Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1299 (6d6224db99*) started at 2025-11-27T14:57:06 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.73s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.04s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1314.0 ms ✓ Measurements 4995.9 ms ✓ StatsBase 2099.8 ms ✓ EarCut_jll 24246.0 ms ✓ GeometryBasics 8653.6 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 43 seconds. 54 already precompiled. Precompilation completed after 53.41s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_yzOGeV/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_yzOGeV/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:14 Bin 1 progress: 48%|████████████████ | ETA: 0:00:05 Bin 1 progress: 88%|█████████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001204996349672396 Iteration 10: d = 1.4503756393353386e-5 Iteration 20: d = 2.3077404042274362e-7 Iteration 30: d = 3.984915292883904e-9 Iteration 40: d = 7.023102234834089e-11 Iteration 50: d = 1.2488249529917656e-12 Iteration 60: d = 2.2322796473535715e-14 Converged after 66 iterations. d = 1.989437549910235e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010625635623458165 Iteration 10: d = 1.4201640720189183e-5 Iteration 20: d = 2.4832679469310267e-7 Iteration 30: d = 4.425818387938527e-9 Iteration 40: d = 7.848054011369521e-11 Iteration 50: d = 1.3864145560239728e-12 Iteration 60: d = 2.4423218940201815e-14 Converged after 66 iterations. d = 2.1522757710451613e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012289916675834063 Iteration 10: d = 1.8898572363412627e-5 Iteration 20: d = 3.114432286427823e-7 Iteration 30: d = 5.32914717361195e-9 Iteration 40: d = 9.254712189872254e-11 Iteration 50: d = 1.6199535673248347e-12 Iteration 60: d = 2.8501890211203547e-14 Converged after 67 iterations. d = 1.6813874205749324e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013062483950642926 Iteration 10: d = 2.0197681640583086e-5 Iteration 20: d = 3.2631395457352766e-7 Iteration 30: d = 5.531043263508833e-9 Iteration 40: d = 9.57178666940115e-11 Iteration 50: d = 1.6754606572284593e-12 Iteration 60: d = 2.951439182125225e-14 Converged after 67 iterations. d = 1.7241748761594607e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010753043662079147 Iteration 10: d = 1.1276697127552821e-5 Iteration 20: d = 1.6625865912067264e-7 Iteration 30: d = 2.589648762233464e-9 Iteration 40: d = 4.035756897359647e-11 Iteration 50: d = 6.272804328981301e-13 Iteration 60: d = 9.724615746479755e-15 Converged after 64 iterations. d = 1.8076407078009278e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010248877222084386 Iteration 10: d = 9.43294994412175e-6 Iteration 20: d = 1.291867254343372e-7 Iteration 30: d = 1.9653346354996526e-9 Iteration 40: d = 3.02471082043818e-11 Iteration 50: d = 4.673188572561463e-13 Iteration 60: d = 7.247999067994718e-15 Converged after 63 iterations. d = 2.088068411537308e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011417647312461038 Iteration 10: d = 6.909663819636439e-6 Iteration 20: d = 7.043552729157438e-8 Iteration 30: d = 9.53952600693634e-10 Iteration 40: d = 1.3890530952425834e-11 Iteration 50: d = 2.0840340597026856e-13 Iteration 60: d = 3.2149850532080085e-15 Converged after 61 iterations. d = 2.1044831068456912e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001153699728539769 Iteration 10: d = 8.61366072084662e-6 Iteration 20: d = 1.0228103647177787e-7 Iteration 30: d = 1.5483655813864052e-9 Iteration 40: d = 2.406892729659279e-11 Iteration 50: d = 3.7391297358753334e-13 Iteration 60: d = 5.782363747109684e-15 Converged after 63 iterations. d = 1.6634583995679696e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010443563414355029 Iteration 10: d = 8.49171216404237e-6 Iteration 20: d = 1.1901486754244479e-7 Iteration 30: d = 1.8263017874390791e-9 Iteration 40: d = 2.82131047311121e-11 Iteration 50: d = 4.3664849681589445e-13 Iteration 60: d = 6.736664639045006e-15 Converged after 63 iterations. d = 1.966881311863802e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001234008816608306 Iteration 10: d = 1.0752126501133395e-5 Iteration 20: d = 1.325630382306185e-7 Iteration 30: d = 1.8570430524984413e-9 Iteration 40: d = 2.7289087995289937e-11 Iteration 50: d = 4.118117506079764e-13 Iteration 60: d = 6.293260625935262e-15 Converged after 63 iterations. d = 1.8159279655598777e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004825080906753896 Iteration 10: d = 6.0216439248172544e-5 Iteration 20: d = 7.824716642712022e-7 Iteration 30: d = 1.0588579014144897e-8 Iteration 40: d = 1.4404659454004908e-10 Iteration 50: d = 1.9646424743641964e-12 Iteration 60: d = 2.687687873769606e-14 Converged after 66 iterations. d = 2.082658483115791e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003535037269806703 Iteration 10: d = 3.341748202425176e-5 Iteration 20: d = 4.6624537597640483e-7 Iteration 30: d = 7.521549392488017e-9 Iteration 40: d = 1.2389210660247238e-10 Iteration 50: d = 2.0516556869650885e-12 Iteration 60: d = 3.408231890435424e-14 Converged after 67 iterations. d = 1.92263860240296e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002277192133472981 Iteration 10: d = 1.4409999542924033e-5 Iteration 20: d = 1.5281835802106707e-7 Iteration 30: d = 2.427818677065423e-9 Iteration 40: d = 4.091907114753557e-11 Iteration 50: d = 6.915969628831383e-13 Iteration 60: d = 1.164288858548239e-14 Converged after 65 iterations. d = 1.5239813585881124e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018696569696327687 Iteration 10: d = 2.3129265751190803e-5 Iteration 20: d = 3.749831374356455e-7 Iteration 30: d = 6.430651657267253e-9 Iteration 40: d = 1.1166481524584534e-10 Iteration 50: d = 1.9519708027906645e-12 Iteration 60: d = 3.4264811416032975e-14 Converged after 67 iterations. d = 2.0041668169070158e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010753043662079147 Iteration 10: d = 1.1276697127552821e-5 Iteration 20: d = 1.6625865912067264e-7 Iteration 30: d = 2.589648762233464e-9 Iteration 40: d = 4.035756897359647e-11 Iteration 50: d = 6.272804328981301e-13 Iteration 60: d = 9.724615746479755e-15 Converged after 64 iterations. d = 1.8076407078009278e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015331972983284527 Iteration 10: d = 1.5279742750578094e-5 Iteration 20: d = 1.7619016010053039e-7 Iteration 30: d = 2.2927498181665587e-9 Iteration 40: d = 3.0475463533543534e-11 Iteration 50: d = 4.079922176855317e-13 Iteration 60: d = 5.5112872255723085e-15 Converged after 63 iterations. d = 1.5275802322284153e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017909295936647154 Iteration 10: d = 1.8131897393469084e-5 Iteration 20: d = 1.9407685165316906e-7 Iteration 30: d = 2.4880344931469314e-9 Iteration 40: d = 3.364381893924667e-11 Iteration 50: d = 4.635727048456594e-13 Iteration 60: d = 6.448936164754658e-15 Converged after 63 iterations. d = 1.791813049069246e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.512062216952 Iteration 2: convergence error = 4829.497754421144 Iteration 3: convergence error = 1095.9077445920043 Iteration 4: convergence error = 319.4031418144584 Iteration 5: convergence error = 94.6812000647883 Iteration 6: convergence error = 28.224189645258548 Iteration 7: convergence error = 8.479130612471408 Iteration 8: convergence error = 2.541198090547823 Iteration 9: convergence error = 0.759804517502289 Iteration 10: convergence error = 0.22686879110119662 Iteration 11: convergence error = 0.06768792660227518 Iteration 12: convergence error = 0.02018628663063282 Iteration 13: convergence error = 0.006018561900646091 Iteration 14: convergence error = 0.0017941829794381192 Iteration 15: convergence error = 0.0005348166894236783 Iteration 16: convergence error = 0.00015941256197038456 Iteration 17: convergence error = 4.751471988129197e-5 Iteration 18: convergence error = 1.4162078969093272e-5 Iteration 19: convergence error = 4.221057679387741e-6 Iteration 20: convergence error = 1.2581010651047109e-6 Iteration 21: convergence error = 3.74975797967636e-7 Iteration 22: convergence error = 1.1162273949594237e-7 Iteration 23: convergence error = 3.23593667417299e-8 Iteration 24: convergence error = 9.326640793005936e-9 Iteration 25: convergence error = 2.6791440177476034e-9 Iteration 26: convergence error = 7.712515071034431e-10 Iteration 27: convergence error = 2.2100721253082156e-10 Iteration 28: convergence error = 6.411937647499144e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015331972983284527 Iteration 10: d = 1.5279742750578094e-5 Iteration 20: d = 1.7619016010053039e-7 Iteration 30: d = 2.2927498181665587e-9 Iteration 40: d = 3.0475463533543534e-11 Iteration 50: d = 4.079922176855317e-13 Iteration 60: d = 5.5112872255723085e-15 Converged after 63 iterations. d = 1.5275802322284153e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.54765704137 Iteration 2: convergence error = 4819.889716311753 Iteration 3: convergence error = 1099.5485235051183 Iteration 4: convergence error = 320.84498707867783 Iteration 5: convergence error = 95.28014263756972 Iteration 6: convergence error = 28.43785032687174 Iteration 7: convergence error = 8.535250992065357 Iteration 8: convergence error = 2.5606521311049164 Iteration 9: convergence error = 0.7664175547340619 Iteration 10: convergence error = 0.2290824322210483 Iteration 11: convergence error = 0.06841994330079615 Iteration 12: convergence error = 0.02042598458547218 Iteration 13: convergence error = 0.006096417908111107 Iteration 14: convergence error = 0.001819300337047025 Iteration 15: convergence error = 0.0005428732399650471 Iteration 16: convergence error = 0.00016198392177102505 Iteration 17: convergence error = 4.833186744690465e-5 Iteration 18: convergence error = 1.442076290913974e-5 Iteration 19: convergence error = 4.302675506551168e-6 Iteration 20: convergence error = 1.2837697340728482e-6 Iteration 21: convergence error = 3.8303005567286164e-7 Iteration 22: convergence error = 1.1414931577746756e-7 Iteration 23: convergence error = 3.314858076919336e-8 Iteration 24: convergence error = 9.570612746756524e-9 Iteration 25: convergence error = 2.750311978161335e-9 Iteration 26: convergence error = 7.885319064371288e-10 Iteration 27: convergence error = 2.2441781766247004e-10 Iteration 28: convergence error = 6.366462912410498e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 8:59:20 Bin 1 ray tracing: 13%|████ | ETA: 0:00:27 Bin 1 ray tracing: 27%|████████▏ | ETA: 0:00:14 Bin 1 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 54%|████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 2 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▊ | ETA: 0:00:10 Bin 3 ray tracing: 24%|███████▍ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 44%|█████████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 4 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 13%|████ | ETA: 0:00:07 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 42%|████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 56%|████████████████▊ | ETA: 0:00:04 Bin 5 ray tracing: 66%|███████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 6 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 6 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 37%|███████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:07 Bin 8 ray tracing: 35%|██████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 9 ray tracing: 33%|█████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 42%|████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 60%|█████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 68%|████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 44%|████████████▊ | ETA: 0:00:05 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 5 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 33%|███████████ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 9 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 36%|███████████▍ | ETA: 0:00:02 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:03 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015331972983284527 Iteration 10: d = 1.5279742750578094e-5 Iteration 20: d = 1.7619016010053039e-7 Iteration 30: d = 2.2927498181665587e-9 Iteration 40: d = 3.0475463533543534e-11 Iteration 50: d = 4.079922176855317e-13 Iteration 60: d = 5.5112872255723085e-15 Converged after 63 iterations. d = 1.5275802322284153e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017927921476104803 Iteration 10: d = 1.8276140775234236e-5 Iteration 20: d = 1.9659690067921661e-7 Iteration 30: d = 2.524039715038366e-9 Iteration 40: d = 3.411319017462037e-11 Iteration 50: d = 4.695128399796038e-13 Iteration 60: d = 6.505376913734131e-15 Converged after 63 iterations. d = 1.814651947301117e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001276135782833838 Iteration 10: d = 1.2818912725824687e-5 Iteration 20: d = 1.3269375512639677e-7 Iteration 30: d = 1.6651758989187996e-9 Iteration 40: d = 2.2255001432494003e-11 Iteration 50: d = 3.044099772479153e-13 Iteration 60: d = 4.213702190480141e-15 Converged after 62 iterations. d = 1.772915833713447e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001609253614322555 Iteration 10: d = 1.2596149095969341e-5 Iteration 20: d = 8.643043251301234e-8 Iteration 30: d = 8.621150623979533e-10 Iteration 40: d = 1.1058476567290003e-11 Iteration 50: d = 1.5322171646464594e-13 Converged after 60 iterations. d = 2.126656275960869e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014168494542069463 Iteration 10: d = 1.1077425636188054e-5 Iteration 20: d = 7.85814869142319e-8 Iteration 30: d = 7.325480918918948e-10 Iteration 40: d = 8.427917931058198e-12 Iteration 50: d = 1.0830711640261532e-13 Converged after 59 iterations. d = 2.2020239279091556e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001445724726700872 Iteration 10: d = 1.1644434576066746e-5 Iteration 20: d = 1.233581958396181e-7 Iteration 30: d = 1.68538135786756e-9 Iteration 40: d = 2.3834983203988676e-11 Iteration 50: d = 3.381619642533681e-13 Iteration 60: d = 4.836090637119872e-15 Converged after 62 iterations. d = 2.049300099785847e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016999414193701742 Iteration 10: d = 1.723936333363484e-5 Iteration 20: d = 1.8526022313612804e-7 Iteration 30: d = 2.3080046903856774e-9 Iteration 40: d = 2.993479116688575e-11 Iteration 50: d = 3.9361381466919453e-13 Iteration 60: d = 5.2138403513183675e-15 Converged after 62 iterations. d = 2.155621592400594e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014513508393958067 Iteration 10: d = 1.1466690153207258e-5 Iteration 20: d = 1.261366425371049e-7 Iteration 30: d = 1.6335566824282644e-9 Iteration 40: d = 2.1528191727763033e-11 Iteration 50: d = 2.844332927006006e-13 Iteration 60: d = 3.749178039208596e-15 Converged after 62 iterations. d = 1.6014709332124063e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001511876706430532 Iteration 10: d = 1.1163493083591386e-5 Iteration 20: d = 8.79965149323364e-8 Iteration 30: d = 8.21633000521884e-10 Iteration 40: d = 8.106459049397105e-12 Iteration 50: d = 8.418795807932704e-14 Converged after 59 iterations. d = 1.4882673110702897e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018609865252556413 Iteration 10: d = 1.8988846793383825e-5 Iteration 20: d = 2.3091450104358542e-7 Iteration 30: d = 3.211381001807298e-9 Iteration 40: d = 4.53933479932268e-11 Iteration 50: d = 6.435241065762451e-13 Iteration 60: d = 9.127359254087101e-15 Converged after 64 iterations. d = 1.65087470289511e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8653.710282854481 Iteration 2: convergence error = 4812.124018803038 Iteration 3: convergence error = 1089.8396945024863 Iteration 4: convergence error = 318.74477409601036 Iteration 5: convergence error = 94.63346695714722 Iteration 6: convergence error = 28.279288020606373 Iteration 7: convergence error = 8.478973933049474 Iteration 8: convergence error = 2.548877803288633 Iteration 9: convergence error = 0.7645709886442091 Iteration 10: convergence error = 0.22905974055902334 Iteration 11: convergence error = 0.06857637433085984 Iteration 12: convergence error = 0.020522367258308805 Iteration 13: convergence error = 0.0061401968309837685 Iteration 14: convergence error = 0.001836881814597291 Iteration 15: convergence error = 0.0005494752263075497 Iteration 16: convergence error = 0.00016436018086096738 Iteration 17: convergence error = 4.916255511488998e-5 Iteration 18: convergence error = 1.4705040030094096e-5 Iteration 19: convergence error = 4.398396868054988e-6 Iteration 20: convergence error = 1.315587269345997e-6 Iteration 21: convergence error = 3.9350152292172424e-7 Iteration 22: convergence error = 1.1757219908758998e-7 Iteration 23: convergence error = 3.4264758141944185e-8 Iteration 24: convergence error = 9.911218512570485e-9 Iteration 25: convergence error = 2.8608155844267458e-9 Iteration 26: convergence error = 8.208189683500677e-10 Iteration 27: convergence error = 2.369233698118478e-10 Iteration 28: convergence error = 6.821210263296962e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2771147920781 K, F = -7455.940522124746, relative_change = 0.0327228852079219 Iter 2: T = 936.6274416771297 K, F = -6320.270332740115, relative_change = 0.03168654840090657 Iter 3: T = 908.0197390323465 K, F = -5356.077352143858, relative_change = 0.030543310362077525 Iter 5: T = 856.7927061295056 K, F = -3842.8353240370134, relative_change = 0.02794111077486778 Iter 10: T = 761.4645889227072 K, F = -1664.1028713726116, relative_change = 0.020032031152349156 Iter 15: T = 705.5965025415936 K, F = -712.5393925718533, relative_change = 0.012018554398822257 Iter 20: T = 676.8401268940868 K, F = -302.01287689878995, relative_change = 0.006160364153567951 Iter 25: T = 663.4230808492822 K, F = -127.14525914934474, relative_change = 0.0028473275500925984 Iter 30: T = 657.5147611556613 K, F = -53.33369025814124, relative_change = 0.0012458439420899182 Iter 35: T = 654.9867777668074 K, F = -22.33386795799248, relative_change = 0.0005313231813717707 Iter 40: T = 653.919148087501 K, F = -9.345461446483535, relative_change = 0.00022405923235067004 Iter 45: T = 653.470801982343 K, F = -3.90929437561029, relative_change = 9.403241573053485e-5 Iter 50: T = 653.2829722024153 K, F = -1.6350733622661209, relative_change = 3.938317190786732e-5 Iter 55: T = 653.2043623349505 K, F = -0.6838351849160182, relative_change = 1.648062508576084e-5 Iter 60: T = 653.171476730368 K, F = -0.2859929368996446, relative_change = 6.894164470975245e-6 Iter 65: T = 653.1577218244684 K, F = -0.11960651814339418, relative_change = 2.8835316488600133e-6 Iter 70: T = 653.151969051825 K, F = -0.05002102409206577, relative_change = 1.2059815533047077e-6 Iter 75: T = 653.149563119951 K, F = -0.020919415850582657, relative_change = 5.043653649422971e-7 Iter 80: T = 653.1485569211245 K, F = -0.008748754119957902, relative_change = 2.1093327654261838e-7 Iter 85: T = 653.1481361151174 K, F = -0.0036588342548760644, relative_change = 8.821510519777725e-8 Iter 90: T = 653.1479601287327 K, F = -0.0015301683200485972, relative_change = 3.689266118159773e-8 Iter 95: T = 653.1478865290748 K, F = -0.0006399346891107216, relative_change = 1.5428960344057834e-8 Iter 100: T = 653.14785574881 K, F = -0.00026762833340754355, relative_change = 6.4525770204743745e-9 Iter 105: T = 653.1478428761342 K, F = -0.00011192536478626947, relative_change = 2.6985450135268076e-9 Iter 110: T = 653.1478374926272 K, F = -4.680852366567567e-5, relative_change = 1.128563782898216e-9 Iter 115: T = 653.1478352411802 K, F = -1.9575883378475378e-5, relative_change = 4.719788540983781e-10 Iter 120: T = 653.1478342995982 K, F = -8.18686828274462e-6, relative_change = 1.9738719640686805e-10 Iter 125: T = 653.1478339058175 K, F = -3.4238465763669623e-6, relative_change = 8.254969485714665e-11 Iter 130: T = 653.1478337411336 K, F = -1.4318929211776243e-6, relative_change = 3.4523253661278385e-11 Iter 135: T = 653.1478336722607 K, F = -5.988342814955416e-7, relative_change = 1.4438026409486261e-11 Iter 140: T = 653.1478336434574 K, F = -2.504393282198869e-7, relative_change = 6.03814735946914e-12 Iter 145: T = 653.1478336314115 K, F = -1.0473689293633015e-7, relative_change = 2.525229555889758e-12 Iter 150: T = 653.1478336263737 K, F = -4.380104967616205e-8, relative_change = 1.0560529544497802e-12 Iter 155: T = 653.1478336242669 K, F = -1.8318358496749454e-8, relative_change = 4.4165965780468123e-13 Converged in 159 iterations to T = 653.1478336235065 K Iter 1: T = 970.4107633361675 K, F = -6741.935720484652, relative_change = 0.02958923666383244 Iter 2: T = 942.9871325492683 K, F = -5710.159335202476, relative_change = 0.028259817206292937 Iter 3: T = 917.6839440753787 K, F = -4834.532315998124, relative_change = 0.026833015637747933 Iter 5: T = 873.2208107801139 K, F = -3461.3725353899918, relative_change = 0.023733073359472567 Iter 10: T = 794.3706096190376 K, F = -1489.6847164722544, relative_change = 0.015427571436175349 Iter 15: T = 751.4638951096866 K, F = -634.057246857285, relative_change = 0.008434727639862936 Iter 20: T = 730.6560033107893 K, F = -267.62085653760664, relative_change = 0.004054081094040936 Iter 25: T = 721.2957017628006 K, F = -112.4054747374216, relative_change = 0.0018091127454330893 Iter 30: T = 717.2497022818941 K, F = -47.09862649517252, relative_change = 0.000778483014943253 Iter 35: T = 715.5332247416029 K, F = -19.713210518137416, relative_change = 0.0003295642063612462 Iter 40: T = 714.8109960590342 K, F = -8.247127821289098, relative_change = 0.00013853876388122274 Iter 45: T = 714.5081774186319 K, F = -3.449544071569931, relative_change = 5.80638777543354e-5 Iter 50: T = 714.3813990546463 K, F = -1.4427275626993374, relative_change = 2.43049940098904e-5 Iter 55: T = 714.328354997822 K, F = -0.6033811306745394, relative_change = 1.0168489405936079e-5 Iter 60: T = 714.3061671683633 K, F = -0.2523438600176161, relative_change = 4.253257563907159e-6 Iter 65: T = 714.2968872232753 K, F = -0.10553368208600067, relative_change = 1.7788809933702163e-6 Iter 70: T = 714.2930061117481 K, F = -0.044135527722048984, relative_change = 7.439698959309705e-7 Iter 75: T = 714.2913829622274 K, F = -0.01845801904233657, relative_change = 3.111407019710856e-7 Iter 80: T = 714.2907041378079 K, F = -0.007719366491200863, relative_change = 1.3012338815388112e-7 Iter 85: T = 714.2904202446457 K, F = -0.0032283316906291937, relative_change = 5.441926524276143e-8 Iter 90: T = 714.2903015170155 K, F = -0.001350126944533736, relative_change = 2.2758805938244922e-8 Iter 95: T = 714.2902518636816 K, F = -0.0005646392248110921, relative_change = 9.518007804907656e-9 Iter 100: T = 714.2902310980609 K, F = -0.00023613887033702152, relative_change = 3.980545139699921e-9 Iter 105: T = 714.2902224136295 K, F = -9.87560954982536e-5, relative_change = 1.6647116086632727e-9 Iter 110: T = 714.2902187816966 K, F = -4.1300977872360534e-5, relative_change = 6.962022812955165e-10 Iter 115: T = 714.2902172627788 K, F = -1.727256174677283e-5, relative_change = 2.911601040254435e-10 Iter 120: T = 714.2902166275493 K, F = -7.223591829808029e-6, relative_change = 1.2176663707122493e-10 Iter 125: T = 714.2902163618888 K, F = -3.0209943076009438e-6, relative_change = 5.0924294556804474e-11 Iter 130: T = 714.2902162507862 K, F = -1.2634146576706584e-6, relative_change = 2.1297127260509266e-11 Iter 135: T = 714.2902162043218 K, F = -5.28374087704897e-7, relative_change = 8.906695930881902e-12 Iter 140: T = 714.2902161848899 K, F = -2.2097213892013912e-7, relative_change = 3.724882988418651e-12 Iter 145: T = 714.2902161767632 K, F = -9.241410070526257e-8, relative_change = 1.5578059447127622e-12 Iter 150: T = 714.2902161733646 K, F = -3.8647815059356105e-8, relative_change = 6.514784604462402e-13 Iter 155: T = 714.2902161719433 K, F = -1.6164052984990462e-8, relative_change = 2.724741964625891e-13 Converged in 157 iterations to T = 714.2902161716424 K Iter 1: T = 974.5224319420547 K, F = -5805.088117426694, relative_change = 0.025477568057945266 Iter 2: T = 951.2332932032191 K, F = -4911.16598430468, relative_change = 0.023898001703690313 Iter 3: T = 930.056960391365 K, F = -4153.09750227234, relative_change = 0.022261976071657558 Iter 5: T = 893.6855979407369 K, F = -2965.8950842238996, relative_change = 0.0189056314605999 Iter 10: T = 832.4955026357761 K, F = -1268.04384686648, relative_change = 0.011080644566729442 Iter 15: T = 801.482661509065 K, F = -536.8653301620303, relative_change = 0.005583003989665311 Iter 20: T = 787.1557602090126 K, F = -225.87158488432405, relative_change = 0.002555487754281125 Iter 25: T = 780.8794808362209 K, F = -94.71688870201429, relative_change = 0.0011128961450844032 Iter 30: T = 778.2005379248733 K, F = -39.65783472838878, relative_change = 0.0004736271099963266 Iter 35: T = 777.0703512092251 K, F = -16.593562873658254, relative_change = 0.00019954819687472864 Iter 40: T = 776.5959488597756 K, F = -6.941066290686852, relative_change = 8.371365454315335e-5 Iter 45: T = 776.3972409481719 K, F = -2.903089357166087, relative_change = 3.50557706838097e-5 Iter 50: T = 776.3140850506094 K, F = -1.2141508573572832, relative_change = 1.4668753879620575e-5 Iter 55: T = 776.2792988272661 K, F = -0.5077801258196488, relative_change = 6.1360504733387876e-6 Iter 60: T = 776.2647491624302 K, F = -0.21236106627163764, relative_change = 2.566414954553141e-6 Iter 65: T = 776.2586640300518 K, F = -0.08881217077038639, relative_change = 1.0733483042357763e-6 Iter 70: T = 776.2561191045069 K, F = -0.03714235185592529, relative_change = 4.488945865680051e-7 Iter 75: T = 776.2550547774163 K, F = -0.015533382358690506, relative_change = 1.8773439007708782e-7 Iter 80: T = 776.2546096615711 K, F = -0.006496247275620259, relative_change = 7.851299359874137e-8 Iter 85: T = 776.2544235085385 K, F = -0.002716808412332017, relative_change = 3.283511171679059e-8 Iter 90: T = 776.2543456570698 K, F = -0.0011362017613258946, relative_change = 1.3732042867351873e-8 Iter 95: T = 776.2543130986478 K, F = -0.00047517315344935973, relative_change = 5.7429055628544035e-9 Iter 100: T = 776.2542994823255 K, F = -0.00019872309005819488, relative_change = 2.4017519222031887e-9 Iter 105: T = 776.2542937878166 K, F = -8.3108371139895e-5, relative_change = 1.0044413915350703e-9 Iter 110: T = 776.2542914063048 K, F = -3.475691352738952e-5, relative_change = 4.2006939397363804e-10 Iter 115: T = 776.2542904103282 K, F = -1.4535754591205041e-5, relative_change = 1.7567801739836493e-10 Iter 120: T = 776.2542899937988 K, F = -6.079025873684252e-6, relative_change = 7.34706415982564e-11 Iter 125: T = 776.2542898196012 K, F = -2.542320604592696e-6, relative_change = 3.072629234497101e-11 Iter 130: T = 776.2542897467498 K, F = -1.0632305548208265e-6, relative_change = 1.2850123156423157e-11 Iter 135: T = 776.2542897162824 K, F = -4.4465410697913654e-7, relative_change = 5.374055525258984e-12 Iter 140: T = 776.2542897035406 K, F = -1.8596053097397203e-7, relative_change = 2.2475047533649846e-12 Iter 145: T = 776.2542896982118 K, F = -7.776974586537477e-8, relative_change = 9.399192000080588e-13 Iter 150: T = 776.2542896959833 K, F = -3.252488789406982e-8, relative_change = 3.9309330730081133e-13 Converged in 154 iterations to T = 776.2542896951788 K Iter 1: T = 970.3412638556262 K, F = -6757.771243237089, relative_change = 0.029658736144373865 Iter 2: T = 942.846793984772 K, F = -5723.679713117783, relative_change = 0.028334845579590835 Iter 3: T = 917.4718482141146 K, F = -4846.078609163762, relative_change = 0.026913116672343772 Iter 5: T = 872.8646027699151 K, F = -3469.7957020098893, relative_change = 0.023821090273318097 Iter 10: T = 793.6809018041581 K, F = -1493.496448285823, relative_change = 0.015515340103432869 Iter 15: T = 750.5314060369401 K, F = -635.7497586773727, relative_change = 0.008497203746048294 Iter 20: T = 729.5837716581717 K, F = -268.3544521762841, relative_change = 0.004088574292034179 Iter 25: T = 720.1549080896003 K, F = -112.71782678716686, relative_change = 0.001825540325589914 Iter 30: T = 716.0780659872288 K, F = -47.230326405123364, relative_change = 0.0007857579181632603 Iter 35: T = 714.3482737470107 K, F = -19.768484409675906, relative_change = 0.00033268206577630454 Iter 40: T = 713.6204009889606 K, F = -8.270278831325934, relative_change = 0.00013985623996739093 Iter 45: T = 713.3152084610334 K, F = -3.459232235605465, relative_change = 5.861725905880792e-5 Iter 50: T = 713.1874349365542 K, F = -1.4467803451239116, relative_change = 2.453684594017199e-5 Iter 55: T = 713.133974275552 K, F = -0.6050762412244128, relative_change = 1.0265526478625069e-5 Iter 60: T = 713.1116121443703 K, F = -0.2530528084881123, relative_change = 4.293852549749918e-6 Iter 65: T = 713.1022592914667 K, F = -0.10583017857610333, relative_change = 1.7958605623420227e-6 Iter 70: T = 713.0983476867891 K, F = -0.044259527106209395, relative_change = 7.510713499989038e-7 Iter 75: T = 713.0967117842783 K, F = -0.018509877240690864, relative_change = 3.141106840261698e-7 Iter 80: T = 713.0960276263378 K, F = -0.007741054238512679, relative_change = 1.313654821938618e-7 Iter 85: T = 713.0957415026215 K, F = -0.003237401771363446, relative_change = 5.4938725927056406e-8 Iter 90: T = 713.0956218421449 K, F = -0.0013539201610752727, relative_change = 2.2976050962085184e-8 Iter 95: T = 713.0955717986832 K, F = -0.0005662255938869709, relative_change = 9.608862340674267e-9 Iter 100: T = 713.0955508699061 K, F = -0.00023680230638134514, relative_change = 4.0185415609821045e-9 Iter 105: T = 713.095542117241 K, F = -9.903355420326498e-5, relative_change = 1.6806021986699217e-9 Iter 110: T = 713.0955384567718 K, F = -4.1417015061551155e-5, relative_change = 7.028479270074025e-10 Iter 115: T = 713.0955369259198 K, F = -1.73210899406806e-5, relative_change = 2.9393939337868553e-10 Iter 120: T = 713.0955362856993 K, F = -7.2438863684132215e-6, relative_change = 1.229289600844557e-10 Iter 125: T = 713.0955360179514 K, F = -3.0294801686148176e-6, relative_change = 5.141036571389889e-11 Iter 130: T = 713.095535905976 K, F = -1.2669658899788772e-6, relative_change = 2.1500447659087443e-11 Iter 135: T = 713.0955358591466 K, F = -5.298592449243245e-7, relative_change = 8.991726656453976e-12 Iter 140: T = 713.095535839562 K, F = -2.215936472094171e-7, relative_change = 3.760450579774049e-12 Iter 145: T = 713.0955358313714 K, F = -9.267446088312425e-8, relative_change = 1.5726882722766052e-12 Iter 150: T = 713.095535827946 K, F = -3.875778353812365e-8, relative_change = 6.577207037449935e-13 Iter 155: T = 713.0955358265136 K, F = -1.620891187936735e-8, relative_change = 2.750657017797094e-13 Converged in 157 iterations to T = 713.0955358262105 K Iter 1: T = 969.3107557671683 K, F = -6992.573491458478, relative_change = 0.030689244232831755 Iter 2: T = 940.7621537328365 K, F = -5924.212319569262, relative_change = 0.029452476271901843 Iter 3: T = 914.3151689114218 K, F = -5017.392215042697, relative_change = 0.02811229673353259 Iter 5: T = 867.5405180206226 K, F = -3594.8853259660204, relative_change = 0.025153452828877234 Iter 10: T = 783.2528127313478 K, F = -1550.3014112394717, relative_change = 0.016885972500297497 Iter 15: T = 736.293031967248 K, F = -661.0796733833351, relative_change = 0.009500635259620879 Iter 20: T = 713.1090992142188 K, F = -279.36981428914265, relative_change = 0.0046529508415967865 Iter 25: T = 702.570228103748 K, F = -117.41695683836129, relative_change = 0.0020969835078748136 Iter 30: T = 697.9911418932973 K, F = -49.21350693024068, relative_change = 0.0009065186926799703 Iter 35: T = 696.0439595110415 K, F = -20.60116242834427, relative_change = 0.00038454178154662984 Iter 40: T = 695.2238301134682 K, F = -8.619101377164556, relative_change = 0.0001617888286620341 Iter 45: T = 694.8798157783974 K, F = -3.605217461082791, relative_change = 6.783297815003356e-5 Iter 50: T = 694.7357643880958 K, F = -1.5078512709220437, relative_change = 2.8398573311697793e-5 Iter 55: T = 694.6754887379826 K, F = -0.6306200128157666, relative_change = 1.188187975534635e-5 Iter 60: T = 694.650275202474 K, F = -0.26373607554207595, relative_change = 4.970064108806913e-6 Iter 65: T = 694.6397296316907 K, F = -0.11029814583734199, relative_change = 2.0787011346339794e-6 Iter 70: T = 694.635319178521 K, F = -0.04612810140959034, relative_change = 8.693657962055631e-7 Iter 75: T = 694.6334746446811 K, F = -0.019291340309739002, relative_change = 3.635840832209148e-7 Iter 80: T = 694.6327032334148 K, F = -0.008067871950817374, relative_change = 1.5205606709313635e-7 Iter 85: T = 694.6323806191034 K, F = -0.003374080932061263, relative_change = 6.35918138249652e-8 Iter 90: T = 694.632245697787 K, F = -0.0014110810330137946, relative_change = 2.6594882319858504e-8 Iter 95: T = 694.6321892720534 K, F = -0.0005901309563381973, relative_change = 1.1122302008006029e-8 Iter 100: T = 694.6321656741329 K, F = -0.00024679981485498104, relative_change = 4.651480304223518e-9 Iter 105: T = 694.6321558051999 K, F = -0.00010321463104534523, relative_change = 1.9453047652109976e-9 Iter 110: T = 694.6321516778942 K, F = -4.3165592217286886e-5, relative_change = 8.135497240889816e-10 Iter 115: T = 694.6321499518056 K, F = -1.8052365796439318e-5, relative_change = 3.4023620740962867e-10 Iter 120: T = 694.6321492299346 K, F = -7.54971380778624e-6, relative_change = 1.422908240761052e-10 Iter 125: T = 694.6321489280398 K, F = -3.1573828791486847e-6, relative_change = 5.95077673360473e-11 Iter 130: T = 694.6321488017836 K, F = -1.3204552450352125e-6, relative_change = 2.4886859330916603e-11 Iter 135: T = 694.6321487489818 K, F = -5.52229881600752e-7, relative_change = 1.0407976671965126e-11 Iter 140: T = 694.6321487268995 K, F = -2.309506013098428e-7, relative_change = 4.3527678440820266e-12 Iter 145: T = 694.6321487176643 K, F = -9.658668076450994e-8, relative_change = 1.820386679404888e-12 Iter 150: T = 694.632148713802 K, F = -4.03935342951911e-8, relative_change = 7.61304262502576e-13 Iter 155: T = 694.6321487121869 K, F = -1.689334094834294e-8, relative_change = 3.183918589059014e-13 Converged in 158 iterations to T = 694.632148711714 K Iter 1: T = 963.6296252168734 K, F = -8287.024491493452, relative_change = 0.036370374783126595 Iter 2: T = 929.1413509523512 K, F = -7031.6893626249075, relative_change = 0.03578996884488709 Iter 3: T = 896.5019140449255 K, F = -5965.5818376060415, relative_change = 0.0351286022024216 Iter 5: T = 836.6514485065409 K, F = -4291.372130015743, relative_change = 0.03353398155920061 Iter 10: T = 717.4420202608939 K, F = -1874.9925831371384, relative_change = 0.0277490812901106 Iter 15: T = 638.3370331853527 K, F = -811.7094118044497, relative_change = 0.019801696934507985 Iter 20: T = 592.1486400923212 K, F = -347.45195240419037, relative_change = 0.011823035755360416 Iter 25: T = 568.4511711507377 K, F = -147.23439118958623, relative_change = 0.006038327262110744 Iter 30: T = 557.4176918614455 K, F = -61.97617633187374, relative_change = 0.002785157199932321 Iter 35: T = 552.5643809041654 K, F = -25.995443514832758, relative_change = 0.0012174149668965043 Iter 40: T = 550.4888767062822 K, F = -10.88545316035613, relative_change = 0.0005189648774144195 Iter 45: T = 549.6125392716255 K, F = -4.554887982020522, relative_change = 0.0002188052405608569 Iter 50: T = 549.2445611579668 K, F = -1.9053420172398663, relative_change = 9.181988836580408e-5 Iter 55: T = 549.0904069947786 K, F = -0.7969128180309302, relative_change = 3.8455179752532e-5 Iter 60: T = 549.0258920381859 K, F = -0.33329177168110985, relative_change = 1.609205625935549e-5 Iter 65: T = 548.9989030843875 K, F = -0.13938892905248018, relative_change = 6.731577784358085e-6 Iter 70: T = 548.9876145766553 K, F = -0.058294522344114336, relative_change = 2.815521506385835e-6 Iter 75: T = 548.9828933421293 K, F = -0.02437953671275575, relative_change = 1.1775363718566477e-6 Iter 80: T = 548.9809188224762 K, F = -0.01019582587270726, relative_change = 4.924688082037341e-7 Iter 85: T = 548.9800930472572 K, F = -0.004264018323164864, relative_change = 2.0595791708789758e-7 Iter 90: T = 548.9797476968838 K, F = -0.0017832637670399665, relative_change = 8.613433696077785e-8 Iter 95: T = 548.9796032670032 K, F = -0.0007457822705752848, relative_change = 3.602245671080336e-8 Iter 100: T = 548.979542864662 K, F = -0.0003118950628297201, relative_change = 1.5065030006252743e-8 Iter 105: T = 548.9795176036746 K, F = -0.00013043824151781624, relative_change = 6.300376912292546e-9 Iter 110: T = 548.9795070392267 K, F = -5.4550830648480986e-5, relative_change = 2.6348931222371236e-9 Iter 115: T = 548.9795026210483 K, F = -2.281380858140669e-5, relative_change = 1.1019438001548767e-9 Iter 120: T = 548.9795007733132 K, F = -9.541007041452554e-6, relative_change = 4.6084605678691404e-10 Iter 125: T = 548.9795000005685 K, F = -3.99016318958223e-6, relative_change = 1.9273133079023366e-10 Iter 130: T = 548.9794996773973 K, F = -1.66873381793331e-6, relative_change = 8.060254056927278e-11 Iter 135: T = 548.9794995422434 K, F = -6.978849289296374e-7, relative_change = 3.370897009346422e-11 Iter 140: T = 548.9794994857203 K, F = -2.9186409766790433e-7, relative_change = 1.40975076787449e-11 Iter 145: T = 548.9794994620817 K, F = -1.2206102775746963e-7, relative_change = 5.89574493810173e-12 Iter 150: T = 548.9794994521958 K, F = -5.104737385575042e-8, relative_change = 2.465670669570549e-12 Iter 155: T = 548.9794994480613 K, F = -2.1348689732691994e-8, relative_change = 1.0311762218815536e-12 Iter 160: T = 548.9794994463323 K, F = -8.928767197824428e-9, relative_change = 4.3127388802467784e-13 Converged in 164 iterations to T = 548.9794994457081 K Iter 1: T = 966.9511186571671 K, F = -7530.219051566607, relative_change = 0.033048881342832945 Iter 2: T = 935.9620533219427 K, F = -6383.798509433101, relative_change = 0.032048223263095005 Iter 3: T = 907.002298627581 K, F = -5410.444734170272, relative_change = 0.030941163257182214 Iter 5: T = 855.0389298235089 K, F = -3882.720471724577, relative_change = 0.02840869920620446 Iter 10: T = 757.8073866527519 K, F = -1682.574174195246, relative_change = 0.020600312836900156 Iter 15: T = 700.3015590151745 K, F = -721.0000432811304, relative_change = 0.012508364050906566 Iter 20: T = 670.4632251397219 K, F = -305.77917864339895, relative_change = 0.0064697825024512025 Iter 25: T = 656.4673678621414 K, F = -128.77534384011992, relative_change = 0.0030060755315386048 Iter 30: T = 650.2867568119351 K, F = -54.02666782024101, relative_change = 0.0013186890432565536 Iter 35: T = 647.6387699024633 K, F = -22.62579362943885, relative_change = 0.0005630392942712333 Iter 40: T = 646.5198090868786 K, F = -9.467929604236069, relative_change = 0.00023755212069304562 Iter 45: T = 646.049789867233 K, F = -3.9605796004286127, relative_change = 9.971608778494344e-5 Iter 50: T = 645.852859704342 K, F = -1.6565333406647005, relative_change = 4.176734162127761e-5 Iter 55: T = 645.7704375449769 K, F = -0.6928120876618504, relative_change = 1.7478975095684526e-5 Iter 60: T = 645.7359564721493 K, F = -0.28974754959212734, relative_change = 7.311907359328513e-6 Iter 65: T = 645.7215341259225 K, F = -0.1211768058333541, relative_change = 3.058275387849199e-6 Iter 70: T = 645.7155021873908 K, F = -0.05067774832057037, relative_change = 1.2790682376036366e-6 Iter 75: T = 645.7129794989958 K, F = -0.021194067717241916, relative_change = 5.349322725823061e-7 Iter 80: T = 645.7119244701461 K, F = -0.008863617151797787, relative_change = 2.2371692935011924e-7 Iter 85: T = 645.7114832426562 K, F = -0.00370687140700815, relative_change = 9.356141769209652e-8 Iter 90: T = 645.7112987157313 K, F = -0.0015502580411376754, relative_change = 3.9128559244455476e-8 Iter 95: T = 645.711221544312 K, F = -0.0006483364532409719, relative_change = 1.6364040748482904e-8 Iter 100: T = 645.711189270293 K, F = -0.0002711420518621832, relative_change = 6.843639007139188e-9 Iter 105: T = 645.7111757729111 K, F = -0.00011339484553740675, relative_change = 2.862091881468021e-9 Iter 110: T = 645.7111701281445 K, F = -4.7423078804953445e-5, relative_change = 1.1969610598060656e-9 Iter 115: T = 645.7111677674357 K, F = -1.9832897614258105e-5, relative_change = 5.005834112591945e-10 Iter 120: T = 645.711166780159 K, F = -8.294354514271074e-6, relative_change = 2.0934995924077782e-10 Iter 125: T = 645.7111663672682 K, F = -3.468799156081115e-6, relative_change = 8.755267970537708e-11 Iter 130: T = 645.7111661945922 K, F = -1.4506932312641219e-6, relative_change = 3.661557624824526e-11 Iter 135: T = 645.7111661223771 K, F = -6.066972235152512e-7, relative_change = 1.5313071006536813e-11 Iter 140: T = 645.7111660921759 K, F = -2.5372813888813184e-7, relative_change = 6.4041120635158604e-12 Iter 145: T = 645.7111660795454 K, F = -1.0611244771752126e-7, relative_change = 2.6782839678648124e-12 Iter 150: T = 645.711166074263 K, F = -4.437656719868954e-8, relative_change = 1.1200669764790453e-12 Iter 155: T = 645.711166072054 K, F = -1.8558725167761025e-8, relative_change = 4.684232354708158e-13 Converged in 160 iterations to T = 645.71116607113 K Iter 1: T = 965.3047866530072 K, F = -7905.3373647804565, relative_change = 0.03469521334699276 Iter 2: T = 932.5907259354367 K, F = -6704.791692307193, relative_change = 0.033889877238669514 Iter 3: T = 901.8284603787754 K, F = -5685.329717717472, relative_change = 0.032985815429169306 Iter 5: T = 846.0457455633855 K, F = -4084.748049547144, relative_change = 0.030863950575855614 Iter 10: T = 738.552943701225 K, F = -1776.9325153907937, relative_change = 0.02380060188195256 Iter 15: T = 671.62633525918 K, F = -764.8177126535506, relative_change = 0.01549458949574202 Iter 20: T = 635.1687983444149 K, F = -325.55786661032647, relative_change = 0.008482313772022345 Iter 25: T = 617.4744499495495 K, F = -137.41785299490908, relative_change = 0.0040803225162000575 Iter 30: T = 609.5111239321047 K, F = -57.71955341995155, relative_change = 0.0018216037980094727 Iter 35: T = 606.068199520181 K, F = -24.18518682807341, relative_change = 0.00078401338429556 Iter 40: T = 604.607424379836 K, F = -10.122809451594758, relative_change = 0.0003319341699357563 Iter 45: T = 603.9927589665054 K, F = -4.2349422552639195, relative_change = 0.0001395401701564254 Iter 50: T = 603.7350351127883 K, F = -1.771360329841849, relative_change = 5.848449268208011e-5 Iter 55: T = 603.6271353462402 K, F = -0.7408490593011616, relative_change = 2.4481219136055444e-5 Iter 60: T = 603.581989946998 K, F = -0.3098398033474939, relative_change = 1.0242244752881658e-5 Iter 65: T = 603.5631060260602 K, F = -0.12958008452041955, relative_change = 4.284112715040087e-6 Iter 70: T = 603.5552079191754 K, F = -0.05419217998233816, relative_change = 1.7917866979225346e-6 Iter 75: T = 603.5519047271149 K, F = -0.02266385903146728, relative_change = 7.493675151862606e-7 Iter 80: T = 603.5505232736051 K, F = -0.0094783038850218, relative_change = 3.1339810316066096e-7 Iter 85: T = 603.5499455299014 K, F = -0.0039639411684897485, relative_change = 1.3106746944578664e-7 Iter 90: T = 603.5497039099993 K, F = -0.0016577677615721154, relative_change = 5.481409292617613e-8 Iter 95: T = 603.5496028615682 K, F = -0.0006932983150786387, relative_change = 2.292392785094636e-8 Iter 100: T = 603.5495606018897 K, F = -0.000289945641423317, relative_change = 9.587063801875596e-9 Iter 105: T = 603.5495429283843 K, F = -0.00012125873158347344, relative_change = 4.009425189453835e-9 Iter 110: T = 603.5495355371128 K, F = -5.071184997768041e-5, relative_change = 1.6767896043763935e-9 Iter 115: T = 603.5495324459946 K, F = -2.1208301345776448e-5, relative_change = 7.012534566546947e-10 Iter 120: T = 603.5495311532521 K, F = -8.869565212121788e-6, relative_change = 2.932725835060652e-10 Iter 125: T = 603.5495306126118 K, F = -3.7093580983471597e-6, relative_change = 1.2265009741447656e-10 Iter 130: T = 603.5495303865096 K, F = -1.551298867696893e-6, relative_change = 5.129376903947939e-11 Iter 135: T = 603.5495302919509 K, F = -6.487719386716329e-7, relative_change = 2.145167427070042e-11 Iter 140: T = 603.5495302524051 K, F = -2.713236297302579e-7, relative_change = 8.9713284157303e-12 Iter 145: T = 603.5495302358668 K, F = -1.1347137091055615e-7, relative_change = 3.7519361486008624e-12 Iter 150: T = 603.5495302289502 K, F = -4.745429887931252e-8, relative_change = 1.5690785962378186e-12 Iter 155: T = 603.5495302260576 K, F = -1.9846765397790733e-8, relative_change = 6.562342195832791e-13 Iter 160: T = 603.5495302248479 K, F = -8.30002322427248e-9, relative_change = 2.744406533752767e-13 Converged in 162 iterations to T = 603.5495302245919 K Iter 1: T = 980.0912416565733 K, F = -4536.229526668044, relative_change = 0.019908758343426706 Iter 2: T = 962.2283909188156 K, F = -3831.8181317529275, relative_change = 0.018225701831153452 Iter 3: T = 946.2909077260733 K, F = -3235.2831763416443, relative_change = 0.016563098057753113 Iter 5: T = 919.6699463444037 K, F = -2303.192287510656, relative_change = 0.013388232019230778 Iter 10: T = 877.3836298424101 K, F = -977.8392101716679, relative_change = 0.007039824060163825 Iter 15: T = 857.3549077986437 K, F = -412.06955589544816, relative_change = 0.0033029363138108725 Iter 20: T = 848.4634822630935 K, F = -172.9357845290347, relative_change = 0.0014559218846712557 Iter 25: T = 844.6445942050879 K, F = -72.43415971070048, relative_change = 0.0006229892000557881 Iter 30: T = 843.0290695945757 K, F = -30.312507790887263, relative_change = 0.0002630932871842728 Iter 35: T = 842.3501492454271 K, F = -12.680522703882637, relative_change = 0.00011048150493174491 Iter 40: T = 842.0656364283996 K, F = -5.303755029392358, relative_change = 4.628435051800143e-5 Iter 45: T = 841.9465479177206 K, F = -2.218200362012298, relative_change = 1.9370637061643177e-5 Iter 50: T = 841.8967258388456 K, F = -0.9276965499239449, relative_change = 8.103477522923864e-6 Iter 55: T = 841.8758865279613 K, F = -0.38797704196925786, relative_change = 3.389399033173157e-6 Iter 60: T = 841.8671707330016 K, F = -0.16225720359331142, relative_change = 1.4175620175065146e-6 Iter 65: T = 841.8635255879069 K, F = -0.06785800020188315, relative_change = 5.928544596773009e-7 Iter 70: T = 841.862001127983 K, F = -0.028379043547595906, relative_change = 2.4794110552021055e-7 Iter 75: T = 841.8613635777139 K, F = -0.011868457983403191, relative_change = 1.0369233194756294e-7 Iter 80: T = 841.8610969460661 K, F = -0.004963531400470345, relative_change = 4.3365441615034755e-8 Iter 85: T = 841.8609854374373 K, F = -0.0020758082004126432, relative_change = 1.8135957814481184e-8 Iter 90: T = 841.8609388031815 K, F = -0.0008681277937323539, relative_change = 7.584676269284439e-9 Iter 95: T = 841.8609193001762 K, F = -0.0003630614167045021, relative_change = 3.172002595924081e-9 Iter 100: T = 841.8609111437859 K, F = -0.00015183662151208033, relative_change = 1.32656943880674e-9 Iter 105: T = 841.860907732686 K, F = -6.34998879409654e-5, relative_change = 5.547871883368089e-10 Iter 110: T = 841.8609063061232 K, F = -2.6556410967604194e-5, relative_change = 2.3201862506593712e-10 Iter 115: T = 841.8609057095176 K, F = -1.1106207474576024e-5, relative_change = 9.703295372957057e-11 Iter 120: T = 841.86090546001 K, F = -4.644749354687505e-6, relative_change = 4.0580346701297414e-11 Iter 125: T = 841.860905355663 K, F = -1.9424893618058547e-6, relative_change = 1.6971183112955495e-11 Iter 130: T = 841.8609053120239 K, F = -8.123745414145844e-7, relative_change = 7.097571483859106e-12 Iter 135: T = 841.8609052937735 K, F = -3.397452164044523e-7, relative_change = 2.9682933635263595e-12 Iter 140: T = 841.8609052861408 K, F = -1.420856967637718e-7, relative_change = 1.2413773922634149e-12 Iter 145: T = 841.8609052829488 K, F = -5.9420550480027146e-8, relative_change = 5.19146752158463e-13 Converged in 150 iterations to T = 841.8609052816138 K Iter 1: T = 976.2810596773612 K, F = -5404.383115050262, relative_change = 0.023718940322638785 Iter 2: T = 954.7268372936308 K, F = -4569.9587032473055, relative_change = 0.02207788645500674 Iter 3: T = 935.2470009347766 K, F = -3862.622298587344, relative_change = 0.02040357052711939 Iter 5: T = 902.0945191511616 K, F = -2755.613537635838, relative_change = 0.017047953382179064 Iter 10: T = 847.4045918594474 K, F = -1175.2941010079796, relative_change = 0.009622858629429947 Iter 15: T = 820.3490104392871 K, F = -496.7457192616806, relative_change = 0.004723080482810323 Iter 20: T = 808.0351092684843 K, F = -208.79444310042547, relative_change = 0.0021310716625304476 Iter 25: T = 802.6814982019846 K, F = -87.51615228971383, relative_change = 0.0009217590539144405 Iter 30: T = 800.4043269359313 K, F = -36.63553941230613, relative_change = 0.00039110083582688553 Iter 35: T = 799.4450943040038 K, F = -15.327659067147676, relative_change = 0.0001645653634014051 Iter 40: T = 799.042710581716 K, F = -6.411306902858753, relative_change = 6.90000889933112e-5 Iter 45: T = 798.8742141513803 K, F = -2.6814773653179316, relative_change = 2.888771615262613e-5 Iter 50: T = 798.8037092856306 K, F = -1.121459513036013, relative_change = 1.2086628010065904e-5 Iter 55: T = 798.7742167180858 K, F = -0.4690136499031651, relative_change = 5.055724291016942e-6 Iter 60: T = 798.7618814209451 K, F = -0.19614813963196986, relative_change = 2.1145308479334477e-6 Iter 65: T = 798.7567224506412 K, F = -0.0820316746494395, relative_change = 8.843511901779834e-7 Iter 70: T = 798.7545648723649 K, F = -0.03430665750708284, relative_change = 3.69851325349049e-7 Iter 75: T = 798.7536625411915 K, F = -0.014347459383628136, relative_change = 1.5467713253165466e-7 Iter 80: T = 798.7532851744394 K, F = -0.006000279820949417, relative_change = 6.468797994024585e-8 Iter 85: T = 798.7531273549683 K, F = -0.0025093888483529447, relative_change = 2.7053313018084876e-8 Iter 90: T = 798.7530613529476 K, F = -0.001049456413491856, relative_change = 1.1314023349393934e-8 Iter 95: T = 798.7530337501087 K, F = -0.00043889521096052153, relative_change = 4.7316605224765014e-9 Iter 100: T = 798.7530222062708 K, F = -0.00018355122054092288, relative_change = 1.9788370940475836e-9 Iter 105: T = 798.7530173784996 K, F = -7.676331184869323e-5, relative_change = 8.275733218873187e-10 Iter 110: T = 798.7530153594681 K, F = -3.210333563263834e-5, relative_change = 3.461010708511639e-10 Iter 115: T = 798.7530145150849 K, F = -1.3425997173466264e-5, relative_change = 1.4474358912553133e-10 Iter 120: T = 798.7530141619538 K, F = -5.614912234941372e-6, relative_change = 6.05334963742734e-11 Iter 125: T = 798.7530140142701 K, F = -2.3482216153780655e-6, relative_change = 2.5315812397038654e-11 Iter 130: T = 798.7530139525071 K, F = -9.820542646865604e-7, relative_change = 1.0587374451736752e-11 Iter 135: T = 798.7530139266771 K, F = -4.10706860076715e-7, relative_change = 4.427766850120625e-12 Iter 140: T = 798.7530139158747 K, F = -1.7176218802816834e-7, relative_change = 1.8517414638806484e-12 Iter 145: T = 798.753013911357 K, F = -7.183329375770597e-8, relative_change = 7.744235798861092e-13 Iter 150: T = 798.7530139094677 K, F = -3.004108506399206e-8, relative_change = 