Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1284 (37b9484954*) started at 2025-11-23T16:00:20.233 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.78s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.17.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.17s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1480.9 ms ✓ Measurements 5272.9 ms ✓ StatsBase 1750.8 ms ✓ EarCut_jll 23889.7 ms ✓ GeometryBasics 7874.6 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 42 seconds. 54 already precompiled. Precompilation completed after 51.91s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_6WxT9D/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_6WxT9D/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.17.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:21 Bin 1 progress: 47%|███████████████▋ | ETA: 0:00:05 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013275725723032523 Iteration 10: d = 1.7777984082517622e-5 Iteration 20: d = 2.569277637203448e-7 Iteration 30: d = 4.023354244464264e-9 Iteration 40: d = 6.595170242776038e-11 Iteration 50: d = 1.1126502466077944e-12 Iteration 60: d = 1.9079275141807385e-14 Converged after 66 iterations. d = 1.6387363062952963e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001221490757606095 Iteration 10: d = 1.3972940530320487e-5 Iteration 20: d = 2.1012497418771076e-7 Iteration 30: d = 3.4173123757852363e-9 Iteration 40: d = 5.721977147376063e-11 Iteration 50: d = 9.732621148347248e-13 Iteration 60: d = 1.671986424657871e-14 Converged after 65 iterations. d = 2.2069337946058356e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012918919353545513 Iteration 10: d = 1.2949273887709474e-5 Iteration 20: d = 1.729456322658843e-7 Iteration 30: d = 2.692366503936201e-9 Iteration 40: d = 4.487325302870537e-11 Iteration 50: d = 7.752174937608459e-13 Iteration 60: d = 1.366645638716578e-14 Converged after 65 iterations. d = 1.810867416115554e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001200090080665875 Iteration 10: d = 1.0109572871526894e-5 Iteration 20: d = 1.265661672855394e-7 Iteration 30: d = 1.8142788308133624e-9 Iteration 40: d = 2.7794309615649377e-11 Iteration 50: d = 4.471303037215052e-13 Iteration 60: d = 7.433706110642473e-15 Converged after 63 iterations. d = 2.1608418171016417e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014717235287741407 Iteration 10: d = 1.4116520148834847e-5 Iteration 20: d = 2.0428411246985237e-7 Iteration 30: d = 3.1726836780301175e-9 Iteration 40: d = 4.934584963924045e-11 Iteration 50: d = 7.668029887306954e-13 Iteration 60: d = 1.1946761163401025e-14 Converged after 65 iterations. d = 1.4849368114130759e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001422578613322965 Iteration 10: d = 8.376713004981986e-6 Iteration 20: d = 9.17608792990906e-8 Iteration 30: d = 1.4036677744270826e-9 Iteration 40: d = 2.195644302360618e-11 Iteration 50: d = 3.4208841355520635e-13 Iteration 60: d = 5.3240242686983e-15 Converged after 63 iterations. d = 1.5184437489020381e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014792480796692576 Iteration 10: d = 9.926239019014099e-6 Iteration 20: d = 1.239858585976514e-7 Iteration 30: d = 1.9285302636348794e-9 Iteration 40: d = 3.02596575897208e-11 Iteration 50: d = 4.733813370806539e-13 Iteration 60: d = 7.385210860501436e-15 Converged after 63 iterations. d = 2.1169496368245338e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013780036596947555 Iteration 10: d = 1.2346971226879748e-5 Iteration 20: d = 1.8388709418372069e-7 Iteration 30: d = 2.9428758744869557e-9 Iteration 40: d = 4.682928576345833e-11 Iteration 50: d = 7.412520350706539e-13 Iteration 60: d = 1.1687412602060972e-14 Converged after 64 iterations. d = 2.17477249350071e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001427815807409346 Iteration 10: d = 1.2017758555420361e-5 Iteration 20: d = 1.703335920956698e-7 Iteration 30: d = 2.6877395811542493e-9 Iteration 40: d = 4.229558839898443e-11 Iteration 50: d = 6.614534772425881e-13 Iteration 60: d = 1.0294644013155525e-14 Converged after 64 iterations. d = 1.942958951558591e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015006381226828505 Iteration 10: d = 9.566694216776929e-6 Iteration 20: d = 1.0666235354475017e-7 Iteration 30: d = 1.6130604476685444e-9 Iteration 40: d = 2.5416308811737693e-11 Iteration 50: d = 4.0234204795046924e-13 Iteration 60: d = 6.343629163739757e-15 Converged after 63 iterations. d = 1.841986361106462e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004671088764497467 Iteration 10: d = 3.431814117389947e-5 Iteration 20: d = 3.258087138730077e-7 Iteration 30: d = 3.932008382804008e-9 Iteration 40: d = 5.2110265110441723e-11 Iteration 50: d = 7.202960892175059e-13 Iteration 60: d = 1.017472852024637e-14 Converged after 64 iterations. d = 1.890582649559017e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029177962533195488 Iteration 10: d = 3.062550289215501e-5 Iteration 20: d = 4.030381276795524e-7 Iteration 30: d = 6.05461302768674e-9 Iteration 40: d = 9.307988938303498e-11 Iteration 50: d = 1.4406104316864148e-12 Iteration 60: d = 2.240748881608207e-14 Converged after 66 iterations. d = 1.8268137207416526e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0027242454070956 Iteration 10: d = 1.959394048428838e-5 Iteration 20: d = 1.911329586778133e-7 Iteration 30: d = 2.869808874710639e-9 Iteration 40: d = 4.8264799613727917e-11 Iteration 50: d = 8.254363752267914e-13 Iteration 60: d = 1.4129504761199505e-14 Converged after 65 iterations. d = 1.8722833277530286e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002090341613655521 Iteration 10: d = 1.8306637599271422e-5 Iteration 20: d = 2.615776273687416e-7 Iteration 30: d = 4.5086202824383706e-9 Iteration 40: d = 7.938791477136361e-11 Iteration 50: d = 1.3938715364056288e-12 Iteration 60: d = 2.439278289555185e-14 Converged after 66 iterations. d = 2.167776601492207e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014717235287741407 Iteration 10: d = 1.4116520148834847e-5 Iteration 20: d = 2.0428411246985237e-7 Iteration 30: d = 3.1726836780301175e-9 Iteration 40: d = 4.934584963924045e-11 Iteration 50: d = 7.668029887306954e-13 Iteration 60: d = 1.1946761163401025e-14 Converged after 65 iterations. d = 1.4849368114130759e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012480846075048867 Iteration 10: d = 1.2182134683524348e-5 Iteration 20: d = 1.3876235857898438e-7 Iteration 30: d = 1.7890559785644898e-9 Iteration 40: d = 2.425573221854528e-11 Iteration 50: d = 3.368650167445912e-13 Iteration 60: d = 4.742481450640035e-15 Converged after 62 iterations. d = 2.0019371106893454e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014726716585804528 Iteration 10: d = 1.4719678389623064e-5 Iteration 20: d = 1.793456436570152e-7 Iteration 30: d = 2.4600882800086905e-9 Iteration 40: d = 3.4353030988540965e-11 Iteration 50: d = 4.822036763304253e-13 Iteration 60: d = 6.787128518646038e-15 Converged after 63 iterations. d = 1.853182356318984e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.541427631493 Iteration 2: convergence error = 4824.336183578905 Iteration 3: convergence error = 1097.4082536191063 Iteration 4: convergence error = 318.7649640032389 Iteration 5: convergence error = 94.56056683443035 Iteration 6: convergence error = 28.19350776117267 Iteration 7: convergence error = 8.47373634468886 Iteration 8: convergence error = 2.539587557036384 Iteration 9: convergence error = 0.7592779464489468 Iteration 10: convergence error = 0.22668936477111856 Iteration 11: convergence error = 0.06762615104139513 Iteration 12: convergence error = 0.02016510822318196 Iteration 13: convergence error = 0.006011371800013876 Iteration 14: convergence error = 0.0017917686568580393 Iteration 15: convergence error = 0.0005340144873571262 Iteration 16: convergence error = 0.0001591485308836127 Iteration 17: convergence error = 4.742853502648359e-5 Iteration 18: convergence error = 1.4134144748823019e-5 Iteration 19: convergence error = 4.212063231534557e-6 Iteration 20: convergence error = 1.2552200132631697e-6 Iteration 21: convergence error = 3.7405493458209094e-7 Iteration 22: convergence error = 1.1133397492812946e-7 Iteration 23: convergence error = 3.226796252420172e-8 Iteration 24: convergence error = 9.305722414865158e-9 Iteration 25: convergence error = 2.669139576028101e-9 Iteration 26: convergence error = 7.687503966735676e-10 Iteration 27: convergence error = 2.1782398107461631e-10 Iteration 28: convergence error = 6.730260793119669e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012480846075048867 Iteration 10: d = 1.2182134683524348e-5 Iteration 20: d = 1.3876235857898438e-7 Iteration 30: d = 1.7890559785644898e-9 Iteration 40: d = 2.425573221854528e-11 Iteration 50: d = 3.368650167445912e-13 Iteration 60: d = 4.742481450640035e-15 Converged after 62 iterations. d = 2.0019371106893454e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.493444708585 Iteration 2: convergence error = 4831.261248238037 Iteration 3: convergence error = 1096.5442061041033 Iteration 4: convergence error = 321.7662593607604 Iteration 5: convergence error = 95.50220340251553 Iteration 6: convergence error = 28.485133258851874 Iteration 7: convergence error = 8.502807422281194 Iteration 8: convergence error = 2.536987829184227 Iteration 9: convergence error = 0.7578456680146246 Iteration 10: convergence error = 0.2262880305950148 Iteration 11: convergence error = 0.06751524481114757 Iteration 12: convergence error = 0.02013481617314028 Iteration 13: convergence error = 0.00600319279942596 Iteration 14: convergence error = 0.0017895881451295281 Iteration 15: convergence error = 0.0005334418885922787 Iteration 16: convergence error = 0.000159000999019554 Iteration 17: convergence error = 4.739147607324412e-5 Iteration 18: convergence error = 1.4125164852885064e-5 Iteration 19: convergence error = 4.209997086945805e-6 Iteration 20: convergence error = 1.2547870937851258e-6 Iteration 21: convergence error = 3.739864951057825e-7 Iteration 22: convergence error = 1.1132328836538363e-7 Iteration 23: convergence error = 3.2262732929666527e-8 Iteration 24: convergence error = 9.30299393075984e-9 Iteration 25: convergence error = 2.6736870495369658e-9 Iteration 26: convergence error = 7.669314072700217e-10 Iteration 27: convergence error = 2.1782398107461631e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 11:56:29 Bin 1 ray tracing: 9%|██▋ | ETA: 0:00:56 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:29 Bin 1 ray tracing: 27%|████████▏ | ETA: 0:00:20 Bin 1 ray tracing: 36%|██████████▊ | ETA: 0:00:15 Bin 1 ray tracing: 44%|█████████████▎ | ETA: 0:00:12 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 61%|██████████████████▍ | ETA: 0:00:07 Bin 1 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 2 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▍ | ETA: 0:00:10 Bin 3 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 3 ray tracing: 36%|██████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 62%|██████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 45%|█████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 54%|████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 5 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 5 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 5 ray tracing: 52%|███████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 6 ray tracing: 20%|██████▏ | ETA: 0:00:08 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 6 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████▎ | ETA: 0:00:09 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 7 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 8 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 12%|███▌ | ETA: 0:00:08 Bin 9 ray tracing: 25%|███████▍ | ETA: 0:00:06 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:05 Bin 9 ray tracing: 52%|███████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 14%|████ | ETA: 0:00:06 Bin 10 ray tracing: 28%|████████ | ETA: 0:00:05 Bin 10 ray tracing: 42%|████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 56%|████████████████▍ | ETA: 0:00:03 Bin 10 ray tracing: 71%|████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 85%|████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 2 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 3 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 4 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 7 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 8 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 27%|████████▊ | ETA: 0:00:03 Bin 9 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 9 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 47%|██████████████▉ | ETA: 0:00:02 Bin 10 progress: 71%|██████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 96%|██████████████████████████████▋ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012480846075048867 Iteration 10: d = 1.2182134683524348e-5 Iteration 20: d = 1.3876235857898438e-7 Iteration 30: d = 1.7890559785644898e-9 Iteration 40: d = 2.425573221854528e-11 Iteration 50: d = 3.368650167445912e-13 Iteration 60: d = 4.742481450640035e-15 Converged after 62 iterations. d = 2.0019371106893454e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014479390190258665 Iteration 10: d = 1.4493667904008203e-5 Iteration 20: d = 1.7691506587717466e-7 Iteration 30: d = 2.427982299692127e-9 Iteration 40: d = 3.392076884136553e-11 Iteration 50: d = 4.763620660340288e-13 Iteration 60: d = 6.758567170806654e-15 Converged after 63 iterations. d = 1.8720725924958336e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011866196733399798 Iteration 10: d = 1.3765840141506861e-5 Iteration 20: d = 1.6486331393724292e-7 Iteration 30: d = 2.11565380960294e-9 Iteration 40: d = 2.778493498832193e-11 Iteration 50: d = 3.691324848786924e-13 Iteration 60: d = 4.903998555628811e-15 Converged after 62 iterations. d = 2.1358341710246896e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001381283907739204 Iteration 10: d = 1.2573728423421131e-5 Iteration 20: d = 1.2361283293470534e-7 Iteration 30: d = 1.518526450261774e-9 Iteration 40: d = 2.031129719837297e-11 Iteration 50: d = 2.817602004551141e-13 Iteration 60: d = 3.95031968437094e-15 Converged after 62 iterations. d = 1.7113049778005289e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014407334972389503 Iteration 10: d = 1.2524938147979908e-5 Iteration 20: d = 1.51488297339244e-7 Iteration 30: d = 2.1305797087639366e-9 Iteration 40: d = 3.02425927789346e-11 Iteration 50: d = 4.2897051354315334e-13 Iteration 60: d = 