Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1299 (6d6224db99*) started at 2025-11-25T15:58:43.300 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.02s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.13.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.12s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1710.7 ms ✓ Measurements 5130.4 ms ✓ StatsBase 14220.9 ms ✓ StaticArrays 1664.8 ms ✓ StaticArrays → StaticArraysStatisticsExt 24424.7 ms ✓ GeometryBasics 8670.2 ms ✓ RayTraceHeatTransfer 6 dependencies successfully precompiled in 57 seconds. 53 already precompiled. Precompilation completed after 69.41s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_hulncA/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_hulncA/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:18 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012184486005375858 Iteration 10: d = 1.3718136958250106e-5 Iteration 20: d = 2.1817982228727837e-7 Iteration 30: d = 3.7215157182285e-9 Iteration 40: d = 6.42304630487441e-11 Iteration 50: d = 1.1157292579865297e-12 Iteration 60: d = 1.945291083795059e-14 Converged after 66 iterations. d = 1.7029657603966033e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▋ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012013963036131845 Iteration 10: d = 1.1600038094122631e-5 Iteration 20: d = 1.605626233748609e-7 Iteration 30: d = 2.5853966289317552e-9 Iteration 40: d = 4.3506421766951785e-11 Iteration 50: d = 7.478547730855013e-13 Iteration 60: d = 1.3008394842160721e-14 Converged after 65 iterations. d = 1.7530821203457608e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012304956386531576 Iteration 10: d = 1.319645604720223e-5 Iteration 20: d = 1.7795938430210833e-7 Iteration 30: d = 2.8026514142551783e-9 Iteration 40: d = 4.657994807216988e-11 Iteration 50: d = 7.922759259387326e-13 Iteration 60: d = 1.3638490875906561e-14 Converged after 65 iterations. d = 1.7695855851573622e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011341672121467907 Iteration 10: d = 1.0976323350239685e-5 Iteration 20: d = 1.53333653147833e-7 Iteration 30: d = 2.5106978502153827e-9 Iteration 40: d = 4.269962833288079e-11 Iteration 50: d = 7.358578445191198e-13 Iteration 60: d = 1.2746284205065173e-14 Converged after 65 iterations. d = 1.6948024112839216e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013092093950296927 Iteration 10: d = 1.1149244179951696e-5 Iteration 20: d = 1.4040433224497226e-7 Iteration 30: d = 2.0784078382905584e-9 Iteration 40: d = 3.156246382387472e-11 Iteration 50: d = 4.824921803592856e-13 Iteration 60: d = 7.400375711257547e-15 Converged after 63 iterations. d = 2.1241947653110942e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014968675174228069 Iteration 10: d = 1.3295015133379647e-5 Iteration 20: d = 1.494529347267972e-7 Iteration 30: d = 2.0617863164837825e-9 Iteration 40: d = 3.0419259539825476e-11 Iteration 50: d = 4.603060110659925e-13 Iteration 60: d = 7.047520398624645e-15 Converged after 63 iterations. d = 1.9850375228556773e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013194719882602248 Iteration 10: d = 1.2278184150807238e-5 Iteration 20: d = 1.4482900666412479e-7 Iteration 30: d = 2.045026294155717e-9 Iteration 40: d = 3.0664241030303716e-11 Iteration 50: d = 4.702438433731717e-13 Iteration 60: d = 7.229090500234294e-15 Converged after 63 iterations. d = 2.0888473475082583e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001288014236055916 Iteration 10: d = 1.4932698695457384e-5 Iteration 20: d = 2.0876910952321096e-7 Iteration 30: d = 3.1559530901939887e-9 Iteration 40: d = 4.8393457622682016e-11 Iteration 50: d = 7.449167167986347e-13 Iteration 60: d = 1.1469598593121338e-14 Converged after 64 iterations. d = 2.17670884643978e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001321985761251413 Iteration 10: d = 8.35818184249364e-6 Iteration 20: d = 6.873503459272493e-8 Iteration 30: d = 8.332662604543796e-10 Iteration 40: d = 1.173165457170472e-11 Iteration 50: d = 1.744426668111873e-13 Iteration 60: d = 2.663598723857984e-15 Converged after 61 iterations. d = 1.7260145831782624e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015222790039564086 Iteration 10: d = 1.5012718340052038e-5 Iteration 20: d = 1.7169695295164913e-7 Iteration 30: d = 2.4164003245831305e-9 Iteration 40: d = 3.626384464383907e-11 Iteration 50: d = 5.561375229178126e-13 Iteration 60: d = 8.596659717092457e-15 Converged after 64 iterations. d = 1.6259930392381334e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004403197149927484 Iteration 10: d = 4.6449616711372124e-5 Iteration 20: d = 5.654369470818322e-7 Iteration 30: d = 7.471187729844e-9 Iteration 40: d = 1.0133652240515029e-10 Iteration 50: d = 1.3917393988816808e-12 Iteration 60: d = 1.9227678405726078e-14 Converged after 66 iterations. d = 1.4809177154055674e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0032416247977424505 Iteration 10: d = 3.1732161439070845e-5 Iteration 20: d = 3.5316231535147055e-7 Iteration 30: d = 4.391925509792284e-9 Iteration 40: d = 5.848121460149854e-11 Iteration 50: d = 8.221844934040145e-13 Iteration 60: d = 1.2025849702591897e-14 Converged after 65 iterations. d = 1.4525160584213159e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003010314956451562 Iteration 10: d = 4.148893571975463e-5 Iteration 20: d = 6.274192728737574e-7 Iteration 30: d = 1.0258452537563461e-8 Iteration 40: d = 1.7102265912108382e-10 Iteration 50: d = 2.872118568800775e-12 Iteration 60: d = 4.841665053035243e-14 Converged after 68 iterations. d = 1.8382813181788926e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002033421368148993 Iteration 10: d = 1.6192200719452805e-5 Iteration 20: d = 2.3406911514487273e-7 Iteration 30: d = 3.955159823739971e-9 Iteration 40: d = 6.850264250359805e-11 Iteration 50: d = 1.20001285041458e-12 Iteration 60: d = 2.1158917651779773e-14 Converged after 66 iterations. d = 1.9041613510107863e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013092093950296927 Iteration 10: d = 1.1149244179951696e-5 Iteration 20: d = 1.4040433224497226e-7 Iteration 30: d = 2.0784078382905584e-9 Iteration 40: d = 3.156246382387472e-11 Iteration 50: d = 4.824921803592856e-13 Iteration 60: d = 7.400375711257547e-15 Converged after 63 iterations. d = 2.1241947653110942e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013845489212278162 Iteration 10: d = 1.0220339707903028e-5 Iteration 20: d = 8.693358922675364e-8 Iteration 30: d = 1.0488024411363121e-9 Iteration 40: d = 1.4156862500305063e-11 Iteration 50: d = 1.9653343055387678e-13 Iteration 60: d = 2.783653278632453e-15 Converged after 61 iterations. d = 1.7611222132216775e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014252535494356814 Iteration 10: d = 1.818821148376695e-5 Iteration 20: d = 2.1841906389235997e-7 Iteration 30: d = 2.8905301044357763e-9 Iteration 40: d = 3.898730650508207e-11 Iteration 50: d = 5.286730986873829e-13 Iteration 60: d = 7.209663895291006e-15 Converged after 63 iterations. d = 1.9875956234571882e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.618284416825 Iteration 2: convergence error = 4826.636600166246 Iteration 3: convergence error = 1096.1463290320662 Iteration 4: convergence error = 319.5328800954685 Iteration 5: convergence error = 94.75707844420049 Iteration 6: convergence error = 28.256872744097336 Iteration 7: convergence error = 8.475116400914203 Iteration 8: convergence error = 2.540763648965367 Iteration 9: convergence error = 0.7599122949784487 Iteration 10: convergence error = 0.22697275381005966 Iteration 11: convergence error = 0.06774048449096881 Iteration 12: convergence error = 0.020208410515806463 Iteration 13: convergence error = 0.006027087311849755 Iteration 14: convergence error = 0.0017973010258174327 Iteration 15: convergence error = 0.0005359183251130162 Iteration 16: convergence error = 0.0001597923246663413 Iteration 17: convergence error = 4.764325285577797e-5 Iteration 18: convergence error = 1.4204955050445278e-5 Iteration 19: convergence error = 4.235208734826301e-6 Iteration 20: convergence error = 1.2627181149582611e-6 Iteration 21: convergence error = 3.7647805584128946e-7 Iteration 22: convergence error = 1.1210454431420658e-7 Iteration 23: convergence error = 3.251147973060142e-8 Iteration 24: convergence error = 9.375298759550788e-9 Iteration 25: convergence error = 2.689375833142549e-9 Iteration 26: convergence error = 7.732978701824322e-10 Iteration 27: convergence error = 2.2214408090803772e-10 Iteration 28: convergence error = 6.480149750132114e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013845489212278162 Iteration 10: d = 1.0220339707903028e-5 Iteration 20: d = 8.693358922675364e-8 Iteration 30: d = 1.0488024411363121e-9 Iteration 40: d = 1.4156862500305063e-11 Iteration 50: d = 1.9653343055387678e-13 Iteration 60: d = 2.783653278632453e-15 Converged after 61 iterations. d = 1.7611222132216775e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.811606199808 Iteration 2: convergence error = 4827.794112219474 Iteration 3: convergence error = 1100.0839372888784 Iteration 4: convergence error = 317.8745305129446 Iteration 5: convergence error = 94.09707598666591 Iteration 6: convergence error = 28.05775660348081 Iteration 7: convergence error = 8.436595927988492 Iteration 8: convergence error = 2.526791185842285 Iteration 9: convergence error = 0.7550059995937772 Iteration 10: convergence error = 0.2252897113680774 Iteration 11: convergence error = 0.06717308816882905 Iteration 12: convergence error = 0.020019684063299792 Iteration 13: convergence error = 0.005964985818309287 Iteration 14: convergence error = 0.0017770460513020225 Iteration 15: convergence error = 0.0005293606880059087 Iteration 16: convergence error = 0.0001576825766278489 Iteration 17: convergence error = 4.696816631621914e-5 Iteration 18: convergence error = 1.3989950502946158e-5 Iteration 19: convergence error = 4.1670093651191564e-6 Iteration 20: convergence error = 1.2411633178999182e-6 Iteration 21: convergence error = 3.696895873872563e-7 Iteration 22: convergence error = 1.0996768651239108e-7 Iteration 23: convergence error = 3.184936758771073e-8 Iteration 24: convergence error = 9.170207704300992e-9 Iteration 25: convergence error = 2.632759787957184e-9 Iteration 26: convergence error = 7.541984814452007e-10 Iteration 27: convergence error = 2.148681232938543e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:32:01 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:56 Bin 1 ray tracing: 17%|█████▎ | ETA: 0:00:31 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:22 Bin 1 ray tracing: 34%|██████████▏ | ETA: 0:00:17 Bin 1 ray tracing: 42%|████████████▋ | ETA: 0:00:13 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 59%|█████████████████▋ | ETA: 0:00:08 Bin 1 ray tracing: 67%|████████████████████▏ | ETA: 0:00:06 Bin 1 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 91%|███████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 2 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 24%|███████▍ | ETA: 0:00:09 Bin 3 ray tracing: 33%|█████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 3 ray tracing: 49%|██████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 4 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 63%|██████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 5 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 5 ray tracing: 46%|█████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 54%|████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 6 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 7 ray tracing: 36%|██████████▋ | ETA: 0:00:08 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 8 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 8 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 44%|█████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 9 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 36%|██████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 9 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:10 Bin 10 ray tracing: 18%|█████▏ | ETA: 0:00:09 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 10 ray tracing: 35%|██████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 44%|████████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 53%|███████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 62%|█████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 79%|███████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 88%|█████████████████████████▌ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 5 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 8 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 9 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 9 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013845489212278162 Iteration 10: d = 1.0220339707903028e-5 Iteration 20: d = 8.693358922675364e-8 Iteration 30: d = 1.0488024411363121e-9 Iteration 40: d = 1.4156862500305063e-11 Iteration 50: d = 1.9653343055387678e-13 Iteration 60: d = 2.783653278632453e-15 Converged after 61 iterations. d = 1.7611222132216775e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014183460843439544 Iteration 10: d = 1.8071669079563926e-5 Iteration 20: d = 2.1619311861360582e-7 Iteration 30: d = 2.853622084369243e-9 Iteration 40: d = 3.841177765170171e-11 Iteration 50: d = 5.198961095628311e-13 Iteration 60: d = 7.055807450657884e-15 Converged after 63 iterations. d = 1.9959152019534207e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012624777462979353 Iteration 10: d = 1.0911130484263313e-5 Iteration 20: d = 1.0772125626557772e-7 Iteration 30: d = 1.3640977522649636e-9 Iteration 40: d = 1.8568960705196234e-11 Iteration 50: d = 2.584191861039592e-13 Iteration 60: d = 3.655913821261842e-15 Converged after 62 iterations. d = 1.532692096819053e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014137381407028286 Iteration 10: d = 1.5103182970117064e-5 Iteration 20: d = 1.5789320475601793e-7 Iteration 30: d = 1.9367846029881447e-9 Iteration 40: d = 2.5767183700066286e-11 Iteration 50: d = 3.5588456491655813e-13 Iteration 60: d = 4.9667231430598295e-15 Converged after 62 iterations. d = 2.1012477047856282e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015121692300924141 Iteration 10: d = 1.800991158222854e-5 Iteration 20: d = 2.2996951427747224e-7 Iteration 30: d = 3.0364065572796505e-9 Iteration 40: d = 4.0307724382969766e-11 Iteration 50: d = 5.367694087917292e-13 Iteration 60: d = 7.160849297322e-15 Converged after 63 iterations. d = 1.9410228299451245e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012986710362287391 Iteration 10: d = 1.0323375255495037e-5 Iteration 20: d = 1.0823557843946302e-7 Iteration 30: d = 1.3952871335646843e-9 Iteration 40: d = 1.883370039638174e-11 Iteration 50: d = 2.583182969888843e-13 Iteration 60: d = 3.5521861593812062e-15 Converged after 62 iterations. d = 1.5273664448407916e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016477832310713696 Iteration 10: d = 1.4288100133803917e-5 Iteration 20: d = 1.548595393132689e-7 Iteration 30: d = 2.102200084894017e-9 Iteration 40: d = 2.9716661192965934e-11 Iteration 50: d = 4.2319641440073685e-13 Iteration 60: d = 6.0239121073080336e-15 Converged after 63 iterations. d = 1.7074720274447217e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015160182676380474 Iteration 10: d = 1.293820665026791e-5 Iteration 20: d = 1.4607052610456845e-7 Iteration 30: d = 2.022473725973565e-9 Iteration 40: d = 2.859302113026058e-11 Iteration 50: d = 4.045521574640021e-13 Iteration 60: d = 5.732781282167292e-15 Converged after 63 iterations. d = 1.586877533527167e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010652924909722388 Iteration 10: d = 1.2812157247819143e-5 Iteration 20: d = 1.5622166152105456e-7 Iteration 30: d = 2.156028821050345e-9 Iteration 40: d = 3.055352280954308e-11 Iteration 50: d = 4.3482837250400244e-13 Iteration 60: d = 6.207188736761505e-15 Converged after 63 iterations. d = 1.7559132385698792e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013287951402500854 Iteration 10: d = 1.4772565732646703e-5 Iteration 20: d = 1.7557462644355775e-7 Iteration 30: d = 2.2592541990092694e-9 Iteration 40: d = 2.960056705632403e-11 Iteration 50: d = 3.9043110192002056e-13 Iteration 60: d = 5.190149569558186e-15 Converged after 62 iterations. d = 2.1874916299023075e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8649.456562366448 Iteration 2: convergence error = 4807.58113080236 Iteration 3: convergence error = 1101.0439863304478 Iteration 4: convergence error = 325.47988433891715 Iteration 5: convergence error = 96.879123027898 Iteration 6: convergence error = 29.017228825833854 Iteration 7: convergence error = 8.706739150601834 Iteration 8: convergence error = 2.613406228517988 Iteration 9: convergence error = 0.7862358612551361 Iteration 10: convergence error = 0.23623784511187296 Iteration 11: convergence error = 0.07093057844213035 Iteration 12: convergence error = 0.02128826983334875 Iteration 13: convergence error = 0.00638773181117358 Iteration 14: convergence error = 0.0019164420425568096 Iteration 15: convergence error = 0.0005749259589720168 Iteration 16: convergence error = 0.0001724683133943472 Iteration 17: convergence error = 5.1736350997089176e-5 Iteration 18: convergence error = 1.5519445014433586e-5 Iteration 19: convergence error = 4.6553498123103054e-6 Iteration 20: convergence error = 1.3964570371172158e-6 Iteration 21: convergence error = 4.18888248532312e-7 Iteration 22: convergence error = 1.2552982298075221e-7 Iteration 23: convergence error = 3.677382665046025e-8 Iteration 24: convergence error = 1.0671556083252653e-8 Iteration 25: convergence error = 3.087507138843648e-9 Iteration 26: convergence error = 8.858478395268321e-10 Iteration 27: convergence error = 2.6352608983870596e-10 Iteration 28: convergence error = 7.389644451905042e-11 Iteration 29: convergence error = 2.2509993868879974e-11 Iteration 30: convergence error = 6.366462912410498e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2621634139647 K, F = -7459.347207850314, relative_change = 0.032737836586035296 Iter 2: T = 936.5969402335147 K, F = -6323.183730015763, relative_change = 0.031703114564325216 Iter 3: T = 907.9731259922012 K, F = -5358.570381210869, relative_change = 0.03056150731623889 Iter 5: T = 856.7124624953461 K, F = -3844.6637543437055, relative_change = 0.027962426292661567 Iter 10: T = 761.297912542394 K, F = -1664.948574795684, relative_change = 0.020057667963590268 Iter 15: T = 705.3561496915197 K, F = -712.9260221252642, relative_change = 0.012040406720486615 Iter 20: T = 676.5515066150967 K, F = -302.18467515977136, relative_change = 0.006174051428033727 Iter 25: T = 663.1087839435336 K, F = -127.21952649293412, relative_change = 0.002854314997253056 Iter 30: T = 657.1884217343737 K, F = -53.365243115027674, relative_change = 0.0012490424508362031 Iter 35: T = 654.6551386039059 K, F = -22.347156217918783, relative_change = 0.0005327142506609565 Iter 40: T = 653.5852434114877 K, F = -9.351035421945793, relative_change = 0.00022465074935732135 Iter 45: T = 653.1359410170658 K, F = -3.911628430993613, relative_change = 9.428153297588211e-5 Iter 50: T = 652.9477097442216 K, F = -1.6360500112282725, relative_change = 3.948766200574018e-5 Iter 55: T = 652.8689316932213 K, F = -0.6842437221759514, relative_change = 1.652437783667356e-5 Iter 60: T = 652.8359757041848 K, F = -0.2861638079908482, relative_change = 6.912471806541903e-6 Iter 65: T = 652.8221913542478 K, F = -0.11967798126252721, relative_change = 2.891189642460313e-6 Iter 70: T = 652.8164262662834 K, F = -0.05005091130952338, relative_change = 1.2091845058510939e-6 Iter 75: T = 652.8140151837375 K, F = -0.020931915126762735, relative_change = 5.057049283450633e-7 Iter 80: T = 652.8130068307934 K, F = -0.00875398148042733, relative_change = 2.114935067470955e-7 Iter 85: T = 652.8125851239008 K, F = -0.0036610204031968796, relative_change = 8.84494017292221e-8 Iter 90: T = 652.8124087607537 K, F = -0.0015310825959105046, relative_change = 3.69906471087854e-8 Iter 95: T = 652.8123350035289 K, F = -0.0006403170513979983, relative_change = 1.5469939303270455e-8 Iter 100: T = 652.8123041573679 K, F = -0.0002677882431998402, relative_change = 6.46971495033527e-9 Iter 105: T = 652.8122912571333 K, F = -0.00011199224158942034, relative_change = 2.705712316729301e-9 Iter 110: T = 652.812285862101 K, F = -4.6836493934332424e-5, relative_change = 1.1315612733368965e-9 Iter 115: T = 652.812283605834 K, F = -1.9587581210345206e-5, relative_change = 4.732324484357515e-10 Iter 120: T = 652.812282662236 K, F = -8.191760553943883e-6, relative_change = 1.979114669131651e-10 Iter 125: T = 652.8122822676121 K, F = -3.4258914113349803e-6, relative_change = 8.276892277173117e-11 Iter 130: T = 652.8122821025758 K, F = -1.4327491321686203e-6, relative_change = 3.461496240718674e-11 Iter 135: T = 652.8122820335557 K, F = -5.991935768667744e-7, relative_change = 1.4476409500187781e-11 Iter 140: T = 652.8122820046906 K, F = -2.505912227168672e-7, relative_change = 6.054239060664009e-12 Iter 145: T = 652.8122819926189 K, F = -1.048007554627084e-7, relative_change = 2.5319674826846193e-12 Iter 150: T = 652.8122819875703 K, F = -4.382820828485734e-8, relative_change = 1.058881662786876e-12 Iter 155: T = 652.8122819854589 K, F = -1.8329677664574717e-8, relative_change = 4.4284172964508336e-13 Converged in 159 iterations to T = 652.8122819846968 K Iter 1: T = 970.409461426772 K, F = -6742.23236177886, relative_change = 0.02959053857322797 Iter 2: T = 942.9845039300703 K, F = -5710.412603129022, relative_change = 0.028261222284848078 Iter 3: T = 917.6799718784939 K, F = -4834.748600043486, relative_change = 0.026834515250372528 Iter 5: T = 873.21414134159 K, F = -3461.530308493841, relative_change = 0.023734720051809217 Iter 10: T = 794.35770487937 K, F = -1489.7560984638349, relative_change = 0.015429210414919011 Iter 15: T = 751.4464579543453 K, F = -634.0889345443928, relative_change = 0.008435892397458598 Iter 20: T = 730.6359602795449 K, F = -267.6345885193324, relative_change = 0.0040547234779787795 Iter 25: T = 721.274381052543 K, F = -112.41132094145429, relative_change = 0.0018094185150802065 Iter 30: T = 717.2278069956805 K, F = -47.10109135646725, relative_change = 0.0007786183893483534 Iter 35: T = 715.5110814486975 K, F = -19.7142449859682, relative_change = 0.0003296222182652721 Iter 40: T = 714.7887476432892 K, F = -8.247561095229635, relative_change = 0.00013856327609570136 Iter 45: T = 714.485884789617 K, F = -3.449725385964134, relative_change = 5.807417344599315e-5 Iter 50: T = 714.35908789114 K, F = -1.4428034105574685, relative_change = 2.4309307592142526e-5 Iter 55: T = 714.3060360752559 K, F = -0.6034128546570444, relative_change = 1.0170294764639024e-5 Iter 60: T = 714.283844999515 K, F = -0.2523571279790266, relative_change = 4.254012825784765e-6 Iter 65: T = 714.2745636965567 K, F = -0.10553923101332008, relative_change = 1.7791968947795013e-6 Iter 70: T = 714.2706820171105 K, F = -0.044137848368988264, relative_change = 7.441020170056429e-7 Iter 75: T = 714.269058630072 K, F = -0.018458989566403017, relative_change = 3.111959578385071e-7 Iter 80: T = 714.2683797063183 K, F = -0.007719772374761402, relative_change = 1.3014649701178044e-7 Iter 85: T = 714.2680957716134 K, F = -0.003228501437532283, relative_change = 5.442892970675338e-8 Iter 90: T = 714.2679770266093 K, F = -0.001350197933525532, relative_change = 2.2762847718997708e-8 Iter 95: T = 714.2679273660096 K, F = -0.0005646689134088945, relative_change = 9.519698129623513e-9 Iter 100: T = 714.2679065973501 K, F = -0.0002361512857799175, relative_change = 3.981252042366459e-9 Iter 105: T = 714.267897911648 K, F = -9.876128724284339e-5, relative_change = 1.6650072346986327e-9 Iter 110: T = 714.2678942791836 K, F = -4.130315072559121e-5, relative_change = 6.963259426742438e-10 Iter 115: T = 714.2678927600435 K, F = -1.7273470214851372e-5, relative_change = 2.912118165590009e-10 Iter 120: T = 714.2678921247211 K, F = -7.223972114944743e-6, relative_change = 1.2178826982113281e-10 Iter 125: T = 714.2678918590216 K, F = -3.0211505085420143e-6, relative_change = 5.093329377546152e-11 Iter 130: T = 714.2678917479028 K, F = -1.2634809085643184e-6, relative_change = 2.1300906446503286e-11 Iter 135: T = 714.2678917014317 K, F = -5.284028916641148e-7, relative_change = 8.908294924436288e-12 Iter 140: T = 714.2678916819968 K, F = -2.2098296637018677e-7, relative_change = 3.725531160054262e-12 Iter 145: T = 714.267891673869 K, F = -9.241711584895285e-8, relative_change = 1.5580515118052223e-12 Iter 150: T = 714.2678916704698 K, F = -3.8649260458711865e-8, relative_change = 6.51584267005629e-13 Iter 155: T = 714.2678916690484 K, F = -1.6164238281213272e-8, relative_change = 2.725113812596742e-13 Converged in 157 iterations to T = 714.2678916687476 K Iter 1: T = 974.2220787211904 K, F = -5873.523884510302, relative_change = 0.02577792127880959 Iter 2: T = 950.6346469846133 K, F = -4969.472375062551, relative_change = 0.024211555303221204 Iter 3: T = 929.1645540329038 K, F = -4202.765975164034, relative_change = 0.02258500994026673 Iter 5: T = 892.2296206231763 K, F = -3001.904608520338, relative_change = 0.019234549707057423 Iter 10: T = 829.8727638041864 K, F = -1283.9977752494392, relative_change = 0.011350170918766904 Iter 15: T = 798.1275974081799 K, F = -543.7939250249967, relative_change = 0.005746941645206346 Iter 20: T = 783.42087911379 K, F = -228.82818002646437, relative_change = 0.002637784939540023 Iter 25: T = 