in module SparseArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(Latexify._getoperation), SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti where Tv) in module SparseArraysExt overwritten in module SparseArraysExt. WARNING: Method definition apply_recipe(SparseArrays.AbstractSparseArray{Tv, Ti, N} where N where Ti where Tv) in module SparseArraysExt at /home/pkgeval/.julia/packages/Latexify/IJYMW/src/recipes.jl:168 overwritten in module SparseArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `SparseArraysExt` └ @ Base loading.jl:2638 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ WARNING: Method definition known_length(Type{A}) where {A<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:24 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{StaticArrays.SOneTo{N}}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:22 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{StaticArrays.Length{L}}) where {L} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:23 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition axes_types(Type{var"#s3"} where var"#s3"<:(StaticArraysCore.StaticArray{S, T, N} where N where T)) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:42 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition contiguous_axis(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:31 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition defines_strides(Type{var"#s2"} where var"#s2"<:(StaticArraysCore.MArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:40 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition defines_strides(Type{var"#s2"} where var"#s2"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:39 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_size(StaticArraysCore.StaticArray{S, T, N} where N where T) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:45 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_last(Type{StaticArrays.SOneTo{N}}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:21 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition dense_dims(Type{var"#s2"} where var"#s2"<:StaticArraysCore.StaticArray{S, T, N}) where {S, T, N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:36 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition stride_rank(Type{T}) where {N, T<:(StaticArraysCore.StaticArray{var"#s1", var"#s2", N} where var"#s2" where var"#s1")} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:33 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition contiguous_batch_size(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:32 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_strides(StaticArraysCore.SizedArray{S, T, M, N, A}) where {S, T, M, N, A<:(Base.SubArray{T, N, P, I, L} where L where I where P where N where T)} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:63 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_strides(StaticArraysCore.StaticArray{S, T, N} where N where T) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:53 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_length(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:28 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition device(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:30 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition device(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.MArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:29 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_first(Type{var"#s1"} where var"#s1"<:(StaticArrays.SOneTo{n} where n)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:20 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition parent_type(Type{var"#s3"} where var"#s3"<:StaticArraysCore.SizedArray{S, T, M, N, A}) where {S, T, M, N, A} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:64 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{Static.OptionallyStaticUnitRange{F, L} where L<:Union{Int64, Static.StaticInt{N} where N} where F<:Union{Int64, Static.StaticInt{N} where N}})(StaticArrays.SOneTo{N}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:17 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `StaticArrayInterfaceStaticArraysExt` └ @ Base loading.jl:2638 WARNING: Method definition __Symmetric(StaticArraysCore.SArray{Tuple{S1, S2}, T, 2, L} where L where T where S2 where S1) in module FiniteDiffStaticArraysExt at /home/pkgeval/.julia/packages/FiniteDiff/yA5pi/ext/FiniteDiffStaticArraysExt.jl:12 overwritten in module FiniteDiffStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition setindex(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple, Any, Int64...) in module FiniteDiffStaticArraysExt at /home/pkgeval/.julia/packages/FiniteDiff/yA5pi/ext/FiniteDiffStaticArraysExt.jl:11 overwritten in module FiniteDiffStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition _mat(StaticArraysCore.StaticArray{Tuple{N}, T, 1} where T where N) in module FiniteDiffStaticArraysExt at /home/pkgeval/.julia/packages/FiniteDiff/yA5pi/ext/FiniteDiffStaticArraysExt.jl:10 overwritten in module FiniteDiffStaticArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `FiniteDiffStaticArraysExt` └ @ Base loading.jl:2638 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.947582 seconds (968.40 k allocations: 48.724 MiB, 99.46% compilation time) 0.002003 seconds (7.30 k allocations: 329.109 KiB) 0.002026 seconds (10.80 k allocations: 484.641 KiB) 0.002005 seconds (10.76 k allocations: 479.391 KiB) 0.002543 seconds (14.35 k allocations: 630.422 KiB) 0.001390 seconds (7.95 k allocations: 360.742 KiB) 0.001057 seconds (7.46 k allocations: 300.930 KiB) 14.436117 seconds (6.70 M allocations: 343.666 MiB, 0.98% gc time, 99.76% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.359605 seconds (112.45 k allocations: 6.015 MiB, 97.03% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011383 seconds (9.81 k allocations: 519.867 KiB, 90.15% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003405768 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.397485929 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.059886877 seconds [ Info: Global identifiability assessed in 51.723842026 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002583395 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.932496293 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.4239e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.033300052 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.485428879 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.166e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 12.388527267 [ Info: Selecting generators in 0.012019695 [ Info: Inclusion checked with probability 0.9955 in 0.056716009 seconds [ Info: Global identifiability assessed in 104.719775311 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.527712405 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.788495318 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.142114015 seconds [ Info: Global identifiability assessed in 38.839672469 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015576501 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.038082397 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000409406 seconds [ Info: Global identifiability assessed in 0.09121067 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 7.146164749 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003894353 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.47e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.872262996 [ Info: Selecting generators in 0.000356037 [ Info: Inclusion checked with probability 0.9955 in 0.003864243 seconds [ Info: Global identifiability assessed in 9.369023101 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002291379 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001871542 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.163e-5 seconds [ Info: Global identifiability assessed in 0.007419179 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002907842 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00212146 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.29e-5 seconds [ Info: Global identifiability assessed in 0.008840916 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004987753 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004364778 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 3.88e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.132644344 [ Info: Selecting generators in 0.018461134 [ Info: Inclusion checked with probability 0.9955 in 0.006607407 seconds [ Info: Global identifiability assessed in 2.226679317 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009657428 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004693645 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.637e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009921525 [ Info: Selecting generators in 0.005339799 [ Info: Inclusion checked with probability 0.9955 in 0.005351359 seconds [ Info: Global identifiability assessed in 0.063298007 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001567515 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001408516 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.8179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8769e-5 [ Info: Selecting generators in 1.10606501 [ Info: Inclusion checked with probability 0.995 in 0.00217671 seconds [ Info: The search for identifiable functions concluded in 2.337500036 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001285837 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001240238 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.61e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.6559e-5 [ Info: Selecting generators in 0.000684844 [ Info: Inclusion checked with probability 0.995 in 0.001872703 seconds [ Info: The search for identifiable functions concluded in 0.009771057 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001188569 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001168799 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.7719e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.0549e-5 [ Info: Selecting generators in 0.000690113 [ Info: Inclusion checked with probability 0.995 in 0.001810603 seconds [ Info: The search for identifiable functions concluded in 0.009236642 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001188699 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001186619 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.701e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000690164 [ Info: Selecting generators in 0.000817812 [ Info: Inclusion checked with probability 0.995 in 0.002083481 seconds [ Info: The search for identifiable functions concluded in 0.01055725 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001435177 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001337758 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.014e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000551395 [ Info: Selecting generators in 0.000764173 [ Info: Inclusion checked with probability 0.995 in 0.00211921 seconds [ Info: The search for identifiable functions concluded in 0.011310082 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001288547 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001231908 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.758e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000534995 [ Info: Selecting generators in 0.000967521 [ Info: Inclusion checked with probability 0.995 in 0.002228929 seconds [ Info: The search for identifiable functions concluded in 0.010985775 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00200964 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001562395 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.712e-5 seconds [ Info: The search for identifiable functions concluded in 0.036684361 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002121509 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001643274 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.888e-5 seconds [ Info: The search for identifiable functions concluded in 0.004591827 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001927651 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001553455 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.789e-5 seconds [ Info: The search for identifiable functions concluded in 0.00419929 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001760944 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001454436 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.9119e-5 seconds [ Info: The search for identifiable functions concluded in 0.003961992 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001825082 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001483296 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.688e-5 seconds [ Info: The search for identifiable functions concluded in 0.004045321 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001707623 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001402717 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.515e-5 seconds [ Info: The search for identifiable functions concluded in 0.003776784 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002275789 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001650904 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.7e-5 seconds [ Info: The search for identifiable functions concluded in 0.004888583 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001875222 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001607444 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.8059e-5 seconds [ Info: The search for identifiable functions concluded in 0.00425483 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001965891 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001548795 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.723e-5 seconds [ Info: The search for identifiable functions concluded in 0.00427999 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001946612 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001630255 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.833e-5 seconds [ Info: The search for identifiable functions concluded in 0.004460778 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00204595 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001659924 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.823e-5 seconds [ Info: The search for identifiable functions concluded in 0.004520377 