6.06053697106309e-15 Converged after 63 iterations. d = 1.691708657879681e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012906620327082135 Iteration 10: d = 7.562447464123202e-6 Iteration 20: d = 5.3992546455733895e-8 Iteration 30: d = 5.872986739573202e-10 Iteration 40: d = 7.605652629011537e-12 Iteration 50: d = 1.0494628656033981e-13 Converged after 60 iterations. d = 1.4448386501313685e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013781661216767402 Iteration 10: d = 2.1893364922880297e-5 Iteration 20: d = 2.8494739376363455e-7 Iteration 30: d = 3.924220296070069e-9 Iteration 40: d = 5.517120727529344e-11 Iteration 50: d = 7.822663950253178e-13 Iteration 60: d = 1.1142281001490627e-14 Converged after 64 iterations. d = 2.041904937221499e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014212538271576273 Iteration 10: d = 1.8018625636951398e-5 Iteration 20: d = 2.4088358268606e-7 Iteration 30: d = 3.388477721158634e-9 Iteration 40: d = 4.783628281076533e-11 Iteration 50: d = 6.750758980124175e-13 Iteration 60: d = 9.537499991661486e-15 Converged after 64 iterations. d = 1.7614116289970182e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017112832541168583 Iteration 10: d = 1.1013855073284252e-5 Iteration 20: d = 1.2016148631384816e-7 Iteration 30: d = 1.674535488600267e-9 Iteration 40: d = 2.3845598783596362e-11 Iteration 50: d = 3.4089389713904833e-13 Iteration 60: d = 4.917566373397297e-15 Converged after 62 iterations. d = 2.1267406733044206e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015007762006864836 Iteration 10: d = 1.554995089775247e-5 Iteration 20: d = 1.8668875687618944e-7 Iteration 30: d = 2.5181800162680102e-9 Iteration 40: d = 3.4637642518566665e-11 Iteration 50: d = 4.784596621925826e-13 Iteration 60: d = 6.616571085921052e-15 Converged after 63 iterations. d = 1.8364928791558674e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.527846088278 Iteration 2: convergence error = 4801.76191910957 Iteration 3: convergence error = 1104.0022046489476 Iteration 4: convergence error = 321.7604791260985 Iteration 5: convergence error = 95.8598359920029 Iteration 6: convergence error = 28.838704217291024 Iteration 7: convergence error = 8.73345120486465 Iteration 8: convergence error = 2.6356667304896746 Iteration 9: convergence error = 0.7937465133204569 Iteration 10: convergence error = 0.2387473638998472 Iteration 11: convergence error = 0.0717608395834759 Iteration 12: convergence error = 0.021560570068913876 Iteration 13: convergence error = 0.0064763778989345155 Iteration 14: convergence error = 0.0019451198595561436 Iteration 15: convergence error = 0.0005841540091751085 Iteration 16: convergence error = 0.0001754240797708917 Iteration 17: convergence error = 5.2679305781566654e-5 Iteration 18: convergence error = 1.5819193322386127e-5 Iteration 19: convergence error = 4.750343578052707e-6 Iteration 20: convergence error = 1.426473772880854e-6 Iteration 21: convergence error = 4.283551788830664e-7 Iteration 22: convergence error = 1.2850068742409348e-7 Iteration 23: convergence error = 3.769628165173344e-8 Iteration 24: convergence error = 1.0950998330372386e-8 Iteration 25: convergence error = 3.166633177897893e-9 Iteration 26: convergence error = 9.172254067379981e-10 Iteration 27: convergence error = 2.6648194761946797e-10 Iteration 28: convergence error = 7.503331289626658e-11 Iteration 29: convergence error = 2.3419488570652902e-11 Iteration 30: convergence error = 6.821210263296962e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.368668953866 K, F = -7435.0798192708935, relative_change = 0.03263133104613405 Iter 2: T = 936.8141831353553 K, F = -6302.43076070666, relative_change = 0.03158515134829932 Iter 3: T = 908.3050664191519 K, F = -5340.812349596634, relative_change = 0.03043198665159862 Iter 5: T = 857.2836762262042 K, F = -3831.640779021253, relative_change = 0.02781085622719451 Iter 10: T = 762.4830383515063 K, F = -1658.927263906182, relative_change = 0.019875921086983897 Iter 15: T = 707.063176442588 K, F = -710.1747713014572, relative_change = 0.011885980868272403 Iter 20: T = 678.5996311876078 K, F = -300.9627889313079, relative_change = 0.006077558266849566 Iter 25: T = 665.3380742021524 K, F = -126.69148871191929, relative_change = 0.0028051229550179638 Iter 30: T = 659.5026080076811 K, F = -53.14094230860646, relative_change = 0.001226540062464315 Iter 35: T = 657.0066715225902 K, F = -22.252701039092706, relative_change = 0.0005229306813478502 Iter 40: T = 655.952738323561 K, F = -9.31141604121148, relative_change = 0.0002204910813918726 Iter 45: T = 655.5101730937722 K, F = -3.895038392591985, relative_change = 9.252978744477113e-5 Iter 50: T = 655.3247702935153 K, F = -1.6291082122573624, relative_change = 3.87529245445151e-5 Iter 55: T = 655.2471770608662 K, F = -0.6813399396959772, relative_change = 1.621672696848252e-5 Iter 60: T = 655.2147169130337 K, F = -0.28494929957278786, relative_change = 6.783742883086156e-6 Iter 65: T = 655.2011399886295 K, F = -0.11917003975676599, relative_change = 2.8373421794988445e-6 Iter 70: T = 655.1954616587913 K, F = -0.0498384806793673, relative_change = 1.1866628436874327e-6 Iter 75: T = 655.1930868613301 K, F = -0.020843073500575016, relative_change = 4.962857486550699e-7 Iter 80: T = 655.1920936835565 K, F = -0.008716826747106388, relative_change = 2.0755423182880342e-7 Iter 85: T = 655.1916783231566 K, F = -0.003645481829945507, relative_change = 8.680193911654414e-8 Iter 90: T = 655.1915046141983 K, F = -0.0015245841756091894, relative_change = 3.6301656683173e-8 Iter 95: T = 655.1914319669885 K, F = -0.0006375993332089491, relative_change = 1.518179493439201e-8 Iter 100: T = 655.1914015850493 K, F = -0.0002666516605244751, relative_change = 6.3492094672902876e-9 Iter 105: T = 655.191388878958 K, F = -0.00011151690906463507, relative_change = 2.6553154732942246e-9 Iter 110: T = 655.1913835651187 K, F = -4.6637704169016914e-5, relative_change = 1.110484708906107e-9 Iter 115: T = 655.1913813428075 K, F = -1.9504444489171213e-5, relative_change = 4.6441796603472676e-10 Iter 120: T = 655.1913804134105 K, F = -8.156992517938111e-6, relative_change = 1.9422516246637215e-10 Iter 125: T = 655.1913800247255 K, F = -3.4113520011036513e-6, relative_change = 8.122729021249697e-11 Iter 130: T = 655.1913798621728 K, F = -1.426668362336514e-6, relative_change = 3.397022799285693e-11 Iter 135: T = 655.1913797941913 K, F = -5.966493090148184e-7, relative_change = 1.4206744611503242e-11 Iter 140: T = 655.1913797657608 K, F = -2.4952706689784776e-7, relative_change = 5.941458843991614e-12 Iter 145: T = 655.1913797538706 K, F = -1.0435467584501978e-7, relative_change = 2.484776579442849e-12 Iter 150: T = 655.1913797488979 K, F = -4.3641897373714045e-8, relative_change = 1.0391519460193573e-12 Iter 155: T = 655.1913797468184 K, F = -1.8250389532958877e-8, relative_change = 4.3455782035945307e-13 Converged in 159 iterations to T = 655.1913797460678 K Iter 1: T = 970.3798835148011 K, F = -6748.971717157295, relative_change = 0.029620116485198907 Iter 2: T = 942.9247816455976 K, F = -5716.166611577804, relative_change = 0.02829314821506685 Iter 3: T = 917.5897185812315 K, F = -4839.662418049323, relative_change = 0.0268685939297843 Iter 5: T = 873.0625854860233 K, F = -3465.114890854982, relative_change = 0.023772152607628414 Iter 10: T = 794.0643663745554 K, F = -1491.378041247654, relative_change = 0.015466499162471531 Iter 15: T = 751.0499887480134 K, F = -634.8090232260034, relative_change = 0.00846241168153759 Iter 20: T = 730.1801667084226 K, F = -267.94666845473455, relative_change = 0.0040693563219503315 Iter 25: T = 720.7894916621315 K, F = -112.5441911914448, relative_change = 0.0018163853724961418 Iter 30: T = 716.7298312006284 K, F = -47.157113080178014, relative_change = 0.000781703206149944 Iter 35: T = 715.007456736104 K, F = -19.73775676600483, relative_change = 0.00033094421969130617 Iter 40: T = 714.2827284494754 K, F = -8.257408755096758, relative_change = 0.00013912188354843065 Iter 45: T = 713.9788584964924 K, F = -3.4538463950982736, relative_change = 5.8308803508669476e-5 Iter 50: T = 713.8516394132394 K, F = -1.4445273220355688, relative_change = 2.4407610840952217e-5 Iter 55: T = 713.7984108585467 K, F = -0.6041338949321258, relative_change = 1.0211437579048883e-5 Iter 60: T = 713.776145837688 K, F = -0.25265868961621185, relative_change = 4.271224707398947e-6 Iter 65: T = 713.7668336046021 K, F = -0.10566535013743139, relative_change = 1.7863960654377752e-6 Iter 70: T = 713.7629389888632 K, F = -0.04419059332233377, relative_change = 7.471129634453719e-7 Iter 75: T = 713.7613101915474 K, F = -0.018481048211457907, relative_change = 3.1245520086865244e-7 Iter 80: T = 713.7606290051223 K, F = -0.0077289975786452025, relative_change = 1.3067313263632625e-7 Iter 85: T = 713.7603441241359 K, F = -0.0032323595289900364, relative_change = 5.464917588789958e-8 Iter 90: T = 713.7602249833849 K, F = -0.0013518114338012532, relative_change = 2.285495745796227e-8 Iter 95: T = 713.7601751572789 K, F = -0.0005653436995165517, relative_change = 9.558219565949056e-9 Iter 100: T = 713.7601543194027 K, F = -0.00023643348945168174, relative_change = 3.997362172739578e-9 Iter 105: T = 713.7601456047532 K, F = -9.887930845653425e-5, relative_change = 1.6717446888937378e-9 Iter 110: T = 713.7601419601828 K, F = -4.135250842562943e-5, relative_change = 6.991436236026525e-10 Iter 115: T = 713.7601404359798 K, F = -1.7294112796495398e-5, relative_change = 2.923902145431445e-10 Iter 120: T = 713.76013979854 K, F = -7.232604482321214e-6, relative_change = 1.222810797043099e-10 Iter 125: T = 713.7601395319549 K, F = -3.024761757286498e-6, relative_change = 5.1139411133445274e-11 Iter 130: T = 713.7601394204659 K, F = -1.2649910875461856e-6, relative_change = 2.1387105678138498e-11 Iter 135: T = 713.7601393738399 K, F = -5.290345311825817e-7, relative_change = 8.944345569464146e-12 Iter 140: T = 713.7601393543404 K, F = -2.2124928078515183e-7, relative_change = 3.740644339740141e-12 Iter 145: T = 713.7601393461854 K, F = -9.252903931944445e-8, relative_change = 1.5643812535002335e-12 Iter 150: T = 713.7601393427749 K, F = -3.869744247264606e-8, relative_change = 6.542546427504818e-13 Iter 155: T = 713.7601393413486 K, F = -1.618364176003695e-8, relative_change = 2.736155694449306e-13 Converged in 157 iterations to T = 713.7601393410467 K Iter 1: T = 974.3111748382413 K, F = -5853.223249487976, relative_change = 0.025688825161758726 Iter 2: T = 950.8122888741494 K, F = -4952.175518868767, relative_change = 0.024118460889041165 Iter 3: T = 929.4294600085349 K, F = -4188.030637353964, relative_change = 0.022489011885757033 Iter 5: T = 892.6621339455156 K, F = -2991.219866543168, relative_change = 0.01913661438577033 Iter 10: T = 830.6531964844203 K, F = -1279.2616531067974, relative_change = 0.011269546642997272 Iter 15: T = 799.1271301356052 K, F = -541.7361714019037, relative_change = 0.005697736163022648 Iter 20: T = 784.5342927650295 K, F = -227.94983744506638, relative_change = 0.002613036344197176 Iter 25: T = 778.1349455011663 K, F = -95.59426425420581, relative_change = 0.0011390141848158161 Iter 30: T = 775.4021747288798 K, F = -40.026290188439425, relative_change = 0.0004849426559869576 Iter 35: T = 774.2490396888788 K, F = -16.747929257279356, relative_change = 0.00020435190319568127 Iter 40: T = 773.7649617813302 K, F = -7.005672585360182, relative_change = 8.573531948989792e-5 Iter 45: T = 773.5621936002372 K, F = -2.9301169902607676, relative_change = 3.590349140084483e-5 Iter 50: T = 773.4773372191494 K, F = -1.225455627393637, relative_change = 1.502367307710575e-5 Iter 55: T = 773.4418394074489 K, F = -0.5125081766590105, relative_change = 6.284550612376003e-6 Iter 60: T = 773.4269920733279 K, F = -0.2143384392625215, relative_change = 2.6285315065992267e-6 Iter 65: T = 773.4207824390589 K, F = -0.08963913975812221, relative_change = 1.0993282909655855e-6 Iter 70: T = 773.4181854430552 K, F = -0.03748820156018329, relative_change = 4.5976009510844717e-7 Iter 75: T = 773.417099339078 K, F = -0.015678021080492544, relative_change = 1.9227853985418378e-7 Iter 80: T = 773.4166451158089 K, F = -0.006556736958881371, relative_change = 8.041342255276902e-8 Iter 85: T = 773.4164551539308 K, F = -0.0027421059278509574, relative_change = 3.3629895770370054e-8 Iter 90: T = 773.4163757095554 K, F = -0.0011467814858980852, relative_change = 1.4064431396269326e-8 Iter 95: T = 773.4163424849602 K, F = -0.00047959772063077555, relative_change = 5.881914472983214e-9 Iter 100: T = 773.4163285900361 K, F = -0.0002005734928542946, relative_change = 2.4598870692698665e-9 Iter 105: T = 773.4163227790127 K, F = -8.38822311209908e-5, relative_change = 1.0287541993766632e-9 Iter 110: T = 773.4163203487733 K, F = -3.508055052803272e-5, relative_change = 4.302372949525807e-10 Iter 115: T = 773.4163193324181 K, F = -1.4671104321406503e-5, relative_change = 1.7993036545017246e-10 Iter 120: T = 773.4163189073663 K, F = -6.135631226644733e-6, relative_change = 7.524903017393262e-11 Iter 125: T = 773.4163187296045 K, F = -2.5659950236844864e-6, relative_change = 3.147005255729581e-11 Iter 130: T = 773.4163186552626 K, F = -1.073131908890801e-6, relative_change = 1.3161178130684077e-11 Iter 135: T = 773.4163186241717 K, F = -4.4879645055839745e-7, relative_change = 5.5041602830108335e-12 Iter 140: T = 773.4163186111691 K, F = -1.8769120946338091e-7, relative_change = 2.30189543476988e-12 Iter 145: T = 773.4163186057312 K, F = -7.849318628405655e-8, relative_change = 9.626615316212338e-13 Iter 150: T = 773.4163186034571 K, F = -3.2825341556019794e-8, relative_change = 4.0257881065491973e-13 Converged in 154 iterations to T = 773.4163186026362 K Iter 1: T = 970.3174775781295 K, F = -6763.190969191303, relative_change = 0.029682522421870566 Iter 2: T = 942.7987556022146 K, F = -5728.3071923148555, relative_change = 0.028360534167229935 Iter 3: T = 917.3992351457995 K, F = -4850.030556676844, relative_change = 0.02694055364995801 Iter 5: T = 872.7426080844785 K, F = -3472.678918691195, relative_change = 0.023851266668383938 Iter 10: T = 793.4444648320112 K, F = -1494.801564983381, relative_change = 0.015545508534779968 Iter 15: T = 750.2114871177446 K, F = -636.3294628129098, relative_change = 0.008518726731603136 Iter 20: T = 729.2157270335257 K, F = -268.6057824167762, relative_change = 0.004100474452145225 Iter 25: T = 719.7632301192649 K, F = -112.82485466553423, relative_change = 0.0018312121459852168 Iter 30: T = 715.6757517893593 K, F = -47.275456804439855, relative_change = 0.0007882705499588598 Iter 35: T = 713.9413669799021 K, F = -19.787426050861768, relative_change = 0.00033375908881071354 Iter 40: T = 713.2115472700268 K, F = -8.278212489091228, relative_change = 0.0001403113744044613 Iter 45: T = 712.9055358273763 K, F = -3.4625523077522757, relative_change = 5.8808435094691724e-5 Iter 50: T = 712.7774189992141 K, F = -1.448169211247458, relative_change = 2.4616944503490656e-5 Iter 55: T = 712.7238146199999 K, F = -0.6056571468287478, relative_change = 1.0299050322437678e-5 Iter 60: T = 712.7013923588385 K, F = -0.25329576156029815, relative_change = 4.3078771147525384e-6 Iter 65: T = 712.6920143544305 K, F = -0.10593178644668944, relative_change = 1.801726589017722e-6 Iter 70: T = 712.6880922303188 K, F = -0.04430202108005221, relative_change = 7.535247299212903e-7 Iter 75: T = 712.6864519283196 K, F = -0.018527648788004614, relative_change = 3.1513674084350705e-7 Iter 80: T = 712.6857659304368 K, F = -0.007748486524589704, relative_change = 1.3179459565071875e-7 Iter 85: T = 712.6854790372305 K, F = -0.003240510044673961, relative_change = 5.511818704617705e-8 Iter 90: T = 712.6853590549432 K, F = -0.0013552200790131197, relative_change = 2.3051103884098158e-8 Iter 95: T = 712.6853088768963 K, F = -0.0005667692348900744, relative_change = 9.640250387060911e-9 Iter 100: T = 712.6852878918342 K, F = -0.00023702966533911685, relative_change = 4.031668451120911e-9 Iter 105: T = 712.6852791156299 K, F = -9.912863760963564e-5, relative_change = 1.686092007568963e-9 Iter 110: T = 712.6852754453164 K, F = -4.1456781360915684e-5, relative_change = 7.051438525904556e-10 Iter 115: T = 712.6852739103474 K, F = -1.7337721726407018e-5, relative_change = 2.94899594646111e-10 Iter 120: T = 712.685273268405 K, F = -7.250842348649478e-6, relative_change = 1.2333053398664448e-10 Iter 125: T = 712.6852729999371 K, F = -3.032389030210858e-6, relative_change = 5.157830511810196e-11 Iter 130: T = 712.6852728876605 K, F = -1.2681811901726903e-6, relative_change = 2.1570661207766893e-11 Iter 135: T = 712.6852728407051 K, F = -5.303691782421183e-7, relative_change = 9.021119340946325e-12 Iter 140: T = 712.6852728210678 K, F = -2.21806474853814e-7, relative_change = 3.77273560116255e-12 Iter 145: T = 712.6852728128551 K, F = -9.276061752050424e-8, relative_change = 1.5777775845149632e-12 Iter 150: T = 712.6852728094207 K, F = -3.879535437345538e-8, relative_change = 6.598753021628671e-13 Iter 155: T = 712.6852728079842 K, F = -1.6223861254438532e-8, relative_change = 2.7595379705949745e-13 Converged in 157 iterations to T = 712.6852728076802 K Iter 1: T = 969.2696767061926 K, F = -7001.933394578035, relative_change = 0.03073032329380732 Iter 2: T = 940.6789074894579 K, F = -5932.208397665641, relative_change = 0.029497228587500007 Iter 3: T = 914.1888731770705 K, F = -5024.225562468567, relative_change = 0.02816054883497447 Iter 5: T = 867.326618188861 K, F = -3599.879380371066, relative_change = 0.025207645027325903 Iter 10: T = 782.8290522225876 K, F = -1552.5772466494964, relative_change = 0.0169434404724606 Iter 15: T = 735.7086828555153 K, F = -662.098918554128, relative_change = 0.009543878742634564 Iter 20: T = 712.428669622535 K, F = -279.8146034633985, relative_change = 0.004677720096880557 Iter 25: T = 701.8415562809997 K, F = -117.60708885929422, relative_change = 0.0021090122962684715 Iter 30: T = 697.2405156433152 K, F = -49.2938283367406, relative_change = 0.0009118943472032171 Iter 35: T = 695.2838055894579 K, F = -20.634901980722976, relative_change = 0.0003868548978898468 Iter 40: T = 694.4596282057015 K, F = -8.633238139301856, relative_change = 0.00016276792473300555 Iter 45: T = 694.1139096446087 K, F = -3.611134297080924, relative_change = 6.824452562159939e-5 Iter 50: T = 693.9691435319974 K, F = -1.5103265828692773, relative_change = 2.857105282093107e-5 Iter 55: T = 693.9085686263946 K, F = -0.6316553615649003, relative_change = 1.1954076811618844e-5 Iter 60: T = 693.8832298773465 K, F = -0.2641690959085583, relative_change = 5.0002689960618164e-6 Iter 65: T = 693.8726319300343 K, F = -0.11047924452566193, relative_change = 2.091335141696354e-6 Iter 70: T = 693.8681995704973 K, F = -0.046203839812848924, relative_change = 8.746498321300063e-7 Iter 75: T = 693.8663458748246 K, F = -0.019323015147878042, relative_change = 3.6579399017370355e-7 Iter 80: T = 693.8655706319128 K, F = -0.008081118768335172, relative_change = 1.529802870448416e-7 Iter 85: T = 693.8652464151515 K, F = -0.003379620911688086, relative_change = 6.397833544949495e-8 Iter 90: T = 693.8651108236697 K, F = -0.0014133979190128487, relative_change = 2.675653059362473e-8 Iter 95: T = 693.8650541176648 K, F = -0.0005910999063079014, relative_change = 1.1189905311299817e-8 Iter 100: T = 693.8650304025315 K, F = -0.00024720504411457345, relative_change = 4.6797528754993265e-9 Iter 105: T = 693.8650204845785 K, F = -0.00010338410136312426, relative_change = 1.9571286673914838e-9 Iter 110: T = 693.865016336772 K, F = -4.323646517112589e-5, relative_change = 8.1849459206715e-10 Iter 115: T = 693.8650146021098 K, F = -1.808200665798232e-5, relative_change = 3.4230422817556095e-10 Iter 120: T = 693.8650138766534 K, F = -7.562110838299496e-6, relative_change = 1.431557114057845e-10 Iter 125: T = 693.8650135732588 K, F = -3.1625656398137636e-6, relative_change = 5.98694391894622e-11 Iter 130: T = 693.8650134463755 K, F = -1.322622554256192e-6, relative_change = 2.5038111353241778e-11 Iter 135: T = 693.8650133933115 K, F = -5.53137132097703e-7, relative_change = 1.0471248254122237e-11 Iter 140: T = 693.8650133711194 K, F = -2.3132857163155052e-7, relative_change = 4.379201398047636e-12 Iter 145: T = 693.8650133618385 K, F = -9.674497558620487e-8, relative_change = 1.8314457629685645e-12 Iter 150: T = 693.8650133579571 K, F = -4.0460598649261215e-8, relative_change = 7.659456371386064e-13 Iter 155: T = 693.8650133563339 K, F = -1.692170259470771e-8, relative_change = 3.203389150979462e-13 Converged in 158 iterations to T = 693.8650133558585 K Iter 1: T = 963.5498232877112 K, F = -8305.207436964298, relative_change = 0.036450176712288826 Iter 2: T = 928.9765465048104 K, F = -7047.269347191438, relative_change = 0.03588115108042255 Iter 3: T = 896.24657657415 K, F = -5978.946597446789, relative_change = 0.03523228875239517 Iter 5: T = 836.1975407732598 K, F = -4301.24269916615, relative_change = 0.03366577548683761 Iter 10: T = 716.3933624071514 K, F = -1879.7211084455523, relative_change = 0.027958215692208264 Iter 15: T = 636.6234078289352 K, F = -814.014610961402, relative_change = 0.020052070173979347 Iter 20: T = 589.8591362510532 K, F = -348.5555119693534, relative_change = 0.012035418986173505 Iter 25: T = 565.7822586672671 K, F = -147.73962475235803, relative_change = 0.006170869832397925 Iter 30: T = 554.5465943856822 K, F = -62.19803090707279, relative_change = 0.0028526786353036833 Iter 35: T = 549.5984082998323 K, F = -26.0903871829441, relative_change = 0.0012482911062005955 Iter 40: T = 547.4811440901047 K, F = -10.925565490707545, relative_change = 0.0005323870662626233 Iter 45: T = 546.5869542251659 K, F = -4.571736607940189, relative_change = 0.00022451154873944824 Iter 50: T = 546.2114403083422 K, F = -1.9124012784457178, relative_change = 9.422289569750372e-5 Iter 55: T = 546.0541222508544 K, F = -0.799867365308166, relative_change = 3.946306482659422e-5 Iter 60: T = 545.9882819487185 K, F = -0.33452779831358426, relative_change = 1.6514077952946556e-5 Iter 65: T = 545.9607383397833 K, F = -0.13990592012295344, relative_change = 6.908161986697297e-6 Iter 70: T = 545.9492178021651 K, F = -0.05851074642754778, relative_change = 2.8893868243646107e-6 Iter 75: T = 545.9443995183374 K, F = -0.02446996634819701, relative_change = 1.2084304757945604e-6 Iter 80: T = 545.9423844094727 K, F = -0.010233645001518382, relative_change = 5.05389571752771e-7 Iter 85: T = 545.9415416590047 K, F = -0.004279834800149818, relative_change = 2.113616187237445e-7 Iter 90: T = 545.941189209317 K, F = -0.0017898784179635197, relative_change = 8.839424420681378e-8 Iter 95: T = 545.9410418104078 K, F = -0.0007485485989851826, relative_change = 3.696757949923549e-8 Iter 100: T = 545.9409801663815 K, F = -0.00031305197617301217, relative_change = 1.5460292161883135e-8 Iter 105: T = 545.940954386106 K, F = -0.00013092207734230477, relative_change = 6.465680382999583e-9 Iter 110: T = 545.9409436044856 K, F = -5.475317647105071e-5, relative_change = 2.7040250161557562e-9 Iter 115: T = 545.940939095483 K, F = -2.2898432114754064e-5, relative_change = 1.1308555903861767e-9 Iter 120: T = 545.9409372097642 K, F = -9.57639703613733e-6, relative_change = 4.729372844344257e-10 Iter 125: T = 545.9409364211342 K, F = -4.004964079901141e-6, relative_change = 1.9778804513685556e-10 Iter 130: T = 545.9409360913196 K, F = -1.6749239035163122e-6, relative_change = 8.271732753979302e-11 Iter 135: T = 545.9409359533872 K, F = -7.00473419074088e-7, relative_change = 3.4593386115346876e-11 Iter 140: T = 545.9409358957023 K, F = -2.9294607373220316e-7, relative_change = 1.4467353605060812e-11 Iter 145: T = 545.9409358715777 K, F = -1.225135412841194e-7, relative_change = 6.050419795551646e-12 Iter 150: T = 545.9409358614886 K, F = -5.123652607741391e-8, relative_change = 2.53035287701329e-12 Iter 155: T = 545.9409358572691 K, F = -2.1427616375691017e-8, relative_change = 1.0582183238543738e-12 Iter 160: T = 545.9409358555044 K, F = -8.960673730795676e-9, relative_change = 4.4252934950393646e-13 Converged in 164 iterations to T = 545.9409358548676 K Iter 1: T = 966.8783193169322 K, F = -7546.806450489155, relative_change = 0.033121680683067735 Iter 2: T = 935.8133649872285 K, F = -6397.986693837183, relative_change = 0.032129124946818605 Iter 3: T = 906.7747745501107 K, F = -5422.588568561714, relative_change = 0.03103032241638702 Iter 5: T = 854.6460905227215 K, F = -3891.632677766045, relative_change = 0.02851393384329017 Iter 10: T = 756.9840111737918 K, F = -1686.708264185645, relative_change = 0.02072993384696936 Iter 15: T = 699.1032572278516 K, F = -722.89837482248, relative_change = 0.012621695669031383 Iter 20: T = 669.0145376191259 K, F = -306.62625868745613, relative_change = 0.006542165696618087 Iter 25: T = 654.8837540215117 K, F = -129.1425465146577, relative_change = 0.003043451224488749 Iter 30: T = 648.6394191592934 K, F = -54.18290086786512, relative_change = 0.0013358940674429117 Iter 35: T = 645.9632957568615 K, F = -22.69163387336852, relative_change = 0.000570540885902412 Iter 40: T = 644.8322897428042 K, F = -9.495555383994144, relative_change = 0.00024074546275997858 Iter 45: T = 644.3571829889279 K, F = -3.972149094869992, relative_change = 0.00010106158477957914 Iter 50: T = 644.158116289643 K, F = -1.661374667035973, relative_change = 4.233180854861499e-5 Iter 55: T = 644.0747990460454 K, F = -0.6948372835593246, relative_change = 1.771535149962068e-5 Iter 60: T = 644.0399433650063 K, F = -0.2905945974339288, relative_change = 7.41081702089932e-6 Iter 65: T = 644.0253643053086 K, F = -0.12153106653274282, relative_change = 3.099650079561857e-6 Iter 70: T = 644.0192668189609 K, F = -0.05082590703091189, relative_change = 1.296373288035889e-6 Iter 75: T = 644.016716716222 K, F = -0.02125602992459613, relative_change = 5.421697417691208e-7 Iter 80: T = 644.0156502221101 K, F = -0.008889530567767256, relative_change = 2.2674377618292838e-7 Iter 85: T = 644.0152041996661 K, F = -0.0037177087219930627, relative_change = 9.482729008883151e-8 Iter 90: T = 644.0150176674263 K, F = -0.0015547903395285445, relative_change = 3.965796378656314e-8 Iter 95: T = 644.0149396573587 K, F = -0.0006502319146421964, relative_change = 1.6585444313357435e-8 Iter 100: T = 644.0149070326069 K, F = -0.0002719347578452602, relative_change = 6.936232703027966e-9 Iter 105: T = 644.0148933885442 K, F = -0.00011372636403383929, relative_change = 2.900815663379644e-9 Iter 110: T = 644.014887682434 K, F = -4.756172421510607e-5, relative_change = 1.2131558198717628e-9 Iter 115: T = 644.0148852960705 K, F = -1.9890880030737357e-5, relative_change = 5.073562343583671e-10 Iter 120: T = 644.0148842980648 K, F = -8.318603519796852e-6, relative_change = 2.121824364503308e-10 Iter 125: T = 644.0148838806869 K, F = -3.4789395534917666e-6, relative_change = 8.873723471064044e-11 Iter 130: T = 644.0148837061345 K, F = -1.4549348754666624e-6, relative_change = 3.711099193143505e-11 Iter 135: T = 644.0148836331346 K, F = -6.084721319021824e-7, relative_change = 1.5520285320309247e-11 Iter 140: T = 644.0148836026051 K, F = -2.5446984547317086e-7, relative_change = 6.4907567676162715e-12 Iter 145: T = 644.0148835898374 K, F = -1.0642280678929694e-7, relative_change = 2.7145241990347202e-12 Iter 150: T = 644.0148835844977 K, F = -4.450763563257354e-8, relative_change = 1.1352552861193724e-12 Iter 155: T = 644.0148835822646 K, F = -1.861304904648975e-8, relative_change = 4.747626338908641e-13 Converged in 160 iterations to T = 644.0148835813307 K Iter 1: T = 965.1913194680004 K, F = -7931.190970819426, relative_change = 0.03480868053199962 Iter 2: T = 932.3576899365614 K, F = -6726.92511337653, relative_change = 0.03401774225397765 Iter 3: T = 901.4696614130718 K, F = -5704.294936165364, relative_change = 0.033128947030609354 Iter 5: T = 845.4173391867412 K, F = -4098.709584056743, relative_change = 0.03103915996827647 Iter 10: T = 737.1742741920788 K, F = -1783.5059465048926, relative_change = 0.024043853431112403 Iter 15: T = 669.5164629871176 K, F = -767.912753950582, relative_change = 0.015738677019054056 Iter 20: T = 632.5146714768993 K, F = -326.97579809394614, relative_change = 0.008657022081641451 Iter 25: T = 614.5033616606831 K, F = -138.0440493251881, relative_change = 0.004177125022413197 Iter 30: T = 606.3836297316329 K, F = -57.98868358641774, relative_change = 0.001867792959513122 Iter 35: T = 602.870161808055 K, F = -24.299145484695504, relative_change = 0.0008044858967284062 Iter 40: T = 601.3788984228886 K, F = -10.170725477912603, relative_change = 0.0003407115654233926 Iter 45: T = 600.751302822308 K, F = -4.25502716497373, relative_change = 0.00014324972957863397 Iter 50: T = 600.4881394424928 K, F = -1.7797681648358852, relative_change = 6.004273064754974e-5 Iter 55: T = 600.3779591691657 K, F = -0.7443667353934014, relative_change = 2.5134097808140192e-5 Iter 60: T = 600.331859046696 K, F = -0.31131118605451574, relative_change = 1.0515497586106562e-5 Iter 65: T = 600.3125756760692 K, F = -0.13019547784009822, relative_change = 4.398427279552148e-6 Iter 70: T = 600.3045104842739 K, F = -0.05444955242766014, relative_change = 1.8396008817460925e-6 Iter 75: T = 600.3011374100115 K, F = -0.022771496592819185, relative_change = 7.693651092635548e-7 Iter 80: T = 600.2997267300036 K, F = -0.009523319431249788, relative_change = 3.217615337095667e-7 Iter 85: T = 600.2991367632671 K, F = -0.0039827672484074594, relative_change = 1.3456519059904797e-7 Iter 90: T = 600.2988900315185 K, F = -0.0016656410592399418, relative_change = 5.627688770714854e-8 Iter 95: T = 600.2987868452473 K, F = -0.0006965910238774242, relative_change = 2.3535687171402678e-8 Iter 100: T = 600.2987436914976 K, F = -0.00029132269299542157, relative_change = 9.842909081342233e-9 Iter 105: T = 600.2987256440808 K, F = -0.00012183463072035217, relative_change = 4.11642276286605e-9 Iter 110: T = 600.298718096435 K, F = -5.0952696809658526e-5, relative_change = 1.7215372369234845e-9 Iter 115: T = 600.2987149399193 K, F = -2.1309026227489536e-5, relative_change = 7.199674472305815e-10 Iter 120: T = 600.2987136198266 K, F = -8.911688397117423e-6, relative_change = 3.010989589324456e-10 Iter 125: T = 600.2987130677482 K, F = -3.7269744235790547e-6, relative_change = 1.2592317794504574e-10 Iter 130: T = 600.2987128368624 K, F = -1.5586648779430945e-6, relative_change = 5.2662565618800714e-11 Iter 135: T = 600.2987127403031 K, F = -6.518522979170882e-7, relative_change = 2.202411494920895e-11 Iter 140: T = 600.298712699921 K, F = -2.7261227231178964e-7, relative_change = 9.210743051866175e-12 Iter 145: T = 600.2987126830327 K, F = -1.1401042426806285e-7, relative_change = 3.852066946226813e-12 Iter 150: T = 600.2987126759697 K, F = -4.767938144301098e-8, relative_change = 1.6109418981865841e-12 Iter 155: T = 600.298712673016 K, F = -1.99403827338962e-8, relative_change = 6.737251415699921e-13 Iter 160: T = 600.2987126717807 K, F = -8.339535617629679e-9, relative_change = 2.8176765158673394e-13 Converged in 162 iterations to T = 600.2987126715192 K Iter 1: T = 980.0613596954267 K, F = -4543.038159940364, relative_change = 0.019938640304573235 Iter 2: T = 962.1699137436289 K, F = -3837.6011996751877, relative_change = 0.018255434493772895 Iter 3: T = 946.2053356829549 K, F = -3240.1926592840096, relative_change = 0.016592264871969145 Iter 5: T = 919.5353555883445 K, F = -2306.7241950763687, relative_change = 0.01341514999295984 Iter 10: T = 877.1595670553426 K, F = -979.3709259799851, relative_change = 0.00705755364377781 Iter 15: T = 857.0824092425386 K, F = -412.72328073070105, relative_change = 0.003312260954963288 Iter 20: T = 848.1680113975849 K, F = -173.21187871985882, relative_change = 0.0014602537534738774 Iter 25: T = 844.3389563345396 K, F = -72.55013355960469, relative_change = 0.0006248857924082299 Iter 30: T = 842.7190744331726 K, F = -30.361101170523945, relative_change = 0.0002639020950746754 Iter 35: T = 842.0383128013068 K, F = -12.70086129940767, relative_change = 0.00011082255127916666 Iter 40: T = 841.7530265680367 K, F = -5.312263733867578, relative_change = 4.6427473159017746e-5 Iter 45: T = 841.6336140127476 K, F = -2.2217593054263167, relative_change = 1.9430579211411684e-5 Iter 50: T = 841.5836563106385 K, F = -0.9291850303778348, relative_change = 8.128561207968971e-6 Iter 55: T = 841.5627602623065 K, F = -0.3885995576396063, relative_change = 3.3998919834902873e-6 Iter 60: T = 841.5540207358856 K, F = -0.1625175497701954, relative_change = 1.421950758906609e-6 Iter 65: T = 841.5503656654536 K, F = -0.06796688055241429, relative_change = 5.94689964951564e-7 Iter 70: T = 841.5488370545377 K, F = -0.02842457869369941, relative_change = 2.4870874995897594e-7 Iter 75: T = 841.548197768257 K, F = -0.011887501337847661, relative_change = 1.0401337248767516e-7 Iter 80: T = 841.5479304105856 K, F = -0.004971495562660078, relative_change = 4.349970504986124e-8 Iter 85: T = 841.5478185983246 K, F = -0.002079138912034262, relative_change = 1.8192108492458702e-8 Iter 90: T = 841.547771837086 K, F = -0.0008695207380140513, relative_change = 7.608159173896548e-9 Iter 95: T = 841.5477522809748 K, F = -0.00036364395966037577, relative_change = 3.181823403265391e-9 Iter 100: T = 841.5477441023751 K, F = -0.00015208024711910184, relative_change = 1.3306766109931755e-9 Iter 105: T = 841.5477406819869 K, F = -6.360177530284616e-5, relative_change = 5.56504858810968e-10 Iter 110: T = 841.5477392515397 K, F = -2.6599021571982462e-5, relative_change = 2.3273697618881778e-10 Iter 115: T = 841.5477386533097 K, F = -1.1124030773634885e-5, relative_change = 9.733340329995355e-11 Iter 120: T = 841.5477384031227 K, F = -4.65220292489299e-6, relative_change = 4.07059952796978e-11 Iter 125: T = 841.5477382984916 K, F = -1.9456087316793713e-6, relative_change = 1.702375007568801e-11 Iter 130: T = 841.5477382547335 K, F = -8.136765179411753e-7, relative_change = 7.1195330601542105e-12 Iter 135: T = 841.5477382364335 K, F = -3.402909865002357e-7, relative_change = 2.977489057742368e-12 Iter 140: T = 841.5477382287801 K, F = -1.4231538081332928e-7, relative_change = 1.245235712813043e-12 Iter 145: T = 841.5477382255793 K, F = -5.951827408701149e-8, relative_change = 5.207749157956256e-13 Converged in 150 iterations to T = 841.5477382242408 K Iter 1: T = 976.4828606555627 K, F = -5358.402570204759, relative_change = 0.02351713934443727 Iter 2: T = 955.1264516456547 K, F = -4530.82606455114, relative_change = 0.021870746400577235 Iter 3: T = 935.8387502623915 K, F = -3829.327926457332, relative_change = 0.020193872078436332 Iter 5: T = 903.0470280013376 K, F = -2731.54434705657, relative_change = 0.01684197641047002 Iter 10: T = 849.0688423290327 K, F = -1164.7205856460362, relative_change = 0.009467678401024205 Iter 15: T = 822.4344399673648 K, F = -492.18796360066307, relative_change = 0.004634122386543705 Iter 20: T = 810.3309971647265 K, F = -206.85854551068203, relative_change = 0.0020878514269179714 Iter 25: T = 805.0729663581138 K, F = -86.70073593682731, relative_change = 0.0009024399278686529 Iter 30: T = 802.8372385992989 K, F = -36.29345852249247, relative_change = 0.00038278714862407956 Iter 35: T = 801.8956075135105 K, F = -15.18440681388317, relative_change = 0.00016104620628256831 Iter 40: T = 801.5006330174098 K, F = -6.351363590991859, relative_change = 6.752084257314545e-5 Iter 45: T = 801.335243687745 K, F = -2.656402474403836, relative_change = 2.8267759768036566e-5 Iter 50: T = 801.2660397358391 K, F = -1.1109718638603163, relative_change = 1.1827123809088096e-5 Iter 55: T = 801.2370914864982 K, F = -0.4646274094479397, relative_change = 4.9471560867326005e-6 Iter 60: T = 801.2249838753202 K, F = -0.19431372994184848, relative_change = 2.0691192509434795e-6 Iter 65: T = 801.2199201339805 K, F = -0.08126449709016059, relative_change = 8.653582799260381e-7 Iter 70: T = 801.2178023829896 K, F = -0.03398581372520881, relative_change = 3.6190804691416745e-7 Iter 75: T = 801.2169167083067 K, F = -0.014213278517175132, relative_change = 1.5135512079035973e-7 Iter 80: T = 801.2165463075404 K, F = -0.005944163750748577, relative_change = 6.329866833383656e-8 Iter 85: T = 801.2163914013352 K, F = -0.002485920432141353, relative_change = 2.6472285150274953e-8 Iter 90: T = 801.2163266176785 K, F = -0.0010396416419891086, relative_change = 1.1071030367777224e-8 Iter 95: T = 801.216299524374 K, F = -0.000434790555980169, relative_change = 4.6300379183254036e-9 Iter 100: T = 801.2162881936296 K, F = -0.00018183460287535258, relative_change = 1.936337280754906e-9 Iter 105: T = 801.2162834549767 K, F = -7.604540238936863e-5, relative_change = 8.097993973345813e-10 Iter 110: T = 801.2162814732155 K, F = -3.1803096584903656e-5, relative_change = 3.3866779505301543e-10 Iter 115: T = 801.2162806444194 K, F = -1.3300435627972007e-5, relative_change = 1.4163492594280942e-10 Iter 120: T = 801.2162802978069 K, F = -5.562402428882507e-6, relative_change = 5.923343262868312e-11 Iter 125: T = 801.2162801528494 K, F = -2.3262632005138784e-6, relative_change = 2.4772129748728532e-11 Iter 130: T = 801.2162800922265 K, F = -9.7287355926845e-7, relative_change = 1.036002720700897e-11 Iter 135: T = 801.2162800668732 K, F = -4.068681700442056e-7, relative_change = 4.332695931348546e-12 Iter 140: T = 801.2162800562701 K, F = -1.701557343913862e-7, relative_change = 1.8119703442506604e-12 Iter 145: T = 801.2162800518357 K, F = -7.115887790121178e-8, relative_change = 7.577633334059079e-13 Iter 150: T = 801.2162800499813 K, F = -2.9760857778171612e-8, relative_change = 3.169202137583306e-13 Converged in 153 iterations to T = 801.2162800494383 K Iter 1: T = 980.6770381175472 K, F = -4402.755245798838, relative_change = 0.019322961882452753 Iter 2: T = 963.3736357798016 K, F = -3718.467657430994, relative_change = 0.01764434331098465 Iter 3: T = 947.9651750630026 K, F = -3139.0726019674544, relative_change = 0.01599427277696537 Iter 5: T = 922.2984705722209 K, F = -2234.004457797189, relative_change = 0.01286586694008737 Iter 10: T = 881.7436770953648 K, F = -947.8618978251549, relative_change = 0.0066992291192825865 Iter 15: T = 862.6462915662485 K, F = -399.2838975331278, relative_change = 0.0031248886685826755 Iter 20: T = 854.1950028748516 K, F = -167.53781715986918, relative_change = 0.0013734582661115435 Iter 25: T = 850.5705740627513 K, F = -70.16711496976411, relative_change = 0.0005869343259047688 Iter 30: T = 849.0383253918997 K, F = -29.36267969285295, relative_change = 0.00024772672382422303 Iter 35: T = 848.394583810166 K, F = -12.282987912746714, relative_change = 0.00010400359365255044 Iter 40: T = 848.1248455004887 K, F = -5.137447531027645, relative_change = 4.356613595245365e-5 Iter 45: T = 848.0119468256642 K, F = -2.148639165781583, relative_change = 1.8232254233218578e-5 Iter 50: T = 847.9647153314313 K, F = -0.8986035787510585, relative_change = 7.62711317515598e-6 Iter 55: T = 847.9449597703522 K, F = -0.3758097255986609, relative_change = 3.1901289356284326e-6 Iter 60: T = 847.9366972713586 K, F = -0.1571686361326916, relative_change = 1.334216338754166e-6 Iter 65: T = 847.9332417103459 K, F = -0.06572989169544607, relative_change = 5.579968069103812e-7 Iter 70: T = 847.9317965385501 K, F = -0.02748904161369281, relative_change = 2.3336295745002363e-7 Iter 75: T = 847.9311921478379 K, F = -0.011496248272685472, relative_change = 9.759553057626609e-8 Iter 80: T = 847.930939383968 K, F = -0.004807868808196725, relative_change = 4.081567848315512e-8 Iter 85: T = 847.9308336750192 K, F = -0.0020107082383082897, relative_change = 1.7069615034482188e-8 Iter 90: T = 847.9307894662605 K, F = -0.000840902213658179, relative_change = 7.138718765131251e-9 Iter 95: T = 847.9307709776272 K, F = -0.00035167534991953353, relative_change = 2.9854977660461555e-9 Iter 100: T = 847.9307632454595 K, F = -0.00014707483076814576, relative_change = 1.2485708704483947e-9 Iter 105: T = 847.9307600117746 K, F = -6.150845194508037e-5, relative_change = 5.221672693987094e-10 Iter 110: T = 847.930758659409 K, F = -2.5723571202895812e-5, relative_change = 2.1837660697740712e-10 Iter 115: T = 847.9307580938334 K, F = -1.075790586013703e-5, relative_change = 9.132771530243454e-11 Iter 120: T = 847.930757857303 K, F = -4.4990819036971885e-6, relative_change = 3.8194317473204835e-11 Iter 125: T = 847.9307577583832 K, F = -1.8815709863506669e-6, relative_change = 1.5973329932471353e-11 Iter 130: T = 847.9307577170136 K, F = -7.868933518118126e-7, relative_change = 6.680219467805738e-12 Iter 135: T = 847.9307576997126 K, F = -3.2909051328466887e-7, relative_change = 2.7937672222877702e-12 Iter 140: T = 847.9307576924771 K, F = -1.3763076456285717e-7, relative_change = 1.1683968492192036e-12 Iter 145: T = 847.930757689451 K, F = -5.7559623733993703e-8, relative_change = 4.886442593543036e-13 Converged in 150 iterations to T = 847.9307576881854 K Iter 1: T = 967.3228157931933 K, F = -7445.527505547775, relative_change = 0.032677184206806716 Iter 2: T = 936.7206642978189 K, F = -6311.365263858746, relative_change = 0.031635924425375044 Iter 3: T = 908.1621883300675 K, F = -5348.457329393141, relative_change = 0.030487718544310385 Iter 5: T = 857.0378687863696 K, F = -3837.2469728409374, relative_change = 0.027876033741970736 Iter 10: T = 761.9734363820695 K, F = -1661.518719787974, relative_change = 0.019953918179534957 Iter 15: T = 706.3297170578089 K, F = -711.3584278391379, relative_change = 0.011952113056149445 Iter 20: T = 677.7200974015135 K, F = -301.48829634765605, relative_change = 0.006118814944577991 Iter 25: T = 664.3810382851607 K, F = -126.91853655124797, relative_change = 0.0028261360471055204 Iter 30: T = 658.5092743334429 K, F = -53.237377092643264, relative_change = 0.0012361479199041756 Iter 35: T = 655.9973743301714 K, F = -22.293308504291762, relative_change = 0.0005271071260647538 Iter 40: T = 654.9366191074828 K, F = -9.328448520372428, relative_change = 0.00022226661911264696 Iter 45: T = 654.4911746138138 K, F = -3.902170425715848, relative_change = 9.32774852099323e-5 Iter 50: T = 654.3045630340634 K, F = -1.6320924692070136, relative_change = 3.9066527716458844e-5 Iter 55: T = 654.226463460503 K, F = -0.6825882642592779, relative_change = 1.6348038708989495e-5 Iter 60: T = 654.1937914120433 K, F = -0.2854714115446463, relative_change = 6.838686893600617e-6 Iter 65: T = 654.1801258432675 K, F = -0.11938840157061043, relative_change = 2.860325298520485e-6 Iter 70: T = 654.1744104369207 K, F = -0.04992980365958588, relative_change = 1.1962755118657855e-6 Iter 75: T = 654.1720201328558 K, F = -0.02088126611773905, relative_change = 5.003060305608828e-7 Iter 80: T = 654.1710204699015 K, F = -0.008732799400698099, relative_change = 2.0923558784709427e-7 Iter 85: T = 654.1706023972981 K, F = -0.0036521617931150052, relative_change = 8.75051068695771e-8 Iter 90: T = 654.1704275540596 K, F = -0.0015273778159551332, relative_change = 3.659573060040451e-8 Iter 95: T = 654.1703544324798 K, F = -0.0006387676674127207, relative_change = 1.530478030318154e-8 Iter 100: T = 654.1703238521533 K, F = -0.00026714027194324474, relative_change = 6.400643443236974e-9 Iter 105: T = 654.1703110630939 K, F = -0.00011172125198416483, relative_change = 2.6768257752387016e-9 Iter 110: T = 654.1703057145563 K, F = -4.672316190990067e-5, relative_change = 1.1194805531478639e-9 Iter 115: T = 654.170303477734 K, F = -1.9540184236499503e-5, relative_change = 4.68180142773362e-10 Iter 120: T = 654.1703025422682 K, F = -8.171939760437397e-6, relative_change = 1.957985607258747e-10 Iter 125: T = 654.1703021510452 K, F = -3.4176030510035815e-6, relative_change = 8.188530263815297e-11 Iter 130: T = 654.1703019874311 K, F = -1.4292821762795782e-6, relative_change = 3.4245405903698685e-11 Iter 135: T = 654.1703019190056 K, F = -5.977422687930556e-7, relative_change = 1.4321823199456093e-11 Iter 140: T = 654.1703018903894 K, F = -2.4998374026363734e-7, relative_change = 5.989576308145815e-12 Iter 145: T = 654.1703018784217 K, F = -1.0454640569923512e-7, relative_change = 2.5049176161301165e-12 Iter 150: T = 654.1703018734167 K, F = -4.372303880062489e-8, relative_change = 1.0475980440828935e-12 Iter 155: T = 654.1703018713235 K, F = -1.8285788883076748e-8, relative_change = 4.3812500672853445e-13 Converged in 159 iterations to T = 654.170301870568 K Iter 1: T = 973.4919837719654 K, F = -6039.876713190831, relative_change = 0.026508016228034687 Iter 2: T = 949.1770309369091 K, F = -5111.241869159863, relative_change = 0.024977044742416594 Iter 3: T = 926.9878999705086 K, F = -4323.571196832803, relative_change = 0.02337723126791021 Iter 5: T = 888.6656470762296 K, F = -3089.5549246531755, relative_change = 0.020048893094552586 Iter 10: T = 823.3985112887133 K, F = -1322.9240287396242, relative_change = 0.012033080331561785 Iter 15: T = 789.7959493216961 K, F = -560.7371578103653, relative_change = 0.006169509103090424 Iter 20: T = 774.1152491275446 K, F = -236.06881255792854, relative_change = 0.002852006570353653 Iter 25: T = 767.2095171470595 K, F = -99.02442317108307, relative_change = 0.0012479878046516176 Iter 30: T = 764.2546542862591 K, F = -41.46728857449888, relative_change = 0.0005322559455769632 Iter 35: T = 763.0067209453506 K, F = -17.351733941815297, relative_change = 0.00022445593321969798 Iter 40: T = 762.4826532224574 K, F = -7.258396503684807, relative_change = 9.419949793054532e-5 Iter 45: T = 762.2630999891971 K, F = -3.035845283928259, relative_change = 3.945325516507329e-5 Iter 50: T = 762.1712132099286 K, F = -1.2696787950365953, relative_change = 1.650997114831792e-5 Iter 55: T = 762.1327733286432 K, F = -0.5310039420216346, relative_change = 6.9064437211841655e-6 Iter 60: T = 762.1166952580137 K, F = -0.2220737831720231, relative_change = 2.888668093812499e-6 Iter 65: T = 762.1099708576743 K, F = -0.09287418688595617, relative_change = 1.2081298711046945e-6 Iter 70: T = 762.1071585703179 K, F = -0.03884114283949225, relative_change = 5.052638512571989e-7 Iter 75: T = 762.1059824271706 K, F = -0.01624383831704579, relative_change = 2.113090402204113e-7 Iter 80: T = 762.1054905481384 K, F = -0.006793368665211186, relative_change = 8.83722551136955e-8 Iter 85: T = 762.1052848381166 K, F = -0.0028410681637209834, relative_change = 3.695838332945484e-8 Iter 90: T = 762.1051988076701 K, F = -0.0011881686806565206, relative_change = 1.5456446178346575e-8 Iter 95: T = 762.1051628286998 K, F = -0.0004969063403083007, relative_change = 6.464071942028518e-9 Iter 100: T = 762.1051477818629 K, F = -0.00020781216805199065, relative_change = 2.703352366485399e-9 Iter 105: T = 762.1051414890956 K, F = -8.690952854817358e-5, relative_change = 1.1305742638164076e-9 Iter 110: T = 762.1051388573851 K, F = -3.634660062734607e-5, relative_change = 4.728196390955484e-10 Iter 115: T = 762.1051377567724 K, F = -1.5200582316410305e-5, relative_change = 1.9773881931887542e-10 Iter 120: T = 762.105137296483 K, F = -6.3570652506506065e-6, relative_change = 8.26967384831304e-11 Iter 125: T = 762.1051371039845 K, F = -2.658600152249946e-6, relative_change = 3.4584757764399095e-11 Iter 130: T = 762.1051370234793 K, F = -1.1118567440071558e-6, relative_change = 1.4463738049137815e-11 Iter 135: T = 762.1051369898111 K, F = -4.6499111328035525e-7, relative_change = 6.04889946059039e-12 Iter 140: T = 762.1051369757307 K, F = -1.9446542132151023e-7, relative_change = 2.52972959835776e-12 Iter 145: T = 762.1051369698421 K, F = -8.132732909338358e-8, relative_change = 1.057957503048006e-12 Iter 150: T = 762.1051369673794 K, F = -3.4012666794147606e-8, relative_change = 4.4245835237962275e-13 Converged in 154 iterations to T = 762.1051369664905 K Iter 1: T = 970.0132952475064 K, F = -6832.499202575859, relative_change = 0.029986704752493605 Iter 2: T = 942.1841032911324 K, F = -5787.489195161097, relative_change = 0.02868949538395062 Iter 3: T = 916.4696121045245 K, F = -4900.578316574744, relative_change = 0.027292427347038597 Iter 5: T = 871.1788164757542 K, F = -3509.5669576032724, relative_change = 0.02423954325387753 Iter 10: T = 790.4034415366567 K, F = -1511.5164120357483, relative_change = 0.01593723288804575 Iter 15: T = 746.0849827693348 K, F = -643.7628975869336, relative_change = 0.00880045647076971 Iter 20: T = 724.4599720715738 K, F = -271.83158492020857, relative_change = 0.004257065109616685 Iter 25: T = 714.697450169722 K, F = -114.19929075456318, relative_change = 0.0019060521567189597 Iter 30: T = 710.4702168922006 K, F = -47.855166110444706, relative_change = 0.000821467414729888 Iter 35: T = 708.6754433674666 K, F = -20.030763681453806, relative_change = 0.00034799669928608227 Iter 40: T = 707.9200145744102 K, F = -8.380138931427968, relative_change = 0.00014632942516214524 Iter 45: T = 707.6032301384488 K, F = -3.5052073247363067, relative_change = 6.133653058377866e-5 Iter 50: T = 707.470596821323 K, F = -1.4660129907110027, relative_change = 2.56762059368586e-5 Iter 55: T = 707.4151016460587 K, F = -0.6131204940631179, relative_change = 1.0742393422777092e-5 Iter 60: T = 707.3918882905364 K, F = -0.2564171739800306, relative_change = 4.493349292808671e-6 Iter 65: T = 707.3821793813682 K, F = -0.10723722489930121, relative_change = 1.8793039065374434e-6 Iter 70: T = 707.3781188584986 K, F = -0.04484797566750842, relative_change = 7.859703514059831e-7 Iter 75: T = 707.3764206746606 K, F = -0.018755974328653502, relative_change = 3.2870621273092417e-7 Iter 80: T = 707.3757104695823 K, F = -0.007843975134460224, relative_change = 1.3746956777842496e-7 Iter 85: T = 707.3754134525818 K, F = -0.003280444544836003, relative_change = 5.749153809127861e-8 Iter 90: T = 707.3752892363931 K, F = -0.0013719211661512576, relative_change = 2.4043669340340138e-8 Iter 95: T = 707.3752372876764 K, F = -0.0005737538292444055, relative_change = 1.0055353410204244e-8 Iter 100: T = 707.3752155620987 K, F = -0.00023995070394988716, relative_change = 4.205269505980624e-9 Iter 105: T = 707.3752064762019 K, F = -0.00010035024967081085, relative_change = 1.7586940305599984e-9 Iter 110: T = 707.3752026763714 K, F = -4.1967673667264727e-5, relative_change = 7.35506880001918e-10 Iter 115: T = 707.3752010872367 K, F = -1.75513826917717e-5, relative_change = 3.0759777069773666e-10 Iter 120: T = 707.3752004226417 K, F = -7.3401968898600956e-6, relative_change = 1.286410449566236e-10 Iter 125: T = 707.3752001447001 K, F = -3.0697580847283135e-6, relative_change = 5.3799222888388935e-11 Iter 130: T = 707.3752000284616 K, F = -1.2838092207090313e-6, relative_change = 2.249947277889269e-11 Iter 135: T = 707.3751999798493 K, F = -5.369053897030795e-7, relative_change = 9.40956647573077e-12 Iter 140: T = 707.3751999595191 K, F = -2.2454071602062697e-7, relative_change = 3.935201312398501e-12 Iter 145: T = 707.3751999510166 K, F = -9.39044468850625e-8, relative_change = 1.6457278180646506e-12 Iter 150: T = 707.3751999474609 K, F = -3.927212000043312e-8, relative_change = 6.882658117324333e-13 Iter 155: T = 707.3751999459739 K, F = -1.642563240977779e-8, relative_change = 2.8786837134646005e-13 Converged in 157 iterations to T = 707.3751999456591 K Iter 1: T = 973.4830699136346 K, F = -6041.907744290746, relative_change = 0.026516930086365378 Iter 2: T = 949.1592132857892 K, F = -5112.973099487497, relative_change = 0.024986419774103964 Iter 3: T = 926.9612596752656 K, F = -4325.046758035318, relative_change = 0.023386965326585123 Iter 5: T = 888.6219144497832 K, F = -3090.6261103552206, relative_change = 0.020058967446526098 Iter 10: T = 823.3185789094373 K, F = -1323.4005885275694, relative_change = 0.012041670975157273 Iter 15: T = 789.6926315500048 K, F = -560.9449367660613, relative_change = 0.006174891522451812 Iter 20: T = 773.9995694734463 K, F = -236.15770437323124, relative_change = 0.002854754817206156 Iter 25: T = 767.0880555888772 K, F = -99.06200285461696, relative_change = 0.0012492459252387903 Iter 30: T = 764.1306511687458 K, F = -41.48308034135049, relative_change = 0.0005328031383250259 Iter 35: T = 762.8816319076295 K, F = -17.358351834184663, relative_change = 0.00022468861697741142 Iter 40: T = 762.3571059049369 K, F = -7.261166590673849, relative_change = 9.429749333356295e-5 Iter 45: T = 762.1373602820423 K, F = -3.037004190243681, relative_change = 3.9494358621180364e-5 Iter 50: T = 762.0453929145651 K, F = -1.2701635376171987, relative_change = 1.6527182267482597e-5 Iter 55: T = 762.0069193077966 K, F = -0.5312066801313722, relative_change = 6.913645323182657e-6 Iter 60: T = 761.990827128823 K, F = -0.2221585729397043, relative_change = 2.891680538385838e-6 Iter 65: T = 761.9840968275156 K, F = -0.09290964737640728, relative_change = 1.2093898248724975e-6 Iter 70: T = 761.9812820721833 K, F = -0.03885597291044085, relative_change = 5.057907988299596e-7 Iter 75: T = 761.9801048968777 K, F = -0.016250040440748514, relative_change = 2.1152941944409914e-7 Iter 80: T = 761.979612586181 K, F = -0.006795962469617334, relative_change = 8.846442094515257e-8 Iter 85: T = 761.9794066956314 K, F = -0.002842152925618624, relative_change = 3.699692830717562e-8 Iter 90: T = 761.9793205896858 K, F = -0.0011886223403935192, relative_change = 1.547256615770272e-8 Iter 95: T = 761.9792845791408 K, F = -0.0004970960658305934, relative_change = 6.470813507837126e-9 Iter 100: T = 761.979269519099 K, F = -0.00020789151249978044, relative_change = 2.706171756940865e-9 Iter 105: T = 761.9792632208092 K, F = -8.694271128373288e-5, relative_change = 1.1317533658695934e-9 Iter 110: T = 761.9792605867892 K, F = -3.6360479364172527e-5, relative_change = 4.733127708431952e-10 Iter 115: T = 761.9792594852106 K, F = -1.5206385625021746e-5, relative_change = 1.9794504060697027e-10 Iter 120: T = 761.9792590245174 K, F = -6.359492603080774e-6, relative_change = 8.27829871096311e-11 Iter 125: T = 761.97925883185 K, F = -2.6596161798453366e-6, relative_change = 3.462083941902891e-11 Iter 130: T = 761.9792587512741 K, F = -1.1122833407650745e-6, relative_change = 1.4478849707823606e-11 Iter 135: T = 761.9792587175763 K, F = -4.651698773949775e-7, relative_change = 6.055223968556484e-12 Iter 140: T = 761.9792587034834 K, F = -1.9453824184889612e-7, relative_change = 2.5323493248204984e-12 Iter 145: T = 761.9792586975898 K, F = -8.135900364525384e-8, relative_change = 1.0590689830369895e-12 Iter 150: T = 761.9792586951248 K, F = -3.402480241998518e-8, relative_change = 4.429087290036559e-13 Converged in 154 iterations to T = 761.9792586942352 K Iter 1: T = 964.352453529904 K, F = -8122.327372782199, relative_change = 0.03564754647009601 Iter 2: T = 930.6321130806651 K, F = -6890.598760288254, relative_change = 0.034966821856271875 Iter 3: T = 898.8080887777976 K, F = -5844.584915832423, relative_change = 0.034196138146921115 Iter 5: T = 840.7361240116542 K, F = -4202.080757451313, relative_change = 0.03235960121566824 Iter 10: T = 726.7564696841373 K, F = -1832.4062089049796, relative_change = 0.025946735757516083 Iter 15: T = 653.2955838968797 K, F = -791.1434182743349, relative_change = 0.017740814569698938 Iter 20: T = 611.8005984322953 K, F = -337.73109611037574, relative_change = 0.010153861242802532 Iter 25: T = 591.090683189242 K, F = -142.832610204416, relative_change = 0.005031113971292419 Iter 30: T = 581.6143926805247 K, F = -60.05633800883312, relative_change = 0.002281699691523904 Iter 35: T = 577.483340854148 K, F = -25.176634318407643, relative_change = 0.0009892949828418196 Iter 40: T = 575.7240259046466 K, F = -10.540052970091315, relative_change = 0.0004202031892544366 Iter 45: T = 574.9825384212132 K, F = -4.409904692171859, relative_change = 0.000176891427679715 Iter 50: T = 574.6714249025368 K, F = -1.8446140034484373, relative_change = 7.418250725462709e-5 Iter 55: T = 574.5411350174579 K, F = -0.7714990691502379, relative_change = 3.105990537833789e-5 Iter 60: T = 574.4866149355938 K, F = -0.3226605346827627, relative_change = 1.2995912094078518e-5 Iter 65: T = 574.4638085069256 K, F = -0.13494231048064803, relative_change = 5.4361463294426765e-6 Iter 70: T = 574.4542696273388 K, F = -0.056434804421133605, relative_change = 2.2736538847599227e-6 Iter 75: T = 574.4502801862609 K, F = -0.023601764911202028, relative_change = 9.509028922698754e-7 Iter 80: T = 574.4486117250226 K, F = -0.009870549696630537, relative_change = 3.976848374493671e-7 Iter 85: T = 574.4479139494761 K, F = -0.00412798346633636, relative_change = 1.6631757884553256e-7 Iter 90: T = 574.447622130512 K, F = -0.0017263722819838012, relative_change = 6.955617794777141e-8 Iter 95: T = 574.4475000881791 K, F = -0.0007219895570227952, relative_change = 2.908925578984379e-8 Iter 100: T = 574.4474490485907 K, F = -0.0003019446639164203, relative_change = 1.2165479670738526e-8 Iter 105: T = 574.4474277032205 K, F = -0.0001262768665382663, relative_change = 5.0877498697818766e-9 Iter 110: T = 574.4474187763308 K, F = -5.281049332966914e-5, relative_change = 2.1277579005991652e-9 Iter 115: T = 574.4474150429987 K, F = -2.2085978487185187e-5, relative_change = 8.898537716594919e-10 Iter 120: T = 574.4474134816747 K, F = -9.236619521790779e-6, relative_change = 3.721474613395372e-10 Iter 125: T = 574.4474128287104 K, F = -3.862864988546377e-6, relative_change = 1.5563652950876602e-10 Iter 130: T = 574.447412555633 K, F = -1.61549687988094e-6, relative_change = 6.508908003035429e-11 Iter 135: T = 574.4474124414287 K, F = -6.756200947588553e-7, relative_change = 2.72210308835375e-11 Iter 140: T = 574.447412393667 K, F = -2.825521014937493e-7, relative_change = 1.138414849362871e-11 Iter 145: T = 574.4474123736926 K, F = -1.1816686962262679e-7, relative_change = 4.760995171942479e-12 Iter 150: T = 574.447412365339 K, F = -4.941850295647754e-8, relative_change = 1.991093228991249e-12 Iter 155: T = 574.4474123618455 K, F = -2.0667043132416296e-8, relative_change = 8.3268426163488e-13 Iter 160: T = 574.4474123603844 K, F = -8.643630755589271e-9, relative_change = 3.4825568648281287e-13 Converged in 163 iterations to T = 574.4474123599566 K Iter 1: T = 963.6197570744469 K, F = -8289.272957132367, relative_change = 0.03638024292555314 Iter 2: T = 929.120973956341 K, F = -7033.615916435489, relative_change = 0.03580124096131476 Iter 3: T = 896.4703474367453 K, F = -5967.234427087477, relative_change = 0.035141415848750315 Iter 5: T = 836.5953512716112 K, F = -4292.592567845297, relative_change = 0.03355025555914066 Iter 10: T = 717.3125702806119 K, F = -1875.5770063088717, relative_change = 0.027774828210435015 Iter 15: T = 638.1258348108561 K, F = -811.9940753918171, relative_change = 0.019832389745401125 Iter 20: T = 591.8669172643663 K, F = -347.5880625530559, relative_change = 0.011848955217490345 Iter 25: T = 568.1231410468056 K, F = -147.2966378336124, relative_change = 0.006054448343714912 Iter 30: T = 557.0650399391537 K, F = -62.003490980204425, relative_change = 0.0027933537718317224 Iter 35: T = 552.2001890211616 K, F = -26.007128877952873, relative_change = 0.0012211595075912445 Iter 40: T = 550.1196082776928 K, F = -10.89038927360201, relative_change = 0.0005205919714868253 Iter 45: T = 549.241101154674 K, F = -4.556961184598108, relative_change = 0.0002194968553055618 Iter 50: T = 548.8722072771451 K, F = -1.90621062512458, relative_change = 9.211111433503856e-5 Iter 55: T = 548.717668649249 K, F = -0.7972763562667573, relative_change = 3.857732363296814e-5 Iter 60: T = 548.6529926446066 K, F = -0.3334438561031462, relative_change = 1.6143199645626543e-5 Iter 65: T = 548.6259362929698 K, F = -0.1394525410454842, relative_change = 6.752977304837919e-6 Iter 70: T = 548.6146195906709 K, F = -0.05832112712152476, relative_change = 2.824472921864569e-6 Iter 75: T = 548.6098865634432 K, F = -0.02439066340762719, relative_change = 1.1812802896779787e-6 Iter 80: T = 548.6079071116972 K, F = -0.010200479235398213, relative_change = 4.940346169227877e-7 Iter 85: T = 548.6070792737752 K, F = -0.004265964423321417, relative_change = 2.0661276707649785e-7 Iter 90: T = 548.6067330607472 K, F = -0.001784077650233723, relative_change = 8.64082047816816e-8 Iter 95: T = 548.6065882700929 K, F = -0.0007461226459054282, relative_change = 3.613699178376115e-8 Iter 100: T = 548.6065277168717 K, F = -0.000312037412612709, relative_change = 1.5112930029842197e-8 Iter 105: T = 548.6065023927844 K, F = -0.0001304977742052349, relative_change = 6.320409298108305e-9 Iter 110: T = 548.6064918019474 K, F = -5.457572873202032e-5, relative_change = 2.6432709456741217e-9 Iter 115: T = 548.6064873727327 K, F = -2.282422166730025e-5, relative_change = 1.1054475260600706e-9 Iter 120: T = 548.6064855203822 K, F = -9.545362594592932e-6, relative_change = 4.623113895829811e-10 Iter 125: T = 548.606484745707 K, F = -3.991984228818302e-6, relative_change = 1.9334412602312062e-10 Iter 130: T = 548.6064844217286 K, F = -1.6694958292484685e-6, relative_change = 8.085883971750113e-11 Iter 135: T = 548.6064842862371 K, F = -6.982037625002935e-7, relative_change = 3.381616485616666e-11 Iter 140: T = 548.6064842295729 K, F = -2.9199734660756427e-7, relative_change = 1.4142333435643743e-11 Iter 145: T = 548.6064842058752 K, F = -1.2211712108189943e-7, relative_change = 5.914509378118869e-12 Iter 150: T = 548.6064841959645 K, F = -5.1070817963516646e-8, relative_change = 2.4735174653914416e-12 Iter 155: T = 548.6064841918197 K, F = -2.13585815977968e-8, relative_change = 1.0344620808262656e-12 Iter 160: T = 548.6064841900863 K, F = -8.932572209685574e-9, relative_change = 4.326320637440823e-13 Converged in 164 iterations to T = 548.6064841894607 K Iter 1: T = 969.3300065646173 K, F = -6988.187178947487, relative_change = 0.030669993435382754 Iter 2: T = 940.8011613813302 K, F = -5920.465193289808, relative_change = 0.029431509382852637 Iter 3: T = 914.3743423974016 K, F = -5014.190030519035, relative_change = 0.028089696387201976 Iter 5: T = 867.6407130254026 K, F = -3592.5451747264474, relative_change = 0.025128085844814366 Iter 10: T = 783.4511800062932 K, F = -1549.235199896847, relative_change = 0.016859119559789748 Iter 15: T = 736.5664129149735 K, F = -660.6022883761112, relative_change = 0.009480462066589543 Iter 20: T = 713.427309085232 K, F = -279.1615318337677, relative_change = 0.004641408759568983 Iter 25: T = 702.9109308370843 K, F = -117.32793439317173, relative_change = 0.002091381634161856 Iter 30: T = 698.3420771927008 K, F = -49.175901645806015, relative_change = 0.0009040159251906715 Iter 35: T = 696.399334764022 K, F = -20.585366509209642, relative_change = 0.0003834649872230278 Iter 40: T = 695.5810916192014 K, F = -8.612483017475558, relative_change = 0.00016133306725374505 Iter 45: T = 695.2378713837113 K, F = -3.602447410135282, relative_change = 6.76414103765606e-5 Iter 50: T = 695.0941530205286 K, F = -1.506692420876222, relative_change = 2.831828802961937e-5 Iter 55: T = 695.0340168087138 K, F = -0.6301353010285367, relative_change = 1.1848273802854378e-5 Iter 60: T = 695.0088616164086 K, F = -0.2635333515838985, relative_change = 4.956004500512659e-6 Iter 65: T = 694.9983404504273 K, F = -0.11021336221009376, relative_change = 2.0728203290986122e-6 Iter 70: T = 694.993940204508 K, F = -0.046092643525564414, relative_change = 8.669062140001315e-7 Iter 75: T = 694.9920999396146 K, F = -0.019276511337017133, relative_change = 3.6255542875094915e-7 Iter 80: T = 694.991330313699 K, F = -0.008061670284135736, relative_change = 1.5162586659985354e-7 Iter 85: T = 694.9910084460475 K, F = -0.0033714873190716643, relative_change = 6.341189798970143e-8 Iter 90: T = 694.990873836994 K, F = -0.0014099963530501691, relative_change = 2.6519639225656776e-8 Iter 95: T = 694.9908175418527 K, F = -0.0005896773310758441, relative_change = 1.1090834438502796e-8 Iter 100: T = 694.9907939985475 K, F = -0.00024661010508553183, relative_change = 4.638320219144152e-9 Iter 105: T = 694.9907841524553 K, F = -0.00010313529260042031, relative_change = 1.939801068075089e-9 Iter 110: T = 694.9907800347017 K, F = -4.31324113978615e-5, relative_change = 8.112480020063562e-10 Iter 115: T = 694.990778312608 K, F = -1.8038490535388085e-5, relative_change = 3.3927362520262014e-10 Iter 120: T = 694.9907775924078 K, F = -7.543912063812108e-6, relative_change = 1.418882806023035e-10 Iter 125: T = 694.9907772912113 K, F = -3.1549530102870094e-6, relative_change = 5.933935273208227e-11 Iter 130: T = 694.9907771652474 K, F = -1.3194383606807136e-6, relative_change = 2.4816413463195564e-11 Iter 135: T = 694.9907771125679 K, F = -5.518046849450897e-7, relative_change = 1.0378516818627913e-11 Iter 140: T = 694.9907770905367 K, F = -2.307713166116443e-7, relative_change = 4.340419819579225e-12 Iter 145: T = 694.9907770813229 K, F = -9.65108959416483e-8, relative_change = 1.8152074171412957e-12 Iter 150: T = 694.9907770774696 K, F = -4.036188538947272e-8, relative_change = 7.591390901086324e-13 Iter 155: T = 694.9907770758582 K, F = -1.6880359554605207e-8, relative_change = 3.174911347544071e-13 Converged in 158 iterations to T = 694.9907770753865 K Iter 1: T = 966.4577535834762 K, F = -7642.632752918412, relative_change = 0.0335422464165238 Iter 2: T = 934.953681909769 K, F = -6479.963207433163, relative_change = 0.03259746383832605 Iter 3: T = 905.4580889340385 K, F = -5492.764651783646, relative_change = 0.03154765155369161 Iter 5: T = 852.3679997822284 K, F = -3943.1571818892576, relative_change = 0.02912779589580284 Iter 10: T = 752.178403456237 K, F = -1710.6583575977306, relative_change = 0.021499006050883018 Iter 15: T = 692.0622455651611 K, F = -733.931870597462, relative_change = 0.013306764107229255 Iter 20: T = 660.4592384138775 K, F = -311.5654340003172, relative_change = 0.006986171067556691 Iter 25: T = 645.5044265810719 K, F = -131.28823999672412, relative_change = 0.003274728011738264 Iter 30: T = 638.8688249226069 K, F = -55.09685789727403, relative_change = 0.0014428204555193838 Iter 35: T = 636.0195008767039 K, F = -23.076998851536757, relative_change = 0.0006172537649384216 Iter 40: T = 634.8142639220779 K, F = -9.657287061207896, relative_change = 0.0002606475220194129 Iter 45: T = 634.3077890006155 K, F = -4.039887886359431, relative_change = 0.00010945023381829973 Iter 50: T = 634.0955463733972 K, F = -1.689721552494896, relative_change = 4.585157410145759e-5 Iter 55: T = 634.0067087080521 K, F = -0.706695395588611, relative_change = 1.9189383816477372e-5 Iter 60: T = 633.9695425517132 K, F = -0.2955543453175049, relative_change = 8.027629533287161e-6 Iter 65: T = 633.9539969139583 K, F = -0.1236053874845443, relative_change = 3.3576704966650273e-6 Iter 70: T = 633.9474951389365 K, F = -0.05169342947142902, relative_change = 1.4042913647893528e-6 Iter 75: T = 633.9447759483669 K, F = -0.02161884108160267, relative_change = 5.873042693821946e-7 Iter 80: T = 633.9436387380468 K, F = -0.009041263035355407, relative_change = 2.4561990680474316e-7 Iter 85: T = 633.94316314095 K, F = -0.003781165140684273, relative_change = 1.0272157143025216e-7 Iter 90: T = 633.9429642401865 K, F = -0.0015813285866244642, relative_change = 4.295945666620745e-8 Iter 95: T = 633.9428810574458 K, F = -0.000661330529151738, relative_change = 1.7966169838338718e-8 Iter 100: T = 633.9428462694186 K, F = -0.0002765763299982238, relative_change = 7.513668879926958e-9 Iter 105: T = 633.9428317206483 K, F = -0.00011566752548008985, relative_change = 3.142306435199601e-9 Iter 110: T = 633.9428256361784 K, F = -4.837354116893344e-5, relative_change = 1.314150156005352e-9 Iter 115: T = 633.9428230915804 K, F = -2.0230392968223487e-5, relative_change = 5.495933095006984e-10 Iter 120: T = 633.9428220273991 K, F = -8.460592914594223e-6, relative_change = 2.29846513843617e-10 Iter 125: T = 633.9428215823456 K, F = -3.5383198606631083e-6, relative_change = 9.612452646817138e-11 Iter 130: T = 633.942821396219 K, F = -1.4797662006849066e-6, relative_change = 4.0200386376774744e-11 Iter 135: T = 633.9428213183786 K, F = -6.18855530487572e-7, relative_change = 1.68122717224066e-11 Iter 140: T = 633.942821285825 K, F = -2.588136689407605e-7, relative_change = 7.031117141896881e-12 Iter 145: T = 633.9428212722106 K, F = -1.0823941720694563e-7, relative_change = 2.9405093824650017e-12 Iter 150: T = 633.942821266517 K, F = -4.526743579980064e-8, relative_change = 1.2297675202799985e-12 Iter 155: T = 633.9428212641358 K, F = -1.8932258649684286e-8, relative_change = 5.143272721765407e-13 Converged in 160 iterations to T = 633.9428212631399 K Iter 1: T = 966.5719070238029 K, F = -7616.622782952026, relative_change = 0.03342809297619714 Iter 2: T = 935.187142741245 K, F = -6457.710675039427, relative_change = 0.03247018049510197 Iter 3: T = 905.8158574793154 K, F = -5473.713420205607, relative_change = 0.03140685315223197 Iter 5: T = 852.9878002571868 K, F = -3929.1655148495424, relative_change = 0.028960172379421743 Iter 10: T = 753.4911271588592 K, F = -1704.1461721448143, relative_change = 0.02128677803978054 Iter 15: T = 693.993729553085 K, F = -730.9255955998063, relative_change = 0.013115526617603122 Iter 20: T = 662.8135990912963 K, F = -310.21691166771626, relative_change = 0.006861099248929519 Iter 25: T = 648.0903034312997 K, F = -130.70160103504395, relative_change = 0.003209227728221317 Iter 30: T = 641.5649966030423 K, F = -54.846796886822396, relative_change = 0.0014124564029140564 Iter 35: T = 638.7645737483999 K, F = -22.971526206853035, relative_change = 0.0006039725488408784 Iter 40: T = 637.5803097642847 K, F = -9.613015257307701, relative_change = 0.0002549860812733375 Iter 45: T = 637.0827001744285 K, F = -4.021344156462004, relative_change = 0.00010706342515541238 Iter 50: T = 636.8741818275334 K, F = -1.6819612866024474, relative_change = 4.485000717495108e-5 Iter 55: T = 636.7869046365898 K, F = -0.7034490730143994, relative_change = 1.876992406965466e-5 Iter 60: T = 636.7503916039727 K, F = -0.2941965391915996, relative_change = 7.852102667853648e-6 Iter 65: T = 636.7351192004664 K, F = -0.12303750957994636, relative_change = 3.284244900501561e-6 Iter 70: T = 636.7287317110369 K, F = -0.051455931395975374, relative_change = 1.373580725641334e-6 Iter 75: T = 636.726060318825 K, F = -0.021519515718374127, relative_change = 5.744601574335785e-7 Iter 80: T = 636.7249430988315 K, F = -0.008999723838278573, relative_change = 2.402482486067482e-7 Iter 85: T = 636.7244758620122 K, F = -0.0037637929269582204, relative_change = 1.004750628153021e-7 Iter 90: T = 636.7242804576314 K, F = -0.001574063314925822, relative_change = 4.201993696028005e-8 Iter 95: T = 636.7241987371222 K, F = -0.0006582921043127854, relative_change = 1.7573250939106515e-8 Iter 100: T = 636.7241645606182 K, F = -0.00027530562433186745, relative_change = 7.349345413665673e-9 Iter 105: T = 636.7241502675943 K, F = -0.00011513610049102008, relative_change = 3.0735843649347036e-9 Iter 110: T = 636.7241442900806 K, F = -4.81512933080408e-5, relative_change = 1.2854097737085328e-9 Iter 115: T = 636.7241417902129 K, F = -2.0137445958079425e-5, relative_change = 5.375737297500535e-10 Iter 120: T = 636.7241407447383 K, F = -8.421720181839287e-6, relative_change = 2.248197499265188e-10 Iter 125: T = 636.7241403075085 K, F = -3.522064505268041e-6, relative_change = 9.402231928765395e-11 Iter 130: T = 636.7241401246537 K, F = -1.4729697223603289e-6, relative_change = 3.932126442290297e-11 Iter 135: T = 636.7241400481817 K, F = -6.160138958377637e-7, relative_change = 1.644463218256459e-11 Iter 140: T = 636.7241400162001 K, F = -2.576246866392573e-7, relative_change = 6.877350076953327e-12 Iter 145: T = 636.7241400028249 K, F = -1.0774119180156916e-7, relative_change = 2.876175817883592e-12 Iter 150: T = 636.7241399972313 K, F = -4.505812389865582e-8, relative_change = 1.2028369483847639e-12 Iter 155: T = 636.7241399948921 K, F = -1.8843507920696112e-8, relative_change = 5.03031764384377e-13 Converged in 160 iterations to T = 636.7241399939137 K Iter 1: T = 976.34098223986 K, F = -5390.729702183852, relative_change = 0.023659017760140046 Iter 2: T = 954.8455254638974 K, F = -4558.33825703148, relative_change = 0.02201634179756447 Iter 3: T = 935.4227953823028 K, F = -3852.7351026273377, relative_change = 0.02034122752175901 Iter 5: T = 902.3776180148784 K, F = -2748.4651750948556, relative_change = 0.016986640677049913 Iter 10: T = 847.8997345950594 K, F = -1172.1529712663878, relative_change = 0.009576536366108512 Iter 15: T = 820.9698741421928 K, F = -495.3914066853179, relative_change = 0.004696475217640951 Iter 20: T = 808.7188686169097 K, F = -208.2191209257457, relative_change = 0.002118132226658801 Iter 25: T = 803.3938389480345 K, F = -87.2738049189966, relative_change = 0.0009159724240429291 Iter 30: T = 801.1290639555032 K, F = -36.5338674269117, relative_change = 0.00038861011844536214 Iter 35: T = 800.1750967968559 K, F = -15.285081599821494, relative_change = 0.00016351095463923348 Iter 40: T = 799.7749296450336 K, F = -6.393490435948209, relative_change = 6.855686058799988e-5 Iter 45: T = 799.607362765907 K, F = -2.6740245398525175, relative_change = 2.8701954865690733e-5 Iter 50: T = 799.5372470980088 K, F = -1.1183423430315682, relative_change = 1.200887066816996e-5 Iter 55: T = 799.5079173762006 K, F = -0.4677099580336339, relative_change = 5.0231930300364164e-6 