776.9687450261962 K, F = -95.96515131345816, relative_change = 0.0011502610272400217 Iter 30: T = 774.2128686127473 K, F = -40.18205977283421, relative_change = 0.000489818184875215 Iter 35: T = 773.0498797020653 K, F = -16.81319247127512, relative_change = 0.00020642220108565922 Iter 40: T = 772.5616465764607 K, F = -7.032987399110353, relative_change = 8.660670873260645e-5 Iter 45: T = 772.3571345869153 K, F = -2.9415440542619176, relative_change = 3.626889717444529e-5 Iter 50: T = 772.2715478620831 K, F = -1.2302352073864031, relative_change = 1.517666211418566e-5 Iter 55: T = 772.2357444257799 K, F = -0.5145071670584493, relative_change = 6.348562571311273e-6 Iter 60: T = 772.220769243221 K, F = -0.21517446068420043, relative_change = 2.655307342426965e-6 Iter 65: T = 772.2145061355086 K, F = -0.08998877735664623, relative_change = 1.110527187214441e-6 Iter 70: T = 772.2118867752753 K, F = -0.03763442478471224, relative_change = 4.644437685344587e-7 Iter 75: T = 772.2107913181356 K, F = -0.015739173482348878, relative_change = 1.9423733618911379e-7 Iter 80: T = 772.210333183232 K, F = -0.0065823116422835115, relative_change = 8.12326195079729e-8 Iter 85: T = 772.2101415854562 K, F = -0.002752801569329999, relative_change = 3.397249458577844e-8 Iter 90: T = 772.2100614569279 K, F = -0.001151254531738588, relative_change = 1.4207710466615198e-8 Iter 95: T = 772.2100279462117 K, F = -0.00048146840192331286, relative_change = 5.941835517813942e-9 Iter 100: T = 772.2100139316283 K, F = -0.0002013558362203849, relative_change = 2.48494679604471e-9 Iter 105: T = 772.2100080705619 K, F = -8.420941644204927e-5, relative_change = 1.0392344770053872e-9 Iter 110: T = 772.210005619394 K, F = -3.521738374667738e-5, relative_change = 4.346202773865791e-10 Iter 115: T = 772.2100045942863 K, F = -1.4728330848479132e-5, relative_change = 1.8176339631902115e-10 Iter 120: T = 772.2100041655739 K, F = -6.159563817775826e-6, relative_change = 7.601562280478717e-11 Iter 125: T = 772.2100039862813 K, F = -2.5760042708933284e-6, relative_change = 3.1790655151767613e-11 Iter 130: T = 772.210003911299 K, F = -1.0773163161559296e-6, relative_change = 1.3295238637256825e-11 Iter 135: T = 772.2100038799406 K, F = -4.5054686736989424e-7, relative_change = 5.560231503300108e-12 Iter 140: T = 772.210003866826 K, F = -1.8842385851591814e-7, relative_change = 2.3253524772998846e-12 Iter 145: T = 772.2100038613413 K, F = -7.879909114105743e-8, relative_change = 9.724652877998145e-13 Iter 150: T = 772.2100038590476 K, F = -3.295399930713927e-8, relative_change = 4.0668769089555827e-13 Converged in 154 iterations to T = 772.2100038582198 K Iter 1: T = 970.2980562000615 K, F = -6767.6161486585725, relative_change = 0.029701943799938454 Iter 2: T = 942.7595297211307 K, F = -5732.0855494178395, relative_change = 0.028381512570249703 Iter 3: T = 917.3399382258272 K, F = -4853.257383750118, relative_change = 0.026962964249030354 Iter 5: T = 872.6429689473172 K, F = -3475.0331939994617, relative_change = 0.02387592543988682 Iter 10: T = 793.251269680114 K, F = -1495.8673937607446, relative_change = 0.015570190129870537 Iter 15: T = 749.9499810746993 K, F = -636.8029555138812, relative_change = 0.008536353674756166 Iter 20: T = 728.9148127479524 K, F = -268.8110897845165, relative_change = 0.004110227075419918 Iter 25: T = 719.4429552417471 K, F = -112.91228997992296, relative_change = 0.00183586206037621 Iter 30: T = 715.3467618199402 K, F = -47.31232685230285, relative_change = 0.0007903308131048376 Iter 35: T = 713.6086136036582 K, F = -19.802900978171838, relative_change = 0.00033464227050976185 Iter 40: T = 712.8771983877729 K, F = -8.284694164243612, relative_change = 0.0001406846057248649 Iter 45: T = 712.5705158416843 K, F = -3.465264762485737, relative_change = 5.896521032609592e-5 Iter 50: T = 712.4421176729137 K, F = -1.4493038976706767, relative_change = 2.468263024105841e-5 Iter 55: T = 712.3883955149074 K, F = -0.6061317397404737, relative_change = 1.032654199418285e-5 Iter 60: T = 712.3659239764459 K, F = -0.25349425134713083, relative_change = 4.319378155823387e-6 Iter 65: T = 712.3565253600422 K, F = -0.10601479888420418, relative_change = 1.806537108345338e-6 Iter 70: T = 712.3525946151108 K, F = -0.04433673815883277, relative_change = 7.555366596527191e-7 Iter 75: T = 712.3509507076704 K, F = -0.01854216793604191, relative_change = 3.1597817368485096e-7 Iter 80: T = 712.3502632019296 K, F = -0.007754558614091356, relative_change = 1.3214649636778673e-7 Iter 85: T = 712.3499756781157 K, F = -0.0032430494660083964, relative_change = 5.526535672458197e-8 Iter 90: T = 712.3498554321002 K, F = -0.001356282095434147, relative_change = 2.3112652104062876e-8 Iter 95: T = 712.3498051437589 K, F = -0.0005672133821974512, relative_change = 9.665990594432607e-9 Iter 100: T = 712.3497841125702 K, F = -0.00023721541294996484, relative_change = 4.0424333146953755e-9 Iter 105: T = 712.3497753170753 K, F = -9.920631875670605e-5, relative_change = 1.690593990325599e-9 Iter 110: T = 712.3497716386942 K, F = -4.1489268092220755e-5, relative_change = 7.070266279729011e-10 Iter 115: T = 712.3497701003513 K, F = -1.735130622915193e-5, relative_change = 2.9568696254148714e-10 Iter 120: T = 712.3497694569979 K, F = -7.2565237870803045e-6, relative_change = 1.2365982468992422e-10 Iter 125: T = 712.3497691879398 K, F = -3.03476506680056e-6, relative_change = 5.1716018278432883e-11 Iter 130: T = 712.3497690754165 K, F = -1.2691740709502852e-6, relative_change = 2.162824075549933e-11 Iter 135: T = 712.349769028358 K, F = -5.307839209267584e-7, relative_change = 9.045191433801561e-12 Iter 140: T = 712.3497690086774 K, F = -2.2198022986419375e-7, relative_change = 3.782808021763861e-12 Iter 145: T = 712.3497690004467 K, F = -9.283306456886464e-8, relative_change = 1.5819862046732074e-12 Iter 150: T = 712.3497689970047 K, F = -3.882503274432736e-8, relative_change = 6.616248907021901e-13 Iter 155: T = 712.3497689955652 K, F = -1.6237579503197708e-8, relative_change = 2.7670773222320934e-13 Converged in 157 iterations to T = 712.3497689952605 K Iter 1: T = 969.355444059036 K, F = -6982.391221646864, relative_change = 0.030644555940963977 Iter 2: T = 940.8527012682353 K, F = -5915.513898164921, relative_change = 0.02940380947513915 Iter 3: T = 914.4525207113995 K, F = -5009.95885948371, relative_change = 0.028059844565731972 Iter 5: T = 867.7730645952108 K, F = -3589.4531587771758, relative_change = 0.025094594922969345 Iter 10: T = 783.7130836672965 K, F = -1547.826638066289, relative_change = 0.016823712994197926 Iter 15: T = 736.9272013170768 K, F = -659.9717397804615, relative_change = 0.009453895143394122 Iter 20: T = 713.8471416040492 K, F = -278.8864670242321, relative_change = 0.004626220950555236 Iter 25: T = 703.3603733186966 K, F = -117.21037915204127, relative_change = 0.0020840135750159984 Iter 30: T = 698.8049864528832 K, F = -49.12624564359523, relative_change = 0.0009007247548954471 Iter 35: T = 696.8680866156353 K, F = -20.564509166840008, relative_change = 0.00038204911849698813 Iter 40: T = 696.0523254854343 K, F = -8.603744039645683, relative_change = 0.0001607338133955024 Iter 45: T = 695.7101501380587 K, F = -3.5987898083589673, relative_change = 6.738953333116324e-5 Iter 50: T = 695.5668699728528 K, F = -1.5051622665704238, relative_change = 2.8212728104516522e-5 Iter 55: T = 695.5069172336072 K, F = -0.6294952843617004, relative_change = 1.180408847447374e-5 Iter 60: T = 695.4818388090193 K, F = -0.2632656735919753, relative_change = 4.937518856987493e-6 Iter 65: T = 695.4713497547417 K, F = -0.11010141338691559, relative_change = 2.065088220391414e-6 Iter 70: T = 695.4669629394624 K, F = -0.04604582472083463, relative_change = 8.636723453243909e-7 Iter 75: T = 695.4651282916226 K, F = -0.019256931071522487, relative_change = 3.6120294978496283e-7 Iter 80: T = 695.464361014861 K, F = -0.00805348156822594, relative_change = 1.5106023735397014e-7 Iter 85: T = 695.4640401296599 K, F = -0.003368062697922336, relative_change = 6.317534397143866e-8 Iter 90: T = 695.4639059314799 K, F = -0.0014085641358768664, relative_change = 2.6420709328784102e-8 Iter 95: T = 695.4638498081708 K, F = -0.0005890783589032056, relative_change = 1.104946070678654e-8 Iter 100: T = 695.463826336728 K, F = -0.0002463596066625273, relative_change = 4.621017203942323e-9 Iter 105: T = 695.4638165206894 K, F = -0.00010303052845994642, relative_change = 1.9325646886228247e-9 Iter 110: T = 695.4638124155048 K, F = -4.308859898149997e-5, relative_change = 8.082216839885345e-10 Iter 115: T = 695.4638106986674 K, F = -1.8020165455934212e-5, relative_change = 3.3800794145058614e-10 Iter 120: T = 695.4638099806657 K, F = -7.536248734063555e-6, relative_change = 1.4135896474483299e-10 Iter 125: T = 695.4638096803887 K, F = -3.1517495894251013e-6, relative_change = 5.911801424469677e-11 Iter 130: T = 695.4638095548094 K, F = -1.3181001125017744e-6, relative_change = 2.472387449664792e-11 Iter 135: T = 695.4638095022905 K, F = -5.512444679611761e-7, relative_change = 1.0339805693420256e-11 Iter 140: T = 695.4638094803264 K, F = -2.3053651787563467e-7, relative_change = 4.324220811224674e-12 Iter 145: T = 695.4638094711408 K, F = -9.641313625241565e-8, relative_change = 1.808440997227435e-12 Iter 150: T = 695.4638094672993 K, F = -4.032046652113763e-8, relative_change = 7.562992712442981e-13 Iter 155: T = 695.4638094656927 K, F = -1.686298134462305e-8, relative_change = 3.1630240427399295e-13 Converged in 158 iterations to T = 695.4638094652224 K Iter 1: T = 963.6094802693486 K, F = -8291.61453694977, relative_change = 0.0363905197306514 Iter 2: T = 929.0997523868698 K, F = -7035.62226381986, relative_change = 0.03581298086942096 Iter 3: T = 896.4374712134069 K, F = -5968.955474900028, relative_change = 0.03515476254250756 Iter 5: T = 836.5369213087611 K, F = -4293.863587751264, relative_change = 0.03356721050493666 Iter 10: T = 717.1776921612892 K, F = -1876.1857205876759, relative_change = 0.02780167550856436 Iter 15: T = 637.9056796407218 K, F = -812.290644838877, relative_change = 0.01986443338627297 Iter 20: T = 591.5731125994743 K, F = -347.729914747047, relative_change = 0.011876049957763127 Iter 25: T = 567.7809306502127 K, F = -147.36153050126995, relative_change = 0.006071316579460964 Iter 30: T = 556.6970756338881 K, F = -62.03197226422735, relative_change = 0.0028019349690981544 Iter 35: T = 551.8201500698583 K, F = -26.019314537108094, relative_change = 0.0012250808206317758 Iter 40: T = 549.7342567220436 K, F = -10.895536953065358, relative_change = 0.0005222960838788367 Iter 45: T = 548.853478861249 K, F = -4.559123288797107, relative_change = 0.00022022124538027626 Iter 50: T = 548.4836265410286 K, F = -1.9071164875758446, relative_change = 9.241614812590738e-5 Iter 55: T = 548.328685525503 K, F = -0.7976554879747144, relative_change = 3.870525987938575e-5 Iter 60: T = 548.2638409641995 K, F = -0.33360246420959616, relative_change = 1.6196768587000964e-5 Iter 65: T = 548.2367140722496 K, F = -0.1395188817257924, relative_change = 6.775391767646557e-6 Iter 70: T = 548.2253678607639 K, F = -0.05834887313925069, relative_change = 2.8338488939320836e-6 Iter 75: T = 548.2206224909746 K, F = -0.024402267395785188, relative_change = 1.1852017788858482e-6 Iter 80: T = 548.2186378771652 K, F = -0.010205332209532597, relative_change = 4.956746910186068e-7 Iter 85: T = 548.2178078803619 K, F = -0.004267994003555209, relative_change = 2.0729867623502694e-7 Iter 90: T = 548.2174607644561 K, F = -0.0017849264469881332, relative_change = 8.669506206255947e-8 Iter 95: T = 548.217315596206 K, F = -0.0007464776234539783, relative_change = 3.6256959265094765e-8 Iter 100: T = 548.2172548850696 K, F = -0.0003121858687999135, relative_change = 1.5163101934022537e-8 Iter 105: T = 548.2172294949402 K, F = -0.0001305598608114522, relative_change = 6.341391819230229e-9 Iter 110: T = 548.2172188764836 K, F = -5.4601693490780034e-5, relative_change = 2.6520460591448677e-9 Iter 115: T = 548.2172144357179 K, F = -2.2835079727334673e-5, relative_change = 1.1091173490220103e-9 Iter 120: T = 548.2172125785366 K, F = -9.549902862282522e-6, relative_change = 4.638461193627083e-10 Iter 125: T = 548.2172118018414 K, F = -3.9938832580022066e-6, relative_change = 1.9398597971338026e-10 Iter 130: T = 548.2172114770182 K, F = -1.670290077526726e-6, relative_change = 8.112727315185133e-11 Iter 135: T = 548.2172113411731 K, F = -6.985355184563335e-7, relative_change = 3.392840719190883e-11 Iter 140: T = 548.2172112843612 K, F = -2.921360788554761e-7, relative_change = 1.4189273962260115e-11 Iter 145: T = 548.2172112606017 K, F = -1.2217503378431083e-7, relative_change = 5.934135327835659e-12 Iter 150: T = 548.2172112506652 K, F = -5.1094682013141934e-8, relative_change = 2.481707990849884e-12 Iter 155: T = 548.2172112465096 K, F = -2.1368465857873886e-8, relative_change = 1.037882816453628e-12 Iter 160: T = 548.2172112447718 K, F = -8.936831968897607e-9, relative_change = 4.3406880006663893e-13 Converged in 164 iterations to T = 548.2172112441444 K Iter 1: T = 966.9263197564629 K, F = -7535.869504681884, relative_change = 0.03307368024353705 Iter 2: T = 935.9114070643734 K, F = -6388.631615683935, relative_change = 0.0320757766733469 Iter 3: T = 906.9248061327474 K, F = -5414.581381422223, relative_change = 0.030971522211217364 Iter 5: T = 854.905159452692 K, F = -3885.7561724611023, relative_change = 0.028444513446571767 Iter 10: T = 757.5271825674483 K, F = -1683.982060144913, relative_change = 0.0206443545277221 Iter 15: T = 699.8940231687209 K, F = -721.6463311859055, relative_change = 0.012546803210886885 Iter 20: T = 669.9707676367564 K, F = -306.06748155392836, relative_change = 0.006494299433799596 Iter 25: T = 655.9291898979667 K, F = -128.90029620693775, relative_change = 0.003018724849178474 Iter 30: T = 649.7269963860253 K, F = -54.079825564460066, relative_change = 0.001324509535555645 Iter 35: T = 647.069482232042 K, F = -22.64819446583465, relative_change = 0.0005655766398029492 Iter 40: T = 645.946443238096 K, F = -9.477328530520227, relative_change = 0.00023863215568144548 Iter 45: T = 645.4747015936266 K, F = -3.964515773634826, relative_change = 0.00010017113952157668 Iter 50: T = 645.2770481030951 K, F = -1.6581804504413344, relative_change = 4.1958243636732934e-5 Iter 55: T = 645.194322913997 K, F = -0.6935010960938006, relative_change = 1.7558916837133788e-5 Iter 60: T = 645.1597150184118 K, F = -0.2900357304640969, relative_change = 7.345358208005312e-6 Iter 65: T = 645.1452396172692 K, F = -0.12129733164424333, relative_change = 3.072268127436356e-6 Iter 70: T = 645.1391854877172 K, F = -0.050728154550583715, relative_change = 1.2849207273724972e-6 Iter 75: T = 645.1366535182791 K, F = -0.021215148362786707, relative_change = 5.373799515051576e-7 Iter 80: T = 645.1355946078999 K, F = -0.00887243335649096, relative_change = 2.2474059499684245e-7 Iter 85: T = 645.135151757093 K, F = -0.003710558454528945, relative_change = 9.398952989778108e-8 Iter 90: T = 645.1349665512749 K, F = -0.0015518000087669237, relative_change = 3.930760139159043e-8 Iter 95: T = 645.1348890959338 K, F = -0.0006489813223797269, relative_change = 1.6438918396907115e-8 Iter 100: T = 645.1348567031753 K, F = -0.0002714117442990105, relative_change = 6.874953760961284e-9 Iter 105: T = 645.134843156135 K, F = -0.00011350763272571784, relative_change = 2.875188052521016e-9 Iter 110: T = 645.1348374906008 K, F = -4.747024822271406e-5, relative_change = 1.2024380472859576e-9 Iter 115: T = 645.1348351212066 K, F = -1.9852624625005255e-5, relative_change = 5.028739578737776e-10 Iter 120: T = 645.1348341302977 K, F = -8.302604577847816e-6, relative_change = 2.103078929924752e-10 Iter 125: T = 645.1348337158878 K, F = -3.4722482307736335e-6, relative_change = 8.795326872997231e-11 Iter 130: T = 645.1348335425765 K, F = -1.4521355848895467e-6, relative_change = 3.678310506764814e-11 Iter 135: T = 645.1348334700957 K, F = -6.072997466577412e-7, relative_change = 1.5383116172664898e-11 Iter 140: T = 645.1348334397834 K, F = -2.539798240053237e-7, relative_change = 6.4333982692450705e-12 Iter 145: T = 645.1348334271064 K, F = -1.0621766138863009e-7, relative_change = 2.6905307210169483e-12 Iter 150: T = 645.1348334218048 K, F = -4.442195039588981e-8, relative_change = 1.1252236273119678e-12 Iter 155: T = 645.1348334195876 K, F = -1.857798287430157e-8, relative_change = 4.705868403346264e-13 Converged in 160 iterations to T = 645.1348334186603 K Iter 1: T = 965.2320625721075 K, F = -7921.907615791943, relative_change = 0.034767937427892595 Iter 2: T = 932.441377207636 K, F = -6718.977428714915, relative_change = 0.033971815313606865 Iter 3: T = 901.5985298524494 K, F = -5697.484726453104, relative_change = 0.033077518983071215 Iter 5: T = 845.6431134347599 K, F = -4093.695797109655, relative_change = 0.030976155186378987 Iter 10: T = 737.6701288614868 K, F = -1781.1445056435496, relative_change = 0.023956139386486226 Iter 15: T = 670.2762478017384 K, F = -766.8001793999199, relative_change = 0.015650364129050902 Iter 20: T = 633.4714483773312 K, F = -326.46572386989845, relative_change = 0.008593623201293015 Iter 25: T = 615.5751005304321 K, F = -137.8186645627435, relative_change = 0.00414192920880995 Iter 30: T = 607.5121660730894 K, F = -57.891786900451535, relative_change = 0.0018509823983961684 Iter 35: T = 604.0243308599406 K, F = -24.258110207634832, relative_change = 0.0007970314335937517 Iter 40: T = 602.5441487090268 K, F = -10.153470316154603, relative_change = 0.0003375148808252187 Iter 45: T = 601.9212532581366 K, F = -4.247794135784234, relative_change = 0.0001418986082181616 Iter 50: T = 601.6600672560965 K, F = -1.7767402780940462, relative_change = 5.9475157562581853e-5 Iter 55: T = 601.550716010553 K, F = -0.7430999196814265, relative_change = 2.489628940317023e-5 Iter 60: T = 601.5049629596501 K, F = -0.3107812979848397, relative_change = 1.041596570746885e-5 Iter 65: T = 601.4858248019366 K, F = -0.1299738564630086, relative_change = 4.356788281597679e-6 Iter 70: T = 601.4778203510176 K, F = -0.05435686494742076, relative_change = 1.8221845799526736e-6 Iter 75: T = 601.474472681257 K, F = -0.022732733095947588, relative_change = 7.620809882881584e-7 Iter 80: T = 601.4730726260549 K, F = -0.009507107989487285, relative_change = 3.187151546563321e-7 Iter 85: T = 601.4724871027987 K, F = -0.003975987415447302, relative_change = 1.3329114579924326e-7 Iter 90: T = 601.4722422293768 K, F = -0.001662805649740362, relative_change = 5.574406474028785e-8 Iter 95: T = 601.4721398202819 K, F = -0.0006954052208030803, relative_change = 2.3312853837493548e-8 Iter 100: T = 601.4720969915569 K, F = -0.0002908267760275973, relative_change = 9.74971745570357e-9 Iter 105: T = 601.4720790800693 K, F = -0.0001216272315086031, relative_change = 4.0774488733484705e-9 Iter 110: T = 601.4720715892707 K, F = -5.086596055836612e-5, relative_change = 1.7052379084486716e-9 Iter 115: T = 601.4720684565292 K, F = -2.1272751626111308e-5, relative_change = 7.131508574924969e-10 Iter 120: T = 601.4720671463793 K, F = -8.896518289835953e-6, relative_change = 2.9824819207227736e-10 Iter 125: T = 601.472066598459 K, F = -3.720630646075751e-6, relative_change = 1.2473097140049502e-10 Iter 130: T = 601.4720663693122 K, F = -1.5560121284785566e-6, relative_change = 5.2163980547979427e-11 Iter 135: T = 601.4720662734802 K, F = -6.507428998991927e-7, relative_change = 2.1815601161809626e-11 Iter 140: T = 601.4720662334022 K, F = -2.721482683099019e-7, relative_change = 9.123538775650353e-12 Iter 145: T = 601.472066216641 K, F = -1.1381558873146957e-7, relative_change = 3.815570621306876e-12 Iter 150: T = 601.4720662096313 K, F = -4.75984232028992e-8, relative_change = 1.595696575730798e-12 Iter 155: T = 601.4720662066998 K, F = -1.9906552684023637e-8, relative_change = 6.67350214897529e-13 Iter 160: T = 601.4720662054738 K, F = -8.324019862282483e-9, relative_change = 2.790556723775545e-13 Converged in 162 iterations to T = 601.4720662052143 K Iter 1: T = 980.1656610971521 K, F = -4519.272986341, relative_change = 0.019834338902847904 Iter 2: T = 962.3740010285463 K, F = -3817.4161152645243, relative_change = 0.018151686775774868 Iter 3: T = 946.5039500472259 K, F = -3223.0570879690003, relative_change = 0.016490523397721852 Iter 5: T = 920.0049223421844 K, F = -2294.397350515294, relative_change = 0.013321309737637661 Iter 10: T = 877.9409422559963 K, F = -974.0256371785651, relative_change = 0.006995821909120633 Iter 15: T = 858.0324488351778 K, F = -410.4421366252854, relative_change = 0.0032798181947645546 Iter 20: T = 849.198010474525 K, F = -172.2485026782656, relative_change = 0.0014451877413493518 Iter 25: T = 845.4043360789542 K, F = -72.14547417988518, relative_change = 0.0006182906658237708 Iter 30: T = 843.7996158949687 K, F = -30.191549267951164, relative_change = 0.00026108978957479963 Iter 35: T = 843.125260966869 K, F = -12.629896199095374, relative_change = 0.00010963673633004814 Iter 40: T = 842.8426657724959 K, F = -5.282575348181611, relative_change = 4.592984363784789e-5 Iter 45: T = 842.7243806959056 K, F = -2.2093415264756837, relative_change = 1.9222164817853813e-5 Iter 50: T = 842.6748948789591 K, F = -0.9239914620262111, relative_change = 8.041347303703498e-6 Iter 55: T = 842.6541962416821 K, F = -0.38642749197712567, relative_change = 3.363408895948474e-6 Iter 60: T = 842.6455392859533 K, F = -0.1616091566375728, relative_change = 1.4066914880006512e-6 Iter 65: T = 842.6419187495003 K, F = -0.06758697806182057, relative_change = 5.883080743379028e-7 Iter 70: T = 842.6404045814445 K, F = -0.02826569864873263, relative_change = 2.4603971788364285e-7 Iter 75: T = 842.6397713353996 K, F = -0.011821055755999677, relative_change = 1.0289714279692778e-7 Iter 80: T = 842.6395065038371 K, F = -0.004943707217355042, relative_change = 4.3032882951393965e-8 Iter 85: T = 842.6393957480268 K, F = -0.0020675174897095694, relative_change = 1.7996877627061478e-8 Iter 90: T = 842.6393494286089 K, F = -0.0008646605213729064, relative_change = 7.526511259189369e-9 Iter 95: T = 842.6393300572723 K, F = -0.00036161135648127285, relative_change = 3.147677240533308e-9 Iter 100: T = 842.6393219559478 K, F = -0.00015123019048712827, relative_change = 1.3163962965667606e-9 Iter 105: T = 842.6393185678769 K, F = -6.324627249099102e-5, relative_change = 5.505326694656798e-10 Iter 110: T = 842.6393171509451 K, F = -2.6450343823203326e-5, relative_change = 2.302393158732585e-10 Iter 115: T = 842.6393165583675 K, F = -1.1061849450433314e-5, relative_change = 9.628882994157216e-11 Iter 120: T = 842.6393163105444 K, F = -4.626197779744601e-6, relative_change = 4.026914069927334e-11 Iter 125: T = 842.6393162069016 K, F = -1.9347298221283893e-6, relative_change = 1.6841023920143696e-11 Iter 130: T = 842.6393161635572 K, F = -8.091273429045032e-7, relative_change = 7.0431192943746096e-12 Iter 135: T = 842.63931614543 K, F = -3.383877933416102e-7, relative_change = 2.9455259637549355e-12 Iter 140: T = 842.639316137849 K, F = -1.4151803551243347e-7, relative_change = 1.2318560425686145e-12 Iter 145: T = 842.6393161346786 K, F = -5.918415890704409e-8, relative_change = 5.151736562148931e-13 Converged in 150 iterations to T = 842.6393161333526 K Iter 1: T = 976.3549083971517 K, F = -5387.55661399773, relative_change = 0.02364509160284829 Iter 2: T = 954.8731056177177 K, F = -4555.63768911209, relative_change = 0.022002043104079775 Iter 3: T = 935.4636406531948 K, F = -3850.4373898766767, relative_change = 0.02032674797345627 Iter 5: T = 902.4433791937827 K, F = -2746.8040326658074, relative_change = 0.0169724096438557 Iter 10: T = 848.0146903527411 K, F = -1171.4231394542844, relative_change = 0.009565800508202273 Iter 15: T = 821.1139679581014 K, F = -495.07677477908067, relative_change = 0.004690315231899944 Iter 20: T = 808.8775305682739 K, F = -208.08547274022752, relative_change = 0.002115137943290377 Iter 25: T = 803.5591189446657 K, F = -87.21750931967765, relative_change = 0.0009146336948976173 Iter 30: T = 801.2972139040648 K, F = -36.510250123674744, relative_change = 0.0003880339589386244 Iter 35: T = 800.3444657169251 K, F = -15.275191384544915, relative_change = 0.0001632670576492185 Iter 40: T = 799.9448116935085 K, F = -6.389351905071516, relative_change = 6.845433878911293e-5 Iter 45: T = 799.7774599998492 K, F = -2.6722933487329525, relative_change = 2.8658987359529368e-5 Iter 50: T = 799.707434428467 K, F = -1.117618266746259, relative_change = 1.199088507378532e-5 Iter 55: T = 799.678142404206 K, F = -0.4674071281752691, relative_change = 5.015668426235169e-6 Iter 60: T = 799.665890993577 K, F = -0.1954762613958927, relative_change = 2.0977763778406017e-6 Iter 65: T = 799.6607671085734 K, F = -0.08175068510824113, relative_change = 8.773438108010691e-7 Iter 70: T = 799.6586242039064 K, F = -0.03418914396863104, relative_change = 3.6692067516674364e-7 Iter 75: T = 799.6577280095022 K, F = -0.014298313757247327, relative_change = 1.5345148556922793e-7 Iter 80: T = 799.657353209236 K, F = -0.005979726521962658, relative_change = 6.417539728032354e-8 Iter 85: T = 799.6571964631028 K, F = -0.0025007932115802545, relative_change = 2.6838944400226666e-8 Iter 90: T = 799.6571309099653 K, F = -0.0010458616143139698, relative_change = 1.1224371748488268e-8 Iter 95: T = 799.6571034948547 K, F = -0.0004373918211264538, relative_change = 4.694167119495396e-9 Iter 100: T = 799.6570920295271 K, F = -0.00018292248498674724, relative_change = 1.96315690322605e-9 Iter 105: T = 799.65708723459 K, F = -7.650036950357375e-5, relative_change = 8.21015703940458e-10 Iter 110: T = 