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001915421 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001519176 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.555e-5 seconds [ Info: The search for identifiable functions concluded in 0.00420136 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.306200503 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.149517685 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.688e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2589e-5 [ Info: Selecting generators in 0.000645754 [ Info: Inclusion checked with probability 0.995 in 0.001935881 seconds [ Info: The search for identifiable functions concluded in 0.463251176 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002643065 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001746943 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.554e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.5279e-5 [ Info: Selecting generators in 0.000619344 [ Info: Inclusion checked with probability 0.995 in 0.001738533 seconds [ Info: The search for identifiable functions concluded in 0.011161854 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002421127 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001689124 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.6159e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.6629e-5 [ Info: Selecting generators in 0.000588015 [ Info: Inclusion checked with probability 0.995 in 0.001766094 seconds [ Info: The search for identifiable functions concluded in 0.010801567 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002361177 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001658744 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.628e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000478596 [ Info: Selecting generators in 0.000620834 [ Info: Inclusion checked with probability 0.995 in 0.001759543 seconds [ Info: The search for identifiable functions concluded in 0.011140373 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002426667 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001717504 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.564e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000446875 [ Info: Selecting generators in 0.000594534 [ Info: Inclusion checked with probability 0.995 in 0.001794693 seconds [ Info: The search for identifiable functions concluded in 0.011275152 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002377048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001679254 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.575e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000454615 [ Info: Selecting generators in 0.000637714 [ Info: Inclusion checked with probability 0.995 in 0.001736754 seconds [ Info: The search for identifiable functions concluded in 0.011055414 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001290358 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001393336 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.786e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000118698 [ Info: Selecting generators in 0.002336378 [ Info: Inclusion checked with probability 0.995 in 0.003422027 seconds [ Info: The search for identifiable functions concluded in 0.016982009 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001315467 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001380807 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.7389e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102249 [ Info: Selecting generators in 0.002046461 [ Info: Inclusion checked with probability 0.995 in 0.003384848 seconds [ Info: The search for identifiable functions concluded in 0.016395644 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001321627 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001498096 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0029e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000129619 [ Info: Selecting generators in 0.002697785 [ Info: Inclusion checked with probability 0.995 in 0.004598386 seconds [ Info: The search for identifiable functions concluded in 0.019670023 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001493815 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001476056 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.914e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.252178707 [ Info: Selecting generators in 0.003784954 [ Info: Inclusion checked with probability 0.995 in 0.003514897 seconds [ Info: The search for identifiable functions concluded in 0.271050777 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001437267 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001446516 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.906e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022479706 [ Info: Selecting generators in 0.004589986 [ Info: Inclusion checked with probability 0.995 in 0.003348278 seconds [ Info: The search for identifiable functions concluded in 0.044377477 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001474446 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001550266 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.956e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01674761 [ Info: Selecting generators in 0.003701925 [ Info: Inclusion checked with probability 0.995 in 0.003616195 seconds [ Info: The search for identifiable functions concluded in 0.035903938 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001321847 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001251168 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.767e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104069 [ Info: Selecting generators in 0.00204407 [ Info: Inclusion checked with probability 0.995 in 0.002854302 seconds [ Info: The search for identifiable functions concluded in 1.046535289 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001393677 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001287638 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.995e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104079 [ Info: Selecting generators in 0.002584165 [ Info: Inclusion checked with probability 0.995 in 0.002803773 seconds [ Info: The search for identifiable functions concluded in 0.015086686 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001306298 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001261838 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8119e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8089e-5 [ Info: Selecting generators in 0.002215679 [ Info: Inclusion checked with probability 0.995 in 0.002641175 seconds [ Info: The search for identifiable functions concluded in 0.014024057 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001317637 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001214949 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.809e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.229921129 [ Info: Selecting generators in 0.002503216 [ Info: Inclusion checked with probability 0.995 in 0.002664945 seconds [ Info: The search for identifiable functions concluded in 0.243861937 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001252158 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001195709 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8599e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006918584 [ Info: Selecting generators in 0.002370627 [ Info: Inclusion checked with probability 0.995 in 0.002679575 seconds [ Info: The search for identifiable functions concluded in 0.020671303 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001545325 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001376597 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.779e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007096172 [ Info: Selecting generators in 0.002464246 [ Info: Inclusion checked with probability 0.995 in 0.002789074 seconds [ Info: The search for identifiable functions concluded in 0.027866324 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002282198 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001829302 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.9469e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116519 [ Info: Selecting generators in 0.000560495 [ Info: Inclusion checked with probability 0.995 in 0.002996961 seconds [ Info: The search for identifiable functions concluded in 0.017683922 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00215666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001857453 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.034e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121169 [ Info: Selecting generators in 0.000578605 [ Info: Inclusion checked with probability 0.995 in 0.002932223 seconds [ Info: The search for identifiable functions concluded in 0.018265585 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002364777 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001943552 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.106e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.3809e-5 [ Info: Selecting generators in 0.000617824 [ Info: Inclusion checked with probability 0.995 in 0.00317992 seconds [ Info: The search for identifiable functions concluded in 0.018273406 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002342298 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001844212 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.819e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008731336 [ Info: Selecting generators in 0.000663153 [ Info: Inclusion checked with probability 0.995 in 0.002878892 seconds [ Info: The search for identifiable functions concluded in 0.026647796 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002607705 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001986561 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.97e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008574418 [ Info: Selecting generators in 0.000693284 [ Info: Inclusion checked with probability 0.995 in 0.002910212 seconds [ Info: The search for identifiable functions concluded in 0.027140252 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002527096 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001892322 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.1039e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008635138 [ Info: Selecting generators in 0.000725383 [ Info: Inclusion checked with probability 0.995 in 0.003034591 seconds [ Info: The search for identifiable functions concluded in 0.027081362 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002856863 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002152709 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.144e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000150319 [ Info: Selecting generators in 0.003841423 [ Info: Inclusion checked with probability 0.995 in 0.004002092 seconds [ Info: The search for identifiable functions concluded in 0.025486018 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003010732 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002397457 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.125e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000142089 [ Info: Selecting generators in 0.004307619 [ Info: Inclusion checked with probability 0.995 in 0.00421424 seconds [ Info: The search for identifiable functions concluded in 0.025773244 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00314597 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002375657 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.974e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123329 [ Info: Selecting generators in 0.003828144 [ Info: Inclusion checked with probability 0.995 in 0.003820943 seconds [ Info: The search for identifiable functions concluded in 0.024894153 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00316436 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002366068 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.117e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016903339 [ Info: Selecting generators in 0.003603125 [ Info: Inclusion checked with probability 0.995 in 0.003699945 seconds [ Info: The search for identifiable functions concluded in 0.041333806 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002992031 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002439287 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.054e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016242956 [ Info: Selecting generators in 0.003770534 [ Info: Inclusion checked with probability 0.995 in 0.003987232 seconds [ Info: The search for identifiable functions concluded in 0.040664743 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003445167 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002474096 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.567e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017521633 [ Info: Selecting generators in 0.003510537 [ Info: Inclusion checked with probability 0.995 in 0.003688324 seconds [ Info: The search for identifiable functions concluded in 0.042414666 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015794049 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.306122604 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.369e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132098 [ Info: Selecting generators in 0.009736197 [ Info: Inclusion checked with probability 0.995 in 0.00632333 seconds [ Info: The search for identifiable functions concluded in 0.620374779 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007518719 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005442198 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.951e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134429 [ Info: Selecting generators in 0.010047904 [ Info: Inclusion checked with probability 0.995 in 0.006007643 seconds [ Info: The search for identifiable functions concluded in 0.048532067 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007250061 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00517426 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.514e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126909 [ Info: Selecting generators in 0.009581188 [ Info: Inclusion checked with probability 0.995 in 0.005817475 seconds [ Info: The search for identifiable functions concluded in 0.045983582 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007123352 