Package evaluation to test SimilaritySearch on Julia 1.14.0-DEV.1284 (37b9484954*) started at 2025-11-23T17:25:11.844 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.98s ################################################################################ # Installation # Installing SimilaritySearch... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [053f045d] + SimilaritySearch v0.13.7 Updating `~/.julia/environments/v1.14/Manifest.toml` [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [4fba245c] + ArrayInterface v7.22.0 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] + CPUSummary v0.2.7 [fb6a15b2] + CloseOpenIntervals v0.1.13 [f70d9fcc] + CommonWorldInvalidations v1.0.0 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [187b0558] + ConstructionBase v1.6.0 [adafc99b] + CpuId v0.3.1 [9a962f9c] + DataAPI v1.16.0 ⌅ [864edb3b] + DataStructures v0.18.22 [b4f34e82] + Distances v0.10.12 [ffbed154] + DocStringExtensions v0.9.5 [615f187c] + IfElse v0.1.1 [3587e190] + InverseFunctions v0.1.17 [92d709cd] + IrrationalConstants v0.2.6 [10f19ff3] + LayoutPointers v0.1.17 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [d125e4d3] + ManualMemory v0.1.8 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [d96e819e] + Parameters v0.12.3 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [ae029012] + Requires v1.3.1 [94e857df] + SIMDTypes v0.1.0 [431bcebd] + SciMLPublic v1.0.0 [0e966ebe] + SearchModels v0.4.1 [053f045d] + SimilaritySearch v0.13.7 [a2af1166] + SortingAlgorithms v1.2.2 [aedffcd0] + Static v1.3.1 [0d7ed370] + StaticArrayInterface v1.8.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.33.21 [7792a7ef] + StrideArraysCore v0.5.8 [8290d209] + ThreadingUtilities v0.5.5 [3a884ed6] + UnPack v1.0.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [d6f4376e] + Markdown v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.17s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 5572.4 ms ✓ SearchModels 10491.6 ms ✓ SimilaritySearch 2 dependencies successfully precompiled in 17 seconds. 66 already precompiled. Precompilation completed after 28.49s ################################################################################ # Testing # Testing SimilaritySearch Status `/tmp/jl_JASCV4/Project.toml` [7d9f7c33] Accessors v0.1.42 [4c88cf16] Aqua v0.8.14 [b4f34e82] Distances v0.10.12 [f517fe37] Polyester v0.7.18 [92933f4c] ProgressMeter v1.11.0 [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.7 [10745b16] Statistics v1.11.1 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_JASCV4/Manifest.toml` [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.4.0 [4c88cf16] Aqua v0.8.14 [4fba245c] ArrayInterface v7.22.0 [62783981] BitTwiddlingConvenienceFunctions v0.1.6 [2a0fbf3d] CPUSummary v0.2.7 [fb6a15b2] CloseOpenIntervals v0.1.13 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [187b0558] ConstructionBase v1.6.0 [adafc99b] CpuId v0.3.1 [9a962f9c] DataAPI v1.16.0 ⌅ [864edb3b] DataStructures v0.18.22 [b4f34e82] Distances v0.10.12 [ffbed154] DocStringExtensions v0.9.5 [615f187c] IfElse v0.1.1 [3587e190] InverseFunctions v0.1.17 [92d709cd] IrrationalConstants v0.2.6 [10f19ff3] LayoutPointers v0.1.17 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [d125e4d3] ManualMemory v0.1.8 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [d96e819e] Parameters v0.12.3 [f517fe37] Polyester v0.7.18 [1d0040c9] PolyesterWeave v0.2.2 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [ae029012] Requires v1.3.1 [94e857df] SIMDTypes v0.1.0 [431bcebd] SciMLPublic v1.0.0 [0e966ebe] SearchModels v0.4.1 [053f045d] SimilaritySearch v0.13.7 [a2af1166] SortingAlgorithms v1.2.2 [aedffcd0] Static v1.3.1 [0d7ed370] StaticArrayInterface v1.8.