Package evaluation to test ClusteredLowRankSolver on Julia 1.14.0-DEV.1299 (6d6224db99*) started at 2025-11-25T16:38:13.659 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.06s ################################################################################ # Installation # Installing ClusteredLowRankSolver... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [cadeb640] + ClusteredLowRankSolver v1.2.0 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.4 [fb37089c] + Arblib v1.6.1 [0a1fb500] + BlockDiagonals v0.2.0 [cadeb640] + ClusteredLowRankSolver v1.2.0 [861a8166] + Combinatorics v1.0.3 [ffbed154] + DocStringExtensions v0.9.5 [1a297f60] + FillArrays v1.15.0 [14197337] + GenericLinearAlgebra v0.3.19 [076d061b] + HashArrayMappedTries v0.2.0 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [0b1a1467] + KrylovKit v0.10.2 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [65ce6f38] + PackageExtensionCompat v1.0.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [fb686558] + RandomExtensions v0.4.4 [af85af4c] + RowEchelon v0.2.1 [7e506255] + ScopedValues v1.5.0 [276daf66] + SpecialFunctions v2.6.1 [409d34a3] + VectorInterface v0.5.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 5.05s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1206.6 ms ✓ BlockDiagonals 1230.2 ms ✓ FLINT_jll 24722.7 ms ✓ Arblib 32792.4 ms ✓ Nemo 53984.8 ms ✓ ClusteredLowRankSolver 5 dependencies successfully precompiled in 116 seconds. 34 already precompiled. Precompilation completed after 126.84s ################################################################################ # Testing # Testing ClusteredLowRankSolver Status `/tmp/jl_uXMaRv/Project.toml` [c3fe647b] AbstractAlgebra v0.47.4 [cadeb640] ClusteredLowRankSolver v1.2.0 [2edaba10] Nemo v0.52.3 [1fd47b50] QuadGK v2.11.2 [276daf66] SpecialFunctions v2.6.1 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_uXMaRv/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.4 [fb37089c] Arblib v1.6.1 [0a1fb500] BlockDiagonals v0.2.0 [cadeb640] ClusteredLowRankSolver v1.2.0 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [1a297f60] FillArrays v1.15.0 [14197337] GenericLinearAlgebra v0.3.19 [076d061b] HashArrayMappedTries v0.2.0 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [0b1a1467] KrylovKit v0.10.2 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [65ce6f38] PackageExtensionCompat v1.0.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [1fd47b50] QuadGK v2.11.2 [fb686558] RandomExtensions v0.4.4 [af85af4c] RowEchelon v0.2.1 [7e506255] ScopedValues v1.5.0 [276daf66] SpecialFunctions v2.6.1 [409d34a3] VectorInterface v0.5.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.13.0 [fa267f1f] TOML v1.0.3 [8dfed614] Test v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [3a97d323] MPFR_jll v4.2.2+0 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [8e850b90] libblastrampoline_jll v5.15.0+0 Testing Running tests... iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 24.2 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 1.95e+10 7.42e-01 7.10e-01 3.00e-01 2 27.1 3.995e+19 1.999e+11 -2.907e+09 1.03e+00 2.58e+09 2.58e-01 5.65e+09 7.46e-01 7.17e-01 3.00e-01 3 27.1 1.576e+19 3.079e+11 -4.779e+09 1.03e+00 6.53e+08 6.53e-02 1.60e+09 7.32e-01 7.31e-01 3.00e-01 4 27.1 6.100e+18 4.277e+11 -6.725e+09 1.03e+00 1.75e+08 1.75e-02 4.31e+08 7.20e-01 7.22e-01 3.00e-01 5 27.1 2.433e+18 5.963e+11 -9.362e+09 1.03e+00 4.92e+07 4.92e-03 1.20e+08 7.11e-01 7.14e-01 3.00e-01 6 27.1 9.953e+17 8.401e+11 -1.309e+10 1.03e+00 1.42e+07 1.42e-03 3.42e+07 7.07e-01 7.10e-01 3.00e-01 7 27.1 4.128e+17 1.191e+12 -1.842e+10 1.03e+00 4.16e+06 4.16e-04 9.93e+06 7.05e-01 7.07e-01 3.00e-01 8 27.1 1.725e+17 1.693e+12 -2.598e+10 1.03e+00 1.23e+06 1.23e-04 2.91e+06 7.04e-01 7.06e-01 3.00e-01 9 27.2 7.238e+16 2.410e+12 -3.671e+10 1.03e+00 3.64e+05 3.64e-05 8.56e+05 7.03e-01 7.05e-01 3.00e-01 10 27.2 3.044e+16 3.431e+12 -5.194e+10 1.03e+00 1.08e+05 1.08e-05 2.53e+05 7.03e-01 7.04e-01 3.00e-01 11 27.2 1.281e+16 4.886e+12 -7.353e+10 1.03e+00 3.20e+04 3.20e-06 7.48e+04 7.03e-01 7.04e-01 3.00e-01 12 27.2 5.398e+15 6.956e+12 -1.042e+11 1.03e+00 9.51e+03 9.51e-07 2.21e+04 7.03e-01 7.04e-01 3.00e-01 13 27.2 2.275e+15 9.899e+12 -1.476e+11 1.03e+00 2.82e+03 2.82e-07 6.55e+03 7.03e-01 7.04e-01 3.00e-01 14 27.2 9.587e+14 1.407e+13 -2.094e+11 1.03e+00 8.38e+02 8.38e-08 1.94e+03 7.04e-01 7.05e-01 3.00e-01 15 27.2 4.036e+14 1.993e+13 -2.971e+11 1.03e+00 2.48e+02 2.48e-08 5.71e+02 7.06e-01 7.09e-01 3.00e-01 16 27.2 1.692e+14 2.789e+13 -4.222e+11 1.03e+00 7.31e+01 7.31e-09 1.66e+02 7.12e-01 7.22e-01 3.00e-01 17 27.2 7.003e+13 3.756e+13 -6.021e+11 1.03e+00 2.10e+01 2.10e-09 4.62e+01 7.31e-01 7.65e-01 3.00e-01 18 27.2 2.773e+13 4.485e+13 -8.676e+11 1.04e+00 5.66e+00 5.66e-10 1.08e+01 7.79e-01 9.17e-01 3.00e-01 19 27.2 9.540e+12 3.941e+13 -1.292e+12 1.07e+00 1.25e+00 1.25e-10 8.99e-01 9.22e-01 1.00e+00 3.00e-01 20 27.2 2.995e+12 1.720e+13 -1.811e+12 1.24e+00 9.79e-02 9.79e-12 2.81e-52 1.00e+00 1.00e+00 3.00e-01 21 27.2 8.988e+11 4.388e+12 -1.903e+12 2.53e+00 9.51e-65 0.00e+00 4.96e-52 1.00e+00 1.00e+00 3.00e-01 22 27.2 2.696e+11 1.339e+12 -5.487e+11 2.39e+00 1.16e-65 0.00e+00 3.77e-52 8.90e-01 8.90e-01 1.00e-01 23 27.2 5.361e+10 2.688e+11 -1.065e+11 2.31e+00 5.49e-66 0.00e+00 7.97e-53 8.70e-01 8.70e-01 1.00e-01 24 27.3 1.161e+10 5.819e+10 -2.310e+10 2.32e+00 9.57e-67 3.71e-67 1.03e-53 8.52e-01 8.52e-01 1.00e-01 25 27.3 2.713e+09 1.355e+10 -5.443e+09 2.34e+00 2.49e-67 7.42e-68 1.55e-54 8.36e-01 8.36e-01 1.00e-01 26 27.3 6.711e+08 3.370e+09 -1.328e+09 2.30e+00 3.71e-68 4.64e-69 2.58e-55 8.30e-01 8.30e-01 1.00e-01 27 27.3 1.696e+08 8.422e+08 -3.452e+08 2.39e+00 2.72e-68 3.48e-69 4.36e-56 8.10e-01 8.10e-01 1.00e-01 28 27.3 4.599e+07 2.340e+08 -8.791e+07 2.20e+00 5.38e-69 0.00e+00 8.30e-57 8.18e-01 8.18e-01 1.00e-01 29 27.3 1.213e+07 5.873e+07 -2.619e+07 2.61e+00 5.01e-70 9.42e-70 1.51e-57 7.63e-01 7.63e-01 1.00e-01 30 27.3 3.798e+06 2.001e+07 -6.576e+06 1.98e+00 1.61e-70 3.08e-70 3.57e-58 8.24e-01 8.24e-01 1.00e-01 31 27.3 9.800e+05 4.616e+06 -2.245e+06 2.89e+00 3.62e-71 9.51e-71 6.27e-59 7.75e-01 7.75e-01 1.00e-01 32 27.3 2.963e+05 1.559e+06 -5.151e+05 1.99e+00 1.72e-71 3.62e-71 1.41e-59 8.39e-01 8.39e-01 1.00e-01 33 27.3 7.263e+04 3.436e+05 -1.649e+05 2.85e+00 4.47e-72 7.07e-72 2.27e-60 7.97e-01 7.97e-01 1.00e-01 34 27.3 2.051e+04 1.063e+05 -3.733e+04 2.08e+00 1.13e-72 1.41e-72 4.61e-61 8.41e-01 8.41e-01 1.00e-01 35 27.3 4.988e+03 2.366e+04 -1.125e+04 2.81e+00 3.22e-73 3.18e-73 7.33e-62 8.01e-01 8.01e-01 1.00e-01 36 27.3 1.393e+03 7.141e+03 -2.612e+03 2.15e+00 7.07e-74 6.19e-74 1.46e-62 8.38e-01 8.38e-01 1.00e-01 37 27.3 3.422e+02 1.603e+03 -7.929e+02 2.96e+00 3.10e-74 8.84e-75 2.36e-63 7.97e-01 7.97e-01 1.00e-01 38 27.3 9.665e+01 4.860e+02 -1.905e+02 2.29e+00 9.19e-75 2.76e-75 4.79e-64 8.39e-01 8.39e-01 1.00e-01 39 27.3 2.366e+01 1.051e+02 -6.048e+01 3.71e+00 3.32e-75 1.17e-75 7.70e-65 8.03e-01 8.03e-01 1.00e-01 40 27.4 6.562e+00 2.998e+01 -1.595e+01 3.28e+00 8.81e-76 5.53e-76 1.52e-65 8.57e-01 8.57e-01 1.00e-01 41 27.4 1.499e+00 4.629e+00 -5.866e+00 8.49e+00 1.04e-76 3.45e-77 2.17e-66 8.75e-01 8.75e-01 1.00e-01 42 27.4 3.183e-01 -4.666e-01 -2.695e+00 7.05e-01 5.18e-77 8.64e-78 2.70e-67 9.64e-01 9.64e-01 1.00e-01 43 27.4 4.224e-02 -1.900e+00 -2.195e+00 7.22e-02 8.64e-78 2.59e-77 9.83e-69 9.83e-01 9.83e-01 1.00e-01 44 27.4 4.861e-03 -2.089e+00 -2.123e+00 8.08e-03 1.73e-77 0.00e+00 1.65e-70 9.97e-01 9.97e-01 1.00e-01 45 27.4 5.004e-04 -2.110e+00 -2.114e+00 8.29e-04 8.64e-78 2.59e-77 5.38e-73 9.99e-01 9.99e-01 1.00e-01 46 27.4 5.050e-05 -2.113e+00 -2.113e+00 8.37e-05 8.64e-78 1.73e-77 5.94e-75 1.00e+00 1.00e+00 1.00e-01 47 27.4 5.060e-06 -2.113e+00 -2.113e+00 8.38e-06 1.73e-77 4.32e-77 5.53e-75 1.00e+00 1.00e+00 1.00e-01 48 27.4 5.062e-07 -2.113e+00 -2.113e+00 8.39e-07 8.64e-78 2.59e-77 4.94e-75 1.00e+00 1.00e+00 1.00e-01 49 27.4 5.063e-08 -2.113e+00 -2.113e+00 8.39e-08 8.64e-78 1.73e-77 2.10e-74 1.00e+00 1.00e+00 1.00e-01 50 27.4 5.064e-09 -2.113e+00 -2.113e+00 8.39e-09 8.64e-78 8.64e-78 1.17e-74 1.00e+00 1.00e+00 1.00e-01 51 27.4 5.064e-10 -2.113e+00 -2.113e+00 8.39e-10 8.64e-78 2.59e-77 7.74e-74 1.00e+00 1.00e+00 1.00e-01 52 27.4 5.065e-11 -2.113e+00 -2.113e+00 8.39e-11 8.64e-78 0.00e+00 1.96e-73 1.00e+00 1.00e+00 1.00e-01 53 27.4 5.065e-12 -2.113e+00 -2.113e+00 8.39e-12 8.64e-78 0.00e+00 1.05e-73 1.00e+00 1.00e+00 1.00e-01 54 27.4 5.066e-13 -2.113e+00 -2.113e+00 8.39e-13 8.64e-78 1.73e-77 2.31e-73 1.00e+00 1.00e+00 1.00e-01 55 27.4 5.066e-14 -2.113e+00 -2.113e+00 8.39e-14 8.64e-78 8.64e-78 1.39e-73 1.00e+00 1.00e+00 1.00e-01 56 27.5 5.067e-15 -2.113e+00 -2.113e+00 8.39e-15 1.73e-77 8.64e-78 1.27e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 27.498198 seconds (4.70 M allocations: 248.834 MiB, 1.19% gc time, 98.08% compilation time: <1% of which was recompilation) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:-2.112913881423601867159056589887154926236462180385979590939441802859889177624004 Dual objective:-2.112913881423605414416484519716151414718657713851050946724963219068921606892861 Duality gap:8.394230969649878589673227147221044743332306633170905553948169321900178019043836e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 