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005467788 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.9859e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002957972 [ Info: Selecting generators in 0.010591809 [ Info: Inclusion checked with probability 0.995 in 0.00632503 seconds [ Info: The search for identifiable functions concluded in 0.05245958 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007744796 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006106182 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.9589e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003023081 [ Info: Selecting generators in 0.011777037 [ Info: Inclusion checked with probability 0.995 in 0.007262041 seconds [ Info: The search for identifiable functions concluded in 0.058016037 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007991904 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005989243 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.871e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002659644 [ Info: Selecting generators in 0.010906966 [ Info: Inclusion checked with probability 0.995 in 0.006883574 seconds [ Info: The search for identifiable functions concluded in 0.054679759 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005630156 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003540246 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.323e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135468 [ Info: Selecting generators in 0.002165279 [ Info: Inclusion checked with probability 0.995 in 0.004343679 seconds [ Info: The search for identifiable functions concluded in 0.027644957 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005075571 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003476376 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.013e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105709 [ Info: Selecting generators in 0.001915402 [ Info: Inclusion checked with probability 0.995 in 0.004150161 seconds [ Info: The search for identifiable functions concluded in 0.025882413 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005545588 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003989682 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.469e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116669 [ Info: Selecting generators in 0.00215485 [ Info: Inclusion checked with probability 0.995 in 0.004412177 seconds [ Info: The search for identifiable functions concluded in 0.028421559 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005994983 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004007401 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.4389e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001515856 [ Info: Selecting generators in 0.002345387 [ Info: Inclusion checked with probability 0.995 in 0.004417798 seconds [ Info: The search for identifiable functions concluded in 0.030333431 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005709076 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003610536 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.278e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001404916 [ Info: Selecting generators in 0.00208732 [ Info: Inclusion checked with probability 0.995 in 0.003987812 seconds [ Info: The search for identifiable functions concluded in 0.02830591 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006037763 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003956702 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.308e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001527945 [ Info: Selecting generators in 0.002397947 [ Info: Inclusion checked with probability 0.995 in 0.00419135 seconds [ Info: The search for identifiable functions concluded in 0.031550709 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005684026 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003787184 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.972e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123448 [ Info: Selecting generators in 0.002816873 [ Info: Inclusion checked with probability 0.995 in 0.004153201 seconds [ Info: The search for identifiable functions concluded in 0.031950255 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005975753 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003782264 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.075e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123329 [ Info: Selecting generators in 0.002736184 [ Info: Inclusion checked with probability 0.995 in 0.004218929 seconds [ Info: The search for identifiable functions concluded in 0.032386612 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005588367 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003731814 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.311e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124069 [ Info: Selecting generators in 0.002875753 [ Info: Inclusion checked with probability 0.995 in 0.00415641 seconds [ Info: The search for identifiable functions concluded in 0.032920907 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00631644 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003874203 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.287e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022318748 [ Info: Selecting generators in 0.004383388 [ Info: Inclusion checked with probability 0.995 in 0.004354259 seconds [ Info: The search for identifiable functions concluded in 0.057188945 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006072752 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003944482 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.185e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020493975 [ Info: Selecting generators in 0.004095041 [ Info: Inclusion checked with probability 0.995 in 0.003912402 seconds [ Info: The search for identifiable functions concluded in 0.379759812 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004968843 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003221559 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.159e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020198967 [ Info: Selecting generators in 0.004289289 [ Info: Inclusion checked with probability 0.995 in 0.003987362 seconds [ Info: The search for identifiable functions concluded in 0.050673347 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002727715 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002157039 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.06e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102809 [ Info: Selecting generators in 0.001842053 [ Info: Inclusion checked with probability 0.995 in 0.00319146 seconds [ Info: The search for identifiable functions concluded in 0.019106428 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002709895 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002249118 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.925e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108239 [ Info: Selecting generators in 0.001876872 [ Info: Inclusion checked with probability 0.995 in 0.003557876 seconds [ Info: The search for identifiable functions concluded in 0.01994678 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002713894 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002164569 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.927e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113229 [ Info: Selecting generators in 0.001902412 [ Info: Inclusion checked with probability 0.995 in 0.003416717 seconds [ Info: The search for identifiable functions concluded in 0.019727482 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002446157 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00211485 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.717e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014969547 [ Info: Selecting generators in 0.00315868 [ Info: Inclusion checked with probability 0.995 in 0.003280259 seconds [ Info: The search for identifiable functions concluded in 0.035370093 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002698605 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002168019 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.906e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01478005 [ Info: Selecting generators in 0.003246959 [ Info: Inclusion checked with probability 0.995 in 0.003418498 seconds [ Info: The search for identifiable functions concluded in 0.03570562 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002482347 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002062531 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.644e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013773128 [ Info: Selecting generators in 0.003122011 [ Info: Inclusion checked with probability 0.995 in 0.003223349 seconds [ Info: The search for identifiable functions concluded in 0.032984136 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014526482 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031054244 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000306907 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 [ Info: Search for polynomial generators concluded in 0.000147999 [ Info: Selecting generators in 0.017603583 [ Info: Inclusion checked with probability 0.995 in 0.029185962 seconds [ Info: The search for identifiable functions concluded in 13.518112605 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014973267 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.033030536 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000263957 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141889 [ Info: Selecting generators in 0.018987319 [ Info: Inclusion checked with probability 0.995 in 0.03155598 seconds [ Info: The search for identifiable functions concluded in 0.176254301 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.314998829 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031975995 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000358977 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135599 [ Info: Selecting generators in 0.016179286 [ Info: Inclusion checked with probability 0.995 in 0.027559627 seconds [ Info: The search for identifiable functions concluded in 0.459602693 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014357474 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030966025 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000354657 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.060532149 [ Info: Selecting generators in 0.017014048 [ Info: Inclusion checked with probability 0.995 in 0.044763403 seconds [ Info: The search for identifiable functions concluded in 1.238466074 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01573331 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034166294 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000530345 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.05676304 [ Info: Selecting generators in 0.0178438 [ Info: Inclusion checked with probability 0.995 in 0.021697274 seconds [ Info: The search for identifiable functions concluded in 0.223502871 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010399471 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.022776793 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000308657 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.399476825 [ Info: Selecting generators in 0.016145276 [ Info: Inclusion checked with probability 0.995 in 0.028715027 seconds [ Info: The search for identifiable functions concluded in 0.531807495 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.610803498 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.943232754 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.187396426 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000171158 [ Info: Selecting generators in 0.673933403 [ Info: Inclusion checked with probability 0.995 in 2.577830025 seconds [ Info: The search for identifiable functions concluded in 17.366453533 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.815308107 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.110505737 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.257787185 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000183998 [ Info: Selecting generators in 1.028024304 [ Info: Inclusion checked with probability 0.995 in 2.975864525 seconds [ Info: The search for identifiable functions concluded in 18.189559022 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.627831936 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.772185575 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.181377634 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000176248 [ Info: Selecting generators in 0.635281185 [ Info: Inclusion checked with probability 0.995 in 3.272278325 seconds [ Info: The search for identifiable functions concluded in 19.027453837 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.519283924 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.317008521 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.179904208 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.042463566 [ Info: Selecting generators in 1.230107359 [ Info: Inclusion checked with probability 0.995 in 2.633193013 seconds [ Info: The search for identifiable functions concluded in 19.224908561 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.719839442 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.80608522 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.178984398 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.035978298 [ Info: Selecting generators in 0.6225621 [ Info: Inclusion checked with probability 0.995 in 2.814848725 seconds [ Info: The search for identifiable functions concluded in 18.621995295 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.450092952 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.916371092 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.186453008 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.041529455 [ Info: Selecting generators in 1.401639476 [ Info: Inclusion checked with probability 0.995 in 2.8803452 seconds [ Info: The search for identifiable functions concluded in 17.320536544 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019333687 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01474021 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.965e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000143249 [ Info: Selecting generators in 