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.33.21 [7792a7ef] StrideArraysCore v0.5.8 [8290d209] ThreadingUtilities v0.5.5 [3a884ed6] UnPack v1.0.2 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Test Summary: | Pass Total Time test database abstractions | 56 56 15.0s Test Summary: | Pass Total Time heap | 16 16 0.1s Test Summary: | Pass Total Time KnnHeap | 30005 30005 3.3s Test Summary: | Pass Total Time XKnn | 25005 25005 2.1s Test Summary: | Pass Total Time XKnn pop ops | 9603 9603 1.0s [ Info: (MatrixDatabase{Matrix{Float32}}, SubDatabase{MatrixDatabase{Matrix{Float32}}, Vector{Int64}}) 10.959055 seconds (1000 allocations: 78.125 KiB) 11.269657 seconds (1000 allocations: 78.125 KiB) 4.095104 seconds (1000 allocations: 78.125 KiB) 4.070811 seconds (1000 allocations: 78.125 KiB) 4.058818 seconds (1000 allocations: 78.125 KiB) 4.079595 seconds (1000 allocations: 78.125 KiB) 4.114986 seconds (1000 allocations: 78.125 KiB) 3.926816 seconds (1000 allocations: 78.125 KiB) 15.458830 seconds (1000 allocations: 78.125 KiB) 15.294009 seconds (1000 allocations: 78.125 KiB) 28.649245 seconds (1000 allocations: 78.125 KiB) 28.916831 seconds (1000 allocations: 78.125 KiB) 20.636241 seconds (6.23 k allocations: 358.094 KiB) 20.626561 seconds (1000 allocations: 78.125 KiB) 16.798709 seconds (1.00 k allocations: 78.141 KiB) 15.870186 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing vectors with ExhaustiveSearch | 8000 8000 3m39.2s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 3.205306 seconds (1000 allocations: 78.125 KiB) 3.151183 seconds (1000 allocations: 78.125 KiB) 30.676900 seconds (1000 allocations: 78.125 KiB) 30.265896 seconds (1000 allocations: 78.125 KiB) 22.145591 seconds (1000 allocations: 78.125 KiB) 27.462883 seconds (1000 allocations: 78.125 KiB) 3.936389 seconds (1000 allocations: 78.125 KiB) 3.841219 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sequences with ExhaustiveSearch | 4000 4000 2m08.3s [ Info: (VectorDatabase{Vector{Vector{Int64}}}, SubDatabase{VectorDatabase{Vector{Vector{Int64}}}, Vector{Int64}}) 10.695482 seconds (1000 allocations: 78.125 KiB) 10.672359 seconds (1000 allocations: 78.125 KiB) 10.573585 seconds (1000 allocations: 78.125 KiB) 10.632210 seconds (1000 allocations: 78.125 KiB) 10.117263 seconds (1000 allocations: 78.125 KiB) 10.268412 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time indexing sets with ExhaustiveSearch | 3000 3000 1m05.8s 0.047380 seconds (1.00 k allocations: 78.141 KiB) 0.046831 seconds (1000 allocations: 78.125 KiB) 0.037564 seconds (1000 allocations: 78.125 KiB) 0.036067 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Normalized Cosine and Normalized Angle distances | 2000 2000 2.9s 0.036108 seconds (1000 allocations: 78.125 KiB) 0.035276 seconds (1000 allocations: 78.125 KiB) Test Summary: | Pass Total Time Binary hamming distance | 1000 1000 1.1s ExhaustiveSearch allknn: 4.280499 seconds (2.39 M allocations: 127.072 MiB, 8.09% gc time, 99.96% compilation time) ParallelExhaustiveSearch allknn: 1.177553 seconds (613.31 k allocations: 30.467 MiB, 99.85% compilation time) Test Summary: | Pass Total Time allknn | 3 3 6.0s quantile(length.(hsp_knns), 0:0.1:1) = [2.