2.10e+11 7.15e-01 8.46e-01 3.00e-01 2 0.4 4.213e+19 -7.841e+09 2.996e+11 1.05e+00 2.85e+09 2.85e-01 3.23e+10 7.79e-01 1.00e+00 3.00e-01 3 0.4 1.478e+19 1.359e+09 5.379e+11 9.95e-01 6.29e+08 6.29e-02 1.31e-65 8.20e-01 1.00e+00 3.00e-01 4 0.5 4.264e+18 4.397e+08 8.578e+11 9.99e-01 1.13e+08 1.13e-02 1.27e-64 8.92e-01 1.00e+00 3.00e-01 5 0.6 7.344e+17 4.931e+07 1.370e+12 1.00e+00 1.22e+07 1.22e-03 1.54e-64 8.98e-01 1.00e+00 3.00e-01 6 0.6 1.198e+17 4.867e+06 2.189e+12 1.00e+00 1.24e+06 1.24e-04 3.04e-64 8.95e-01 1.00e+00 3.00e-01 7 0.7 2.010e+16 5.242e+05 3.499e+12 1.00e+00 1.30e+05 1.30e-05 4.20e-64 8.99e-01 1.00e+00 3.00e-01 8 0.7 3.262e+15 5.203e+04 5.596e+12 1.00e+00 1.32e+04 1.32e-06 7.31e-64 8.97e-01 1.00e+00 3.00e-01 9 0.8 5.394e+14 5.483e+03 8.950e+12 1.00e+00 1.37e+03 1.37e-07 1.37e-63 8.99e-01 1.00e+00 3.00e-01 10 0.8 8.742e+13 5.525e+02 1.430e+13 1.00e+00 1.38e+02 1.38e-08 1.73e-63 8.99e-01 1.00e+00 3.00e-01 11 0.9 1.453e+13 6.378e+01 2.266e+13 1.00e+00 1.40e+01 1.40e-09 2.69e-63 8.96e-01 1.00e+00 3.00e-01 12 1.0 2.995e+12 1.385e+01 3.308e+13 1.00e+00 1.45e+00 1.45e-10 4.98e-63 8.80e-01 1.00e+00 3.00e-01 13 1.0 1.001e+12 9.125e+00 2.897e+13 1.00e+00 1.74e-01 1.74e-11 5.77e-63 8.85e-01 1.00e+00 3.00e-01 14 1.1 3.229e+11 8.728e+00 1.226e+13 1.00e+00 2.01e-02 2.01e-12 4.04e-63 8.77e-01 1.00e+00 3.00e-01 15 1.1 9.802e+10 8.791e+00 3.989e+12 1.00e+00 2.47e-03 2.47e-13 6.43e-64 1.00e+00 1.00e+00 3.00e-01 16 1.2 2.964e+10 8.979e+00 1.245e+12 1.00e+00 5.18e-77 1.73e-77 4.45e-64 1.00e+00 1.00e+00 3.00e-01 17 1.2 8.892e+09 9.036e+00 3.735e+11 1.00e+00 4.32e-77 1.73e-77 5.42e-66 9.97e-01 9.97e-01 1.00e-01 18 1.3 9.112e+08 9.041e+00 3.827e+10 1.00e+00 5.18e-77 3.45e-77 4.15e-66 1.00e+00 1.00e+00 1.00e-01 19 1.4 9.117e+07 9.046e+00 3.829e+09 1.00e+00 3.45e-77 2.59e-77 4.08e-67 1.00e+00 1.00e+00 1.00e-01 20 1.4 9.118e+06 9.050e+00 3.830e+08 1.00e+00 5.18e-77 1.73e-77 3.71e-68 1.00e+00 1.00e+00 1.00e-01 21 1.5 9.119e+05 9.054e+00 3.830e+07 1.00e+00 3.45e-77 3.45e-77 2.32e-69 1.00e+00 1.00e+00 1.00e-01 22 1.5 9.120e+04 9.058e+00 3.830e+06 1.00e+00 5.18e-77 3.45e-77 5.07e-70 1.00e+00 1.00e+00 1.00e-01 23 1.6 9.121e+03 9.061e+00 3.831e+05 1.00e+00 3.45e-77 1.73e-77 1.31e-70 1.00e+00 1.00e+00 1.00e-01 24 1.7 9.123e+02 9.064e+00 3.832e+04 1.00e+00 5.18e-77 1.73e-77 2.83e-72 1.00e+00 1.00e+00 1.00e-01 25 1.7 9.154e+01 9.069e+00 3.854e+03 9.95e-01 5.18e-77 3.45e-77 1.47e-73 9.96e-01 9.96e-01 1.00e-01 26 1.8 9.453e+00 9.090e+00 4.061e+02 9.56e-01 3.45e-77 1.73e-77 2.15e-74 9.67e-01 9.67e-01 1.00e-01 27 1.8 1.226e+00 9.266e+00 6.078e+01 7.35e-01 3.45e-77 1.73e-77 7.74e-75 8.41e-01 8.41e-01 1.00e-01 28 1.9 2.985e-01 1.028e+01 2.281e+01 3.79e-01 6.91e-77 1.73e-77 1.84e-75 7.57e-01 7.57e-01 1.00e-01 29 1.9 9.522e-02 1.184e+01 1.584e+01 1.45e-01 5.02e-77 1.73e-77 7.07e-75 5.18e-01 5.18e-01 1.00e-01 30 2.0 5.085e-02 1.263e+01 1.477e+01 7.79e-02 6.91e-77 3.45e-77 7.95e-75 6.13e-01 6.13e-01 1.00e-01 31 2.1 2.282e-02 1.280e+01 1.376e+01 3.61e-02 3.94e-77 3.45e-77 4.97e-75 8.46e-01 8.46e-01 1.00e-01 32 2.1 5.436e-03 1.307e+01 1.330e+01 8.66e-03 5.61e-77 1.73e-77 9.02e-75 8.46e-01 8.46e-01 1.00e-01 33 2.2 1.296e-03 1.314e+01 1.319e+01 2.07e-03 6.91e-77 1.73e-77 6.17e-74 8.17e-01 8.17e-01 1.00e-01 34 2.3 3.428e-04 1.315e+01 1.317e+01 5.47e-04 5.64e-77 1.73e-77 3.32e-73 8.07e-01 8.07e-01 1.00e-01 35 2.3 9.373e-05 1.316e+01 1.316e+01 1.50e-04 7.45e-77 8.64e-78 1.24e-72 7.58e-01 7.58e-01 1.00e-01 36 2.4 2.978e-05 1.316e+01 1.316e+01 4.75e-05 7.06e-77 2.59e-77 9.85e-73 8.83e-01 8.83e-01 1.00e-01 37 2.4 6.117e-06 1.316e+01 1.316e+01 9.76e-06 4.85e-77 1.73e-77 1.60e-72 8.72e-01 8.72e-01 1.00e-01 38 2.5 1.315e-06 1.316e+01 1.316e+01 2.10e-06 5.02e-77 1.73e-77 1.31e-72 9.01e-01 9.01e-01 1.00e-01 39 2.5 2.487e-07 1.316e+01 1.316e+01 3.97e-07 6.91e-77 8.64e-78 4.18e-72 9.70e-01 9.70e-01 1.00e-01 40 2.6 3.167e-08 1.316e+01 1.316e+01 5.05e-08 7.90e-77 2.59e-77 8.29e-72 9.98e-01 9.98e-01 1.00e-01 41 2.7 3.234e-09 1.316e+01 1.316e+01 5.16e-09 5.18e-77 2.59e-77 7.40e-72 9.98e-01 9.98e-01 1.00e-01 42 2.7 3.294e-10 1.316e+01 1.316e+01 5.26e-10 4.32e-77 2.59e-77 1.78e-71 1.00e+00 1.00e+00 1.00e-01 43 2.8 3.303e-11 1.316e+01 1.316e+01 5.27e-11 6.91e-77 2.59e-77 1.23e-71 1.00e+00 1.00e+00 1.00e-01 44 2.8 3.303e-12 1.316e+01 1.316e+01 5.27e-12 8.77e-77 1.73e-77 8.87e-72 1.00e+00 1.00e+00 1.00e-01 45 2.9 3.304e-13 1.316e+01 1.316e+01 5.27e-13 6.37e-77 1.73e-77 1.42e-71 1.00e+00 1.00e+00 1.00e-01 46 3.0 3.304e-14 1.316e+01 1.316e+01 5.27e-14 8.61e-77 3.45e-77 7.26e-72 1.00e+00 1.00e+00 1.00e-01 47 3.0 3.304e-15 1.316e+01 1.316e+01 5.27e-15 3.90e-77 1.73e-77 9.92e-72 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.012578 seconds (6.55 M allocations: 400.919 MiB, 13.87% gc time, 8.09% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:13.15831434739029877945148133490973265286259060559373518569024984983310757387029 Dual objective:13.15831434739031265888798372122419420765335572692373179077987865290711654543905 Duality gap:5.274017680364593667365846717308586850711245001825612084655807363142500827755981e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.585e-02 1.585e-02 0.00e+00 1.00e+10 3.02e+20 8.43e+10 7.03e-01 7.57e-01 3.00e-01 2 0.2 4.190e+19 -2.320e+10 -2.620e+08 9.78e-01 2.97e+09 8.99e+19 2.04e+10 7.89e-01 7.78e-01 3.00e-01 3 0.3 1.306e+19 -4.643e+10 -1.742e+09 9.28e-01 6.28e+08 1.90e+19 4.53e+09 8.17e-01 7.43e-01 3.00e-01 4 0.3 3.686e+18 -7.438e+10 -1.494e+09 9.61e-01 1.15e+08 3.48e+18 1.17e+09 8.25e-01 8.15e-01 3.00e-01 5 0.4 9.725e+17 -1.038e+11 1.515e+08 1.00e+00 2.01e+07 6.09e+17 2.16e+08 7.94e-01 7.63e-01 3.00e-01 6 0.5 3.020e+17 -1.438e+11 3.329e+09 1.05e+00 4.16e+06 1.26e+17 5.11e+07 7.09e-01 7.99e-01 3.00e-01 7 0.6 1.203e+17 -1.906e+11 1.626e+10 1.19e+00 1.21e+06 3.65e+16 1.03e+07 7.49e-01 8.14e-01 3.00e-01 8 0.7 4.286e+16 -2.882e+11 3.009e+10 1.23e+00 3.03e+05 9.15e+15 1.92e+06 7.63e-01 8.17e-01 3.00e-01 9 0.8 1.468e+16 -4.788e+11 5.004e+10 1.23e+00 7.18e+04 2.17e+15 3.51e+05 7.82e-01 6.89e-01 3.00e-01 10 0.9 4.729e+15 -8.435e+11 8.455e+10 1.22e+00 1.57e+04 4.74e+14 1.09e+05 6.46e-01 6.36e-01 3.00e-01 11 1.0 2.321e+15 -1.155e+12 1.377e+11 1.27e+00 5.54e+03 1.67e+14 3.98e+04 6.72e-01 6.11e-01 3.00e-01 12 1.1 1.063e+15 -1.592e+12 1.951e+11 1.28e+00 1.81e+03 5.49e+13 1.55e+04 5.62e-01 9.01e-01 3.00e-01 13 1.2 6.779e+14 -2.021e+12 2.787e+11 1.32e+00 7.94e+02 2.40e+13 1.53e+03 8.24e-01 9.11e-01 3.00e-01 14 1.2 1.835e+14 -5.984e+12 4.300e+11 1.15e+00 1.40e+02 4.23e+12 1.36e+02 8.55e-01 1.00e+00 3.00e-01 15 1.3 4.247e+13 -1.546e+13 6.864e+11 1.09e+00 2.03e+01 6.13e+11 3.20e-49 8.97e-01 1.00e+00 3.00e-01 16 1.4 7.181e+12 -1.302e+13 1.093e+12 1.18e+00 2.08e+00 6.30e+10 4.44e-48 8.89e-01 1.00e+00 3.00e-01 17 1.5 1.329e+12 -3.359e+12 1.724e+12 3.11e+00 2.31e-01 6.99e+09 8.73e-48 8.33e-01 1.00e+00 3.00e-01 18 1.6 3.857e+11 -8.933e+11 2.306e+12 2.26e+00 3.86e-02 1.17e+09 1.17e-47 7.07e-01 1.00e+00 3.00e-01 19 1.7 1.766e+11 -3.434e+11 1.375e+12 1.67e+00 1.13e-02 3.42e+08 3.57e-48 8.44e-01 8.41e-01 3.00e-01 20 1.8 4.903e+10 -9.837e+10 7.115e+11 1.32e+00 1.77e-03 5.34e+07 2.64e-47 8.56e-01 1.00e+00 3.00e-01 21 1.9 1.622e+10 -2.672e+10 4.770e+11 1.12e+00 2.54e-04 7.67e+06 4.93e-48 7.71e-01 1.00e+00 3.00e-01 22 2.0 5.589e+09 -9.867e+09 1.839e+11 1.11e+00 5.81e-05 1.76e+06 1.13e-47 8.65e-01 8.10e-01 3.00e-01 23 2.1 2.102e+09 -2.786e+09 8.647e+10 1.07e+00 7.86e-06 2.38e+05 2.07e-48 7.54e-01 1.00e+00 3.00e-01 24 2.2 6.491e+08 -1.160e+09 2.539e+10 1.10e+00 1.93e-06 5.84e+04 1.27e-48 9.04e-01 9.19e-01 3.00e-01 25 2.3 2.210e+08 -2.876e+08 9.863e+09 1.06e+00 1.86e-07 5.62e+03 2.01e-48 9.41e-01 1.00e+00 3.00e-01 26 2.3 6.517e+07 -7.947e+07 3.067e+09 1.05e+00 1.11e-08 3.34e+02 1.90e-47 1.00e+00 1.00e+00 3.00e-01 27 2.4 1.954e+07 -1.955e+07 9.380e+08 1.04e+00 2.18e-63 4.53e-43 1.03e-47 1.00e+00 1.00e+00 3.00e-01 28 2.5 5.862e+06 -5.862e+06 2.814e+08 1.04e+00 1.13e-63 3.91e-43 5.96e-48 1.00e+00 1.00e+00 1.00e-01 29 2.6 5.873e+05 -5.873e+05 2.819e+07 1.04e+00 1.13e-63 1.23e-43 2.09e-49 1.00e+00 1.00e+00 1.00e-01 30 2.7 5.874e+04 -5.874e+04 2.819e+06 1.04e+00 1.01e-63 1.39e-43 5.17e-51 1.00e+00 1.00e+00 1.00e-01 31 2.8 5.874e+03 -5.874e+03 2.820e+05 1.04e+00 1.71e-63 3.78e-44 1.17e-51 1.00e+00 1.00e+00 1.00e-01 32 2.9 5.875e+02 -5.874e+02 2.820e+04 1.04e+00 1.03e-63 4.17e-43 1.37e-52 1.00e+00 1.00e+00 1.00e-01 33 3.0 5.876e+01 -5.866e+01 2.821e+03 1.04e+00 1.37e-63 1.89e-43 7.24e-54 1.00e+00 1.00e+00 1.00e-01 34 3.1 5.882e+00 -5.787e+00 2.824e+02 1.04e+00 1.27e-63 1.39e-43 3.83e-55 9.99e-01 9.99e-01 1.00e-01 35 3.2 5.953e-01 -4.994e-01 2.867e+01 1.04e+00 1.40e-63 2.71e-43 6.74e-55 9.88e-01 9.88e-01 1.00e-01 36 3.2 6.615e-02 3.260e-02 3.274e+00 9.80e-01 1.61e-63 7.12e-43 1.36e-55 9.22e-01 9.22e-01 1.00e-01 37 3.3 1.126e-02 1.068e-01 6.583e-01 5.52e-01 1.19e-63 2.61e-43 1.51e-55 8.48e-01 8.48e-01 1.00e-01 38 3.4 2.666e-03 1.882e-01 3.188e-01 1.31e-01 1.62e-63 3.70e-44 1.24e-55 8.38e-01 8.38e-01 1.00e-01 39 3.5 6.552e-04 2.394e-01 2.715e-01 3.21e-02 1.85e-63 1.24e-42 2.17e-56 8.06e-01 8.06e-01 1.00e-01 40 3.6 1.798e-04 2.495e-01 2.583e-01 8.81e-03 1.16e-63 8.34e-43 7.84e-57 8.23e-01 8.23e-01 1.00e-01 41 3.7 4.660e-05 2.526e-01 2.549e-01 2.28e-03 1.44e-63 1.07e-42 7.34e-56 7.89e-01 7.89e-01 1.00e-01 42 3.8 1.349e-05 2.534e-01 