0.01047799 [ Info: Inclusion checked with probability 0.995 in 0.010826137 seconds [ Info: The search for identifiable functions concluded in 0.108044593 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015159086 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013241954 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.372e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000166508 [ Info: Selecting generators in 0.009643518 [ Info: Inclusion checked with probability 0.995 in 0.010640339 seconds [ Info: The search for identifiable functions concluded in 0.090620569 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014668711 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012954517 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000153319 [ Info: Selecting generators in 0.00950156 [ Info: Inclusion checked with probability 0.995 in 0.010021195 seconds [ Info: The search for identifiable functions concluded in 0.090440881 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013879568 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012100025 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.901e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.039593993 [ Info: Selecting generators in 0.014141566 [ Info: Inclusion checked with probability 0.995 in 0.010266913 seconds [ Info: The search for identifiable functions concluded in 0.131041664 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013746649 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011957776 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.8909e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.039526044 [ Info: Selecting generators in 0.014661211 [ Info: Inclusion checked with probability 0.995 in 0.009843276 seconds [ Info: The search for identifiable functions concluded in 0.130387651 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013038186 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011289932 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.424e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.038036369 [ Info: Selecting generators in 0.013005926 [ Info: Inclusion checked with probability 0.995 in 0.009321071 seconds [ Info: The search for identifiable functions concluded in 0.123274529 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013862999 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008255772 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.53e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000264448 [ Info: Selecting generators in 0.043445657 [ Info: Inclusion checked with probability 0.995 in 0.016121376 seconds [ Info: The search for identifiable functions concluded in 0.808453715 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015364104 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009038164 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.758e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000270048 [ Info: Selecting generators in 0.053447712 [ Info: Inclusion checked with probability 0.995 in 0.01787135 seconds [ Info: The search for identifiable functions concluded in 1.298344159 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016280645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010725978 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.455e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000263858 [ Info: Selecting generators in 0.041474926 [ Info: Inclusion checked with probability 0.995 in 0.015181786 seconds [ Info: The search for identifiable functions concluded in 0.532116862 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013307794 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008443709 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.6439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.814483079 [ Info: Selecting generators in 0.062912702 [ Info: Inclusion checked with probability 0.995 in 0.013542161 seconds [ Info: The search for identifiable functions concluded in 3.314613056 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014218935 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008690087 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.198e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.359225586 [ Info: Selecting generators in 0.070881167 [ Info: Inclusion checked with probability 0.995 in 0.013486772 seconds [ Info: The search for identifiable functions concluded in 1.691208946 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014630861 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009685738 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.4479e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.280507244 [ Info: Selecting generators in 0.061704564 [ Info: Inclusion checked with probability 0.995 in 0.013239104 seconds [ Info: The search for identifiable functions concluded in 0.779903948 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020491056 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014338914 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8759e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135949 [ Info: Selecting generators in 0.010702718 [ Info: Inclusion checked with probability 0.995 in 0.015358744 seconds [ Info: The search for identifiable functions concluded in 0.100748562 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022300048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014645291 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8319e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000139859 [ Info: Selecting generators in 0.010241343 [ Info: Inclusion checked with probability 0.995 in 0.014849029 seconds [ Info: The search for identifiable functions concluded in 0.104666775 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02306568 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018974629 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.0099e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134508 [ Info: Selecting generators in 0.743134918 [ Info: Inclusion checked with probability 0.995 in 0.066139131 seconds [ Info: The search for identifiable functions concluded in 0.895309141 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.027450059 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019126148 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.4479e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.057020458 [ Info: Selecting generators in 0.01786153 [ Info: Inclusion checked with probability 0.995 in 0.015208896 seconds [ Info: The search for identifiable functions concluded in 0.197763371 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02312062 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017449994 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5449e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.050682649 [ Info: Selecting generators in 0.016555422 [ Info: Inclusion checked with probability 0.995 in 0.01474808 seconds [ Info: The search for identifiable functions concluded in 0.167177261 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02202085 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015650051 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5489e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.047994664 [ Info: Selecting generators in 0.014959888 [ Info: Inclusion checked with probability 0.995 in 0.01360575 seconds [ Info: The search for identifiable functions concluded in 0.156155156 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010725288 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015165596 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.933e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137109 [ Info: Selecting generators in 0.071037715 [ Info: Inclusion checked with probability 0.995 in 0.01585762 seconds [ Info: The search for identifiable functions concluded in 0.469671816 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010270962 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014836079 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.589e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000207098 [ Info: Selecting generators in 0.092768598 [ Info: Inclusion checked with probability 0.995 in 0.019544684 seconds [ Info: The search for identifiable functions concluded in 0.55450749 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012771088 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018332486 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.1379e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000249827 [ Info: Selecting generators in 0.094469192 [ Info: Inclusion checked with probability 0.995 in 0.019122858 seconds [ Info: The search for identifiable functions concluded in 1.521033555 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012219774 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017554983 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.5109e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.086557237 [ Info: Selecting generators in 0.078806341 [ Info: Inclusion checked with probability 0.995 in 0.016209056 seconds [ Info: The search for identifiable functions concluded in 0.61560758 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012028536 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016574292 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.7389e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.115851709 [ Info: Selecting generators in 0.100233648 [ Info: Inclusion checked with probability 0.995 in 0.019439935 seconds [ Info: The search for identifiable functions concluded in 0.636043815 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013507762 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01783852 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.082e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.431811587 [ Info: Selecting generators in 0.106373848 [ Info: Inclusion checked with probability 0.995 in 0.018902999 seconds [ Info: The search for identifiable functions concluded in 2.960194885 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.850568047 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.076869287 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000111589 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 42   ⌜ # Computing specializations.. Time: 0:00:02 Points: 53   ⌝ # Computing specializations.. Time: 0:00:02 Points: 63   ⌟ # Computing specializations.. Time: 0:00:02 Points: 72   ⌞ # Computing specializations.. Time: 0:00:03 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 91   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:02 ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:02 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 73   ⌞ # Computing specializations.. Time: 0:00:03 Points: 89   ⌜ # Computing specializations.. Time: 0:00:03 Points: 104   ⌝ # Computing specializations.. Time: 0:00:04 Points: 114   ⌟ # Computing specializations.. Time: 0:00:04 Points: 124   ⌞ # Computing specializations.. Time: 0:00:04 Points: 132   ⌜ # Computing specializations.. Time: 0:00:05 Points: 147   ⌝ # Computing specializations.. Time: 0:00:05 Points: 158   ⌟ # Computing specializations.. Time: 0:00:05 Points: 171   ⌞ # Computing specializations.. Time: 0:00:06 Points: 184   ⌜ # Computing specializations.. Time: 0:00:06 Points: 194   ⌝ # Computing specializations.. Time: 0:00:07 Points: 202   ⌟ # Computing specializations.. Time: 0:00:07 Points: 212   ⌞ # Computing specializations.. Time: 0:00:07 Points: 220   ⌜ # Computing specializations.. Time: 0:00:08 Points: 230   ⌝ # Computing specializations.. Time: 0:00:08 Points: 240   ⌟ # Computing specializations.. Time: 0:00:08 Points: 251   ⌞ # Computing specializations.. Time: 0:00:09 Points: 261   ⌜ # Computing specializations.. Time: 0:00:09 Points: 272   ⌝ # Computing specializations.. Time: 0:00:09 Points: 281   ⌟ # Computing specializations.. Time: 0:00:10 Points: 291   ⌞ # Computing specializations.. Time: 0:00:10 Points: 301   ⌜ # Computing specializations.. Time: 0:00:10 Points: 311   ⌝ # Computing specializations.. Time: 0:00:11 Points: 321   ⌟ # Computing specializations.. Time: 0:00:11 Points: 331   ⌞ # Computing specializations.. Time: 0:00:12 Points: 341   ⌜ # Computing specializations.. Time: 0:00:12 Points: 351   ⌝ # Computing specializations.. Time: 0:00:12 Points: 361   ⌟ # Computing specializations.. Time: 0:00:13 Points: 371   ⌞ # Computing specializations.. Time: 0:00:13 Points: 380   ⌜ # Computing specializations.. Time: 0:00:14 Points: 388   ⌝ # Computing specializations.. Time: 0:00:14 Points: 398   ⌟ # Computing specializations.. Time: 0:00:14 Points: 406   ⌞ # Computing specializations.. Time: 0:00:15 Points: 416   ⌜ # Computing specializations.. Time: 0:00:15 Points: 426   ⌝ # Computing specializations.. Time: 0:00:15 Points: 437   ⌟ # Computing specializations.. Time: 0:00:16 Points: 447   ⌞ # Computing specializations.. Time: 0:00:16 Points: 458   ⌜ # Computing specializations.. Time: 0:00:17 Points: 468   ⌝ # Computing specializations.. Time: 0:00:17 Points: 479   ⌟ # Computing specializations.. Time: 0:00:17 Points: 488   ⌞ # Computing specializations.. Time: 0:00:18 Points: 497   ⌜ # Computing specializations.. Time: 0:00:18 Points: 506   ⌝ # Computing specializations.. Time: 0:00:18 Points: 514   ⌟ # Computing specializations.. Time: 0:00:19 Points: 524   ⌞ # Computing specializations.. Time: 0:00:19 Points: 534   ⌜ # Computing specializations.. Time: 0:00:20 Points: 544   ⌝ # Computing specializations.. Time: 0:00:20 Points: 554   ⌟ # Computing specializations.. Time: 0:00:20 Points: 563   ⌞ # Computing specializations.. Time: 0:00:21 Points: 573   ⌜ # Computing specializations.. Time: 0:00:21 Points: 583   ⌝ # Computing specializations.. Time: 0:00:21 Points: 593   ⌟ # Computing specializations.. Time: 0:00:22 Points: 603   ⌞ # Computing specializations.. Time: 0:00:22 Points: 614   ⌜ # Computing specializations.. Time: 0:00:23 Points: 624   ⌝ # Computing specializations.. Time: 0:00:23 Points: 635   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 0.000387986 [ Info: Selecting generators in 0.049609087 [ Info: Inclusion checked with probability 0.995 in 9.192864842 seconds [ Info: The search for identifiable functions concluded in 60.245971974 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.465588937 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.056369288 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.1309e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 26   ⌟ # Computing specializations.. Time: 