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0] Test Summary: | Total Time HSP | 0 2.9s [ Info: neardup> starting: 1:100, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:56.751 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:33:57.019 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=2 ep=2 n=2 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:33:58.184 LOG n.size quantiles:[1.0, 1.0, 1.0, 1.0, 1.0] [ Info: neardup> finished current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:58.519 D.map = UInt32[0x00000001, 0x00000002, 0x00000004, 0x00000006, 0x0000000d, 0x00000010, 0x00000011, 0x00000014, 0x0000001a, 0x0000001b, 0x00000024, 0x00000031] D.nn = Int32[1, 2, 1, 4, 1, 6, 4, 6, 1, 4, 6, 6, 13, 1, 4, 16, 17, 13, 4, 20, 1, 20, 4, 17, 4, 26, 27, 4, 4, 6, 17, 2, 4, 17, 20, 36, 17, 36, 36, 2, 17, 4, 27, 4, 2, 13, 4, 36, 49, 4, 6, 36, 4, 4, 6, 4, 16, 49, 4, 36, 36, 36, 6, 27, 4, 6, 20, 4, 36, 6, 27, 17, 4, 6, 27, 1, 6, 4, 13, 1, 13, 4, 4, 1, 4, 17, 4, 17, 6, 36, 4, 6, 1, 17, 27, 27, 49, 1, 2, 17] D.dist = Float32[0.0, 0.0, 0.081080854, 0.0, 0.086194575, 0.0, 0.05394584, 0.076340854, 0.018103898, 0.059666514, 0.019830942, 0.060757875, 0.0, 0.08581406, 0.05133778, 0.0, 0.0, 0.05825746, 0.059224963, 0.0, 0.08573091, 0.03869456, 0.069049776, 0.044924736, 0.007734716, 0.0, 0.0, 0.063091755, 0.010263979, 0.054531693, 0.027269185, 0.064193845, 0.01416254, 0.039232314, 0.018701673, 0.0, 0.036077917, 0.07426369, 0.017401278, 0.047839344, 0.025980592, 0.011084318, 0.023905754, 0.051472306, 0.048512816, 0.015696704, 0.021027744, 0.047593653, 0.0, 0.033792436, 0.02268821, 0.0765118, 0.044051886, 0.0046330094, 0.010872364, 0.030077815, 0.019982874, 0.036684394, 0.019765675, 0.072402, 0.04453957, 0.02429992, 0.03803301, 0.0025844574, 0.05461365, 0.032576084, 0.04943049, 0.023347616, 0.01954639, 0.023691118, 0.05536121, 0.02513361, 0.014588952, 0.08934599, 0.0076830983, 0.01154685, 0.03013575, 0.05360818, 0.030675828, 0.04806912, 0.035260677, 0.03106314, 0.0008984804, 0.018288493, 0.0105778575, 0.009136677, 0.03552389, 0.053707182, 0.028689146, 0.020200849, 0.06578857, 0.034470737, 0.01590097, 0.04302299, 0.015785694, 0.017527997, 0.035357594, 0.022104084, 0.02562666, 0.016703427] Test Summary: | Pass Total Time neardup single block | 3 3 16.8s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.660 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:33:59.661 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 6, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 [ Info: neardup> range: 33:48, current elements: 10, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 [ Info: neardup> range: 49:64, current elements: 11, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 [ Info: neardup> range: 65:80, current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 [ Info: neardup> range: 81:96, current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 [ Info: neardup> range: 97:100, current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 [ Info: neardup> finished current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.661 D.map = UInt32[0x00000001, 0x00000002, 0x00000004, 0x00000006, 0x0000000d, 0x00000010, 0x00000011, 0x00000014, 0x0000001a, 0x0000001b, 0x00000024, 0x00000031] D.nn = Int32[1, 2, 1, 4, 1, 6, 4, 6, 1, 4, 6, 6, 13, 1, 4, 16, 17, 13, 4, 20, 1, 20, 4, 4, 4, 26, 27, 4, 4, 6, 4, 2, 4, 17, 20, 36, 17, 36, 36, 2, 17, 4, 27, 4, 2, 13, 4, 36, 49, 4, 6, 36, 4, 4, 6, 4, 16, 4, 4, 36, 36, 36, 6, 27, 4, 6, 20, 4, 36, 6, 27, 17, 4, 6, 27, 1, 6, 4, 13, 1, 13, 4, 4, 1, 4, 17, 4, 17, 6, 36, 4, 6, 1, 17, 27, 27, 49, 1, 2, 17] D.dist = Float32[0.0, 0.0, 0.081080854, 0.0, 0.086194575, 0.0, 0.05394584, 0.076340854, 0.018103898, 0.059666514, 0.019830942, 0.060757875, 0.0, 0.08581406, 0.05133778, 