Iter 60: T = 799.4956501968379 K, F = -0.1956029106472562, relative_change = 2.100923749285571e-6 Iter 65: T = 799.4905197166072 K, F = -0.08180365172168091, relative_change = 8.78660165254369e-7 Iter 70: T = 799.4883740536403 K, F = -0.03421129530429445, relative_change = 3.6747120536521496e-7 Iter 75: T = 799.4874767056654 K, F = -0.014307577723377096, relative_change = 1.536817265214439e-7 Iter 80: T = 799.4871014229593 K, F = -0.005983600828545099, relative_change = 6.427168729202441e-8 Iter 85: T = 799.4869444750632 K, F = -0.0025024134907865037, relative_change = 2.6879214087520878e-8 Iter 90: T = 799.4868788375461 K, F = -0.001046539237011257, relative_change = 1.1241213053788668e-8 Iter 95: T = 799.4868513871469 K, F = -0.0004376752115964333, relative_change = 4.701210362909129e-9 Iter 100: T = 799.486839907061 K, F = -0.00018304100190214, relative_change = 1.966102468249953e-9 Iter 105: T = 799.4868351059519 K, F = -7.654993035155488e-5, relative_change = 8.222475278644358e-10 Iter 110: T = 799.4868330980706 K, F = -3.201409340813921e-5, relative_change = 3.4387372209931574e-10 Iter 115: T = 799.4868322583508 K, F = -1.3388677186365605e-5, relative_change = 1.438121086982034e-10 Iter 120: T = 799.4868319071699 K, F = -5.599303604109096e-6, relative_change = 6.01439297567437e-11 Iter 125: T = 799.4868317603019 K, F = -2.341696487939693e-6, relative_change = 2.515291885621063e-11 Iter 130: T = 799.4868316988799 K, F = -9.79324353611588e-7, relative_change = 1.0519239421581304e-11 Iter 135: T = 799.4868316731926 K, F = -4.0956602631592176e-7, relative_change = 4.3992810701924635e-12 Iter 140: T = 799.4868316624498 K, F = -1.7128668272636816e-7, relative_change = 1.8398456232332504e-12 Iter 145: T = 799.486831657957 K, F = -7.163529225362453e-8, relative_change = 7.694578284053782e-13 Iter 150: T = 799.4868316560782 K, F = -2.996058479087793e-8, relative_change = 3.218163252490348e-13 Converged in 153 iterations to T = 799.486831655528 K Iter 1: T = 965.2584199798587 K, F = -7915.9020553634355, relative_change = 0.03474158002014127 Iter 2: T = 932.4955098827363 K, F = -6713.836026281094, relative_change = 0.03394211272231739 Iter 3: T = 901.6818772801063 K, F = -5693.079261844295, relative_change = 0.03304426914238434 Iter 5: T = 845.7890930485285 K, F = -4090.4526299506197, relative_change = 0.03093545107902091 Iter 10: T = 737.9904211846891 K, F = -1779.6175028492953, relative_change = 0.023899616354849784 Iter 15: T = 670.7664578108327 K, F = -766.0811697913172, relative_change = 0.015593633274998924 Iter 20: T = 634.0881571273685 K, F = -326.13630674624636, relative_change = 0.00855300935078938 Iter 25: T = 616.2654894768623 K, F = -137.67317963268536, relative_change = 0.0041194230590969666 Iter 30: T = 608.238915682569 K, F = -57.82925825245411, relative_change = 0.001840242944528667 Iter 35: T = 604.7674807916379 K, F = -24.23163323428549, relative_change = 0.0007922712264238246 Iter 40: T = 603.294386828275 K, F = -10.14233753325465, relative_change = 0.0003354739614240695 Iter 45: T = 602.6744975285189 K, F = -4.243127610163066, relative_change = 0.00014103605708870807 Iter 50: T = 602.4145761708786 K, F = -1.7747868011058938, relative_change = 5.911283341585298e-5 Iter 55: T = 602.3057551248198 K, F = -0.7422826222892518, relative_change = 2.474448079813793e-5 Iter 60: T = 602.2602240395116 K, F = -0.31043943665697393, relative_change = 1.035242840771653e-5 Iter 65: T = 602.241178750711 K, F = -0.12983087585829245, relative_change = 4.330207624163553e-6 Iter 70: T = 602.2332131457242 K, F = -0.054297066981769226, relative_change = 1.811066726919596e-6 Iter 75: T = 602.2298817230285 K, F = -0.022707724563713116, relative_change = 7.574311061904665e-7 Iter 80: T = 602.2284884627585 K, F = -0.009496649068047425, relative_change = 3.1677047237881136e-7 Iter 85: T = 602.2279057812618 K, F = -0.00397161336056151, relative_change = 1.3247784840868192e-7 Iter 90: T = 602.2276620963044 K, F = -0.0016609763672056355, relative_change = 5.540393268759685e-8 Iter 95: T = 602.2275601842405 K, F = -0.0006946401938273117, relative_change = 2.3170606341972317e-8 Iter 100: T = 602.22751756338 K, F = -0.0002905068316574333, relative_change = 9.69022778098956e-9 Iter 105: T = 602.2274997388239 K, F = -0.00012149342755712889, relative_change = 4.052569593980781e-9 Iter 110: T = 602.2274922843811 K, F = -5.081000196199836e-5, relative_change = 1.694833089297229e-9 Iter 115: T = 602.227489166844 K, F = -2.1249348542695667e-5, relative_change = 7.087994200572009e-10 Iter 120: T = 602.2274878630528 K, F = -8.886731762081101e-6, relative_change = 2.96428399742934e-10 Iter 125: T = 602.2274873177918 K, F = -3.7165378929393533e-6, relative_change = 1.239699154235439e-10 Iter 130: T = 602.227487089757 K, F = -1.5543003751283813e-6, relative_change = 5.184569401562575e-11 Iter 135: T = 602.2274869943902 K, F = -6.500264376763099e-7, relative_change = 2.1682470360632692e-11 Iter 140: T = 602.2274869545066 K, F = -2.7184891099318875e-7, relative_change = 9.06787111322658e-12 Iter 145: T = 602.2274869378269 K, F = -1.1369100827440803e-7, relative_change = 3.792310243710635e-12 Iter 150: T = 602.2274869308512 K, F = -4.754657928485173e-8, relative_change = 1.585977487771784e-12 Iter 155: T = 602.2274869279339 K, F = -1.988409109587863e-8, relative_change = 6.632595092627715e-13 Iter 160: T = 602.2274869267138 K, F = -8.316528743446128e-9, relative_change = 2.7740854468044126e-13 Converged in 162 iterations to T = 602.2274869264556 K Iter 1: T = 964.4990063406209 K, F = -8088.935175452646, relative_change = 0.035500993659379136 Iter 2: T = 930.9339253832821 K, F = -6861.999239615396, relative_change = 0.0348005345124067 Iter 3: T = 899.274217573992 K, F = -5820.065641812928, relative_change = 0.034008544479948256 Iter 5: T = 841.5584856585277 K, F = -4184.001880085668, relative_change = 0.0321256789395385 Iter 10: T = 728.6059150230734 K, F = -1823.8237708242839, relative_change = 0.025600404746111128 Iter 15: T = 656.2126029462846 K, F = -787.0383697877295, relative_change = 0.017363725023431146 Iter 20: T = 615.5682971432415 K, F = -335.8148352464361, relative_change = 0.009862956224394868 Iter 25: T = 595.3808865033991 K, F = -141.97389655905, relative_change = 0.004861615361789816 Iter 30: T = 586.1708269412783 K, F = -59.68416008523155, relative_change = 0.0021986187748627506 Iter 35: T = 582.161807354731 K, F = -25.01839738724208, relative_change = 0.0009520031421134048 Iter 40: T = 580.4556231966689 K, F = -10.473397954353343, relative_change = 0.0004041256308682264 Iter 45: T = 579.7367408369054 K, F = -4.3819430692929275, relative_change = 0.00017008048020959716 Iter 50: T = 579.4351498656497 K, F = -1.8329049780136346, relative_change = 7.131863242010601e-5 Iter 55: T = 579.3088545675251 K, F = -0.766599555486871, relative_change = 2.9859479414460882e-5 Iter 60: T = 579.2560072015998 K, F = -0.3206110335994973, relative_change = 1.2493402820573161e-5 Iter 65: T = 579.2339006961842 K, F = -0.13408510309502467, relative_change = 5.2259074700833595e-6 Iter 70: T = 579.2246545982237 K, F = -0.05607629578691398, relative_change = 2.185714875889466e-6 Iter 75: T = 579.2207876133537 K, F = -0.023451829822487807, relative_change = 9.141231932638157e-7 Iter 80: T = 579.219170366764 K, F = -0.009807844614565797, relative_change = 3.8230268109984995e-7 Iter 85: T = 579.2184940101454 K, F = -0.004101759376111402, relative_change = 1.598844991964494e-7 Iter 90: T = 579.2182111488937 K, F = -0.001715405040465412, relative_change = 6.686577352115525e-8 Iter 95: T = 579.218092852794 K, F = -0.0007174029237911883, relative_change = 2.796409415672623e-8 Iter 100: T = 579.2180433799269 K, F = -0.00030002648009824773, relative_change = 1.169492327460121e-8 Iter 105: T = 579.2180226897785 K, F = -0.00012547465862194906, relative_change = 4.890957473367239e-9 Iter 110: T = 579.2180140369105 K, F = -5.247500099975211e-5, relative_change = 2.0454569821290705e-9 Iter 115: T = 579.2180104181776 K, F = -2.1945671300760416e-5, relative_change = 8.554345320556222e-10 Iter 120: T = 579.2180089047804 K, F = -9.1779425969718e-6, relative_change = 3.5775297190683337e-10 Iter 125: T = 579.2180082718595 K, F = -3.838324839189333e-6, relative_change = 1.4961655196672875e-10 Iter 130: T = 579.2180080071645 K, F = -1.6052331631710715e-6, relative_change = 6.257142413969208e-11 Iter 135: T = 579.2180078964658 K, F = -6.713274904868172e-7, relative_change = 2.6168109497018892e-11 Iter 140: T = 579.2180078501704 K, F = -2.807570324558917e-7, relative_change = 1.0943810396967237e-11 Iter 145: T = 579.218007830809 K, F = -1.1741578725965596e-7, relative_change = 4.576826098867836e-12 Iter 150: T = 579.2180078227119 K, F = -4.910506185007435e-8, relative_change = 1.9140980435611306e-12 Iter 155: T = 579.2180078193256 K, F = -2.053615816288712e-8, relative_change = 8.004922238557115e-13 Iter 160: T = 579.2180078179093 K, F = -8.588377398144331e-9, relative_change = 3.3477193096696463e-13 Converged in 163 iterations to T = 579.2180078174947 K Iter 1: T = 964.2901217070169 K, F = -8136.529737919902, relative_change = 0.03570987829298314 Iter 2: T = 930.503701569286 K, F = -6902.7633668905, relative_change = 0.0350376088867539 Iter 3: T = 898.6096876384601 K, F = -5855.014751508291, relative_change = 0.03427607421339324 Iter 5: T = 840.3857688796953 K, F = -4209.772592081284, relative_change = 0.03245951522556035 Iter 10: T = 725.9659676636819 K, F = -1836.0616861574658, relative_change = 0.02609591341774844 Iter 15: T = 652.0436081930727 K, F = -792.8957011190802, relative_change = 0.017905056027094666 Iter 20: T = 610.17739091165 K, F = -338.55132964441464, relative_change = 0.010281920099215545 Iter 25: T = 589.2376944051429 K, F = -143.20099602343075, relative_change = 0.005106282715039764 Iter 30: T = 579.6437638640527 K, F = -60.216212774242635, relative_change = 0.0023186935548892944 Iter 35: T = 575.4586573807389 K, F = -25.24465173631863, relative_change = 0.001005932040023167 Iter 40: T = 573.675781459505 K, F = -10.568712715215595, relative_change = 0.00042738198924076055 Iter 45: T = 572.9242647648582 K, F = -4.4219289070809955, relative_change = 0.00017993369521619656 Iter 50: T = 572.6089254970236 K, F = -1.849649454206105, relative_change = 7.546192010462666e-5 Iter 55: T = 572.4768628082013 K, F = -0.7736061458902233, relative_change = 3.159622058701136e-5 Iter 60: T = 572.4216003450659 K, F = -0.3235419480448704, relative_change = 1.3220424616100251e-5 Iter 65: T = 572.3984832731295 K, F = -0.13531096460754727, relative_change = 5.530078508974393e-6 Iter 70: T = 572.3888144489674 K, F = -0.056588986371526845, relative_change = 2.312944156536148e-6 Iter 75: T = 572.3847706582941 K, F = -0.023666246762495874, relative_change = 9.673357274055034e-7 Iter 80: T = 572.3830794664922 K, F = -0.009897516971966225, relative_change = 4.0455745072376623e-7 Iter 85: T = 572.3823721845928 K, F = -0.004139261536985406, relative_change = 1.691918237108659e-7 Iter 90: T = 572.3820763899305 K, F = -0.0017310889117785333, relative_change = 7.075822775843895e-8 Iter 95: T = 572.3819526849084 K, F = -0.0007239621097202553, relative_change = 2.959196850508698e-8 Iter 100: T = 572.3819009499624 K, F = -0.000302769609243414, relative_change = 1.2375720325919762e-8 Iter 105: T = 572.3818793137851 K, F = -0.00012662186765077799, relative_change = 5.1756750194192015e-9 Iter 110: T = 572.3818702652765 K, F = -5.2954776337654774e-5, relative_change = 2.1645292299225274e-9 Iter 115: T = 572.3818664810822 K, F = -2.2146320104832196e-5, relative_change = 9.052320116566641e-10 Iter 120: T = 572.3818648984868 K, F = -9.261855443865041e-6, relative_change = 3.7857883864230074e-10 Iter 125: T = 572.3818642366264 K, F = -3.873417626976128e-6, relative_change = 1.5832615438208812e-10 Iter 130: T = 572.3818639598286 K, F = -1.6199095084767912e-6, relative_change = 6.621388866731017e-11 Iter 135: T = 572.3818638440683 K, F = -6.774646599261303e-7, relative_change = 2.769140459812302e-11 Iter 140: T = 572.3818637956562 K, F = -2.8332354856663855e-7, relative_change = 1.1580865368755158e-11 Iter 145: T = 572.3818637754096 K, F = -1.1848966219307755e-7, relative_change = 4.843271350442114e-12 Iter 150: T = 572.3818637669422 K, F = -4.9553366687771216e-8, relative_change = 2.025496543509932e-12 Iter 155: T = 572.381863763401 K, F = -2.0723863736193948e-8, relative_change = 8.470890511143997e-13 Iter 160: T = 572.3818637619202 K, F = -8.667352058289168e-9, relative_change = 3.5427848418045273e-13 Converged in 163 iterations to T = 572.3818637614866 K Iter 1: T = 979.9651591188485 K, F = -4564.957552824079, relative_change = 0.020034840881151435 Iter 2: T = 961.9816172585327 K, F = -3856.219572809114, relative_change = 0.018351205339265354 Iter 3: T = 945.9297391037555 K, F = -3255.999140583402, relative_change = 0.016686262883611018 Iter 5: T = 919.1017236401599 K, F = -2318.0963596406827, relative_change = 0.013501989481431716 Iter 10: T = 876.4371255569705 K, F = -984.3037591193188, relative_change = 0.00711487115258953 Iter 15: T = 856.2034095928681 K, F = -414.82886851504963, relative_change = 0.00334244479060826 Iter 20: T = 847.2147026755882 K, F = -174.10121987702865, relative_change = 0.0014742849814275267 Iter 25: T = 843.3527482025003 K, F = -72.92371616029673, relative_change = 0.0006310307768490008 Iter 30: T = 841.7187642594263 K, F = -30.517635819141407, relative_change = 0.0002665229741620377 Iter 35: T = 841.0320430404385 K, F = -12.766378788949138, relative_change = 0.0001119277446922252 Iter 40: T = 840.7442534559499 K, F = -5.339673224019908, relative_change = 4.689128627501632e-5 Iter 45: T = 840.6237920378707 K, F = -2.2332239109487846, relative_change = 1.9624833720120743e-5 Iter 50: T = 840.5733953502095 K, F = -0.9339799505956283, relative_change = 8.209850221422231e-6 Iter 55: T = 840.5523156535955 K, F = -0.3906049004506812, relative_change = 3.4338966757500987e-6 Iter 60: T = 840.5434993128972 K, F = -0.16335621681281753, relative_change = 1.4361734416763787e-6 Iter 65: T = 840.5398121160026 K, F = -0.06831762265483654, relative_change = 6.006383256562007e-7 Iter 70: T = 840.538270069099 K, F = -0.028571263495694277, relative_change = 2.5119647176718276e-7 Iter 75: T = 840.5376251636724 K, F = -0.01194884672245844, relative_change = 1.0505377557804764e-7 Iter 80: T = 840.5373554559972 K, F = -0.004997150942710915, relative_change = 4.393481545952441e-8 Iter 85: T = 840.5372426609348 K, F = -0.0020898682948222724, relative_change = 1.8374077066385024e-8 Iter 90: T = 840.5371954886767 K, F = -0.0008740078960274289, relative_change = 7.684260663315018e-9 Iter 