0:00:01 Points: 41   ⌞ # Computing specializations.. Time: 0:00:01 Points: 56   ⌜ # Computing specializations.. Time: 0:00:01 Points: 67   ⌝ # Computing specializations.. Time: 0:00:02 Points: 83   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 13   ⌝ # Computing specializations.. Time: 0:00:00 Points: 28   ⌟ # Computing specializations.. Time: 0:00:01 Points: 42   ⌞ # Computing specializations.. Time: 0:00:01 Points: 56   ⌜ # Computing specializations.. Time: 0:00:01 Points: 69   ⌝ # Computing specializations.. Time: 0:00:02 Points: 80   ⌟ # Computing specializations.. Time: 0:00:02 Points: 95   ⌞ # Computing specializations.. Time: 0:00:02 Points: 110   ⌜ # Computing specializations.. Time: 0:00:03 Points: 124   ⌝ # Computing specializations.. Time: 0:00:03 Points: 140   ⌟ # Computing specializations.. Time: 0:00:04 Points: 155   ⌞ # Computing specializations.. Time: 0:00:04 Points: 169   ⌜ # Computing specializations.. Time: 0:00:04 Points: 185   ⌝ # Computing specializations.. Time: 0:00:05 Points: 200   ⌟ # Computing specializations.. Time: 0:00:05 Points: 214   ⌞ # Computing specializations.. Time: 0:00:05 Points: 227   ⌜ # Computing specializations.. Time: 0:00:06 Points: 240   ⌝ # Computing specializations.. Time: 0:00:06 Points: 255   ⌟ # Computing specializations.. Time: 0:00:06 Points: 270   ⌞ # Computing specializations.. Time: 0:00:07 Points: 284   ⌜ # Computing specializations.. Time: 0:00:07 Points: 296   ⌝ # Computing specializations.. Time: 0:00:08 Points: 310   ⌟ # Computing specializations.. Time: 0:00:08 Points: 325   ⌞ # Computing specializations.. Time: 0:00:08 Points: 339   ⌜ # Computing specializations.. Time: 0:00:09 Points: 353   ⌝ # Computing specializations.. Time: 0:00:09 Points: 367   ⌟ # Computing specializations.. Time: 0:00:09 Points: 381   ⌞ # Computing specializations.. Time: 0:00:10 Points: 396   ⌜ # Computing specializations.. Time: 0:00:10 Points: 410   ⌝ # Computing specializations.. Time: 0:00:10 Points: 424   ⌟ # Computing specializations.. Time: 0:00:11 Points: 438   ⌞ # Computing specializations.. Time: 0:00:11 Points: 452   ⌜ # Computing specializations.. Time: 0:00:12 Points: 467   ⌝ # Computing specializations.. Time: 0:00:12 Points: 482   ⌟ # Computing specializations.. Time: 0:00:12 Points: 496   ⌞ # Computing specializations.. Time: 0:00:13 Points: 510   ⌜ # Computing specializations.. Time: 0:00:13 Points: 524   ⌝ # Computing specializations.. Time: 0:00:13 Points: 539   ⌟ # Computing specializations.. Time: 0:00:14 Points: 553   ⌞ # Computing specializations.. Time: 0:00:14 Points: 567   ⌜ # Computing specializations.. Time: 0:00:14 Points: 581   ⌝ # Computing specializations.. Time: 0:00:15 Points: 595   ⌟ # Computing specializations.. Time: 0:00:15 Points: 611   ⌞ # Computing specializations.. Time: 0:00:16 Points: 626   ⌜ # Computing specializations.. Time: 0:00:16 Points: 640   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 0.000213598 [ Info: Selecting generators in 0.026131226 [ Info: Inclusion checked with probability 0.995 in 6.308701422 seconds [ Info: The search for identifiable functions concluded in 38.752054731 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.916319728 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.053095085 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.4069e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 14   ⌝ # Computing specializations.. Time: 0:00:00 Points: 28   ⌟ # Computing specializations.. Time: 0:00:01 Points: 42   ⌞ # Computing specializations.. Time: 0:00:01 Points: 56   ⌜ # Computing specializations.. Time: 0:00:01 Points: 68   ⌝ # Computing specializations.. Time: 0:00:02 Points: 79   ⌟ # Computing specializations.. Time: 0:00:02 Points: 90   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 13   ⌝ # Computing specializations.. Time: 0:00:00 Points: 27   ⌟ # Computing specializations.. Time: 0:00:01 Points: 41   ⌞ # Computing specializations.. Time: 0:00:01 Points: 52   ⌜ # Computing specializations.. Time: 0:00:01 Points: 65   ⌝ # Computing specializations.. Time: 0:00:02 Points: 79   ⌟ # Computing specializations.. Time: 0:00:02 Points: 93   ⌞ # Computing specializations.. Time: 0:00:02 Points: 104   ⌜ # Computing specializations.. Time: 0:00:03 Points: 115   ⌝ # Computing specializations.. Time: 0:00:03 Points: 129   ⌟ # Computing specializations.. Time: 0:00:03 Points: 143   ⌞ # Computing specializations.. Time: 0:00:04 Points: 154   ⌜ # Computing specializations.. Time: 0:00:04 Points: 167   ⌝ # Computing specializations.. Time: 0:00:04 Points: 180   ⌟ # Computing specializations.. Time: 0:00:05 Points: 190   ⌞ # Computing specializations.. Time: 0:00:05 Points: 204   ⌜ # Computing specializations.. Time: 0:00:05 Points: 218   ⌝ # Computing specializations.. Time: 0:00:06 Points: 229   ⌟ # Computing specializations.. Time: 0:00:06 Points: 243   ⌞ # Computing specializations.. Time: 0:00:06 Points: 258   ⌜ # Computing specializations.. Time: 0:00:07 Points: 271   ⌝ # Computing specializations.. Time: 0:00:07 Points: 282   ⌟ # Computing specializations.. Time: 0:00:07 Points: 296   ⌞ # Computing specializations.. Time: 0:00:08 Points: 310   ⌜ # Computing specializations.. Time: 0:00:08 Points: 321   ⌝ # Computing specializations.. Time: 0:00:08 Points: 335   ⌟ # Computing specializations.. Time: 0:00:09 Points: 349   ⌞ # Computing specializations.. Time: 0:00:09 Points: 359   ⌜ # Computing specializations.. Time: 0:00:09 Points: 370   ⌝ # Computing specializations.. Time: 0:00:10 Points: 381   ⌟ # Computing specializations.. Time: 0:00:10 Points: 391   ⌞ # Computing specializations.. Time: 0:00:11 Points: 399   ⌜ # Computing specializations.. Time: 0:00:11 Points: 410   ⌝ # Computing specializations.. Time: 0:00:11 Points: 420   ⌟ # Computing specializations.. Time: 0:00:12 Points: 429   ⌞ # Computing specializations.. Time: 0:00:12 Points: 438   ⌜ # Computing specializations.. Time: 0:00:12 Points: 447   ⌝ # Computing specializations.. Time: 0:00:13 Points: 457   ⌟ # Computing specializations.. Time: 0:00:13 Points: 465   ⌞ # Computing specializations.. Time: 0:00:14 Points: 475   ⌜ # Computing specializations.. Time: 0:00:14 Points: 486   ⌝ # Computing specializations.. Time: 0:00:14 Points: 501   ⌟ # Computing specializations.. Time: 0:00:15 Points: 515   ⌞ # Computing specializations.. Time: 0:00:15 Points: 528   ⌜ # Computing specializations.. Time: 0:00:15 Points: 540   ⌝ # Computing specializations.. Time: 0:00:16 Points: 552   ⌟ # Computing specializations.. Time: 0:00:16 Points: 566   ⌞ # Computing specializations.. Time: 0:00:16 Points: 578   ⌜ # Computing specializations.. Time: 0:00:17 Points: 588   ⌝ # Computing specializations.. Time: 0:00:17 Points: 602   ⌟ # Computing specializations.. Time: 0:00:18 Points: 615   ⌞ # Computing specializations.. Time: 0:00:18 Points: 628   ✓ # Computing specializations.. Time: 0:00:18 [ Info: Search for polynomial generators concluded in 0.000219098 [ Info: Selecting generators in 0.027926979 [ Info: Inclusion checked with probability 0.995 in 6.175030089 seconds [ Info: The search for identifiable functions concluded in 45.258192115 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.758728324 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.073827174 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.0749e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 26   ⌟ # Computing specializations.. Time: 0:00:01 Points: 42   ⌞ # Computing specializations.. Time: 0:00:01 Points: 57   ⌜ # Computing specializations.. Time: 0:00:01 Points: 69   ⌝ # Computing specializations.. Time: 0:00:02 Points: 84   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 26   ⌟ # Computing specializations.. Time: 0:00:01 Points: 41   ⌞ # Computing specializations.. Time: 0:00:01 Points: 55   ⌜ # Computing specializations.. Time: 0:00:01 Points: 66   ⌝ # Computing specializations.. Time: 0:00:02 Points: 81   ⌟ # Computing specializations.. Time: 0:00:02 Points: 96   ⌞ # Computing specializations.. Time: 0:00:02 Points: 108   ⌜ # Computing specializations.. Time: 0:00:03 Points: 123   ⌝ # Computing specializations.. Time: 0:00:03 Points: 137   ⌟ # Computing specializations.. Time: 0:00:03 Points: 149   ⌞ # Computing specializations.. Time: 0:00:04 Points: 164   ⌜ # Computing specializations.. Time: 0:00:04 Points: 178   ⌝ # Computing specializations.. Time: 0:00:04 Points: 189   ⌟ # Computing specializations.. Time: 0:00:05 Points: 205   ⌞ # Computing specializations.. Time: 0:00:05 Points: 220   ⌜ # Computing specializations.. Time: 0:00:05 Points: 234   ⌝ # Computing specializations.. Time: 0:00:06 Points: 250   ⌟ # Computing specializations.. Time: 0:00:06 Points: 265   ⌞ # Computing specializations.. Time: 0:00:07 Points: 279   ⌜ # Computing specializations.. Time: 0:00:07 Points: 294   ⌝ # Computing specializations.. Time: 0:00:07 Points: 309   ⌟ # Computing specializations.. Time: 0:00:08 Points: 320   ⌞ # Computing specializations.. Time: 0:00:08 Points: 335   ⌜ # Computing specializations.. Time: 0:00:08 Points: 349   ⌝ # Computing specializations.. Time: 0:00:09 Points: 363   ⌟ # Computing specializations.. Time: 0:00:09 Points: 377   ⌞ # Computing specializations.. Time: 0:00:09 Points: 391   ⌜ # Computing specializations.. Time: 0:00:10 Points: 406   ⌝ # Computing specializations.. Time: 0:00:10 Points: 421   ⌟ # Computing specializations.. Time: 0:00:11 Points: 435   ⌞ # Computing specializations.. Time: 0:00:11 Points: 450   ⌜ # Computing specializations.. Time: 0:00:11 Points: 464   ⌝ # Computing specializations.. Time: 0:00:12 Points: 478   ⌟ # Computing specializations.. Time: 0:00:12 Points: 494   ⌞ # Computing specializations.. Time: 0:00:12 Points: 509   ⌜ # Computing specializations.. Time: 0:00:13 Points: 523   ⌝ # Computing specializations.. Time: 0:00:13 Points: 537   ⌟ # Computing specializations.. Time: 0:00:13 Points: 548   ⌞ # Computing specializations.. Time: 0:00:14 Points: 563   ⌜ # Computing specializations.. Time: 0:00:14 Points: 577   ⌝ # Computing specializations.. Time: 0:00:14 Points: 591   ⌟ # Computing specializations.. Time: 0:00:15 Points: 607   ⌞ # Computing specializations.. Time: 0:00:15 Points: 622   ⌜ # Computing specializations.. Time: 0:00:15 Points: 636   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 1.546625289 [ Info: Selecting generators in 0.032803127 [ Info: Inclusion checked with probability 0.995 in 5.978669155 seconds [ Info: The search for identifiable functions concluded in 37.537500931 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.568246324 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.05206343 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.6469e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 Points: 13   ⌝ # Computing specializations.. Time: 0:00:00 Points: 28   ⌟ # Computing specializations.. Time: 0:00:01 Points: 42   ⌞ # Computing specializations.. Time: 0:00:01 Points: 53   ⌜ # Computing specializations.. Time: 0:00:01 Points: 68   ⌝ # Computing specializations.. Time: 0:00:02 Points: 82   ⌟ # Computing specializations.. Time: 0:00:02 Points: 93   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 15   ⌝ # Computing specializations.. Time: 0:00:00 Points: 31   ⌟ # Computing specializations.. Time: 0:00:01 Points: 46   ⌞ # Computing specializations.. Time: 0:00:01 Points: 60   ⌜ # Computing specializations.. Time: 0:00:01 Points: 75   ⌝ # Computing specializations.. Time: 0:00:02 Points: 90   ⌟ # Computing specializations.. Time: 0:00:02 Points: 104   ⌞ # Computing specializations.. Time: 0:00:03 Points: 119   ⌜ # Computing specializations.. Time: 0:00:03 Points: 132   ⌝ # Computing specializations.. Time: 0:00:03 Points: 146   ⌟ # Computing specializations.. Time: 0:00:04 Points: 157   ⌞ # Computing specializations.. Time: 0:00:04 Points: 168   ⌜ # Computing specializations.. Time: 0:00:04 Points: 182   ⌝ # Computing specializations.. Time: 0:00:05 Points: 194   ⌟ # Computing specializations.. Time: 0:00:05 Points: 208   ⌞ # Computing specializations.. Time: 0:00:05 Points: 222   ⌜ # Computing specializations.. Time: 0:00:06 Points: 233   ⌝ # Computing specializations.. Time: 0:00:06 Points: 249   ⌟ # Computing specializations.. Time: 0:00:06 Points: 264   ⌞ # Computing specializations.. Time: 0:00:07 Points: 278   ⌜ # Computing specializations.. Time: 0:00:07 Points: 294   ⌝ # Computing specializations.. Time: 0:00:08 Points: 309   ⌟ # Computing specializations.. Time: 0:00:08 Points: 323   ⌞ # Computing specializations.. Time: 0:00:08 Points: 338   ⌜ # Computing specializations.. Time: 0:00:09 Points: 353   ⌝ # Computing specializations.. Time: 0:00:09 Points: 367   ⌟ # Computing specializations.. Time: 0:00:09 Points: 381   ⌞ # Computing specializations.. Time: 0:00:10 Points: 392   ⌜ # Computing specializations.. Time: 0:00:10 Points: 407   ⌝ # Computing specializations.. Time: 0:00:10 Points: 421   ⌟ # Computing specializations.. Time: 0:00:11 Points: 435   ⌞ # Computing specializations.. Time: 0:00:11 Points: 451   ⌜ # Computing specializations.. Time: 0:00:12 Points: 466   ⌝ # Computing specializations.. Time: 0:00:12 Points: 480   ⌟ # Computing specializations.. Time: 0:00:12 Points: 496   ⌞ # Computing specializations.. Time: 0:00:13 Points: 511   ⌜ # Computing specializations.. Time: 0:00:13 Points: 525   ⌝ # Computing specializations.. Time: 0:00:13 Points: 539   ⌟ # Computing specializations.. Time: 0:00:14 Points: 550   ⌞ # Computing specializations.. Time: 0:00:14 Points: 565   ⌜ # Computing specializations.. Time: 0:00:14 Points: 580   ⌝ # Computing specializations.. Time: 0:00:15 Points: 594   ⌟ # Computing specializations.. Time: 0:00:15 Points: 608   ⌞ # Computing specializations.. Time: 0:00:15 Points: 619   ⌜ # Computing specializations.. Time: 0:00:16 Points: 634   ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 1.770257905 [ Info: Selecting generators in 0.024191651 [ Info: Inclusion checked with probability 0.995 in 6.481066184 seconds [ Info: The search for identifiable functions concluded in 38.344926832 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.675418466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.052623854 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.5329e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:00 Points: 33   ⌞ # Computing specializations.. Time: 0:00:01 Points: 43   ⌜ # Computing specializations.. Time: 0:00:01 Points: 56   ⌝ # Computing specializations.. Time: 0:00:01 Points: 68   ⌟ # Computing specializations.. Time: 0:00:02 Points: 78   ⌞ # Computing specializations.. Time: 