2.540e-01 6.61e-04 1.18e-63 1.06e-42 2.83e-55 7.75e-01 7.75e-01 1.00e-01 43 3.9 4.079e-06 2.536e-01 2.538e-01 2.00e-04 1.57e-63 1.44e-42 6.93e-56 7.61e-01 7.61e-01 1.00e-01 44 4.0 1.285e-06 2.537e-01 2.538e-01 6.30e-05 1.78e-63 1.28e-43 1.34e-54 9.61e-01 9.61e-01 1.00e-01 45 4.1 1.738e-07 2.537e-01 2.537e-01 8.52e-06 1.53e-63 1.82e-43 6.82e-55 9.60e-01 9.60e-01 1.00e-01 46 4.2 2.368e-08 2.537e-01 2.537e-01 1.16e-06 1.07e-63 1.73e-44 2.13e-55 9.77e-01 9.77e-01 1.00e-01 47 4.3 2.853e-09 2.537e-01 2.537e-01 1.40e-07 1.20e-63 5.98e-43 3.30e-55 9.93e-01 9.93e-01 1.00e-01 48 4.4 3.029e-10 2.537e-01 2.537e-01 1.48e-08 2.24e-63 3.65e-43 3.37e-55 9.99e-01 9.99e-01 1.00e-01 49 4.4 3.048e-11 2.537e-01 2.537e-01 1.49e-09 1.48e-63 7.06e-43 4.93e-55 1.00e+00 1.00e+00 1.00e-01 50 4.5 3.049e-12 2.537e-01 2.537e-01 1.49e-10 1.18e-63 1.39e-43 1.10e-54 1.00e+00 1.00e+00 1.00e-01 51 4.6 3.049e-13 2.537e-01 2.537e-01 1.49e-11 2.03e-63 2.16e-43 2.05e-54 1.00e+00 1.00e+00 1.00e-01 52 4.7 3.049e-14 2.537e-01 2.537e-01 1.49e-12 1.59e-63 2.02e-42 2.95e-55 1.00e+00 1.00e+00 1.00e-01 53 4.8 3.050e-15 2.537e-01 2.537e-01 1.49e-13 1.13e-63 2.63e-42 1.96e-54 1.00e+00 1.00e+00 1.00e-01 54 4.9 3.050e-16 2.537e-01 2.537e-01 1.49e-14 1.26e-63 1.51e-42 2.67e-55 1.00e+00 1.00e+00 1.00e-01 55 5.0 3.050e-17 2.537e-01 2.537e-01 1.49e-15 1.20e-63 8.35e-43 2.53e-55 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 5.001798 seconds (9.60 M allocations: 516.876 MiB, 7.83% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.2537404272210647350681469450052375869611981521481939836362994612546096548076211 Dual objective:0.2537404272210648845434896608659372783524629744866210187802466933154051606198629 Duality gap:1.494753427158606996913912648223384270351439472320607955058122418568374554978157e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.6 1.000e+20 0.000e+00 0.000e+00 0.00e+00 1.00e+10 1.00e+00 8.43e+10 6.32e-01 5.24e-01 3.00e-01 2 1.2 5.118e+19 7.190e+07 1.164e+10 9.88e-01 3.68e+09 3.68e-01 4.01e+10 6.36e-01 6.99e-01 3.00e-01 3 1.8 2.570e+19 6.028e+07 2.506e+10 9.95e-01 1.34e+09 1.34e-01 1.21e+10 7.82e-01 7.56e-01 3.00e-01 4 2.4 8.263e+18 1.502e+07 4.098e+10 9.99e-01 2.93e+08 2.93e-02 2.94e+09 8.07e-01 8.00e-01 3.00e-01 5 3.0 2.367e+18 3.547e+06 6.396e+10 1.00e+00 5.64e+07 5.64e-03 5.87e+08 8.04e-01 7.46e-01 3.00e-01 6 3.7 7.008e+17 8.038e+05 9.568e+10 1.00e+00 1.11e+07 1.11e-03 1.49e+08 8.14e-01 7.81e-01 3.00e-01 7 4.3 1.972e+17 1.837e+05 1.446e+11 1.00e+00 2.06e+06 2.06e-04 3.27e+07 7.79e-01 7.96e-01 3.00e-01 8 4.9 6.361e+16 4.687e+04 2.206e+11 1.00e+00 4.56e+05 4.56e-05 6.67e+06 7.28e-01 7.70e-01 3.00e-01 9 5.5 2.470e+16 1.204e+04 3.288e+11 1.00e+00 1.24e+05 1.24e-05 1.54e+06 7.29e-01 7.91e-01 3.00e-01 10 6.1 9.586e+15 3.109e+03 5.041e+11 1.00e+00 3.37e+04 3.37e-06 3.21e+05 7.58e-01 7.85e-01 3.00e-01 11 6.7 3.375e+15 7.627e+02 8.164e+11 1.00e+00 8.17e+03 8.17e-07 6.90e+04 6.24e-01 7.24e-01 3.00e-01 12 7.3 1.763e+15 3.251e+02 1.508e+12 1.00e+00 3.07e+03 3.07e-07 1.91e+04 5.66e-01 4.74e-01 3.00e-01 13 8.0 1.006e+15 3.029e+02 2.709e+12 1.00e+00 1.33e+03 1.33e-07 1.00e+04 6.70e-01 6.86e-01 3.00e-01 14 8.6 4.647e+14 3.925e+02 4.272e+12 1.00e+00 4.40e+02 4.40e-08 3.14e+03 5.67e-01 6.23e-01 3.00e-01 15 9.2 2.709e+14 6.587e+02 6.050e+12 1.00e+00 1.91e+02 1.91e-08 1.18e+03 4.25e-01 9.14e-01 3.00e-01 16 9.8 2.367e+14 6.300e+01 9.859e+12 1.00e+00 1.10e+02 1.10e-08 1.01e+02 7.83e-01 1.00e+00 3.00e-01 17 10.4 8.205e+13 7.894e+01 1.584e+13 1.00e+00 2.37e+01 2.37e-09 5.50e-58 8.13e-01 1.00e+00 3.00e-01 18 11.0 2.463e+13 1.886e+01 2.504e+13 1.00e+00 4.43e+00 4.43e-10 1.64e-57 8.84e-01 1.00e+00 3.00e-01 19 11.6 4.808e+12 2.447e+00 3.732e+13 1.00e+00 5.16e-01 5.16e-11 5.07e-57 8.88e-01 1.00e+00 3.00e-01 20 12.3 1.084e+12 3.495e-01 3.941e+13 1.00e+00 5.77e-02 5.77e-12 6.55e-57 8.56e-01 1.00e+00 3.00e-01 21 12.9 3.431e+11 1.295e-01 2.400e+13 1.00e+00 8.33e-03 8.33e-13 2.04e-57 8.25e-01 1.00e+00 3.00e-01 22 13.5 1.158e+11 9.545e-02 1.061e+13 1.00e+00 1.46e-03 1.46e-13 2.87e-58 8.40e-01 8.07e-01 3.00e-01 23 14.1 4.557e+10 8.306e-02 4.818e+12 1.00e+00 2.34e-04 2.34e-14 7.68e-59 7.20e-01 1.00e+00 3.00e-01 24 14.8 1.417e+10 8.217e-02 1.436e+12 1.00e+00 6.54e-05 6.54e-15 3.06e-60 8.96e-01 8.18e-01 3.00e-01 25 15.4 5.688e+09 7.650e-02 6.445e+11 1.00e+00 6.79e-06 6.79e-16 1.01e-58 9.34e-01 1.00e+00 3.00e-01 26 16.0 1.690e+09 7.658e-02 1.988e+11 1.00e+00 4.49e-07 4.49e-17 2.17e-59 1.00e+00 1.00e+00 3.00e-01 27 16.6 5.061e+08 7.648e-02 6.022e+10 1.00e+00 3.14e-74 4.52e-51 2.10e-58 1.00e+00 1.00e+00 3.00e-01 28 17.3 1.518e+08 7.648e-02 1.807e+10 1.00e+00 2.66e-74 7.64e-51 7.92e-59 1.00e+00 1.00e+00 1.00e-01 29 17.9 1.524e+07 7.648e-02 1.814e+09 1.00e+00 4.36e-74 9.30e-51 4.96e-60 1.00e+00 1.00e+00 1.00e-01 30 18.5 1.524e+06 7.649e-02 1.814e+08 1.00e+00 2.48e-74 3.06e-51 1.76e-61 1.00e+00 1.00e+00 1.00e-01 31 19.2 1.525e+05 7.649e-02 1.814e+07 1.00e+00 3.16e-74 3.95e-51 2.07e-62 1.00e+00 1.00e+00 1.00e-01 32 19.8 1.525e+04 7.649e-02 1.814e+06 1.00e+00 3.48e-74 3.76e-51 5.69e-63 1.00e+00 1.00e+00 1.00e-01 33 20.4 1.525e+03 7.649e-02 1.815e+05 1.00e+00 1.89e-74 1.74e-51 6.33e-64 1.00e+00 1.00e+00 1.00e-01 34 21.1 1.525e+02 7.649e-02 1.815e+04 1.00e+00 2.20e-74 3.19e-51 5.25e-65 1.00e+00 1.00e+00 1.00e-01 35 21.7 1.529e+01 7.653e-02 1.820e+03 1.00e+00 2.35e-74 3.72e-51 3.77e-66 9.97e-01 9.97e-01 1.00e-01 36 22.3 1.564e+00 7.692e-02 1.862e+02 9.99e-01 3.13e-74 3.38e-51 4.28e-67 9.76e-01 9.76e-01 1.00e-01 37 22.9 1.897e-01 8.062e-02 2.266e+01 9.93e-01 2.02e-74 5.08e-51 4.25e-68 8.77e-01 8.77e-01 1.00e-01 38 23.6 3.990e-02 1.073e-01 4.856e+00 9.57e-01 1.93e-74 3.96e-51 3.39e-69 9.21e-01 9.21e-01 1.00e-01 39 24.2 6.811e-03 1.612e-01 9.718e-01 7.15e-01 2.56e-74 2.71e-51 1.51e-68 8.71e-01 8.71e-01 1.00e-01 40 24.9 1.473e-03 2.059e-01 3.812e-01 1.75e-01 4.31e-74 3.67e-51 1.07e-68 8.63e-01 8.63e-01 1.00e-01 41 25.5 3.291e-04 2.437e-01 2.829e-01 3.92e-02 3.68e-74 5.51e-51 1.88e-69 8.93e-01 8.93e-01 1.00e-01 42 26.1 6.458e-05 2.517e-01 2.594e-01 7.69e-03 3.78e-74 1.16e-50 6.41e-69 8.48e-01 8.48e-01 1.00e-01 43 26.8 1.529e-05 2.532e-01 2.550e-01 1.82e-03 9.57e-74 1.65e-50 2.91e-67 8.38e-01 8.38e-01 1.00e-01 44 27.4 3.758e-06 2.536e-01 2.540e-01 4.47e-04 7.06e-74 1.07e-50 2.56e-68 8.60e-01 8.60e-01 1.00e-01 45 28.0 8.506e-07 2.537e-01 2.538e-01 1.01e-04 4.01e-74 7.48e-51 1.27e-67 9.32e-01 9.32e-01 1.00e-01 46 28.7 1.372e-07 2.537e-01 2.538e-01 1.63e-05 7.05e-74 5.44e-51 2.41e-66 9.60e-01 9.60e-01 1.00e-01 47 29.3 1.861e-08 2.537e-01 2.537e-01 2.21e-06 3.93e-74 7.77e-51 1.09e-66 9.53e-01 9.53e-01 1.00e-01 48 29.9 2.646e-09 2.537e-01 2.537e-01 3.15e-07 3.64e-74 2.98e-51 3.64e-67 9.65e-01 9.65e-01 1.00e-01 49 30.5 3.469e-10 2.537e-01 2.537e-01 4.13e-08 3.28e-74 7.44e-51 1.95e-66 9.73e-01 9.73e-01 1.00e-01 50 31.2 4.314e-11 2.537e-01 2.537e-01 5.13e-09 5.30e-74 6.67e-51 1.49e-65 9.75e-01 9.75e-01 1.00e-01 51 31.8 5.269e-12 2.537e-01 2.537e-01 6.27e-10 3.86e-74 3.67e-51 8.02e-65 9.79e-01 9.79e-01 1.00e-01 52 32.4 6.243e-13 2.537e-01 2.537e-01 7.43e-11 5.36e-74 1.08e-50 4.93e-64 9.96e-01 9.96e-01 1.00e-01 53 33.0 6.487e-14 2.537e-01 2.537e-01 7.72e-12 4.32e-74 1.06e-50 5.32e-63 1.00e+00 1.00e+00 1.00e-01 54 33.7 6.499e-15 2.537e-01 2.537e-01 7.73e-13 5.71e-74 3.75e-51 2.45e-62 1.00e+00 1.00e+00 1.00e-01 55 34.3 6.501e-16 2.537e-01 2.537e-01 7.74e-14 4.16e-74 3.53e-51 2.85e-61 1.00e+00 1.00e+00 1.00e-01 56 34.9 6.502e-17 2.537e-01 2.537e-01 7.74e-15 5.38e-74 1.46e-50 3.37e-60 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 34.912949 seconds (60.78 M allocations: 3.578 GiB, 4.73% gc time, 0.61% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:0.25374042722106456994046530785168244840045628213809477780586789442540661079435134837613162692 Dual objective:0.25374042722106534372301166228659152940478897758724127721396275865588510682146911797459739652 Duality gap:7.7378254635443490908100433269544914649940809486423047849602711776959846576959982883055530297e-16 [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 2.36e+06 6.53e-01 5.28e-01 3.00e-01 2 0.6 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.12e+06 4.22e-01 6.07e-01 3.00e-01 3 0.8 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 4.38e+05 5.84e-01 4.21e-01 3.00e-01 4 1.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 2.54e+05 4.22e-01 9.53e-01 3.00e-01 5 1.3 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 1.18e+04 7.78e-01 1.00e+00 3.00e-01 6 1.5 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.48e-66 8.24e-01 1.00e+00 3.00e-01 7 1.7 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.28e-66 8.75e-01 1.00e+00 3.00e-01 8 2.0 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.52e-66 8.48e-01 9.86e-01 3.00e-01 9 2.2 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 7.51e-66 8.19e-01 1.00e+00 3.00e-01 10 2.