799.6570852292899 K, F = -3.199336828751953e-5, relative_change = 3.433585781360242e-10 Iter 115: T = 799.6570843906495 K, F = -1.3380007139240924e-5, relative_change = 1.4359664191756883e-10 Iter 120: T = 799.6570840399202 K, F = -5.5956806910284485e-6, relative_change = 6.005385122673651e-11 Iter 125: T = 799.6570838932408 K, F = -2.34017925571095e-6, relative_change = 2.511522453638575e-11 Iter 130: T = 799.6570838318979 K, F = -9.786927753774322e-7, relative_change = 1.0503506838091763e-11 Iter 135: T = 799.6570838062435 K, F = -4.0930139177941527e-7, relative_change = 4.392696131218813e-12 Iter 140: T = 799.6570837955145 K, F = -1.7117573258840224e-7, relative_change = 1.8370887405945795e-12 Iter 145: T = 799.6570837910275 K, F = -7.1587162975284e-8, relative_change = 7.682863048861129e-13 Iter 150: T = 799.657083789151 K, F = -2.993826286878942e-8, relative_change = 3.2130282020492483e-13 Converged in 153 iterations to T = 799.6570837886015 K Iter 1: T = 980.7313004367245 K, F = -4390.391524757516, relative_change = 0.01926869956327553 Iter 2: T = 963.4796117959129 K, F = -3707.9698299957818, relative_change = 0.01759063734697705 Iter 3: T = 948.1199494595659 K, F = -3130.1638274343477, relative_change = 0.01594186545132679 Iter 5: T = 922.5409984096846 K, F = -2227.6004390768926, relative_change = 0.012817988098986724 Iter 10: T = 882.1444655885456 K, F = -945.0898589941992, relative_change = 0.006668337043698616 Iter 15: T = 863.1316376760128 K, F = -398.1023848312656, relative_change = 0.0031088409830113024 Iter 20: T = 854.7201620010133 K, F = -167.0391755705625, relative_change = 0.0013660490170701901 Iter 25: T = 851.1132919827847 K, F = -69.95773042075184, relative_change = 0.00058369945098919 Iter 30: T = 849.5885568187491 K, F = -29.274959990649002, relative_change = 0.00024634887199235015 Iter 35: T = 848.9479881378251 K, F = -12.246275456999156, relative_change = 0.00010342289994327826 Iter 40: T = 848.6795822035377 K, F = -5.122089190847793, relative_change = 4.3322496262687685e-5 Iter 45: T = 848.5672416987965 K, F = -2.142215291371094, relative_change = 1.8130223129148554e-5 Iter 50: T = 848.5202438053193 K, F = -0.8959168919043563, relative_change = 7.584418363220133e-6 Iter 55: T = 848.5005859681644 K, F = -0.37468609555132226, relative_change = 3.1722692226224545e-6 Iter 60: T = 848.4923643436096 K, F = -0.15669871616336506, relative_change = 1.3267464529760654e-6 Iter 65: T = 848.4889258776718 K, F = -0.06553336477092597, relative_change = 5.548726819354538e-7 Iter 70: T = 848.4874878553975 K, F = -0.027406851570177082, relative_change = 2.32056388419121e-7 Iter 75: T = 848.4868864547279 K, F = -0.011461875391330922, relative_change = 9.704910384373964e-8 Iter 80: T = 848.4866349413344 K, F = -0.004793493652084813, relative_change = 4.058715558408206e-8 Iter 85: T = 848.4865297553506 K, F = -0.0020046963749342783, relative_change = 1.697404390197194e-8 Iter 90: T = 848.4864857653023 K, F = -0.0008383879794751081, relative_change = 7.098749746512568e-9 Iter 95: T = 848.4864673681362 K, F = -0.00035062386718998084, relative_change = 2.9687822419025975e-9 Iter 100: T = 848.4864596742212 K, F = -0.00014663508852175156, relative_change = 1.2415802413200564e-9 Iter 105: T = 848.486456456534 K, F = -6.132454434548684e-5, relative_change = 5.192436865532446e-10 Iter 110: T = 848.4864551108587 K, F = -2.56466536998623e-5, relative_change = 2.171538860591727e-10 Iter 115: T = 848.4864545480814 K, F = -1.0725734659100539e-5, relative_change = 9.081633014100597e-11 Iter 120: T = 848.4864543127212 K, F = -4.4856316834263055e-6, relative_change = 3.798048537825621e-11 Iter 125: T = 848.4864542142908 K, F = -1.8759460005401962e-6, relative_change = 1.58839032519153e-11 Iter 130: T = 848.4864541731259 K, F = -7.845433405151425e-7, relative_change = 6.642840741133874e-12 Iter 135: T = 848.4864541559103 K, F = -3.28105955293978e-7, relative_change = 2.778120079401754e-12 Iter 140: T = 848.4864541487105 K, F = -1.372175135738729e-7, relative_change = 1.1618403249615054e-12 Iter 145: T = 848.4864541456996 K, F = -5.7385165064260946e-8, relative_change = 4.858884051376074e-13 Converged in 150 iterations to T = 848.4864541444402 K Iter 1: T = 967.3076982670316 K, F = -7448.972048264192, relative_change = 0.03269230173296839 Iter 2: T = 936.6898285595745 K, F = -6314.310965867595, relative_change = 0.03165266828984222 Iter 3: T = 908.1150722512973 K, F = -5350.977926514369, relative_change = 0.030506102913724385 Iter 5: T = 856.9567898356748 K, F = -3839.0954706526054, relative_change = 0.02789754789461026 Iter 10: T = 761.8052173888094 K, F = -1662.3733931375868, relative_change = 0.019979715794988768 Iter 15: T = 706.0874181818394 K, F = -711.7489445461248, relative_change = 0.011974032607912403 Iter 20: T = 677.4293824146685 K, F = -301.6617327569447, relative_change = 0.0061325113160791405 Iter 25: T = 664.06460838236 K, F = -126.99348703482683, relative_change = 0.0028331183956631077 Iter 30: T = 658.1807942048157 K, F = -53.26921468468265, relative_change = 0.0012393419127788813 Iter 35: T = 655.6635931894443 K, F = -22.30671561257067, relative_change = 0.000528495805501595 Iter 40: T = 654.6005723105718 K, F = -9.334072153856809, relative_change = 0.0002228570418253856 Iter 45: T = 654.1541715394851 K, F = -3.90452524025656, relative_change = 9.352612766471555e-5 Iter 50: T = 653.9671584845983 K, F = -1.6330777983941043, relative_change = 3.91708162108722e-5 Iter 55: T = 653.8888907372029 K, F = -0.6830004314259769, relative_change = 1.6391706612015227e-5 Iter 60: T = 653.856148308744 K, F = -0.2856438006600712, relative_change = 6.8569586510002115e-6 Iter 65: T = 653.8424532978632 K, F = -0.11946049953621546, relative_change = 2.8679683964582584e-6 Iter 70: T = 653.8367255770158 K, F = -0.04995995637548939, relative_change = 1.1994722319832802e-6 Iter 75: T = 653.8343301226242 K, F = -0.020893876429026847, relative_change = 5.016429870026301e-7 Iter 80: T = 653.8333283056971 K, F = -0.008738073198550578, relative_change = 2.0979472773083776e-7 Iter 85: T = 653.8329093322689 K, F = -0.0036543673618575356, relative_change = 8.773894739460418e-8 Iter 90: T = 653.8327341122932 K, F = -0.0015283002121928568, relative_change = 3.669352578186886e-8 Iter 95: T = 653.8326608331572 K, F = -0.0006391534241912411, relative_change = 1.5345679452514667e-8 Iter 100: T = 653.8326301869386 K, F = -0.0002673015986848215, relative_change = 6.417747931379835e-9 Iter 105: T = 653.8326173703225 K, F = -0.0001117887213698543, relative_change = 2.683979092563552e-9 Iter 110: T = 653.8326120102603 K, F = -4.67513774504158e-5, relative_change = 1.1224721330146894e-9 Iter 115: T = 653.8326097686182 K, F = -1.9551983787002847e-5, relative_change = 4.694312446211158e-10 Iter 120: T = 653.8326088311369 K, F = -8.176873784682126e-6, relative_change = 1.9632176999901527e-10 Iter 125: T = 653.8326084390709 K, F = -3.419666563253543e-6, relative_change = 8.210411608391343e-11 Iter 130: T = 653.8326082751041 K, F = -1.4301451120579678e-6, relative_change = 3.433691509552562e-11 Iter 135: T = 653.8326082065314 K, F = -5.981034769120264e-7, relative_change = 1.4360101043011651e-11 Iter 140: T = 653.8326081778534 K, F = -2.5013396193207527e-7, relative_change = 6.005564433312684e-12 Iter 145: T = 653.8326081658599 K, F = -1.0460936511469399e-7, relative_change = 2.5116072912549687e-12 Iter 150: T = 653.8326081608442 K, F = -4.374903544990261e-8, relative_change = 1.0503877573952157e-12 Iter 155: T = 653.8326081587464 K, F = -1.829548090803712e-8, relative_change = 4.392633795037515e-13 Converged in 159 iterations to T = 653.8326081579893 K Iter 1: T = 973.41465735061 K, F = -6057.495611853047, relative_change = 0.026585342649389967 Iter 2: T = 949.022448230086 K, F = -5126.260313933178, relative_change = 0.02505839514160746 Iter 3: T = 926.756746783959 K, F = -4336.371980819323, relative_change = 0.0234617226259002 Iter 5: T = 888.2860952526654 K, F = -3098.848150198349, relative_change = 0.02013639393163255 Iter 10: T = 822.7043837801962 K, F = -1327.0591785691495, relative_change = 0.012107812442600277 Iter 15: T = 788.8983675875531 K, F = -562.5403645415414, relative_change = 0.006216388323209022 Iter 20: T = 773.1100347404589 K, F = -236.84034163724328, relative_change = 0.0028759596430801 Iter 25: T = 766.1539397104219 K, F = -99.3506112011065, relative_change = 0.00125895703576595 Iter 30: T = 763.17693432473 K, F = -41.604363147919535, relative_change = 0.0005370275115282777 Iter 35: T = 761.9195394258813 K, F = -17.409178753001214, relative_change = 0.00022648508918439464 Iter 40: T = 761.3914785895024 K, F = -7.282441605103542, relative_change = 9.505410651541818e-5 Iter 45: T = 761.1702489879016 K, F = -3.045904923488573, relative_change = 3.9811718724843545e-5 Iter 50: T = 761.0776600064792 K, F = -1.2738865033860105, relative_change = 1.6660070194341018e-5 Iter 55: T = 761.0389262587229 K, F = -0.5327637691559378, relative_change = 6.969249388835761e-6 Iter 60: T = 761.0227252551158 K, F = -0.2228097837143047, relative_change = 2.914939853596692e-6 Iter 65: T = 761.0159494366991 K, F = -0.09318199456992382, relative_change = 1.2191180283966415e-6 Iter 70: T = 761.0131156446324 K, F = -0.03896987229281246, relative_change = 5.098594036273346e-7 Iter 75: T = 761.0119305077739 K, F = -0.016297674617224756, relative_change = 2.1323098549440629e-7 Iter 80: T = 761.0114348674318 K, F = -0.006815883668605971, relative_change = 8.917604091212321e-8 Iter 85: T = 761.0112275843799 K, F = -0.002850484212783, relative_change = 3.729453711217354e-8 Iter 90: T = 761.0111408960722 K, F = -0.001192106584821273, relative_change = 1.559702985992822e-8 Iter 95: T = 761.0111046419763 K, F = -0.0004985532203356513, relative_change = 6.522865763090838e-9 Iter 100: T = 761.0110894800786 K, F = -0.00020850091139412719, relative_change = 2.72794062908886e-9 Iter 105: T = 761.0110831391916 K, F = -8.71975718703677e-5, relative_change = 1.1408574039756632e-9 Iter 110: T = 761.0110804873568 K, F = -3.646706521942544e-5, relative_change = 4.771201898711359e-10 Iter 115: T = 761.0110793783278 K, F = -1.5250962774326915e-5, relative_change = 1.995373705372111e-10 Iter 120: T = 761.0110789145185 K, F = -6.378133263318375e-6, relative_change = 8.344889190431263e-11 Iter 125: T = 761.0110787205481 K, F = -2.6674102648893694e-6, relative_change = 3.4899307044821354e-11 Iter 130: T = 761.0110786394273 K, F = -1.115543017626841e-6, relative_change = 1.4595309475289575e-11 Iter 135: T = 761.0110786055017 K, F = -4.665332666853317e-7, relative_change = 6.1039308226061e-12 Iter 140: T = 761.0110785913135 K, F = -1.9511055415755152e-7, relative_change = 2.5527468467688494e-12 Iter 145: T = 761.0110785853799 K, F = -8.15967711176313e-8, relative_change = 1.0675788456660673e-12 Iter 150: T = 761.0110785828983 K, F = -3.4124774006549785e-8, relative_change = 4.4647461344486346e-13 Converged in 155 iterations to T = 761.0110785818606 K Iter 1: T = 969.9277315054632 K, F = -6851.99498259255, relative_change = 0.03007226849453688 Iter 2: T = 942.0110965483625 K, F = -5804.13827391382, relative_change = 0.0287821804143801 Iter 3: T = 916.2077703118038 K, F = -4914.800185462495, relative_change = 0.027391743399950538 Iter 5: T = 870.7376916993725 K, F = -3519.948945792053, relative_change = 0.024349561940459175 Iter 10: T = 789.5421368643879 K, F = -1516.2265280926642, relative_change = 0.01604943918965955 Iter 15: T = 744.9122230792527 K, F = -645.8606840763008, relative_change = 0.00888193722731128 Iter 20: T = 723.1054540524649 K, F = -272.74298688027045, relative_change = 0.0043026397637149555 Iter 25: T = 713.2530279665401 K, F = -114.5878743112608, relative_change = 0.001927906082048049 Iter 30: T = 708.9851875218599 K, F = -48.019115417399476, relative_change = 0.0008311761241890842 Iter 35: T = 707.1728518591852 K, F = -20.09959257786013, relative_change = 0.0003521634219884284 Iter 40: T = 706.4099726106099 K, F = -8.408970956504959, relative_change = 0.00014809115115805237 Iter 45: T = 706.0900534733843 K, F = -3.5172735024929582, relative_change = 6.20766958790132e-5 Iter 50: T = 705.9561058681128 K, F = -1.4710606636066639, relative_change = 2.5986347901809e-5 Iter 55: T = 705.9000604595764 K, F = -0.6152317456914022, relative_change = 1.0872202958360864e-5 Iter 60: T = 705.8766168879533 K, F = -0.2573001691717672, relative_change = 4.547655477577376e-6 Iter 65: T = 705.8668116818168 K, F = -0.10760651182593695, relative_change = 1.9020186010979375e-6 Iter 70: T = 705.8627108832832 K, F = -0.04500241723271936, relative_change = 7.954704676175462e-7 Iter 75: T = 705.8609958551355 K, F = -0.0188205638754948, relative_change = 3.3267937270759336e-7 Iter 80: T = 705.8602786054701 K, F = -0.007870987295233167, relative_change = 1.3913120783902763e-7 Iter 85: T = 705.8599786423225 K, F = -0.003291741360369582, relative_change = 5.818645880358332e-8 Iter 90: T = 705.859853194017 K, F = -0.0013766456323046627, relative_change = 2.433429403516411e-8 Iter 95: T = 705.8598007300138 K, F = -0.0005757296581208049, relative_change = 1.0176896228428127e-8 Iter 100: T = 705.8597787889371 K, F = -0.00024077702176072968, relative_change = 4.256100224695503e-9 Iter 105: T = 705.8597696129159 K, F = -0.00010069582527738596, relative_change = 1.7799520401937526e-9 Iter 110: T = 705.8597657753942 K, F = -4.211219686101053e-5, relative_change = 7.443972225617317e-10 Iter 115: T = 705.8597641704968 K, F = -1.761182274273576e-5, relative_change = 3.1131579573330807e-10 Iter 120: T = 705.8597634993095 K, F = -7.365474105847092e-6, relative_change = 1.3019597551545717e-10 Iter 125: T = 705.859763218611 K, F = -3.0803292427883378e-6, relative_change = 5.444951209787941e-11 Iter 130: T = 705.8597631012195 K, F = -1.288230062845841e-6, relative_change = 2.277142893459768e-11 Iter 135: T = 705.859763052125 K, F = -5.387530084277614e-7, relative_change = 9.523280198627197e-12 Iter 140: T = 705.8597630315932 K, F = -2.253141619945609e-7, relative_change = 3.982771073431426e-12 Iter 145: T = 705.8597630230064 K, F = -9.422880931087008e-8, relative_change = 1.6656377597694686e-12 Iter 150: T = 705.8597630194153 K, F = -3.940647175237899e-8, relative_change = 6.965694229999095e-13 Iter 155: T = 705.8597630179135 K, F = -1.648032310619385e-8, relative_change = 2.913148182660322e-13 Converged in 157 iterations to T = 705.8597630175957 K Iter 1: T = 973.5275909537851 K, F = -6031.763582942033, relative_change = 0.026472409046214968 Iter 2: T = 949.2481999454219 K, F = -5104.32640129689, relative_change = 0.024939602363581878 Iter 3: T = 927.0943012181268 K, F = -4317.677090878613, relative_change = 0.023338362641687226 Iter 5: T = 888.8402876737404 K, F = -3085.2762335225884, relative_change = 0.02000868231630798 Iter 10: T = 823.7175912062771 K, F = -1321.0206871003222, relative_change = 0.011998826770890257 Iter 15: T = 790.2082685060068 K, F = -559.9073920219492, relative_change = 0.00614806439421371 Iter 20: T = 774.5768312777428 K, F = -235.7138474704443, relative_change = 0.002841061897163614 Iter 25: T = 767.694134361892 K, F = -98.87436445060992, relative_change = 0.0012429785454351407 Iter 30: T = 764.7493957644986 K, F = -41.40423182744758, relative_change = 0.000530077490841708 Iter 35: T = 763.5057879270836 K, F = -17.325308798049562, relative_change = 0.00022352962457087197 Iter 40: T = 762.9835456082442 K, F = -7.247335622888381, relative_change = 9.380938756412913e-5 Iter 45: T = 762.764758686849 K, F = -3.031217809122022, relative_change = 3.9289627466704845e-5 Iter 50: T = 762.6731928990782 K, F = -1.2677432349329485, relative_change = 1.6441456062521167e-5 Iter 55: T = 762.6348873497767 K, F = -0.5301944160497718, relative_change = 6.87777517754482e-6 Iter 60: T = 762.618865474055 K, F = -0.22173522071029228, relative_change = 2.876675991089596e-6 Iter 65: T = 762.6121645778386 K, F = -0.09273259444328708, relative_change = 1.2031141800117983e-6 Iter 70: T = 762.6093621206666 K, F = -0.038781926911154896, relative_change = 5.031661505143263e-7 Iter 75: T = 762.6081900887037 K, F = -0.016219073461690603, relative_change = 2.104317429518826e-7 Iter 80: T = 762.6076999290325 K, F = -0.006783011697996555, relative_change = 8.800535650156233e-8 Iter 85: T = 762.6074949380707 K, F = -0.002836736755129521, relative_change = 3.680494153001673e-8 Iter 90: T = 762.607409208344 K, F = -0.001186357232673907, relative_change = 1.5392274899628913e-8 Iter 95: T = 762.6073733551384 K, F = -0.0004961487710494206, relative_change = 6.4372347335485915e-9 Iter 100: T = 762.6073583608978 K, F = -0.000207495342391395, relative_change = 2.692128708302665e-9 Iter 105: T = 762.6073520901269 K, F = -8.677702932868847e-5, relative_change = 1.1258804093175983e-9 Iter 110: T = 762.6073494676157 K, F = -3.629118879333593e-5, relative_change = 4.708566250579896e-10 Iter 115: T = 762.6073483708501 K, F = -1.5177407470035043e-5, relative_change = 1.9691785099962072e-10 Iter 120: T = 762.6073479121698 K, F = -6.3473741469533e-6, relative_change = 8.235341131584372e-11 Iter 125: T = 762.6073477203441 K, F = -2.6545468371219627e-6, relative_change = 3.444116933006447e-11 Iter 130: T = 762.6073476401203 K, F = -1.1101638637267541e-6, relative_change = 1.4403717086166338e-11 Iter 135: T = 762.6073476065699 K, F = -4.642831019641136e-7, relative_change = 6.0237976288747035e-12 Iter 140: T = 762.6073475925385 K, F = -1.9416806296135292e-7, relative_change = 2.5192153503416955e-12 Iter 145: T = 762.6073475866706 K, F = -8.120374139775066e-8, relative_change = 1.0535703386122919e-12 Iter 150: T = 762.6073475842164 K, F = -3.3958687528645726e-8, relative_change = 4.405938113576074e-13 Converged in 154 iterations to T = 762.6073475833307 K Iter 1: T = 964.4186607215044 K, F = -8107.242001196763, relative_change = 0.03558133927849567 Iter 2: T = 930.7684790978248 K, F = -6877.678273933114, relative_change = 0.03489167411848405 Iter 3: T = 899.0187288350514 K, F = -5833.507474497924, relative_change = 0.0341113294828675 Iter 5: T = 841.107876903841 K, F = -4193.91235074502, relative_change = 0.03225375160689519 Iter 10: T = 727.5935658701266 K, F = -1828.526863427831, relative_change = 0.025789515254855785 Iter 15: T = 654.6179675774097 K, F = -789.2863454086202, relative_change = 0.01756890551797606 Iter 20: T = 613.5110734813469 K, F = -336.8632982129485, relative_change = 0.010020707998228741 Iter 25: T = 593.0402253616629 K, F = -142.44340517663062, relative_change = 0.004953314967887461 Iter 30: T = 583.6859647881198 K, F = -59.88756750811397, relative_change = 0.0022435081589347447 Iter 35: T = 579.6108990492813 K, F = -25.104861522565177, relative_change = 0.0009721399575238605 Iter 40: T = 577.8759697569743 K, F = -10.509816402299695, relative_change = 0.00041280482999612604 Iter 45: T = 577.1448593415707 K, F = -4.397219922827171, relative_change = 0.00017375682966584875 Iter 50: T = 576.8381175676859 K, F = -1.8393021063514337, relative_change = 7.286439232106013e-5 Iter 55: T = 576.7096616339612 K, F = -0.7692763451615736, relative_change = 3.0507389078470974e-5 Iter 60: T = 576.655909521852 K, F = -0.3217307502948546, relative_change = 1.2764621388657399e-5 Iter 65: T = 576.6334244406283 K, F = -0.134553425972199, relative_change = 5.3393789618838606e-6 Iter 70: T = 576.6240199827148 K, F = -0.056272161700886364, relative_change = 2.2331778211434535e-6 Iter 75: T = 576.620086763693 K, F = -0.02353374463376373, relative_change = 9.339741304560147e-7 Iter 80: T = 576.6184418161182 K, F = -0.009842102602660885, relative_change = 3.906048191575182e-7 Iter 85: T = 576.617753874429 K, F = -0.004116086516535555, relative_change = 1.633565942704209e-7 Iter 90: T = 576.6174661681298 K, F = -0.0017213968291761028, relative_change = 6.831785246998472e-8 Iter 95: T = 576.6173458457678 K, F = -0.0007199087633015244, relative_change = 2.857137221946361e-8 Iter 100: T = 576.6172955254923 K, F = -0.0003010744514994057, relative_change = 1.1948894404440356e-8 Iter 105: T = 576.6172744809475 K, F = -0.00012591293221997368, relative_change = 4.997171248431974e-9 Iter 110: T = 576.6172656798667 K, F = -5.265829217698803e-5, relative_change = 2.0898768549084158e-9 Iter 115: T = 576.6172619991495 K, F = -2.202232648457203e-5, relative_change = 8.740114786733558e-10 Iter 120: T = 576.6172604598296 K, F = -9.209999798698298e-6, relative_change = 3.6552203740092385e-10 Iter 125: T = 576.6172598160676 K, F = -3.851731681603354e-6, relative_change = 1.5286567318532308e-10 Iter 130: T = 576.6172595468387 K, F = -1.6108403230186141e-6, relative_change = 6.393025560315693e-11 Iter 135: T = 576.6172594342439 K, F = -6.736729996070778e-7, relative_change = 2.6736409861628805e-11 Iter 140: T = 576.6172593871555 K, F = -2.817380508890466e-7, relative_change = 1.1181484205999157e-11 Iter 145: T = 576.6172593674626 K, F = -1.1782698083884213e-7, relative_change = 4.676260524082151e-12 Iter 150: T = 576.6172593592268 K, F = -4.9276887847948814e-8, relative_change = 1.955677415886847e-12 Iter 155: T = 576.6172593557824 K, F = -2.0608045436798506e-8, relative_change = 8.178821919887265e-13 Iter 160: T = 576.6172593543419 K, F = -8.618550761951838e-9, relative_change = 3.420488959349936e-13 Converged in 163 iterations to T = 576.6172593539202 K Iter 1: T = 963.6096054068482 K, F = -8291.58602425143, relative_change = 0.036390394593151715 Iter 2: T = 929.1000107997903 K, F = -7035.59783307941, relative_change = 0.035812837910107365 Iter 3: T = 896.4378715516183 K, F = -5968.934518101913, relative_change = 0.03515460000915912 Iter 5: T = 836.5376328514657 K, F = -4293.848110681096, relative_change = 0.033567004006788276 Iter 10: T = 717.1793349440945 K, F = -1876.1783079156617, relative_change = 0.02780134838752808 Iter 15: T = 637.9083616966606 K, F = -812.2870328831252, relative_change = 0.019864042710038977 Iter 20: T = 591.5766927209359 K, F = -347.7281868081763, relative_change = 0.011875719405900629 Iter 25: T = 567.7851013069101 K, F = -147.36073990318832, relative_change = 0.006071110689785223 Iter 30: T = 556.7015605811282 K, F = -62.0316252379866, relative_change = 0.0028018301997846102 Iter 35: T = 551.8247823965263 K, F = -26.01916605522653, relative_change = 0.001225032938111232 Iter 40: T = 549.7389538979455 K, F = -10.89547422731876, relative_change = 0.0005222752739636529 Iter 45: T = 548.8582037562907 K, F = -4.559096942762121, relative_change = 0.0002202123991951176 Iter 50: T = 548.4883631360603 K, F = -1.9071054492618802, relative_change = 9.241242303958007e-5 Iter 55: T = 548.3334270326296 K, F = -0.7976508680877384, relative_change = 3.8703697508873236e-5 Iter 60: T = 548.2685845289653 K, F = -0.3336005314986124, relative_change = 1.6196114396334035e-5 Iter 65: T = 548.2414584981303 K, F = -0.139518073334541, relative_change = 6.775118039173351e-6 Iter 70: T = 548.2301126468758 K, F = -0.05834853504170556, relative_change = 2.8337343932589255e-6 Iter 75: T = 548.2253674277573 K, F = -0.02440212599600286, relative_change = 1.1851538891067584e-6 Iter 80: T = 548.2233828769633 K, F = -0.010205273072593807, relative_change = 4.956546621392152e-7 Iter 85: T = 548.2225529065145 K, F = -0.004267969271556454, relative_change = 2.0729029978311692e-7 Iter 90: T = 548.2222058016305 K, F = -0.0017849161031329441, relative_change = 8.66915588775854e-8 Iter 95: T = 548.22206063799 K, F = -0.0007464732976243671, relative_change = 3.62554941920689e-8 Iter 100: T = 548.2219999287812 K, F = -0.00031218405913033265, relative_change = 1.5162489195317242e-8 Iter 105: T = 548.221974539458 K, F = -0.0001305591036036835, relative_change = 6.34113554589954e-9 Iter 110: T = 548.2219639213386 K, F = -5.460137655513564e-5, relative_change = 2.651938869816564e-9 Iter 115: T = 548.2219594807141 K, F = -2.283494802171604e-5, relative_change = 1.109072561992048e-9 Iter 120: T = 548.2219576235917 K, F = -9.549847782841514e-6, relative_change = 4.63827388960666e-10 Iter 125: T = 548.221956846921 K, F = -3.993860216933154e-6, relative_change = 1.9397814613514041e-10 Iter 130: T = 548.221956522108 K, F = -1.6702797500378619e-6, relative_change = 8.112396347264174e-11 Iter 135: T = 548.2219563862674 K, F = -6.985305418538701e-7, relative_change = 3.392699110879014e-11 Iter 140: T = 548.2219563294573 K, F = -2.9213425123408854e-7, relative_change = 1.4188694058784738e-11 Iter 145: T = 548.2219563056985 K, F = -1.2217347017395852e-7, relative_change = 5.933853984711206e-12 Iter 150: T = 548.2219562957624 K, F = -5.109494546906568e-8, relative_change = 2.4816348865647913e-12 Iter 155: T = 548.221956291607 K, F = -2.136832946697531e-8, relative_change = 1.0378402675246e-12 Iter 160: T = 548.2219562898691 K, F = -8.936533568704164e-9, relative_change = 4.340392824886233e-13 Converged in 164 iterations to T = 548.2219562892418 K Iter 1: T = 969.2782824570294 K, F = -6999.972566063702, relative_change = 0.03072171754297058 Iter 2: T = 940.6963478757322 K, F = -5930.533265765031, relative_change = 0.02948785204270207 Iter 3: T = 914.2153341161659 K, F = -5022.7940008931155, relative_change = 0.02815043751298206 Iter 5: T = 867.3714392763569 K, F = -3598.8331152375154, relative_change = 0.025196285190558103 Iter 10: T = 782.917879539353 K, F = -1552.100402039442, relative_change = 0.01693138251770424 Iter 15: T = 735.8312108190389 K, F = -661.8853313107323, relative_change = 0.009534797361661905 Iter 20: T = 712.5713733250841 K, F = -279.72138534052414, relative_change = 0.004672515294462512 Iter 25: T = 701.9943941137547 K, F = -117.5672386397773, relative_change = 0.0021064838533554303 Iter 30: T = 697.3979662768708 K, F = -49.276993024168085, relative_change = 0.0009107642169370122 Iter 