0:00:02 Points: 89   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 56   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 84   ⌝ # Computing specializations.. Time: 0:00:03 Points: 91   ⌟ # Computing specializations.. Time: 0:00:03 Points: 101   ⌞ # Computing specializations.. Time: 0:00:04 Points: 110   ⌜ # Computing specializations.. Time: 0:00:04 Points: 120   ⌝ # Computing specializations.. Time: 0:00:05 Points: 130   ⌟ # Computing specializations.. Time: 0:00:05 Points: 138   ⌞ # Computing specializations.. Time: 0:00:05 Points: 147   ⌜ # Computing specializations.. Time: 0:00:06 Points: 155   ⌝ # Computing specializations.. Time: 0:00:06 Points: 164   ⌟ # Computing specializations.. Time: 0:00:06 Points: 173   ⌞ # Computing specializations.. Time: 0:00:07 Points: 181   ⌜ # Computing specializations.. Time: 0:00:07 Points: 190   ⌝ # Computing specializations.. Time: 0:00:08 Points: 197   ⌟ # Computing specializations.. Time: 0:00:08 Points: 207   ⌞ # Computing specializations.. Time: 0:00:08 Points: 216   ⌜ # Computing specializations.. Time: 0:00:09 Points: 224   ⌝ # Computing specializations.. Time: 0:00:09 Points: 233   ⌟ # Computing specializations.. Time: 0:00:09 Points: 241   ⌞ # Computing specializations.. Time: 0:00:10 Points: 251   ⌜ # Computing specializations.. Time: 0:00:10 Points: 260   ⌝ # Computing specializations.. Time: 0:00:11 Points: 268   ⌟ # Computing specializations.. Time: 0:00:11 Points: 277   ⌞ # Computing specializations.. Time: 0:00:11 Points: 284   ⌜ # Computing specializations.. Time: 0:00:12 Points: 295   ⌝ # Computing specializations.. Time: 0:00:12 Points: 306   ⌟ # Computing specializations.. Time: 0:00:12 Points: 318   ⌞ # Computing specializations.. Time: 0:00:13 Points: 330   ⌜ # Computing specializations.. Time: 0:00:13 Points: 341   ⌝ # Computing specializations.. Time: 0:00:13 Points: 350   ⌟ # Computing specializations.. Time: 0:00:14 Points: 362   ⌞ # Computing specializations.. Time: 0:00:14 Points: 373   ⌜ # Computing specializations.. Time: 0:00:15 Points: 382   ⌝ # Computing specializations.. Time: 0:00:15 Points: 389   ⌟ # Computing specializations.. Time: 0:00:15 Points: 398   ⌞ # Computing specializations.. Time: 0:00:16 Points: 407   ⌜ # Computing specializations.. Time: 0:00:16 Points: 417   ⌝ # Computing specializations.. Time: 0:00:16 Points: 426   ⌟ # Computing specializations.. Time: 0:00:17 Points: 435   ⌞ # Computing specializations.. Time: 0:00:17 Points: 444   ⌜ # Computing specializations.. Time: 0:00:18 Points: 452   ⌝ # Computing specializations.. Time: 0:00:18 Points: 461   ⌟ # Computing specializations.. Time: 0:00:18 Points: 469   ⌞ # Computing specializations.. Time: 0:00:19 Points: 477   ⌜ # Computing specializations.. Time: 0:00:19 Points: 485   ⌝ # Computing specializations.. Time: 0:00:19 Points: 493   ⌟ # Computing specializations.. Time: 0:00:20 Points: 502   ⌞ # Computing specializations.. Time: 0:00:20 Points: 511   ⌜ # Computing specializations.. Time: 0:00:20 Points: 519   ⌝ # Computing specializations.. Time: 0:00:21 Points: 527   ⌟ # Computing specializations.. Time: 0:00:21 Points: 535   ⌞ # Computing specializations.. Time: 0:00:22 Points: 545   ⌜ # Computing specializations.. Time: 0:00:22 Points: 554   ⌝ # Computing specializations.. Time: 0:00:22 Points: 562   ⌟ # Computing specializations.. Time: 0:00:23 Points: 570   ⌞ # Computing specializations.. Time: 0:00:23 Points: 578   ⌜ # Computing specializations.. Time: 0:00:23 Points: 587   ⌝ # Computing specializations.. Time: 0:00:24 Points: 595   ⌟ # Computing specializations.. Time: 0:00:24 Points: 603   ⌞ # Computing specializations.. Time: 0:00:24 Points: 612   ⌜ # Computing specializations.. Time: 0:00:25 Points: 620   ⌝ # Computing specializations.. Time: 0:00:25 Points: 630   ⌟ # Computing specializations.. Time: 0:00:26 Points: 639   ✓ # Computing specializations.. Time: 0:00:26 [ Info: Search for polynomial generators concluded in 1.484669779 [ Info: Selecting generators in 0.037079727 [ Info: Inclusion checked with probability 0.995 in 8.562130512 seconds [ Info: The search for identifiable functions concluded in 52.830062344 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001828335 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137299 [ Info: Selecting generators in 0.000182089 [ Info: Inclusion checked with probability 0.995 in 0.002477128 seconds [ Info: The search for identifiable functions concluded in 0.025773986 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000993272 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9669e-5 [ Info: Selecting generators in 0.000175518 [ Info: Inclusion checked with probability 0.995 in 0.002261271 seconds [ Info: The search for identifiable functions concluded in 0.008837023 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000978752 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4779e-5 [ Info: Selecting generators in 0.000160668 [ Info: Inclusion checked with probability 0.995 in 0.002076222 seconds [ Info: The search for identifiable functions concluded in 0.008626265 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000999621 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000756984 [ Info: Selecting generators in 0.000178529 [ Info: Inclusion checked with probability 0.995 in 0.002072482 seconds [ Info: The search for identifiable functions concluded in 0.008811134 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001050641 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000425956 [ Info: Selecting generators in 0.000154779 [ Info: Inclusion checked with probability 0.995 in 0.002177701 seconds [ Info: The search for identifiable functions concluded in 0.008592105 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001043331 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000495505 [ Info: Selecting generators in 0.000178908 [ Info: Inclusion checked with probability 0.995 in 0.002072602 seconds [ Info: The search for identifiable functions concluded in 0.008984992 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001525577 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001811194 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.46e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000423896 [ Info: Selecting generators in 0.000901553 [ Info: Inclusion checked with probability 0.995 in 0.002055692 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100769 [ Info: Selecting generators in 0.000504606 [ Info: Inclusion checked with probability 0.995 in 0.002700686 seconds [ Info: The search for identifiable functions concluded in 0.022018858 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001424678 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00121609 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.041e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000477166 [ Info: Selecting generators in 0.000813313 [ Info: Inclusion checked with probability 0.995 in 0.002048403 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103179 [ Info: Selecting generators in 0.000550485 [ Info: Inclusion checked with probability 0.995 in 0.002944535 seconds [ Info: The search for identifiable functions concluded in 0.020487572 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001306678 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00110596 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.898e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000422066 [ Info: Selecting generators in 0.000656714 [ Info: Inclusion checked with probability 0.995 in 0.001842314 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.38e-5 [ Info: Selecting generators in 0.000505315 [ Info: Inclusion checked with probability 0.995 in 0.002467528 seconds [ Info: The search for identifiable functions concluded in 0.018222242 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001304369 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00120773 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.984e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000457016 [ Info: Selecting generators in 0.000799513 [ Info: Inclusion checked with probability 0.995 in 0.002034962 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.254547317 [ Info: Selecting generators in 0.000589684 [ Info: Inclusion checked with probability 0.995 in 0.002695977 seconds [ Info: The search for identifiable functions concluded in 0.274513083 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001340848 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001197759 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.854e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000511765 [ Info: Selecting generators in 0.000820933 [ Info: Inclusion checked with probability 0.995 in 0.002176641 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000729864 [ Info: Selecting generators in 0.000556816 [ Info: Inclusion checked with probability 0.995 in 0.002748776 seconds [ Info: The search for identifiable functions concluded in 0.021469143 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001396258 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001208519 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.7079e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000415377 [ Info: Selecting generators in 0.000675764 [ Info: Inclusion checked with probability 0.995 in 0.001871103 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000625314 [ Info: Selecting generators in 0.000502765 [ Info: Inclusion checked with probability 0.995 in 0.00235862 seconds [ Info: The search for identifiable functions concluded in 0.018805917 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002747226 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002426619 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.889e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008129629 [ Info: Selecting generators in 0.002477399 [ Info: Inclusion checked with probability 0.995 in 0.00340755 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000131579 [ Info: Selecting generators in 0.00340082 [ Info: Inclusion checked with probability 0.995 in 0.005522922 seconds [ Info: The search for identifiable functions concluded in 0.053072458 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002517569 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0023099 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.95e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008578436 [ Info: Selecting generators in 0.002651347 [ Info: Inclusion checked with probability 0.995 in 0.003849796 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136849 [ Info: Selecting generators in 0.003943245 [ Info: Inclusion checked with probability 0.995 in 0.006262355 seconds [ Info: The search for identifiable functions concluded in 0.057223922 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002802995 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002386029 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.255e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008726944 [ Info: Selecting generators in 0.002609488 [ Info: Inclusion checked with probability 0.995 in 0.003758627 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000154588 [ Info: Selecting generators in 0.003948015 [ Info: Inclusion checked with probability 0.995 in 0.006079087 seconds [ Info: The search for identifiable functions concluded in 0.057152273 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002829495 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00236798 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.025e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008840384 [ Info: Selecting generators in 0.002814156 [ Info: Inclusion checked with probability 0.995 in 0.003762527 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031082939 [ Info: Selecting generators in 0.004360642 [ Info: Inclusion checked with probability 0.995 in 0.006492543 seconds [ Info: The search for identifiable functions concluded in 0.089820729 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002929645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002537138 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.168e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009281559 [ Info: Selecting generators in 0.002881045 [ Info: Inclusion checked with probability 0.995 in 0.004048815 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032383868 [ Info: Selecting generators in 0.00460499 [ Info: Inclusion checked with probability 0.995 in 0.006458324 seconds [ Info: The search for identifiable functions concluded in 0.094181451 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002999684 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002533658 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.969e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010701547 [ Info: Selecting generators in 0.002981104 [ Info: Inclusion checked with probability 0.995 in 0.004195944 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.026008034 [ Info: Selecting generators in 0.0046852 [ Info: Inclusion checked with probability 0.995 in 0.006820751 seconds [ Info: The search for identifiable functions concluded in 0.088860248 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002943764 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002455549 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.34e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00920329 [ Info: Selecting generators in 0.003005014 [ Info: Inclusion checked with probability 0.995 in 0.004929297 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136239 [ Info: Selecting generators in 0.004213633 [ Info: Inclusion checked with probability 0.995 in 0.006655272 seconds [ Info: The search for identifiable functions concluded in 0.061335477 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002914444 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00235241 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.078e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008441277 [ Info: Selecting generators in 0.002861185 [ Info: Inclusion checked with probability 0.995 in 0.004071874 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000173328 [ Info: Selecting generators in 0.004228413 [ Info: Inclusion checked with probability 0.995 in 0.427441962 seconds [ Info: The search for identifiable functions concluded in 0.481570452 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002762085 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002456878 