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 8.72e-66 8.33e-01 1.00e+00 3.00e-01 11 2.7 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 2.04e-66 1.00e+00 1.00e+00 3.00e-01 12 2.9 5.146e+01 8.519e+00 4.074e+03 9.96e-01 5.20e-74 0.00e+00 7.08e-67 1.00e+00 1.00e+00 3.00e-01 13 3.2 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.29e-73 0.00e+00 6.45e-68 9.92e-01 9.92e-01 1.00e-01 14 3.4 1.654e+00 8.507e+00 1.392e+02 8.85e-01 1.00e-73 0.00e+00 3.59e-69 9.78e-01 9.78e-01 1.00e-01 15 3.6 1.981e-01 8.562e+00 2.421e+01 4.77e-01 1.01e-73 0.00e+00 7.83e-70 8.60e-01 8.60e-01 1.00e-01 16 3.8 4.484e-02 8.877e+00 1.242e+01 1.66e-01 2.90e-74 0.00e+00 1.47e-69 8.02e-01 8.02e-01 1.00e-01 17 4.1 1.245e-02 9.486e+00 1.047e+01 4.93e-02 3.84e-74 0.00e+00 2.62e-69 7.62e-01 7.62e-01 1.00e-01 18 4.3 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.66e-74 0.00e+00 6.69e-69 7.52e-01 7.52e-01 1.00e-01 19 4.5 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.18e-73 0.00e+00 3.31e-69 8.14e-01 8.14e-01 1.00e-01 20 4.8 3.392e-04 9.983e+00 1.001e+01 1.34e-03 8.40e-74 0.00e+00 1.46e-69 7.89e-01 7.89e-01 1.00e-01 21 5.0 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.24e-74 0.00e+00 1.46e-68 9.42e-01 9.42e-01 1.00e-01 22 5.2 1.496e-05 9.999e+00 1.000e+01 5.91e-05 3.65e-74 0.00e+00 2.52e-69 9.79e-01 9.79e-01 1.00e-01 23 5.5 1.780e-06 1.000e+01 1.000e+01 7.03e-06 7.52e-74 0.00e+00 3.80e-69 9.89e-01 9.89e-01 1.00e-01 24 5.7 1.951e-07 1.000e+01 1.000e+01 7.71e-07 8.62e-74 0.00e+00 2.24e-69 9.97e-01 9.97e-01 1.00e-01 25 5.9 2.009e-08 1.000e+01 1.000e+01 7.94e-08 1.56e-73 0.00e+00 3.53e-69 1.00e+00 1.00e+00 1.00e-01 26 6.2 2.016e-09 1.000e+01 1.000e+01 7.96e-09 5.40e-74 0.00e+00 6.76e-69 1.00e+00 1.00e+00 1.00e-01 27 6.4 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.09e-73 0.00e+00 9.03e-69 1.00e+00 1.00e+00 1.00e-01 28 6.6 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.24e-73 0.00e+00 1.27e-68 1.00e+00 1.00e+00 1.00e-01 29 6.8 2.017e-12 1.000e+01 1.000e+01 7.97e-12 9.29e-74 0.00e+00 7.65e-69 1.00e+00 1.00e+00 1.00e-01 30 7.1 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.40e-73 0.00e+00 7.01e-69 1.00e+00 1.00e+00 1.00e-01 31 7.3 2.018e-14 1.000e+01 1.000e+01 7.97e-14 2.87e-74 0.00e+00 1.05e-68 1.00e+00 1.00e+00 1.00e-01 32 7.5 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.25e-73 0.00e+00 1.16e-68 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 7.526188 seconds (14.51 M allocations: 875.049 MiB, 8.77% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999988697806312364629586633761075931040260493586399230528324306359606 Dual objective:10.0000000000000046419724074448082497942161656245626939603359779955727984532867 Duality gap:7.972083047540091986372085578494245942129327859993373175844167487250928694314984e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.1 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.1 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.1 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.2 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.2 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.2 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.213792 seconds (35.72 k allocations: 3.160 MiB, 79.40% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 1.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 8.43e-81 1.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 1.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 1.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.1 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 3.37e-80 1.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.1 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 1.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 1.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 1.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 2.70e-79 9.95e+01 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 9.50e+00 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 5.00e-01 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 5.40e-79 0.00e+00 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 1.35e-79 2.45e-91 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 1.69e-80 1.23e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 2.64e-82 1.23e-90 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 1.65e-83 9.82e-91 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 1.03e-84 7.36e-91 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.2 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 1.61e-86 4.91e-91 1.00e+00 1.00e+00 1.00e-01 22 0.2 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 7.36e-91 9.98e-01 9.98e-01 1.00e-01 23 0.2 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 1.10e-88 9.82e-91 9.78e-01 9.78e-01 1.00e-01 24 0.2 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 1.77e-89 4.91e-91 8.86e-01 8.86e-01 1.00e-01 25 0.2 2.642e-01 1.213e+00 6.845e-01 2.78e-01 9.82e-91 9.82e-91 1.47e-90 9.25e-01 9.25e-01 1.00e-01 26 0.2 4.423e-02 1.057e+00 9.685e-01 4.37e-02 4.91e-91 9.82e-91 1.47e-90 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 9.82e-91 4.91e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 9.82e-91 2.45e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 1.96e-90 4.91e-91 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 9.82e-91 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 9.82e-91 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 1.96e-90 1.47e-90 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 9.82e-91 4.91e-91 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 1.96e-90 1.96e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 9.82e-91 1.58e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.239858 seconds (39.57 k allocations: 3.350 MiB, 80.12% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279658 Dual objective:0.99999999999999943082767216337127209759143460468258988906557772435476604996095098262648013301 Duality gap:5.6917232783663520704518407084868243898485833877975145389337569723019498653208233770743335244e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.5 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.5 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.5 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.5 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.5 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.5 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.5 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.5 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.5 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.5 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.5 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.5 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.5 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.5 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.5 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.5 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.5 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.6 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.6 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.6 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.6 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.6 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.6 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.6 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.6 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.6 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.6 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.6 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.6 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.6 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.6 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.6 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.6 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.6 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.6 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.6 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.6 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.7 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.650549 seconds (481.49 k allocations: 25.190 MiB, 31.10% gc time, 58.42% compilation time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.1 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.1 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.204443 seconds (35.77 k allocations: 3.166 MiB, 75.26% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.0 1.000e+20 0.000e+00 1.000e+10 1.00e+00 1.00e+10 0.00e+00 2.00e+10 1.00e+00 9.00e-01 3.00e-01 2 0.0 1.600e+19 1.600e+10 1.000e+09 8.82e-01 0.00e+00 0.00e+00 2.00e+09 1.00e+00 9.00e-01 3.00e-01 3 0.0 2.560e+18 2.560e+10 1.000e+08 9.92e-01 0.00e+00 0.00e+00 2.00e+08 1.00e+00 9.00e-01 3.00e-01 4 0.0 4.096e+17 4.096e+10 1.000e+07 1.00e+00 0.00e+00 0.00e+00 2.00e+07 1.00e+00 9.00e-01 3.00e-01 5 0.0 6.554e+16 6.554e+10 1.000e+06 1.00e+00 0.00e+00 0.00e+00 2.00e+06 1.00e+00 9.00e-01 3.00e-01 6 0.0 1.049e+16 1.049e+11 1.000e+05 1.00e+00 0.00e+00 0.00e+00 2.00e+05 1.00e+00 9.00e-01 3.00e-01 7 0.1 1.678e+15 1.678e+11 1.000e+04 1.00e+00 0.00e+00 0.00e+00 2.00e+04 1.00e+00 9.00e-01 3.00e-01 8 0.1 2.684e+14 2.684e+11 1.000e+03 1.00e+00 0.00e+00 0.00e+00 2.00e+03 1.00e+00 9.00e-01 3.00e-01 9 0.1 4.292e+13 4.292e+11 1.000e+02 1.00e+00 0.00e+00 0.00e+00 1.99e+02 1.00e+00 9.05e-01 3.00e-01 10 0.1 6.817e+12 6.817e+11 1.000e+01 1.00e+00 0.00e+00 0.00e+00 1.90e+01 1.00e+00 9.47e-01 3.00e-01 11 0.1 1.014e+12 1.014e+12 1.000e+00 1.