35: T = 695.4432582389685 K, F = -20.627830087768352, relative_change = 0.00038636857617163124 Iter 40: T = 694.6199314767456 K, F = -8.63027502019984, relative_change = 0.00016256206855208346 Iter 45: T = 694.2745710381474 K, F = -3.6098941023726345, relative_change = 6.815799620347154e-5 Iter 50: T = 694.1299551168166 K, F = -1.5098077460620387, relative_change = 2.8534788165608277e-5 Iter 55: T = 694.0694430967479 K, F = -0.6314383475847749, relative_change = 1.1938896997326666e-5 Iter 60: T = 694.0441306600986 K, F = -0.2640783327792784, relative_change = 4.9939182525467355e-6 Iter 65: T = 694.0335437192065 K, F = -0.11044128537720582, relative_change = 2.088678771332099e-6 Iter 70: T = 694.0291159630812 K, F = -0.04618796468184139, relative_change = 8.735388339679354e-7 Iter 75: T = 694.0272641926795 K, F = -0.01931637595091118, relative_change = 3.653293448323355e-7 Iter 80: T = 694.0264897549512 K, F = -0.008078342172199271, relative_change = 1.5278596460575938e-7 Iter 85: T = 694.0261658749295 K, F = -0.003378459707087056, relative_change = 6.389706713414555e-8 Iter 90: T = 694.0260304242764 K, F = -0.0014129122907450276, relative_change = 2.6722543174569623e-8 Iter 95: T = 694.0259737771677 K, F = -0.000590896809283592, relative_change = 1.1175691327352746e-8 Iter 100: T = 694.0259500866654 K, F = -0.00024712010455896216, relative_change = 4.673808378690313e-9 Iter 105: T = 694.0259401790136 K, F = -0.00010334857955496268, relative_change = 1.9546426250601313e-9 Iter 110: T = 694.0259360355151 K, F = -4.322160987779711e-5, relative_change = 8.17454906067173e-10 Iter 115: T = 694.0259343026545 K, F = -1.8075792203697816e-5, relative_change = 3.4186938513846174e-10 Iter 120: T = 694.0259335779516 K, F = -7.559512565369353e-6, relative_change = 1.4297386783351662e-10 Iter 125: T = 694.025933274872 K, F = -3.161477499347143e-6, relative_change = 5.979336143454238e-11 Iter 130: T = 694.0259331481207 K, F = -1.3221663722751131e-6, relative_change = 2.5006273762540254e-11 Iter 135: T = 694.0259330951118 K, F = -5.529471734933011e-7, relative_change = 1.0457948932577607e-11 Iter 140: T = 694.0259330729427 K, F = -2.3124851888933762e-7, relative_change = 4.373627929713964e-12 Iter 145: T = 694.0259330636715 K, F = -9.671085088314157e-8, relative_change = 1.8291026493372945e-12 Iter 150: T = 694.025933059794 K, F = -4.044598678198952e-8, relative_change = 7.649592667668487e-13 Iter 155: T = 694.0259330581724 K, F = -1.691421125382675e-8, relative_change = 3.1990028352015356e-13 Converged in 158 iterations to T = 694.0259330576978 K Iter 1: T = 966.4677526530702 K, F = -7640.3544553998445, relative_change = 0.033532247346929785 Iter 2: T = 934.9741350320255 K, F = -6478.013982850443, relative_change = 0.03258630982212377 Iter 3: T = 905.4894384605358 K, F = -5491.095789704588, relative_change = 0.031535307199144984 Iter 5: T = 852.4223338513915 K, F = -3941.9314135677455, relative_change = 0.02911308309761971 Iter 10: T = 752.2936409025803 K, F = -1710.0875892996196, relative_change = 0.021480310472065733 Iter 15: T = 692.232049890939 K, F = -733.6681922652685, relative_change = 0.013289849587233702 Iter 20: T = 660.6664513499568 K, F = -311.44707050744887, relative_change = 0.006975073153878977 Iter 25: T = 645.7321642048548 K, F = -131.23672372836108, relative_change = 0.003268904783655711 Iter 30: T = 639.1063522103733 K, F = -55.074892798759, relative_change = 0.0014401183649119175 Iter 35: T = 636.2613710632393 K, F = -23.06773311374915, relative_change = 0.000616071354313901 Iter 40: T = 635.0579971832891 K, F = -9.653397589467492, relative_change = 0.0002601433950979951 Iter 45: T = 634.5523098742348 K, F = -4.03825870134129, relative_change = 0.0001092376816553761 Iter 50: T = 634.3403981341713 K, F = -1.6890397570478457, relative_change = 4.576237866648148e-5 Iter 55: T = 634.2516991133083 K, F = -0.7064101815352706, relative_change = 1.915202792375595e-5 Iter 60: T = 634.2145909859468 K, F = -0.2954350515510295, relative_change = 8.011997516491276e-6 Iter 65: T = 634.1990696246914 K, F = -0.12355549498525997, relative_change = 3.351131366567473e-6 Iter 70: T = 634.1925780038068 K, F = -0.05167256340816029, relative_change = 1.4015563366071198e-6 Iter 75: T = 634.1898630600664 K, F = -0.021610114569810324, relative_change = 5.86160397906594e-7 Iter 80: T = 634.1887276258643 K, F = -0.009037613492279106, relative_change = 2.451415173830283e-7 Iter 85: T = 634.1882527715687 K, F = -0.003779638855242351, relative_change = 1.0252150171286527e-7 Iter 90: T = 634.188054181455 K, F = -0.0015806902761015817, relative_change = 4.287578487178317e-8 Iter 95: T = 634.1879711286318 K, F = -0.0006610635790602615, relative_change = 1.79311772224214e-8 Iter 100: T = 634.1879363949379 K, F = -0.00027646468847819516, relative_change = 7.49903454753578e-9 Iter 105: T = 634.1879218688902 K, F = -0.00011562083490135322, relative_change = 3.1361861605708907e-9 Iter 110: T = 634.1879157939233 K, F = -4.835401365188563e-5, relative_change = 1.3115905577791551e-9 Iter 115: T = 634.1879132532995 K, F = -2.0222226184474223e-5, relative_change = 5.485228510224601e-10 Iter 120: T = 634.1879121907803 K, F = -8.457176299547786e-6, relative_change = 2.2939880357940765e-10 Iter 125: T = 634.1879117464221 K, F = -3.5368926598056127e-6, relative_change = 9.59373339891467e-11 Iter 130: T = 634.1879115605861 K, F = -1.4791701791194711e-6, relative_change = 4.01221233857709e-11 Iter 135: T = 634.1879114828672 K, F = -6.186059576807068e-7, relative_change = 1.6779532825962157e-11 Iter 140: T = 634.1879114503643 K, F = -2.5870770636871043e-7, relative_change = 7.017382226123006e-12 Iter 145: T = 634.1879114367713 K, F = -1.081951018777616e-7, relative_change = 2.934765243776587e-12 Iter 150: T = 634.1879114310865 K, F = -4.5248593816271665e-8, relative_change = 1.2273568596243447e-12 Iter 155: T = 634.1879114287091 K, F = -1.8923500766376833e-8, relative_change = 5.132952543992986e-13 Converged in 160 iterations to T = 634.1879114277148 K Iter 1: T = 966.4434711776678 K, F = -7645.88701266792, relative_change = 0.033556528822332156 Iter 2: T = 934.9244660360077 K, F = -6482.747445840053, relative_change = 0.03261339755676791 Iter 3: T = 905.4133062964054 K, F = -5495.148444419591, relative_change = 0.031565287690808755 Iter 5: T = 852.29037585314 K, F = -3944.9081011401254, relative_change = 0.029148821316423976 Iter 10: T = 752.013717178361 K, F = -1711.4737431518554, relative_change = 0.02152574580087912 Iter 15: T = 691.8194938871544 K, F = -734.3086187297201, relative_change = 0.013330979410678229 Iter 20: T = 660.1629293292706 K, F = -311.7345826470326, relative_change = 0.007002071221239111 Iter 25: T = 645.1787175673694 K, F = -131.36186846810833, relative_change = 0.0032830748627133803 Iter 30: T = 638.529089056944 K, F = -55.12825297071398, relative_change = 0.0014466944450007473 Iter 35: T = 635.6735415648255 K, F = -23.090242905243382, relative_change = 0.0006189491646493171 Iter 40: T = 634.46563463242 K, F = -9.662846578231752, relative_change = 0.00026137039714960875 Iter 45: T = 633.9580309521186 K, F = -4.042216616721639, relative_change = 0.00010975502138664511 Iter 50: T = 633.7453141121001 K, F = -1.6906961019611892, relative_change = 4.597947625384355e-5 Iter 55: T = 633.6562777467171 K, F = -0.7071030772071072, relative_change = 1.9242950630267165e-5 Iter 60: T = 633.6190284252782 K, F = -0.29572486249199664, relative_change = 8.050045234138664e-6 Iter 65: T = 633.6034479952655 K, F = -0.12367670327742386, relative_change = 3.367047359118413e-6 Iter 70: T = 633.5969316676727 K, F = -0.05172325519550619, relative_change = 1.4082132915483104e-6 Iter 75: T = 633.5942063906886 K, F = -0.021631314661182677, relative_change = 5.88944537844983e-7 Iter 80: T = 633.5930666348951 K, F = -0.009046479655591078, relative_change = 2.4630589928235154e-7 Iter 85: T = 633.5925899732399 K, F = -0.0037833467958742206, relative_change = 1.030084638499387e-7 Iter 90: T = 633.5923906272636 K, F = -0.001582240982441585, relative_change = 4.307943891393384e-8 Iter 95: T = 633.592307258329 K, F = -0.0006617121036397999, relative_change = 1.801634790253479e-8 Iter 100: T = 633.5922723924334 K, F = -0.0002767359090685151, relative_change = 7.534653958592197e-9 Iter 105: T = 633.5922578110975 K, F = -0.00011573426245481411, relative_change = 3.1510826232517098e-9 Iter 110: T = 633.5922517130083 K, F = -4.84014505174879e-5, relative_change = 1.3178204398558553e-9 Iter 115: T = 633.5922491627146 K, F = -2.0242065207509707e-5, relative_change = 5.511282720114309e-10 Iter 120: T = 633.5922480961513 K, F = -8.465473343433061e-6, relative_change = 2.3048842522185999e-10 Iter 125: T = 633.5922476501017 K, F = -3.5403622030694137e-6, relative_change = 9.63930164954733e-11 Iter 130: T = 633.5922474635586 K, F = -1.4806223581631528e-6, relative_change = 4.0312727175290046e-11 Iter 135: T = 633.5922473855438 K, F = -6.192136247640256e-7, relative_change = 1.685925502566093e-11 Iter 140: T = 633.5922473529172 K, F = -2.589623163684607e-7, relative_change = 7.0507359014038684e-12 Iter 145: T = 633.5922473392724 K, F = -1.0830096330849415e-7, relative_change = 2.9486973276360306e-12 Iter 150: T = 633.5922473335659 K, F = -4.5292977257638256e-8, relative_change = 1.233186454912441e-12 Iter 155: T = 633.5922473311795 K, F = -1.8942675372723983e-8, relative_change = 5.157499485403371e-13 Converged in 160 iterations to T = 633.5922473301814 K Iter 1: T = 976.4778337485734 K, F = -5359.5479557440985, relative_change = 0.023522166251426585 Iter 2: T = 955.1165003182932 K, F = -4531.800815670797, relative_change = 0.021875902034843752 Iter 3: T = 935.8240190796121 K, F = -3830.157203408644, relative_change = 0.02019908695143671 Iter 5: T = 903.0233312294645 K, F = -2732.1437667346086, relative_change = 0.016847089912467868 Iter 10: T = 849.0274970907873 K, F = -1164.983806944235, relative_change = 0.00947151581412252 Iter 15: T = 822.3826790409322 K, F = -492.30138962111073, relative_change = 0.004636316377363847 Iter 20: T = 810.2740401812255 K, F = -206.90671367773183, relative_change = 0.0020889158529975235 Iter 25: T = 805.0136515400706 K, F = -86.72102283261086, relative_change = 0.0009029153982096529 Iter 30: T = 802.776901817114 K, F = -36.301968849855214, relative_change = 0.00038299169922718413 Iter 35: T = 801.8348367632668 K, F = -15.187970593402758, relative_change = 0.00016113278090823443 Iter 40: T = 801.4396796047968 K, F = -6.352854827995406, relative_change = 6.755723149777893e-5 Iter 45: T = 801.2742136769218 K, F = -2.657026271786602, relative_change = 2.8283010126801355e-5 Iter 50: T = 801.204977654466 K, F = -1.1112327686457961, relative_change = 1.1833507314402496e-5 Iter 55: T = 801.1760159864865 K, F = -0.46473652736644433, relative_change = 4.949826729327722e-6 Iter 60: T = 801.1639027623619 K, F = -0.19435936513141128, relative_change = 2.0702363178136645e-6 Iter 65: T = 801.1588366734267 K, F = -0.08128358240973188, relative_change = 8.658254807952965e-7 Iter 70: T = 801.156717940609 K, F = -0.03399379545708259, relative_change = 3.6210344116379784e-7 Iter 75: T = 801.1558318553085 K, F = -0.014216616574393104, relative_change = 1.5143683789411705e-7 Iter 80: T = 801.1554612828161 K, F = -0.0059455597662274595, relative_change = 6.333284355696085e-8 Iter 85: T = 801.1553063047927 K, F = -0.00248650426146102, relative_change = 2.64865776526501e-8 Iter 90: T = 801.1552414911007 K, F = -0.0010398858040554515, relative_change = 1.1077007642863784e-8 Iter 95: T = 801.1552143852351 K, F = -0.00043489266546337113, relative_change = 4.632537665574302e-9 Iter 100: T = 801.1552030492376 K, F = -0.00018187730774410493, relative_change = 1.9373827206367644e-9 Iter 105: T = 801.1551983083879 K, F = -7.606326233278171e-5, relative_change = 8.102366155434424e-10 Iter 110: T = 801.1551963257078 K, F = -3.181056655976455e-5, relative_change = 3.388506527479319e-10 Iter 115: T = 801.1551954965274 K, F = -1.3303559288857514e-5, relative_change = 1.4171139525745441e-10 Iter 120: T = 801.1551951497543 K, F = -5.563707684563823e-6, relative_change = 5.926540133281458e-11 Iter 125: T = 801.1551950047295 K, F = -2.3268094667683314e-6, relative_change = 2.478550362637914e-11 Iter 130: T = 801.1551949440785 K, F = -9.73101752066441e-7, relative_change = 1.0365617536733891e-11 Iter 135: T = 801.1551949187135 K, F = -4.069628166680772e-7, relative_change = 4.335025500602654e-12 Iter 140: T = 801.1551949081055 K, F = -1.7019695841558047e-7, relative_change = 1.8129620807711969e-12 Iter 145: T = 801.1551949036691 K, F = -7.117817113488911e-8, relative_change = 7.581999493463692e-13 Iter 150: T = 801.1551949018137 K, F = -2.9767695863824883e-8, relative_change = 3.1708970793288663e-13 Converged in 153 iterations to T = 801.1551949012705 K Iter 1: T = 965.2107010725954 K, F = -7926.774853775784, relative_change = 0.0347892989274046 Iter 2: T = 932.3975016126458 K, F = -6723.1443572413145, relative_change = 0.033995892734597494 Iter 3: T = 901.5309691043096 K, F = -5701.0552598179265, relative_change = 0.03310447792379355 Iter 5: T = 845.5247587797356 K, F = -4096.324433158622, relative_change = 0.031009175593609644 Iter 10: T = 737.4102672009584 K, F = -1782.3824495141598, relative_change = 0.024002075826930487 Iter 15: T = 669.8782016933231 K, F = -767.3833269642492, relative_change = 0.01569657218485754 Iter 20: T = 632.9703408289179 K, F = -326.7330231020799, relative_change = 0.008626768793379737 Iter 25: T = 615.013881533704 K, F = -137.93675782067325, relative_change = 0.004160320300749455 Iter 30: T = 606.9212585748858 K, F = -57.942552974113816, relative_change = 0.0018597641109407235 Iter 35: T = 603.420027135941 K, F = -24.279608541268484, relative_change = 0.0008009250920466829 Iter 40: T = 601.9340541154656 K, F = -10.162510115983137, relative_change = 0.00033918449818358035 Iter 45: T = 601.3087025231823 K, F = -4.251583415929516, relative_change = 0.00014260427739725215 Iter 50: T = 601.0464832236062 K, F = -1.7783265394176768, relative_change = 5.9771588964293304e-5 Iter 55: T = 600.9366987642098 K, F = -0.7437635832331865, relative_change = 2.5020491171531718e-5 Iter 60: T = 600.8907643492424 K, F = -0.31105889732177766, relative_change = 1.0467948787955238e-5 Iter 65: T = 600.8715503098371 K, F = -0.1300899601007481, relative_change = 4.37853530180593e-6 Iter 70: T = 600.8635141185006 K, F = -0.05440542232271356, relative_change = 1.8312806813740504e-6 Iter 75: T = 600.8601531735058 K, F = -0.022753040623676668, relative_change = 7.658853030775483e-7 Iter 80: T = 600.8587475662652 K, F = -0.009515600884273112, relative_change = 3.203062024047482e-7 Iter 85: T = 600.8581597210491 K, F = -0.003979539253171349, relative_change = 1.339565475915537e-7 Iter 90: T = 600.8579138765506 K, F = -0.001664291073048385, relative_change = 5.602234490856324e-8 Iter 95: T = 600.8578110613388 K, F = -0.0006960264429987095, relative_change = 2.342923413629403e-8 Iter 100: T = 600.8577680627707 K, F = -0.0002910865780075822, relative_change = 9.798389101798092e-9 Iter 105: T = 600.8577500802528 K, F = -0.00012173588460362428, relative_change = 4.097803969945474e-9 Iter 110: T = 600.8577425597484 K, F = -5.0911400885811364e-5, relative_change = 1.7137506642061165e-9 Iter 115: T = 600.8577394145836 K, F = -2.1291755948615876e-5, relative_change = 7.167110150873732e-10 Iter 120: T = 600.8577380992381 K, F = -8.904466739623196e-6, relative_change = 2.997371131663754e-10 Iter 125: T = 600.857737549145 K, F = -3.7239546699652237e-6, relative_change = 1.253536522559096e-10 Iter 130: T = 600.8577373190893 K, F = -1.5574027029119364e-6, relative_change = 5.242440751861521e-11 Iter 135: T = 600.8577372228774 K, F = -6.513240088379391e-7, relative_change = 2.192449982792886e-11 Iter 140: T = 600.8577371826403 K, F = -2.723917226776784e-7, relative_change = 9.169095869097577e-12 Iter 145: T = 600.8577371658126 K, F = -1.1391635246216225e-7, relative_change = 3.8345877277582184e-12 Iter 150: T = 600.8577371587752 K, F = -4.764127958800657e-8, relative_change = 1.6036737667994975e-12 Iter 155: T = 600.857737155832 K, F = -1.992343479084724e-8, relative_change = 6.706513761945783e-13 Iter 160: T = 600.8577371546012 K, F = -8.33195284988264e-9, relative_change = 2.8046547715676316e-13 Converged in 162 iterations to T = 600.8577371543407 K Iter 1: T = 964.535411422949 K, F = -8080.640242813998, relative_change = 0.03546458857705096 Iter 2: T = 931.0088754924898 K, F = -6854.895191227485, relative_change = 0.034759258740950316 Iter 3: T = 899.3899330446416 K, F = -5813.97549126722, relative_change = 0.033962020427702466 Iter 5: T = 841.7624678191785 K, F = -4179.512209896509, relative_change = 0.03206778549005164 Iter 10: T = 729.0633586290417 K, F = -1821.6944512063003, relative_change = 0.025515319173223902 Iter 15: T = 656.9315250641282 K, F = -786.0218219387908, relative_change = 0.017271973316305003 Iter 20: T = 616.4938660733732 K, F = -335.3414195656511, relative_change = 0.009792822713181215 Iter 25: T = 596.4325424592326 K, F = -141.76215134564103, relative_change = 0.004821010797416849 Iter 30: T = 587.2864652963702 K, F = -59.59248916837807, relative_change = 0.0021787851616670113 Iter 35: T = 583.3067119915753 K, F = -24.97944348000182, relative_change = 0.0009431152347454898 Iter 40: T = 581.6132576389437 K, F = -10.456993218066764, relative_change = 0.0004002965918288106 Iter 45: T = 580.8997890569256 K, F = -4.375062050121057, relative_change = 0.00016845888707824996 Iter 50: T = 580.600478266205 K, F = -1.830023656998986, relative_change = 7.063687287194129e-5 Iter 55: T = 580.4751394028124 K, F = -0.7653939209716886, relative_change = 2.9573727883547062e-5 Iter 60: T = 580.4226925271535 K, F = -0.3201067121784578, relative_change = 1.2373787390166128e-5 Iter 65: T = 580.4007535987563 K, F = -0.13387417048367575, relative_change = 5.175863482430268e-6 Iter 70: T = 580.3915775987684 K, F = -0.05598807786035556, relative_change = 2.1647824904763157e-6 Iter 75: T = 580.387739932378 K, F = -0.023414935439624973, relative_change = 9.053684263248763e-7 Iter 80: T = 580.3861349475937 K, F = -0.00979241483983384, relative_change = 3.786412292390956e-7 Iter 85: T = 580.38546371909 K, F = -0.004095306441996571, relative_change = 1.5835321815081076e-7 Iter 90: T = 580.3851830024917 K, F = -0.0017127063431880418, relative_change = 6.622537032579627e-8 Iter 95: T = 580.385065603314 K, F = -0.0007162742957918522, relative_change = 2.7696269336578728e-8 Iter 100: T = 580.3850165055508 K, F = -0.0002995544727317778, relative_change = 1.1582915578473903e-8 Iter 105: T = 580.3849959722755 K, F = -0.0001252772597535312, relative_change = 4.844114510481019e-9 Iter 110: T = 580.3849873850138 K, F = -5.239244601751292e-5, relative_change = 2.025866676602265e-9 Iter 115: T = 580.3849837937182 K, F = -2.1911147149888954e-5, relative_change = 8.472416834657682e-10 Iter 120: T = 580.3849822917955 K, F = -9.163503192466393e-6, relative_change = 3.5432658608746906e-10 Iter 125: T = 580.3849816636736 K, F = -3.832286740557134e-6, relative_change = 1.4818362106347263e-10 Iter 130: T = 580.3849814009855 K, F = -1.6027082847536178e-6, relative_change = 6.197216798564885e-11 Iter 135: T = 580.3849812911261 K, F = -6.702720082851776e-7, relative_change = 2.5917510956990027e-11 Iter 140: T = 580.3849812451816 K, F = -2.8031635102010455e-7, relative_change = 1.0839035513823912e-11 Iter 145: T = 580.3849812259671 K, F = -1.1723183651612956e-7, relative_change = 4.533021477074929e-12 Iter 150: T = 580.3849812179313 K, F = -4.9027639559273695e-8, relative_change = 1.8957592895556827e-12 Iter 155: T = 580.3849812145706 K, F = -2.0504274833577085e-8, relative_change = 7.928419528628025e-13 Iter 160: T = 580.3849812131651 K, F = -8.574862486732115e-9, relative_change = 3.3156552839684224e-13 Converged in 163 iterations to T = 580.3849812127537 K Iter 1: T = 964.3316097345937 K, F = -8127.076651371217, relative_change = 0.0356683902654063 Iter 2: T = 930.5891751743858 K, F = -6894.666567350541, relative_change = 0.034990488976602736 Iter 3: T = 898.7417531207308 K, F = -5848.072572084063, relative_change = 0.03422285891912189 Iter 5: T = 840.6190042215716 K, F = -4204.652742944661, relative_change = 0.03239298438591771 Iter 10: T = 726.4923856993913 K, F = -1833.6282555948435, relative_change = 0.02599649502397788 Iter 15: T = 652.8776820606546 K, F = -791.7289580041208, relative_change = 0.017795476009403108 Iter 20: T = 611.2591957810458 K, F = -338.00503085410134, relative_change = 0.010196388689804258 Iter 25: T = 590.4729571236206 K, F = -142.95558449228957, relative_change = 0.005056039219037402 Iter 30: T = 580.9576298488353 K, F = -60.1096928213979, relative_change = 0.002293956306273869 Iter 35: T = 576.8086499533462 K, F = -25.199330652930296, relative_change = 0.0009948049038557923 Iter 40: T = 575.0415224498864 K, F = -10.549615697249966, relative_change = 0.0004225802733478853 Iter 45: T = 574.2967097285997 K, F = -4.413916636419584, relative_change = 0.00017789872446081768 Iter 50: T = 573.984195200822 K, F = -1.8462940902945162, relative_change = 7.460610823242115e-5 Iter 55: T = 573.8533175692805 K, F = -0.7722020956910594, relative_change = 3.123747168553929e-5 Iter 60: T = 573.7985513639262 K, F = -0.3229546178418812, relative_change = 1.3070244568553177e-5 Iter 65: T = 573.7756419472589 K, F = -0.13506531165883692, relative_change = 5.467245686101673e-6 Iter 70: T = 573.766059987022 K, F = -0.05648624709748268, relative_change = 2.2866622167640582e-6 Iter 75: T = 573.7620525273804 K, F = -0.023623279222232174, relative_change = 9.563435185877883e-7 Iter 80: T = 573.7603765302623 K, F = -0.009879547301869573, relative_change = 3.9996023991048663e-7 Iter 85: T = 573.7596756030683 K, F = -0.004131746383245982, relative_change = 1.6726919113935848e-7 Iter 90: T = 573.7593824660385 K, F = -0.0017279459808448583, relative_change = 6.995415564570453e-8 Iter 95: T = 573.7592598724732 K, F = -0.000722647697187051, relative_change = 2.9255695184100576e-8 Iter 100: T = 573.7592086023524 K, F = -0.00030221990577872226, relative_change = 1.2235086665207536e-8 Iter 105: T = 573.7591871605708 K, F = -0.00012639197548985903, relative_change = 5.116860337363238e-9 Iter 110: T = 573.7591781933609 K, F = -5.285863420312342e-5, relative_change = 2.1399322853994685e-9 Iter 115: T = 573.7591744431663 K, F = -2.2106112037123538e-5, relative_change = 8.949452636852899e-10 Iter 120: T = 573.7591728747902 K, F = -9.245040333116794e-6, relative_change = 3.7427681323983426e-10 Iter 125: T = 573.7591722188766 K, F = -3.8663867408805785e-6, relative_change = 1.5652705276166626e-10 Iter 130: T = 573.7591719445657 K, F = -1.61696911310516e-6, relative_change = 6.546148308988003e-11 Iter 135: T = 573.7591718298456 K, F = -6.762359432421761e-7, relative_change = 2.737678007989058e-11 Iter 140: T = 573.7591717818682 K, F = -2.828094538553927e-7, relative_change = 1.1449276400001387e-11 Iter 145: T = 573.7591717618036 K, F = -1.1827430018707119e-7, relative_change = 4.788224493995811e-12 Iter 150: T = 573.7591717534124 K, F = -4.946415244067026e-8, relative_change = 2.00250997835573e-12 Iter 155: T = 573.759171749903 K, F = -2.0686911961220744e-8, relative_change = 8.374902951102909e-13 Iter 160: T = 573.7591717484354 K, F = -8.65237043123912e-9, relative_change = 3.5028312971670036e-13 Converged in 163 iterations to T = 573.7591717480057 K Iter 1: T = 979.9604785870908 K, F = -4566.024016437406, relative_change = 0.020039521412909135 Iter 2: T = 961.9724544301854 K, F = -3857.125453782832, relative_change = 0.018355866945614564 Iter 3: T = 945.9163259756958 K, F = -3256.768231044526, relative_change = 0.016690840138453098 Iter 5: T = 919.0806126337575 K, F = -2318.649726164162, relative_change = 0.013506221621093169 Iter 10: T = 876.4019328766041 K, F = -984.543826914449, relative_change = 0.007117669243072004 Iter 15: T = 856.1605752596361 K, F = -414.9313532443635, relative_change = 0.0033439197915673337 Iter 20: T = 847.1682390984797 K, F = -174.14450917511442, relative_change = 0.001474971000827703 Iter 25: T = 843.3046773546793 K, F = -72.94190107323305, relative_change = 0.0006313312895390555 Iter 30: T = 841.6700043796639 K, F = -30.52525556606549, relative_change = 0.0002666511579049516 Iter 35: T = 840.9829919563667 K, F = -12.769568046966143, relative_change = 0.00011198180056832376 Iter 40: T = 840.6950800473141 K, F = -5.341007465238167, relative_change = 4.691397214830973e-5 Iter 45: T = 840.5745673767549 K, F = -2.233781986409909, relative_change = 1.963433510427713e-5 Iter 50: T = 840.5241492380594 K, F = -0.9342133584004436, relative_change = 8.213826245483936e-6 Iter 55: T = 840.503060567454 K, F = -0.3907025168252696, relative_change = 3.435559922066789e-6 Iter 60: T = 840.4942404732159 K, F = -0.16339704157170232, relative_change = 1.4368691055842662e-6 Iter 65: T = 840.4905517064568 K, F = -0.06833469613013299, relative_change = 6.00929273623681e-7 Iter 70: T = 840.4890090030017 K, F = -0.028578403842015154, relative_change = 2.513181519771512e-7 Iter 75: T = 840.4883638229946 K, F = -0.011951832903082549, relative_change = 1.0510466409548675e-7 Iter 80: T = 840.4880940004862 K, F = -0.004998399798026298, relative_change = 4.395609770188621e-8 Iter 85: T = 840.4879811573991 K, F = -0.0020903905846352266, relative_change = 1.838297759757794e-8 Iter 90: T = 840.4879339650564 K, F = -0.0008742263250836046, relative_change = 7.687982984498545e-9 Iter 95: T = 840.4879142286522 K, F = -0.0003656118916259832, relative_change = 3.2152066751664712e-9 Iter 100: T = 840.4879059746519 K, F = -0.00015290326024897105, relative_change = 