3.238682708557568e-13 Converged in 153 iterations to T = 798.7530139089145 K Iter 1: T = 980.7806918218096 K, F = -4379.1376506825445, relative_change = 0.01921930817819045 Iter 2: T = 963.5760588268788 K, F = -3698.414624178207, relative_change = 0.017541773750636376 Iter 3: T = 948.2607843218909 K, F = -3122.0552343243526, relative_change = 0.015894204058612423 Iter 5: T = 922.7616158922378 K, F = -2221.771997966712, relative_change = 0.012774481264216306 Iter 10: T = 882.5088280433756 K, F = -942.5673500072438, relative_change = 0.006640312844250513 Iter 15: T = 863.5727206993001 K, F = -397.02734202755164, relative_change = 0.003094297573156787 Iter 20: T = 855.1973469327254 K, F = -166.58549397345877, relative_change = 0.0013593376148519811 Iter 25: T = 851.6063945448503 K, F = -69.76723008897982, relative_change = 0.000580769910686799 Iter 30: T = 850.0884697798194 K, F = -29.195152587803168, relative_change = 0.0002451011940260783 Iter 35: T = 849.450776929198 K, F = -12.212874624021854, relative_change = 0.00010289708939803138 Iter 40: T = 849.1835785962628 K, F = -5.108116268995824, relative_change = 4.310188752384652e-5 Iter 45: T = 849.0717439854166 K, F = -2.1363708957683976, relative_change = 1.8037837564561486e-5 Iter 50: T = 849.0249578136559 K, F = -0.8934725640778708, relative_change = 7.5457598346263745e-6 Iter 55: T = 849.005388547459 K, F = -0.3736638254071434, relative_change = 3.156097952220911e-6 Iter 60: T = 848.9972039689569 K, F = -0.15627118654696703, relative_change = 1.3199827676571637e-6 Iter 65: T = 848.9937809969292 K, F = -0.06535456607519152, relative_change = 5.520439113134154e-7 Iter 70: T = 848.9923494545344 K, F = -0.027332075696275826, relative_change = 2.3087334235282517e-7 Iter 75: T = 848.9917507638526 K, F = -0.011430603206024514, relative_change = 9.65543362794932e-8 Iter 80: T = 848.9915003838126 K, F = -0.004780415249974634, relative_change = 4.038023728140288e-8 Iter 85: T = 848.9913956718116 K, F = -0.0019992268288009374, relative_change = 1.688750807466642e-8 Iter 90: T = 848.9913518799887 K, F = -0.0008361005509252006, relative_change = 7.062559420103595e-9 Iter 95: T = 848.9913335657228 K, F = -0.000349667236966944, relative_change = 2.953647009629089e-9 Iter 100: T = 848.9913259064778 K, F = -0.00014623501506538794, relative_change = 1.2352505120317837e-9 Iter 105: T = 848.9913227032899 K, F = -6.115722936739232e-5, relative_change = 5.165965224801085e-10 Iter 110: T = 848.9913213636786 K, F = -2.5576685128259058e-5, relative_change = 2.1604684891329408e-10 Iter 115: T = 848.991320803437 K, F = -1.0696475240212777e-5, relative_change = 9.035337323031681e-11 Iter 120: T = 848.9913205691373 K, F = -4.4733931481300004e-6, relative_change = 3.778685521848519e-11 Iter 125: T = 848.9913204711504 K, F = -1.8708260192124015e-6, relative_change = 1.580291059267911e-11 Iter 130: T = 848.9913204301711 K, F = -7.824029650826958e-7, relative_change = 6.608975917865222e-12 Iter 135: T = 848.991320413033 K, F = -3.272093780370966e-7, relative_change = 2.763945174372019e-12 Iter 140: T = 848.9913204058657 K, F = -1.3684206501274332e-7, relative_change = 1.1559080840751354e-12 Iter 145: T = 848.9913204028683 K, F = -5.7228695560240794e-8, relative_change = 4.834121133301291e-13 Converged in 150 iterations to T = 848.9913204016148 K Iter 1: T = 967.381544407646 K, F = -7432.146134879392, relative_change = 0.03261845559235401 Iter 2: T = 936.8404404422915 K, F = -6299.922013072596, relative_change = 0.03157089789639887 Iter 3: T = 908.3451780430303 K, F = -5338.665732700037, relative_change = 0.03041634537660266 Iter 5: T = 857.3526674951538 K, F = -3830.0667111306507, relative_change = 0.027792575432503987 Iter 10: T = 762.6259646018799 K, F = -1658.1998229418762, relative_change = 0.019854087060098388 Iter 15: T = 707.2687364727668 K, F = -709.842625718014, relative_change = 0.011867505802958336 Iter 20: T = 678.8459997700118 K, F = -300.81537436704315, relative_change = 0.006066050207915663 Iter 25: T = 665.60607262131 K, F = -126.6278109992514, relative_change = 0.0027992667875503738 Iter 30: T = 659.7807312008347 K, F = -53.11389920377977, relative_change = 0.0012238635939947923 Iter 35: T = 657.2892463968715 K, F = -22.241314099907164, relative_change = 0.0005217674716946108 Iter 40: T = 656.2372154151514 K, F = -9.306639983953204, relative_change = 0.00021999660585124705 Iter 45: T = 655.7954529858326 K, F = -3.8930385261905633, relative_change = 9.232156593327695e-5 Iter 50: T = 655.6103872123997 K, F = -1.6282714113356316, relative_change = 3.8665592528865305e-5 Iter 55: T = 655.5329351544015 K, F = -0.6809899036747726, relative_change = 1.618015958547591e-5 Iter 60: T = 655.5005340871018 K, F = -0.284802897042339, relative_change = 6.768442244923397e-6 Iter 65: T = 655.4869818778151 K, F = -0.11910881014529567, relative_change = 2.8309419185700164e-6 Iter 70: T = 655.4813138853474 K, F = -0.04981287331836731, relative_change = 1.1839859417397325e-6 Iter 75: T = 655.4789434113102 K, F = -0.02083236412565992, relative_change = 4.951661949503074e-7 Iter 80: T = 655.4779520416813 K, F = -0.00871234794577913, relative_change = 2.0708601385714745e-7 Iter 85: T = 655.4775374374756 K, F = -0.0036436087404112527, relative_change = 8.66061235242601e-8 Iter 90: T = 655.4773640447677 K, F = -0.0015238008261109215, relative_change = 3.6219764025908045e-8 Iter 95: T = 655.477291529818 K, F = -0.0006372717270733408, relative_change = 1.5147546409540266e-8 Iter 100: T = 655.4772612031915 K, F = -0.00026651465001692465, relative_change = 6.334886278039379e-9 Iter 105: T = 655.4772485202327 K, F = -0.00011145961066444388, relative_change = 2.649325367873811e-9 Iter 110: T = 655.4772432160676 K, F = -4.661374085995762e-5, relative_change = 1.1079795647359308e-9 Iter 115: T = 655.4772409978023 K, F = -1.9494422695942593e-5, relative_change = 4.633702835894797e-10 Iter 120: T = 655.4772400700972 K, F = -8.152799867711114e-6, relative_change = 1.9378697544050728e-10 Iter 125: T = 655.47723968212 K, F = -3.4095976108594606e-6, relative_change = 8.104401200334239e-11 Iter 130: T = 655.4772395198632 K, F = -1.4259349743750427e-6, relative_change = 3.3893586430072437e-11 Iter 135: T = 655.4772394520056 K, F = -5.963442465950486e-7, relative_change = 1.4174731412886873e-11 Iter 140: T = 655.4772394236267 K, F = -2.493986281382199e-7, relative_change = 5.928050097766751e-12 Iter 145: T = 655.4772394117582 K, F = -1.0430104901981707e-7, relative_change = 2.479170990265961e-12 Iter 150: T = 655.4772394067946 K, F = -4.361962435694977e-8, relative_change = 1.0368113104538436e-12 Iter 155: T = 655.477239404719 K, F = -1.8243145771812408e-8, relative_change = 4.336282155933991e-13 Converged in 159 iterations to T = 655.4772394039696 K Iter 1: T = 973.5591606719648 K, F = -6024.5703926241995, relative_change = 0.026440839328035117 Iter 2: T = 949.3112922843105 K, F = -5098.195181492474, relative_change = 0.024906414902324054 Iter 3: T = 927.1886166999443 K, F = -4312.4515145206615, relative_change = 0.023303921236555464 Iter 5: T = 888.9950548555931 K, F = -3081.483037637218, relative_change = 0.01997307388424367 Iter 10: T = 824.0002012850179 K, F = -1319.333588069313, relative_change = 0.011968540566885526 Iter 15: T = 790.5733112725933 K, F = -559.1720132515482, relative_change = 0.006129125651327882 Iter 20: T = 774.9853944204028 K, F = -235.39929291596061, relative_change = 0.002831402735257709 Iter 25: T = 768.1230390940665 K, F = -98.74139620661136, relative_change = 0.0012385591182812342 Iter 30: T = 765.1872392221653 K, F = -41.34835814101399, relative_change = 0.0005281558320273583 Iter 35: T = 763.9474500543747 K, F = -17.30189411150331, relative_change = 0.00022271256156727875 Iter 40: T = 763.4268191924755 K, F = -7.237534887409472, relative_change = 9.346529483876208e-5 Iter 45: T = 763.2087087567538 K, F = -3.027117541894167, relative_change = 3.914530303755849e-5 Iter 50: T = 763.1174263324091 K, F = -1.2660281943523644, relative_change = 1.638102403742255e-5 Iter 55: T = 763.079239367771 K, F = -0.5294771201062505, relative_change = 6.852488853415846e-6 Iter 60: T = 763.0632670993472 K, F = -0.22143523101991103, relative_change = 2.866098685680018e-6 Iter 65: T = 763.0565869519053 K, F = -0.09260713377882257, relative_change = 1.1986902287217993e-6 Iter 70: T = 763.0537931725402 K, F = -0.03872945751926071, relative_change = 5.013159320109207e-7 Iter 75: T = 763.0526247698135 K, F = -0.016197130090810363, relative_change = 2.096579473414987e-7 Iter 80: T = 763.0521361279452 K, F = -0.006773834711436111, relative_change = 8.768174382656777e-8 Iter 85: T = 763.051931771749 K, F = -0.0028328988305093006, relative_change = 3.666960250083432e-8 Iter 90: T = 763.0518463074893 K, F = -0.0011847521686126905, relative_change = 1.5335674463472994e-8 Iter 95: T = 763.0518105653051 K, F = -0.00049547751349166, relative_change = 6.413563736618062e-9 Iter 100: T = 763.051795617495 K, F = -0.00020721461462935853, relative_change = 2.682229214949997e-9 Iter 105: T = 763.0517893661421 K, F = -8.665962673337635e-5, relative_change = 1.1217403370095245e-9 Iter 110: T = 763.0517867517515 K, F = -3.624208940522511e-5, relative_change = 4.691251944993735e-10 Iter 115: T = 763.0517856583822 K, F = -1.5156876115973716e-5, relative_change = 1.961937796939936e-10 Iter 120: T = 763.051785201122 K, F = -6.3387856819030475e-6, relative_change = 8.205057002744476e-11 Iter 125: T = 763.0517850098904 K, F = -2.650956791083736e-6, relative_change = 3.431454019767171e-11 Iter 130: T = 763.0517849299151 K, F = -1.1086622390132916e-6, relative_change = 1.4350756343219865e-11 Iter 135: T = 763.0517848964685 K, F = -4.636560464454931e-7, relative_change = 6.001661026094314e-12 Iter 140: T = 763.0517848824807 K, F = -1.939084046664874e-7, relative_change = 2.5099910244724216e-12 Iter 145: T = 763.0517848766308 K, F = -8.109587146254427e-8, relative_change = 1.0497219542921857e-12 Iter 150: T = 763.0517848741842 K, F = -3.39152155248712e-8, relative_change = 4.3900565687854067e-13 Converged in 154 iterations to T = 763.0517848733012 K Iter 1: T = 969.9434576080504 K, F = -6848.411775158646, relative_change = 0.03005654239194957 Iter 2: T = 942.0428977952722 K, F = -5801.078216601188, relative_change = 0.028765140476933567 Iter 3: T = 916.2559067186866 K, F = -4912.186184472085, relative_change = 0.02737347857187477 Iter 5: T = 870.8188089313012 K, F = -3518.040609887687, relative_change = 0.024329314651961833 Iter 10: T = 789.7006355034587 K, F = -1515.3605585592816, relative_change = 0.016028748775862692 Iter 15: T = 745.1281709082266 K, F = -645.4748952440407, relative_change = 0.008866886091977399 Iter 20: T = 723.3549688523881 K, F = -272.57534196631195, relative_change = 0.004294211487674172 Iter 25: T = 713.5191582128933 K, F = -114.51638880518439, relative_change = 0.0019238620991358542 Iter 30: T = 709.2588252044626 K, F = -47.98895280286699, relative_change = 0.0008293790557992011 Iter 35: T = 707.4497369545741 K, F = -20.086929428235774, relative_change = 0.00035139207151880413 Iter 40: T = 706.6882354666328 K, F = -8.403666376057867, relative_change = 0.0001477650002593575 Iter 45: T = 706.3688960252637 K, F = -3.5150535293944323, relative_change = 6.193966493016956e-5 Iter 50: T = 706.2351914725176 K, F = -1.4701319750833388, relative_change = 2.5928929041935643e-5 Iter 55: T = 706.1792478196718 K, F = -0.614843309897892, relative_change = 1.0848170270970726e-5 Iter 60: T = 706.1558468224471 K, F = -0.2571377124302881, relative_change = 4.537601318559946e-6 Iter 65: T = 706.1460594247492 K, F = -0.10753856903266001, relative_change = 1.8978132364669862e-6 Iter 70: T = 706.1419660744974 K, F = -0.04497400249227712, relative_change = 7.937116297730862e-7 Iter 75: T = 706.1402541614117 K, F = -0.018808680445101422, relative_change = 3.319437874601906e-7 Iter 80: T = 706.1395382145203 K, F = -0.007866017495530397, relative_change = 1.3882357412767027e-7 Iter 85: T = 706.1392387962114 K, F = -0.0032896629306324865, relative_change = 5.805780217565581e-8 Iter 90: T = 706.1391135757644 K, F = -0.0013757764064344924, relative_change = 2.4280488173011978e-8 Iter 95: T = 706.1390612070546 K, F = -0.0005753661380168973, relative_change = 1.0154393967452317e-8 Iter 100: T = 706.1390393058306 K, F = -0.00024062499269594806, relative_change = 4.246689496682346e-9 Iter 105: T = 706.1390301464764 K, F = -0.0001006322460211928, relative_change = 1.7760163805499366e-9 Iter 110: T = 706.1390263159251 K, F = -4.208560805152306e-5, relative_change = 7.427512966333773e-10 Iter 115: T = 706.1390247139428 K, F = -1.760070463163732e-5, relative_change = 3.10627478923681e-10 Iter 120: T = 706.1390240439746 K, F = -7.360825772240176e-6, relative_change = 1.2990813780523512e-10 Iter 125: T = 706.1390237637859 K, F = -3.0783857970506645e-6, relative_change = 5.432914451046981e-11 Iter 130: T = 706.1390236466076 K, F = -1.2874176620325528e-6, relative_change = 2.2721096338272755e-11 Iter 135: T = 706.1390235976023 K, F = -5.384141668063336e-7, relative_change = 9.502246643584066e-12 Iter 140: T = 706.1390235771077 K, F = -2.2517099240726424e-7, relative_change = 3.97394875365474e-12 Iter 145: T = 706.1390235685366 K, F = -9.416977231335721e-8, relative_change = 1.6619629612920342e-12 Iter 150: T = 706.139023564952 K, F = -3.9382593186587656e-8, relative_change = 6.950469305535184e-13 Iter 155: T = 706.139023563453 K, F = -1.6471491948166772e-8, relative_change = 2.9069847854064033e-13 Converged in 157 iterations to T = 706.1390235631357 K Iter 1: T = 973.5703493920201 K, F = -6022.021032116389, relative_change = 0.02642965060797986 Iter 2: T = 949.3336514795297 K, F = -5096.022221984357, relative_change = 0.024894654944684597 Iter 3: T = 927.222038594569 K, F = -4310.599547787352, relative_change = 0.02329171925012876 Iter 5: T = 889.0498903404389 K, F = -3080.1387558700912, relative_change = 0.019960463453321548 Iter 10: T = 824.1002967562781 K, F = -1318.7357537784233, relative_change = 0.011957825492455608 Iter 15: T = 790.7025693016462 K, F = -558.9114530805354, relative_change = 0.006122430216509255 Iter 20: T = 775.1300414437254 K, F = -235.2878469737414, relative_change = 0.0028279893895645737 Iter 25: T = 768.2748771360601 K, F = -98.69428749338702, relative_change = 0.0012369977140850718 Iter 30: T = 765.3422368365028 K, F = -41.328563222737216, relative_change = 0.0005274769652035466 Iter 35: T = 764.1037973818859 K, F = -17.29359881884079, relative_change = 0.00022242392846029302 Iter 40: T = 763.5837360782189 K, F = -7.2340627192927505, relative_change = 9.334374382419269e-5 Iter 45: T = 763.3658647393286 K, F = -3.0256649162848377, relative_change = 3.909432069446958e-5 Iter 50: T = 763.2746824664341 K, F = -1.2654205972279047, relative_change = 1.635967659899806e-5 Iter 55: T = 763.236537414071 K, F = -0.529222999671966, relative_change = 6.843556543790292e-6 Iter 60: T = 763.2205826787174 K, F = -0.22132895201190073, relative_change = 2.8623622898669423e-6 Iter 65: T = 763.2139098646644 K, F = -0.09256268613685426, relative_change = 1.1971274838916612e-6 Iter 70: T = 763.2111191523587 K, F = -0.03871086889926967, relative_change = 5.006623490712481e-7 Iter 75: T = 763.2099520323391 K, F = -0.01618935609388128, relative_change = 2.0938460689616606e-7 Iter 80: T = 763.2094639269186 K, F = -0.00677058353095461, relative_change = 8.756742884814655e-8 Iter 85: T = 763.2092597950721 K, F = -0.002831539146935791, relative_change = 3.66217944732381e-8 Iter 90: T = 763.2091744246381 K, F = -0.0011841835308529225, relative_change = 1.5315680529642327e-8 Iter 95: T = 763.2091387216931 K, F = -0.0004952397026365407, relative_change = 6.4052020340977025e-9 Iter 100: T = 763.2091237902933 K, F = -0.00020711515988613982, relative_change = 2.67873225814535e-9 Iter 105: T = 763.2091175458033 K, F = -8.661803340714869e-5, relative_change = 1.1202778656624723e-9 Iter 110: T = 763.2091149342829 K, F = -3.622469477937429e-5, relative_change = 4.685135740972484e-10 Iter 115: T = 763.209113842114 K, F = -1.5149600130603957e-5, relative_change = 1.9593797532104562e-10 Iter 120: T = 763.2091133853559 K, F = -6.335745198926546e-6, relative_change = 8.194362090503221e-11 Iter 125: T = 763.2091131943341 K, F = -2.649683712441231e-6, relative_change = 3.4269793227488205e-11 Iter 130: T = 763.2091131144465 K, F = -1.108128912963302e-6, relative_change = 1.4332030859861251e-11 Iter 135: T = 763.2091130810367 K, F = -4.634326213892592e-7, relative_change = 5.993824865412172e-12 Iter 140: T = 763.2091130670642 K, F = -1.9381310767396798e-7, relative_change = 2.5066897980505833e-12 Iter 145: T = 763.2091130612207 K, F = -8.105442972361487e-8, relative_change = 1.048320799974923e-12 Iter 150: T = 763.2091130587769 K, F = -3.3895923845506104e-8, relative_change = 4.3839432494087545e-13 Converged in 154 iterations to T = 763.2091130578949 K Iter 1: T = 964.3424054724226 K, F = -8124.616832237513, relative_change = 0.03565759452757745 Iter 2: T = 930.6114146055314 K, F = -6892.559700875519, relative_change = 0.034978230424666086 Iter 3: T = 898.776111928514 K, F = -5846.266180878987, relative_change = 0.03420901804703507 Iter 5: T = 840.6796696063792 K, F = -4203.320599724003, relative_change = 0.03237569053781918 Iter 10: T = 726.6291967163565 K, F = -1832.9952710072541, relative_change = 0.025970707206870593 Iter 15: T = 653.0942231244576 K, F = -791.425633214953, relative_change = 0.017767132370232322 Iter 20: T = 611.5397819297748 K, F = -337.86310647599504, relative_change = 0.01017432546975458 Iter 25: T = 590.7931379681966 K, F = -142.89186508060723, relative_change = 0.005043103332511534 Iter 30: T = 581.2980667305818 K, F = -60.082045106085985, relative_change = 0.002287594016878329 Iter 35: T = 577.1583907612791 K, F = -25.187569354160313, relative_change = 0.0009919444876857616 Iter 40: T = 575.3953178739746 K, F = -10.544660196122923, relative_change = 0.00042134618420354794 Iter 45: T = 574.6522309504192 K, F = -4.411837593748521, relative_change = 0.00017737576598796757 Iter 50: T = 574.3404435535231 K, F = -1.8454234447348445, relative_change = 7.438618556452437e-5 Iter 55: T = 574.2098709667173 K, F = -0.7718377766574456, relative_change = 3.1145283560158855e-5 Iter 60: T = 574.1552325014959 K, F = -0.3228022194112449, relative_change = 1.303165289709713e-5 Iter 65: T = 574.1323765364951 K, F = -0.13500157053926934, relative_change = 5.451099623053249e-6 Iter 70: T = 574.122816935497 K, F = -0.05645958870273893, relative_change = 2.2799085916320224e-6 Iter 75: T = 574.1188188276507 K, F = -0.023612130171204587, relative_change = 9.535188709476887e-7 Iter 80: T = 574.1171467417215 K, F = -0.00987488460204855, relative_change = 3.9877890338608997e-7 Iter 85: T = 574.1164474502608 K, F = -0.004129796380457573, relative_change = 1.6677513594217857e-7 Iter 90: T = 574.116154997319 K, F = -0.0017271304657942022, relative_change = 6.974753480409255e-8 Iter 95: T = 574.1160326898482 K, F = -0.0007223066385438903, relative_change = 2.9169283679218468e-8 Iter 100: T = 574.1159815393759 K, F = -0.00030207727151931874, relative_change = 1.2198948332066984e-8 Iter 105: T = 574.1159601476327 K, F = -0.00012633232461506383, relative_change = 5.101746868546306e-9 Iter 110: T = 574.1159512013493 K, F = -5.28336870567192e-5, relative_change = 2.1336116335509665e-9 Iter 115: T = 574.1159474599066 K, F = -2.209567916655608e-5, relative_change = 8.92301904522575e-10 Iter 120: T = 574.1159458951905 K, F = -9.240677435518041e-6, relative_change = 3.73171339049003e-10 Iter 125: T = 574.1159452408075 K, F = -3.864560726651867e-6, relative_change = 1.5606467373090793e-10 Iter 130: T = 574.1159449671368 K, F = -1.6162054332080622e-6, relative_change = 6.526810989115667e-11 Iter 135: T = 574.1159448526843 K, F = -6.759159477121024e-7, relative_change = 2.72958842285058e-11 Iter 140: T = 574.115944804819 K, F = -2.826761665297717e-7, relative_change = 1.1415466590090875e-11 Iter 145: T = 574.1159447848013 K, F = -1.1821916351406614e-7, relative_change = 4.774109286235841e-12 Iter 150: T = 574.1159447764295 K, F = -4.944077142132741e-8, relative_change = 1.9965937751667886e-12 Iter 155: T = 574.1159447729284 K, F = -2.067746779355062e-8, relative_change = 8.350295170799965e-13 Iter 160: T = 574.1159447714641 K, F = -8.647663418681617e-9, relative_change = 3.4922333240011235e-13 Converged in 163 iterations to T = 574.1159447710355 K Iter 1: T = 963.5722736078405 K, F = -8300.092110167052, relative_change = 0.03642772639215945 Iter 2: T = 929.0229146500523 K, F = -7042.886234387664, relative_change = 0.0358554930482043 Iter 3: T = 896.3184242632385 K, F = -5975.186620104371, relative_change = 0.03520310411195071 Iter 5: T = 836.3252964595632 K, F = -4298.465601384569, relative_change = 0.03362865485724023 Iter 10: T = 716.6887969649193 K, F = -1878.3902994381497, relative_change = 0.027899167150895552 Iter 15: T = 637.1068142819786 K, F = -813.365364650359, relative_change = 0.01998113123444836 Iter 20: T = 590.5058435537176 K, F = -348.24438892447466, relative_change = 0.011975023842295419 Iter 25: T = 566.5368512149354 K, F = -147.597058477753, relative_change = 0.006133075056586524 Iter 30: T = 555.358783323212 K, F = -62.135392952976815, relative_change = 0.002833394154127165 Iter 35: T = 550.4376506362503 K, F = -26.063573295693356, relative_change = 0.0012394658637123882 Iter 40: T = 548.3322996438791 K, F = -10.914235525131936, relative_change = 0.0005285493015051597 Iter 45: T = 547.4432037150509 K, F = -4.566977342617318, relative_change = 0.00022287971663818834 Iter 50: T = 547.0698402178053 K, F = -1.9104071864405878, relative_change = 9.35356643137534e-5 Iter 55: T = 546.9134250432911 K, F = -0.799032759677143, relative_change = 3.917481402506648e-5 Iter 60: T = 546.8479629618339 K, F = -0.3341786418779983, relative_change = 1.6393380207701643e-5 Iter 65: T = 546.8205776387049 K, F = -0.13975987870388645, relative_change = 6.857658859769121e-6 Iter 70: T = 546.8091233172519 K, F = -0.05844966665742715, relative_change = 2.8682612830642203e-6 Iter 75: T = 546.8043327291659 K, F = -0.02444442144560588, relative_change = 1.1995947295464294e-6 Iter 80: T = 546.8023292035774 K, F = -0.010222961710545375, relative_change = 5.016942184954277e-7 Iter 85: T = 546.8014912974764 K, F = -0.004275366902331407, relative_change = 2.0981615365115452e-7 Iter 90: T = 546.801140873779 K, F = -0.00178800988681449, relative_change = 8.774790803316171e-8 Iter 95: T = 546.8009943221659 K, F = -0.0007477671564625477, relative_change = 3.6697273255216406e-8 Iter 100: T = 546.8009330324895 K, F = -0.0003127251668580966, relative_change = 1.5347246702212105e-8 Iter 105: T = 546.8009074004076 K, F = -0.00013078540144309536, relative_change = 6.4184033831083825e-9 Iter 110: T = 546.8008966807637 K, F = -5.4696017780381245e-5, relative_change = 2.684253245822507e-9 Iter 115: T = 546.8008921976802 K, F = -2.287452793148237e-5, relative_change = 1.122586812260291e-9 Iter 120: T = 546.8008903228011 K, F = -9.56640050003843e-6, relative_change = 4.6947920628646e-10 Iter 125: T = 546.8008895387044 K, F = -4.000782695884331e-6, relative_change = 1.9634180038811433e-10 Iter 130: T = 546.8008892107857 K, F = -1.6731748336551444e-6, relative_change = 8.211247276184858e-11 Iter 135: T = 546.8008890736462 K, F = -6.997418644238973e-7, relative_change = 3.434042497873322e-11 Iter 140: T = 546.8008890162929 K, F = -2.9264049183908014e-7, relative_change = 1.4361580136457252e-11 Iter 145: T = 546.800888992307 K, F = -1.2238575897161041e-7, relative_change = 6.006184839128503e-12 Iter 150: T = 546.8008889822759 K, F = -5.118293813777264e-8, relative_change = 2.5118460650581217e-12 Iter 155: T = 546.8008889780807 K, F = -2.140509097747767e-8, relative_change = 1.0504729799064258e-12 Iter 160: T = 546.8008889763262 K, F = -8.951917013222399e-9, relative_change = 4.393229139176745e-13 Converged in 164 iterations to T = 546.8008889756929 K Iter 1: T = 969.37240740583 K, F = -6978.526106943533, relative_change = 0.03062759259416993 Iter 2: T = 940.8870689620195 K, F = -5912.212095129683, relative_change = 0.029385340686600658 Iter 3: T = 914.5046474387151 K, F = -5007.137314400549, relative_change = 0.028039944849501834 Iter 5: T = 867.8612976003182 K, F = -3587.391330170509, relative_change = 0.025072278948625338 Iter 10: T = 783.8876028392407 K, F = -1546.8875095890937, relative_change = 0.016800149710832307 Iter 15: T = 737.1675141335933 K, F = -659.5514108153418, relative_change = 0.009436234933437817 Iter 20: T = 714.1267081254198 K, F = -278.7031334182167, relative_change = 0.004616132759788101 Iter 25: T = 703.6596154831045 K, F = -117.1320341281625, relative_change = 0.0020791215293467866 Iter 30: T = 699.1131749914421 K, F = -49.0931536694293, relative_change = 0.0008985399998977682 Iter 35: T = 697.1801561184543 K, F = -20.550609589680597, relative_change = 0.0003811093131029113 Iter 40: T = 696.3660435949819 K, F = -8.597920330525689, relative_change = 0.00016033606377569825 Iter 45: T = 696.0245622699075 K, F = -3.596352368324563, relative_change = 6.722235469957356e-5 Iter 50: T = 695.8815731564245 K, F = -1.5041425672931386, relative_change = 2.8142665155751255e-5 Iter 55: T = 695.8217422794706 K, F = -0.6290687756563972, relative_change = 1.1774761569176934e-5 Iter 60: T = 695.7967148438429 K, F = -0.2630872923561554, relative_change = 4.925249488049571e-6 Iter 65: T = 695.786247118079 K, F = -0.11002681043781803, relative_change = 2.0599562351706762e-6 Iter 70: T = 695.7818692233948 K, F = -0.0460146245641917, relative_change = 8.615259498657593e-7 Iter 75: T = 695.7800383063868 K, F = -0.019243882737805973, relative_change = 3.6030527742346877e-7 Iter 80: T = 695.7792725899268 K, F = -0.008048024591454483, relative_change = 1.5068481586488318e-7 Iter 85: T = 695.7789523572663 K, F = -0.0033657805239346583, relative_change = 6.301833749320731e-8 Iter 90: T = 695.7788184319874 K, F = -0.0014076097029904755, relative_change = 2.6355047212104556e-8 Iter 95: T = 695.778762422809 K, F = -0.0005886792041500666, relative_change = 1.1022000012774965e-8 Iter 100: T = 695.778738999097 K, F = -0.000246192675785073, relative_change = 4.609532817631172e-9 Iter 105: T = 695.77872920302 K, F = -0.00010296071706517029, relative_change = 1.9277618009521843e-9 Iter 110: T = 695.7787251061835 K, F = -4.3059401782286066e-5, relative_change = 8.062130356207339e-10 Iter 115: T = 695.7787233928375 K, F = -1.800795554696144e-5, relative_change = 3.371679140007434e-10 Iter 120: T = 695.7787226762957 K, F = -7.531141880900982e-6, relative_change = 1.4100764541846803e-10 Iter 125: T = 695.7787223766294 K, F = -3.1496122920859904e-6, relative_change = 5.897105926593909e-11 Iter 130: T = 695.7787222513055 K, F = -1.3172056624322082e-6, relative_change = 2.466240478122099e-11 Iter 135: T = 695.7787221988934 K, F = -5.508720812841261e-7, relative_change = 1.0314129861155622e-11 Iter 140: T = 695.778722176974 K, F = -2.303802505432273e-7, relative_change = 4.313472950681718e-12 Iter 145: T = 695.7787221678072 K, F = -9.63483963722922e-8, relative_change = 1.803957590286291e-12 Iter 150: T = 695.7787221639735 K, F = -4.0293890002374155e-8, relative_change = 7.544336122936689e-13 Iter 155: T = 695.7787221623701 K, F = -1.6850599249274012e-8, relative_change = 3.154984157730419e-13 Converged in 158 iterations to T = 695.7787221619008 K Iter 1: T = 966.4747450690436 K, F = -7638.761226768805, relative_change = 0.0335252549309564 Iter 2: T = 934.9884376336604 K, F = -6476.650883183375, relative_change = 0.03257851029840817 Iter 3: T = 905.5113600897091 K, F = -5489.928755087988, relative_change = 0.03152667600741048 Iter 5: T = 852.4603250326356 K, F = -3941.0742476360533, relative_change = 0.02910279778098935 Iter 10: T = 752.3741984102031 K, F = -1709.6884866782807, relative_change = 0.021467248665080714 Iter 15: T = 692.3507241557735 K, F = -733.4838402670774, relative_change = 0.013278039957600709 Iter 20: T = 660.8112433764305 K, F = -311.36432594166604, relative_change = 0.006967328754941086 Iter 25: T = 645.8912809515092 K, F = -131.20071309165147, relative_change = 0.0032648424892420176 Iter 30: T = 639.2723000746864 K, F = -55.0595395330204, relative_change = 0.0014382336833817658 Iter 35: T = 636.4303490673648 K, F = -23.061256636400614, relative_change = 0.0006152466945066824 Iter 40: T = 635.2282750426442 K, F = -9.650678987534292, relative_change = 0.00025979180817185734 Iter 45: T = 634.7231372357962 K, F = -4.037119963461518, relative_change = 0.0001090894460442232 Iter 50: T = 634.5114563476503 K, F = -1.688563208922543, relative_change = 4.570017339307991e-5 Iter 55: T = 634.4228540553594 K, F = -0.7062108282954535, relative_change = 1.9125975827754838e-5 Iter 60: T = 634.3857864132193 K, F = -0.29535166999324447, relative_change = 8.001095718413022e-6 Iter 65: T = 634.3702819890005 K, F = -0.12352062213301451, relative_change = 3.3465709667400317e-6 Iter 70: T = 634.3637974523726 K, F = -0.051657978869725674, relative_change = 1.3996489239095908e-6 Iter 75: T = 634.3610854715253 K, F = -0.021604015089827122, relative_change = 5.853626603176242e-7 Iter 80: T = 634.3599512764707 K, F = -0.009035062607320898, relative_change = 2.44807887891993e-7 Iter 85: T = 634.3594769404067 K, F = -0.0037785720433293757, relative_change = 1.0238197281628627e-7 Iter 90: T = 634.3592785670245 K, F = -0.0015802441221082209, relative_change = 4.2817432028264236e-8 Iter 95: T = 634.3591956048414 K, F = -0.0006608769938152848, relative_change = 1.7906773380755643e-8 Iter 100: T = 634.3591609090541 K, F = -0.00027638665654983186, relative_change = 7.488828570801319e-9 Iter 105: T = 634.3591463988595 K, F = -0.00011558820226365007, relative_change = 3.13191793204893e-9 Iter 110: T = 634.3591403305225 K, F = -4.834036625150917e-5, relative_change = 1.3098055323577363e-9 Iter 115: T = 634.3591377926714 K, F = -2.0216519025062496e-5, relative_change = 5.477763414251685e-10 Iter 120: T = 634.3591367313118 K, F = -8.454790390466371e-6, relative_change = 2.2908662855147436e-10 Iter 125: T = 634.3591362874384 K, F = -3.5358948041186444e-6, relative_change = 9.580677756365134e-11 Iter 130: T = 634.3591361018053 K, F = -1.4787533558768828e-6, relative_change = 4.0067536474885775e-11 Iter 135: T = 634.3591360241713 K, F = -6.184325768709975e-7, relative_change = 1.6756729407914252e-11 Iter 140: T = 634.359135991704 K, F = -2.5863666969216936e-7, relative_change = 7.007885503023684e-12 Iter 145: T = 634.3591359781257 K, F = -1.0816493251075698e-7, relative_change = 2.930781097116277e-12 Iter 150: T = 634.359135972447 K, F = -4.523572866288461e-8, relative_change = 1.225683919988845e-12 Iter 155: T = 634.3591359700721 K, F = -1.891725598390792e-8, relative_change = 5.125721891869577e-13 Converged in 160 iterations to T = 634.3591359690789 K Iter 1: T = 966.5432400589278 K, F = -7623.154578168132, relative_change = 0.033456759941072195 Iter 2: T = 935.12852282683 K, F = -6463.298752575904, relative_change = 0.03250213330360934 Iter 3: T = 905.7260391468604 K, F = -5478.497448807776, relative_change = 0.031442184643334176 Iter 5: T = 852.8322547060745 K, F = -3932.6787409368553, relative_change = 0.02900219634203704 Iter 10: T = 753.1620582441456 K, F = -1705.780745270336, relative_change = 0.021339826063374957 Iter 15: T = 693.5101341406686 K, F = -731.6797333130392, relative_change = 0.013163169541432774 Iter 20: T = 662.2246663272242 K, F = -310.5549950815701, relative_change = 0.006892175931072131 Iter 25: T = 647.4438030850446 K, F = -130.84861623513325, relative_change = 0.003225476716130103 Iter 30: T = 640.8910978361242 K, F = -54.909450291940345, relative_change = 0.0014199829630109919 Iter 35: T = 638.078533106671 K, F = -22.997950012063022, relative_change = 0.0006072634702289956 Iter 40: T = 636.8890627460934 K, F = -9.624106081406053, relative_change = 0.0002563886965096115 Iter 45: T = 636.3892526040684 K, F = -4.025989583233305, relative_change = 0.00010765471482169584 Iter 50: T = 636.1798098515479 K, F = -1.6839053110511648, relative_change = 4.50981207317842e-5 Iter 55: T = 636.0921453405831 K, F = -0.7042623067063352, relative_change = 1.8873833678350885e-5 Iter 60: T = 636.0554701994402 K, F = -0.2945366816590877, relative_change = 7.89558440446738e-6 Iter 65: T = 636.0401299780365 K, F = -0.12317976794618357, relative_change = 3.302433944438077e-6 Iter 70: T = 636.0337141224722 K, F = -0.05151542672049614, relative_change = 1.3811883817428643e-6 Iter 75: T = 636.0310308665253 K, F = -0.021544397579766617, relative_change = 5.776419066392239e-7 Iter 80: T = 636.0299086848573 K, F = -0.009010129765679942, relative_change = 2.415789180032981e-7 Iter 85: T = 636.0294393729857 K, F = -0.0037681448159285758, relative_change = 1.0103156881438819e-7 Iter 90: T = 636.0292431007896 K, F = -0.0015758833272436212, relative_change = 4.2252675126419357e-8 Iter 95: T = 636.0291610173491 K, F = -0.000659053255878228, relative_change = 1.7670584960380146e-8 Iter 100: T = 636.0291266890628 K, F = -0.0002756239465034893, relative_change = 7.390051671690741e-9 Iter 105: T = 636.0291123325616 K, F = -0.00011526922662624672, relative_change = 3.0906082119292813e-9 Iter 110: T = 636.0291063285009 K, F = -4.8206966425712316e-5, relative_change = 1.2925293017421684e-9 Iter 115: T = 636.0291038175311 K, F = -2.0160728909757175e-5, relative_change = 5.405511958585415e-10 Iter 120: T = 636.0291027674134 K, F = -8.431457631075112e-6, relative_change = 2.2606496826256022e-10 Iter 125: T = 636.0291023282417 K, F = -3.5261360722405044e-6, relative_change = 9.454306440954017e-11 Iter 130: T = 636.0291021445748 K, F = -1.4746715872315797e-6, relative_change = 3.953902180458028e-11 Iter 135: T = 636.0291020677632 K, F = -6.167251462851908e-7, relative_change = 1.653568783148623e-11 Iter 140: T = 636.0291020356398 K, F = -2.579233887578525e-7, relative_change = 6.915464153933225e-12 Iter 145: T = 636.0291020222053 K, F = -1.0786667342665979e-7, relative_change = 2.892130555331007e-12 Iter 150: T = 636.0291020165868 K, F = -4.5110988333707525e-8, relative_change = 1.209519711714199e-12 Iter 155: T = 636.029102014237 K, F = -1.886512429605247e-8, relative_change = 5.058133404575743e-13 Converged in 160 iterations to T = 636.0291020132544 K Iter 1: T = 976.3681403472916 K, F = -5384.541701571524, relative_change = 0.023631859652708406 Iter 2: T = 954.8993097777932 K, F = -4553.071760947541, relative_change = 0.021988458740431663 Iter 3: T = 935.5024463955252 K, F = -3848.254250037342, relative_change = 0.020312993405327388 Iter 5: T = 902.5058511580866 K, F = -2745.225751039191, relative_change = 0.01695889436532369 Iter 10: T = 848.1238749656343 K, F = -1170.729750120816, relative_change = 0.009555610118886976 Iter 15: T = 821.2508103274902 K, F = -494.7778666808331, relative_change = 0.004684470369350681 Iter 20: T = 809.0281978232889 K, F = -207.9585070704416, relative_change = 0.0021122973989564906 Iter 25: T = 803.7160658735274 K, F = -87.16402925806665, relative_change = 0.0009133638200629943 Iter 30: T = 801.4568839040425 K, F = -36.48781413831884, relative_change = 0.0003874874552594396 Iter 35: T = 800.5052922762143 K, F = -15.26579589400183, relative_change = 0.00016303571848213868 Iter 40: T = 800.1061251038979 K, F = -6.385420394598243, relative_change = 6.835709637698748e-5 Iter 45: T = 799.9389775752153 K, F = -2.6706487571939306, relative_change = 2.8618232603258113e-5 Iter 50: T = 799.8690374860056 K, F = -1.1169304111487344, relative_change = 1.197382572767223e-5 Iter 55: T = 799.8397812285651 K, F = -0.46711944688805285, relative_change = 5.008531339287924e-6 Iter 60: T = 799.8275447790498 K, F = -0.19535594757206964, relative_change = 2.0947910966126934e-6 Iter 65: T = 799.822427151488 K, F = -0.08170036806762604, relative_change = 8.760952489826546e-7 Iter 70: T = 799.8202868638496 K, F = -0.03416810071791054, relative_change = 3.6639849743796236e-7 Iter 75: T = 799.819391763934 K, F = -0.014289513205694493, relative_change = 1.5323310209363532e-7 Iter 80: T = 799.819017421399 K, F = -0.005976046025757742, relative_change = 6.408406628243375e-8 Iter 85: T = 799.8188608666949 K, F = -0.0024992539819916892, relative_change = 2.6800748590746958e-8 Iter 90: T = 799.8187953936155 K, F = -0.0010452178920218325, relative_change = 1.1208397812529334e-8 Iter 95: T = 799.8187680119861 K, F = -0.00043712261114392525, relative_change = 4.687486651886162e-9 Iter 100: T = 799.8187565606607 K, F = -0.00018280989715968587, relative_change = 1.9603630407984038e-9 Iter 105: T = 799.8187517715795 K, F = -7.645328277938734e-5, relative_change = 8.198472648902764e-10 Iter 110: T = 799.8187497687285 K, F = -3.197367557594699e-5, relative_change = 3.4286991779816027e-10 Iter 115: T = 799.8187489311124 K, F = -1.3371775429815713e-5, relative_change = 1.4339232142413712e-10 Iter 120: T = 799.8187485808113 K, F = -5.5922365609362146e-6, relative_change = 5.996838552267006e-11 Iter 125: T = 799.8187484343111 K, F = -2.338740525575922e-6, relative_change = 2.5079499421974034e-11 Iter 130: T = 799.818748373043 K, F = -9.780903899025972e-7, relative_change = 1.0488558738728245e-11 Iter 135: T = 799.8187483474198 K, F = -4.0904747822256837e-7, relative_change = 4.3864233277537195e-12 Iter 140: T = 799.818748336704 K, F = -1.7106700544999853e-7, relative_change = 1.834438160145374e-12 Iter 145: T = 799.8187483322226 K, F = -7.15435928277941e-8, relative_change = 7.671981891275382e-13 Iter 150: T = 799.8187483303485 K, F = -2.992316472383294e-8, relative_change = 3.208812540992095e-13 Converged in 153 iterations to T = 799.8187483297997 K Iter 1: T = 965.204788283303 K, F = -7928.122088440584, relative_change = 0.03479521171669705 Iter 2: T = 932.3853564481929 K, F = -6724.297756881696, relative_change = 0.03400255804105799 Iter 3: T = 901.5122667204607 K, F = -5702.043587172239, relative_change = 0.03311194187491246 Iter 5: T = 845.4919915420921 K, F = -4097.052061274197, relative_change = 0.031018320524500216 Iter 10: T = 737.3382941604355 K, F = -1782.7251677518148, relative_change = 0.024014811035396374 Iter 15: T = 669.7679044144536 K, F = -767.5448072439365, relative_change = 0.01570939903921329 Iter 20: T = 632.8314305588077 K, F = -326.807061691973, relative_change = 0.008635980027418309 Iter 25: T = 614.8582693327998 K, F = -137.9694749400922, relative_change = 0.004165434977474516 Iter 30: T = 606.757393619166 K, F = -57.95661908069602, relative_change = 0.0018622072995962045 Iter 35: T = 603.2524374661249 K, F = -24.285565564426285, relative_change = 0.0008020085529871056 Iter 40: T = 601.7648541729911 K, F = -10.165015036983903, relative_change = 0.00033964912722096567 Iter 45: T = 601.1388195683805 K, F = -4.252633433431802, relative_change = 0.0001428006609187807 Iter 50: T = 600.8763129203509 K, F = -1.778766097737021, relative_change = 5.985408521568064e-5 Iter 55: T = 600.766407988074 K, F = -0.7439474869714265, relative_change = 2.5055056473293378e-5 Iter 60: T = 600.7204231372194 K, F = -0.31113582123221045, relative_change = 1.0482415693942478e-5 Iter 65: T = 600.7011879956965 K, F = -0.13012213290377334, relative_change = 4.384587509941805e-6 Iter 70: T = 600.6931429775876 K, F = -0.05441887777675741, relative_change = 1.8338121327094327e-6 Iter 75: T = 600.6897783408488 K, F = -0.022758667926084275, relative_change = 7.66944046723245e-7 Iter 80: T = 600.6883711896272 K, F = -0.009517954301633325, relative_change = 3.207489922141335e-7 Iter 85: T = 600.6877826986913 K, F = -0.003980523482484177, relative_change = 1.3414172942430025e-7 Iter 90: T = 600.6875365841435 K, F = -0.0016647026895973416, relative_change = 5.609979047656858e-8 Iter 95: T = 600.6874336559936 K, F = -0.0006961985861985709, relative_change = 2.3461622860280993e-8 Iter 100: T = 600.6873906101933 K, F = -0.0002911585698743835, relative_change = 9.811934446470677e-9 Iter 105: T = 600.6873726079224 K, F = -0.00012176599213931105, relative_change = 4.103468785643606e-9 Iter 110: T = 600.6873650791572 K, F = -5.092399249223556e-5, relative_change = 1.7161197673522683e-9 Iter 115: T = 600.6873619305375 K, F = -2.1297022561150847e-5, relative_change = 7.177018243529743e-10 Iter 120: T = 600.687360613747 K, F = -8.906668510610949e-6, relative_change = 3.0015145484927307e-10 Iter 125: T = 600.6873600630496 K, F = -3.7248749518714597e-6, relative_change = 1.2552691721756138e-10 Iter 130: T = 600.6873598327413 K, F = -1.5577871116945197e-6, relative_change = 5.249685336979149e-11 Iter 135: T = 600.6873597364237 K, F = -6.514851179639791e-7, relative_change = 2.195480915185025e-11 Iter 140: T = 600.6873596961426 K, F = -2.724598383574417e-7, relative_change = 9.181796467255748e-12 Iter 145: T = 600.6873596792965 K, F = -1.1394569598977e-7, relative_change = 3.8399280985589095e-12 Iter 150: T = 600.6873596722513 K, F = -4.76541233696004e-8, relative_change = 1.6059264525951721e-12 Iter 155: T = 600.6873596693048 K, F = -1.9929293271214732e-8, relative_change = 6.716098625567161e-13 Iter 160: T = 600.6873596680725 K, F = -8.333993106734994e-9, relative_change = 2.8085250635063875e-13 Converged in 162 iterations to T = 600.6873596678118 K Iter 1: T = 964.6368665104795 K, F = -8057.523604611465, relative_change = 0.035363133489520436 Iter 2: T = 931.2177013383113 K, F = -6835.098066684809, relative_change = 0.03464429603759621 Iter 3: T = 899.7122555613595 K, F = -5797.004621358546, relative_change = 0.03383252458761606 Iter 5: T = 842.3303050300075 K, F = -4167.0029294812375, relative_change = 0.03190689497301957 Iter 10: T = 730.3340725668835 K, F = -1815.7658722372475, relative_change = 0.025280154230753235 Iter 15: T = 658.923311488635 K, F = -783.1954336387604, relative_change = 0.017020186243249052 Iter 20: T = 619.0520850937617 K, F = -334.0273998550595, relative_change = 0.009601647283241819 Iter 25: T = 599.3347133764508 K, F = -141.17523095334684, relative_change = 0.00471083491018033 Iter 30: T = 590.3626596436468 K, F = -59.33859652965584, relative_change = 0.002125102599746957 Iter 35: T = 586.4623874121846 K, F = -24.8715985462582, relative_change = 0.0009190870640080413 Iter 40: T = 584.8034808057758 K, F = -10.411584225571962, relative_change = 0.00038995027359381044 Iter 45: T = 584.1047004233891 K, F = -4.356016540725031, relative_change = 0.0001640782065714879 Iter 50: T = 583.811575237232 K, F = -1.8220488976462863, relative_change = 6.879529442834827e-5 Iter 55: T = 583.6888308219807 K, F = -0.7620570779593583, relative_change = 2.8801882212688398e-5 Iter 60: T = 583.6374703015589 K, F = -0.3187109061456529, relative_change = 1.2050698550978555e-5 Iter 65: T = 583.6159859321712 K, F = -0.1332903754972404, relative_change = 5.040692440594961e-6 Iter 70: T = 583.6070000748406 K, F = -0.05574391868683384, relative_change = 2.108243347438849e-6 Iter 75: T = 583.6032419354918 K, F = -0.02331282355857789, relative_change = 8.817215072554122e-7 Iter 80: T = 583.6016702111101 K, F = -0.009749710151846391, relative_change = 3.6875152991835535e-7 Iter 85: T = 583.6010128927217 K, F = -0.00407744678265487, relative_change = 1.5421717962923224e-7 Iter 90: T = 583.6007379935377 K, F = -0.0017052372122279835, relative_change = 6.44956212143253e-8 Iter 95: T = 583.6006230272789 K, F = -0.0007131506147069477, relative_change = 2.6972866134251648e-8 Iter 100: T = 583.6005749469924 K, F = -0.00029824811115491956, relative_change = 1.1280379440777773e-8 Iter 105: T = 583.6005548392384 K, F = -0.00012473092358716853, relative_change = 4.7175902352362824e-9 Iter 110: T = 583.6005464299346 K, F = -5.216396180235394e-5, relative_change = 1.9729527099998534e-9 Iter 115: T = 583.6005429130634 K, F = -2.1815592279594842e-5, relative_change = 8.251124273537881e-10 Iter 120: T = 583.6005414422657 K, F = -9.123541404032487e-6, relative_change = 3.450718819726709e-10 Iter 125: T = 583.6005408271606 K, F = -3.815573568544117e-6, relative_change = 1.4431316748643174e-10 Iter 130: T = 583.6005405699162 K, F = -1.5957184172910033e-6, relative_change = 6.035348960309262e-11 Iter 135: T = 583.6005404623336 K, F = -6.673483853858464e-7, relative_change = 2.5240545849405226e-11 Iter 140: T = 583.6005404173412 K, F = -2.790929873874859e-7, relative_change = 1.0555894793862364e-11 Iter 145: T = 583.6005403985249 K, F = -1.1671968747073436e-7, relative_change = 4.414588675394057e-12 Iter 150: T = 583.6005403906557 K, F = -4.881341708617981e-8, relative_change = 1.8462280268168206e-12 Iter 155: T = 583.6005403873647 K, F = -2.041473146086048e-8, relative_change = 7.721288865610383e-13 Iter 160: T = 583.6005403859884 K, F = -8.538353746256888e-9, relative_change = 3.229388338453186e-13 Converged in 163 iterations to T = 583.6005403855854 K Iter 1: T = 964.240789361663 K, F = -8147.770159735962, relative_change = 0.03575921063833703 Iter 2: T = 930.4020517014205 K, F = -6912.391290535916, relative_change = 0.035093659212077216 Iter 3: T = 898.4526012169721 K, F = -5863.269966261561, relative_change = 0.034339402440077056 Iter 5: T = 840.1082316071432 K, F = -4215.861344895074, relative_change = 0.032538771368407084 Iter 10: T = 725.3386634183566 K, F = -1838.9570192335943, relative_change = 0.026214785413751024 Iter 15: T = 651.0478678687449 K, F = -794.2852612807092, relative_change = 0.018036723960977205 Iter 20: T = 608.8837191618167 K, F = -339.20276268761006, relative_change = 0.01038518253749966 Iter 25: T = 587.7588276860482 K, F = -143.49393371883804, relative_change = 0.005167145069525212 Iter 30: T = 578.0698324025157 K, F = -60.34343814535858, relative_change = 0.0023487141711660145 Iter 35: T = 573.8409848646893 K, F = -25.298798527192307, relative_change = 0.0010194475478504847 Iter 40: T = 572.039031415265 K, F = -10.591531703414256, relative_change = 0.00043321663010471097 Iter 45: T = 571.2793917523007 K, F = -4.431503308741482, relative_change = 0.0001824068321673003 Iter 50: T = 570.9606295197902 K, F = -1.853659103080364, relative_change = 7.650207703434966e-5 Iter 55: T = 570.8271307439987 K, F = -0.7752839986348588, relative_change = 3.203225822589626e-5 Iter 60: T = 570.7712668910629 K, F = -0.3242438160172606, relative_change = 1.3402961661416733e-5 Iter 65: T = 570.7478981703897 K, F = -0.1356045239165915, relative_change = 5.606449354961963e-6 Iter 70: T = 570.7381240791582 K, F = -0.05671176158304447, relative_change = 2.344888898649049e-6 Iter 75: T = 570.734036260242 K, F = -0.02371759373164481, relative_change = 9.806963695637439e-7 Iter 80: T = 570.7323266545515 K, F = -0.00991899104695293, relative_change = 4.1014520042306925e-7 Iter 85: T = 570.7316116716125 K, F = -0.004148242279531256, relative_change = 1.7152871703192698e-7 Iter 90: T = 570.7313126562606 K, F = -0.0017348447704604308, relative_change = 7.173554964259321e-8 Iter 95: T = 570.7311876043034 K, F = -0.0007255328551244999, relative_change = 3.000069707948617e-8 Iter 100: T = 570.7311353060525 K, F = -0.00030342651345094396, relative_change = 1.2546655637849799e-8 Iter 105: T = 570.7311134342943 K, F = -0.00012689659304632173, relative_change = 5.2471622434787e-9 Iter 110: T = 570.7311042872631 K, F = -5.3069670710892414e-5, relative_change = 2.1944260834008643e-9 Iter 115: T = 570.7311004618651 K, F = -2.2194370421335652e-5, relative_change = 9.177352385834427e-10 Iter 120: T = 570.731098862038 K, F = -9.28195095328821e-6, relative_change = 3.8380784967559504e-10 Iter 125: T = 570.7310981929712 K, F = -3.881822415729985e-6, relative_change = 1.6051301391452765e-10 Iter 130: T = 570.7310979131595 K, F = -1.6234240017842794e-6, relative_change = 6.712843919388872e-11 Iter 135: T = 570.7310977961389 K, F = -6.789358192316186e-7, relative_change = 2.8073936231224964e-11 Iter 140: T = 570.7310977471996 K, F = -2.8393901863044135e-7, relative_change = 1.1740853376779062e-11 Iter 145: T = 570.7310977267325 K, F = -1.1874714606063819e-7, relative_change = 4.9101840168770624e-12 Iter 150: T = 570.7310977181729 K, F = -4.9661568191083916e-8, relative_change = 2.053501465018798e-12 Iter 155: T = 570.7310977145931 K, F = -2.076877342327421e-8, relative_change = 8.587869494678512e-13 Iter 160: T = 570.7310977130961 K, F = -8.68610566806538e-9, relative_change = 3.5916970335701407e-13 Converged in 163 iterations to T = 570.7310977126577 K Iter 1: T = 980.0410876941058 K, F = -4547.657154724984, relative_change = 0.019958912305894142 Iter 2: T = 962.130239503475 K, F = -3841.524501615883, relative_change = 0.01827560947752971 Iter 3: T = 946.1472741672817 K, F = -3243.523359630883, relative_change = 0.01661206007249243 Iter 5: T = 919.4440206506093 K, F = -2309.120393588444, relative_change = 0.013433426375146702 Iter 10: T = 877.0074698305006 K, F = -980.4101883106289, relative_change = 0.007069601486270102 Iter 15: T = 856.8974006987833 K, F = -413.16685447606716, relative_change = 0.0033186005633789252 Iter 20: T = 847.9673888708302 K, F = -173.3992232870438, relative_change = 0.0014631996388041358 Iter 25: T = 844.1314224293693 K, F = -72.62882908298765, relative_change = 0.0006261757179211377 Iter 30: T = 842.5085783164269 K, F = -30.39407502828264, relative_change = 0.0002644522154573623 Iter 35: T = 841.8265648930866 K, F = -12.714662433266678, relative_change = 0.00011105452296746268 Iter 40: T = 841.5407528485667 K, F = -5.318037480681004, relative_change = 4.652482267682722e-5 Iter 45: T = 841.4211199887011 K, F = -2.224174296795545, relative_change = 1.9471350966396465e-5 Iter 50: T = 841.3710700817545 K, F = -0.9301950683966987, relative_change = 8.145622782661849e-6 Iter 55: T = 841.3501354598574 K, F = -0.3890219780597065, relative_change = 3.407029147416026e-6 Iter 60: T = 841.3413797993412 K, F = -0.16269421286390484, relative_change = 1.4249359226889867e-6 Iter 65: T = 841.3377179810582 K, F = -0.06804076348845212, relative_change = 5.959384514788084e-7 Iter 70: T = 841.336186548044 K, F = -0.02845547747384569, relative_change = 2.492308916033441e-7 Iter 75: T = 841.3355460815167 K, F = -0.011900423588230291, relative_change = 1.042317400683217e-7 Iter 80: T = 841.3352782302499 K, F = -0.004976899801730328, relative_change = 4.359102925807572e-8 Iter 85: T = 841.3351662115609 K, F = -0.0020813990253751857, relative_change = 1.823030138134698e-8 Iter 90: T = 841.3351193639917 K, F = -0.0008704659453862007, relative_change = 7.624131913337614e-9 Iter 95: T = 841.335099771776 K, F = -0.00036403925558281536, relative_change = 3.1885033856224956e-9 Iter 100: T = 841.3350915780769 K, F = -0.00015224556469028983, relative_change = 1.3334702604900477e-9 Iter 105: T = 841.3350881513742 K, F = -6.367091484538179e-5, relative_change = 5.57673211851603e-10 Iter 110: T = 841.335086718286 K, F = -2.6627935656886592e-5, relative_change = 2.3322558752686473e-10 Iter 115: T = 841.3350861189515 K, F = -1.1136120306343145e-5, relative_change = 9.753772291973444e-11 Iter 120: T = 841.3350858683026 K, F = -4.657258917850626e-6, relative_change = 4.07914442411677e-11 Iter 125: T = 841.3350857634783 K, F = -1.947722470196922e-6, relative_change = 1.7059479403843463e-11 Iter 130: T = 841.3350857196396 K, F = -8.145613714649613e-7, relative_change = 7.134483046609596e-12 Iter 135: T = 841.3350857013055 K, F = -3.406573636510757e-7, relative_change = 2.983709111509267e-12 Iter 140: T = 841.3350856936381 K, F = -1.424688997886392e-7, relative_change = 1.2478396176984158e-12 Iter 145: T = 841.3350856904315 K, F = -5.958072923917257e-8, relative_change = 5.218485894651356e-13 Converged in 150 iterations to T = 841.3350856890904 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 1 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 1 ray tracing: 30%|█████████ | ETA: 0:00:07 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:06 Bin 1 ray tracing: 50%|███████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 61%|██████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 81%|████████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██ | ETA: 0:00:14 Bin 2 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 2 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 2 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 2 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 3 ray tracing: 24%|███████▍ | ETA: 0:00:12 Bin 3 ray tracing: 31%|█████████▏ | ETA: 0:00:11 Bin 3 ray tracing: 37%|███████████▎ | ETA: 0:00:10 Bin 3 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 50%|███████████████▏ | ETA: 0:00:08 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:14 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 4 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 4 ray tracing: 33%|█████████▊ | ETA: 0:00:10 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 4 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 4 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 4 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 4 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 5 ray tracing: 46%|█████████████▊ | ETA: 0:00:09 Bin 5 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 74%|██████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:02 Bin 5 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 5%|█▌ | ETA: 0:00:18 Bin 6 ray tracing: 10%|███▏ | ETA: 0:00:17 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:17 Bin 6 ray tracing: 21%|██████▎ | ETA: 0:00:15 Bin 6 ray tracing: 27%|████████ | ETA: 0:00:14 Bin 6 ray tracing: 32%|█████████▋ | ETA: 0:00:13 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:12 Bin 6 ray tracing: 43%|█████████████ | ETA: 0:00:11 Bin 6 ray tracing: 49%|██████████████▋ | ETA: 0:00:10 Bin 6 ray tracing: 55%|████████████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 61%|██████████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 67%|████████████████████ | ETA: 0:00:06 Bin 6 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 7 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 7 ray tracing: 35%|██████████▌ | ETA: 0:00:10 Bin 7 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 49%|██████████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 7 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 8 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 8 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▎ | ETA: 0:00:13 Bin 9 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 9 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 9 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 9 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 9 ray tracing: 50%|██████████████▉ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▌| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██ | ETA: 0:00:14 Bin 10 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 10 ray tracing: 20%|█████▊ | ETA: 0:00:12 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:11 Bin 10 ray tracing: 33%|█████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 39%|███████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 52%|███████████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 65%|██████████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 78%|██████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 85%|████████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2305707755186 K, F = -7466.545620572637, relative_change = 0.032769429224481485 Iter 2: T = 936.5324849518545 K, F = -6329.339887042753, relative_change = 0.03173812610063652 Iter 3: T = 907.8746155163412 K, F = -5363.838359289917, relative_change = 0.030599973728606424 Iter 5: T = 856.5428454795075 K, F = -3848.527541462151, relative_change = 0.028007507358595325 Iter 10: T = 760.9453900133285 K, F = -1666.7360250401348, relative_change = 0.020111972198916684 Iter 15: T = 704.8475010448032 K, F = -713.7434187800048, relative_change = 0.012086770161363109 Iter 20: T = 675.9404502501199 K, F = -302.5479802008383, relative_change = 0.0062031272818692815 Iter 25: T = 662.4432057104824 K, F = -127.37660810191916, relative_change = 0.0028691690800958826 Iter 30: T = 656.4972611689421 K, F = -53.4319859867385, relative_change = 0.001255844311103395 Iter 35: T = 653.952717290358 K, F = -22.375265655570058, relative_change = 0.0005356729278667344 Iter 40: T = 652.8780079585109 K, F = -9.362826591186801, relative_change = 0.00022590893774509182 Iter 45: T = 652.4266734022909 K, F = -3.916565921662466, relative_change = 9.48114340235388e-5 Iter 50: T = 652.2375889231828 K, F = -1.6381160335942768, relative_change = 3.970992716849279e-5 Iter 55: T = 652.1584534655352 K, F = -0.6851079510702347, relative_change = 1.6617446577412088e-5 Iter 60: T = 652.1253479021398 K, F = -0.2865252727403108, relative_change = 6.951414370531201e-6 Iter 65: T = 652.1115009804539 K, F = -0.11982915606804401, relative_change = 2.9074794061594516e-6 Iter 70: T = 652.1057097210936 K, F = -0.05011413545501403, relative_change = 1.2159976950586802e-6 Iter 75: T = 652.1032876928076 K, F = -0.020958356400139544, relative_change = 5.085543930835221e-7 Iter 80: T = 652.1022747621281 K, F = -0.008765039569642363, relative_change = 2.1268520579014627e-7 Iter 85: T = 652.1018511407551 K, F = -0.0036656450340749047, relative_change = 8.894778780317805e-8 Iter 90: T = 652.1016739769465 K, F = -0.0015330166719901284, relative_change = 3.719907867476302e-8 Iter 95: T = 652.1015998848749 K, F = -0.0006411259048737517, relative_change = 1.5557107964231274e-8 Iter 100: T = 652.1015688986769 K, F = -0.0002681265147512768, relative_change = 6.506169927037669e-9 Iter 105: T = 652.1015559398772 K, F = -0.00011213371115759152, relative_change = 2.7209582351202483e-9 Iter 110: T = 652.1015505203521 K, F = -4.6895657452084016e-5, relative_change = 1.1379372810131397e-9 Iter 115: T = 652.101548253842 K, F = -1.9612324047901808e-5, relative_change = 4.758989698253201e-10 Iter 120: T = 652.1015473059604 K, F = -8.202107881549736e-6, relative_change = 1.990266277828871e-10 Iter 125: T = 652.101546909545 K, F = -3.4302202441827134e-6, relative_change = 8.32353316473576e-11 Iter 130: T = 652.1015467437594 K, F = -1.4345589957609484e-6, relative_change = 3.481000793663115e-11 Iter 135: T = 652.1015466744259 K, F = -5.999511987209161e-7, relative_change = 1.4557997308824773e-11 Iter 140: T = 652.1015466454298 K, F = -2.509078443901913e-7, relative_change = 6.0883547394458656e-12 Iter 145: T = 652.1015466333032 K, F = -1.0493290125701549e-7, relative_change = 2.5462285896291174e-12 Iter 150: T = 652.1015466282317 K, F = -4.38843417160939e-8, relative_change = 1.0648668261351334e-12 Iter 155: T = 652.1015466261108 K, F = -1.8353029707096624e-8, relative_change = 4.4534181738210165e-13 Converged in 159 iterations to T = 652.1015466253452 K Iter 1: T = 970.3255930953759 K, F = -6761.341840866858, relative_change = 0.02967440690462415 Iter 2: T = 942.8151459911589 K, F = -5726.728360025212, relative_change = 0.028351769035028302 Iter 3: T = 917.4240109434023 K, F = -4848.682199759011, relative_change = 0.026931191289956965 Iter 5: T = 872.7842355303023 K, F = -3471.6951871855176, relative_change = 0.023840967926304368 Iter 10: T = 793.5251555819639 K, F = -1494.3562475355316, relative_change = 0.015535208073033626 Iter 15: T = 750.3206830837715 K, F = -636.1316512480261, relative_change = 0.008511375317611997 Iter 20: T = 729.3413599801783 K, F = -268.5200175979737, relative_change = 0.00409640882422425 Iter 25: T = 719.8969360953624 K, F = -112.78833117622727, relative_change = 0.0018292741496351063 Iter 30: T = 715.8130913213579 K, F = -47.260055773578394, relative_change = 0.0007874119613005084 Iter 35: T = 714.0802754825122 K, F = -19.780962062482622, relative_change = 0.00033339105087809356 Iter 40: T = 713.3511209243818 K, F = -8.275505057874511, relative_change = 0.00014015584514521842 Iter 45: T = 713.0453892554647 K, F = -3.4614193025154467, relative_change = 5.874310581209212e-5 Iter 50: T = 712.91738971376 K, F = -1.447695247680677, relative_change = 2.458957291417089e-5 Iter 55: T = 712.8638344345686 K, F = -0.6054589073190488, relative_change = 1.0287594416103873e-5 Iter 60: T = 712.8414327162785 K, F = -0.2532128515296898, relative_change = 4.303084580840674e-6 Iter 65: T = 712.8320633046594 K, F = -0.1058971117999189, relative_change = 1.7997220251789589e-6 Iter 70: T = 712.8281447744197 K, F = -0.044287519610181736, relative_change = 7.526863503559113e-7 Iter 75: T = 712.826505975467 K, F = -0.01852158408152904, relative_change = 3.147861123073654e-7 Iter 80: T = 712.8258206061842 K, F = -0.00774595018798796, relative_change = 1.3164795716567072e-7 Iter 85: T = 712.8255339758673 K, F = -0.003239449317185228, relative_change = 5.505686081869679e-8 Iter 90: T = 712.8254141035238 K, F = -0.0013547764694955555, relative_change = 2.302545647080052e-8 Iter 95: T = 712.8253639714568 K, F = -0.0005665837123031148, relative_change = 9.629524328750866e-9 Iter 100: T = 712.8253430056238 K, F = -0.00023695207716079025, relative_change = 4.027182677062264e-9 Iter 105: T = 712.8253342374616 K, F = -9.909618782433238e-5, relative_change = 1.684215977858487e-9 Iter 110: T = 712.8253305705113 K, F = -4.144320967858217e-5, relative_change = 7.043592610010063e-10 Iter 115: T = 712.8253290369488 K, F = -1.7332045419982123e-5, relative_change = 2.945714611243151e-10 Iter 120: T = 712.8253283955946 K, F = -7.2484681813422824e-6, relative_change = 1.2319330006925136e-10 Iter 125: T = 712.8253281273727 K, F = -3.0313955566851902e-6, relative_change = 5.152090259202834e-11 Iter 130: T = 712.8253280151991 K, F = -1.2677662377669208e-6, relative_change = 2.154666379659545e-11 Iter 135: T = 712.8253279682868 K, F = -5.301958311276778e-7, relative_change = 9.011086573315446e-12 Iter 140: T = 712.8253279486675 K, F = -2.2173418512405618e-7, relative_change = 3.768543284145696e-12 Iter 145: T = 712.8253279404624 K, F = -9.273243828378241e-8, relative_change = 1.5760592230757535e-12 Iter 150: T = 712.8253279370309 K, F = -3.878128651546575e-8, relative_change = 6.591178386768823e-13 Iter 155: T = 712.8253279355959 K, F = -1.6217398868256794e-8, relative_change = 2.756271865000151e-13 Converged in 157 iterations to T = 712.8253279352922 K Iter 1: T = 974.4314850241442 K, F = -5825.810459185473, relative_change = 0.025568514975855845 Iter 2: T = 951.0520847021397 K, F = -4928.820163506629, relative_change = 0.0239928621779141 Iter 3: T = 929.7869264570971 K, F = -4168.135297293258, relative_change = 0.02235961477514939 Iter 5: T = 893.2453501452336 K, F = -2976.795775014314, relative_change = 0.01900485851210691 Iter 10: T = 831.7037889455816 K, F = -1272.8710766502847, relative_change = 0.011161579687522311 Iter 15: T = 800.4710768205094 K, F = -538.9608171957374, relative_change = 0.0056320658925419174 Iter 20: T = 786.0303862456796 K, F = -226.76552716920685, relative_change = 0.0025800698016671675 Iter 25: T = 779.7014826088117 K, F = -95.09425302844865, relative_change = 0.0011240466344249786 Iter 30: T = 776.9995297100834 K, F = -39.816303570925164, relative_change = 0.0004784568776214824 Iter 35: T = 775.8595345018273 K, F = -16.65995314971439, relative_change = 0.00020159833460220593 Iter 40: T = 775.3809968948701 K, F = -6.968852131303038, relative_change = 8.45764286330891e-5 Iter 45: T = 775.1805536977253 K, F = -2.914713352885267, relative_change = 3.5417540942720735e-5 Iter 50: T = 775.0966710516818 K, F = -1.2190127864670672, relative_change = 1.4820216778707381e-5 Iter 55: T = 775.0615807127367 K, F = -0.5098135538367364, relative_change = 6.199423180207707e-6 Iter 60: T = 775.0469038314944 K, F = -0.21321148960761527, relative_change = 2.592923271972477e-6 Iter 65: T = 775.0407654901619 K, F = -0.08916783136928252, relative_change = 1.0844352903969716e-6 Iter 70: T = 775.0381983110286 K, F = -0.03729109396191954, relative_change = 4.535314524882773e-7 Iter 75: T = 775.0371246770524 K, F = -0.01559558818625606, relative_change = 1.896736100274774e-7 Iter 80: T = 775.0366756689268 K, F = -0.006522262513330879, relative_change = 7.93240033042784e-8 Iter 85: T = 775.0364878880911 K, F = -0.002727688299439479, relative_change = 3.317428650518258e-8 Iter 90: T = 775.0364093558549 K, F = -0.0011407518613106848, relative_change = 1.3873889968859976e-8 Iter 95: T = 775.0363765127273 K, F = -0.00047707605815316967, relative_change = 5.8022277214935225e-9 Iter 100: T = 775.0363627773377 K, F = -0.00019951890619984702, relative_change = 2.4265611455721794e-9 Iter 105: T = 775.0363570330334 K, F = -8.34411875342278e-5, relative_change = 1.0148168642885753e-9 Iter 110: T = 775.0363546306967 K, F = -3.4896100225778603e-5, relative_change = 4.244085274448983e-10 Iter 115: T = 775.0363536260109 K, F = -1.4593966897846755e-5, relative_change = 1.7749272838079055e-10 Iter 120: T = 775.0363532058392 K, F = -6.103370441379319e-6, relative_change = 7.422956913210169e-11 Iter 125: T = 775.0363530301184 K, F = -2.552503261865624e-6, relative_change = 3.104370271490239e-11 Iter 130: T = 775.0363529566299 K, F = -1.0674869480586935e-6, relative_change = 1.2982842364053289e-11 Iter 135: T = 775.0363529258962 K, F = -4.464354820266081e-7, relative_change = 5.4295759779605554e-12 Iter 140: T = 775.0363529130428 K, F = -1.867029570945533e-7, relative_change = 2.2706929259588113e-12 Iter 145: T = 775.0363529076675 K, F = -7.808158331013004e-8, relative_change = 9.496330515324387e-13 Iter 150: T = 775.0363529054194 K, F = -3.26554122631606e-8, relative_change = 3.971571461835362e-13 Converged in 154 iterations to T = 775.0363529046081 K Iter 1: T = 970.3505228171575 K, F = -6755.661580044606, relative_change = 0.029649477182842433 Iter 2: T = 942.8654922210494 K, F = -5721.878452823454, relative_change = 0.028324847516248676 Iter 3: T = 917.5001101436768 K, F = -4844.540317867478, relative_change = 0.026902439729362626 Iter 5: T = 872.9120786604979 K, F = -3468.67344353735, relative_change = 0.023809351164580498 Iter 10: T = 793.7728834275601 K, F = -1492.9884987582266, relative_change = 0.015503614752055521 Iter 15: T = 750.6558296265534 K, F = -635.5241659287991, relative_change = 0.008488845233848593 Iter 20: T = 729.7268871335646 K, F = -268.25665570837225, relative_change = 0.004083955219406287 Iter 25: T = 720.3071997307185 K, F = -112.67618279475853, relative_change = 0.001823339391199978 Iter 30: T = 716.2344867179812 K, F = -47.212766849247345, relative_change = 0.0007847830204443398 Iter 35: T = 714.5064772302836 K, F = -19.761114587351237, relative_change = 0.00033226420521814286 Iter 40: T = 713.7793602202079 K, F = -8.26719201525271, relative_change = 0.0001396796622366246 Iter 45: T = 713.4744855660649 K, F = -3.4579404694103077, relative_change = 5.8543089549587226e-5 Iter 50: T = 713.3468452992124 K, F = -1.4462399686873435, relative_change = 2.450577067212404e-5 Iter 55: T = 713.2934404241049 K, F = -0.6048502240577572, relative_change = 1.0252520494694136e-5 Iter 60: T = 713.2711016330511 K, F = -0.25295828098422957, relative_change = 4.288411552710338e-6 Iter 65: T = 713.2617585429826 K, F = -0.1057906452710643, relative_change = 1.7935847681030541e-6 Iter 70: T = 713.2578510215395 K, F = -0.0442429936707065, relative_change = 7.501195324427537e-7 Iter 75: T = 713.2562168267385 K, F = -0.01850296273676122, relative_change = 3.137126132454139e-7 Iter 80: T = 713.2555333829919 K, F = -0.007738162508822866, relative_change = 1.3119900265457623e-7 Iter 85: T = 713.2552475579616 K, F = -0.003236192414526773, relative_change = 5.48691019069725e-8 Iter 90: T = 713.2551280223992 K, F = -0.0013534143928166653, relative_change = 2.294693330438814e-8 Iter 95: T = 713.2550780311782 K, F = -0.0005660140743818376, relative_change = 9.596684960159271e-9 Iter 100: T = 713.2550571242489 K, F = -0.0002367138484785647, relative_change = 4.0134488688586775e-9 Iter 105: T = 713.2550483807206 K, F = -9.89965578491736e-5, relative_change = 1.6784723363832909e-9 Iter 110: T = 713.2550447240726 K, F = -4.1401541110430706e-5, relative_change = 7.019571654155506e-10 Iter 115: T = 713.2550431948188 K, F = -1.7314619095931683e-5, relative_change = 2.935668755054768e-10 Iter 120: T = 713.2550425552665 K, F = -7.241181473327529e-6, relative_change = 1.227731905270515e-10 Iter 125: T = 713.2550422877981 K, F = -3.0283482841397813e-6, relative_change = 5.1345209742951754e-11 Iter 130: T = 713.2550421759396 K, F = -1.2664903420445128e-6, relative_change = 2.147316166995142e-11 Iter 135: T = 713.2550421291592 K, F = -5.296616352179484e-7, relative_change = 8.980336880103668e-12 Iter 140: T = 713.2550421095949 K, F = -2.2151048151286545e-7, relative_change = 3.755678369834636e-12 Iter 145: T = 713.2550421014129 K, F = -9.263621469912664e-8, relative_change = 1.5706337029819615e-12 Iter 150: T = 713.2550420979911 K, F = -3.874096732303656e-8, relative_change = 6.568475316343813e-13 Iter 155: T = 713.2550420965601 K, F = -1.6201914476710044e-8, relative_change = 2.7470113079886433e-13 Converged in 157 iterations to T = 713.2550420962573 K Iter 1: T = 969.3514834436324 K, F = -6983.293651634085, relative_change = 0.030648516556367543 Iter 2: T = 940.8446767962718 K, F = -5916.284809963494, relative_change = 0.029408121960147974 Iter 3: T = 914.4403492506538 K, F = -5010.617644106008, relative_change = 0.028064491617818318 Iter 5: T = 867.7524607191826 K, F = -3589.9345705488245, relative_change = 0.02509980733710119 Iter 10: T = 783.6723212586743 K, F = -1548.0459284582475, relative_change = 0.016829220101809733 Iter 15: T = 736.8710602082141 K, F = -660.0698970627415, relative_change = 0.009458024940955576 Iter 20: T = 713.7818216272834 K, F = -278.929283081659, relative_change = 0.0046285809501055725 Iter 25: T = 703.290451387713 K, F = -117.22867676947772, relative_change = 0.0020851582393506926 Iter 30: T = 698.7329717905953 K, F = -49.133974494162494, relative_change = 0.000901236003631498 Iter 35: T = 696.7951640695013 K, F = -20.5677555360664, relative_change = 0.0003822690492054919 Iter 40: T = 695.9790172671786 K, F = -8.605104223960305, relative_change = 0.00016082689537167964 Iter 45: T = 695.636679559788 K, F = -3.5993590973363467, relative_change = 6.742865703073205e-5 Iter 50: T = 695.4933313054626 K, F = -1.5054004279078912, relative_change = 2.8229124521627476e-5 Iter 55: T = 695.4333500574998 K, F = -0.6295948999229588, relative_change = 1.181095168577078e-5 Iter 60: T = 695.4082597044397 K, F = -0.26330733639701454, relative_change = 4.94039019025473e-6 Iter 65: T = 695.3977656605199 K, F = -0.11011883768578773, relative_change = 2.0662892310567377e-6 Iter 70: T = 695.3933767583354 K, F = -0.046053111842640715, relative_change = 8.641746546386763e-7 Iter 75: T = 695.3915412376962 K, F = -0.019259978645707054, relative_change = 3.6141302719510327e-7 Iter 80: T = 695.390773595914 K, F = -0.008054756103534122, relative_change = 1.5114809524651793e-7 Iter 85: T = 695.3904525580558 K, F = -0.003368595723918344, relative_change = 6.321208735905329e-8 Iter 90: T = 695.3903182960328 K, F = -0.0014087870534363889, relative_change = 2.6436075876058917e-8 Iter 95: T = 695.3902621460238 K, F = -0.0005891715872078374, relative_change = 1.1055887213939703e-8 Iter 100: T = 695.3902386634147 K, F = -0.00024639859662134445, relative_change = 4.623704861281291e-9 Iter 105: T = 695.3902288427063 K, F = -0.00010304683627793132, relative_change = 1.9336887320294034e-9 Iter 110: T = 695.3902247355686 K, F = -4.309541853764198e-5, relative_change = 8.086917617432991e-10 Iter 115: T = 695.3902230179145 K, F = -1.8023019454305178e-5, relative_change = 3.382045707042125e-10 Iter 120: T = 695.3902222995711 K, F = -7.537441925498101e-6, relative_change = 1.4144119023018082e-10 Iter 125: T = 695.3902219991513 K, F = -3.1522482022428022e-6, relative_change = 5.915239453254947e-11 Iter 130: T = 695.3902218735121 K, F = -1.3183083984458221e-6, relative_change = 2.4738248248357402e-11 Iter 135: T = 695.3902218209683 K, F = -5.51333010467836e-7, relative_change = 1.0345843887100673e-11 Iter 140: T = 695.3902217989938 K, F = -2.305738130425894e-7, relative_change = 4.326751036595573e-12 Iter 145: T = 695.390221789804 K, F = -9.642874709836491e-8, relative_change = 1.80949942227242e-12 Iter 150: T = 695.3902217859605 K, F = -4.032769473916176e-8, relative_change = 7.567550396519601e-13 Iter 155: T = 695.3902217843531 K, F = -1.686456008176407e-8, relative_change = 3.164659154478106e-13 Converged in 158 iterations to T = 695.3902217838826 K Iter 1: T = 963.5227922281592 K, F = -8311.366489596381, relative_change = 0.036477207771840756 Iter 2: T = 928.9207128325115 K, F = -7052.5468535643295, relative_change = 0.03591205073170081 Iter 3: T = 896.1600538394579 K, F = -5983.47389077914, relative_change = 0.03526744375540749 Iter 5: T = 836.0436556986045 K, F = -4304.586697793892, relative_change = 0.03371051558635876 Iter 10: T = 716.0372093093924 K, F = -1881.3240319136337, relative_change = 0.028029535860878786 Iter 15: T = 636.0399858348234 K, F = -814.797098037511, relative_change = 0.020138012245307896 Iter 20: T = 589.0777310193197 K, F = -348.93081395592014, relative_change = 0.012108821840130596 Iter 25: T = 564.8697378379776 K, F = -147.91173511798792, relative_change = 0.006216916330294287 Iter 30: T = 553.5639624809008 K, F = -62.27368697476155, relative_change = 0.0028762065830369435 Iter 35: T = 548.5828163298128 K, F = -26.122782052890468, relative_change = 0.0012590657356016768 Iter 40: T = 546.4510319438408 K, F = -10.939255239474218, relative_change = 0.0005370739977826333 Iter 45: T = 545.5506323276738 K, F = -4.577487414015433, relative_change = 0.00022650471610220367 Iter 50: T = 545.1724967455813 K, F = -1.9148108693554995, relative_change = 9.506234770133487e-5 Iter 55: T = 545.0140779105221 K, F = -0.800875882619389, relative_change = 3.9815171089893464e-5 Iter 60: T = 544.947776482728 K, F = -0.33494971212640035, relative_change = 1.6661515032119226e-5 Iter 65: T = 544.9200398910533 K, F = -0.14008239399758615, relative_change = 6.969853815387642e-6 Iter 70: T = 544.9084386222074 K, F = -0.05858455419250638, relative_change = 2.9151926631386278e-6 Iter 75: T = 544.9035865714975 K, F = -0.024500834386723097, relative_change = 1.2192237618332068e-6 Iter 80: T = 544.9015573401987 K, F = -0.010246554514730138, relative_change = 5.099036235924206e-7 Iter 85: T = 544.9007086834342 K, F = -0.00428523373566328, relative_change = 2.132494789735012e-7 Iter 90: T = 544.9003537636409 K, F = -0.0017921363214242758, relative_change = 8.918377513905098e-8 Iter 95: T = 544.9002053316999 K, F = -0.0007494928817312618, relative_change = 3.7297771670345233e-8 Iter 100: T = 544.9001432556466 K, F = -0.00031344688593767933, relative_change = 1.559838259731865e-8 Iter 105: T = 544.9001172946924 K, F = -0.00013108723340368722, relative_change = 6.523431483250079e-9 Iter 110: T = 544.9001064375101 K, F = -5.482224748187825e-5, relative_change = 2.728177259103103e-9 Iter 115: T = 544.9001018969063 K, F = -2.292731806849413e-5, relative_change = 1.1409563292498538e-9 Iter 120: T = 544.9000999979717 K, F = -9.588478247057886e-6, relative_change = 4.771615717407903e-10 Iter 125: T = 544.9000992038145 K, F = -4.0100159185985085e-6, relative_change = 1.9955465949852292e-10 Iter 130: T = 544.9000988716884 K, F = -1.6770361430940017e-6, relative_change = 8.345612193727356e-11 Iter 135: T = 544.9000987327894 K, F = -7.013563503577291e-7, relative_change = 3.490233732230813e-11 Iter 140: T = 544.9000986747003 K, F = -2.9331580828073633e-7, relative_change = 1.4596584578658068e-11 Iter 145: T = 544.9000986504066 K, F = -1.2266800231142128e-7, relative_change = 6.1044574505169295e-12 Iter 150: T = 544.9000986402467 K, F = -5.1300841075185843e-8, relative_change = 2.5529379760498827e-12 Iter 155: T = 544.9000986359978 K, F = -2.145464125802299e-8, relative_change = 1.0676699891117417e-12 Iter 160: T = 544.9000986342207 K, F = -8.972276227536824e-9, relative_change = 4.464968650421162e-13 Converged in 165 iterations to T = 544.9000986334777 K Iter 1: T = 966.9190854076248 K, F = -7537.517857946276, relative_change = 0.03308091459237511 Iter 2: T = 935.8966317267176 K, F = -6390.041543921984, relative_change = 0.0320838156460932 Iter 3: T = 906.9021974545807 K, F = -5415.7881492842625, relative_change = 0.030980381047683143 Iter 5: T = 854.8661262962984 K, F = -3886.6417912478673, relative_change = 0.02845496774405162 Iter 10: T = 757.4453875039849 K, F = -1684.3928434457039, relative_change = 0.02065722441674221 Iter 15: T = 699.7750078945589 K, F = -721.8349392396493, relative_change = 0.01255804909003891 Iter 20: T = 669.8269069131555 K, F = -306.15163447976107, relative_change = 0.0065014786934586444 Iter 25: T = 655.7719447174755 K, F = -128.9367734264009, relative_change = 0.003022430910863214 Iter 30: T = 649.5634309699622 K, F = -54.09534491879626, relative_change = 0.0013262153034718992 Iter 35: T = 646.9031264124627 K, F = -22.654734577462463, relative_change = 0.0005663203291353361 Iter 40: T = 645.778892892145 K, F = -9.480072663851963, relative_change = 0.0002389487273973236 Iter 45: T = 645.306646722801 K, F = -3.9656649951262803, relative_change = 0.00010030452376726289 Iter 50: T = 645.10878135578 K, F = -1.6586613486591943, relative_change = 4.201420113120838e-5 Iter 55: T = 645.0259674030183 K, F = -0.6937022625731385, relative_change = 1.7582349574391947e-5 Iter 60: T = 644.9913223583483 K, F = -0.290119869285443, relative_change = 7.355163426130759e-6 Iter 65: T = 644.9768314162777 K, F = -0.12133252100801645, relative_change = 3.076369726102282e-6 Iter 70: T = 644.9707707864951 K, F = -0.050742871426461444, relative_change = 1.2866362292679857e-6 Iter 75: T = 644.9682360984378 K, F = -0.02122130318204024, relative_change = 5.380974236301957e-7 Iter 80: T = 644.9671760510744 K, F = -0.008875007384047395, relative_change = 2.2504065545070454e-7 Iter 85: T = 644.9667327247626 K, F = -0.0037116349436729368, relative_change = 9.411501960876036e-8 Iter 90: T = 644.966547320082 K, F = -0.0015522502109314718, relative_change = 3.9360082874167075e-8 Iter 95: T = 644.966469781574 K, F = -0.0006491696022382087, relative_change = 1.6460866803881566e-8 Iter 100: T = 644.9664373540342 K, F = -0.0002714904858285294, relative_change = 6.884132867729938e-9 Iter 105: T = 644.9664237924479 K, F = -0.00011354056396595258, relative_change = 2.879026880376028e-9 Iter 110: T = 644.9664181208303 K, F = -4.7484020226695733e-5, relative_change = 1.2040434851590863e-9 Iter 115: T = 644.9664157488921 K, F = -1.9858385440663096e-5, relative_change = 5.035454015921162e-10 Iter 120: T = 644.9664147569191 K, F = -8.305014118081822e-6, relative_change = 2.1058870633949398e-10 Iter 125: T = 644.9664143420642 K, F = -3.4732559114347694e-6, relative_change = 8.807070776947648e-11 Iter 130: T = 644.966414168567 K, F = -1.4525582237578938e-6, relative_change = 3.683225027715441e-11 Iter 135: T = 644.9664140960084 K, F = -6.074783193144029e-7, relative_change = 1.5403715418051833e-11 Iter 140: T = 644.9664140656635 K, F = -2.5405536624445446e-7, relative_change = 6.442034947603976e-12 Iter 145: T = 644.9664140529728 K, F = -1.0624869889452881e-7, relative_change = 2.694128612979326e-12 Iter 150: T = 644.9664140476654 K, F = -4.4433828672030273e-8, relative_change = 1.1267003780729817e-12 Iter 155: T = 644.9664140454458 K, F = -1.8583133309935107e-8, relative_change = 4.71209075431466e-13 Converged in 160 iterations to T = 644.9664140445176 K Iter 1: T = 965.1658813137809 K, F = -7936.98707845626, relative_change = 0.03483411868621908 Iter 2: T = 932.3054336281014 K, F = -6731.887374511305, relative_change = 0.034046424891180364 Iter 3: T = 901.3891829612546 K, F = -5708.547091122795, relative_change = 0.033161075278232546 Iter 5: T = 845.2763020038964 K, F = -4101.8402871982735, relative_change = 0.031078549521155064 Iter 10: T = 736.8642222761634 K, F = -1784.9809473171738, relative_change = 0.02409882926424895 Iter 15: T = 669.0408358203896 K, F = -768.6080976295107, relative_change = 0.015794200213384978 Iter 20: T = 631.9151481038913 K, F = -327.2948014432162, relative_change = 0.008696991284287928 Iter 25: T = 613.8313948813474 K, F = -138.18507732128532, relative_change = 0.004199353658915102 Iter 30: T = 605.6758314485411 K, F = -58.04933110123785, relative_change = 0.0018784200007188761 Iter 35: T = 602.1461836737828 K, F = -24.32483291314498, relative_change = 0.0008092004036224348 Iter 40: T = 600.6479238259733 K, F = -10.181527587514372, relative_change = 0.00034273366622751013 Iter 45: T = 600.0173603213392 K, F = -4.259555317439927, relative_change = 0.00014410446720719477 Iter 50: T = 599.752948270325 K, F = -1.7816637583684087, relative_change = 6.040179740987098e-5 Iter 55: T = 599.6422444736379 K, F = -0.7451598227683176, relative_change = 2.5284545970449393e-5 Iter 60: T = 599.5959251768854 K, F = -0.3116429220346551, relative_change = 1.057846625555682e-5 Iter 65: T = 599.5765501045782 K, F = -0.13033422382810764, relative_change = 4.424770185665093e-6 Iter 70: T = 599.5684465549791 K, F = -0.05450757941416873, relative_change = 1.8506193143038562e-6 Iter 75: T = 599.5650574377888 K, F = -0.022795764479007496, relative_change = 7.739734142971936e-7 Iter 80: T = 599.5636400482207 K, F = -0.00953346860477372, relative_change = 3.2368882824963405e-7 Iter 85: T = 599.5630472754284 K, F = -0.003987011763957271, relative_change = 1.3537121631731616e-7 Iter 90: T = 599.5627993701469 K, F = -0.0016674161684281374, relative_change = 5.661397872131345e-8 Iter 95: T = 599.562695693089 K, F = -0.000697333394846289, relative_change = 2.36766628671564e-8 Iter 100: T = 599.5626523340862 K, F = -0.0002916331608088796, relative_change = 9.901866822594055e-9 Iter 105: T = 599.5626342008302 K, F = -0.00012196447174067648, relative_change = 4.141079590566987e-9 Iter 110: T = 599.5626266172854 K, F = -5.1006999436609135e-5, relative_change = 1.7318490708648917e-9 Iter 115: T = 599.5626234457562 K, F = -2.1331735565288668e-5, relative_change = 7.24279956812196e-10 Iter 120: T = 599.5626221193849 K, F = -8.921185969845702e-6, relative_change = 3.0290251054496414e-10 Iter 125: T = 599.5626215646805 K, F = -3.7309464017698524e-6, relative_change = 1.266774440755419e-10 Iter 130: T = 599.5626213326966 K, F = -1.5603266455554987e-6, relative_change = 5.297803036041473e-11 Iter 135: T = 599.5626212356781 K, F = -6.525468153051328e-7, relative_change = 2.215603067340598e-11 Iter 140: T = 599.5626211951037 K, F = -2.7290201176644047e-7, relative_change = 9.265887448477112e-12 Iter 145: T = 599.5626211781351 K, F = -1.1413101813628757e-7, relative_change = 3.875109464119679e-12 Iter 150: T = 599.5626211710386 K, F = -4.773011735847987e-8, relative_change = 1.62058862288379e-12 Iter 155: T = 599.5626211680709 K, F = -1.9961568342719005e-8, relative_change = 6.777584540370441e-13 Iter 160: T = 599.5626211668297 K, F = -8.348094104881909e-9, relative_change = 2.8344422931077176e-13 Converged in 162 iterations to T = 599.5626211665669 K Iter 1: T = 980.176756190863 K, F = -4516.744958684811, relative_change = 0.019823243809136994 Iter 2: T = 962.3957068859216 K, F = -3815.2689879486256, relative_change = 0.01814065595070994 Iter 3: T = 946.5357036479197 K, F = -3221.234404829519, relative_change = 0.016479711125604438 Iter 5: T = 920.0548371898668 K, F = -2293.0862585962404, relative_change = 0.013311346479695516 Iter 10: T = 878.0239453304405 K, F = -973.4572090014335, relative_change = 0.006989280253082534 Iter 15: T = 858.1333281614883 K, F = -410.1995858630066, relative_change = 0.0032763842461364383 Iter 20: T = 849.307358670568 K, F = -172.146075279349, relative_change = 0.0014435939852038438 Iter 25: T = 845.5174303655563 K, F = -72.10245164857996, relative_change = 0.0006175931853864707 Iter 30: T = 843.9143152621824 K, F = -30.173523122579997, relative_change = 0.00026079240277556245 Iter 35: T = 843.2406385307887 K, F = -12.622351491806281, relative_change = 0.0001095113486101822 Iter 40: T = 842.958328195063 K, F = -5.2794190134887575, relative_change = 4.587722551668531e-5 Iter 45: T = 842.8401624658565 K, F = -2.208021325878401, relative_change = 1.9200127781702573e-5 Iter 50: T = 842.7907265992947 K, F = -0.9234393062050632, relative_change = 8.03212563229242e-6 Iter 55: T = 842.7700488584974 K, F = -0.38619656819000925, relative_change = 3.359551316788248e-6 Iter 60: T = 842.7614006430863 K, F = -0.16151258056552664, relative_change = 1.4050780333014543e-6 Iter 65: T = 842.7577837621417 K, F = -0.06754658862484919, relative_change = 5.876332787676424e-7 Iter 70: T = 842.7562711228987 K, F = -0.028248807276165744, relative_change = 2.4575750516783317e-7 Iter 75: T = 842.7556385162277 K, F = -0.011813991576840044, relative_change = 1.0277911716307056e-7 Iter 80: T = 842.75537395206 K, F = -0.0049407528929878985, relative_change = 4.298352306920699e-8 Iter 85: T = 842.7552633080777 K, F = -0.0020662819554113643, relative_change = 1.797623470366891e-8 Iter 90: T = 842.7552170354276 K, F = -0.0008641438063123896, relative_change = 7.51787813870996e-9 Iter 95: T = 842.75519768365 K, F = -0.0003613952620744598, relative_change = 3.1440667830769047e-9 Iter 100: T = 842.755189590505 K, F = -0.0001511398153586363, relative_change = 1.3148863437484343e-9 Iter 105: T = 842.755186205855 K, F = -6.32084752878459e-5, relative_change = 5.499011783044659e-10 Iter 110: T = 842.755184790354 K, F = -2.6434535884467536e-5, relative_change = 2.2997521267286406e-10 Iter 115: T = 842.7551841983745 K, F = -1.1055239174329046e-5, relative_change = 9.617838572542301e-11 Iter 120: T = 842.7551839508017 K, F = -4.623432579009545e-6, relative_change = 4.022294548036543e-11 Iter 125: T = 842.7551838472638 K, F = -1.933575507262475e-6, relative_change = 1.6821723022279718e-11 Iter 130: T = 842.755183803963 K, F = -8.086452931710397e-7, relative_change = 7.035053504364968e-12 Iter 135: T = 842.7551837858541 K, F = -3.381869555507677e-7, relative_change = 2.9421593708802226e-12 Iter 140: T = 842.7551837782808 K, F = -1.4143377891073783e-7, relative_change = 1.2304457968266208e-12 Iter 145: T = 842.7551837751134 K, F = -5.915004663847867e-8, relative_change = 5.145936623502846e-13 Converged in 150 iterations to T = 842.7551837737889 K Iter 1: T = 976.4968096077698 K, F = -5355.224288175506, relative_change = 0.02350319039223023 Iter 2: T = 955.1540643205283 K, F = -4528.121282576961, relative_change = 0.02185644139053999 Iter 3: T = 935.879624680988 K, F = -3827.026825754412, relative_change = 0.020179403888368124 Iter 5: T = 903.112775047275 K, F = -2729.881082535324, relative_change = 0.01682779181785918 Iter 10: T = 849.1835397559123 K, F = -1163.9902285589494, relative_change = 0.009457037603313883 Iter 15: T = 822.5780192894465 K, F = -491.87325143211206, relative_change = 0.004628040192282319 Iter 20: T = 810.4889824901304 K, F = -206.7249004362895, relative_change = 0.0020849010208288947 Iter 25: T = 805.2374882301509 K, F = -86.64444940681828, relative_change = 0.0009011220903140024 Iter 30: T = 803.0045935255852 K, F = -36.269846490626605, relative_change = 0.00038222022187386364 Iter 35: T = 802.0641654522542 K, F = -15.174519071276476, relative_change = 0.0001608062613601064 Iter 40: T = 801.6696973151406 K, F = -6.347226141831977, relative_change = 6.741998977557221e-5 Iter 45: T = 801.5045203230377 K, F = -2.654671744052087, relative_change = 2.8225493114926074e-5 Iter 50: T = 801.4354052736564 K, F = -1.1102479817480881, relative_change = 1.1809431821251725e-5 Iter 55: T = 801.406494222002 K, F = -0.46432466105070047, relative_change = 4.939754360496974e-6 Iter 60: T = 801.3944021704189 K, F = -0.1941871148049622, relative_change = 2.0660232837480534e-6 Iter 65: T = 801.3893449368261 K, F = -0.08121154475447456, relative_change = 8.640634260623936e-7 Iter 70: T = 801.3872299075467 K, F = -0.03396366836006215, relative_change = 3.6136650896805257e-7 Iter 75: T = 801.3863453711325 K, F = -0.014204017045278072, relative_change = 1.5112864055645638e-7 Iter 80: T = 801.3859754464069 K, F = -0.005940290492168265, relative_change = 6.320395116568108e-8 Iter 85: T = 801.385820739288 K, F = -0.002484300589001509, relative_change = 2.6432673223504454e-8 Iter 90: T = 801.3857560388916 K, F = -0.0010389642042024638, relative_change = 1.1054464173496483e-8 Iter 95: T = 801.3857289804076 K, F = -0.0004345072427196506, relative_change = 4.6231097284392095e-9 Iter 100: T = 801.3857176642255 K, F = -0.000181716117825248, relative_change = 1.9334398279658344e-9 Iter 105: T = 801.3857129316629 K, F = -7.599585192252789e-5, relative_change = 8.085876627625781e-10 Iter 110: T = 801.3857109524486 K, F = -3.178237054601851e-5, relative_change = 3.3816099654033286e-10 Iter 115: T = 801.3857101247175 K, F = -1.3291768825807182e-5, relative_change = 1.4142298817877186e-10 Iter 120: T = 801.3857097785506 K, F = -5.558776009717548e-6, relative_change = 5.914477793212875e-11 Iter 125: T = 801.3857096337795 K, F = -2.324749543980431e-6, relative_change = 2.473508473887782e-11 Iter 130: T = 801.3857095732344 K, F = -9.722382159349507e-7, relative_change = 1.0344509897182888e-11 Iter 135: T = 801.3857095479137 K, F = -4.066031338290088e-7, relative_change = 4.326213549122544e-12 Iter 140: T = 801.3857095373243 K, F = -1.7004596708503072e-7, relative_change = 1.8092707744170007e-12 Iter 145: T = 801.3857095328956 K, F = -7.111436928219916e-8, relative_change = 7.566492295723073e-13 Iter 150: T = 801.3857095310435 K, F = -2.9741086482459878e-8, relative_change = 3.1644195682232097e-13 Converged in 153 iterations to T = 801.3857095305012 K Iter 1: T = 980.9221639456456 K, F = -4346.903092691767, relative_change = 0.019077836054354393 Iter 2: T = 963.8522289933751 K, F = -3671.0469949907642, relative_change = 0.017401926044375116 Iter 3: T = 948.663936400927 K, F = -3098.832220574181, relative_change = 0.01575790576145717 Iter 5: T = 923.3927981305558 K, F = -2205.081297779333, relative_change = 0.01265025367688042 Iter 10: T = 883.5501182536382 K, F = -935.3457534112255, relative_change = 0.0065605391437650465 Iter 15: T = 864.832472024545 K, F = -393.9502380545155, relative_change = 0.003052973568583322 Iter 20: T = 856.5597883286787 K, F = -165.2870519470279, relative_change = 0.0013402848786144526 Iter 25: T = 853.0140897630806 K, F = -69.22204234255811, relative_change = 0.0005724567447912447 Iter 30: T = 851.5155225826518 K, F = -28.966758800069197, relative_change = 0.0002415612785982446 Iter 35: T = 850.8860030749181 K, F = -12.117288585709296, relative_change = 0.00010140536983803819 Iter 40: T = 850.6222367021363 K, F = -5.068128909207159, relative_change = 4.2476042308687076e-5 Iter 45: T = 850.5118397989927 K, F = -2.119645576875302, relative_change = 1.777575229575283e-5 Iter 50: T = 850.4656553181145 K, F = -0.8864774635287729, relative_change = 7.4360914579613e-6 Iter 55: T = 850.4463377605174 K, F = -0.37073832565223064, relative_change = 3.1102226190782674e-6 Iter 60: T = 850.4382584625556 K, F = -0.15504769621265857, relative_change = 1.3007952820986615e-6 Iter 65: T = 850.4348795223808 K, F = -0.06484288580936637, relative_change = 5.440191479943593e-7 Iter 70: T = 850.4334663950305 K, F = -0.027118084550933563, relative_change = 2.2751723319226185e-7 Iter 75: T = 850.4328754058097 K, F = -0.011341109492394974, relative_change = 9.515076132310888e-8 Iter 80: T = 850.432628246625 K, F = -0.004742987898228801, relative_change = 3.9793243708526086e-8 Iter 85: T = 850.4325248816263 K, F = -0.0019835742651597155, relative_change = 1.6642020076855552e-8 Iter 90: T = 850.4324816531359 K, F = -0.0008295544615255501, relative_change = 6.9598933537694834e-9 Iter 95: T = 850.4324635744628 K, F = -0.0003469295842501996, relative_change = 2.910710826153895e-9 Iter 100: T = 850.4324560137452 K, F = -0.00014509009425345276, relative_change = 1.2172940710738355e-9 Iter 105: T = 850.4324528517628 K, F = -6.0678409254499854e-5, relative_change = 5.090869195126967e-10 Iter 110: T = 850.4324515293841 K, F = -2.537643548738977e-5, relative_change = 2.1290623180230297e-10 Iter 115: T = 850.4324509763494 K, F = -1.0612727709968794e-5, relative_change = 8.903992343574919e-11 Iter 120: T = 850.4324507450638 K, F = -4.438370012405102e-6, relative_change = 3.7237563932276825e-11 Iter 125: T = 850.4324506483373 K, F = -1.8561781118808796e-6, relative_change = 1.5573183613601693e-11 Iter 130: T = 850.4324506078851 K, F = -7.762755973583779e-7, relative_change = 6.512889219940385e-12 Iter 135: T = 850.4324505909677 K, F = -3.246491908637239e-7, relative_change = 2.7237803466116684e-12 Iter 140: T = 850.4324505838925 K, F = -1.3577155977273492e-7, relative_change = 1.1391123605407956e-12 Iter 145: T = 850.4324505809336 K, F = -5.678261527641837e-8, relative_change = 4.764015308842419e-13 Converged in 150 iterations to T = 850.4324505796963 K Iter 1: T = 967.3176976455727 K, F = -7446.693680351741, relative_change = 0.0326823023544273 Iter 2: T = 936.7102248087022 K, F = -6312.362549921513, relative_change = 0.03164159294445707 Iter 3: T = 908.1462373960455 K, F = -5349.3106907044585, relative_change = 0.030493942156433758 Iter 5: T = 857.0104210132076 K, F = -3837.8727858101374, relative_change = 0.027883316096696278 Iter 10: T = 761.9164960901285 K, F = -1661.8080597695448, relative_change = 0.019962647560568928 Iter 15: T = 706.2477118268113 K, F = -711.4906249556177, relative_change = 0.011959527601840231 Iter 20: T = 677.6217148390039 K, F = -301.5470044895317, relative_change = 0.006123446685548519 Iter 25: T = 664.2739588478528 K, F = -126.94390633278546, relative_change = 0.002828496928729132 Iter 30: T = 658.3981198451718 K, F = -53.24815350854928, relative_change = 0.0012372277969183666 Iter 35: T = 655.8844272653754 K, F = -22.297846514776772, relative_change = 0.0005275766176858289 Iter 40: T = 654.822905908997 K, F = -9.330351989121123, relative_change = 0.0002224662292711166 Iter 45: T = 654.3771380519148 K, F = -3.902967474228278, relative_change = 9.336154575800083e-5 Iter 50: T = 654.1903907145728 K, F = -1.632425979391483, relative_change = 3.91017852733409e-5 Iter 55: T = 654.1122342736264 K, F = -0.682727772871711, relative_change = 1.6362801813241023e-5 Iter 60: T = 654.0795384264342 K, F = -0.2855297610826091, relative_change = 6.844864147829116e-6 Iter 65: T = 654.0658629019237 K, F = -0.11941280498320911, relative_change = 2.862909250844835e-6 Iter 70: T = 654.0601433314763 K, F = -0.04994000962283113, relative_change = 1.1973562479604108e-6 Iter 75: T = 654.0577512858483 K, F = -0.020885534401417494, relative_change = 5.007580241397829e-7 Iter 80: T = 654.0567508945365 K, F = -0.00873458445354891, relative_change = 2.0942461992272403e-7 Iter 85: T = 654.0563325173227 K, F = -0.0036529083250279593, relative_change = 8.758416287147386e-8 Iter 90: T = 654.0561575466921 K, F = -0.0015276900252756964, relative_change = 3.662879286921762e-8 Iter 95: T = 654.0560843718351 K, F = -0.000638898236135943, relative_change = 1.5318607331356927e-8 Iter 100: T = 654.0560537692274 K, F = -0.0002671948760860632, relative_change = 6.406426044079367e-9 Iter 105: T = 654.05604097085 K, F = -0.00011174408842373751, relative_change = 2.6792441364496248e-9 Iter 110: T = 654.0560356184154 K, F = -4.673271213012642e-5, relative_change = 1.1204919347372018e-9 Iter 115: T = 654.0560333799634 K, F = -1.9544179340302836e-5, relative_change = 4.686031407233192e-10 Iter 120: T = 654.0560324438159 K, F = -8.173608741279814e-6, relative_change = 1.9597541992512764e-10 Iter 125: T = 654.0560320523078 K, F = -3.4183004370968995e-6, relative_change = 8.195925284705579e-11 Iter 130: T = 654.0560318885746 K, F = -1.429573836586595e-6, relative_change = 3.427633288298377e-11 Iter 135: T = 654.0560318200993 K, F = -5.978651411719937e-7, relative_change = 1.4334778717752876e-11 Iter 140: T = 654.0560317914621 K, F = -2.5003429016123846e-7, relative_change = 5.994974410170233e-12 Iter 145: T = 654.0560317794858 K, F = -1.0456762572497169e-7, relative_change = 2.5071770756077546e-12 Iter 150: T = 654.0560317744772 K, F = -4.373235190646696e-8, relative_change = 1.0485535021583495e-12 Iter 155: T = 654.0560317723824 K, F = -1.8289854020192564e-8, relative_change = 4.38528678451761e-13 Converged in 159 iterations to T = 654.0560317716264 K Iter 1: T = 973.5797993671432 K, F = -6019.867846295351, relative_change = 0.026420200632856793 Iter 2: T = 949.3525353871511 K, F = -5094.186953955326, relative_change = 0.024884723363961147 Iter 3: T = 927.2502647404614 K, F = -4309.035398270906, relative_change = 0.023281415304459374 Iter 5: T = 889.0961977744989 K, F = -3079.0034087471095, relative_change = 0.019949816639078695 Iter 10: T = 824.1848106722699 K, F = -1318.2308628289834, relative_change = 0.011948783186516293 Iter 15: T = 790.8116924486495 K, F = -558.6914119129754, relative_change = 0.006116782052096007 Iter 20: T = 775.2521478051378 K, F = -235.19373467570057, relative_change = 0.002825110540613897 Iter 25: T = 768.4030495820291 K, F = -98.65450645124858, relative_change = 0.0012356809440827031 Iter 30: T = 765.4730744279683 K, F = -41.31184749461868, relative_change = 0.0005269044864031668 Iter 35: T = 764.235773446763 K, F = -17.28659392037183, relative_change = 0.00022218053301400917 Iter 40: T = 763.7161925560844 K, F = -7.23113067681247, relative_change = 9.32412444335716e-5 Iter 45: T = 763.4985228904927 K, F = -3.0244382598294948, relative_change = 3.905132935576557e-5 Iter 50: T = 763.4074250931377 K, F = -1.2649075175066324, relative_change = 1.6341675197848866e-5 Iter 55: T = 763.369315392825 K, F = -0.5290084100655594, relative_change = 6.83602430563844e-6 Iter 60: T = 763.3533754462119 K, F = -0.22123920570552336, relative_change = 2.8592115463924446e-6 Iter 65: T = 763.3467088177026 K, F = -0.09252515274489603, relative_change = 1.1958096878620048e-6 Iter 70: T = 763.3439206923905 K, F = -0.03869517191320193, relative_change = 5.001112104746753e-7 Iter 75: T = 763.3427546543044 K, F = -0.016182791415261133, relative_change = 2.0915411057313232e-7 Iter 80: T = 763.3422670013653 K, F = -0.006767838102376356, relative_change = 8.747103191276631e-8 Iter 85: T = 763.3420630587525 K, F = -0.002830390976612085, relative_change = 3.658148002769672e-8 Iter 90: T = 763.3419777674585 K, F = -0.0011837033532955399, relative_change = 1.529882054143598e-8 Iter 95: T = 763.3419420976106 K, F = -0.0004950388848253828, relative_change = 6.3981509589186355e-9 Iter 100: T = 763.3419271800527 K, F = -0.0002070311765155486, relative_change = 2.6757834271260927e-9 Iter 105: T = 763.3419209413514 K, F = -8.658291121632633e-5, relative_change = 1.1190446377180104e-9 Iter 110: T = 763.3419183322519 K, F = -3.6210006578274445e-5, relative_change = 4.679978275543951e-10 Iter 115: T = 763.3419172410953 K, F = -1.5143456631006025e-5, relative_change = 1.9572227466706027e-10 Iter 120: T = 763.3419167847607 K, F = -6.333173052985863e-6, relative_change = 8.185337532388043e-11 Iter 125: T = 763.341916593916 K, F = -2.648609139677127e-6, relative_change = 3.423206604975156e-11 Iter 130: T = 763.3419165141026 K, F = -1.1076802037823796e-6, relative_change = 1.4316261825396982e-11 Iter 135: T = 763.3419164807237 K, F = -4.63247640358766e-7, relative_change = 5.987264634781831e-12 Iter 140: T = 763.3419164667641 K, F = -1.9373563131530602e-7, relative_change = 2.5039447434074996e-12 Iter 145: T = 763.3419164609261 K, F = -8.102171000778924e-8, relative_change = 1.047168677779771e-12 Iter 150: T = 763.3419164584845 K, F = -3.388468594600624e-8, relative_change = 4.37944123571216e-13 Converged in 154 iterations to T = 763.3419164576032 K Iter 1: T = 970.045214927905 K, F = -6825.226273033585, relative_change = 0.029954785072095015 Iter 2: T = 942.2486312681115 K, F = -5781.278424652611, relative_change = 0.0286549361122919 Iter 3: T = 916.5672534753343 K, F = -4895.27319194297, relative_change = 0.027255415333651688 Iter 5: T = 871.3432383933113 K, F = -3505.694585573866, relative_change = 0.024198590995013147 Iter 10: T = 790.7240850866267 K, F = -1509.7602447578765, relative_change = 0.01589560382399265 Iter 15: T = 746.521116840257 K, F = -642.9810914447851, relative_change = 0.008770315788388171 Iter 20: T = 724.963366064506 K, F = -271.4920426023263, relative_change = 0.0042402391708812595 Iter 25: T = 715.2340729348625 K, F = -114.05455373130138, relative_change = 0.0018979920447624121 Iter 30: T = 711.0218390552557 K, F = -47.79410541880086, relative_change = 0.0008178883782862595 Iter 35: T = 709.2335508162199 K, F = -20.00513042975043, relative_change = 0.00034646099202218037 Iter 40: T = 708.4808729739212 K, F = -8.36940151568748, relative_change = 0.00014568017291501057 Iter 45: T = 708.1652459131866 K, F = -3.5007137616893593, relative_change = 6.106376631682065e-5 Iter 50: T = 708.0330978391604 K, F = -1.4641331941423528, relative_change = 2.5561914831479852e-5 Iter 55: T = 707.9778058115206 K, F = -0.6123342470089214, relative_change = 1.0694557338440672e-5 Iter 60: T = 707.954677452093 K, F = -0.25608833967875433, relative_change = 4.473336987624138e-6 Iter 65: T = 707.9450040958397 K, F = -0.10709969959961962, relative_change = 1.8709333521454788e-6 Iter 70: T = 707.9409584427665 K, F = -0.04479046044213131, relative_change = 7.824694810211893e-7 Iter 75: T = 707.9392664778549 K, F = -0.018731920685837622, relative_change = 3.272420711312502e-7 Iter 80: T = 707.9385588736408 K, F = -0.00783391559689306, relative_change = 1.3685723999116726e-7 Iter 85: T = 707.938262944359 K, F = -0.00327623752453865, relative_change = 5.7235454223257796e-8 Iter 90: T = 707.9381391830684 K, F = -0.0013701617412847922, relative_change = 2.393657184736405e-8 Iter 95: T = 707.9380874245956 K, F = -0.0005730180155385511, relative_change = 1.0010563906411698e-8 Iter 100: T = 707.9380657785803 K, F = -0.00023964298023693154, relative_change = 4.186538036440807e-9 Iter 105: T = 707.9380567259574 K, F = -0.0001002215566290321, relative_change = 1.7508603174140891e-9 Iter 110: T = 707.9380529400422 K, F = -4.19138518670259e-5, relative_change = 7.322307128404241e-10 Iter 115: T = 707.9380513567273 K, F = -1.7528873601624362e-5, relative_change = 3.0622763543662635e-10 Iter 120: T = 707.9380506945662 K, F = -7.330784352221897e-6, relative_change = 1.2806805611661072e-10 Iter 125: T = 707.9380504176424 K, F = -3.0658217796686316e-6, relative_change = 5.355959438833714e-11 Iter 130: T = 707.9380503018297 K, F = -1.2821636959925442e-6, relative_change = 2.239926926141209e-11 Iter 135: T = 707.9380502533953 K, F = -5.3621580342611e-7, relative_change = 9.367635509115268e-12 Iter 140: T = 707.9380502331395 K, F = -2.242531704776951e-7, relative_change = 3.917680064000927e-12 Iter 145: T = 707.9380502246682 K, F = -9.378499699064236e-8, relative_change = 1.6384143521846165e-12 