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e+00 3.00e-01 12 0.1 3.549e+11 7.098e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 3.00e-01 13 0.1 1.065e+11 2.130e+11 5.000e-01 1.00e+00 0.00e+00 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 14 0.1 1.065e+10 2.130e+10 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 15 0.1 1.065e+09 2.130e+09 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 16 0.1 1.065e+08 2.130e+08 5.000e-01 1.00e+00 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 17 0.1 1.065e+07 2.130e+07 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 18 0.1 1.065e+06 2.130e+06 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 19 0.1 1.065e+05 2.130e+05 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 20 0.1 1.065e+04 2.130e+04 5.000e-01 1.00e+00 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 21 0.1 1.065e+03 2.131e+03 5.000e-01 1.00e+00 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 22 0.1 1.067e+02 2.140e+02 5.003e-01 9.95e-01 0.00e+00 0.00e+00 4.91e-91 9.98e-01 9.98e-01 1.00e-01 23 0.1 1.090e+01 2.230e+01 5.026e-01 9.56e-01 0.00e+00 0.00e+00 0.00e+00 9.78e-01 9.78e-01 1.00e-01 24 0.1 1.302e+00 3.130e+00 5.247e-01 7.13e-01 0.00e+00 0.00e+00 1.47e-90 8.86e-01 8.86e-01 1.00e-01 25 0.1 2.642e-01 1.213e+00 6.845e-01 2.78e-01 0.00e+00 0.00e+00 4.91e-91 9.25e-01 9.25e-01 1.00e-01 26 0.2 4.423e-02 1.057e+00 9.685e-01 4.37e-02 9.82e-91 0.00e+00 9.82e-91 9.82e-01 9.82e-01 1.00e-01 27 0.2 5.135e-03 1.006e+00 9.954e-01 5.13e-03 4.91e-91 0.00e+00 9.82e-91 9.90e-01 9.90e-01 1.00e-01 28 0.2 5.586e-04 1.001e+00 9.995e-01 5.59e-04 4.91e-91 0.00e+00 1.47e-90 9.98e-01 9.98e-01 1.00e-01 29 0.2 5.683e-05 1.000e+00 9.999e-01 5.68e-05 9.82e-91 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 30 0.2 5.691e-06 1.000e+00 1.000e+00 5.69e-06 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 31 0.2 5.692e-07 1.000e+00 1.000e+00 5.69e-07 4.91e-91 0.00e+00 1.47e-90 1.00e+00 1.00e+00 1.00e-01 32 0.2 5.692e-08 1.000e+00 1.000e+00 5.69e-08 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 33 0.2 5.692e-09 1.000e+00 1.000e+00 5.69e-09 4.91e-91 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 34 0.2 5.692e-10 1.000e+00 1.000e+00 5.69e-10 0.00e+00 0.00e+00 1.96e-90 1.00e+00 1.00e+00 1.00e-01 35 0.2 5.692e-11 1.000e+00 1.000e+00 5.69e-11 0.00e+00 0.00e+00 9.82e-91 1.00e+00 1.00e+00 1.00e-01 36 0.2 5.692e-12 1.000e+00 1.000e+00 5.69e-12 0.00e+00 0.00e+00 0.00e+00 1.00e+00 1.00e+00 1.00e-01 37 0.2 5.692e-13 1.000e+00 1.000e+00 5.69e-13 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 38 0.2 5.692e-14 1.000e+00 1.000e+00 5.69e-14 4.91e-91 0.00e+00 2.45e-90 1.00e+00 1.00e+00 1.00e-01 39 0.2 5.692e-15 1.000e+00 1.000e+00 5.69e-15 4.91e-91 0.00e+00 4.91e-91 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 0.224507 seconds (41.15 k allocations: 3.404 MiB, 70.94% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:1.0000000000000005691723278366416861879595763094229654106229723826343406620015981991860279668 Dual objective:0.9999999999999994308276721633712720975914346046825898890655777243547660499609509826264801335 Duality gap:5.691723278366352070451840708486824389848583387797514538933756972301949865323277923806982379e-16 iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.3 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.3 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.4 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.4 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.4 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 1.67e-142 8.40e-01 1.00e+00 3.00e-01 6 0.4 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 2.03e-141 8.95e-01 1.00e+00 3.00e-01 7 0.4 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 2.78e-141 8.90e-01 1.00e+00 3.00e-01 8 0.4 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 6.10e-141 8.97e-01 1.00e+00 3.00e-01 9 0.4 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 7.73e-142 8.94e-01 1.00e+00 3.00e-01 10 0.5 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.32e-141 8.99e-01 1.00e+00 3.00e-01 11 0.5 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 2.21e-141 8.99e-01 1.00e+00 3.00e-01 12 0.5 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 9.53e-141 9.13e-01 1.00e+00 3.00e-01 13 0.5 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 2.99e-140 1.00e+00 1.00e+00 3.00e-01 14 0.5 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 7.37e-140 1.00e+00 1.00e+00 3.00e-01 15 0.5 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 2.26e-141 9.99e-01 9.99e-01 1.00e-01 16 0.6 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 5.71e-142 1.00e+00 1.00e+00 1.00e-01 17 0.6 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 1.25e-143 1.00e+00 1.00e+00 1.00e-01 18 0.6 3.063e+08 1.201e+02 4.288e+09 1.00e+00 9.55e-153 0.00e+00 5.47e-144 1.00e+00 1.00e+00 1.00e-01 19 0.6 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 1.61e-145 1.00e+00 1.00e+00 1.00e-01 20 0.6 3.064e+06 1.202e+02 4.289e+07 1.00e+00 4.77e-153 0.00e+00 9.16e-146 1.00e+00 1.00e+00 1.00e-01 21 0.6 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 7.07e-147 1.00e+00 1.00e+00 1.00e-01 22 0.6 3.065e+04 1.203e+02 4.292e+05 9.99e-01 9.55e-153 0.00e+00 6.09e-148 1.00e+00 1.00e+00 1.00e-01 23 0.7 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 2.44e-149 9.97e-01 9.97e-01 1.00e-01 24 0.7 3.167e+02 1.211e+02 4.554e+03 9.48e-01 9.55e-153 0.00e+00 9.40e-150 9.70e-01 9.70e-01 1.00e-01 25 0.7 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 1.09e-150 8.70e-01 8.70e-01 1.00e-01 26 0.7 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 6.68e-151 9.15e-01 9.15e-01 1.00e-01 27 0.7 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 4.41e-151 9.82e-01 9.82e-01 1.00e-01 28 0.7 1.800e-01 2.389e+02 2.414e+02 5.25e-03 3.82e-152 0.00e+00 1.18e-150 9.89e-01 9.89e-01 1.00e-01 29 0.7 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.36e-150 9.97e-01 9.97e-01 1.00e-01 30 0.8 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 1.56e-150 1.00e+00 1.00e+00 1.00e-01 31 0.8 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 2.99e-151 1.00e+00 1.00e+00 1.00e-01 32 0.8 2.035e-05 2.400e+02 2.400e+02 5.93e-07 9.55e-153 0.00e+00 2.98e-151 1.00e+00 1.00e+00 1.00e-01 33 0.8 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 9.18e-151 1.00e+00 1.00e+00 1.00e-01 34 0.8 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 1.09e-150 1.00e+00 1.00e+00 1.00e-01 35 0.8 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.72e-150 1.00e+00 1.00e+00 1.00e-01 36 0.8 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.23e-151 1.00e+00 1.00e+00 1.00e-01 37 0.9 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 1.17e-150 1.00e+00 1.00e+00 1.00e-01 38 0.9 2.036e-11 2.400e+02 2.400e+02 5.94e-13 1.91e-152 0.00e+00 2.53e-151 1.00e+00 1.00e+00 1.00e-01 39 0.9 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 1.29e-150 1.00e+00 1.00e+00 1.00e-01 40 0.9 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 5.26e-150 1.00e+00 1.00e+00 1.00e-01 41 0.9 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 5.01e-150 1.00e+00 1.00e+00 1.00e-01 42 0.9 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 2.13e-150 1.00e+00 1.00e+00 1.00e-01 43 0.9 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.49e-149 1.00e+00 1.00e+00 1.00e-01 44 1.0 2.037e-17 2.400e+02 2.400e+02 5.94e-19 4.55e-153 0.00e+00 2.95e-149 1.00e+00 1.00e+00 1.00e-01 45 1.0 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 6.94e-150 1.00e+00 1.00e+00 1.00e-01 46 1.0 2.038e-19 2.400e+02 2.400e+02 5.94e-21 9.55e-153 0.00e+00 1.68e-149 1.00e+00 1.00e+00 1.00e-01 47 1.0 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 2.02e-148 1.00e+00 1.00e+00 1.00e-01 48 1.0 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 4.85e-148 1.00e+00 1.00e+00 1.00e-01 49 1.0 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 2.76e-148 1.00e+00 1.00e+00 1.00e-01 50 1.0 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 6.69e-148 1.00e+00 1.00e+00 1.00e-01 51 1.1 2.039e-24 2.400e+02 2.400e+02 5.95e-26 9.55e-153 0.00e+00 7.04e-147 1.00e+00 1.00e+00 1.00e-01 52 1.1 2.039e-25 2.400e+02 2.400e+02 5.95e-27 1.91e-152 0.00e+00 8.05e-148 1.00e+00 1.00e+00 1.00e-01 53 1.1 2.039e-26 2.400e+02 2.400e+02 5.95e-28 3.82e-152 0.00e+00 1.49e-146 1.00e+00 1.00e+00 1.00e-01 54 1.1 2.039e-27 2.400e+02 2.400e+02 5.95e-29 1.91e-152 0.00e+00 2.99e-146 1.00e+00 1.00e+00 1.00e-01 55 1.1 2.039e-28 2.400e+02 2.400e+02 5.95e-30 1.91e-152 0.00e+00 5.86e-146 1.00e+00 1.00e+00 1.00e-01 56 1.1 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 6.90e-146 1.00e+00 1.00e+00 1.00e-01 57 1.1 2.040e-30 2.400e+02 2.400e+02 5.95e-32 1.91e-152 0.00e+00 1.09e-145 1.00e+00 1.00e+00 1.00e-01 58 1.2 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 2.12e-145 1.00e+00 1.00e+00 1.00e-01 59 1.2 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 5.20e-146 1.00e+00 1.00e+00 1.00e-01 60 1.2 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 2.97e-145 1.00e+00 1.00e+00 1.00e-01 61 1.2 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 1.61e-144 1.00e+00 1.00e+00 1.00e-01 62 1.2 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 8.42e-144 1.00e+00 1.00e+00 1.00e-01 63 1.2 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 