1.3446378995167594e-9 Iter 105: T = 840.4879025227302 K, F = -6.394596891112769e-5, relative_change = 5.623436338808292e-10 Iter 110: T = 840.4879010790954 K, F = -2.6742968169957138e-5, relative_change = 2.351788280093459e-10 Iter 115: T = 840.4879004753501 K, F = -1.1184228340122004e-5, relative_change = 9.835459196222336e-11 Iter 120: T = 840.4879002228566 K, F = -4.677379195738851e-6, relative_change = 4.113307676821736e-11 Iter 125: T = 840.4879001172608 K, F = -1.9561358228781245e-6, relative_change = 1.7202343802473695e-11 Iter 130: T = 840.4879000730994 K, F = -8.180799002666106e-7, relative_change = 7.194230350065553e-12 Iter 135: T = 840.4879000546305 K, F = -3.4213171939967424e-7, relative_change = 3.0087212739007667e-12 Iter 140: T = 840.4879000469067 K, F = -1.4308339202351306e-7, relative_change = 1.2582815948700761e-12 Iter 145: T = 840.4879000436764 K, F = -5.984209816567443e-8, relative_change = 5.262540233130657e-13 Converged in 150 iterations to T = 840.4879000423255 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 7%|██ | ETA: 0:00:15 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 1 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 1 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 1 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 1 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 1 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 1 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 2 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 2 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 2 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 3 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 3 ray tracing: 31%|█████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 37%|███████████ | ETA: 0:00:10 Bin 3 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 3 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 4 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 4 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 4 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 4 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▌| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 13%|████ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 54%|████████████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██ | ETA: 0:00:14 Bin 6 ray tracing: 13%|████ | ETA: 0:00:13 Bin 6 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 6 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 6 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 6 ray tracing: 47%|██████████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 60%|██████████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:14 Bin 7 ray tracing: 13%|████ | ETA: 0:00:13 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 7 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 7 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 13%|████ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 8 ray tracing: 40%|████████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 8 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 9 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 9 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 9 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 9 ray tracing: 35%|██████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 9 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 69%|████████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:14 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:11 Bin 10 ray tracing: 33%|█████████▌ | ETA: 0:00:10 Bin 10 ray tracing: 39%|███████████▌ | ETA: 0:00:09 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 53%|███████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 60%|█████████████████▎ | ETA: 0:00:06 Bin 10 ray tracing: 66%|███████████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 73%|█████████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 79%|███████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 86%|████████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▊| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2980721228381 K, F = -7451.165374375514, relative_change = 0.03270192787716191 Iter 2: T = 936.6701929783753 K, F = -6316.186665383759, relative_change = 0.031663331114933996 Iter 3: T = 908.0850683216347 K, F = -5352.582950099326, relative_change = 0.03051781178799672 Iter 5: T = 856.9051527617618 K, F = -3840.272552233358, relative_change = 0.0279112537127644 Iter 10: T = 761.6980499041305 K, F = -1662.917683562338, relative_change = 0.01999616390146723 Iter 15: T = 705.9330085565925 K, F = -711.9976780961927, relative_change = 0.0119880201622329 Iter 20: T = 677.2440770036045 K, F = -301.77221570478974, relative_change = 0.006141257089150853 Iter 25: T = 663.8628864748085 K, F = -127.04123650129881, relative_change = 0.0028375786305279457 Iter 30: T = 657.9713776232552 K, F = -53.28949872779299, relative_change = 0.0012413825706624403 Iter 35: T = 655.450791279815 K, F = -22.315257596182697, relative_change = 0.0005293831130937063 Iter 40: T = 654.3863234404845 K, F = -9.337655136303308, relative_change = 0.00022323431049725955 Iter 45: T = 653.9393119307415 K, F = -3.9060255678850777, relative_change = 9.368500777645928e-5 Iter 50: T = 653.7520424664787 K, F = -1.6337055841693644, relative_change = 3.923745596859376e-5 Iter 55: T = 653.6736673114259 K, F = -0.6832630369277395, relative_change = 1.6419610229245556e-5 Iter 60: T = 653.6408799332737 K, F = -0.2857536355701954, relative_change = 6.8686342447088835e-6 Iter 65: T = 653.6271661185507 K, F = -0.11950643558579316, relative_change = 2.8728523135833823e-6 Iter 70: T = 653.6214305327768 K, F = -0.04997916769053817, relative_change = 1.2015149271469197e-6 Iter 75: T = 653.6190317890154 K, F = -0.02090191088474952, relative_change = 5.024972984722909e-7 Iter 80: T = 653.618028596406 K, F = -0.008741433312683677, relative_change = 2.1015201656266823e-7 Iter 85: T = 653.6176090476459 K, F = -0.0036557726036107185, relative_change = 8.788837083421549e-8 Iter 90: T = 653.6174335870588 K, F = -0.0015288879015873391, relative_change = 3.6756016625094447e-8 Iter 95: T = 653.6173602072961 K, F = -0.0006393992047969976, relative_change = 1.5371813943370356e-8 Iter 100: T = 653.6173295189942 K, F = -0.00026740438788014353, relative_change = 6.428677712054365e-9 Iter 105: T = 653.6173166847782 K, F = -0.00011183170848289015, relative_change = 2.688550044874863e-9 Iter 110: T = 653.6173113173556 K, F = -4.676935655034686e-5, relative_change = 1.124383793059629e-9 Iter 115: T = 653.6173090726354 K, F = -1.9559503011690182e-5, relative_change = 4.702307273046357e-10 Iter 120: T = 653.6173081338665 K, F = -8.180017597336775e-6, relative_change = 1.966561035913963e-10 Iter 125: T = 653.6173077412622 K, F = -3.4209803462803556e-6, relative_change = 8.224391442693374e-11 Iter 130: T = 653.6173075770704 K, F = -1.4306957288878763e-6, relative_change = 3.439540872145047e-11 Iter 135: T = 653.6173075084034 K, F = -5.983343728810375e-7, relative_change = 1.4384578706771652e-11 Iter 140: T = 653.617307479686 K, F = -2.5023045779892783e-7, relative_change = 6.015799658076428e-12 Iter 145: T = 653.617307467676 K, F = -1.0464811445176636e-7, relative_change = 2.515849176514797e-12 Iter 150: T = 653.6173074626535 K, F = -4.376570161834792e-8, relative_change = 1.0521728457027418e-12 Iter 155: T = 653.6173074605529 K, F = -1.8303505322503355e-8, relative_change = 4.4003524608719104e-13 Converged in 159 iterations to T = 653.6173074597946 K Iter 1: T = 970.1992617234444 K, F = -6790.126564133613, relative_change = 0.02980073827655567 Iter 2: T = 942.5599531629215 K, F = -5751.3062497604315, relative_change = 0.028488280347095808 Iter 3: T = 917.0381798419231 K, F = -4869.673042432961, relative_change = 0.027077082190215835 Iter 5: T = 872.1356820902281 K, F = -3487.011135173982, relative_change = 0.02400163952156731 Iter 10: T = 792.2664734439178 K, F = -1501.2920476899885, relative_change = 0.015696432119193124 Iter 15: T = 748.6156149977697 K, F = -639.213901525074, relative_change = 0.008626772389869112 Iter 20: T = 727.378380713597 K, F = -269.8568326655507, relative_change = 0.004160347555028093 Iter 25: T = 717.8071357233828 K, F = -113.35773158260481, relative_change = 0.0018597822324844596 Iter 30: T = 713.6661775077837 K, F = -47.500179774652835, relative_change = 0.0008009340773093168 Iter 35: T = 711.9086936064359 K, F = -19.881749008898524, relative_change = 0.00033918852174619186 Iter 40: T = 711.1690800476571 K, F = -8.317720258786625, relative_change = 0.0001426060081438552 Iter 45: T = 710.8589489399355 K, F = -3.4790856434149653, relative_change = 5.9772321303217827e-5 Iter 50: T = 710.7291050326786 K, F = -1.4550855298382266, relative_change = 2.5020798943270246e-5 Iter 55: T = 710.6747776340031 K, F = -0.6085499631584471, relative_change = 1.0468077764547733e-5 Iter 60: T = 710.6520528688646 K, F = -0.2545056295250411, relative_change = 4.378589287386313e-6 Iter 65: T = 710.6425483311759 K, F = -0.10643777776095997, relative_change = 1.8313032668750004e-6 Iter 70: T = 710.6385732853981 K, F = -0.0445136344534518, relative_change = 7.658947500038485e-7 Iter 75: T = 710.6369108502374 K, F = -0.01861614833768277, relative_change = 3.2031015346436587e-7 Iter 80: T = 710.6362155958816 K, F = -0.007785498144509018, relative_change = 1.3395819996820344e-7 Iter 85: T = 710.6359248314868 K, F = -0.00325598875486377, relative_change = 5.602303594508128e-8 Iter 90: T = 710.6358032302185 K, F = -0.001361693460456781, relative_change = 2.3429523126651618e-8 Iter 95: T = 710.6357523750937 K, F = -0.0005694764795205476, relative_change = 9.798509929403129e-9 Iter 100: T = 710.6357311068695 K, F = -0.00023816186666503203, relative_change = 4.097854488764593e-9 Iter 105: T = 710.6357222122434 K, F = -9.960213642834503e-5, relative_change = 1.7137717800575615e-9 Iter 110: T = 710.6357184924045 K, F = -4.165480367579466e-5, relative_change = 7.167198554409628e-10 Iter 115: T = 710.6357169367235 K, F = -1.742053728148729e-5, relative_change = 2.99740821956674e-10 Iter 120: T = 710.635716286119 K, F = -7.285477111040883e-6, relative_change = 1.2535519839846903e-10 Iter 125: T = 710.6357160140285 K, F = -3.046873395917693e-6, relative_change = 5.242503873325242e-11 Iter 130: T = 710.6357159002368 K, F = -1.2742380800512265e-6, relative_change = 2.1924764200082292e-11 Iter 135: T = 710.6357158526479 K, F = -5.32900598093633e-7, relative_change = 9.169181287174556e-12 Iter 140: T = 710.6357158327456 K, F = -2.228653886993115e-7, relative_change = 3.834661021592703e-12 Iter 145: T = 710.6357158244223 K, F = -9.320385585542823e-8, relative_change = 1.6036819140772686e-12 Iter 150: T = 710.6357158209414 K, F = -3.897969347299579e-8, relative_change = 6.706914522650219e-13 Iter 155: T = 710.6357158194857 K, F = -1.630223900317418e-8, relative_change = 2.8049918760627686e-13 Converged in 157 iterations to T = 710.6357158191776 K Iter 1: T = 974.4393941224357 K, F = -5824.008363616255, relative_change = 0.025560605877564323 Iter 2: T = 951.0678454191765 K, F = -4927.284853207464, relative_change = 0.02398460986309697 Iter 3: T = 929.8104160883446 K, F = -4166.827489576441, relative_change = 0.022351117676008465 Iter 5: T = 893.2836572100368 K, F = -2975.8477055613484, relative_change = 0.018996216648439843 Iter 10: T = 831.7727235715198 K, F = -1272.4511577239605, relative_change = 0.011154518085850716 Iter 15: T = 800.5591964086807 K, F = -538.778500156825, relative_change = 0.005627779566671982 Iter 20: T = 786.1284429476657 K, F = -226.68774149952853, relative_change = 0.002577920571279787 Iter 25: T = 779.8041369799687 K, F = -95.06141512066934, relative_change = 0.0011230713859055471 Iter 30: T = 777.1041948306562 K, F = -39.80251339667378, relative_change = 0.0004780343867176016 Iter 35: T = 775.9650568246286 K, F = -16.654175712595872, relative_change = 0.00020141898345792125 Iter 40: T = 775.4868806278884 K, F = -6.966434130895021, relative_change = 8.450094880604103e-5 Iter 45: T = 775.286589092444 K, F = -2.9137017987139533, relative_change = 3.5385891068018424e-5 Iter 50: T = 775.2027699637093 K, F = -1.2185896867895658, relative_change = 1.4806965809807342e-5 Iter 55: T = 775.1677062043315 K, F = -0.5096365987580249, relative_change = 6.19387890775758e-6 Iter 60: T = 775.1530404417597 K, F = -0.21313748317751557, relative_change = 2.59060414323686e-6 Iter 65: T = 775.1469067508738 K, F = -0.08913688069870229, relative_change = 1.0834653247312146e-6 Iter 70: T = 775.144341516698 K, F = -0.037278149970186525, relative_change = 4.5312578756631993e-7 Iter 75: T = 775.1432686961409 K, F = -0.015590174846174754, relative_change = 1.895039537275396e-7 Iter 80: T = 775.1428200281997 K, F = -0.0065199985892876455, relative_change = 7.925305060677598e-8 Iter 85: T = 775.1426323896334 K, F = -0.002726741497480978, relative_change = 3.3144613146878215e-8 Iter 90: T = 775.1425539168961 K, F = -0.0011403558981462059, relative_change = 1.3861480212587581e-8 Iter 95: T = 775.1425210986517 K, F = -0.0004769104610991004, relative_change = 5.797037804640417e-9 Iter 100: T = 775.1425073736685 K, F = -0.0001994496501425136, relative_change = 2.4243906430731076e-9 Iter 105: T = 775.1425016337164 K, F = -8.34122254363967e-5, relative_change = 1.0139091537699532e-9 Iter 110: T = 775.1424992331998 K, F = -3.488398895012956e-5, relative_change = 4.2402892445341885e-10 Iter 115: T = 775.1424982292751 K, F = -1.4588901046663771e-5, relative_change = 1.7733396449484476e-10 Iter 120: T = 775.1424978094219 K, F = -6.101252285950487e-6, relative_change = 7.416317758139326e-11 Iter 125: T = 775.1424976338342 K, F = -2.5516168173922438e-6, relative_change = 3.101592959658222e-11 Iter 130: T = 775.1424975604012 K, F = -1.0671154357932977e-6, relative_change = 1.2971217706875601e-11 Iter 135: T = 775.1424975296908 K, F = -4.4628094686416375e-7, relative_change = 5.424724567866646e-12 Iter 140: T = 775.1424975168474 K, F = -1.866396255323366e-7, relative_change = 2.2686797837926515e-12 Iter 145: T = 775.1424975114761 K, F = -7.805653601256068e-8, relative_change = 9.488086184556807e-13 Iter 150: T = 775.1424975092297 K, F = -3.264440084915776e-8, relative_change = 3.9680583398481907e-13 Converged in 154 iterations to T = 775.1424975084188 K Iter 1: T = 970.3503703408367 K, F = -6755.69632191937, relative_change = 0.029649629659163353 Iter 2: T = 942.8651843036122 K, F = -5721.908115856387, relative_change = 0.028325012157794392 Iter 3: T = 917.4996447414107 K, F = -4844.565650270994, relative_change = 0.026902615543001617 Iter 5: T = 872.9112968802318 K, F = -3468.6919246219604, relative_change = 0.023809544451025903 Iter 10: T = 793.7713689170092 K, F = -1492.9968633143544, relative_change = 0.015503807763679453 Iter 15: T = 750.6537811068704 K, F = -635.5278807082715, relative_change = 0.008488982793532883 Iter 20: T = 729.7245309836666 K, F = -268.258266057291, relative_change = 0.004084031226693202 Iter 25: T = 720.3046925732845 K, F = -112.6768685085108, relative_change = 0.0018233756050970457 Iter 30: T = 716.231911613183 K, F = -47.21305598445543, relative_change = 0.0007847990607358364 Iter 35: T = 714.5038727894956 K, F = -19.761235938282365, relative_change = 0.0003322710803025557 Iter 40: T = 713.7767433433559 K, F = -8.267242842460266, relative_change = 0.00013968256746174106 Iter 45: T = 713.4718634585217 K, F = -3.457961739493283, relative_change = 5.8544309853749125e-5 Iter 50: T = 713.3442209988857 K, F = -1.4462488664665658, relative_change = 2.450628195010967e-5 Iter 55: T = 713.2908152058096 K, F = -0.6048539456313681, relative_change = 1.0252734480624191e-5 Iter 60: T = 713.2684760306892 K, F = -0.2529598374654507, relative_change = 4.2885010728113874e-6 Iter 65: T = 713.2591327799712 K, F = -0.10579129622197636, relative_change = 1.7936222114673422e-6 Iter 70: T = 713.2552251913374 K, F = -0.04424326590861394, relative_change = 7.501351925840835e-7 Iter 75: T = 713.2535909684359 K, F = -0.018503076591414147, relative_change = 3.137191626756053e-7 Iter 80: T = 713.252907512937 K, F = -0.0077382101235642375, relative_change = 1.3120174171936695e-7 Iter 85: T = 713.2526216829917 K, F = -0.0032362123279798816, relative_change = 5.487024742783602e-8 Iter 90: T = 713.2525021453739 K, F = -0.0013534227213054528, relative_change = 2.2947412383220326e-8 Iter 95: T = 713.2524521532932 K, F = -0.0005660175587832716, relative_change = 9.596885339300745e-9 Iter 100: T = 713.2524312460043 K, F = -0.0002367153041966663, relative_change = 4.013532644396906e-9 Iter 105: T = 713.2524225023259 K, F = -9.899716795591651e-5, relative_change = 1.678507394495912e-9 Iter 110: T = 713.2524188456151 K, F = -4.140179925560261e-5, relative_change = 7.019718778541225e-10 Iter 115: T = 713.2524173163348 K, F = -1.7314726388883983e-5, relative_change = 2.9357301712357187e-10 Iter 120: T = 713.2524166767715 K, F = -7.241225162823994e-6, relative_change = 1.2277573898954694e-10 Iter 125: T = 713.2524164092985 K, F = -3.0283649123941103e-6, relative_change = 5.134624767945303e-11 Iter 130: T = 713.2524162974382 K, F = -1.2664995783229216e-6, relative_change = 2.1473634441114575e-11 Iter 135: T = 713.2524162506569 K, F = -5.296653076136693e-7, relative_change = 8.980531371711374e-12 Iter 140: T = 713.2524162310924 K, F = -2.215133966254612e-7, relative_change = 3.755783094180055e-12 Iter 145: T = 713.2524162229104 K, F = -9.264033484779333e-8, relative_change = 1.5707266864216934e-12 Iter 150: T = 713.2524162194885 K, F = -3.8744463082274194e-8, relative_change = 6.569164739720049e-13 Iter 155: T = 713.2524162180573 K, F = -1.6204217523352327e-8, relative_change = 2.747442238756365e-13 Converged in 157 iterations to T = 713.2524162177544 K Iter 1: T = 969.3102906946858 K, F = -6992.679458665986, relative_change = 0.03068970930531413 Iter 2: T = 940.7612113317653 K, F = -5924.302845397781, relative_change = 0.029452982844595667 Iter 3: T = 914.3137392657985 K, F = -5017.469576259909, relative_change = 0.028112842820684516 Iter 5: T = 867.538097097994 K, F = -3594.9418623615584, relative_change = 0.025154065888689035 Iter 10: T = 783.2480187288203 K, F = -1550.327171857745, relative_change = 0.016886621845897527 Iter 15: T = 736.2864238275027 K, F = -661.0912084043085, relative_change = 0.00950112333940044 Iter 20: T = 713.1014065189459 K, F = -279.3748473496819, relative_change = 0.00465323019731552 Iter 25: T = 702.5619911091509 K, F = -117.41910811687892, relative_change = 0.0020971191177394707 Iter 30: T = 697.9826572545646 K, F = -49.214415701710685, relative_change = 0.0009065792850948778 Iter 35: T = 696.0353674127731 K, F = -20.60154415686675, relative_change = 0.00038456785196753303 Iter 40: T = 695.2151923614521 K, F = -8.619261318882465, relative_change = 0.00016179986335691126 Iter 45: T = 694.8711588062754 K, F = -3.6052844032638593, relative_change = 6.783761633854684e-5 Iter 50: T = 694.7270993554698 K, F = -1.5078792761828268, relative_change = 2.840051716373725e-5 Iter 55: T = 694.6668203304215 K, F = -0.6306317265691707, relative_change = 1.188269341733981e-5 Iter 60: T = 694.6416053827852 K, F = -0.26374097465667284, relative_change = 4.970404517990475e-6 Iter 65: T = 694.6310592213126 K, F = -0.11030019475513897, relative_change = 2.0788435198709505e-6 Iter 70: T = 694.6266485210884 K, F = -0.04612895829956143, relative_change = 8.694253472583763e-7 Iter 75: T = 694.6248038839238 K, F = -0.019291698672836644, relative_change = 3.636089888563824e-7 Iter 80: T = 694.624032429445 K, F = -0.008068021820667126, relative_change = 1.5206648300495124e-7 Iter 85: T = 694.6237097970619 K, F = -0.003374143610775815, relative_change = 6.35961699289554e-8 Iter 90: T = 694.6235748681875 K, F = -0.001411107246394927, relative_change = 2.6596704105455567e-8 Iter 95: T = 694.6235184392931 K, F = -0.0005901419186266077, relative_change = 1.1123063892422185e-8 Iter 100: T = 694.6234948400506 K, F = -0.00024680440021807026, relative_change = 4.65179894862747e-9 Iter 105: T = 694.6234849705648 K, F = -0.00010321654769296362, relative_change = 1.9454380071642237e-9 Iter 110: T = 694.6234808430279 K, F = -4.316639314916326e-5, relative_change = 8.136054355372864e-10 Iter 115: T = 694.6234791168426 K, F = -1.8052701419968287e-5, relative_change = 3.402595191227675e-10 Iter 120: T = 694.6234783949312 K, F = -7.5498550116126495e-6, relative_change = 1.4230058918316592e-10 Iter 125: T = 694.6234780930193 K, F = -3.157439054324307e-6, relative_change = 5.951179697874694e-11 Iter 130: T = 694.6234779667562 K, F = -1.3204795408228165e-6, relative_change = 2.488855970423883e-11 Iter 135: T = 694.6234779139513 K, F = -5.522392586554403e-7, relative_change = 1.0408673016229163e-11 Iter 140: T = 694.6234778918678 K, F = -2.3095307311038482e-7, relative_change = 4.3530317390256634e-12 Iter 145: T = 694.6234778826322 K, F = -9.658743160834149e-8, relative_change = 1.820491711784852e-12 Iter 150: T = 694.6234778787697 K, F = -4.0393561051565996e-8, relative_change = 7.613427739127021e-13 Iter 155: T = 694.6234778771544 K, F = -1.6893949128515828e-8, relative_change = 3.18419217250173e-13 Converged in 158 iterations to T = 694.6234778766815 K Iter 1: T = 963.5869948970039 K, F = -8296.73785042762, relative_change = 0.036413005102996096 Iter 2: T = 929.0533176216355 K, F = -7040.012135177393, relative_change = 0.035838670984823344 Iter 3: T = 896.3655304931868 K, F = -5972.721154990183, relative_change = 0.035183973307505126 Iter 5: T = 836.4090439085195 K, F = -4296.644690656224, relative_change = 0.03360433240339651 Iter 10: T = 716.8823425635871 K, F = -1877.5178873819782, relative_change = 0.02786053846074514 Iter 15: T = 637.4232344312534 K, F = -812.9399493661433, relative_change = 0.01993482931300416 Iter 20: T = 590.9287922422592 K, F = -348.04066040756027, relative_change = 0.011935697932905689 Iter 25: T = 567.0300513036705 K, F = -147.50375826833343, relative_change = 0.006108509667639105 Iter 30: T = 555.8894434342958 K, F = -62.09441566684705, relative_change = 0.002820872970447521 Iter 35: T = 550.9858946815299 K, F = -26.04603514829734, relative_change = 0.0012337386743540787 Iter 40: T = 548.888284601479 K, F = -10.906825576674583, relative_change = 0.000526059335917562 Iter 45: T = 548.0024981450401 K, F = -4.563864835973155, relative_change = 0.00022182107885807993 Iter 50: T = 547.6305316713837 K, F = -1.9091030931354105, relative_change = 9.308984728859808e-5 Iter 55: T = 547.4747030421611 K, F = -0.7984869491858559, relative_change = 3.8987824829025466e-5 Iter 60: T = 547.4094866639949 K, F = -0.3339503032421446, relative_change = 1.6315083783016e-5 Iter 65: T = 547.3822041675521 K, F = -0.1396643717751136, relative_change = 6.824897667772413e-6 Iter 70: T = 547.3707928618119 K, F = -0.05840972224694482, relative_change = 2.8545572401890697e-6 Iter 75: T = 547.3660202655742 K, F = -0.024427715818814727, relative_change = 1.1938630241365968e-6 Iter 80: T = 547.3640242647697 K, F = -0.01021597514811387, relative_change = 4.992970614407006e-7 Iter 85: T = 547.3631895056895 K, F = -0.004272445025600369, relative_change = 2.0881361827269667e-7 Iter 90: T = 547.3628403981253 K, F = -0.0017867879205428205, relative_change = 8.732863301089363e-8 Iter 95: T = 547.3626943969368 K, F = -0.0007472561142478629, relative_change = 3.652192690870354e-8 Iter 100: T = 547.362633337455 K, F = -0.00031251144241606355, relative_change = 1.5273914661883043e-8 Iter 105: T = 547.3626078016433 K, F = -0.000130696018723786, relative_change = 6.387735004447225e-9 Iter 110: T = 547.3625971222607 K, F = -5.46586361606094e-5, relative_change = 2.6714273268528607e-9 Iter 115: T = 547.3625926560151 K, F = -2.2858894219657255e-5, relative_change = 1.117222846043857e-9 Iter 120: T = 547.3625907881778 K, F = -9.559862772734462e-6, relative_change = 4.672359548816232e-10 Iter 125: T = 547.3625900070259 K, F = -3.998048239889362e-6, relative_change = 1.9540363121605492e-10 Iter 130: T = 547.3625896803389 K, F = -1.672031312016653e-6, relative_change = 8.172012221953716e-11 Iter 135: T = 547.3625895437146 K, F = -6.992640473046929e-7, relative_change = 3.417635965707599e-11 Iter 140: T = 547.3625894865766 K, F = -2.9244041011011745e-7, relative_change = 1.4292953681341297e-11 Iter 145: T = 547.3625894626808 K, F = -1.2230249782363423e-7, relative_change = 5.977504737497256e-12 Iter 150: T = 547.3625894526873 K, F = -5.1148109636578454e-8, relative_change = 2.4998513778037506e-12 Iter 155: T = 547.3625894485078 K, F = -2.1390599680426448e-8, relative_change = 1.045460339884488e-12 Iter 160: T = 547.36258944676 K, F = -8.945528234827194e-9, relative_change = 4.3721050969546514e-13 Converged in 164 iterations to T = 547.3625894461292 K Iter 1: T = 966.8707195386461 K, F = -7548.53806720091, relative_change = 0.03312928046135389 Iter 2: T = 935.7978408238664 K, F = -6399.467879369708, relative_change = 0.03213757339720292 Iter 3: T = 906.7510158527307 K, F = -5423.856366306303, relative_change = 0.031039636665076264 Iter 5: T = 854.6050553360991 K, F = -3892.5631663608115, relative_change = 0.02852493694943571 Iter 10: T = 756.8979139109135 K, F = -1687.1400320709342, relative_change = 0.02074352379247187 Iter 15: T = 698.977821280985 K, F = -723.0967406523437, relative_change = 0.012633612870521723 Iter 20: T = 668.8627712826124 K, F = -306.7148185342553, relative_change = 0.0065497944695190454 Iter 25: T = 654.7177773244571 K, F = -129.18094931293788, relative_change = 0.0030473957247606426 Iter 30: T = 648.4667255557956 K, F = -54.19924288793827, relative_change = 0.00133771103755685 Iter 35: T = 645.7876352190018 