0.0, 0.0, 0.05825746, 0.059224963, 0.0, 0.08573091, 0.03869456, 0.069049776, 0.047701776, 0.007734716, 0.0, 0.0, 0.063091755, 0.010263979, 0.054531693, 0.063946426, 0.064193845, 0.01416254, 0.039232314, 0.018701673, 0.0, 0.036077917, 0.07426369, 0.017401278, 0.047839344, 0.025980592, 0.011084318, 0.023905754, 0.051472306, 0.048512816, 0.015696704, 0.021027744, 0.047593653, 0.0, 0.033792436, 0.02268821, 0.0765118, 0.044051886, 0.0046330094, 0.010872364, 0.030077815, 0.019982874, 0.06769407, 0.019765675, 0.072402, 0.04453957, 0.02429992, 0.03803301, 0.0025844574, 0.05461365, 0.032576084, 0.04943049, 0.023347616, 0.01954639, 0.023691118, 0.05536121, 0.02513361, 0.014588952, 0.08934599, 0.0076830983, 0.01154685, 0.03013575, 0.05360818, 0.030675828, 0.04806912, 0.035260677, 0.03106314, 0.0008984804, 0.018288493, 0.0105778575, 0.009136677, 0.03552389, 0.053707182, 0.028689146, 0.020200849, 0.06578857, 0.034470737, 0.01590097, 0.04302299, 0.015785694, 0.017527997, 0.035357594, 0.022104084, 0.02562666, 0.016703427] Test Summary: | Pass Total Time neardup small block | 3 3 0.0s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.746 LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:33:59.746 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] [ Info: neardup> range: 17:32, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 [ Info: neardup> range: 33:48, current elements: 16, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 [ Info: neardup> range: 49:64, current elements: 18, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 [ Info: neardup> range: 65:80, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 [ Info: neardup> range: 81:96, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 [ Info: neardup> range: 97:100, current elements: 19, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 [ Info: neardup> finished current elements: 19, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:33:59.747 D.map = UInt32[0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000006, 0x00000007, 0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c, 0x0000000d, 0x0000000e, 0x0000000f, 0x00000010, 0x00000023, 0x00000024, 0x00000031] D.nn = Int32[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 5, 13, 15, 15, 14, 15, 15, 7, 4, 5, 5, 7, 4, 12, 4, 2, 4, 7, 35, 36, 12, 3, 15, 8, 4, 4, 14, 4, 8, 12, 7, 3, 49, 4, 3, 15, 4, 4, 11, 15, 16, 4, 4, 36, 15, 36, 3, 5, 4, 6, 35, 7, 36, 11, 5, 4, 4, 8, 14, 9, 10, 15, 13, 5, 13, 7, 4, 1, 4, 7, 10, 7, 12, 36, 7, 3, 1, 5, 14, 14, 49, 1, 2, 5] D.dist = Float32[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.087596714, 0.05825746, 0.02413845, 0.09174329, 0.034566402, 0.04942131, 0.021471381, 0.040100455, 0.007734716, 0.048760295, 0.07509494, 0.030937314, 0.010263979, 0.014725208, 0.063946426, 0.064193845, 0.01416254, 0.029410422, 0.0, 0.0, 0.022599578, 0.087620854, 0.080632925, 0.035534203, 0.04539931, 0.011084318, 0.02282685, 0.051472306, 0.04610604, 0.0074238777, 0.017986596, 0.04989034, 0.0, 0.033792436, 0.00536114, 0.02654022, 0.044051886, 0.0046330094, 0.008594573, 0.013903737, 0.019982874, 0.06769407, 0.019765675, 0.072402, 0.022700429, 0.02429992, 0.002364099, 0.06171286, 0.05461365, 0.032576084, 0.047937274, 0.01989013, 0.01954639, 0.005733967, 0.026280463, 0.043697715, 0.014588952, 0.012025356, 0.052108765, 0.0049660206, 0.021636724, 0.010440409, 0.030675828, 0.016393602, 0.035260677, 0.022140324, 0.0008984804, 0.018288493, 0.0105778575, 0.07283729, 0.019748032, 0.01280278, 0.0067133904, 0.020200849, 0.002861321, 0.018761277, 0.01590097, 0.09583968, 