1.61e-143 1.00e+00 1.00e+00 1.00e-01 64 1.3 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 2.53e-144 1.00e+00 1.00e+00 1.00e-01 65 1.3 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 1.20e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.264787 seconds (1.03 M allocations: 59.488 MiB, 63.22% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708295093387650130717184645884623428354591824098195309975388857195882100232214354481768522755641256491723465226594 Dual objective:240.000000000000000000000000000000000000014291704906612349869282815354115376571680646996511934383881145712028253644039822196270006148065123185316309357635375 Duality gap:5.95487704442181244553450639754807357152626149425286230706369934475674407162658452986662466410705684280489569399268172059582162642659231718151122997919280456e-41 ** Starting computation of basis transformations ** Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 5 of size 1 x 1 Block 2 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 6 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 3 x 3 Block B has 2 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block A of size 4 x 4 Block A has 4 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (10.029212192s) ** ** Transforming the problem and the solution ** (7.085601303000001s) ** Projection the solution into the affine space ** Reducing the system from 7 columns to 7 columns Constructing the linear system... (7.619161071s) Preprocessing to get an integer system... (7.096e-5s) Finding the pivots of A using RREF mod p... (0.000354066 5.664e-5 s) Solving the system of size 7 x 7 using the pseudoinverse... 0.773520535s ** Finished projection into affine space (10.752970662s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.159400066) [ Info: Creating the univariate constraint [ Info: Constructing trivariate constraint iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.4 1.000e+06 1.000e+00 5.001e+03 1.00e+00 1.00e+03 0.00e+00 2.36e+06 6.53e-01 5.28e-01 3.00e-01 2 0.6 5.015e+05 5.164e+02 3.088e+03 7.13e-01 3.47e+02 0.00e+00 1.12e+06 4.22e-01 6.07e-01 3.00e-01 3 0.8 3.499e+05 6.688e+02 8.065e+03 8.47e-01 2.00e+02 0.00e+00 4.38e+05 5.84e-01 4.21e-01 3.00e-01 4 1.1 2.030e+05 5.414e+02 1.758e+04 9.40e-01 8.32e+01 0.00e+00 2.54e+05 4.22e-01 9.53e-01 3.00e-01 5 1.3 1.588e+05 3.876e+02 6.630e+04 9.88e-01 4.81e+01 0.00e+00 1.18e+04 7.78e-01 1.00e+00 3.00e-01 6 1.5 5.705e+04 1.104e+02 1.123e+05 9.98e-01 1.07e+01 0.00e+00 1.48e-66 8.24e-01 1.00e+00 3.00e-01 7 1.8 1.728e+04 2.822e+01 1.690e+05 1.00e+00 1.88e+00 0.00e+00 2.28e-66 8.75e-01 1.00e+00 3.00e-01 8 2.0 4.993e+03 1.126e+01 1.883e+05 1.00e+00 2.35e-01 0.00e+00 5.52e-66 8.48e-01 9.86e-01 3.00e-01 9 2.3 1.681e+03 9.036e+00 9.790e+04 1.00e+00 3.57e-02 0.00e+00 7.51e-66 8.19e-01 1.00e+00 3.00e-01 10 2.5 5.450e+02 8.700e+00 3.672e+04 1.00e+00 6.44e-03 0.00e+00 8.72e-66 8.33e-01 1.00e+00 3.00e-01 11 2.7 1.723e+02 8.588e+00 1.271e+04 9.99e-01 1.08e-03 0.00e+00 2.04e-66 1.00e+00 1.00e+00 3.00e-01 12 3.0 5.146e+01 8.519e+00 4.074e+03 9.96e-01 5.20e-74 0.00e+00 7.08e-67 1.00e+00 1.00e+00 3.00e-01 13 3.2 1.544e+01 8.502e+00 1.228e+03 9.86e-01 2.29e-73 0.00e+00 6.45e-68 9.92e-01 9.92e-01 1.00e-01 14 3.5 1.654e+00 8.507e+00 1.392e+02 8.85e-01 1.00e-73 0.00e+00 3.59e-69 9.78e-01 9.78e-01 1.00e-01 15 3.7 1.981e-01 8.562e+00 2.421e+01 4.77e-01 1.01e-73 0.00e+00 7.83e-70 8.60e-01 8.60e-01 1.00e-01 16 4.0 4.484e-02 8.877e+00 1.242e+01 1.66e-01 2.90e-74 0.00e+00 1.47e-69 8.02e-01 8.02e-01 1.00e-01 17 4.2 1.245e-02 9.486e+00 1.047e+01 4.93e-02 3.84e-74 0.00e+00 2.62e-69 7.62e-01 7.62e-01 1.00e-01 18 4.4 3.917e-03 9.841e+00 1.015e+01 1.55e-02 6.66e-74 0.00e+00 6.69e-69 7.52e-01 7.52e-01 1.00e-01 19 4.7 1.267e-03 9.941e+00 1.004e+01 5.01e-03 1.18e-73 0.00e+00 3.31e-69 8.14e-01 8.14e-01 1.00e-01 20 4.9 3.392e-04 9.983e+00 1.001e+01 1.34e-03 8.40e-74 0.00e+00 1.46e-69 7.89e-01 7.89e-01 1.00e-01 21 5.2 9.835e-05 9.995e+00 1.000e+01 3.89e-04 7.24e-74 0.00e+00 1.46e-68 9.42e-01 9.42e-01 1.00e-01 22 5.4 1.496e-05 9.999e+00 1.000e+01 5.91e-05 3.65e-74 0.00e+00 2.52e-69 9.79e-01 9.79e-01 1.00e-01 23 5.7 1.780e-06 1.000e+01 1.000e+01 7.03e-06 7.52e-74 0.00e+00 3.80e-69 9.89e-01 9.89e-01 1.00e-01 24 5.9 1.951e-07 1.000e+01 1.000e+01 7.71e-07 8.62e-74 0.00e+00 2.24e-69 9.97e-01 9.97e-01 1.00e-01 25 6.2 2.009e-08 1.000e+01 1.000e+01 7.94e-08 1.56e-73 0.00e+00 3.53e-69 1.00e+00 1.00e+00 1.00e-01 26 6.4 2.016e-09 1.000e+01 1.000e+01 7.96e-09 5.40e-74 0.00e+00 6.76e-69 1.00e+00 1.00e+00 1.00e-01 27 6.7 2.017e-10 1.000e+01 1.000e+01 7.97e-10 1.09e-73 0.00e+00 9.03e-69 1.00e+00 1.00e+00 1.00e-01 28 6.9 2.017e-11 1.000e+01 1.000e+01 7.97e-11 1.24e-73 0.00e+00 1.27e-68 1.00e+00 1.00e+00 1.00e-01 29 7.1 2.017e-12 1.000e+01 1.000e+01 7.97e-12 9.29e-74 0.00e+00 7.65e-69 1.00e+00 1.00e+00 1.00e-01 30 7.4 2.018e-13 1.000e+01 1.000e+01 7.97e-13 1.40e-73 0.00e+00 7.01e-69 1.00e+00 1.00e+00 1.00e-01 31 7.6 2.018e-14 1.000e+01 1.000e+01 7.97e-14 2.87e-74 0.00e+00 1.05e-68 1.00e+00 1.00e+00 1.00e-01 32 7.9 2.018e-15 1.000e+01 1.000e+01 7.97e-15 1.25e-73 0.00e+00 1.16e-68 1.00e+00 1.00e+00 1.00e-01 33 8.1 2.018e-16 1.000e+01 1.000e+01 7.97e-16 1.06e-73 0.00e+00 2.48e-69 1.00e+00 1.00e+00 1.00e-01 34 8.4 2.018e-17 1.000e+01 1.000e+01 7.97e-17 8.57e-74 0.00e+00 1.04e-68 1.00e+00 1.00e+00 1.00e-01 35 8.6 2.019e-18 1.000e+01 1.000e+01 7.97e-18 1.53e-73 0.00e+00 1.01e-68 1.00e+00 1.00e+00 1.00e-01 36 8.9 2.019e-19 1.000e+01 1.000e+01 7.97e-19 2.09e-73 0.00e+00 7.46e-69 1.00e+00 1.00e+00 1.00e-01 37 9.1 2.019e-20 1.000e+01 1.000e+01 7.98e-20 7.79e-74 0.00e+00 1.06e-68 1.00e+00 1.00e+00 1.00e-01 38 9.3 2.019e-21 1.000e+01 1.000e+01 7.98e-21 1.18e-73 0.00e+00 5.27e-69 1.00e+00 1.00e+00 1.00e-01 39 9.6 2.019e-22 1.000e+01 1.000e+01 7.98e-22 3.59e-74 0.00e+00 1.50e-68 1.00e+00 1.00e+00 1.00e-01 40 9.8 2.020e-23 1.000e+01 1.000e+01 7.98e-23 2.51e-73 0.00e+00 9.26e-69 1.00e+00 1.00e+00 1.00e-01 41 10.1 2.020e-24 1.000e+01 1.000e+01 7.98e-24 2.20e-73 0.00e+00 6.34e-69 1.00e+00 1.00e+00 1.00e-01 42 10.3 2.020e-25 1.000e+01 1.000e+01 7.98e-25 1.82e-73 0.00e+00 7.06e-68 1.00e+00 1.00e+00 1.00e-01 43 10.6 2.020e-26 1.000e+01 1.000e+01 7.98e-26 9.12e-74 0.00e+00 1.15e-67 1.00e+00 1.00e+00 1.00e-01 44 10.8 2.020e-27 1.000e+01 1.000e+01 7.98e-27 7.13e-74 0.00e+00 3.77e-68 1.00e+00 1.00e+00 1.00e-01 45 11.1 2.021e-28 1.000e+01 1.000e+01 7.98e-28 2.41e-73 0.00e+00 3.80e-67 1.00e+00 1.00e+00 1.00e-01 46 11.3 2.021e-29 1.000e+01 1.000e+01 7.98e-29 1.08e-73 0.00e+00 2.58e-67 1.00e+00 1.00e+00 1.00e-01 47 11.6 2.021e-30 1.000e+01 1.000e+01 7.98e-30 1.40e-73 0.00e+00 6.93e-67 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 11.586526 seconds (21.26 M allocations: 1.252 GiB, 11.02% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:9.999999999999999999999999999988680840486164945127713739788275650369666256828954 Dual objective:10.0000000000000000000000000000046489405146108261082604283244516865152603560218 Duality gap:7.984050014222940490273344268090680840901830913002519384164968896587007525658183e-31 ** Starting computation of basis transformations ** Block (:trivariatesos, 2, 2) of size 1 x 1 Block (:F, 4) of size 1 x 1 Block (:F, 4) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 4, 3) of size 1 x 1 Block (:trivariatesos, 4, 1) of size 2 x 2 Block (:trivariatesos, 1, 2) of size 2 x 2 Block (:F, 3) of size 2 x 2 Block (:F, 3) has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block (:trivariatesos, 3, 3) of size 3 x 3 Block (:trivariatesos, 3, 3) has 1 kernel vectors. The maximum numerator and denominator are 7 and 6 After reduction, the maximum number of the basis transformation matrix is 7 Block (:F, 2) of size 3 x 3 Block (:F, 2) has 1 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 5, 3) of size 3 x 3 Block (:trivariatesos, 5, 3) has 2 kernel vectors. The maximum numerator and denominator are 1 and 2 After reduction, the maximum number of the basis transformation matrix is 2 Block (:trivariatesos, 3, 1) of size 4 x 4 Block (:trivariatesos, 3, 1) has 1 kernel vectors. The maximum numerator and denominator are 49 and 36 After reduction, the maximum number of the basis transformation matrix is 49 Block (:univariatesos, 2) of size 4 x 4 Block (:univariatesos, 2) has 1 kernel vectors. The maximum numerator and denominator are 22 and 27 After reduction, the maximum number of the basis transformation matrix is 27 Block (:trivariatesos, 5, 1) of size 4 x 4 Block (:trivariatesos, 5, 1) has 3 kernel vectors. The maximum numerator and denominator are 1 and 6 After reduction, the maximum number of the basis transformation matrix is 3 Block (:F, 1) of size 4 x 4 Block (:F, 0) of size 5 x 5 Block (:F, 0) has 1 kernel vectors. The maximum numerator and denominator are 23 and 144 After reduction, the maximum number of the basis transformation matrix is 144 Block (:univariatesos, 1) of size 5 x 5 Block (:univariatesos, 1) has 2 kernel vectors. The maximum numerator and denominator are 35 and 81 After reduction, the maximum number of the basis transformation matrix is 81 Block (:trivariatesos, 2, 3) of size 6 x 6 Block (:trivariatesos, 2, 3) has 2 kernel vectors. The maximum numerator and denominator are 13 and 36 After reduction, the maximum number of the basis transformation matrix is 36 Block (:trivariatesos, 2, 1) of size 7 x 7 Block (:trivariatesos, 2, 1) has 2 kernel vectors. The maximum numerator and denominator are 67 and 36 After reduction, the maximum number of the basis transformation matrix is 66 Block (:trivariatesos, 1, 3) of size 11 x 11 Block (:trivariatesos, 1, 3) has 2 kernel vectors. The maximum numerator and denominator are 67 and 72 After reduction, the maximum number of the basis transformation matrix is 72 Block (:trivariatesos, 1, 1) of size 11 x 11 Block (:trivariatesos, 1, 1) has 3 kernel vectors. The maximum numerator and denominator are 49 and 432 After reduction, the maximum number of the basis transformation matrix is 432 ** Finished computation of basis transformations (7.230934962s) ** ** Transforming the problem and the solution ** (1.5691682279999999s) ** Projection the solution into the affine space ** Reducing the system from 161 columns to 161 columns Constructing the linear system... (2.827935082s) Preprocessing to get an integer system... (0.021419795s) Finding the pivots of A using RREF mod p... (0.018525043 0.013325283 s) Solving the system of size 50 x 52 using the pseudoinverse... 