K, F = -22.698521337658793, relative_change = 0.0005713333445923437 Iter 40: T = 644.6553588433428 K, F = -9.498445383782247, relative_change = 0.00024108284727458892 Iter 45: T = 644.1797154865054 K, F = -3.973359425941153, relative_change = 0.00010120374771780773 Iter 50: T = 643.980423430936 K, F = -1.6618811407579743, relative_change = 4.239145055401881e-5 Iter 55: T = 643.8970117749418 K, F = -0.6950491493088535, relative_change = 1.774032745347158e-5 Iter 60: T = 643.8621165804652 K, F = -0.2906832113941511, relative_change = 7.42126803534402e-6 Iter 65: T = 643.8475209906911 K, F = -0.12156812755370677, relative_change = 3.104021828788804e-6 Iter 70: T = 643.8414165903785 K, F = -0.05084140667254439, relative_change = 1.2982017824820056e-6 Iter 75: T = 643.8388635959814 K, F = -0.021262512109247678, relative_change = 5.429344709042042e-7 Iter 80: T = 643.8377958925163 K, F = -0.00889224150394552, relative_change = 2.2706360046106712e-7 Iter 85: T = 643.8373493643013 K, F = -0.0037188424689248434, relative_change = 9.4961045355518e-8 Iter 90: T = 643.8371626205413 K, F = -0.0015552644859338494, relative_change = 3.971390199257661e-8 Iter 95: T = 643.8370845220135 K, F = -0.0006504302090576397, relative_change = 1.6608838385449577e-8 Iter 100: T = 643.8370518602663 K, F = -0.00027201768672946436, relative_change = 6.946016382922017e-9 Iter 105: T = 643.8370382007319 K, F = -0.00011376104635169026, relative_change = 2.9049073279522506e-9 Iter 110: T = 643.8370324881511 K, F = -4.7576227812373695e-5, relative_change = 1.2148669784508383e-9 Iter 115: T = 643.8370300990815 K, F = -1.9896946197028864e-5, relative_change = 5.080718763402233e-10 Iter 120: T = 643.8370290999442 K, F = -8.32114129212247e-6, relative_change = 2.1248174764870237e-10 Iter 125: T = 643.837028682093 K, F = -3.4800012534974556e-6, relative_change = 8.886241976778135e-11 Iter 130: T = 643.8370285073427 K, F = -1.4553790098070785e-6, relative_change = 3.7163348871739744e-11 Iter 135: T = 643.8370284342599 K, F = -6.086565396135057e-7, relative_change = 1.554214756741982e-11 Iter 140: T = 643.8370284036959 K, F = -2.54548440326019e-7, relative_change = 6.4999374294243076e-12 Iter 145: T = 643.8370283909135 K, F = -1.0645461995251182e-7, relative_change = 2.7183367061438154e-12 Iter 150: T = 643.8370283855678 K, F = -4.451997448473577e-8, relative_change = 1.1368250702244116e-12 Iter 155: T = 643.8370283833322 K, F = -1.8619063679725656e-8, relative_change = 4.754409368052102e-13 Converged in 160 iterations to T = 643.8370283823972 K Iter 1: T = 965.2063583308977 K, F = -7927.764351602617, relative_change = 0.034793641669102295 Iter 2: T = 932.3885814276598 K, F = -6723.991489518663, relative_change = 0.03400078814232915 Iter 3: T = 901.5172329186266 K, F = -5701.7811518103135, relative_change = 0.03310995986433403 Iter 5: T = 845.5006926626685 K, F = -4096.858849847031, relative_change = 0.031015892021534246 Iter 10: T = 737.3574073336583 K, F = -1782.6341618252936, relative_change = 0.024011428548801613 Iter 15: T = 669.7971971707174 K, F = -767.5019258728718, relative_change = 0.015705991518585326 Iter 20: T = 632.8683246862714 K, F = -326.7873997517453, relative_change = 0.00863353257484055 Iter 25: T = 614.8996010794508 K, F = -137.9607861841942, relative_change = 0.0041640758332299275 Iter 30: T = 606.8009182436148 K, F = -57.95288344520219, relative_change = 0.0018615580210290309 Iter 35: T = 603.2969518379992 K, F = -24.28398350154565, relative_change = 0.0008017206144932508 Iter 40: T = 601.8097964407145 K, F = -10.164349778835415, relative_change = 0.0003395256467576481 Iter 45: T = 601.1839433334673 K, F = -4.252354568795334, relative_change = 0.00014274846948072607 Iter 50: T = 600.9215130429847 K, F = -1.7786493593415251, relative_change = 5.9832160730129394e-5 Iter 55: T = 600.8116401241928 K, F = -0.7438986455936067, relative_change = 2.5045870271945645e-5 Iter 60: T = 600.7656686757686 K, F = -0.31111539168328256, relative_change = 1.0478570914404867e-5 Iter 65: T = 600.7464391417554 K, F = -0.1301135884106858, relative_change = 4.382979052028022e-6 Iter 70: T = 600.7383964692034 K, F = -0.05441530426095653, relative_change = 1.8331393645199039e-6 Iter 75: T = 600.7350328134795 K, F = -0.0227571734203994, relative_change = 7.666626709584332e-7 Iter 80: T = 600.7336260725432 K, F = -0.009517329277733466, relative_change = 3.206313146805734e-7 Iter 85: T = 600.7330377531958 K, F = -0.003980262089360309, relative_change = 1.3409251477955327e-7 Iter 90: T = 600.7327917104087 K, F = -0.0016645933714143357, relative_change = 5.60792082263617e-8 Iter 95: T = 600.7326888122702 K, F = -0.0006961528681007079, relative_change = 2.345301510540545e-8 Iter 100: T = 600.732645779021 K, F = -0.0002911394504865328, relative_change = 9.808334593780646e-9 Iter 105: T = 600.7326277819991 K, F = -0.00012175799561686684, relative_change = 4.101963264745128e-9 Iter 110: T = 600.732620255429 K, F = -5.0920648418384395e-5, relative_change = 1.7154901460911428e-9 Iter 115: T = 600.7326171077274 K, F = -2.1295623205908054e-5, relative_change = 7.174384814542718e-10 Iter 120: T = 600.732615791321 K, F = -8.906083577675528e-6, relative_change = 3.000413316178942e-10 Iter 125: T = 600.7326152407842 K, F = -3.72463075526408e-6, relative_change = 1.254808768325147e-10 Iter 130: T = 600.7326150105431 K, F = -1.5576856955967777e-6, relative_change = 5.2477622645777914e-11 Iter 135: T = 600.7326149142534 K, F = -6.514422867809344e-7, relative_change = 2.1946752559850164e-11 Iter 140: T = 600.732614873984 K, F = -2.7244017086758276e-7, relative_change = 9.178367970013327e-12 Iter 145: T = 600.7326148571428 K, F = -1.139380971237891e-7, relative_change = 3.838515362894545e-12 Iter 150: T = 600.7326148500996 K, F = -4.765026595521249e-8, relative_change = 1.6053127315842695e-12 Iter 155: T = 600.7326148471541 K, F = -1.9928093120125112e-8, relative_change = 6.713671154060164e-13 Iter 160: T = 600.7326148459222 K, F = -8.333847945074524e-9, relative_change = 2.80763012368769e-13 Converged in 162 iterations to T = 600.7326148456615 K Iter 1: T = 980.0919752604851 K, F = -4536.062374318903, relative_change = 0.019908024739514904 Iter 2: T = 962.2298264668996 K, F = -3831.6761582733193, relative_change = 0.018224971986775255 Iter 3: T = 946.2930083212561 K, F = -3235.16265032516, relative_change = 0.01656238219528072 Iter 5: T = 919.6732499324623 K, F = -2303.105582131277, relative_change = 0.013387571515970607 Iter 10: T = 877.3891285570027 K, F = -977.8016095985494, relative_change = 0.007039389239950378 Iter 15: T = 857.3615944594576 K, F = -412.0535087896439, relative_change = 0.0033027076963529456 Iter 20: T = 848.4707322449652 K, F = -172.92900731673615, relative_change = 0.0014558156942533773 Iter 25: T = 844.6520934777336 K, F = -72.43131295523436, relative_change = 0.0006229427107049037 Iter 30: T = 843.0366757020147 K, F = -30.311314996584997, relative_change = 0.0002630734622560677 Iter 35: T = 842.3578004978322 K, F = -12.680023464650995, relative_change = 0.00011047314555264276 Iter 40: T = 842.0733066434556 K, F = -5.303546171502559, relative_change = 4.6280842461411346e-5 Iter 45: T = 841.9542260776919 K, F = -2.218113002865046, relative_change = 1.9369167832408846e-5 Iter 50: T = 841.9044073240186 K, F = -0.9276600131334947, relative_change = 8.102862702658517e-6 Iter 55: T = 841.8835694042185 K, F = -0.3879617614677746, relative_change = 3.3891418430298365e-6 Iter 60: T = 841.874854191105 K, F = -0.16225081303832511, relative_change = 1.417454446147708e-6 Iter 65: T = 841.8712092893588 K, F = -0.06785532758342239, relative_change = 5.92809470058436e-7 Iter 70: T = 841.8696849312087 K, F = -0.028377925825276318, relative_change = 2.479222899824165e-7 Iter 75: T = 841.8690474235029 K, F = -0.011867990537026474, relative_change = 1.036844629936555e-7 Iter 80: T = 841.8687808096558 K, F = -0.00496333590990039, relative_change = 4.3362150723939905e-8 Iter 85: T = 841.8686693084716 K, F = -0.0020757264474562387, relative_change = 1.8134581553638716e-8 Iter 90: T = 841.868622677329 K, F = -0.0008680936050353694, relative_change = 7.584100712187669e-9 Iter 95: T = 841.8686031756256 K, F = -0.00036304711576296, relative_change = 3.171761866379315e-9 Iter 100: T = 841.8685950197798 K, F = -0.00015183063923163154, relative_change = 1.326468750107006e-9 Iter 105: T = 841.8685916089076 K, F = -6.34973866193711e-5, relative_change = 5.547450838322652e-10 Iter 110: T = 841.8685901824402 K, F = -2.6555366106295608e-5, relative_change = 2.3200102712867493e-10 Iter 115: T = 841.8685895858744 K, F = -1.1105771359876115e-5, relative_change = 9.702560156494383e-11 Iter 120: T = 841.8685893363835 K, F = -4.64456567161875e-6, relative_change = 4.057726062690999e-11 Iter 125: T = 841.8685892320434 K, F = -1.9424131252332444e-6, relative_change = 1.6969897563481145e-11 Iter 130: T = 841.8685891884072 K, F = -8.123401322723822e-7, relative_change = 7.097011781730938e-12 Iter 135: T = 841.868589170158 K, F = -3.3973115565189005e-7, relative_change = 2.9680621684746858e-12 Iter 140: T = 841.868589162526 K, F = -1.4208097987022938e-7, relative_change = 1.2412908684270023e-12 Iter 145: T = 841.8685891593342 K, F = -5.942084269072723e-8, relative_change = 5.191303543580317e-13 Converged in 150 iterations to T = 841.8685891579993 K Iter 1: T = 976.4435665315594 K, F = -5367.355773737282, relative_change = 0.02355643346844061 Iter 2: T = 955.0486602182689 K, F = -4538.445530025625, relative_change = 0.021911052565267784 Iter 3: T = 935.7235873278179 K, F = -3835.8103119793327, relative_change = 0.020234647401143353 Iter 5: T = 902.8617546663826 K, F = -2736.230069503176, relative_change = 0.01688197109316102 Iter 10: T = 848.7455051256326 K, F = -1166.7783503491505, relative_change = 0.00949771264998338 Iter 15: T = 822.0295830703708 K, F = -493.07473483593265, relative_change = 0.004651301960834482 Iter 20: T = 809.8854611245879 K, F = -207.23513961337017, relative_change = 0.002096188244401894 Iter 25: T = 804.6089685282765 K, F = -86.85934798152493, relative_change = 0.0009061643478945212 Iter 30: T = 802.3652382864537 K, F = -36.35999657140166, relative_change = 0.0003843895016439167 Iter 35: T = 801.4202089193999 K, F = -15.212270336327478, relative_change = 0.00016172440593349084 Iter 40: T = 801.0238040284471 K, F = -6.363022890349789, relative_change = 6.780590512706284e-5 Iter 45: T = 800.8578148694437 K, F = -2.661279663318535, relative_change = 2.8387228071016257e-5 Iter 50: T = 800.788359777229 K, F = -1.1130117605666245, relative_change = 1.1877131011922881e-5 Iter 55: T = 800.7593064481779 K, F = -0.46548055327432036, relative_change = 4.968077422379076e-6 Iter 60: T = 800.7471548826888 K, F = -0.194670530944696, relative_change = 2.077870155256738e-6 Iter 65: T = 800.7420727576058 K, F = -0.08141371659415397, relative_change = 8.690182491311883e-7 Iter 70: T = 800.7399473180467 K, F = -0.03404821929033741, relative_change = 3.634387311195157e-7 Iter 75: T = 800.7390584278661 K, F = -0.0142393773011944, relative_change = 1.5199527842892664e-7 Iter 80: T = 800.7386866823322 K, F = -0.005955078578630424, relative_change = 6.356639115853396e-8 Iter 85: T = 800.7385312137276 K, F = -0.002490485145213328, relative_change = 2.658425026173034e-8 Iter 90: T = 800.7384661948685 K, F = -0.0010415506597507562, relative_change = 1.111785555397328e-8 Iter 95: T = 800.7384390031996 K, F = -0.0004355889300885485, relative_change = 4.649620777733723e-9 Iter 100: T = 800.738427631318 K, F = -0.0001821684949919744, relative_change = 1.9445270945350245e-9 Iter 105: T = 800.738422875461 K, F = -7.618503968809254e-5, relative_change = 8.132244714848589e-10 Iter 110: T = 800.7384208865049 K, F = -3.186149345157929e-5, relative_change = 3.401001900818012e-10 Iter 115: T = 800.7384200546995 K, F = -1.3324854808871578e-5, relative_change = 1.4223393773461455e-10 Iter 120: T = 800.7384197068286 K, F = -5.572611349702328e-6, relative_change = 5.948390948654462e-11 Iter 125: T = 800.7384195613449 K, F = -2.33053269216299e-6, relative_change = 2.4876882153890716e-11 Iter 130: T = 800.7384195005019 K, F = -9.746566799195833e-7, relative_change = 1.040381002041655e-11 Iter 135: T = 800.7384194750566 K, F = -4.076132110730768e-7, relative_change = 4.350999175225225e-12 Iter 140: T = 800.7384194644151 K, F = -1.704677355940376e-7, relative_change = 1.8196293860704352e-12 Iter 145: T = 800.7384194599647 K, F = -7.129174928177662e-8, relative_change = 7.609918764325788e-13 Iter 150: T = 800.7384194581034 K, F = -2.981493985032557e-8, relative_change = 3.182545982003909e-13 Converged in 153 iterations to T = 800.7384194575585 K Iter 1: T = 980.9547662855421 K, F = -4339.4746185335325, relative_change = 0.019045233714457956 Iter 2: T = 963.9158549758138 K, F = -3664.7404061904126, relative_change = 0.017369721719429916 Iter 3: T = 948.7567921756935 K, F = -3093.4809859932343, relative_change = 0.015726541608240975 Iter 5: T = 923.5381004918509 K, F = -2201.235702204261, relative_change = 0.012621706919555288 Iter 10: T = 883.7895910652957 K, F = -933.6822953906857, relative_change = 0.006542258820797589 Iter 15: T = 865.1220201563788 K, F = -393.24156705477543, relative_change = 0.0030435197392586124 Iter 20: T = 856.8728520828986 K, F = -164.98804287642403, relative_change = 0.0013359296957222374 Iter 25: T = 853.3375116683991 K, F = -69.09650039234644, relative_change = 0.0005705571779617375 Iter 30: T = 851.8433743374612 K, F = -28.914166916185707, relative_change = 0.00024075253390308776 Iter 35: T = 851.2157250780543 K, F = -12.09527831716121, relative_change = 0.00010106458816273659 Iter 40: T = 850.9527439872393 K, F = -5.058921189144046, relative_change = 4.233307275196741e-5 Iter 45: T = 850.8426760472023 K, F = -2.1157943140884923, relative_change = 1.7715881636490954e-5 Iter 50: T = 850.7966292388179 K, F = -0.8848667346592585, relative_change = 7.411038981378958e-6 Iter 55: T = 850.7773692743414 K, F = -0.3700646847678718, relative_change = 3.0997429499852395e-6 Iter 60: T = 850.7693140654569 K, F = -0.15476596895530226, relative_change = 1.296412135232043e-6 Iter 65: T = 850.7659452001374 K, F = -0.06472506365547104, relative_change = 5.42185989475086e-7 Iter 70: T = 850.7645362863019 K, F = -0.027068809841458208, relative_change = 2.2675057144640563e-7 Iter 75: T = 850.7639470592393 K, F = -0.011320502210723893, relative_change = 9.483013199074986e-8 Iter 80: T = 850.7637006370128 K, F = -0.004734369687240392, relative_change = 3.965915231863357e-8 Iter 85: T = 850.7635975802192 K, F = -0.0019799700266558418, relative_change = 1.6585941392468244e-8 Iter 90: T = 850.7635544806241 K, F = -0.0008280471239425768, relative_change = 6.936440549981385e-9 Iter 95: T = 850.7635364558563 K, F = -0.000346299198768385, relative_change = 2.900902590710501e-9 Iter 100: T = 850.7635289176827 K, F = -0.00014482645807456507, relative_change = 1.213192137464492e-9 Iter 105: T = 850.7635257651284 K, F = -6.056815154531492e-5, relative_change = 5.073714258353731e-10 Iter 110: T = 850.7635244466926 K, F = -2.5330324749495148e-5, relative_change = 2.1218879480313272e-10 Iter 115: T = 850.763523895307 K, F = -1.0593444210948988e-5, relative_change = 8.873988743143403e-11 Iter 120: T = 850.7635236647111 K, F = -4.430306377090076e-6, relative_change = 3.711209327847921e-11 Iter 125: T = 850.7635235682731 K, F = -1.8528087466496146e-6, relative_change = 1.5520734959896516e-11 Iter 130: T = 850.7635235279415 K, F = -7.748659247575063e-7, relative_change = 6.49094984686257e-12 Iter 135: T = 850.7635235110744 K, F = -3.240574462104462e-7, relative_change = 2.7145865676196834e-12 Iter 140: T = 850.7635235040203 K, F = -1.355266980862524e-7, relative_change = 1.1352893090270033e-12 Iter 145: T = 850.7635235010702 K, F = -5.667639535467117e-8, relative_change = 4.747707029684892e-13 Converged in 150 iterations to T = 850.7635234998364 K Iter 1: T = 967.2992337743223 K, F = -7450.90069097982, relative_change = 0.0327007662256777 Iter 2: T = 936.6725625690417 K, F = -6315.960311619939, relative_change = 0.03166204431464061 Iter 3: T = 908.0886892039559 K, F = -5352.389260152844, relative_change = 0.030516398693998102 Iter 5: T = 856.9113845562678 K, F = -3840.130504102616, relative_change = 0.027909599467171396 Iter 10: T = 761.7109847296125 K, F = -1662.8519973314976, relative_change = 0.019994178114582855 Iter 15: T = 705.9516473640474 K, F = -711.9676588339648, relative_change = 0.011986330941143127 Iter 20: T = 677.2664469699284 K, F = -301.7588810571515, relative_change = 0.006140200661635726 Iter 25: T = 663.8872392858657 K, F = -127.03547324115151, relative_change = 0.002837039796193605 Iter 30: T = 657.9966598983957 K, F = -53.28705044735262, relative_change = 0.0012411360262466428 Iter 35: T = 655.476482494617 K, F = -22.314226572683424, relative_change = 0.000529275908972093 Iter 40: T = 654.4121894475579 K, F = -9.337222666387115, relative_change = 0.00022318872850118926 Iter 45: T = 653.9652517153271 K, F = -3.9058444764461933, relative_change = 9.366581161551124e-5 Iter 50: T = 653.7780132255268 K, F = -1.6336298095905275, relative_change = 3.922940442402717e-5 Iter 55: T = 653.6996510454231 K, F = -0.6832313400862345, relative_change = 1.6416238857096726e-5 Iter 60: T = 653.6668690972402 K, F = -0.28574037834635047, relative_change = 6.8672235750548206e-6 Iter 65: T = 653.6531575540412 K, F = -0.11950089104062084, relative_change = 2.872262228383539e-6 Iter 70: T = 653.6474229183589 K, F = -0.049976848858106104, relative_change = 1.2012681243813734e-6 Iter 75: T = 653.6450245719569 K, F = -0.0209009411145466, relative_change = 5.02394078738936e-7 Iter 80: T = 653.6440215455315 K, F = -0.008741027743744023, relative_change = 2.1010884820223218e-7 Iter 85: T = 653.643602066272 K, F = -0.0036556029888902275, relative_change = 8.787031717421291e-8 Iter 90: T = 653.643426634751 K, F = -0.0015288169656440531, relative_change = 3.6748466324008256e-8 Iter 95: T = 653.643353267144 K, F = -0.0006393695374248831, relative_change = 1.5368656287048676e-8 Iter 100: T = 653.6433225839259 K, F = -0.0002673919801911562, relative_change = 6.427357131294797e-9 Iter 105: T = 653.643309751836 K, F = -0.00011182651919977582, relative_change = 2.687997756372416e-9 Iter 110: T = 653.6433043853026 K, F = -4.676718595625351e-5, relative_change = 1.1241528104041402e-9 Iter 115: T = 653.6433021409542 K, F = -1.9558596317248433e-5, relative_change = 4.701341534124207e-10 Iter 120: T = 653.6433012023409 K, F = -8.179638501470965e-6, relative_change = 1.9661571750975521e-10 Iter 125: T = 653.6433008098016 K, F = -3.420823474709067e-6, relative_change = 8.222706465038065e-11 Iter 130: T = 653.6433006456369 K, F = -1.4306287972609688e-6, relative_change = 3.438833006539233e-11 Iter 135: T = 653.6433005769815 K, F = -5.983069667481189e-7, relative_change = 1.438163240012973e-11 Iter 140: T = 653.6433005482688 K, F = -2.5021975103012295e-7, relative_change = 6.014585621288224e-12 Iter 145: T = 653.6433005362609 K, F = -1.0464532518295044e-7, relative_change = 2.515382041762497e-12 Iter 150: T = 653.643300531239 K, F = -4.3763983270661555e-8, relative_change = 1.0519642172890743e-12 Iter 155: T = 653.6433005291387 K, F = -1.8301780257967692e-8, relative_change = 4.3992380276022126e-13 Converged in 159 iterations to T = 653.6433005283807 K Iter 1: T = 973.428196094374 K, F = -6054.4107962077405, relative_change = 0.026571803905625926 Iter 2: T = 949.049516242969 K, F = -5123.630755602269, relative_change = 0.02504414804216483 Iter 3: T = 926.7972269553098 K, F = -4334.130665166305, relative_change = 0.023446921268923917 Iter 5: T = 888.3525783356504 K, F = -3097.220902000522, relative_change = 0.02012105626141856 Iter 10: T = 822.8260341530789 K, F = -1326.3349995775623, relative_change = 0.012094693645796168 Iter 15: T = 789.0557363178863 K, F = -562.2245255861175, relative_change = 0.006208149738559282 Iter 20: T = 773.2863131055011 K, F = -236.7051916503353, relative_change = 0.002871747382450422 Iter 25: T = 766.339069646937 K, F = -99.2934693208264, relative_change = 0.0012570274310388745 Iter 30: T = 763.3659566426093 K, F = -41.58034973108456, relative_change = 0.0005361880222274515 Iter 35: T = 762.1102251033784 K, F = -17.399115173728216, relative_change = 0.00022612806598677182 Iter 40: T = 761.5828662882277 K, F = -7.278229198911974, relative_change = 9.49037370688007e-5 Iter 45: T = 761.3619314098889 K, F = -3.044142594937832, relative_change = 3.974864592151415e-5 Iter 50: T = 761.2694658837836 K, F = -1.2731493626126362, relative_change = 1.663365966824537e-5 Iter 55: T = 761.2307838013088 K, F = -0.5324554681379148, relative_change = 6.9581984597001745e-6 Iter 60: T = 761.2146044108301 K, F = -0.22268084505357877, relative_change = 2.9103172199520445e-6 Iter 65: T = 761.2078376323475 K, F = -0.09312807027155712, relative_change = 1.2171846123204961e-6 Iter 70: T = 761.2050076210757 K, F = -0.03894732040214666, relative_change = 5.090507952620641e-7 Iter 75: T = 761.2038240654232 K, F = -0.016288243130260116, relative_change = 2.128928104729749e-7 Iter 80: T = 761.2033290863661 K, F = -0.0068119393038761356, relative_change = 8.903461112770533e-8 Iter 85: T = 761.2031220798724 K, F = -0.0028488346318037427, relative_change = 3.723538932343241e-8 Iter 90: T = 761.203035507225 K, F = -0.0011914167109499108, relative_change = 1.5572293528666515e-8 Iter 95: T = 761.2029993014994 K, F = -0.0004982647037636845, relative_change = 6.5125206888660724e-9 Iter 100: T = 761.2029841598307 K, F = -0.00020838024946367995, relative_change = 2.7236141835050404e-9 Iter 105: T = 761.2029778274039 K, F = -8.714710813129134e-5, relative_change = 1.139048013283249e-9 Iter 110: T = 761.2029751791073 K, F = -3.64459607652412e-5, relative_change = 4.763634821589937e-10 Iter 115: T = 761.2029740715581 K, F = -1.5242137079263252e-5, relative_change = 1.9922091207008985e-10 Iter 120: T = 761.2029736083678 K, F = -6.37444392781461e-6, relative_change = 8.331656711353063e-11 Iter 125: T = 761.202973414656 K, F = -2.665869044626845e-6, relative_change = 3.484398952393042e-11 Iter 130: T = 761.2029733336434 K, F = -1.114899124465829e-6, relative_change = 1.4572183697886432e-11 Iter 135: T = 761.202973299763 K, F = -4.6626456917664427e-7, relative_change = 6.09426701142418e-12 Iter 140: T = 761.2029732855938 K, F = -1.9499623693519652e-7, relative_change = 2.548679897144687e-12 Iter 145: T = 761.2029732796681 K, F = -8.155036446133579e-8, relative_change = 1.0658963361647153e-12 Iter 150: T = 761.2029732771898 K, F = -3.410533322423248e-8, relative_change = 4.457705366256824e-13 Converged in 154 iterations to T = 761.2029732762953 K Iter 1: T = 969.9570915795767 K, F = -6845.305261777129, relative_change = 0.030042908420423294 Iter 2: T = 942.0704670163285 K, F = -5798.425276356022, relative_change = 0.028750369274412758 Iter 3: T = 916.2976350946112 K, F = -4909.919977525831, relative_change = 0.027357647675065714 Iter 5: T = 870.8891196808877 K, F = -3516.3862193631576, relative_change = 0.02431177064592911 Iter 10: T = 789.8379766376406 K, F = -1514.6098954035067, relative_change = 0.01601083561230389 Iter 15: T = 745.3152432714717 K, F = -645.1405134323346, relative_change = 0.008853864905063825 Iter 20: T = 723.5710837091966 K, F = -272.4300490267468, relative_change = 0.0042869234909506185 Iter 25: T = 713.7496445292192 K, F = -114.454437613304, relative_change = 0.0019203661363818379 Iter 30: T = 709.4958040535499 K, F = -47.96281375646249, relative_change = 0.0008278257037029882 Iter 35: T = 707.6895240155775 K, F = -20.0759556136447, relative_change = 0.00035072536582967024 Iter 40: T = 706.9292139153064 K, F = -8.399069478531827, relative_change = 0.00014748310276070257 Iter 45: T = 706.6103757465569 K, F = -3.513129726355936, relative_change = 6.182122798794629e-5 Iter 50: T = 706.4768813642312 K, F = -1.4693271850295218, relative_change = 2.5879301660956442e-5 Iter 55: T = 706.4210257005475 K, F = -0.6145066963360476, relative_change = 1.0827398744905153e-5 Iter 60: T = 706.3976615177957 K, F = -0.25699692948715225, relative_change = 4.528911483878029e-6 Iter 65: T = 706.3878895192121 K, F = -0.10747969067878294, relative_change = 1.8941785304340185e-6 Iter 70: T = 706.3838026095544 K, F = -0.04494937864456916, relative_change = 7.921914625128266e-7 Iter 75: T = 706.3820933900896 K, F = -0.018798382420220694, relative_change = 3.313080196564673e-7 Iter 80: T = 706.3813785697178 K, F = -0.00786171072911701, relative_change = 1.3855768564344388e-7 Iter 85: T = 706.3810796225356 K, F = -0.003287861786245294, relative_change = 5.7946603919096147e-8 Iter 90: T = 706.3809545991201 K, F = -0.0013750231467418716, relative_change = 2.423398366075634e-8 Iter 95: T = 706.3809023128111 K, F = -0.0005750511144734238, relative_change = 1.0134945187281293e-8 Iter 100: T = 706.3808804460483 K, F = -0.00024049324615182943, relative_change = 4.238555783215086e-9 Iter 105: T = 706.3808713011063 K, F = -0.00010057714927891315, relative_change = 1.7726147857925927e-9 Iter 110: T = 706.380867476582 K, F = -4.206256488292759e-5, relative_change = 7.413286904274016e-10 Iter 115: T = 706.3808658771203 K, F = -1.7591067870137422e-5, relative_change = 3.10032530927975e-10 Iter 120: T = 706.3808652082064 K, F = -7.356794839874503e-6, relative_change = 1.2965931067092963e-10 Iter 125: T = 706.3808649284585 K, F = -3.076700194504234e-6, relative_change = 5.422508521652975e-11 Iter 130: T = 706.3808648114646 K, F = -1.2867115087855652e-6, relative_change = 2.267755610138313e-11 Iter 135: T = 706.3808647625364 K, F = -5.381181913399757e-7, relative_change = 9.484026057114606e-12 Iter 140: T = 