0.032865286, 0.040001273, 0.035357594, 0.022104084, 0.02562666, 0.08522582] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 0.1s [ Info: neardup> starting: 1:16, current elements: 0, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.253 LOG append_items! ExhaustiveSearch{SimilaritySearch.DistanceWithIdentifiers{CosineDistance, MatrixDatabase{Matrix{Float32}}}, VectorDatabase{Vector{UInt32}}} sp=0 ep=6 n=6 2025-11-23T17:34:07.254 [ Info: neardup> range: 17:32, current elements: 6, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.263 [ Info: neardup> range: 33:48, current elements: 10, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.264 [ Info: neardup> range: 49:64, current elements: 11, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.264 [ Info: neardup> range: 65:80, current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.264 [ Info: neardup> range: 81:96, current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.264 [ Info: neardup> range: 97:100, current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.264 [ Info: neardup> finished current elements: 12, n: 100, ϵ: 0.1, timestamp: 2025-11-23T17:34:07.264 D.map = UInt32[0x00000001, 0x00000002, 0x00000004, 0x00000006, 0x0000000d, 0x00000010, 0x00000011, 0x00000014, 0x0000001a, 0x0000001b, 0x00000024, 0x00000031] D.nn = Int32[1, 2, 1, 4, 1, 6, 4, 6, 1, 4, 6, 6, 13, 1, 4, 16, 17, 13, 4, 20, 1, 20, 4, 4, 4, 26, 27, 4, 4, 6, 4, 2, 4, 17, 20, 36, 17, 36, 36, 2, 17, 4, 27, 4, 2, 13, 4, 36, 49, 4, 6, 36, 4, 4, 6, 4, 16, 4, 4, 36, 36, 36, 6, 27, 4, 6, 20, 4, 36, 6, 27, 17, 4, 6, 27, 1, 6, 4, 13, 1, 13, 4, 4, 1, 4, 17, 4, 17, 6, 36, 4, 6, 1, 17, 27, 27, 49, 1, 2, 17] D.dist = Float32[0.0, 0.0, 0.081080854, 0.0, 0.086194575, 0.0, 0.05394584, 0.076340854, 0.018103898, 0.059666514, 0.019830942, 0.060757875, 0.0, 0.08581406, 0.05133778, 0.0, 0.0, 0.05825746, 0.059224963, 0.0, 0.08573091, 0.03869456, 0.069049776, 0.047701776, 0.007734716, 0.0, 0.0, 0.063091755, 0.010263979, 0.054531693, 0.063946426, 0.064193845, 0.01416254, 0.039232314, 0.018701673, 0.0, 0.036077917, 0.07426369, 0.017401278, 0.047839344, 0.025980592, 0.011084318, 0.023905754, 0.051472306, 0.048512816, 0.015696704, 0.021027744, 0.047593653, 0.0, 0.033792436, 0.02268821, 0.0765118, 0.044051886, 0.0046330094, 0.010872364, 0.030077815, 0.019982874, 0.06769407, 0.019765675, 0.072402, 0.04453957, 0.02429992, 0.03803301, 0.0025844574, 0.05461365, 0.032576084, 0.04943049, 0.023347616, 0.01954639, 0.023691118, 0.05536121, 0.02513361, 0.014588952, 0.08934599, 0.0076830983, 0.01154685, 0.03013575, 0.05360818, 0.030675828, 0.04806912, 0.035260677, 0.03106314, 0.0008984804, 0.018288493, 0.0105778575, 0.009136677, 0.03552389, 0.053707182, 0.028689146, 0.020200849, 0.06578857, 0.034470737, 0.01590097, 0.04302299, 0.015785694, 0.017527997, 0.035357594, 0.022104084, 0.02562666, 0.016703427] Test Summary: | Pass Total Time neardup small block with filterblocks=false | 3 3 7.5s computing farthest point 1, dmax: Inf, imax: 24, n: 30 computing farthest point 2, dmax: 1.0147146, imax: 16, n: 30 computing farthest point 3, dmax: 0.9047629, imax: 11, n: 30 computing farthest point 4, dmax: 0.8915137, imax: 21, n: 30 computing farthest point 5, dmax: 0.8777866, imax: 20, n: 30 computing farthest point 6, dmax: 0.7565419, imax: 26, n: 30 computing farthest point 7, dmax: 0.69497234, imax: 23, n: 30 computing farthest point 8, dmax: 0.6497841, imax: 30, n: 30 computing farthest point 9, dmax: 0.64882267, imax: 2, n: 30 computing farthest point 10, dmax: 0.6351491, imax: 1, n: 30 Test Summary: | Pass Total