Iter 150: T = 707.9380502211254 K, F = -3.9221346503914845e-8, relative_change = 6.851929315726578e-13 Iter 155: T = 707.9380502196439 K, F = -1.640239921663067e-8, relative_change = 2.86548244922148e-13 Converged in 157 iterations to T = 707.9380502193303 K Iter 1: T = 973.5134439940584 K, F = -6034.986981172976, relative_change = 0.026486556005941585 Iter 2: T = 949.2199250315812 K, F = -5107.073944915252, relative_change = 0.02495447711826926 Iter 3: T = 927.0520303374377 K, F = -4320.018827633836, relative_change = 0.02335380253781115 Iter 5: T = 888.7709120353746 K, F = -3086.976136221344, relative_change = 0.020024652170383187 Iter 10: T = 823.5908602393044 K, F = -1321.7768360007285, relative_change = 0.012012423970855491 Iter 15: T = 790.0445265912031 K, F = -560.2370201380555, relative_change = 0.006156573839153773 Iter 20: T = 774.3935393654224 K, F = -235.85485421209395, relative_change = 0.00284540389472776 Iter 25: T = 767.5017021801954 K, F = -98.9339729103349, relative_change = 0.0012449656196020533 Iter 30: T = 764.5529465414269 K, F = -41.429279923519815, relative_change = 0.0005309415995111565 Iter 35: T = 763.3076225045596 K, F = -17.33580564793194, relative_change = 0.00022389704778536825 Iter 40: T = 762.7846559414594 K, F = -7.251729325796396, relative_change = 9.396412470671336e-5 Iter 45: T = 762.5655649809397 K, F = -3.0330559752696025, relative_change = 3.935453009866938e-5 Iter 50: T = 762.4738718380055 K, F = -1.2685120948983184, relative_change = 1.6468632406140207e-5 Iter 55: T = 762.4355129917874 K, F = -0.5305159829380767, relative_change = 6.889146478933287e-6 Iter 60: T = 762.4194688204504 K, F = -0.22186970740531997, relative_change = 2.881432625378999e-6 Iter 65: T = 762.4127585988551 K, F = -0.0927888390101047, relative_change = 1.2051036397394592e-6 Iter 70: T = 762.4099522415083 K, F = -0.03880544916986828, relative_change = 5.039981975461205e-7 Iter 75: T = 762.4087785784126 K, F = -0.016228910767478455, relative_change = 2.107797203804184e-7 Iter 80: T = 762.4082877365763 K, F = -0.006787125779758485, relative_change = 8.815088576836934e-8 Iter 85: T = 762.4080824603242 K, F = -0.0028384573173630967, relative_change = 3.686580382013735e-8 Iter 90: T = 762.4079966112854 K, F = -0.0011870767949939687, relative_change = 1.5417728298439607e-8 Iter 95: T = 762.4079607081818 K, F = -0.0004964496996242573, relative_change = 6.447879641051787e-9 Iter 100: T = 762.4079456930733 K, F = -0.00020762119380390853, relative_change = 2.6965805299551286e-9 Iter 105: T = 762.4079394135754 K, F = -8.682966147943727e-5, relative_change = 1.1277422090692698e-9 Iter 110: T = 762.4079367874143 K, F = -3.631320306241026e-5, relative_change = 4.71635289299202e-10 Iter 115: T = 762.4079356891224 K, F = -1.518661543153943e-5, relative_change = 1.9724351496468588e-10 Iter 120: T = 762.4079352298035 K, F = -6.351222757716712e-6, relative_change = 8.248957842492428e-11 Iter 125: T = 762.4079350377108 K, F = -2.6561551436099506e-6, relative_change = 3.449810007438457e-11 Iter 130: T = 762.4079349573755 K, F = -1.1108359806444312e-6, relative_change = 1.4427519769662912e-11 Iter 135: T = 762.4079349237783 K, F = -4.6456554669838113e-7, relative_change = 6.033769816146105e-12 Iter 140: T = 762.4079349097276 K, F = -1.9428735531512586e-7, relative_change = 2.523401032628081e-12 Iter 145: T = 762.4079349038514 K, F = -8.125292927374517e-8, relative_change = 1.0553117330172773e-12 Iter 150: T = 762.4079349013938 K, F = -3.3980334546157565e-8, relative_change = 4.413360362449105e-13 Converged in 154 iterations to T = 762.4079349005068 K Iter 1: T = 964.2924431535489 K, F = -8136.000794119315, relative_change = 0.03570755684645112 Iter 2: T = 930.5084845243771 K, F = -6902.3103089819215, relative_change = 0.03503497187916077 Iter 3: T = 898.617078341206 K, F = -5854.626295454718, relative_change = 0.03427309553171045 Iter 5: T = 840.3988235928114 K, F = -4209.486095213895, relative_change = 0.032455789557409735 Iter 10: T = 725.9954506102744 K, F = -1835.9254879520497, relative_change = 0.026090337224471544 Iter 15: T = 652.0903586508255 K, F = -792.8303716413031, relative_change = 0.017898896894622388 Iter 20: T = 610.2380708059322 K, F = -338.52072449580527, relative_change = 0.010277102847225715 Iter 25: T = 589.3070157329983 K, F = -143.1872414317093, relative_change = 0.0051034488842109675 Iter 30: T = 579.7175155434824 K, F = -60.21024110436764, relative_change = 0.002317297230301298 Iter 35: T = 575.534446246487 K, F = -25.24211064397716, relative_change = 0.0010053037203463773 Iter 40: T = 573.7524585763388 K, F = -10.567641909628765, relative_change = 0.000427110804289213 Iter 45: T = 573.0013200390629 K, F = -4.421479632928733, relative_change = 0.00017981875868029677 Iter 50: T = 572.6861401154949 K, F = -1.8494613060323408, relative_change = 7.54135818175833e-5 Iter 55: T = 572.5541442771852 K, F = -0.7735274150423767, relative_change = 3.157595734192778e-5 Iter 60: T = 572.4989098087518 K, F = -0.32350901397285814, relative_change = 1.3211941938798125e-5 Iter 65: T = 572.4758044510194 K, F = -0.13529718980314306, relative_change = 5.526529490638529e-6 Iter 70: T = 572.4661405270124 K, F = -0.05658322534174032, relative_change = 2.311459658959855e-6 Iter 75: T = 572.462098785841 K, F = -0.023663837388485875, relative_change = 9.667148480471696e-7 Iter 80: T = 572.4604084512 K, F = -0.009896509334895276, relative_change = 4.042977837087324e-7 Iter 85: T = 572.4597015277817 K, F = -0.0041388401297199895, relative_change = 1.6908322649088776e-7 Iter 90: T = 572.4594058830415 K, F = -0.0017309126741140712, relative_change = 7.071281086937609e-8 Iter 95: T = 572.4592822407188 K, F = -0.0007238884051118943, relative_change = 2.9572974583019628e-8 Iter 100: T = 572.4592305319945 K, F = -0.00030273878531866805, relative_change = 1.2367776842940064e-8 Iter 105: T = 572.4592089067836 K, F = -0.00012660897686261885, relative_change = 5.172352964684695e-9 Iter 110: T = 572.4591998628613 K, F = -5.294938639299751e-5, relative_change = 2.1631399532153416e-9 Iter 115: T = 572.4591960805848 K, F = -2.2144065499996035e-5, relative_change = 9.046509804830875e-10 Iter 120: T = 572.4591944987916 K, F = -9.260912961384093e-6, relative_change = 3.783358616283959e-10 Iter 125: T = 572.4591938372668 K, F = -3.873024707723438e-6, relative_change = 1.5822458909571248e-10 Iter 130: T = 572.4591935606092 K, F = -1.6197453153177221e-6, relative_change = 6.617141817723211e-11 Iter 135: T = 572.4591934449076 K, F = -6.773962147876844e-7, relative_change = 2.7673652036295097e-11 Iter 140: T = 572.4591933965199 K, F = -2.832958461707058e-7, relative_change = 1.1573478714917278e-11 Iter 145: T = 572.4591933762836 K, F = -1.1847743791593146e-7, relative_change = 4.840156058350715e-12 Iter 150: T = 572.4591933678205 K, F = -4.9549215175304084e-8, relative_change = 2.0242329531494884e-12 Iter 155: T = 572.4591933642811 K, F = -2.0721766580411582e-8, relative_change = 8.465458557188581e-13 Iter 160: T = 572.4591933628009 K, F = -8.666007356161742e-9, relative_change = 3.5403220013167693e-13 Converged in 163 iterations to T = 572.4591933623675 K Iter 1: T = 963.5713058470463 K, F = -8300.31261538459, relative_change = 0.036428694152953654 Iter 2: T = 929.0209159408682 K, F = -7043.0751751693215, relative_change = 0.035856598983928796 Iter 3: T = 896.3153273794677 K, F = -5975.3486984982, relative_change = 0.0352043619257785 Iter 5: T = 836.3197902916207 K, F = -4298.585308986953, relative_change = 0.033630254302403684 Iter 10: T = 716.6760685370214 K, F = -1878.44765735244, relative_change = 0.027901709080164837 Iter 15: T = 637.0859975932856 K, F = -813.3933396463219, relative_change = 0.019984181011298337 Iter 20: T = 590.4780085237454 K, F = -348.25778964880055, relative_change = 0.011977616733687212 Iter 25: T = 566.5043843464338 K, F = -147.6031970274916, relative_change = 0.006134695966898762 Iter 30: T = 555.3238453851542 K, F = -62.138089410896626, relative_change = 0.0028342207086542357 Iter 35: T = 550.4015524525922 K, F = -26.06472746221722, relative_change = 0.0012398440110458072 Iter 40: T = 548.2956906247323 K, F = -10.914723183433633, relative_change = 0.0005287137215471944 Iter 45: T = 547.4063762861981 K, F = -4.567182183922218, relative_change = 0.0002229496246367927 Iter 50: T = 547.0329205897235 K, F = -1.910493012428141, relative_change = 9.356510471911862e-5 Iter 55: T = 546.8764667046465 K, F = -0.7990686810760442, relative_change = 3.918716231645698e-5 Iter 60: T = 546.8109884073009 K, F = -0.33419366953523644, relative_change = 1.6398550720720154e-5 Iter 65: T = 546.78359629782 K, F = -0.13976616430826871, relative_change = 6.859822335236086e-6 Iter 70: T = 546.7721391374154 K, F = -0.05845229552232012, relative_change = 2.8691662677385675e-6 Iter 75: T = 546.7673473619028 K, F = -0.02444552089491539, relative_change = 1.199973238796101e-6 Iter 80: T = 546.7653433396931 K, F = -0.010223421518170711, relative_change = 5.018525215119426e-7 Iter 85: T = 546.7645052258948 K, F = -0.004275559199270779, relative_change = 2.098823588539354e-7 Iter 90: T = 546.764154715335 K, F = -0.0017880903069306675, relative_change = 8.777559597644622e-8 Iter 95: T = 546.7640081273951 K, F = -0.0007478007882592563, relative_change = 3.670885267219053e-8 Iter 100: T = 546.7639468225265 K, F = -0.0003127392326363332, relative_change = 1.5352089385454786e-8 Iter 105: T = 546.7639211840909 K, F = -0.00013079128409054785, relative_change = 6.420428660398994e-9 Iter 110: T = 546.7639104617897 K, F = -5.4698476921272166e-5, relative_change = 2.6851001894759827e-9 Iter 115: T = 546.7639059775951 K, F = -2.2875556237922368e-5, relative_change = 1.1229410075807455e-9 Iter 120: T = 546.7639041022513 K, F = -9.566830849155883e-6, relative_change = 4.696273496825935e-10 Iter 125: T = 546.7639033179602 K, F = -4.000962639583161e-6, relative_change = 1.964037540816241e-10 Iter 130: T = 546.7639029899602 K, F = -1.6732505058458802e-6, relative_change = 8.213840303190709e-11 Iter 135: T = 546.7639028527867 K, F = -6.997730466196117e-7, relative_change = 3.435124651207147e-11 Iter 140: T = 546.7639027954191 K, F = -2.9265322035176844e-7, relative_change = 1.4366090503828059e-11 Iter 145: T = 546.7639027714274 K, F = -1.2239154428828058e-7, relative_change = 6.008093812883978e-12 Iter 150: T = 546.7639027613938 K, F = -5.11858217200345e-8, relative_change = 2.512667199345375e-12 Iter 155: T = 546.7639027571975 K, F = -2.1406467209938995e-8, relative_change = 1.050824744173025e-12 Iter 160: T = 546.7639027554426 K, F = -8.952905028447589e-9, relative_change = 4.39490273850488e-13 Converged in 164 iterations to T = 546.7639027548092 K Iter 1: T = 969.3820170762432 K, F = -6976.336534398752, relative_change = 0.03061798292375683 Iter 2: T = 940.9065372770809 K, F = -5910.341649588256, relative_change = 0.029374879353598157 Iter 3: T = 914.5341743420523 K, F = -5005.538944914639, relative_change = 0.028028674358399563 Iter 5: T = 867.9112715063517 K, F = -3586.223356670298, relative_change = 0.025059643389181218 Iter 10: T = 783.9864194422671 K, F = -1546.3555645046001, relative_change = 0.01678681822984688 Iter 15: T = 737.3035498309836 K, F = -659.3133531624669, relative_change = 0.009426250409434928 Iter 20: T = 714.2849382176354 K, F = -278.5993100450242, relative_change = 0.004610431976368718 Iter 25: T = 703.8289669520503 K, F = -117.08766907615345, relative_change = 0.0020763577786870415 Iter 30: T = 699.2875824875186 K, F = -49.074414915049815, relative_change = 0.0008973058781218773 Iter 35: T = 697.3567567792769 K, F = -20.542738869889586, relative_change = 0.00038057846553645586 Iter 40: T = 696.5435758683436 K, F = -8.59462263690502, relative_change = 0.00016011140071269948 Iter 45: T = 696.2024867237774 K, F = -3.5949721632401967, relative_change = 6.712792720882316e-5 Iter 50: T = 696.059662077897 K, F = -1.5035651611557004, relative_change = 2.8103091668430694e-5 Iter 55: T = 695.999900062768 K, F = -0.6288272646017162, relative_change = 1.1758196951926132e-5 Iter 60: T = 695.9749014399041 K, F = -0.2629862837899826, relative_change = 4.91831942665754e-6 Iter 65: T = 695.9644457664192 K, F = -0.10998456644298465, relative_change = 2.0570575562201332e-6 Iter 70: T = 695.9600729125684 K, F = -0.04599695744413723, relative_change = 8.603136099349524e-7 Iter 75: T = 695.9582441037718 K, F = -0.019236494108026747, relative_change = 3.5979824881492344e-7 Iter 80: T = 695.9574792690039 K, F = -0.008044934572480011, relative_change = 1.504727680596329e-7 Iter 85: T = 695.9571594050799 K, F = -0.003364488240185315, relative_change = 6.292965615316037e-8 Iter 90: T = 695.9570256340113 K, F = -0.001407069253655413, relative_change = 2.6317959531254894e-8 Iter 95: T = 695.9569696893255 K, F = -0.0005884531803312942, relative_change = 1.100648946236883e-8 Iter 100: T = 695.9569462925851 K, F = -0.0002460981494947223, relative_change = 4.603046110050698e-9 Iter 105: T = 695.9569365077881 K, F = -0.00010292118482657653, relative_change = 1.925048977990042e-9 Iter 110: T = 695.9569324156689 K, F = -4.304286862466533e-5, relative_change = 8.050784949173532e-10 Iter 115: T = 695.9569307042959 K, F = -1.800104261107105e-5, relative_change = 3.366934622389444e-10 Iter 120: T = 695.9569299885793 K, F = -7.528252298216742e-6, relative_change = 1.408092518900352e-10 Iter 125: T = 695.956929689258 K, F = -3.1484046507657126e-6, relative_change = 5.888810402040181e-11 Iter 130: T = 695.9569295640782 K, F = -1.3167009105252703e-6, relative_change = 2.4627717479172517e-11 Iter 135: T = 695.9569295117266 K, F = -5.506597400284363e-7, relative_change = 1.029959985675243e-11 Iter 140: T = 695.9569294898324 K, F = -2.3029215989733842e-7, relative_change = 4.3074096851943685e-12 Iter 145: T = 695.956929480676 K, F = -9.630971431473512e-8, relative_change = 1.8013874047145674e-12 Iter 150: T = 695.9569294768468 K, F = -4.027826161490111e-8, relative_change = 7.533689999502036e-13 Iter 155: T = 695.9569294752453 K, F = -1.6844498018642184e-8, relative_change = 3.150613288238814e-13 Converged in 158 iterations to T = 695.9569294747764 K Iter 1: T = 966.4417771840934 K, F = -7646.272990715254, relative_change = 0.03355822281590657 Iter 2: T = 934.9210007365086 K, F = -6483.077677439307, relative_change = 0.032615287533850616 Iter 3: T = 905.4079944642483 K, F = -5495.431181634831, relative_change = 0.031567379756161924 Iter 5: T = 852.2811679717219 K, F = -3945.115777470837, relative_change = 0.02915131586353568 Iter 10: T = 751.9941776562125 K, F = -1711.5704626025895, relative_change = 0.02152892009559487 Iter 15: T = 691.7906856041288 K, F = -734.3533128454155, relative_change = 0.013333855822008682 Iter 20: T = 660.1277590645568 K, F = -311.75465122632966, relative_change = 0.0070039608636145905 Iter 25: T = 645.1400537661607 K, F = -131.37060476317342, relative_change = 0.0032840671376310436 Iter 30: T = 638.4887581617318 K, F = -55.13197826690037, relative_change = 0.0014471550551292333 Iter 35: T = 635.6324709458298 K, F = -23.09181445646962, relative_change = 0.0006191507583602054 Iter 40: T = 634.4242466451368 K, F = -9.663506281012868, relative_change = 0.00026145635411719333 Iter 45: T = 633.9165087920456 K, F = -4.042492949249408, relative_change = 0.00010979126408634431 Iter 50: T = 633.7037355831104 K, F = -1.690811744428035, relative_change = 4.599468535172246e-5 Iter 55: T = 633.6146755985002 K, F = -0.7071514537523861, relative_change = 1.9249320380195102e-5 Iter 60: T = 633.5774163913164 K, F = -0.2957450965020947, relative_change = 8.052710737872825e-6 Iter 65: T = 633.5618318255837 K, F = -0.12368516579573097, relative_change = 3.3681623843453266e-6 Iter 70: T = 633.5553137681413 K, F = -0.051726794393137265, relative_change = 1.4086796573275906e-6 Iter 75: T = 633.5525877676711 K, F = -0.02163279480892094, relative_change = 5.891395861538581e-7 Iter 80: T = 633.5514477092999 K, F = -0.009047098672843035, relative_change = 2.4638747230028166e-7 Iter 85: T = 633.5509709211017 K, F = -0.003783605677878943, relative_change = 1.0304257895505597e-7 Iter 90: T = 633.5507715222033 K, F = -0.0015823492491875424, relative_change = 4.309370628048733e-8 Iter 95: T = 633.5506881311361 K, F = -0.0006617573829637569, relative_change = 1.8022314717205585e-8 Iter 100: T = 633.5506532559843 K, F = -0.00027675484603578715, relative_change = 7.537149369789623e-9 Iter 105: T = 633.5506386707773 K, F = -0.00011574218244653212, relative_change = 3.1521262431214613e-9 Iter 110: T = 633.5506325710692 K, F = -4.8404762392817435e-5, relative_change = 1.3182568843888352e-9 Iter 115: T = 633.5506300200983 K, F = -2.0243448877355075e-5, relative_change = 5.513107603205336e-10 Iter 120: T = 633.5506289532519 K, F = -8.466051825140042e-6, relative_change = 2.3056473895964737e-10 Iter 125: T = 633.5506285070841 K, F = -3.540604933571778e-6, relative_change = 9.642495366980354e-11 Iter 130: T = 633.5506283204913 K, F = -1.4807241321412867e-6, relative_change = 4.032609080043642e-11 Iter 135: T = 633.5506282424559 K, F = -6.192560531026459e-7, relative_change = 1.6864840181046348e-11 Iter 140: T = 633.5506282098206 K, F = -2.589801823549287e-7, relative_change = 7.053074999690478e-12 Iter 145: T = 633.5506281961722 K, F = -1.0830935048833368e-7, relative_change = 2.9497004955900345e-12 Iter 150: T = 633.5506281904642 K, F = -4.5295523665167536e-8, relative_change = 1.2335798156529178e-12 Iter 155: T = 633.550628188077 K, F = -1.8942761137452635e-8, relative_change = 5.158877942343981e-13 Converged in 160 iterations to T = 633.5506281870787 K Iter 1: T = 966.443759035754 K, F = -7645.821423929144, relative_change = 0.0335562409642459 Iter 2: T = 934.9250548878302 K, F = -6482.6913300505585, relative_change = 0.032613076398124614 Iter 3: T = 905.4142089227529 K, F = -5495.100399315217, relative_change = 0.03156493219514588 Iter 5: T = 852.2919405122387 K, F = -3944.8728110818797, relative_change = 0.029148397437878754 Iter 10: T = 752.0170373648696 K, F = -1711.457307933399, relative_change = 0.02152520645566834 Iter 15: T = 691.8243888981821 K, F = -734.3010241106577, relative_change = 0.01333049071679931 Iter 20: T = 660.1689052187259 K, F = -311.731172554171, relative_change = 0.0070017501964705665 Iter 25: T = 645.1852869716382 K, F = -131.36038399368513, relative_change = 0.003282906294902071 Iter 30: T = 638.5359416762556 K, F = -55.12761997026041, relative_change = 0.00144661619795458 Iter 35: T = 635.6805198510629 K, F = -23.08997586868417, relative_change = 0.0006189149188159221 Iter 40: T = 634.4726668340526 K, F = -9.66273448224878, relative_change = 0.00026135579522035084 Iter 45: T = 633.9650859473445 K, F = -4.042169662618132, relative_change = 0.00010974886467217739 Iter 50: T = 633.7523786834034 K, F = -1.6906764521308388, relative_change = 4.597689261599027e-5 Iter 55: T = 633.663346330506 K, F = -0.7070948571227964, relative_change = 1.9241868572502988e-5 Iter 60: T = 633.6260986884786 K, F = -0.29572142435410415, relative_change = 8.049592433227943e-6 Iter 65: T = 633.6105189610506 K, F = -0.12367526533698514, relative_change = 3.36685794486395e-6 Iter 70: T = 633.6040029273285 K, F = -0.05172265381954355, relative_change = 1.408134067938397e-6 Iter 75: T = 633.6012777732517 K, F = -0.021631063156838437, relative_change = 5.889114041425739e-7 Iter 80: T = 633.6001380688608 K, F = -0.009046374472676921, relative_change = 2.462920421066273e-7 Iter 85: T = 633.599661428703 K, F = -0.0037833028077570163, relative_change = 1.03002668588126e-7 Iter 90: T = 633.5994620917171 K, F = -0.0015822225854881244, relative_change = 4.3077015242499144e-8 Iter 95: T = 633.5993787265426 K, F = -0.0006617044096648428, relative_change = 1.8015334288825933e-8 Iter 100: T = 633.5993438622195 K, F = -0.00027673269257477706, relative_change = 7.534230086179857e-9 Iter 105: T = 633.599329281541 K, F = -0.00011573291738603553, relative_change = 3.150905357629226e-9 Iter 110: T = 633.5993231837268 K, F = -4.840088741048243e-5, relative_change = 1.3177462893715548e-9 Iter 115: T = 633.5993206335481 K, F = -2.0241829057632277e-5, relative_change = 5.51097243645712e-10 Iter 120: T = 633.5993195670329 K, F = -8.465375190891411e-6, relative_change = 2.304754653461206e-10 Iter 125: T = 633.5993191210035 K, F = -3.5403208363260497e-6, relative_change = 9.638758785783024e-11 Iter 130: T = 633.5993189344688 K, F = -1.4806054067784125e-6, relative_change = 4.031046634653748e-11 Iter 135: T = 633.5993188564576 K, F = -6.192063506382794e-7, relative_change = 1.6858304487695217e-11 Iter 140: T = 633.5993188238325 K, F = -2.589601624247706e-7, relative_change = 7.050362556698479e-12 Iter 145: T = 633.5993188101883 K, F = -1.0830084284929598e-7, relative_change = 2.9485624360606652e-12 Iter 150: T = 633.5993188044821 K, F = -4.5292538497498924e-8, relative_change = 1.2331194673998904e-12 Iter 155: T = 633.5993188020957 K, F = -1.894221496323567e-8, relative_change = 5.157143936312622e-13 Converged in 160 iterations to T = 633.5993188010976 K Iter 1: T = 976.4818237395824 K, F = -5358.638832497228, relative_change = 0.023518176260417547 Iter 2: T = 955.1243989671209 K, F = -4531.027129327277, relative_change = 0.02187180985168783 Iter 3: T = 935.8357116541764 K, F = -3829.49898364326, relative_change = 0.020194947730163115 Iter 5: T = 903.042140120413 K, F = -2731.6679906234467, relative_change = 0.016843031116001963 Iter 10: T = 849.0603143810232 K, F = -1164.7748804373052, relative_change = 0.00946846983939524 Iter 15: T = 822.423763857734 K, F = -492.21135989201775, relative_change = 0.0046345748569489075 Iter 20: T = 810.3192494406426 K, F = -206.86848108010153, relative_change = 0.0020880709389969965 Iter 25: T = 805.0607323716143 K, F = -86.70492047377441, relative_change = 0.0009025379807790185 Iter 30: T = 802.8247938520623 K, F = -36.295213928982655, relative_change = 0.00038282933140823354 Iter 35: T = 801.883073268884 K, F = -15.185141906566201, relative_change = 0.00016106405980837032 Iter 40: T = 801.48806110231 K, F = -6.351671185001373, relative_change = 6.752834673388078e-5 Iter 45: T = 801.3226559758003 K, F = -2.6565311436383823, relative_change = 2.8270904710973115e-5 Iter 50: T = 801.2534454099883 K, F = -1.1110256800832743, relative_change = 1.1828440221161605e-5 Iter 55: T = 801.2244943933233 K, F = -0.4646499169473949, relative_change = 4.947706828957409e-6 Iter 60: T = 801.212385624588 K, F = -0.1943231430059592, relative_change = 2.0693496134279927e-6 Iter 65: T = 801.2073213991041 K, F = -0.08126843377488768, relative_change = 8.654546264912619e-7 Iter 70: T = 801.2052034456311 K, F = -0.03398746009734921, relative_change = 3.6194834127109014e-7 Iter 75: T = 801.2043176862666 K, F = -0.014213967048286813, relative_change = 1.5137197253792227e-7 Iter 80: T = 801.2039472500852 K, F = -0.0059444517020156296, relative_change = 6.330571596047114e-8 Iter 85: T = 801.203792329069 K, F = -0.0024860408561173664, relative_change = 2.6475232550165136e-8 Iter 90: T = 801.2037275392181 K, F = -0.0010396920031185974, relative_change = 1.1072262989375516e-8 Iter 95: T = 801.2037004433232 K, F = -0.0004348116180340478, relative_change = 4.630553420126955e-9 Iter 100: T = 801.2036891114954 K, F = -0.00018184341132265747, relative_change = 1.9365528702711656e-9 Iter 105: T = 801.2036843723895 K, F = -7.604908697955715e-5, relative_change = 8.098895678879508e-10 Iter 110: T = 801.2036823904388 K, F = -3.180463528051902e-5, relative_change = 3.387054815592735e-10 Iter 115: T = 801.2036815615633 K, F = -1.3301077740557332e-5, relative_change = 1.4165067210575137e-10 Iter 120: T = 801.2036812149177 K, F = -5.562670210679244e-6, relative_change = 5.924000979754584e-11 Iter 125: T = 801.2036810699464 K, F = -2.3263750177360265e-6, relative_change = 2.4774878564183045e-11 Iter 130: T = 801.2036810093176 K, F = -9.729176255746097e-7, relative_change = 1.0361148074357387e-11 Iter 135: T = 801.2036809839619 K, F = -4.068864649653392e-7, relative_change = 4.333163263542549e-12 Iter 140: T = 801.2036809733579 K, F = -1.7016372466649443e-7, relative_change = 1.8121693987085532e-12 Iter 145: T = 801.2036809689232 K, F = -7.116511535620873e-8, relative_change = 7.578774181174077e-13 Iter 150: T = 801.2036809670684 K, F = -2.9760692799030153e-8, relative_change = 3.1693838908665685e-13 Converged in 153 iterations to T = 801.2036809665254 K Iter 1: T = 965.1625405549374 K, F = -7937.74827353664, relative_change = 0.034837459445062606 Iter 2: T = 932.2985705481038 K, F = -6732.539066540499, relative_change = 0.03405019219657853 Iter 3: T = 901.3786127585524 K, F = -5709.105530528898, relative_change = 0.03316529571784427 Iter 5: T = 845.2577755530059 K, F = -4102.251456604749, relative_change = 0.03108372548408042 Iter 10: T = 736.8234770879689 K, F = -1785.1746929020312, relative_change = 0.02410606127181601 Iter 15: T = 668.9783005458348 K, F = -768.6994564648274, relative_change = 0.015801514121312202 Iter 20: T = 631.8362897064319 K, F = -327.33672652712835, relative_change = 0.008702262639810951 Iter 25: T = 613.7429841467283 K, F = -138.2036160564066, relative_change = 0.004202287592409326 Iter 30: T = 605.5826936543255 K, F = -58.0573044717802, relative_change = 0.0018798232304418612 Iter 35: T = 602.0509108321534 K, F = -24.32821025935534, relative_change = 0.0008098230420089714 Iter 40: T = 600.5517276479832 K, F = -10.18294787117645, relative_change = 0.00034300074469230656 Iter 45: T = 599.920772444553 K, F = -4.2601506950699495, relative_change = 0.00014421736473785565 Iter 50: T = 599.6561955927178 K, F = -1.781912998968081, relative_change = 6.044922525392168e-5 Iter 55: T = 599.5454227003207 