706.3808647420741 K, F = -2.2504753804941657e-7, relative_change = 3.966334440264386e-12 Iter 145: T = 706.3808647335164 K, F = -9.41178923685726e-8, relative_change = 1.6587741470254482e-12 Iter 150: T = 706.3808647299376 K, F = -3.936089665312892e-8, relative_change = 6.937133432380956e-13 Iter 155: T = 706.3808647284408 K, F = -1.6461231600040094e-8, relative_change = 2.901198137793906e-13 Converged in 157 iterations to T = 706.380864728124 K Iter 1: T = 973.5007234059167 K, F = -6037.885379281482, relative_change = 0.026499276594083354 Iter 2: T = 949.1944998350057 K, F = -5109.5444843097175, relative_change = 0.024967853630218802 Iter 3: T = 927.0140180413423 K, F = -4322.124490720117, relative_change = 0.02336768891678036 Iter 5: T = 888.7085197566041 K, F = -3088.504700290654, relative_change = 0.020039018774305313 Iter 10: T = 823.476860237938 K, F = -1322.4568144259113, relative_change = 0.012024663685322434 Iter 15: T = 789.8972094658872 K, F = -560.5334619115191, relative_change = 0.006164237327133388 Iter 20: T = 774.228618069515 K, F = -235.9816699512478, relative_change = 0.0028493152990744907 Iter 25: T = 767.3285490122336 K, F = -98.98758350917714, relative_change = 0.0012467558749132798 Iter 30: T = 764.376175284108 K, F = -41.451807883280416, relative_change = 0.000531720165072346 Iter 35: T = 763.1293054395455 K, F = -17.34524643150818, relative_change = 0.00022422810617885389 Iter 40: T = 762.6056865288458 K, F = -7.2556809947850995, relative_change = 9.410354863737513e-5 Iter 45: T = 762.3863217098796 K, F = -3.0347092117453065, relative_change = 3.941301005652657e-5 Iter 50: T = 762.2945138534947 K, F = -1.2692036035294931, relative_change = 1.6493119463686464e-5 Iter 55: T = 762.2561070007444 K, F = -0.5308051985538426, relative_change = 6.899392520083267e-6 Iter 60: T = 762.2400427469013 K, F = -0.22199066405765666, relative_change = 2.885718562871416e-6 Iter 65: T = 762.2333241255822 K, F = -0.09283942509188303, relative_change = 1.2068962310644167e-6 Iter 70: T = 762.2305142551992 K, F = -0.038826604973917656, relative_change = 5.047479088437264e-7 Iter 75: T = 762.2293391228797 K, F = -0.01623775839565489, relative_change = 2.110932635393737e-7 Iter 80: T = 762.2288476665913 K, F = -0.006790825967907699, relative_change = 8.828201414152718e-8 Iter 85: T = 762.2286421333667 K, F = -0.002840004779711469, relative_change = 3.692064340886299e-8 Iter 90: T = 762.228556176859 K, F = -0.0011877239603765855, relative_change = 1.5440662870468927e-8 Iter 95: T = 762.2285202288107 K, F = -0.0004967203515546803, relative_change = 6.457471152666251e-9 Iter 100: T = 762.2285051949058 K, F = -0.0002077343854858249, relative_change = 2.7005918389796926e-9 Iter 105: T = 762.228498907547 K, F = -8.687700179110802e-5, relative_change = 1.1294198151053407e-9 Iter 110: T = 762.2284962780983 K, F = -3.63329994235162e-5, relative_change = 4.723368592275668e-10 Iter 115: T = 762.2284951784314 K, F = -1.5194895160219879e-5, relative_change = 1.9753692839695993e-10 Iter 120: T = 762.2284947185376 K, F = -6.354685409659666e-6, relative_change = 8.261228702949692e-11 Iter 125: T = 762.2284945262046 K, F = -2.657605304490218e-6, relative_change = 3.454944475389616e-11 Iter 130: T = 762.2284944457685 K, F = -1.1114416471613708e-6, relative_change = 1.4448982224785417e-11 Iter 135: T = 762.2284944121293 K, F = -4.648201810120156e-7, relative_change = 6.042763065185248e-12 Iter 140: T = 762.2284943980609 K, F = -1.9439259957287902e-7, relative_change = 2.527145913480037e-12 Iter 145: T = 762.2284943921773 K, F = -8.129541007040331e-8, relative_change = 1.056857945225591e-12 Iter 150: T = 762.2284943897167 K, F = -3.399648929036658e-8, relative_change = 4.419617268150479e-13 Converged in 154 iterations to T = 762.2284943888287 K Iter 1: T = 964.347066371369 K, F = -8123.554841978911, relative_change = 0.03565293362863102 Iter 2: T = 930.6210159009327 K, F = -6891.650096331277, relative_change = 0.03497293831912637 Iter 3: T = 898.7909450163103 K, F = -5845.486305593062, relative_change = 0.034203043280521414 Iter 5: T = 840.7058577221579 K, F = -4202.745480742878, relative_change = 0.03236822651791373 Iter 10: T = 726.688241184131 K, F = -1832.722018199193, relative_change = 0.025959584154649874 Iter 15: T = 653.1876484262967 K, F = -791.2947125216057, relative_change = 0.01775491705577619 Iter 20: T = 611.6608048078217 K, F = -337.8018619102676, relative_change = 0.01016482443327539 Iter 25: T = 590.9312126547763 K, F = -142.86437290775584, relative_change = 0.005037535888457135 Iter 30: T = 581.4448617174696 K, F = -60.07011750518634, relative_change = 0.0022848566054508293 Iter 35: T = 577.3091903822159 K, F = -25.182495620058468, relative_change = 0.0009907139564828559 Iter 40: T = 575.5478625507085 K, F = -10.542522478385353, relative_change = 0.00042081532183990987 Iter 45: T = 574.8055183611748 K, F = -4.41094073917972, relative_change = 0.00017715081360007031 Iter 50: T = 574.4940438956743 K, F = -1.8450478683755476, relative_change = 7.429158617621248e-5 Iter 55: T = 574.3636025884499 K, F = -0.7716806181210648, relative_change = 3.110562917812001e-5 Iter 60: T = 574.3090190975398 K, F = -0.32273647841204617, relative_change = 1.3015052866085082e-5 Iter 65: T = 574.2861861359994 K, F = -0.13497407416852622, relative_change = 5.444154473805188e-6 Iter 70: T = 574.2766361575191 K, F = -0.056448088919791806, relative_change = 2.27700355417728e-6 Iter 75: T = 574.2726420743088 K, F = -0.023607320742190546, relative_change = 9.523038633384552e-7 Iter 80: T = 574.2709716715979 K, F = -0.00987287322791508, relative_change = 3.982707576448023e-7 Iter 85: T = 574.2702730840907 K, F = -0.004128955197321704, relative_change = 1.6656262068872948e-7 Iter 90: T = 574.2699809255527 K, F = -0.0017267786715638445, relative_change = 6.965865788702943e-8 Iter 95: T = 574.2698587412057 K, F = -0.0007221595151424287, relative_change = 2.91321142597846e-8 Iter 100: T = 574.269807642225 K, F = -0.0003020157430638215, relative_change = 1.218340363581593e-8 Iter 105: T = 574.2697862720162 K, F = -0.0001263065918983841, relative_change = 5.095245856997967e-9 Iter 110: T = 574.2697773347388 K, F = -5.282292537300837e-5, relative_change = 2.1308928343165075e-9 Iter 115: T = 574.2697735970626 K, F = -2.2091178091043773e-5, relative_change = 8.911648535568047e-10 Iter 120: T = 574.2697720339216 K, F = -9.238794552168805e-6, relative_change = 3.7269579136469853e-10 Iter 125: T = 574.2697713801975 K, F = -3.863774427015354e-6, relative_change = 1.558658402245158e-10 Iter 130: T = 574.2697711068023 K, F = -1.615877261551546e-6, relative_change = 6.518498230157482e-11 Iter 135: T = 574.269770992465 K, F = -6.757787714417596e-7, relative_change = 2.7261122082793357e-11 Iter 140: T = 574.2697709446479 K, F = -2.826189424709469e-7, relative_change = 1.1400934480713645e-11 Iter 145: T = 574.2697709246503 K, F = -1.181952174467149e-7, relative_change = 4.7680311817939455e-12 Iter 150: T = 574.269770916287 K, F = -4.943139558788445e-8, relative_change = 1.9940776000113597e-12 Iter 155: T = 574.2697709127893 K, F = -2.0673085354694365e-8, relative_change = 8.339585791548674e-13 Iter 160: T = 574.2697709113265 K, F = -8.645477611590735e-9, relative_change = 3.4876120818258276e-13 Converged in 163 iterations to T = 574.2697709108983 K Iter 1: T = 963.5500334625099 K, F = -8305.159548436497, relative_change = 0.03644996653749017 Iter 2: T = 928.976980609001 K, F = -7047.228313247474, relative_change = 0.03588091085345185 Iter 3: T = 896.2472492494295 K, F = -5978.911396923763, relative_change = 0.03523201547805325 Iter 5: T = 836.1987370104727 K, F = -4301.21669968228, relative_change = 0.033665427813296275 Iter 10: T = 716.3961297288739 K, F = -1879.7086476970446, relative_change = 0.02795766211364869 Iter 15: T = 636.6279381898065 K, F = -814.0085301817841, relative_change = 0.02005140421772065 Iter 20: T = 589.8652001405701 K, F = -348.5525968752677, relative_change = 0.012034851199605647 Iter 25: T = 565.7893367862708 K, F = -147.7382884955225, relative_change = 0.006170514130769847 Iter 30: T = 554.5542143580335 K, F = -62.197443678477065, relative_change = 0.0028524970273334786 Iter 35: T = 549.6062828823107 K, F = -26.09013577520337, relative_change = 0.0012482079705585336 Iter 40: T = 547.48913081288 K, F = -10.925459255133356, relative_change = 0.0005323509087144383 Iter 45: T = 546.5949889015036 K, F = -4.571691981619348, relative_change = 0.00022449617349684824 Iter 50: T = 546.2194952291054 K, F = -1.9123825802150332, relative_change = 9.421642038915747e-5 Iter 55: T = 546.0621856716384 K, F = -0.7998595393341139, relative_change = 3.946034880882317e-5 Iter 60: T = 545.9963489302111 K, F = -0.33452452431977536, relative_change = 1.651294068402816e-5 Iter 65: T = 545.9688068114405 K, F = -0.13990455071057037, relative_change = 6.907686122419666e-6 Iter 70: T = 545.9572868972077 K, F = -0.05851017368907607, relative_change = 2.8891877693563224e-6 Iter 75: T = 545.952468874119 K, F = -0.024469726816014226, relative_change = 1.2083472211011485e-6 Iter 80: T = 545.9504538743039 K, F = -0.010233544824592655, relative_change = 5.053547523003289e-7 Iter 85: T = 545.949611169443 K, F = -0.004279792905448665, relative_change = 2.1134705661630005e-7 Iter 90: T = 545.9492587388288 K, F = -0.0017898608968788532, relative_change = 8.838815411011273e-8 Iter 95: T = 545.9491113478963 K, F = -0.0007485412711451256, relative_change = 3.696503252584864e-8 Iter 100: T = 545.9490497072059 K, F = -0.0003130489106650258, relative_change = 1.5459226940692175e-8 Iter 105: T = 545.9490239283257 K, F = -0.00013092079503712606, relative_change = 6.465234881081281e-9 Iter 110: T = 545.9490131472888 K, F = -5.4752640343574965e-5, relative_change = 2.7038387091994628e-9 Iter 115: T = 545.9490086385302 K, F = -2.2898207755334132e-5, relative_change = 1.1307776674503149e-9 Iter 120: T = 545.9490067529134 K, F = -9.576303476255266e-6, relative_change = 4.729047094618913e-10 Iter 125: T = 545.9490059643259 K, F = -4.004923710998476e-6, relative_change = 1.977743606065812e-10 Iter 130: T = 545.9490056345294 K, F = -1.6749070032850977e-6, relative_change = 8.271160364257575e-11 Iter 135: T = 545.9490054966045 K, F = -7.004659633713661e-7, relative_change = 3.4590973160620904e-11 Iter 140: T = 545.9490054389227 K, F = -2.929435628240551e-7, relative_change = 1.4466374462435192e-11 Iter 145: T = 545.9490054147994 K, F = -1.225129281079429e-7, relative_change = 6.050031882544574e-12 Iter 150: T = 545.9490054047108 K, F = -5.123626159453387e-8, relative_change = 2.530190250154491e-12 Iter 155: T = 545.9490054004916 K, F = -2.1428030155812294e-8, relative_change = 1.0581762075325093e-12 Iter 160: T = 545.9490053987271 K, F = -8.96118856896777e-9, relative_change = 4.425286163071691e-13 Converged in 164 iterations to T = 545.9490053980901 K Iter 1: T = 969.2765109233547 K, F = -7000.3762116966445, relative_change = 0.030723489076645273 Iter 2: T = 940.6927577317833 K, F = -5930.878098804666, relative_change = 0.02948978219263958 Iter 3: T = 914.2098871368123 K, F = -5023.088693293757, relative_change = 0.02815251885092326 Iter 5: T = 867.3622131115841 K, F = -3599.0484916507367, relative_change = 0.025198623362858913 Iter 10: T = 782.8995963106041 K, F = -1552.1985594853247, relative_change = 0.016933863885538244 Iter 15: T = 735.805992697813 K, F = -661.9292964951406, relative_change = 0.009536665841799307 Iter 20: T = 712.5420040025296 K, F = -279.74057306600656, relative_change = 0.004673586039101537 Iter 25: T = 701.9629398394279 K, F = -117.57544116685948, relative_change = 0.002107003975365188 Iter 30: T = 697.3655630235695 K, F = -49.280458278318, relative_change = 0.0009109966867979045 Iter 35: T = 695.4104431240153 K, F = -20.629285708451285, relative_change = 0.00038646861202379194 Iter 40: T = 694.5869413703996 K, F = -8.630884923604462, relative_change = 0.00016260441269017926 Iter 45: T = 694.2415072584505 K, F = -3.6101493734266783, relative_change = 6.817579505827817e-5 Iter 50: T = 694.09686043965 K, F = -1.5099145389604258, relative_change = 2.854224769391807e-5 Iter 55: T = 694.036335482727 K, F = -0.631483015868412, relative_change = 1.1942019437143898e-5 Iter 60: T = 694.0110176330747 K, F = -0.2640970146767882, relative_change = 4.995224580159663e-6 Iter 65: T = 694.0004284279353 K, F = -0.1104490985595451, relative_change = 2.089225178164112e-6 Iter 70: T = 693.9959997247934 K, F = -0.046191232280694106, relative_change = 8.737673626944758e-7 Iter 75: T = 693.9941475583239 K, F = -0.019317742506662405, relative_change = 3.6542492089700647e-7 Iter 80: T = 693.9933729549527 K, F = -0.008078913682444844, relative_change = 1.5282593609910998e-7 Iter 85: T = 693.9930490056568 K, F = -0.0033786987193453744, relative_change = 6.391378376337901e-8 Iter 90: T = 693.9929135260325 K, F = -0.0014130122485198626, relative_change = 2.6729534281772996e-8 Iter 95: T = 693.9928568668075 K, F = -0.00059093861317705, relative_change = 1.1178615100982811e-8 Iter 100: T = 693.9928331712381 K, F = -0.0002471375886210492, relative_change = 4.675031158364323e-9 Iter 105: T = 693.9928232614672 K, F = -0.0001033558914790289, relative_change = 1.9551540039339385e-9 Iter 110: T = 693.9928191170825 K, F = -4.32246688416571e-5, relative_change = 8.176687903124911e-10 Iter 115: T = 693.9928173838513 K, F = -1.8077072659217208e-5, relative_change = 3.419588560309782e-10 Iter 120: T = 693.9928166589933 K, F = -7.560049004706748e-6, relative_change = 1.4301130336639054e-10 Iter 125: T = 693.992816355849 K, F = -3.161702149090395e-6, relative_change = 5.980902317651485e-11 Iter 130: T = 693.9928162290704 K, F = -1.322261326208718e-6, relative_change = 2.501284265380959e-11 Iter 135: T = 693.9928161760502 K, F = -5.529856560437807e-7, relative_change = 1.046067289068139e-11 Iter 140: T = 693.9928161538764 K, F = -2.312667775061783e-7, relative_change = 4.374808069434992e-12 Iter 145: T = 693.992816144603 K, F = -9.671787026821477e-8, relative_change = 1.829584533920217e-12 Iter 150: T = 693.9928161407248 K, F = -4.044816037662713e-8, relative_change = 7.651463834692278e-13 Iter 155: T = 693.992816139103 K, F = -1.6915530087757702e-8, relative_change = 3.1998628740445096e-13 Converged in 158 iterations to T = 693.9928161386281 K Iter 1: T = 966.4765207734144 K, F = -7638.356630838788, relative_change = 0.033523479226585606 Iter 2: T = 934.9920696863114 K, F = -6476.304728651715, relative_change = 0.03257652970390621 Iter 3: T = 905.5169268549796 K, F = -5489.632391469286, relative_change = 0.03152448431056824 Iter 5: T = 852.4699721318042 K, F = -3940.8565756437038, relative_change = 0.02910018630455005 Iter 10: T = 752.3946519900572 K, F = -1709.5871408572389, relative_change = 0.021463933244705146 Iter 15: T = 692.380851852724 K, F = -733.4370298342692, relative_change = 0.013275043395701047 Iter 20: T = 660.8479980689382 K, F = -311.3433168315891, relative_change = 0.006965364236833977 Iter 25: T = 645.9316696623102 K, F = -131.19157025848168, relative_change = 0.0032638121785384484 Iter 30: T = 639.3144215862242 K, F = -55.055641539730196, relative_change = 0.0014377557152140063 Iter 35: T = 636.4732391753925 K, F = -23.05961236062541, relative_change = 0.0006150375629499156 Iter 40: T = 635.2714948524741 K, F = -9.649988780391363, relative_change = 0.0002597026480990668 Iter 45: T = 634.766496422828 K, F = -4.036830857695092, relative_change = 0.00010905185475203476 Iter 50: T = 634.5548740883468 K, F = -1.6884422217299673, relative_change = 4.5684398709685823e-5 Iter 55: T = 634.4662963304113 K, F = -0.7061602160280576, relative_change = 1.9119369264574923e-5 Iter 60: T = 634.4292389569862 K, F = -0.29533050089177715, relative_change = 7.99833112777639e-6 Iter 65: T = 634.4137388286945 K, F = -0.12351176853387125, relative_change = 3.345414493666905e-6 Iter 70: T = 634.4072560889242 K, F = -0.05165427611401857, relative_change = 1.3991652226317906e-6 Iter 75: T = 634.404544859588 K, F = -0.021602466539961174, relative_change = 5.851603618424946e-7 Iter 80: T = 634.403410978832 K, F = -0.009034414983428884, relative_change = 2.447232827229442e-7 Iter 85: T = 634.4029367742127 K, F = -0.003778301198484546, relative_change = 1.023465896435507e-7 Iter 90: T = 634.4027384558025 K, F = -0.0015801308522945257, relative_change = 4.280263433747085e-8 Iter 95: T = 634.4026555166092 K, F = -0.0006608296222920251, relative_change = 1.790058478192276e-8 Iter 100: T = 634.4026208304366 K, F = -0.0002763668453356072, relative_change = 7.486240426795024e-9 Iter 105: T = 634.4026063242629 K, F = -0.00011557991557265002, relative_change = 3.130835501019603e-9 Iter 110: T = 634.4026002576076 K, F = -4.83369011020085e-5, relative_change = 1.3093528587530198e-9 Iter 115: T = 634.4025977204598 K, F = -2.0215069124474017e-5, relative_change = 5.475870080322037e-10 Iter 120: T = 634.4025966593942 K, F = -8.454183099138035e-6, relative_change = 2.290074219866263e-10 Iter 125: T = 634.4025962156439 K, F = -3.5356394432195515e-6, relative_change = 9.577361492737559e-11 Iter 130: T = 634.4025960300623 K, F = -1.4786470620142822e-6, relative_change = 4.005368103913017e-11 Iter 135: T = 634.4025959524498 K, F = -6.183879388554914e-7, relative_change = 1.6750929895365715e-11 Iter 140: T = 634.4025959199913 K, F = -2.5861636898660834e-7, relative_change = 7.005415849089366e-12 Iter 145: T = 634.4025959064169 K, F = -1.0815673640029999e-7, relative_change = 2.929756219262606e-12 Iter 150: T = 634.4025959007398 K, F = -4.5231512479926295e-8, relative_change = 1.2252339466855122e-12 Iter 155: T = 634.4025958983657 K, F = -1.891656120633911e-8, relative_change = 5.124129544697384e-13 Converged in 160 iterations to T = 634.4025958973726 K Iter 1: T = 966.4184581475259 K, F = -7651.586255379282, relative_change = 0.033581541852474035 Iter 2: T = 934.8732964245685 K, F = -6487.623582048397, relative_change = 0.03264130714496562 Iter 3: T = 905.3348668822711 K, F = -5499.323319898636, relative_change = 0.03159618491111834 Iter 5: T = 852.154390329684 K, F = -3947.974699301573, relative_change = 0.02918567201634977 Iter 10: T = 751.725060266063 K, F = -1712.9020694153244, relative_change = 0.021572676418798616 Iter 15: T = 691.3937683899474 K, F = -734.9687568632761, relative_change = 0.013373544831041674 Iter 20: T = 659.6430547880765 K, F = -312.03104714263293, relative_change = 0.007030054844683784 Iter 25: T = 644.6071177242068 K, F = -131.4909405603204, relative_change = 0.0032977759221994554 Iter 30: T = 637.9327994742375 K, F = -55.183294687930605, relative_change = 0.0014535201348236536 Iter 35: T = 635.0662952029909 K, F = -23.113463422876748, relative_change = 0.0006219368430575581 Iter 40: T = 633.8536871416236 K, F = -9.672594162894601, relative_change = 0.0002626443605242417 Iter 45: T = 633.3440959301091 K, F = -4.046299650688611, relative_change = 0.00011029218236974888 Iter 50: T = 633.1305440760157 K, F = -1.6924048156285019, relative_change = 4.6204895383133577e-5 Iter 55: T = 633.0411578285347 K, F = -0.7078178816002396, relative_change = 1.9337359135451942e-5 Iter 60: T = 633.0037620648951 K, F = -0.2960238372319938, relative_change = 8.089551740918876e-6 Iter 65: T = 632.9881203704638 K, F = -0.12380174420972295, relative_change = 3.3835736073912968e-6 Iter 70: T = 632.9815784177654 K, F = -0.05177554987804428, relative_change = 1.4151254929077632e-6 Iter 75: T = 632.9788424234273 K, F = -0.021653185109000272, relative_change = 5.91835430154846e-7 Iter 80: T = 632.9776981853985 K, F = -0.009055626169999664, relative_change = 2.475149271898154e-7 Iter 85: T = 632.9772196491997 K, F = -0.0037871719838618034, relative_change = 1.0351409766875904e-7 Iter 90: T = 632.9770195192634 K, F = -0.0015838407217911854, relative_change = 4.329090166994481e-8 Iter 95: T = 632.9769358224671 K, F = -0.000662381135304646, relative_change = 1.810478430937331e-8 Iter 100: T = 632.9769008194556 K, F = -0.0002770157074044599, relative_change = 7.571639175659144e-9 Iter 105: T = 632.976886180776 K, F = -0.00011585127732050005, relative_change = 3.166550282337593e-9 Iter 110: T = 632.9768800587051 K, F = -4.845038781919886e-5, relative_change = 1.3242892080377452e-9 Iter 115: T = 632.9768774983819 K, F = -2.0262531330972333e-5, relative_change = 5.538335871741297e-10 Iter 120: T = 632.9768764276241 K, F = -8.47403244635947e-6, relative_change = 2.3161981831073612e-10 Iter 125: T = 632.9768759798204 K, F = -3.5439417221394542e-6, relative_change = 9.686617861643893e-11 Iter 130: T = 632.9768757925435 K, F = -1.4821185993496577e-6, relative_change = 4.051058861399999e-11 Iter 135: T = 632.9768757142222 K, F = -6.198394369438809e-7, relative_change = 1.6942004818357618e-11 Iter 140: T = 632.9768756814673 K, F = -2.592251681088342e-7, relative_change = 7.085373705608634e-12 Iter 145: T = 632.9768756677687 K, F = -1.084108667837036e-7, relative_change = 2.963182589848463e-12 Iter 150: T = 632.9768756620397 K, F = -4.533798025896374e-8, relative_change = 1.2392181499303215e-12 Iter 155: T = 632.9768756596438 K, F = -1.8960884362595465e-8, relative_change = 5.182558179052588e-13 Converged in 160 iterations to T = 632.9768756586418 K Iter 1: T = 976.4988645040105 K, F = -5354.756078112345, relative_change = 0.0235011354959895 Iter 2: T = 955.158131989465 K, F = -4527.722828104411, relative_change = 0.021854334183363366 Iter 3: T = 935.8856458015921 K, F = -3826.687841155509, relative_change = 0.020177272791187913 Iter 5: T = 903.1224595937466 K, F = -2729.636062917815, relative_change = 0.016825702785490265 Iter 10: T = 849.2004327672844 K, F = -1163.882641210539, relative_change = 0.009455470977761936 Iter 15: T = 822.5991645478399 K, F = -491.82689305590077, relative_change = 0.004627144913211174 Iter 20: T = 810.5122484467873 K, F = -206.7052142815819, relative_change = 0.002084466780617035 Iter 25: T = 805.2617163629867 K, F = -86.63615836554696, relative_change = 0.0009009281417131978 Iter 30: T = 803.0292386697029 K, F = -36.26636843551192, relative_change = 0.0003821367881969943 Iter 35: T = 802.0889876713694 K, F = -15.173062607785708, relative_change = 0.0001607709494201615 Iter 40: T = 801.6945940663248 K, F = -6.3466166963709645, relative_change = 6.740514765014738e-5 Iter 45: T = 801.5294483285701 K, F = -2.6544168078755375, relative_change = 2.8219272902414702e-5 Iter 50: T = 801.4603463648983 K, F = -1.1101413540923992, relative_change = 1.1806828164857843e-5 Iter 55: T = 801.4314407884305 K, F = -0.46428006628832164, relative_change = 4.938665079516521e-6 Iter 60: T = 801.4193510270884 K, F = -0.19416846442730296, relative_change = 2.06556766330796e-6 Iter 65: T = 801.4142947513811 K, F = -0.08120374488867232, relative_change = 8.638728678865331e-7 Iter 70: T = 801.4121801227147 K, F = -0.033960406354912154, relative_change = 3.6128681313377176e-7 Iter 75: T = 801.4112957538441 K, F = -0.01420265283593447, relative_change = 1.5109531045123807e-7 Iter 80: T = 801.4109258991874 K, F = -0.005939719962241519, relative_change = 6.319001204144146e-8 Iter 85: T = 801.4107712213724 K, F = -0.002484061986666619, relative_change = 2.642684370534834e-8 Iter 90: T = 801.4107065332313 K, F = -0.0010388644183574325, relative_change = 1.1052026202801056e-8 Iter 95: T = 801.4106794798726 K, F = -0.0004344655102110906, relative_change = 4.622090130320479e-9 Iter 100: T = 801.410668165834 K, F = -0.0001816986658795816, relative_change = 1.9330134313716167e-9 Iter 105: T = 801.4106634341676 K, F = -7.598855156243367e-5, relative_change = 8.084093200067017e-10 Iter 110: T = 801.4106614553283 K, F = -3.1779319794145167e-5, relative_change = 3.380864364283141e-10 Iter 115: T = 801.410660627754 K, F = -1.329049140808003e-5, relative_change = 1.413917896839031e-10 Iter 120: T = 801.4106602816527 K, F = -5.558242220482512e-6, relative_change = 5.91317350529892e-11 Iter 125: T = 801.4106601369089 K, F = -2.324522873298207e-6, relative_change = 2.4729593517921804e-11 Iter 130: T = 801.4106600763753 K, F = -9.721414977459375e-7, relative_change = 1.0342192957514732e-11 Iter 135: T = 801.4106600510595 K, F = -4.065637020378432e-7, relative_change = 4.325255393765933e-12 Iter 140: T = 801.4106600404721 K, F = -1.7002937280352626e-7, relative_change = 1.8088689624212835e-12 Iter 145: T = 801.4106600360443 K, F = -7.110929245435216e-8, relative_change = 7.565010088723421e-13 Iter 150: T = 801.4106600341926 K, F = -2.9738731921469252e-8, relative_change = 3.163775074244351e-13 Converged in 153 iterations to T = 801.4106600336504 K Iter 1: T = 965.1683379374915 K, F = -7936.42733440694, relative_change = 0.03483166206250844 Iter 2: T = 932.3104803384872 K, F = -6731.40815414775, relative_change = 0.03404365467398121 Iter 3: T = 901.3969555900893 K, F = -5708.1364446757325, relative_change = 0.03315797194210914 Iter 5: T = 845.2899247850705 K, F = -4101.537936899381, relative_change = 0.031074743824375174 Iter 10: T = 736.8941802837941 K, F = -1784.8384819844864, relative_change = 0.024093513010044785 Iter 15: T = 669.086810422788 K, F = -768.5409229750221, relative_change = 0.01578882522296017 Iter 20: T = 631.973118175179 K, F = -327.26397644593766, relative_change = 0.008693118305600522 Iter 25: T = 613.8963835407455 K, F = -138.17144751164454, relative_change = 0.004197198376436596 Iter 30: T = 605.7442929710562 K, F = -58.04346917047454, relative_change = 0.0018773892669460964 Iter 35: T = 602.2162136889117 K, F = -24.322349956946944, relative_change = 0.0008087430661494995 Iter 40: T = 600.718632146225 K, F = -10.180483429493766, relative_change = 0.0003425374963186142 Iter 45: T = 600.088356390148 K, F = -4.259117611289849, relative_change = 0.00014402154424348446 