Time farthest first traversal | 3 3 1.5s Test Summary: | Pass Total Time AdjacencyList | 15 15 1.5s LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:34:15.560 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=2, Δ=1.075, maxvisits=118) 2025-11-23T17:34:26.751 LOG n.size quantiles:[3.0, 4.0, 4.0, 4.0, 5.0] (i, j, d) = (2, 855, -1.1920929f-7) (i, j, d, :parallel) = (2, 855, -1.1920929f-7, :parallel) [ Info: NOTE: the exact method will be faster on small datasets due to the preprocessing step of the approximation method [ Info: ("closestpair computation time", :approx => 18.736226929, :exact => 0.908937873) Test Summary: | Pass Total Time closestpair | 4 4 20.5s 5.947618 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.004770 seconds SEARCH Exhaustive 2: 0.004670 seconds SEARCH Exhaustive 3: 0.005591 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, MatrixDatabase{Matrix{Float32}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = SubArray{Float32, 1, Matrix{Float32}, Tuple{Base.Slice{Base.OneTo{Int64}}, Int64}, true} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:34:54.831 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=12, Δ=1.1, maxvisits=210) 2025-11-23T17:35:00.274 LOG n.size quantiles:[2.0, 2.0, 3.0, 5.0, 7.0] LOG add_vertex! sp=16965 ep=16969 n=16964 BeamSearch BeamSearch(bsize=12, Δ=1.21275, maxvisits=410) 2025-11-23T17:35:01.274 LOG n.size quantiles:[6.0, 7.0, 7.0, 7.0, 10.0] LOG add_vertex! sp=30615 ep=30619 n=30614 BeamSearch BeamSearch(bsize=4, Δ=1.155, maxvisits=548) 2025-11-23T17:35:02.274 LOG n.size quantiles:[6.0, 6.0, 7.0, 7.0, 8.0] LOG add_vertex! sp=42905 ep=42909 n=42904 BeamSearch BeamSearch(bsize=4, Δ=1.05, maxvisits=434) 2025-11-23T17:35:03.275 LOG n.size quantiles:[4.0, 5.0, 6.0, 7.0, 8.0] LOG add_vertex! sp=54630 ep=54634 n=54629 BeamSearch BeamSearch(bsize=4, Δ=1.05, maxvisits=434) 2025-11-23T17:35:04.275 LOG n.size quantiles:[6.0, 6.0, 8.0, 8.0, 9.0] LOG add_vertex! sp=62825 ep=62829 n=62824 BeamSearch BeamSearch(bsize=4, Δ=1.1851876, maxvisits=496) 2025-11-23T17:35:05.275 LOG n.size quantiles:[5.0, 6.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=72130 ep=72134 n=72129 BeamSearch BeamSearch(bsize=4, Δ=1.1851876, maxvisits=496) 2025-11-23T17:35:06.275 LOG n.size quantiles:[3.0, 5.0, 5.0, 6.0, 7.0] LOG add_vertex! sp=81105 ep=81109 n=81104 BeamSearch BeamSearch(bsize=4, Δ=1.1851876, maxvisits=496) 2025-11-23T17:35:07.276 LOG n.size quantiles:[4.0, 5.0, 7.0, 7.0, 8.0] LOG add_vertex! sp=88700 ep=88704 n=88699 BeamSearch BeamSearch(bsize=12, Δ=1.075, maxvisits=480) 2025-11-23T17:35:08.276 LOG n.size quantiles:[6.0, 8.0, 8.0, 9.0, 10.0] LOG add_vertex! sp=97885 ep=97889 n=97884 BeamSearch BeamSearch(bsize=12, Δ=1.075, maxvisits=480) 2025-11-23T17:35:09.276 LOG n.size quantiles:[5.0, 6.0, 7.0, 8.0, 9.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: minrecall: queries per second: 13946.560823427266, recall: 0.900125 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=8, Δ=1.1287501, maxvisits=708)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=4, Δ=1.155, maxvisits=552)), 1000, 8) [ Info: rebuild: queries per second: 15248.060324742211, recall: 0.89975 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=4, Δ=1.155, maxvisits=552)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 29.