K, F = -0.7452641014396411, relative_change = 2.5304418255925744e-5 Iter 60: T = 599.4990744763826 K, F = -0.3116865401996446, relative_change = 1.0586783636594769e-5 Iter 65: T = 599.4796873010333 K, F = -0.1303524667926666, relative_change = 4.428249761051042e-6 Iter 70: T = 599.4715786888617 K, F = -0.05451520907094115, relative_change = 1.852074714987796e-6 Iter 75: T = 599.4681874542794 K, F = -0.022798955332437087, relative_change = 7.745821153331022e-7 Iter 80: T = 599.466769179164 K, F = -0.009534803065090525, relative_change = 3.2394340044108815e-7 Iter 85: T = 599.4661760360201 K, F = -0.003987569851181649, relative_change = 1.3547768247948886e-7 Iter 90: T = 599.4659279758525 K, F = -0.0016676495679328052, relative_change = 5.6658504348209274e-8 Iter 95: T = 599.4658242340191 K, F = -0.0006974310056983013, relative_change = 2.369528406093421e-8 Iter 100: T = 599.4657808479266 K, F = -0.00029167398246354725, relative_change = 9.909654421188577e-9 Iter 105: T = 599.4657627033413 K, F = -0.00012198154420528518, relative_change = 4.144336470533061e-9 Iter 110: T = 599.4657551150583 K, F = -5.1014138462812664e-5, relative_change = 1.7332111071644369e-9 Iter 115: T = 599.4657519415478 K, F = -2.133472171567119e-5, relative_change = 7.24849594486428e-10 Iter 120: T = 599.4657506143477 K, F = -8.922435772162896e-6, relative_change = 3.031407723824844e-10 Iter 125: T = 599.4657500592967 K, F = -3.7314689947942625e-6, relative_change = 1.2677708498823991e-10 Iter 130: T = 599.4657498271678 K, F = -1.5605448669964161e-6, relative_change = 5.301969006627295e-11 Iter 135: T = 599.4657497300886 K, F = -6.526379807136884e-7, relative_change = 2.2173449941363406e-11 Iter 140: T = 599.465749689489 K, F = -2.7294054810722557e-7, relative_change = 9.273186301166719e-12 Iter 145: T = 599.4657496725099 K, F = -1.1414733208647831e-7, relative_change = 3.878168647723086e-12 Iter 150: T = 599.465749665409 K, F = -4.7738335118285846e-8, relative_change = 1.621915389318205e-12 Iter 155: T = 599.4657496624392 K, F = -1.9964355113533117e-8, relative_change = 6.782912457458861e-13 Iter 160: T = 599.4657496611972 K, F = -8.348648106171197e-9, relative_change = 2.8364627317444044e-13 Converged in 162 iterations to T = 599.4657496609344 K Iter 1: T = 964.5480781759594 K, F = -8077.7541110914, relative_change = 0.03545192182404062 Iter 2: T = 931.0349514349978 K, F = -6852.423446363931, relative_change = 0.0347449002276152 Iter 3: T = 899.4301879691402 K, F = -5811.8565516003555, relative_change = 0.033945839967817956 Iter 5: T = 841.8334132522476 K, F = -4177.950198237222, relative_change = 0.03204766208756715 Iter 10: T = 729.2223380483023 K, F = -1820.9538222650006, relative_change = 0.025485801889156137 Iter 15: T = 657.1811417466869 K, F = -785.6684186233575, relative_change = 0.017240224753721202 Iter 20: T = 616.8149582118183 K, F = -335.1769378785018, relative_change = 0.009768613176844954 Iter 25: T = 596.7971701553046 K, F = -141.68861969987157, relative_change = 0.004807017674169599 Iter 30: T = 587.6731614145596 K, F = -59.56066429026667, relative_change = 0.002171956270291537 Iter 35: T = 583.7034969782753 K, F = -24.965921984724666, relative_change = 0.0009400563522885209 Iter 40: T = 582.0144298369097 K, F = -10.451299245384535, relative_change = 0.00039897902899943717 Iter 45: T = 581.3028268617031 K, F = -4.372673760372959, relative_change = 0.00016790094585401156 Iter 50: T = 581.0043017929489 K, F = -1.8290236089611236, relative_change = 7.040230798123007e-5 Iter 55: T = 580.879292498712 K, F = -0.764975471741902, relative_change = 2.947541416112423e-5 Iter 60: T = 580.8269836232306 K, F = -0.3199316736599542, relative_change = 1.2332633567486728e-5 Iter 65: T = 580.805102438008 K, F = -0.13380096062533545, relative_change = 5.158645835645314e-6 Iter 70: T = 580.7959505921299 K, F = -0.05595745945824018, relative_change = 2.1575807054696947e-6 Iter 75: T = 580.7921230281905 K, F = -0.02340213025351623, relative_change = 9.023563509599924e-7 Iter 80: T = 580.7905222685318 K, F = -0.009787059522029573, relative_change = 3.7738150785595233e-7 Iter 85: T = 580.7898528070541 K, F = -0.004093066778275145, relative_change = 1.5782638143322488e-7 Iter 90: T = 580.789572829452 K, F = -0.0017117696876014499, relative_change = 6.60050398188034e-8 Iter 95: T = 580.7894557393323 K, F = -0.0007158825752581754, relative_change = 2.76041243055205e-8 Iter 100: T = 580.789406770821 K, F = -0.0002993906512456235, relative_change = 1.154437942191092e-8 Iter 105: T = 580.7893862916003 K, F = -0.000125208747188299, relative_change = 4.827998206107738e-9 Iter 110: T = 580.789377726945 K, F = -5.2363794181831125e-5, relative_change = 2.019126680853244e-9 Iter 115: T = 580.7893741451037 K, F = -2.189916447836726e-5, relative_change = 8.444229314515283e-10 Iter 120: T = 580.7893726471348 K, F = -9.1584916590004e-6, relative_change = 3.531477411830416e-10 Iter 125: T = 580.7893720206662 K, F = -3.830190091203001e-6, relative_change = 1.4769058446725066e-10 Iter 130: T = 580.7893717586696 K, F = -1.6018303963805103e-6, relative_change = 6.176593389197191e-11 Iter 135: T = 580.7893716490995 K, F = -6.699045962954564e-7, relative_change = 2.5831251010951885e-11 Iter 140: T = 580.7893716032761 K, F = -2.8016259029373103e-7, relative_change = 1.0802956475435859e-11 Iter 145: T = 580.7893715841121 K, F = -1.1716649866988504e-7, relative_change = 4.5178929291800776e-12 Iter 150: T = 580.7893715760976 K, F = -4.900022110287949e-8, relative_change = 1.889428761434891e-12 Iter 155: T = 580.7893715727457 K, F = -2.0492357422075003e-8, relative_change = 7.901770366024076e-13 Iter 160: T = 580.789371571344 K, F = -8.569902232302695e-9, relative_change = 3.304519734111406e-13 Converged in 163 iterations to T = 580.7893715709336 K Iter 1: T = 964.3021840385608 K, F = -8133.781324203385, relative_change = 0.03569781596143924 Iter 2: T = 930.5285535964474 K, F = -6900.40926536007, relative_change = 0.03502390744431088 Iter 3: T = 898.6480887025803 K, F = -5852.996329643384, relative_change = 0.03426059820588063 Iter 5: T = 840.4535963795685 K, F = -4208.2839654543595, relative_change = 0.03244016032898424 Iter 10: T = 726.1191267820976 K, F = -1835.354041949792, relative_change = 0.026066956473400738 Iter 15: T = 652.2864216771925 K, F = -792.5563044975123, relative_change = 0.017873088737957715 Iter 20: T = 610.4924944401383 K, F = -338.3923522641752, relative_change = 0.010256930200265593 Iter 25: T = 589.5976280610973 K, F = -143.12955602322037, relative_change = 0.005091587229220143 Iter 30: T = 580.0266760429055 K, F = -60.18519850849881, relative_change = 0.002311454012835033 Iter 35: T = 575.8521344030244 K, F = -25.231454824490488, relative_change = 0.0010026746876404158 Iter 40: T = 574.073864697556 K, F = -10.563151672082281, relative_change = 0.0004259761629157443 Iter 45: T = 573.3243089718621 K, F = -4.41959569412989, relative_change = 0.00017933787330009495 Iter 50: T = 573.0097959895955 K, F = -1.8486723479093168, relative_change = 7.521134012709645e-5 Iter 55: T = 572.8780799550817 K, F = -0.7731972749413516, relative_change = 3.1491178646203476e-5 Iter 60: T = 572.8229626586213 K, F = -0.3233709124292273, relative_change = 1.3176451614442592e-5 Iter 65: T = 572.7999063307059 K, F = -0.1352394283101011, relative_change = 5.511680909253443e-6 Iter 70: T = 572.7902629162966 K, F = -0.05655906778389863, relative_change = 2.30524873680557e-6 Iter 75: T = 572.7862297533137 K, F = -0.023653734232150142, relative_change = 9.641171793754581e-7 Iter 80: T = 572.7845430063187 K, F = -0.009892284043588606, relative_change = 4.032113749771827e-7 Iter 85: T = 572.7838375833223 K, F = -0.004137073057426777, relative_change = 1.6862887168521268e-7 Iter 90: T = 572.7835425660808 K, F = -0.0017301736621679331, relative_change = 7.052279325300169e-8 Iter 95: T = 572.7834191861863 K, F = -0.0007235793409384739, relative_change = 2.9493506755933347e-8 Iter 100: T = 572.7833675872128 K, F = -0.00030260953000932345, relative_change = 1.233454237922012e-8 Iter 105: T = 572.783346007901 K, F = -0.00012655492067220608, relative_change = 5.158453906819293e-9 Iter 110: T = 572.7833369831742 K, F = -5.2926779593120976e-5, relative_change = 2.157327206221749e-9 Iter 115: T = 572.7833332089256 K, F = -2.213461148498075e-5, relative_change = 9.022200372062943e-10 Iter 120: T = 572.7833316304897 K, F = -9.256958497627643e-6, relative_change = 3.773191842733475e-10 Iter 125: T = 572.7833309703689 K, F = -3.871370534924701e-6, relative_change = 1.57799387417246e-10 Iter 130: T = 572.7833306942985 K, F = -1.6190531877402492e-6, relative_change = 6.599358018117804e-11 Iter 135: T = 572.7833305788427 K, F = -6.771075206635224e-7, relative_change = 2.759930917491122e-11 Iter 140: T = 572.7833305305577 K, F = -2.8317489969564846e-7, relative_change = 1.1542378975133343e-11 Iter 145: T = 572.7833305103643 K, F = -1.1842725755606409e-7, relative_change = 4.827166141477946e-12 Iter 150: T = 572.7833305019191 K, F = -4.952743254404979e-8, relative_change = 2.018767895174569e-12 Iter 155: T = 572.7833304983872 K, F = -2.0712861592553367e-8, relative_change = 8.442686780559201e-13 Iter 160: T = 572.7833304969101 K, F = -8.66223542894673e-9, relative_change = 3.5307791837536514e-13 Converged in 163 iterations to T = 572.7833304964778 K Iter 1: T = 980.2132399883145 K, F = -4508.432090730443, relative_change = 0.019786760011685528 Iter 2: T = 962.46707645863 K, F = -3808.2087189318977, relative_change = 0.018104390764907514 Iter 3: T = 946.6401027344637 K, F = -3215.2410692527487, relative_change = 0.016444171557952157 Iter 5: T = 920.2189232777575 K, F = -2288.7752623438078, relative_change = 0.013278610217114276 Iter 10: T = 878.2967260845999 K, F = -971.5882983317059, relative_change = 0.006967803277842992 Iter 15: T = 858.464802759353 K, F = -409.4021546356045, relative_change = 0.0032651155723616926 Iter 20: T = 849.6666316513703 K, F = -171.80933535776316, relative_change = 0.0014383652401884473 Iter 25: T = 845.888997925975 K, F = -71.96101280111536, relative_change = 0.000615305160882919 Iter 30: T = 844.291150341905 K, F = -30.114261559379113, relative_change = 0.0002598168966987715 Iter 35: T = 843.6196992444615 K, F = -12.59754807257977, relative_change = 0.00010910005244717271 Iter 40: T = 843.3383237173803 K, F = -5.269042492878326, relative_change = 4.5704629267629284e-5 Iter 45: T = 843.2205496436642 K, F = -2.2036811389159685, relative_change = 1.9127842866541287e-5 Iter 50: T = 843.17127769611 K, F = -0.9216240827650637, relative_change = 8.001877156354431e-6 Iter 55: T = 843.150668529909 K, F = -0.3854374016273352, relative_change = 3.3468978819474173e-6 Iter 60: T = 843.1420489970116 K, F = -0.1611950848159538, relative_change = 1.3997856627238566e-6 Iter 65: T = 843.1384441121012 K, F = -0.06741380754614656, relative_change = 5.854198494530132e-7 Iter 70: T = 843.1369364898592 K, F = -0.028193276542861412, relative_change = 2.4483180565986957e-7 Iter 75: T = 843.1363059813782 K, F = -0.011790767944685143, relative_change = 1.023919756226785e-7 Iter 80: T = 843.1360422947024 K, F = -0.004931040489372096, relative_change = 4.282161533355292e-8 Iter 85: T = 843.1359320176981 K, F = -0.002062220112057034, relative_change = 1.7908522867627013e-8 Iter 90: T = 843.1358858985227 K, F = -0.0008624450929968219, relative_change = 7.489560208558964e-9 Iter 95: T = 843.1358666109301 K, F = -0.0003606848410315777, relative_change = 3.13222389389011e-9 Iter 100: T = 843.135858544628 K, F = -0.00015084270822396384, relative_change = 1.3099335006393917e-9 Iter 105: T = 843.1358551712042 K, F = -6.308422268719305e-5, relative_change = 5.478298500931798e-10 Iter 110: T = 843.135853760398 K, F = -2.6382575401662223e-5, relative_change = 2.2910898837860086e-10 Iter 115: T = 843.135853170382 K, F = -1.1033509308422396e-5, relative_change = 9.581612582757545e-11 Iter 120: T = 843.1358529236303 K, F = -4.614346583720064e-6, relative_change = 4.007145878386552e-11 Iter 125: T = 843.1358528204357 K, F = -1.92977417023954e-6, relative_change = 1.675835673956757e-11 Iter 130: T = 843.1358527772785 K, F = -8.070557342421125e-7, relative_change = 7.008554739210938e-12 Iter 135: T = 843.1358527592297 K, F = -3.3752078287818676e-7, relative_change = 2.9310650829903635e-12 Iter 140: T = 843.1358527516815 K, F = -1.4115521462798597e-7, relative_change = 1.2258063558861073e-12 Iter 145: T = 843.1358527485247 K, F = -5.9034029886717576e-8, relative_change = 5.126575680587828e-13 Converged in 150 iterations to T = 843.1358527472045 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015331972983284527 Iteration 10: d = 1.5279742750578094e-5 Iteration 20: d = 1.7619016010053039e-7 Iteration 30: d = 2.2927498181665587e-9 Iteration 40: d = 3.0475463533543534e-11 Iteration 50: d = 4.079922176855317e-13 Iteration 60: d = 5.5112872255723085e-15 Converged after 63 iterations. d = 1.5275802322284153e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.54765704137 Iteration 2: convergence error = 4819.889716311753 Iteration 3: convergence error = 1099.5485235051183 Iteration 4: convergence error = 320.84498707867783 Iteration 5: convergence error = 95.28014263756972 Iteration 6: convergence error = 28.43785032687174 Iteration 7: convergence error = 8.535250992065357 Iteration 8: convergence error = 2.5606521311049164 Iteration 9: convergence error = 0.7664175547340619 Iteration 10: convergence error = 0.2290824322210483 Iteration 11: convergence error = 0.06841994330079615 Iteration 12: convergence error = 0.02042598458547218 Iteration 13: convergence error = 0.006096417908111107 Iteration 14: convergence error = 0.001819300337047025 Iteration 15: convergence error = 0.0005428732399650471 Iteration 16: convergence error = 0.00016198392177102505 Iteration 17: convergence error = 4.833186744690465e-5 Iteration 18: convergence error = 1.442076290913974e-5 Iteration 19: convergence error = 4.302675506551168e-6 Iteration 20: convergence error = 1.2837697340728482e-6 Iteration 21: convergence error = 3.8303005567286164e-7 Iteration 22: convergence error = 1.1414931577746756e-7 Iteration 23: convergence error = 3.314858076919336e-8 Iteration 24: convergence error = 9.570612746756524e-9 Iteration 25: convergence error = 2.750311978161335e-9 Iteration 26: convergence error = 7.885319064371288e-10 Iteration 27: convergence error = 2.2441781766247004e-10 Iteration 28: convergence error = 6.366462912410498e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018346899670425424 Iteration 10: d = 1.6300624823432953e-5 Iteration 20: d = 1.4007027886516508e-7 Iteration 30: d = 1.484324138280318e-9 Iteration 40: d = 1.7574672699046093e-11 Iteration 50: d = 2.201625920329092e-13 Iteration 60: d = 2.8008966428271272e-15 Converged after 61 iterations. d = 1.8477014521598216e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12259.177315462106 Iteration 2: convergence error = 8317.68183755382 Iteration 3: convergence error = 1964.9392923121336 Iteration 4: convergence error = 485.73832498055276 Iteration 5: convergence error = 124.091993467576 Iteration 6: convergence error = 33.18163518858705 Iteration 7: convergence error = 9.052135907807724 Iteration 8: convergence error = 2.4835274332881454 Iteration 9: convergence error = 0.6821909794878138 Iteration 10: convergence error = 0.18741125760948307 Iteration 11: convergence error = 0.05148227773611325 Iteration 12: convergence error = 0.01414142844168964 Iteration 13: convergence error = 0.0038843030122279742 Iteration 14: convergence error = 0.0010669029768450855 Iteration 15: convergence error = 0.00029304409213182225 Iteration 16: convergence error = 8.04895139481232e-5 Iteration 17: convergence error = 2.2107768245405168e-5 Iteration 18: convergence error = 6.072255928302184e-6 Iteration 19: convergence error = 1.667844344410696e-6 Iteration 20: convergence error = 4.580990662361728e-7 Iteration 21: convergence error = 1.2666828297369648e-7 Iteration 22: convergence error = 3.41349277732661e-8 Iteration 23: convergence error = 9.143832357949577e-9 Iteration 24: convergence error = 2.4424480216111988e-9 Iteration 25: convergence error = 6.55518306302838e-10 Iteration 26: convergence error = 1.7553247744217515e-10 Iteration 27: convergence error = 4.638422979041934e-11 Iteration 28: convergence error = 1.2732925824820995e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018346899670425424 Iteration 10: d = 1.6300624823432953e-5 Iteration 20: d = 1.4007027886516508e-7 Iteration 30: d = 1.484324138280318e-9 Iteration 40: d = 1.7574672699046093e-11 Iteration 50: d = 2.201625920329092e-13 Iteration 60: d = 2.8008966428271272e-15 Converged after 61 iterations. d = 1.8477014521598216e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.958880509628 Iteration 2: convergence error = 5725.5265432184715 Iteration 3: convergence error = 2015.9281850764146 Iteration 4: convergence error = 894.9915156071584 Iteration 5: convergence error = 414.1466891608479 Iteration 6: convergence error = 195.5322219574682 Iteration 7: convergence error = 92.3942661137612 Iteration 8: convergence error = 43.68067923638364 Iteration 9: convergence error = 20.65128800690718 Iteration 10: convergence error = 9.761558167611383 Iteration 11: convergence error = 4.612995931189744 Iteration 12: convergence error = 2.1794696978786305 Iteration 13: convergence error = 1.029541807534315 Iteration 14: convergence error = 0.4862764073232029 Iteration 15: convergence error = 0.2296598048778833 Iteration 16: convergence error = 0.10837235598091866 Iteration 17: convergence error = 0.0507089097068274 Iteration 18: convergence error = 0.023186862824786658 Iteration 19: convergence error = 0.010561040966422297 Iteration 20: convergence error = 0.004799649234428216 Iteration 21: convergence error = 0.0021785166049994587 Iteration 22: convergence error = 0.000988081979812705 Iteration 23: convergence error = 0.00044795899202654255 Iteration 24: convergence error = 0.00020303599785620463 Iteration 25: convergence error = 9.201144848702825e-5 Iteration 26: convergence error = 4.1693742787174415e-5 Iteration 27: convergence error = 1.8891901618189877e-5 Iteration 28: convergence error = 8.559843081457075e-6 Iteration 29: convergence error = 3.878348707075929e-6 Iteration 30: convergence error = 1.7572024262335617e-6 Iteration 31: convergence error = 7.961489245644771e-7 Iteration 32: convergence error = 3.6071151043870486e-7 Iteration 33: convergence error = 1.634325599297881e-7 Iteration 34: convergence error = 7.404560165014118e-8 Iteration 35: convergence error = 3.354898581164889e-8 Iteration 36: convergence error = 1.519902070867829e-8 Iteration 37: convergence error = 6.887148629175499e-9 Iteration 38: convergence error = 3.1200215744320303e-9 Iteration 39: convergence error = 1.4106262824498117e-9 Iteration 40: convergence error = 6.425580068025738e-10 Iteration 41: convergence error = 2.9058355721645057e-10 Iteration 42: convergence error = 1.318767317570746e-10 Iteration 43: convergence error = 5.820766091346741e-11 Iteration 44: convergence error = 2.7284841053187847e-11 Iteration 45: convergence error = 1.2505552149377763e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018346899670425424 Iteration 10: d = 1.6300624823432953e-5 Iteration 20: d = 1.4007027886516508e-7 Iteration 30: d = 1.484324138280318e-9 Iteration 40: d = 1.7574672699046093e-11 Iteration 50: d = 2.201625920329092e-13 Iteration 60: d = 2.8008966428271272e-15 Converged after 61 iterations. d = 1.8477014521598216e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.764569894935 Iteration 2: convergence error = 7340.404190601907 Iteration 3: convergence error = 1732.5692677735015 Iteration 4: convergence error = 509.7028593201753 Iteration 5: convergence error = 158.58146003353386 Iteration 6: convergence error = 49.32406562861752 Iteration 7: convergence error = 15.314688354156715 Iteration 8: convergence error = 4.747069519613888 Iteration 9: convergence error = 1.469717294754446 Iteration 10: convergence error = 0.4547035599339324 Iteration 11: convergence error = 0.14061749975780913 Iteration 12: convergence error = 0.04347557172195593 Iteration 13: convergence error = 0.01343976078715059 Iteration 14: convergence error = 0.004154358036885242 Iteration 15: convergence error = 0.001284094781112799 Iteration 16: convergence error = 0.0003968983396589465 Iteration 17: convergence error = 0.00012267478450667113 Iteration 18: convergence error = 3.7916452129138634e-5 Iteration 19: convergence error = 1.1719193480530521e-5 Iteration 20: convergence error = 3.6221631489752326e-6 Iteration 21: convergence error = 1.1195238585059997e-6 Iteration 22: convergence error = 3.4586673791636713e-7 Iteration 23: convergence error = 1.0570329322945327e-7 Iteration 24: convergence error = 3.1508534448221326e-8 Iteration 25: convergence error = 9.355517249787226e-9 Iteration 26: convergence error = 2.7653186407405883e-9 Iteration 27: convergence error = 8.199094736482948e-10 Iteration 28: convergence error = 2.4419932742603123e-10 Iteration 29: convergence error = 7.048583938740194e-11 Iteration 30: convergence error = 2.0463630789890885e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018346899670425424 Iteration 10: d = 1.6300624823432953e-5 Iteration 20: d = 1.4007027886516508e-7 Iteration 30: d = 1.484324138280318e-9 Iteration 40: d = 1.7574672699046093e-11 Iteration 50: d = 2.201625920329092e-13 Iteration 60: d = 2.8008966428271272e-15 Converged after 61 iterations. d = 1.8477014521598216e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.734458170264 Iteration 2: convergence error = 5509.6999790139325 Iteration 3: convergence error = 937.4421713409313 Iteration 4: convergence error = 170.66751812760367 Iteration 5: convergence error = 30.99123660079067 Iteration 6: convergence error = 5.673391863750567 Iteration 7: convergence error = 1.0421093633735836 Iteration 8: convergence error = 0.1909438390489413 Iteration 9: convergence error = 0.03494436558912639 Iteration 10: convergence error = 0.006391322016042977 Iteration 11: convergence error = 0.001168621964097838 Iteration 12: convergence error = 0.00021364400163292885 Iteration 13: convergence error = 3.905464609488263e-5 Iteration 14: convergence error = 7.138987712096423e-6 Iteration 15: convergence error = 1.304952547798166e-6 Iteration 16: convergence error = 2.3853408492868766e-7 Iteration 17: convergence error = 4.3593900045379996e-8 Iteration 18: convergence error = 7.967628334881738e-9 Iteration 19: convergence error = 1.4551915228366852e-9 Iteration 20: convergence error = 2.6784618967212737e-10 Iteration 21: convergence error = 4.774847184307873e-11 Iteration 22: convergence error = 9.322320693172514e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018346899670425424 Iteration 10: d = 1.6300624823432953e-5 Iteration 20: d = 1.4007027886516508e-7 Iteration 30: d = 1.484324138280318e-9 Iteration 40: d = 1.7574672699046093e-11 Iteration 50: d = 2.201625920329092e-13 Iteration 60: d = 2.8008966428271272e-15 Converged after 61 iterations. d = 1.8477014521598216e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4876028435046 Iteration 2: convergence error = 2710.209448454728 Iteration 3: convergence error = 204.77170537549802 Iteration 4: convergence error = 19.27942415241367 Iteration 5: convergence error = 1.5935670015554906 Iteration 6: convergence error = 0.1298850943078236 Iteration 7: convergence error = 0.010629612514010537 Iteration 8: convergence error = 0.0008712915721378198 Iteration 9: convergence error = 7.15571065008793e-5 Iteration 10: convergence error = 5.8789353551265715e-6 Iteration 11: convergence error = 4.828964870879822e-7 Iteration 12: convergence error = 3.966093800277875e-8 Iteration 13: convergence error = 3.2583116264321662e-9 Iteration 14: convergence error = 2.664824578041662e-10 Iteration 15: convergence error = 2.3078428057488054e-11 Iteration 16: convergence error = 4.478673890737295e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015331972983284527 Iteration 10: d = 1.5279742750578094e-5 Iteration 20: d = 1.7619016010053039e-7 Iteration 30: d = 2.2927498181665587e-9 Iteration 40: d = 3.0475463533543534e-11 Iteration 50: d = 4.079922176855317e-13 Iteration 60: d = 5.5112872255723085e-15 Converged after 63 iterations. d = 1.5275802322284153e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.294539640339 Iteration 2: convergence error = 3607.899146200755 Iteration 3: convergence error = 594.3937584892242 Iteration 4: convergence error = 104.87645419295109 Iteration 5: convergence error = 18.677808963612733 Iteration 6: convergence error = 3.2958433099192916 Iteration 7: convergence error = 0.5793990121419483 Iteration 8: convergence error = 0.10169888057566823 Iteration 9: convergence error = 0.01783938341668545 Iteration 10: convergence error = 0.0031284718775168585 Iteration 11: convergence error = 0.0005485799524649337 Iteration 12: convergence error = 9.618994704396755e-5 Iteration 13: convergence error = 1.6866004443727434e-5 Iteration 14: convergence error = 2.9572736366390018e-6 Iteration 15: convergence error = 5.185420377529226e-7 Iteration 16: convergence error = 9.091240826819558e-8 Iteration 17: convergence error = 1.5953673937474377e-8 Iteration 18: convergence error = 2.773731466731988e-9 Iteration 19: convergence error = 4.94765117764473e-10 Iteration 20: convergence error = 8.549250196665525e-11 Iteration 21: convergence error = 1.5234036254696548e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m40.3s Testing RayTraceHeatTransfer tests passed Testing completed after 586.86s PkgEval succeeded after 677.47s