Iter 50: T = 599.824065404101 K, F = -1.7814805233413973, relative_change = 6.036696187940649e-5 Iter 55: T = 599.7134123659918 K, F = -0.7450831599086485, relative_change = 2.5269949888108862e-5 Iter 60: T = 599.6671143194983 K, F = -0.3116108551437301, relative_change = 1.0572357189037052e-5 Iter 65: T = 599.6477481382286 K, F = -0.1303208120970101, relative_change = 4.422214458984348e-6 Iter 70: T = 599.6396483076546 K, F = -0.05450197029685516, relative_change = 1.84955033152063e-6 Iter 75: T = 599.6362607459251 K, F = -0.022793418648608677, relative_change = 7.735263271324439e-7 Iter 80: T = 599.6348440068904 K, F = -0.009532487545461765, relative_change = 3.235018465563978e-7 Iter 85: T = 599.6342515061626 K, F = -0.00398660147209956, relative_change = 1.352930175440496e-7 Iter 90: T = 599.6340037146624 K, F = -0.0016672445793904922, relative_change = 5.6581274925146237e-8 Iter 95: T = 599.6339000851893 K, F = -0.0006972616354156136, relative_change = 2.366298576504066e-8 Iter 100: T = 599.6338567460872 K, F = -0.00029160315022996874, relative_change = 9.89614689354013e-9 Iter 105: T = 599.6338386211537 K, F = -0.00012195192040564962, relative_change = 4.13868742846953e-9 Iter 110: T = 599.6338310410896 K, F = -5.100174935607216e-5, relative_change = 1.7308486073153035e-9 Iter 115: T = 599.6338278710161 K, F = -2.1329541520398454e-5, relative_change = 7.238616053485666e-10 Iter 120: T = 599.6338265452536 K, F = -8.920269187306928e-6, relative_change = 3.0272757789277427e-10 Iter 125: T = 599.6338259908038 K, F = -3.730562850023933e-6, relative_change = 1.266042803218425e-10 Iter 130: T = 599.6338257589262 K, F = -1.5601653059471587e-6, relative_change = 5.294740071325453e-11 Iter 135: T = 599.6338256619523 K, F = -6.524799542884097e-7, relative_change = 2.214324180391946e-11 Iter 140: T = 599.6338256213967 K, F = -2.72874829232439e-7, relative_change = 9.260565459719751e-12 Iter 145: T = 599.6338256044359 K, F = -1.1411989997434091e-7, relative_change = 3.872892223456632e-12 Iter 150: T = 599.6338255973426 K, F = -4.7726590068908337e-8, relative_change = 1.6196994527856021e-12 Iter 155: T = 599.6338255943762 K, F = -1.9960580965872055e-8, relative_change = 6.774031419757497e-13 Iter 160: T = 599.6338255931355 K, F = -8.347339097714013e-9, relative_change = 2.8328402573312353e-13 Converged in 162 iterations to T = 599.633825592873 K Iter 1: T = 964.5239157783288 K, F = -8083.259536375893, relative_change = 0.035476084221671166 Iter 2: T = 930.9852094553974 K, F = -6857.138424318907, relative_change = 0.03477229104875769 Iter 3: T = 899.3533967659198 K, F = -5815.8985514781, relative_change = 0.033976708081089046 Iter 5: T = 841.6980691833887 K, F = -4180.929859064025, relative_change = 0.03208605730817699 Iter 10: T = 728.9189959431978 K, F = -1822.366714341414, relative_change = 0.025542146391035785 Iter 15: T = 656.7047527838865 K, F = -786.342682178524, relative_change = 0.01730086474455724 Iter 20: T = 616.2020372764164 K, F = -335.49080021677634, relative_change = 0.009814879702460989 Iter 25: T = 596.1010540811599 K, F = -141.82894822225472, relative_change = 0.004833770128889112 Iter 30: T = 586.9348627436351 K, F = -59.62140329909256, relative_change = 0.002185014690932818 Iter 35: T = 582.9459115333171 K, F = -24.991729132792035, relative_change = 0.000945906225902777 Iter 40: T = 581.2484569227722 K, F = -10.462166931893826, relative_change = 0.0004014988757080098 Iter 45: T = 580.5332871906987 K, F = -4.377232150675669, relative_change = 0.0001689680318278763 Iter 50: T = 580.2332599246971 K, F = -1.8309323478809911, relative_change = 7.085092673046177e-5 Iter 55: T = 580.1076205346415 K, F = -0.7657741446133559, relative_change = 2.96634453974075e-5 Iter 60: T = 580.0550478192376 K, F = -0.32026576098245957, relative_change = 1.2411342976362477e-5 Iter 65: T = 580.0330562358466 K, F = -0.1339406926726413, relative_change = 5.191575743647949e-6 Iter 70: T = 580.0238582101321 K, F = -0.056015899299137584, relative_change = 2.171354607309384e-6 Iter 75: T = 580.0200113314834 K, F = -0.02342657088341099, relative_change = 9.081171497533727e-7 Iter 80: T = 580.0184024938765 K, F = -0.009797280953560583, relative_change = 3.7979081066916017e-7 Iter 85: T = 580.0177296540506 K, F = -0.004097341514251063, relative_change = 1.5883399250257546e-7 Iter 90: T = 580.0174482635738 K, F = -0.0017135574358916328, relative_change = 6.642643690216269e-8 Iter 95: T = 580.0173305825714 K, F = -0.0007166302334190022, relative_change = 2.778035796623322e-8 Iter 100: T = 580.0172813669454 K, F = -0.00029970333078321865, relative_change = 1.161808250334412e-8 Iter 105: T = 580.0172607843784 K, F = -0.00012533951348558947, relative_change = 4.858821724868402e-9 Iter 110: T = 580.0172521765024 K, F = -5.241848184878162e-5, relative_change = 2.0320174325243188e-9 Iter 115: T = 580.0172485765856 K, F = -2.1922034680876834e-5, relative_change = 8.498139658591482e-10 Iter 120: T = 580.0172470710576 K, F = -9.168057054753653e-6, relative_change = 3.5540236728118217e-10 Iter 125: T = 580.0172464414277 K, F = -3.834190786700109e-6, relative_change = 1.4863350883455608e-10 Iter 130: T = 580.017246178109 K, F = -1.6035048563400878e-6, relative_change = 6.216032717332027e-11 Iter 135: T = 580.017246067986 K, F = -6.706056038807695e-7, relative_change = 2.599621922836843e-11 Iter 140: T = 580.0172460219312 K, F = -2.8045538358334454e-7, relative_change = 1.0871933661116813e-11 Iter 145: T = 580.0172460026704 K, F = -1.1728895754625768e-7, relative_change = 4.546740196367499e-12 Iter 150: T = 580.0172459946155 K, F = -4.905164568969056e-8, relative_change = 1.9015011629042686e-12 Iter 155: T = 580.0172459912468 K, F = -2.051444297768157e-8, relative_change = 7.952482863928043e-13 Iter 160: T = 580.0172459898379 K, F = -8.579084553872462e-9, relative_change = 3.325706819233359e-13 Converged in 163 iterations to T = 580.0172459894254 K Iter 1: T = 964.2867097011132 K, F = -8137.307166710714, relative_change = 0.035713290298886834 Iter 2: T = 930.4966716304422 K, F = -6903.429261429256, relative_change = 0.035041484789461105 Iter 3: T = 898.5988247409038 K, F = -5855.585696766011, relative_change = 0.034280452431545136 Iter 5: T = 840.3665804915878 K, F = -4210.193682047369, relative_change = 0.032464991759945695 Iter 10: T = 725.922628431667 K, F = -1836.2618748547116, relative_change = 0.026104112035369016 Iter 15: T = 651.9748781998735 K, F = -792.9917304748416, relative_change = 0.01791411454432657 Iter 20: T = 610.0881731089036 K, F = -338.59632039313345, relative_change = 0.010289007179726533 Iter 25: T = 589.1357637610664 K, F = -143.2212170976902, relative_change = 0.005110452690283454 Iter 30: T = 579.5353146218375 K, F = -60.22499225554994, relative_change = 0.0023207484815407618 Iter 35: T = 575.3472105139537 K, F = -25.248387691772997, relative_change = 0.0010068567692776283 Iter 40: T = 573.5630275304353 K, F = -10.570287044416787, relative_change = 0.0004277811153649538 Iter 45: T = 572.8109543690141 K, F = -4.422589445290286, relative_change = 0.00018010285893747124 Iter 50: T = 572.495380621224 K, F = -1.8499260765092196, relative_change = 7.553306476479434e-5 Iter 55: T = 572.3632195595812 K, F = -0.7737218989288643, relative_change = 3.162604424153476e-5 Iter 60: T = 572.3079159012383 K, F = -0.323590368963699, relative_change = 1.3232909518402825e-5 Iter 65: T = 572.284781591423 K, F = -0.13533121684615831, relative_change = 5.535301996710172e-6 Iter 70: T = 572.2751055565025 K, F = -0.056597456454099415, relative_change = 2.3151290580916856e-6 Iter 75: T = 572.2710587499114 K, F = -0.023669789114223183, relative_change = 9.682495452110316e-7 Iter 80: T = 572.2693662967655 K, F = -0.009898998436639994, relative_change = 4.0493963176801654e-7 Iter 85: T = 572.268658487348 K, F = -0.004139881104218257, relative_change = 1.6935165836715326e-7 Iter 90: T = 572.2683624720698 K, F = -0.0017313480221388122, relative_change = 7.082507285718888e-8 Iter 95: T = 572.2682386747832 K, F = -0.0007240704721742097, relative_change = 2.9619923958704218e-8 Iter 100: T = 572.268186901251 K, F = -0.000302814927448547, relative_change = 1.2387411629909006e-8 Iter 105: T = 572.2681652489368 K, F = -0.00012664082106528252, relative_change = 5.180564496893949e-9 Iter 110: T = 572.2681561936796 K, F = -5.296270461679908e-5, relative_change = 2.1665741390422325e-9 Iter 115: T = 572.2681524066627 K, F = -2.2149636094925818e-5, relative_change = 9.060872289583465e-10 Iter 120: T = 572.2681508228868 K, F = -9.263241748991291e-6, relative_change = 3.7893648103896364e-10 Iter 125: T = 572.268150160533 K, F = -3.873998121961542e-6, relative_change = 1.5847575435853308e-10 Iter 130: T = 572.2681498835287 K, F = -1.6201527292536433e-6, relative_change = 6.627647160711412e-11 Iter 135: T = 572.2681497676821 K, F = -6.775667225067394e-7, relative_change = 2.7717591606385267e-11 Iter 140: T = 572.2681497192337 K, F = -2.8336676438645014e-7, relative_change = 1.1591838843847615e-11 Iter 145: T = 572.268149698972 K, F = -1.1850733550033965e-7, relative_change = 4.8478442351546494e-12 Iter 150: T = 572.2681496904984 K, F = -4.9560966552952834e-8, relative_change = 2.0274175011611306e-12 Iter 155: T = 572.2681496869545 K, F = -2.0726818039662476e-8, relative_change = 8.47883254926738e-13 Iter 160: T = 572.2681496854724 K, F = -8.667494388880925e-9, relative_change = 3.545659223008207e-13 Converged in 163 iterations to T = 572.2681496850386 K Iter 1: T = 980.2221508499345 K, F = -4506.4017424339245, relative_change = 0.0197778491500656 Iter 2: T = 962.48450661818 K, F = -3806.4843286732594, relative_change = 0.018095534993138408 Iter 3: T = 946.6655976763788 K, F = -3213.7772847274496, relative_change = 0.016435494631890903 Iter 5: T = 920.2589887470649 K, F = -2287.722394440614, relative_change = 0.013270620652498781 Iter 10: T = 878.3633140039045 K, F = -971.1318887960305, relative_change = 0.006962565577159391 Iter 15: T = 858.545705617278 K, F = -409.20742227874894, relative_change = 0.003262368667718095 Iter 20: T = 849.7543124877246 K, F = -171.72710580295742, relative_change = 0.0014370909461399795 Iter 25: T = 845.979676118974 K, F = -71.92647484729343, relative_change = 0.0006147476053751699 Iter 30: T = 844.3831126559927 K, F = -30.099790557321718, relative_change = 0.00025957919185885065 Iter 35: T = 843.7122041124408 K, F = -12.591491372998597, relative_change = 0.00010899983243086014 Iter 40: T = 843.4310564659521 K, F = -5.26650867264434, relative_change = 4.566257329333904e-5 Iter 45: T = 843.313377866636 K, F = -2.2026213184444345, relative_change = 1.9110229492094194e-5 Iter 50: T = 843.2641458777715 K, F = -0.9211808275234775, relative_change = 7.994506642260392e-6 Iter 55: T = 843.2435534280511 K, F = -0.3852520225017234, relative_change = 3.3438146765178907e-6 Iter 60: T = 843.2349408871092 K, F = -0.16111755626761637, relative_change = 1.3984960949703898e-6 Iter 65: T = 843.2313389264798 K, F = -0.06738138404540472, relative_change = 5.848805133151827e-7 Iter 70: T = 843.2298325272352 K, F = -0.028179716626394624, relative_change = 2.446062447572113e-7 Iter 75: T = 843.2292025302313 K, F = -0.011785097022434021, relative_change = 1.0229764264835459e-7 Iter 80: T = 843.2289390574622 K, F = -0.004928668842970607, relative_change = 4.278216404643721e-8 Iter 85: T = 843.2288288699164 K, F = -0.002061228261389214, relative_change = 1.7892023848890642e-8 Iter 90: T = 843.2287827881536 K, F = -0.0008620302923612044, relative_change = 7.482660145657219e-9 Iter 95: T = 843.2287635162073 K, F = -0.00036051136554937635, relative_change = 3.1293381967042367e-9 Iter 100: T = 843.2287554564488 K, F = -0.00015077015832165586, relative_change = 1.308726664170527e-9 Iter 105: T = 843.2287520857615 K, F = -6.305387943505991e-5, relative_change = 5.473251191431716e-10 Iter 110: T = 843.2287506760998 K, F = -2.6369887808685988e-5, relative_change = 2.2889792397987146e-10 Iter 115: T = 843.2287500865623 K, F = -1.1028199442542075e-5, relative_change = 9.57278235065317e-11 Iter 120: T = 843.2287498400108 K, F = -4.612124082870039e-6, relative_change = 4.0034513622115453e-11 Iter 125: T = 843.2287497369001 K, F = -1.928847940924072e-6, relative_change = 1.6742934019854088e-11 Iter 130: T = 843.2287496937779 K, F = -8.066660268646331e-7, relative_change = 7.0020843948282056e-12 Iter 135: T = 843.2287496757436 K, F = -3.373572077247644e-7, relative_change = 2.9283539423550518e-12 Iter 140: T = 843.2287496682014 K, F = -1.410862680017999e-7, relative_change = 1.2246678584970362e-12 Iter 145: T = 843.2287496650473 K, F = -5.9004278352148276e-8, relative_change = 5.121734683070188e-13 Converged in 150 iterations to T = 843.2287496637282 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013845489212278162 Iteration 10: d = 1.0220339707903028e-5 Iteration 20: d = 8.693358922675364e-8 Iteration 30: d = 1.0488024411363121e-9 Iteration 40: d = 1.4156862500305063e-11 Iteration 50: d = 1.9653343055387678e-13 Iteration 60: d = 2.783653278632453e-15 Converged after 61 iterations. d = 1.7611222132216775e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.811606199808 Iteration 2: convergence error = 4827.794112219474 Iteration 3: convergence error = 1100.0839372888784 Iteration 4: convergence error = 317.8745305129446 Iteration 5: convergence error = 94.09707598666591 Iteration 6: convergence error = 28.05775660348081 Iteration 7: convergence error = 8.436595927988492 Iteration 8: convergence error = 2.526791185842285 Iteration 9: convergence error = 0.7550059995937772 Iteration 10: convergence error = 0.2252897113680774 Iteration 11: convergence error = 0.06717308816882905 Iteration 12: convergence error = 0.020019684063299792 Iteration 13: convergence error = 0.005964985818309287 Iteration 14: convergence error = 0.0017770460513020225 Iteration 15: convergence error = 0.0005293606880059087 Iteration 16: convergence error = 0.0001576825766278489 Iteration 17: convergence error = 4.696816631621914e-5 Iteration 18: convergence error = 1.3989950502946158e-5 Iteration 19: convergence error = 4.1670093651191564e-6 Iteration 20: convergence error = 1.2411633178999182e-6 Iteration 21: convergence error = 3.696895873872563e-7 Iteration 22: convergence error = 1.0996768651239108e-7 Iteration 23: convergence error = 3.184936758771073e-8 Iteration 24: convergence error = 9.170207704300992e-9 Iteration 25: convergence error = 2.632759787957184e-9 Iteration 26: convergence error = 7.541984814452007e-10 Iteration 27: convergence error = 2.148681232938543e-10 Iteration 28: convergence error = 6.230038707144558e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019480136771565875 Iteration 10: d = 2.2957295164455524e-5 Iteration 20: d = 2.314787517043475e-7 Iteration 30: d = 2.6789167257033176e-9 Iteration 40: d = 3.303057553484148e-11 Iteration 50: d = 4.1947807154222156e-13 Iteration 60: d = 5.414846814967068e-15 Converged after 63 iterations. d = 1.4720195527189332e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12273.295567824154 Iteration 2: convergence error = 8320.542431637741 Iteration 3: convergence error = 1949.316653918163 Iteration 4: convergence error = 478.71945710349087 Iteration 5: convergence error = 121.8398667192032 Iteration 6: convergence error = 32.46657090308622 Iteration 7: convergence error = 8.82441820231179 Iteration 8: convergence error = 2.4118872860506144 Iteration 9: convergence error = 0.6599916907002807 Iteration 10: convergence error = 0.1806232505614389 Iteration 11: convergence error = 0.0494291881927893 Iteration 12: convergence error = 0.01352597046820847 Iteration 13: convergence error = 0.003701167267990968 Iteration 14: convergence error = 0.001012748429502608 Iteration 15: convergence error = 0.0002771156036942557 Iteration 16: convergence error = 7.582612488477025e-5 Iteration 17: convergence error = 2.0747992948599858e-5 Iteration 18: convergence error = 5.677184844898875e-6 Iteration 19: convergence error = 1.5534267276962055e-6 Iteration 20: convergence error = 4.250555321050342e-7 Iteration 21: convergence error = 1.1717588677129243e-7 Iteration 22: convergence error = 3.1370518627227284e-8 Iteration 23: convergence error = 8.370079740416259e-9 Iteration 24: convergence error = 2.2284893930191174e-9 Iteration 25: convergence error = 5.932179192313924e-10 Iteration 26: convergence error = 1.5802470443304628e-10 Iteration 27: convergence error = 4.1382008930668235e-11 Iteration 28: convergence error = 1.1141310096718371e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019480136771565875 Iteration 10: d = 2.2957295164455524e-5 Iteration 20: d = 2.314787517043475e-7 Iteration 30: d = 2.6789167257033176e-9 Iteration 40: d = 3.303057553484148e-11 Iteration 50: d = 4.1947807154222156e-13 Iteration 60: d = 5.414846814967068e-15 Converged after 63 iterations. d = 1.4720195527189332e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.847143856676 Iteration 2: convergence error = 5737.898109367273 Iteration 3: convergence error = 2010.2096421891933 Iteration 4: convergence error = 890.1148765104758 Iteration 5: convergence error = 408.9431448313121 Iteration 6: convergence error = 192.83430736043056 Iteration 7: convergence error = 90.9934653326809 Iteration 8: convergence error = 42.94955807258884 Iteration 9: convergence error = 20.27015058092229 Iteration 10: convergence error = 9.563795058262258 Iteration 11: convergence error = 4.510989554576099 Iteration 12: convergence error = 2.1271736678527304 Iteration 13: convergence error = 1.0028841242706221 Iteration 14: convergence error = 0.4727583857616082 Iteration 15: convergence error = 0.2228368095093174 Iteration 16: convergence error = 0.1049327815817378 Iteration 17: convergence error = 0.048963205084419315 Iteration 18: convergence error = 0.022333800639898982 Iteration 19: convergence error = 0.010148894701615063 Iteration 20: convergence error = 0.00460176739079543 Iteration 21: convergence error = 0.002083900650177384 Iteration 22: convergence error = 0.0009429847664250701 Iteration 23: convergence error = 0.0004265209263394354 Iteration 24: convergence error = 0.00019286856149847154 Iteration 25: convergence error = 8.719943116375362e-5 Iteration 26: convergence error = 3.942067041862174e-5 Iteration 27: convergence error = 1.7820043012761744e-5 Iteration 28: convergence error = 8.055225862335647e-6 Iteration 29: convergence error = 3.6411406654224265e-6 Iteration 30: convergence error = 1.645849351916695e-6 Iteration 31: convergence error = 7.439421096933074e-7 Iteration 32: convergence error = 3.362720235600136e-7 Iteration 33: convergence error = 1.5199566405499354e-7 Iteration 34: convergence error = 6.869868229841813e-8 Iteration 35: convergence error = 3.1058334570843726e-8 Iteration 36: convergence error = 1.4033503248356283e-8 Iteration 37: convergence error = 6.3487277657259256e-9 Iteration 38: convergence error = 2.865817805286497e-9 Iteration 39: convergence error = 1.3014869182370603e-9 Iteration 40: convergence error = 5.861693352926522e-10 Iteration 41: convergence error = 2.6420821086503565e-10 Iteration 42: convergence error = 1.2369127944111824e-10 Iteration 43: convergence error = 5.3660187404602766e-11 Iteration 44: convergence error = 2.4101609596982598e-11 Iteration 45: convergence error = 1.2278178473934531e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019480136771565875 Iteration 10: d = 2.2957295164455524e-5 Iteration 20: d = 2.314787517043475e-7 Iteration 30: d = 2.6789167257033176e-9 Iteration 40: d = 3.303057553484148e-11 Iteration 50: d = 4.1947807154222156e-13 Iteration 60: d = 5.414846814967068e-15 Converged after 63 iterations. d = 1.4720195527189332e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.708308590009 Iteration 2: convergence error = 7356.371178473601 Iteration 3: convergence error = 1725.5593226554647 Iteration 4: convergence error = 503.61671451825623 Iteration 5: convergence error = 156.36543309809986 Iteration 6: convergence error = 48.53563552727246 Iteration 7: convergence error = 15.035427972953585 Iteration 8: convergence error = 4.649229813862348 Iteration 9: convergence error = 1.4358393620163952 Iteration 10: convergence error = 0.4430978291838983 Iteration 11: convergence error = 0.13667837325237997 Iteration 12: convergence error = 0.042149163577050786 Iteration 13: convergence error = 0.012996155197015469 Iteration 14: convergence error = 0.0040068662005978695 Iteration 15: convergence error = 0.0012353052625257988 Iteration 16: convergence error = 0.00038083076833572704 Iteration 17: convergence error = 0.0001174040507976315 Iteration 18: convergence error = 3.619347489802749e-5 Iteration 19: convergence error = 1.1157717835885705e-5 Iteration 20: convergence error = 3.4396812225168105e-6 Iteration 21: convergence error = 1.0603812370391097e-6 Iteration 22: convergence error = 3.2671914595994167e-7 Iteration 23: convergence error = 9.946188583853655e-8 Iteration 24: convergence error = 2.9557668312918395e-8 Iteration 25: convergence error = 8.754795999266207e-9 Iteration 26: convergence error = 2.590695658000186e-9 Iteration 27: convergence error = 7.667040335945785e-10 Iteration 28: convergence error = 2.3146640160121024e-10 Iteration 29: convergence error = 6.821210263296962e-11 Iteration 30: convergence error = 2.0463630789890885e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019480136771565875 Iteration 10: d = 2.2957295164455524e-5 Iteration 20: d = 2.314787517043475e-7 Iteration 30: d = 2.6789167257033176e-9 Iteration 40: d = 3.303057553484148e-11 Iteration 50: d = 4.1947807154222156e-13 Iteration 60: d = 5.414846814967068e-15 Converged after 63 iterations. d = 1.4720195527189332e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.712113171439 Iteration 2: convergence error = 5524.408474566221 Iteration 3: convergence error = 932.701532229939 Iteration 4: convergence error = 169.22500310432088 Iteration 5: convergence error = 30.63272894493116 Iteration 6: convergence error = 5.561462444288054 Iteration 7: convergence error = 1.0170808354523615 Iteration 8: convergence error = 0.1857879576382402 Iteration 9: convergence error = 0.03389697532475111 Iteration 10: convergence error = 0.0061808225873392075 Iteration 11: convergence error = 0.0011266804290244181 Iteration 12: convergence error = 0.00020534675877570407 Iteration 13: convergence error = 3.7423135836434085e-5 Iteration 14: convergence error = 6.8198296503396705e-6 Iteration 15: convergence error = 1.2427699402906e-6 Iteration 16: convergence error = 2.2647918740403838e-7 Iteration 17: convergence error = 4.127878128201701e-8 Iteration 18: convergence error = 7.51333573134616e-9 Iteration 19: convergence error = 1.3783392205368727e-9 Iteration 20: convergence error = 2.4692781153135e-10 Iteration 21: convergence error = 4.774847184307873e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019480136771565875 Iteration 10: d = 2.2957295164455524e-5 Iteration 20: d = 2.314787517043475e-7 Iteration 30: d = 2.6789167257033176e-9 Iteration 40: d = 3.303057553484148e-11 Iteration 50: d = 4.1947807154222156e-13 Iteration 60: d = 5.414846814967068e-15 Converged after 63 iterations. d = 1.4720195527189332e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.48265162061 Iteration 2: convergence error = 2716.1369621843733 Iteration 3: convergence error = 203.7229158718368 Iteration 4: convergence error = 19.263565325983333 Iteration 5: convergence error = 1.5887603640509886 Iteration 6: convergence error = 0.12910759761188573 Iteration 7: convergence error = 0.010509218917499352 Iteration 8: convergence error = 0.0008584170810119922 Iteration 9: convergence error = 7.017996433894359e-5 Iteration 10: convergence error = 5.740410424414397e-6 Iteration 11: convergence error = 4.697372180152459e-7 Iteration 12: convergence error = 3.844794696325431e-8 Iteration 13: convergence error = 3.148000369308187e-9 Iteration 14: convergence error = 2.5641792315683086e-10 Iteration 15: convergence error = 2.071699623128171e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013845489212278162 Iteration 10: d = 1.0220339707903028e-5 Iteration 20: d = 8.693358922675364e-8 Iteration 30: d = 1.0488024411363121e-9 Iteration 40: d = 1.4156862500305063e-11 Iteration 50: d = 1.9653343055387678e-13 Iteration 60: d = 2.783653278632453e-15 Converged after 61 iterations. d = 1.7611222132216775e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.373337502863 Iteration 2: convergence error = 3614.221260487359 Iteration 3: convergence error = 594.5831251325224 Iteration 4: convergence error = 104.10053655469119 Iteration 5: convergence error = 18.484158097253385 Iteration 6: convergence error = 3.254052564168205 Iteration 7: convergence error = 0.5708323269507218 Iteration 8: convergence error = 0.09998879979730191 Iteration 9: convergence error = 0.01750379048053219 Iteration 10: convergence error = 0.003063424373522139 Iteration 11: convergence error = 0.0005360928716982016 Iteration 12: convergence error = 9.381154040966067e-5 Iteration 13: convergence error = 1.6415944628533907e-5 Iteration 14: convergence error = 2.872586264857091e-6 Iteration 15: convergence error = 5.026679446018534e-7 Iteration 16: convergence error = 8.795586836640723e-8 Iteration 17: convergence error = 1.540229277452454e-8 Iteration 18: convergence error = 2.679826138773933e-9 Iteration 19: convergence error = 4.729372449219227e-10 Iteration 20: convergence error = 8.185452315956354e-11 Iteration 21: convergence error = 1.4097167877480388e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m40.4s Testing RayTraceHeatTransfer tests passed Testing completed after 642.6s PkgEval succeeded after 769.77s