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=738)), 1000, 8) 1.514507 seconds (610.33 k allocations: 31.098 MiB, 94.61% compilation time) [ Info: matrixhints: queries per second: 12365.375528973764, recall: 0.904 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=738)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] 2.263414 seconds (1.00 k allocations: 140.711 KiB) SEARCH Exhaustive 1: 0.001988 seconds SEARCH Exhaustive 2: 0.001871 seconds SEARCH Exhaustive 3: 0.001927 seconds typeof(seq) = ExhaustiveSearch{SqL2Distance, StrideMatrixDatabase{StrideArraysCore.StrideArray{Float32, 2, (1, 2), Tuple{Int64, Int64}, Tuple{Nothing, Nothing}, Tuple{Static.StaticInt{1}, Static.StaticInt{1}}, Matrix{Float32}}}} typeof(ectx) = GenericContext{KnnSorted} typeof(q) = StrideArraysCore.StrideArray{Float32, 1, (1,), Tuple{Int64}, Tuple{Nothing}, Tuple{Static.StaticInt{1}}, Matrix{Float32}} typeof(res) = KnnSorted{Vector{IdWeight}} [ Info: ===================== minrecall ============================== LOG add_vertex! sp=1 ep=1 n=1 BeamSearch BeamSearch(bsize=4, Δ=1.0, maxvisits=1000000) 2025-11-23T17:36:15.446 LOG n.size quantiles:[0.0, 0.0, 0.0, 0.0, 0.0] LOG add_vertex! sp=295 ep=299 n=294 BeamSearch BeamSearch(bsize=12, Δ=1.1, maxvisits=210) 2025-11-23T17:36:20.956 LOG n.size quantiles:[2.0, 2.0, 3.0, 5.0, 7.0] LOG add_vertex! sp=21165 ep=21169 n=21164 BeamSearch BeamSearch(bsize=12, Δ=1.21275, maxvisits=410) 2025-11-23T17:36:21.956 LOG n.size quantiles:[5.0, 5.0, 6.0, 7.0, 7.0] LOG add_vertex! sp=37880 ep=37884 n=37879 BeamSearch BeamSearch(bsize=4, Δ=1.05, maxvisits=434) 2025-11-23T17:36:22.977 LOG n.size quantiles:[6.0, 7.0, 8.0, 8.0, 8.0] LOG add_vertex! sp=56820 ep=56824 n=56819 BeamSearch BeamSearch(bsize=4, Δ=1.1851876, maxvisits=496) 2025-11-23T17:36:24.036 LOG n.size quantiles:[6.0, 8.0, 9.0, 9.0, 9.0] LOG add_vertex! sp=71340 ep=71344 n=71339 BeamSearch BeamSearch(bsize=4, Δ=1.1851876, maxvisits=496) 2025-11-23T17:36:25.036 LOG n.size quantiles:[4.0, 9.0, 9.0, 10.0, 11.0] LOG add_vertex! sp=81550 ep=81554 n=81549 BeamSearch BeamSearch(bsize=4, Δ=1.1851876, maxvisits=496) 2025-11-23T17:36:26.036 LOG n.size quantiles:[4.0, 7.0, 8.0, 8.0, 10.0] LOG add_vertex! sp=92965 ep=92969 n=92964 BeamSearch BeamSearch(bsize=12, Δ=1.075, maxvisits=480) 2025-11-23T17:36:27.037 LOG n.size quantiles:[6.0, 6.0, 7.0, 7.0, 9.0] quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: minrecall: queries per second: 14673.52550291014, recall: 0.900125 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=8, Δ=1.1287501, maxvisits=708)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] [ Info: ===================== rebuild ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=4, Δ=1.155, maxvisits=552)), 1000, 8) [ Info: rebuild: queries per second: 15662.112354105075, recall: 0.89975 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=4, Δ=1.155, maxvisits=552)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [2.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 18.0, 19.0, 29.0] [ Info: ===================== matrixhints ============================== (graph.algo, length(B.queries), B.ksearch) = (Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=738)), 1000, 8) 1.667634 seconds (566.26 k allocations: 29.919 MiB, 4.83% gc time, 96.17% compilation time) [ Info: matrixhints: queries per second: 16203.592566563022, recall: 0.904 graph.algo = Base.RefValue{BeamSearch}(BeamSearch BeamSearch(bsize=14, Δ=1.155, maxvisits=738)) quantile(neighbors_length.(Ref(graph.adj), 1:length(graph)), 0:0.1:1.0) = [1.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 15.0, 18.0, 23.0, 83.0] Test Summary: | Pass Total Time vector indexing with SearchGraph | 18 18 2m34.0s Testing SimilaritySearch tests passed Testing completed after 667.41s PkgEval succeeded after 720.63s