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.766e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007802633 [ Info: Selecting generators in 0.002473759 [ Info: Inclusion checked with probability 0.995 in 0.003504159 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122759 [ Info: Selecting generators in 0.00340423 [ Info: Inclusion checked with probability 0.995 in 0.005331684 seconds [ Info: The search for identifiable functions concluded in 0.050389061 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002406219 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002104622 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.59e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007456315 [ Info: Selecting generators in 0.002246801 [ Info: Inclusion checked with probability 0.995 in 0.003347851 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.028049696 [ Info: Selecting generators in 0.00353644 [ Info: Inclusion checked with probability 0.995 in 0.005565722 seconds [ Info: The search for identifiable functions concluded in 0.077209098 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002637727 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002139972 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.935e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008881343 [ Info: Selecting generators in 0.002703356 [ Info: Inclusion checked with probability 0.995 in 0.004294233 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.027002275 [ Info: Selecting generators in 0.003599858 [ Info: Inclusion checked with probability 0.995 in 0.005542052 seconds [ Info: The search for identifiable functions concluded in 0.082025307 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001830735 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001484797 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.267e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008083079 [ Info: Selecting generators in 0.002425469 [ Info: Inclusion checked with probability 0.995 in 0.003578909 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.026278741 [ Info: Selecting generators in 0.003800757 [ Info: Inclusion checked with probability 0.995 in 0.005533312 seconds [ Info: The search for identifiable functions concluded in 0.075412534 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007767573 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005581481 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.879e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002189171 [ Info: Selecting generators in 0.010048873 [ Info: Inclusion checked with probability 0.995 in 0.00579787 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000159269 [ Info: Selecting generators in 0.011996085 [ Info: Inclusion checked with probability 0.995 in 0.009996883 seconds [ Info: The search for identifiable functions concluded in 0.383221937 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007233337 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005160295 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.783e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002047133 [ Info: Selecting generators in 0.015219288 [ Info: Inclusion checked with probability 0.995 in 0.006671802 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000157919 [ Info: Selecting generators in 0.012455382 [ Info: Inclusion checked with probability 0.995 in 0.010360689 seconds [ Info: The search for identifiable functions concluded in 0.115531425 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006990709 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005090316 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.5539e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002390209 [ Info: Selecting generators in 0.010836666 [ Info: Inclusion checked with probability 0.995 in 0.006598173 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000244938 [ Info: Selecting generators in 0.015906132 [ Info: Inclusion checked with probability 0.995 in 0.012291843 seconds [ Info: The search for identifiable functions concluded in 0.121756911 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008335978 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006262505 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.776e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00233501 [ Info: Selecting generators in 0.010705957 [ Info: Inclusion checked with probability 0.995 in 0.006449064 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004895768 [ Info: Selecting generators in 0.014214847 [ Info: Inclusion checked with probability 0.995 in 0.011870417 seconds [ Info: The search for identifiable functions concluded in 0.125913895 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007683453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006001778 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.92e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00230851 [ Info: Selecting generators in 0.011081924 [ Info: Inclusion checked with probability 0.995 in 0.006703932 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005263314 [ Info: Selecting generators in 0.014126317 [ Info: Inclusion checked with probability 0.995 in 0.011337621 seconds [ Info: The search for identifiable functions concluded in 0.125786976 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007815742 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005866689 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.472e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002282 [ Info: Selecting generators in 0.010701746 [ Info: Inclusion checked with probability 0.995 in 0.006523944 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005153705 [ Info: Selecting generators in 0.014078318 [ Info: Inclusion checked with probability 0.995 in 0.011111314 seconds [ Info: The search for identifiable functions concluded in 0.124111591 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001981853 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001287099 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.331e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107939 [ Info: Selecting generators in 0.000593805 [ Info: Inclusion checked with probability 0.995 in 0.002835965 seconds [ Info: The search for identifiable functions concluded in 0.013665191 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002129812 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001283229 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.3609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105879 [ Info: Selecting generators in 0.000555155 [ Info: Inclusion checked with probability 0.995 in 0.002907835 seconds [ Info: The search for identifiable functions concluded in 0.013756311 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001912823 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001267419 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.419e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.1569e-5 [ Info: Selecting generators in 0.000588145 [ Info: Inclusion checked with probability 0.995 in 0.002860415 seconds [ Info: The search for identifiable functions concluded in 0.013459613 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002037742 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001286938 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.388e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005681961 [ Info: Selecting generators in 0.000699484 [ Info: Inclusion checked with probability 0.995 in 0.002961904 seconds [ Info: The search for identifiable functions concluded in 0.01957885 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002005932 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001269479 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.401e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006061307 [ Info: Selecting generators in 0.000748843 [ Info: Inclusion checked with probability 0.995 in 0.003155722 seconds [ Info: The search for identifiable functions concluded in 0.020115905 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002100932 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001413948 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6269e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006423094 [ Info: Selecting generators in 0.000746403 [ Info: Inclusion checked with probability 0.995 in 0.003368281 seconds [ Info: The search for identifiable functions concluded in 0.021615122 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003518479 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002396879 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.809e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002810436 [ Info: Selecting generators in 0.000940952 [ Info: Inclusion checked with probability 0.995 in 0.002176711 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120129 [ Info: Selecting generators in 0.005436722 [ Info: Inclusion checked with probability 0.995 in 0.004364202 seconds [ Info: The search for identifiable functions concluded in 0.038295267 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003469509 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002383799 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.473e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002722436 [ Info: Selecting generators in 0.000942022 [ Info: Inclusion checked with probability 0.995 in 0.002190661 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000143409 [ Info: Selecting generators in 0.005361084 [ Info: Inclusion checked with probability 0.995 in 0.004289292 seconds [ Info: The search for identifiable functions concluded in 0.037762481 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00346833 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002597937 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.773e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002680067 [ Info: Selecting generators in 0.000930122 [ Info: Inclusion checked with probability 0.995 in 0.002177971 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000175569 [ Info: Selecting generators in 0.005480613 [ Info: Inclusion checked with probability 0.995 in 0.004382842 seconds [ Info: The search for identifiable functions concluded in 0.038821122 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00344522 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010231311 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.9119e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002928595 [ Info: Selecting generators in 0.000940932 [ Info: Inclusion checked with probability 0.995 in 0.002554878 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.030236187 [ Info: Selecting generators in 0.005429743 [ Info: Inclusion checked with probability 0.995 in 0.00456053 seconds [ Info: The search for identifiable functions concluded in 0.078465287 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004019515 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002639647 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.399e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002748246 [ Info: Selecting generators in 0.000941322 [ Info: Inclusion checked with probability 0.995 in 0.00220268 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.030648534 [ Info: Selecting generators in 0.005366523 [ Info: Inclusion checked with probability 0.995 in 0.004534841 seconds [ Info: The search for identifiable functions concluded in 0.069621935 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003600589 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002277051 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.533e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002652527 [ Info: Selecting generators in 0.000905422 [ Info: Inclusion checked with probability 0.995 in 0.002025393 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.813074647 [ Info: Selecting generators in 0.008316528 [ Info: Inclusion checked with probability 0.995 in 0.004942157 seconds [ Info: The search for identifiable functions concluded in 0.854351648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002313429 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001519107 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.864e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000400227 [ Info: Selecting generators in 0.000605615 [ Info: Inclusion checked with probability 0.995 in 0.001633275 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101319 [ Info: Selecting generators in 0.001399847 [ Info: Inclusion checked with probability 0.995 in 0.002672576 seconds [ Info: The search for identifiable functions concluded in 0.022919041 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001844004 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001364348 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.835e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000380147 [ Info: Selecting generators in 0.000846942 [ Info: Inclusion checked with probability 0.995 in 0.001593787 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6759e-5 [ Info: Selecting generators in 0.001374948 [ Info: Inclusion checked with probability 0.995 in 0.002895735 seconds [ Info: The search for identifiable functions concluded in 0.022627373 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001892473 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001262659 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.6709e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000360056 [ Info: Selecting generators in 0.000620634 [ Info: Inclusion checked with probability 0.995 in 0.001603966 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.683e-5 [ Info: Selecting generators in 0.001347238 [ Info: Inclusion checked with probability 0.995 in 0.002644667 seconds [ Info: The search for identifiable functions concluded in 0.021279435 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002010782 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001295378 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.7e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000363997 [ Info: Selecting generators in 0.000570045 [ Info: Inclusion checked with probability 0.995 in 0.001561817 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005248065 [ Info: Selecting generators in 0.001504317 [ Info: Inclusion checked with probability 0.995 in 0.002555698 seconds [ Info: The search for identifiable functions concluded in 0.026565229 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001850934 