0.284190624s ** Finished projection into affine space (4.275056696s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.284961588) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.1 1.000e+20 1.000e+00 1.900e+11 1.00e+00 1.00e+10 0.00e+00 2.18e+11 3.69e-01 5.95e-01 3.00e-01 2 0.2 6.494e+19 1.223e+10 1.739e+11 8.69e-01 6.31e+09 0.00e+00 8.84e+10 7.31e-01 6.03e-01 3.00e-01 3 0.2 2.817e+19 3.102e+10 2.208e+11 7.54e-01 1.70e+09 0.00e+00 3.51e+10 6.85e-01 7.10e-01 3.00e-01 4 0.3 1.230e+19 3.546e+10 3.600e+11 8.21e-01 5.34e+08 0.00e+00 1.02e+10 5.57e-01 1.00e+00 3.00e-01 5 0.3 8.216e+18 2.178e+10 8.065e+11 9.47e-01 2.37e+08 0.00e+00 3.31e-78 7.69e-01 1.00e+00 3.00e-01 6 0.4 3.035e+18 5.560e+09 1.290e+12 9.91e-01 5.47e+07 0.00e+00 2.96e-77 8.01e-01 1.00e+00 3.00e-01 7 0.4 9.665e+17 1.150e+09 2.064e+12 9.99e-01 1.09e+07 0.00e+00 4.49e-77 8.65e-01 1.00e+00 3.00e-01 8 0.5 2.092e+17 1.573e+08 3.302e+12 1.00e+00 1.47e+06 0.00e+00 1.93e-76 8.98e-01 1.00e+00 3.00e-01 9 0.5 3.428e+16 1.603e+07 5.284e+12 1.00e+00 1.51e+05 0.00e+00 3.88e-77 8.88e-01 1.00e+00 3.00e-01 10 0.6 6.127e+15 1.797e+06 8.453e+12 1.00e+00 1.68e+04 0.00e+00 9.12e-77 8.99e-01 1.00e+00 3.00e-01 11 0.6 9.935e+14 1.816e+05 1.352e+13 1.00e+00 1.71e+03 0.00e+00 4.02e-77 8.93e-01 1.00e+00 3.00e-01 12 0.7 1.699e+14 1.946e+04 2.163e+13 1.00e+00 1.82e+02 0.00e+00 7.58e-76 9.00e-01 1.00e+00 3.00e-01 13 0.7 2.794e+13 2.009e+03 3.442e+13 1.00e+00 1.82e+01 0.00e+00 2.12e-75 8.98e-01 1.00e+00 3.00e-01 14 0.8 5.597e+12 2.662e+02 5.231e+13 1.00e+00 1.86e+00 0.00e+00 2.60e-75 8.79e-01 1.00e+00 3.00e-01 15 0.9 2.030e+12 9.171e+01 5.562e+13 1.00e+00 2.25e-01 0.00e+00 1.13e-75 7.97e-01 1.00e+00 3.00e-01 16 0.9 7.056e+11 7.350e+01 2.417e+13 1.00e+00 4.58e-02 0.00e+00 3.91e-76 8.24e-01 1.00e+00 3.00e-01 17 1.0 2.136e+11 7.073e+01 7.703e+12 1.00e+00 8.06e-03 0.00e+00 1.58e-76 1.00e+00 1.00e+00 3.00e-01 18 1.0 6.305e+10 6.979e+01 2.396e+12 1.00e+00 6.28e-89 0.00e+00 2.17e-75 1.00e+00 1.00e+00 3.00e-01 19 1.1 1.891e+10 6.985e+01 7.188e+11 1.00e+00 6.28e-89 0.00e+00 9.84e-75 9.94e-01 9.94e-01 1.00e-01 20 1.1 1.996e+09 6.986e+01 7.583e+10 1.00e+00 3.14e-89 0.00e+00 6.49e-77 1.00e+00 1.00e+00 1.00e-01 21 1.2 2.003e+08 6.986e+01 7.613e+09 1.00e+00 6.28e-89 0.00e+00 4.03e-77 1.00e+00 1.00e+00 1.00e-01 22 1.2 2.005e+07 6.987e+01 7.619e+08 1.00e+00 3.14e-89 0.00e+00 1.24e-78 1.00e+00 1.00e+00 1.00e-01 23 1.3 2.005e+06 6.987e+01 7.619e+07 1.00e+00 6.28e-89 0.00e+00 5.88e-80 1.00e+00 1.00e+00 1.00e-01 24 1.3 2.005e+05 6.988e+01 7.620e+06 1.00e+00 6.28e-89 0.00e+00 3.06e-80 1.00e+00 1.00e+00 1.00e-01 25 1.4 2.006e+04 6.988e+01 7.622e+05 1.00e+00 3.14e-89 0.00e+00 1.14e-81 1.00e+00 1.00e+00 1.00e-01 26 1.4 2.008e+03 6.989e+01 7.636e+04 9.98e-01 6.28e-89 0.00e+00 1.58e-82 9.99e-01 9.99e-01 1.00e-01 27 1.5 2.026e+02 6.998e+01 7.769e+03 9.82e-01 6.28e-89 0.00e+00 1.22e-83 9.90e-01 9.90e-01 1.00e-01 28 1.5 2.205e+01 7.086e+01 9.088e+02 8.55e-01 6.28e-89 0.00e+00 3.01e-84 9.26e-01 9.26e-01 1.00e-01 29 1.6 3.667e+00 7.788e+01 2.172e+02 4.72e-01 6.28e-89 0.00e+00 2.44e-84 8.10e-01 8.10e-01 1.00e-01 30 1.6 9.926e-01 1.015e+02 1.392e+02 1.57e-01 3.14e-89 0.00e+00 4.21e-84 6.72e-01 6.72e-01 1.00e-01 31 1.7 3.920e-01 1.120e+02 1.269e+02 6.23e-02 1.26e-88 0.00e+00 1.67e-84 8.04e-01 8.04e-01 1.00e-01 32 1.7 1.082e-01 1.179e+02 1.220e+02 1.71e-02 1.89e-88 0.00e+00 6.25e-85 8.72e-01 8.72e-01 1.00e-01 33 1.8 2.331e-02 1.195e+02 1.204e+02 3.69e-03 6.28e-89 0.00e+00 1.90e-84 9.67e-01 9.67e-01 1.00e-01 34 1.8 3.027e-03 1.199e+02 1.201e+02 4.79e-04 1.26e-88 0.00e+00 4.98e-84 9.83e-01 9.83e-01 1.00e-01 35 1.9 3.478e-04 1.200e+02 1.200e+02 5.51e-05 6.28e-89 0.00e+00 3.35e-84 9.94e-01 9.94e-01 1.00e-01 36 1.9 3.681e-05 1.200e+02 1.200e+02 5.83e-06 1.26e-88 0.00e+00 2.41e-84 9.99e-01 9.99e-01 1.00e-01 37 2.0 3.725e-06 1.200e+02 1.200e+02 5.90e-07 6.28e-89 0.00e+00 4.22e-85 1.00e+00 1.00e+00 1.00e-01 38 2.0 3.731e-07 1.200e+02 1.200e+02 5.91e-08 6.28e-89 0.00e+00 4.96e-84 1.00e+00 1.00e+00 1.00e-01 39 2.1 3.732e-08 1.200e+02 1.200e+02 5.91e-09 6.28e-89 0.00e+00 6.14e-85 1.00e+00 1.00e+00 1.00e-01 40 2.1 3.733e-09 1.200e+02 1.200e+02 5.91e-10 6.28e-89 0.00e+00 1.18e-84 1.00e+00 1.00e+00 1.00e-01 41 2.2 3.733e-10 1.200e+02 1.200e+02 5.91e-11 3.14e-89 0.00e+00 3.06e-84 1.00e+00 1.00e+00 1.00e-01 42 2.3 3.733e-11 1.200e+02 1.200e+02 5.91e-12 6.28e-89 0.00e+00 5.73e-84 1.00e+00 1.00e+00 1.00e-01 43 2.3 3.734e-12 1.200e+02 1.200e+02 5.91e-13 6.28e-89 0.00e+00 2.71e-84 1.00e+00 1.00e+00 1.00e-01 44 2.4 3.734e-13 1.200e+02 1.200e+02 5.91e-14 1.26e-88 0.00e+00 3.64e-85 1.00e+00 1.00e+00 1.00e-01 45 2.4 3.734e-14 1.200e+02 1.200e+02 5.91e-15 6.28e-89 0.00e+00 3.72e-84 1.00e+00 1.00e+00 1.00e-01 46 2.5 3.735e-15 1.200e+02 1.200e+02 5.91e-16 6.28e-89 0.00e+00 1.43e-83 1.00e+00 1.00e+00 1.00e-01 47 2.5 3.735e-16 1.200e+02 1.200e+02 5.91e-17 6.28e-89 0.00e+00 2.22e-83 1.00e+00 1.00e+00 1.00e-01 48 2.6 3.736e-17 1.200e+02 1.200e+02 5.91e-18 6.28e-89 0.00e+00 5.73e-83 1.00e+00 1.00e+00 1.00e-01 49 2.7 3.736e-18 1.200e+02 1.200e+02 5.92e-19 1.26e-88 0.00e+00 1.45e-82 1.00e+00 1.00e+00 1.00e-01 50 2.7 3.736e-19 1.200e+02 1.200e+02 5.92e-20 1.26e-88 0.00e+00 9.72e-83 1.00e+00 1.00e+00 1.00e-01 51 2.8 3.737e-20 1.200e+02 1.200e+02 5.92e-21 6.28e-89 0.00e+00 8.73e-83 1.00e+00 1.00e+00 1.00e-01 52 2.8 3.737e-21 1.200e+02 1.200e+02 5.92e-22 6.28e-89 0.00e+00 8.97e-82 1.00e+00 1.00e+00 1.00e-01 53 2.9 3.737e-22 1.200e+02 1.200e+02 5.92e-23 3.14e-89 0.00e+00 1.36e-81 1.00e+00 1.00e+00 1.00e-01 54 2.9 3.738e-23 1.200e+02 1.200e+02 5.92e-24 6.28e-89 0.00e+00 7.95e-81 1.00e+00 1.00e+00 1.00e-01 55 3.0 3.738e-24 1.200e+02 1.200e+02 5.92e-25 6.28e-89 0.00e+00 1.15e-80 1.00e+00 1.00e+00 1.00e-01 56 3.1 3.739e-25 1.200e+02 1.200e+02 5.92e-26 6.28e-89 0.00e+00 3.26e-81 1.00e+00 1.00e+00 1.00e-01 57 3.1 3.739e-26 1.200e+02 1.200e+02 5.92e-27 6.28e-89 0.00e+00 2.92e-80 1.00e+00 1.00e+00 1.00e-01 58 3.2 3.739e-27 1.200e+02 1.200e+02 5.92e-28 6.28e-89 0.00e+00 2.57e-80 1.00e+00 1.00e+00 1.00e-01 59 3.2 3.740e-28 1.200e+02 1.200e+02 5.92e-29 6.28e-89 0.00e+00 1.74e-79 1.00e+00 1.00e+00 1.00e-01 60 3.3 3.740e-29 1.200e+02 1.200e+02 5.92e-30 3.14e-89 0.00e+00 2.28e-79 1.00e+00 1.00e+00 1.00e-01 61 3.3 3.740e-30 1.200e+02 1.200e+02 5.92e-31 6.28e-89 0.00e+00 6.23e-79 1.00e+00 1.00e+00 1.00e-01 62 3.4 3.741e-31 1.200e+02 1.200e+02 5.92e-32 3.14e-89 0.00e+00 2.13e-78 1.00e+00 1.00e+00 1.00e-01 63 3.5 3.741e-32 1.200e+02 1.200e+02 5.92e-33 6.28e-89 0.00e+00 1.71e-78 1.00e+00 1.00e+00 1.00e-01 64 3.5 3.742e-33 1.200e+02 1.200e+02 5.92e-34 6.28e-89 0.00e+00 1.67e-78 1.00e+00 1.00e+00 1.00e-01 65 3.6 3.742e-34 1.200e+02 1.200e+02 5.92e-35 6.28e-89 0.00e+00 1.97e-78 1.00e+00 1.00e+00 1.00e-01 66 3.6 3.742e-35 1.200e+02 1.200e+02 5.93e-36 3.14e-89 0.00e+00 1.39e-77 1.00e+00 1.00e+00 1.00e-01 67 3.7 3.743e-36 1.200e+02 1.200e+02 5.93e-37 6.28e-89 0.00e+00 1.85e-77 1.00e+00 1.00e+00 1.00e-01 68 3.8 3.743e-37 1.200e+02 1.200e+02 5.93e-38 6.28e-89 0.00e+00 9.48e-77 1.00e+00 1.00e+00 1.00e-01 69 3.8 3.743e-38 1.200e+02 1.200e+02 5.93e-39 6.28e-89 0.00e+00 6.88e-77 1.00e+00 1.00e+00 1.00e-01 70 3.9 3.744e-39 1.200e+02 1.200e+02 5.93e-40 1.26e-88 0.00e+00 2.86e-76 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 3.886881 seconds (7.94 M allocations: 467.996 MiB, 26.79% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:119.99999999999999999999999999999999999999176273620507005257838616803050672593897611158515414 Dual objective:120.00000000000000000000000000000000000000599073730540359812481005961417692658989302548191855 Duality gap:5.9283337918056439776766214931959169378821029493139321160776747113317617725618261892320355143e-41 ** Starting computation of basis transformations ** Block 14 of size 1 x 1 Block 11 of size 1 x 1 Block 0 of size 1 x 1 Block 0 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 8 of size 1 x 1 Block 5 of size 1 x 1 Block 16 of size 1 x 1 Block 2 of size 1 x 1 Block 13 of size 1 x 1 Block 10 of size 1 x 1 Block 7 of size 1 x 1 Block 18 of size 1 x 1 Block 15 of size 1 x 1 Block 4 of size 1 x 1 Block 1 of size 1 x 1 Block 12 of size 1 x 1 Block 12 has 1 kernel vectors. The maximum numerator and denominator are 1 and 1 After reduction, the maximum number of the basis transformation matrix is 1 Block 9 of size 1 x 1 Block 6 of size 1 x 1 Block 17 of size 1 x 1 Block 3 of size 1 x 1 Block B of size 9 x 9 Block B has 6 kernel vectors. The maximum numerator and denominator are 18 and 2 After reduction, the maximum number of the basis transformation matrix is 10 Block A of size 10 x 10 Block A has 8 kernel vectors. The maximum numerator and denominator are 12 and 1 After reduction, the maximum number of the basis transformation matrix is 1 ** Finished computation of basis transformations (14.515674856s) ** ** Transforming the problem and the solution ** (2.7858872949999998s) ** Projection the solution into the affine space ** Reducing the system from 26 columns to 26 columns Constructing the linear system... (2.064567342s) Computing an approximate solution in the extension field... (0.513630798s) Preprocessing to get an integer system... (0.004909123s) Finding the pivots of A using RREF mod p... (0.003437887 0.003564226 s) Solving the system of size 38 x 40 using the pseudoinverse... 