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001462517 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.726e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000369927 [ Info: Selecting generators in 0.000569215 [ Info: Inclusion checked with probability 0.995 in 0.001638566 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005079116 [ Info: Selecting generators in 0.001475757 [ Info: Inclusion checked with probability 0.995 in 0.002695997 seconds [ Info: The search for identifiable functions concluded in 0.026467129 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002130832 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001344479 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.726e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000360977 [ Info: Selecting generators in 0.000539935 [ Info: Inclusion checked with probability 0.995 in 0.001536617 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005170595 [ Info: Selecting generators in 0.001439008 [ Info: Inclusion checked with probability 0.995 in 0.002676247 seconds [ Info: The search for identifiable functions concluded in 0.026220352 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001265779 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00114737 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.893e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005452242 [ Info: Selecting generators in 0.002319789 [ Info: Inclusion checked with probability 0.995 in 0.002477309 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100789 [ Info: Selecting generators in 0.00227741 [ Info: Inclusion checked with probability 0.995 in 0.003379071 seconds [ Info: The search for identifiable functions concluded in 0.033780126 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001246449 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001107311 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.871e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004861938 [ Info: Selecting generators in 0.002116001 [ Info: Inclusion checked with probability 0.995 in 0.002670557 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114299 [ Info: Selecting generators in 0.002860615 [ Info: Inclusion checked with probability 0.995 in 0.004442721 seconds [ Info: The search for identifiable functions concluded in 0.035089595 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00119725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001068011 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.683e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004859827 [ Info: Selecting generators in 0.001990002 [ Info: Inclusion checked with probability 0.995 in 0.002387759 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6169e-5 [ Info: Selecting generators in 0.00234299 [ Info: Inclusion checked with probability 0.995 in 0.003343081 seconds [ Info: The search for identifiable functions concluded in 0.032058482 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00120226 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001079521 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.933e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004902637 [ Info: Selecting generators in 0.002166571 [ Info: Inclusion checked with probability 0.995 in 0.00232846 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014003428 [ Info: Selecting generators in 0.002387179 [ Info: Inclusion checked with probability 0.995 in 0.003298041 seconds [ Info: The search for identifiable functions concluded in 0.046284707 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001300889 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001067401 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.7049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004936378 [ Info: Selecting generators in 0.002005252 [ Info: Inclusion checked with probability 0.995 in 0.00235311 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013997128 [ Info: Selecting generators in 0.002575527 [ Info: Inclusion checked with probability 0.995 in 0.003247371 seconds [ Info: The search for identifiable functions concluded in 0.045727903 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00120303 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00113756 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.81e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005012807 [ Info: Selecting generators in 0.002097302 [ Info: Inclusion checked with probability 0.995 in 0.00234176 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014369805 [ Info: Selecting generators in 0.002488888 [ Info: Inclusion checked with probability 0.995 in 0.003244152 seconds [ Info: The search for identifiable functions concluded in 0.046967782 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006595953 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005243544 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.682e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014103877 [ Info: Selecting generators in 0.00459072 [ Info: Inclusion checked with probability 0.995 in 0.004883717 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000155509 [ Info: Selecting generators in 0.029137476 [ Info: Inclusion checked with probability 0.995 in 0.010958114 seconds [ Info: The search for identifiable functions concluded in 0.139338638 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006655662 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005420783 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.84e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013999628 [ Info: Selecting generators in 0.00454913 [ Info: Inclusion checked with probability 0.995 in 0.004711199 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000160699 [ Info: Selecting generators in 0.027124124 [ Info: Inclusion checked with probability 0.995 in 0.010057292 seconds [ Info: The search for identifiable functions concluded in 0.130559444 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005627681 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004927788 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.5759e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012816228 [ Info: Selecting generators in 0.004062204 [ Info: Inclusion checked with probability 0.995 in 0.004712089 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000167719 [ Info: Selecting generators in 0.026255372 [ Info: Inclusion checked with probability 0.995 in 0.010025993 seconds [ Info: The search for identifiable functions concluded in 0.127256113 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005591201 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004840598 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 1.881e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012579121 [ Info: Selecting generators in 0.004018315 [ Info: Inclusion checked with probability 0.995 in 0.004444671 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.1183986 [ Info: Selecting generators in 0.0322268 [ Info: Inclusion checked with probability 0.995 in 0.011016164 seconds [ Info: The search for identifiable functions concluded in 0.249669588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006165326 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005563392 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.224e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01378733 [ Info: Selecting generators in 0.004488661 [ Info: Inclusion checked with probability 0.995 in 0.004902728 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.113300064 [ Info: Selecting generators in 0.029366924 [ Info: Inclusion checked with probability 0.995 in 0.010587998 seconds [ Info: The search for identifiable functions concluded in 0.250187853 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006359454 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005887728 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.511e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015685123 [ Info: Selecting generators in 0.005500722 [ Info: Inclusion checked with probability 0.995 in 0.005199024 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.130615374 [ Info: Selecting generators in 0.035789019 [ Info: Inclusion checked with probability 0.995 in 0.011931146 seconds [ Info: The search for identifiable functions concluded in 0.287657677 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.231692195 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.416509726 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001805224 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 [ Info: Search for polynomial generators concluded in 10.12692113 [ Info: Selecting generators in 0.083189135 [ Info: Inclusion checked with probability 0.995 in 6.497240999 seconds [ Info: Simplifying generating set. Simplification level: weak ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 41 running 1 of 1 signal (10): User defined signal 1 SmallVectorBase at /source/usr/include/llvm/ADT/SmallVector.h:64 [inlined] SmallVectorTemplateCommon at /source/usr/include/llvm/ADT/SmallVector.h:135 [inlined] SmallVectorTemplateBase at /source/usr/include/llvm/ADT/SmallVector.h:487 [inlined] SmallVectorImpl at /source/usr/include/llvm/ADT/SmallVector.h:588 [inlined] SmallVector at /source/usr/include/llvm/ADT/SmallVector.h:1246 [inlined] jl_cgval_t at /source/src/codegen.cpp:1691 [inlined] _Head_base at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/tuple:133 [inlined] _Tuple_impl at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/tuple:231 [inlined] tuple at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/tuple:642 [inlined] _Construct, _jl_value_t*>, std::tuple, _jl_value_t*> > at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/bits/stl_construct.h:75 [inlined] __uninit_copy, _jl_value_t*>*>, std::tuple, _jl_value_t*>*> at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/bits/stl_uninitialized.h:83 [inlined] uninitialized_copy, _jl_value_t*>*>, std::tuple, _jl_value_t*>*> at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/bits/stl_uninitialized.h:134 [inlined] uninitialized_move, _jl_value_t*>*, std::tuple, _jl_value_t*>*> at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/bits/stl_uninitialized.h:868 [inlined] uninitialized_move, _jl_value_t*>*, std::tuple, _jl_value_t*>*> at /source/usr/include/llvm/ADT/SmallVector.h:349 [inlined] moveElementsForGrow at /source/usr/include/llvm/ADT/SmallVector.h:453 [inlined] grow at /source/usr/include/llvm/ADT/SmallVector.h:436 reserveForParamAndGetAddressImpl, _jl_value_t*>, false> > at /source/usr/include/llvm/ADT/SmallVector.h:243 [inlined] reserveForParamAndGetAddress at /source/usr/include/llvm/ADT/SmallVector.h:384 [inlined] push_back at /source/usr/include/llvm/ADT/SmallVector.h:420 [inlined] emit_phinode_assign at /source/src/codegen.cpp:5844 [inlined] emit_ssaval_assign at /source/src/codegen.cpp:5854 emit_stmtpos at /source/src/codegen.cpp:6173 emit_function at /source/src/codegen.cpp:9414 jl_emit_code at /source/src/codegen.cpp:9793 jl_emit_codeinst at /source/src/codegen.cpp:9864 jl_emit_codeinst_to_jit_impl at /source/src/jitlayers.cpp:820 add_codeinsts_to_jit! at ./../usr/share/julia/Compiler/src/typeinfer.jl:1698 typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1705 [inlined] typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1713 jfptr_typeinf_ext_toplevel_87872.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_type_infer at /source/src/gf.c:463 jl_compile_method_internal at /source/src/gf.c:3636 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner_learn2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:114 groebner_learn2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:92 unknown function (ip: 0x765bc0b68827) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner_learn1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:61 unknown function (ip: 0x765b9b927f67) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner_learn1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:37 unknown function (ip: 0x765b9b922f30) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner_learn0 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:13 #groebner_learn#197 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:341 [inlined] groebner_learn at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:339 unknown function (ip: 0x765b9b91cef7) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #discover_shape!#60 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:187 discover_shape! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:169 [inlined] _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:129 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x765b9bde5ef4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x765b9a57c7b9) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x765b9a57c094) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:3003 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3063 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x765ba01da502) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:730 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:3003 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3063 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_54631.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_65414.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x765beba5c249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_38735.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007ae1c97fe2c0 Total snapshots: 413. Utilization: 0% ╎413 @Base/task.jl:1168 wait_forever() 412╎ 413 @Base/task.jl:1246 wait() [41] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 ComputeLiveness at /source/src/llvm-late-gc-lowering.cpp:1635 runOnFunction at /source/src/llvm-late-gc-lowering.cpp:2598 run at /source/src/llvm-late-gc-lowering.cpp:2642 run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:787 operator() at /source/src/jitlayers.cpp:1508 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1469 [inlined] operator() at /source/src/jitlayers.cpp:1644 [inlined] addModule at /source/src/jitlayers.cpp:2101 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f_invokelatest at /source/src/builtins.c:889 profile_printing_listener at ./Base.jl:337 #start_profile_listener##0 at ./Base.jl:355 jfptr_YY.start_profile_listenerYY.YY.0_15778.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) Allocations: 1441117595 (Pool: 1441113969; Big: 3626); GC: 639 PkgEval terminated after 2737.23s: test duration exceeded the time limit