0.023692454s ** Finished projection into affine space (4.602325298s) ** ** Checking feasibility ** The slacks are satisfied (checked or ensured by solving the system) Checking sdp constraints done (0.211132194) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta 1 0.2 1.000e+20 1.000e+00 7.000e+10 1.00e+00 1.00e+10 0.00e+00 7.05e+10 6.66e-01 6.95e-01 3.00e-01 2 0.2 4.559e+19 1.338e+10 7.193e+10 6.86e-01 3.34e+09 0.00e+00 2.15e+10 7.05e-01 7.53e-01 3.00e-01 3 0.2 1.822e+19 2.640e+10 9.901e+10 5.79e-01 9.85e+08 0.00e+00 5.31e+09 6.16e-01 7.88e-01 3.00e-01 4 0.2 8.970e+18 3.260e+10 1.789e+11 6.92e-01 3.78e+08 0.00e+00 1.12e+09 7.73e-01 1.00e+00 3.00e-01 5 0.2 3.189e+18 1.238e+10 3.561e+11 9.33e-01 8.58e+07 0.00e+00 7.62e-143 8.40e-01 1.00e+00 3.00e-01 6 0.2 8.172e+17 2.052e+09 5.731e+11 9.93e-01 1.37e+07 0.00e+00 4.26e-142 8.95e-01 1.00e+00 3.00e-01 7 0.2 1.367e+17 2.121e+08 9.202e+11 1.00e+00 1.44e+06 0.00e+00 3.89e-141 8.90e-01 1.00e+00 3.00e-01 8 0.3 2.412e+16 2.361e+07 1.476e+12 1.00e+00 1.58e+05 0.00e+00 3.46e-141 8.97e-01 1.00e+00 3.00e-01 9 0.3 3.957e+15 2.403e+06 2.364e+12 1.00e+00 1.62e+04 0.00e+00 4.05e-141 8.94e-01 1.00e+00 3.00e-01 10 0.3 6.738e+14 2.573e+05 3.785e+12 1.00e+00 1.73e+03 0.00e+00 1.90e-141 8.99e-01 1.00e+00 3.00e-01 11 0.3 1.095e+14 2.604e+04 6.056e+12 1.00e+00 1.75e+02 0.00e+00 3.25e-140 8.99e-01 1.00e+00 3.00e-01 12 0.3 1.816e+13 2.738e+03 9.636e+12 1.00e+00 1.76e+01 0.00e+00 4.83e-140 9.13e-01 1.00e+00 3.00e-01 13 0.3 3.342e+12 3.449e+02 1.456e+13 1.00e+00 1.53e+00 0.00e+00 5.36e-140 1.00e+00 1.00e+00 3.00e-01 14 0.4 1.007e+12 1.188e+02 1.410e+13 1.00e+00 9.55e-153 0.00e+00 2.33e-140 1.00e+00 1.00e+00 3.00e-01 15 0.4 3.022e+11 1.198e+02 4.231e+12 1.00e+00 9.55e-153 0.00e+00 9.23e-142 9.99e-01 9.99e-01 1.00e-01 16 0.4 3.062e+10 1.199e+02 4.287e+11 1.00e+00 9.55e-153 0.00e+00 9.66e-142 1.00e+00 1.00e+00 1.00e-01 17 0.4 3.063e+09 1.200e+02 4.288e+10 1.00e+00 9.55e-153 0.00e+00 3.39e-144 1.00e+00 1.00e+00 1.00e-01 18 0.4 3.063e+08 1.201e+02 4.288e+09 1.00e+00 1.19e-153 0.00e+00 2.25e-144 1.00e+00 1.00e+00 1.00e-01 19 0.4 3.063e+07 1.202e+02 4.289e+08 1.00e+00 9.55e-153 0.00e+00 4.37e-145 1.00e+00 1.00e+00 1.00e-01 20 0.5 3.064e+06 1.202e+02 4.289e+07 1.00e+00 9.55e-153 0.00e+00 6.85e-146 1.00e+00 1.00e+00 1.00e-01 21 0.5 3.064e+05 1.203e+02 4.290e+06 1.00e+00 9.55e-153 0.00e+00 2.37e-147 1.00e+00 1.00e+00 1.00e-01 22 0.5 3.065e+04 1.203e+02 4.292e+05 9.99e-01 1.91e-152 0.00e+00 4.97e-148 1.00e+00 1.00e+00 1.00e-01 23 0.5 3.075e+03 1.204e+02 4.317e+04 9.94e-01 9.55e-153 0.00e+00 2.06e-149 9.97e-01 9.97e-01 1.00e-01 24 0.5 3.167e+02 1.211e+02 4.554e+03 9.48e-01 4.77e-153 0.00e+00 6.40e-150 9.70e-01 9.70e-01 1.00e-01 25 0.5 4.021e+01 1.274e+02 6.904e+02 6.88e-01 9.55e-153 0.00e+00 1.55e-151 8.70e-01 8.70e-01 1.00e-01 26 0.5 8.743e+00 1.689e+02 2.913e+02 2.66e-01 1.91e-152 0.00e+00 1.85e-150 9.15e-01 9.15e-01 1.00e-01 27 0.6 1.547e+00 2.316e+02 2.532e+02 4.47e-02 1.91e-152 0.00e+00 2.12e-151 9.82e-01 9.82e-01 1.00e-01 28 0.6 1.800e-01 2.389e+02 2.414e+02 5.25e-03 9.55e-153 0.00e+00 2.25e-150 9.89e-01 9.89e-01 1.00e-01 29 0.6 1.986e-02 2.399e+02 2.401e+02 5.79e-04 1.91e-152 0.00e+00 1.95e-150 9.97e-01 9.97e-01 1.00e-01 30 0.6 2.030e-03 2.400e+02 2.400e+02 5.92e-05 1.91e-152 0.00e+00 5.46e-151 1.00e+00 1.00e+00 1.00e-01 31 0.6 2.034e-04 2.400e+02 2.400e+02 5.93e-06 1.91e-152 0.00e+00 2.76e-151 1.00e+00 1.00e+00 1.00e-01 32 0.6 2.035e-05 2.400e+02 2.400e+02 5.93e-07 9.55e-153 0.00e+00 2.39e-151 1.00e+00 1.00e+00 1.00e-01 33 0.7 2.035e-06 2.400e+02 2.400e+02 5.94e-08 1.91e-152 0.00e+00 1.97e-151 1.00e+00 1.00e+00 1.00e-01 34 0.7 2.035e-07 2.400e+02 2.400e+02 5.94e-09 1.91e-152 0.00e+00 3.11e-151 1.00e+00 1.00e+00 1.00e-01 35 0.7 2.035e-08 2.400e+02 2.400e+02 5.94e-10 1.91e-152 0.00e+00 1.33e-150 1.00e+00 1.00e+00 1.00e-01 36 0.7 2.036e-09 2.400e+02 2.400e+02 5.94e-11 1.91e-152 0.00e+00 1.61e-150 1.00e+00 1.00e+00 1.00e-01 37 0.7 2.036e-10 2.400e+02 2.400e+02 5.94e-12 1.91e-152 0.00e+00 6.51e-151 1.00e+00 1.00e+00 1.00e-01 38 0.7 2.036e-11 2.400e+02 2.400e+02 5.94e-13 9.55e-153 0.00e+00 1.32e-150 1.00e+00 1.00e+00 1.00e-01 39 0.8 2.036e-12 2.400e+02 2.400e+02 5.94e-14 1.91e-152 0.00e+00 5.88e-151 1.00e+00 1.00e+00 1.00e-01 40 0.8 2.036e-13 2.400e+02 2.400e+02 5.94e-15 1.91e-152 0.00e+00 7.58e-151 1.00e+00 1.00e+00 1.00e-01 41 0.8 2.037e-14 2.400e+02 2.400e+02 5.94e-16 1.91e-152 0.00e+00 3.77e-150 1.00e+00 1.00e+00 1.00e-01 42 0.8 2.037e-15 2.400e+02 2.400e+02 5.94e-17 1.91e-152 0.00e+00 4.09e-150 1.00e+00 1.00e+00 1.00e-01 43 0.8 2.037e-16 2.400e+02 2.400e+02 5.94e-18 1.91e-152 0.00e+00 1.94e-149 1.00e+00 1.00e+00 1.00e-01 44 0.8 2.037e-17 2.400e+02 2.400e+02 5.94e-19 1.91e-152 0.00e+00 1.05e-149 1.00e+00 1.00e+00 1.00e-01 45 0.9 2.037e-18 2.400e+02 2.400e+02 5.94e-20 1.91e-152 0.00e+00 2.58e-149 1.00e+00 1.00e+00 1.00e-01 46 0.9 2.038e-19 2.400e+02 2.400e+02 5.94e-21 1.91e-152 0.00e+00 3.59e-149 1.00e+00 1.00e+00 1.00e-01 47 0.9 2.038e-20 2.400e+02 2.400e+02 5.94e-22 1.91e-152 0.00e+00 1.21e-148 1.00e+00 1.00e+00 1.00e-01 48 0.9 2.038e-21 2.400e+02 2.400e+02 5.94e-23 1.91e-152 0.00e+00 1.03e-148 1.00e+00 1.00e+00 1.00e-01 49 0.9 2.038e-22 2.400e+02 2.400e+02 5.94e-24 1.91e-152 0.00e+00 8.62e-148 1.00e+00 1.00e+00 1.00e-01 50 0.9 2.038e-23 2.400e+02 2.400e+02 5.95e-25 1.91e-152 0.00e+00 2.42e-147 1.00e+00 1.00e+00 1.00e-01 51 1.0 2.039e-24 2.400e+02 2.400e+02 5.95e-26 1.91e-152 0.00e+00 6.06e-147 1.00e+00 1.00e+00 1.00e-01 52 1.0 2.039e-25 2.400e+02 2.400e+02 5.95e-27 4.33e-153 0.00e+00 1.01e-146 1.00e+00 1.00e+00 1.00e-01 53 1.0 2.039e-26 2.400e+02 2.400e+02 5.95e-28 1.91e-152 0.00e+00 4.53e-147 1.00e+00 1.00e+00 1.00e-01 54 1.0 2.039e-27 2.400e+02 2.400e+02 5.95e-29 3.82e-152 0.00e+00 9.87e-147 1.00e+00 1.00e+00 1.00e-01 55 1.0 2.039e-28 2.400e+02 2.400e+02 5.95e-30 3.82e-152 0.00e+00 1.88e-146 1.00e+00 1.00e+00 1.00e-01 56 1.0 2.040e-29 2.400e+02 2.400e+02 5.95e-31 1.91e-152 0.00e+00 2.92e-146 1.00e+00 1.00e+00 1.00e-01 57 1.1 2.040e-30 2.400e+02 2.400e+02 5.95e-32 9.55e-153 0.00e+00 5.76e-145 1.00e+00 1.00e+00 1.00e-01 58 1.1 2.040e-31 2.400e+02 2.400e+02 5.95e-33 1.91e-152 0.00e+00 1.16e-145 1.00e+00 1.00e+00 1.00e-01 59 1.1 2.040e-32 2.400e+02 2.400e+02 5.95e-34 1.91e-152 0.00e+00 9.23e-145 1.00e+00 1.00e+00 1.00e-01 60 1.1 2.040e-33 2.400e+02 2.400e+02 5.95e-35 1.91e-152 0.00e+00 1.19e-144 1.00e+00 1.00e+00 1.00e-01 61 1.1 2.041e-34 2.400e+02 2.400e+02 5.95e-36 1.91e-152 0.00e+00 5.30e-144 1.00e+00 1.00e+00 1.00e-01 62 1.1 2.041e-35 2.400e+02 2.400e+02 5.95e-37 1.91e-152 0.00e+00 2.53e-144 1.00e+00 1.00e+00 1.00e-01 63 1.2 2.041e-36 2.400e+02 2.400e+02 5.95e-38 1.91e-152 0.00e+00 1.42e-143 1.00e+00 1.00e+00 1.00e-01 64 1.2 2.041e-37 2.400e+02 2.400e+02 5.95e-39 1.91e-152 0.00e+00 3.44e-143 1.00e+00 1.00e+00 1.00e-01 65 1.2 2.041e-38 2.400e+02 2.400e+02 5.95e-40 1.91e-152 0.00e+00 4.94e-143 1.00e+00 1.00e+00 1.00e-01 Optimal solution found 1.198202 seconds (1.03 M allocations: 59.516 MiB, 60.07% gc time) iter time(s) μ P-obj D-obj gap P-error p-error d-error α_p α_d beta Primal objective:239.999999999999999999999999999999999999985708623651088031028775333061265354847095945064156212651233664189398631033410796886099933647811631474127307080078537 Dual objective:240.000000000000000000000000000000000000014291376348911968971224666938734645152939292136233957082035314829883607078499073584613600840792492461220891164859663 Duality gap:5.95474014537998707134361122447276881371736397334953008975034388343437000939339054171457280240631554035282794795125091129371028485047337374437810068289260476e-41 [ Info: Empty constraint found and removed. [ Info: Empty constraint found and removed. [ Info: The coefficient for the PSD variable 1 has an empty decomposition in a constraint, so we remove it from that constraint. [ Info: The matrix variable 1 is not used in any constraint and will be removed. Test Summary: | Pass Total Time ClusteredLowRankSolver.jl | 39 39 8m03.9s Testing ClusteredLowRankSolver tests passed Testing completed after 501.07s PkgEval succeeded after 655.86s