95: T = 840.5371757606722 K, F = -0.0003655205432961939, relative_change = 3.213649967159816e-9 Iter 100: T = 840.5371675101846 K, F = -0.00015286505642353454, relative_change = 1.343986857987367e-9 Iter 105: T = 840.537164059732 K, F = -6.392999192672555e-5, relative_change = 5.620713632686809e-10 Iter 110: T = 840.5371626167117 K, F = -2.6736286726336544e-5, relative_change = 2.350649640168396e-10 Iter 115: T = 840.5371620132233 K, F = -1.1181435940033069e-5, relative_change = 9.830698902912747e-11 Iter 120: T = 840.5371617608372 K, F = -4.676209867771064e-6, relative_change = 4.111315534887648e-11 Iter 125: T = 840.5371616552862 K, F = -1.9556448607183086e-6, relative_change = 1.7193995412430253e-11 Iter 130: T = 840.5371616111437 K, F = -8.178735257935443e-7, relative_change = 7.190729736478596e-12 Iter 135: T = 840.5371615926827 K, F = -3.4204424514960863e-7, relative_change = 3.007247022281945e-12 Iter 140: T = 840.5371615849622 K, F = -1.4304648510155005e-7, relative_change = 1.2576621957202963e-12 Iter 145: T = 840.5371615817332 K, F = -5.982453354924644e-8, relative_change = 5.259762528904574e-13 Converged in 150 iterations to T = 840.5371615803829 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:17 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:16 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 1 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 1 ray tracing: 36%|██████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 43%|████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 64%|███████████████████▍ | ETA: 0:00:05 Bin 1 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 1 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▌ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 2 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 2 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 2 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 2 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 2 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 52%|███████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 2 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 3 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 3 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 3 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 3 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 3 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 3 ray tracing: 54%|████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 61%|██████████████████▏ | ETA: 0:00:06 Bin 3 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 86%|██████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 4 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 4 ray tracing: 38%|███████████▎ | ETA: 0:00:09 Bin 4 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 4 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 4 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 5 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:11 Bin 5 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 5 ray tracing: 49%|██████████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:04 Bin 5 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:11 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:11 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:10 Bin 6 ray tracing: 33%|██████████ | ETA: 0:00:09 Bin 6 ray tracing: 40%|████████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 55%|████████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 61%|██████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 7 ray tracing: 22%|██████▋ | ETA: 0:00:11 Bin 7 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 7 ray tracing: 37%|███████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 45%|█████████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 7 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 7 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 7 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 8 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 8 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 8 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 8 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 8 ray tracing: 44%|█████████████ | ETA: 0:00:08 Bin 8 ray tracing: 52%|███████████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 9 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 9 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 9 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 9 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 9 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 9 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 9 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 9 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:14 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:13 Bin 10 ray tracing: 20%|█████▊ | ETA: 0:00:12 Bin 10 ray tracing: 27%|███████▊ | ETA: 0:00:11 Bin 10 ray tracing: 33%|█████████▌ | ETA: 0:00:11 Bin 10 ray tracing: 39%|███████████▎ | ETA: 0:00:10 Bin 10 ray tracing: 46%|█████████████▎ | ETA: 0:00:09 Bin 10 ray tracing: 53%|███████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 60%|█████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 68%|███████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 75%|█████████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 91%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▍| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2298678790995 K, F = -7466.705776190336, relative_change = 0.0327701321209005 Iter 2: T = 936.531050826381 K, F = -6329.476854945004, relative_change = 0.03173890516846176 Iter 3: T = 907.8724235360515 K, F = -5363.955567404754, relative_change = 0.030600829801683063 Iter 5: T = 856.5390707847281 K, F = -3848.6135099959, relative_change = 0.028008510986542695 Iter 10: T = 760.9375417115612 K, F = -1666.7758006305644, relative_change = 0.020113182457995402 Iter 15: T = 704.8361722289299 K, F = -713.761611614156, relative_change = 0.012087804618036086 Iter 20: T = 675.9268365192752 K, F = -302.55606778709483, relative_change = 0.006203776577646453 Iter 25: T = 662.4283748009329 K, F = -127.38010533821934, relative_change = 0.002869500953686964 Iter 30: T = 656.481858970211 K, F = -53.43347203033194, relative_change = 0.0012559963171419868 Iter 35: T = 653.9370635873079 K, F = -22.375891535843163, relative_change = 0.000535739054812635 Iter 40: T = 652.8622467267672 K, F = -9.363089134767959, relative_change = 0.00022593705980606575 Iter 45: T = 652.4108667789193 K, F = -3.9166758610031818, relative_change = 9.482327820294008e-5 Iter 50: T = 652.2217632418481 K, F = -1.638162036242453, relative_change = 3.971489521058006e-5 Iter 55: T = 652.1426198008139 K, F = -0.6851271942573521, relative_change = 1.6619526845198955e-5 Iter 60: T = 652.1095108963717 K, F = -0.2865333212298309, relative_change = 6.952284814061154e-6 Iter 65: T = 652.0956625770177 K, F = -0.11983252217572693, relative_change = 2.90784351492287e-6 Iter 70: T = 652.0898707330656 K, F = -0.05011554322529599, relative_change = 1.2161499835051925e-6 Iter 75: T = 652.087448460284 K, F = -0.02095894515222113, relative_change = 5.086180843847492e-7 Iter 80: T = 652.0864354273513 K, F = -0.008765285793023048, relative_change = 2.1271184266341454e-7 Iter 85: T = 652.0860117632144 K, F = -0.0036657480079292926, relative_change = 8.895892773969424e-8 Iter 90: T = 652.0858345815212 K, F = -0.0015330597367482213, relative_change = 3.720373753830111e-8 Iter 95: T = 652.0857604819702 K, F = -0.0006411439148993336, relative_change = 1.5559056354628484e-8 Iter 100: T = 652.0857294926442 K, F = -0.00026813404668796226, relative_change = 6.5069847658248106e-9 Iter 105: T = 652.0857165325364 K, F = -0.00011213686166261505, relative_change = 2.7212990240674124e-9 Iter 110: T = 652.0857111124642 K, F = -4.689697522852754e-5, relative_change = 1.1380798078283972e-9 Iter 115: T = 652.0857088457253 K, F = -1.961287524443467e-5, relative_change = 4.759585783473597e-10 Iter 120: T = 652.085707897748 K, F = -8.202338870610948e-6, relative_change = 1.990515682349048e-10 Iter 125: T = 652.0857075012925 K, F = -3.4303153335635272e-6, relative_change = 8.324572532708261e-11 Iter 130: T = 652.0857073354902 K, F = -1.4346002524812107e-6, relative_change = 3.481439083698544e-11 Iter 135: T = 652.0857072661497 K, F = -5.999678255874663e-7, relative_change = 1.4559815073270168e-11 Iter 140: T = 652.0857072371506 K, F = -2.5091426181234056e-7, relative_change = 6.0891019421418725e-12 Iter 145: T = 652.0857072250228 K, F = -1.0493505070430231e-7, relative_change = 2.5465281107726823e-12 Iter 150: T = 652.0857072199509 K, F = -4.3886602962839305e-8, relative_change = 1.0650251501784087e-12 Iter 155: T = 652.0857072178297 K, F = -1.83542706588824e-8, relative_change = 4.454151961077065e-13 Converged in 159 iterations to T = 652.085707217064 K Iter 1: T = 970.2952173974963 K, F = -6768.262972523444, relative_change = 0.02970478260250362 Iter 2: T = 942.753795905731 K, F = -5732.63783118571, relative_change = 0.028384579247578232 Iter 3: T = 917.3312702009837 K, F = -4853.729051830289, relative_change = 0.02696624061887024 Iter 5: T = 872.628402457056 K, F = -3475.3773267464653, relative_change = 0.02387953128606564 Iter 10: T = 793.2230195736993 K, F = -1496.0232004790842, relative_change = 0.015573801526921036 Iter 15: T = 749.9117348419253 K, F = -636.8721780569243, relative_change = 0.008538934230567466 Iter 20: T = 728.8707976527397 K, F = -268.8411067049326, relative_change = 0.0041116553429175395 Iter 25: T = 719.3961053853217 K, F = -112.92507390083321, relative_change = 0.0018365431629296827 Iter 30: T = 715.2986357692589 K, F = -47.31771771702332, relative_change = 0.0007906326185704686 Iter 35: T = 713.5599364316527 K, F = -19.805163624658245, relative_change = 0.0003347716515378394 Iter 40: T = 712.8282875615205 K, F = -8.285641877141144, relative_change = 0.00014073928282785052 Iter 45: T = 712.5215067346516 K, F = -3.465661362420754, relative_change = 5.898817751091071e-5 Iter 50: T = 712.3930673643652 K, F = -1.4494698052606796, relative_change = 2.4692253066609867e-5 Iter 55: T = 712.3393279579691 K, F = -0.6062011321137499, relative_change = 1.0330569472289574e-5 Iter 60: T = 712.3168492029737 K, F = -0.2535232734371834, relative_change = 4.321063037474854e-6 Iter 65: T = 712.3074475679954 K, F = -0.10602693650956374, relative_change = 1.807241840855352e-6 Iter 70: T = 712.3035155605667 K, F = -0.04434181430051953, relative_change = 7.558314037969839e-7 Iter 75: T = 712.3018711251185 K, F = -0.018544290846254086, relative_change = 3.161014421051535e-7 Iter 80: T = 712.3011833985556 K, F = -0.007755446440455893, relative_change = 1.3219804917842765e-7 Iter 85: T = 712.3008957823909 K, F = -0.003243420766312677, relative_change = 5.5286916822830394e-8 Iter 90: T = 712.300775497753 K, F = -0.0013564373772358973, relative_change = 2.3121668802341802e-8 Iter 95: T = 712.3007251932594 K, F = -0.0005672783248972246, relative_change = 9.669761521949411e-9 Iter 100: T = 712.3007041553157 K, F = -0.00023724257224666534, relative_change = 4.044010353278342e-9 Iter 105: T = 712.3006953569957 K, F = -9.921767823739547e-5, relative_change = 1.6912535461789322e-9 Iter 110: T = 712.3006916774331 K, F = -4.14940190102131e-5, relative_change = 7.073024663438959e-10 Iter 115: T = 712.3006901385959 K, F = -1.7353293226940458e-5, relative_change = 2.9580232326570626e-10 Iter 120: T = 712.300689495036 K, F = -7.257354102341296e-6, relative_change = 1.2370805848749557e-10 Iter 125: T = 712.3006892258916 K, F = -3.0351135946737884e-6, relative_change = 5.173621205012399e-11 Iter 130: T = 712.300689113332 K, F = -1.2693206385971934e-6, relative_change = 2.163669981997134e-11 Iter 135: T = 712.3006890662583 K, F = -5.308460291342243e-7, relative_change = 9.048742955372236e-12 Iter 140: T = 712.3006890465715 K, F = -2.2200516713866136e-7, relative_change = 3.784275632131748e-12 Iter 145: T = 712.3006890383382 K, F = -9.284466617742737e-8, relative_change = 1.5826199558163103e-12 Iter 150: T = 712.300689034895 K, F = -3.882821664191738e-8, relative_change = 6.618615052181819e-13 Iter 155: T = 712.300689033455 K, F = -1.623770717884554e-8, relative_change = 2.767861685201395e-13 Converged in 157 iterations to T = 712.3006890331502 K Iter 1: T = 974.3282143845331 K, F = -5849.340772656597, relative_change = 0.02567178561546693 Iter 2: T = 950.8462568700779 K, F = -4948.86760569946, relative_change = 0.024100664609500517 Iter 3: T = 929.4801052748871 K, F = -4185.212690428899, relative_change = 0.022470669091680766 Iter 5: T = 892.7447924538454 K, F = -2989.1767043643126, relative_change = 0.019117919600984346 Iter 10: T = 830.8022190496913 K, F = -1278.3562200199337, relative_change = 0.011254192429174126 Iter 15: T = 799.3178747048871 K, F = -541.3428667901971, relative_change = 0.005688381529976758 Iter 20: T = 784.7466991931608 K, F = -227.7819815300177, relative_change = 0.0026083358958247887 Iter 25: T = 778.3573869316856 K, F = -95.52339106030767, relative_change = 0.0011368791064865606 Iter 30: T = 775.6290074464457 K, F = -39.996525035010826, relative_change = 0.0004840172907715388 Iter 35: T = 774.4777449363106 K, F = -16.735458654263883, relative_change = 0.00020395900068739968 Iter 40: T = 773.9944566040391 K, F = -7.000453258572967, relative_change = 8.556995302241357e-5 Iter 45: T = 773.7920197746012 K, F = -2.9279335076032087, relative_change = 3.58341482393853e-5 Iter 50: T = 773.7073021693174 K, F = -1.2245423465780783, relative_change = 1.4994640499156104e-5 Iter 55: T = 773.6718624304622 K, F = -0.5121262103087136, relative_change = 6.2724031608250684e-6 Iter 60: T = 773.6570393892505 K, F = -0.21417869262753653, relative_change = 2.6234503032067343e-6 Iter 65: T = 773.6508399156427 K, F = -0.08957233115166419, relative_change = 1.0972030971121444e-6 Iter 70: T = 773.6482471691371 K, F = -0.03746026128913349, relative_change = 4.5887128324800185e-7 Iter 75: T = 773.6471628423836 K, F = -0.015666336104012912, relative_change = 1.9190682278185137e-7 Iter 80: T = 773.6467093623766 K, F = -0.006551850158806105, relative_change = 8.025796510507703e-8 Iter 85: T = 773.6465197113405 K, F = -0.0027400622087289106, relative_change = 3.3564881442082835e-8 Iter 90: T = 773.6464403969632 K, F = -0.0011459267816492646, relative_change = 1.4037241643418639e-8 Iter 95: T = 773.6464072267346 K, F = -0.00047924027088419585, relative_change = 5.870543361642973e-9 Iter 100: T = 773.6463933545474 K, F = -0.0002004240063039342, relative_change = 2.4551315731467826e-9 Iter 105: T = 773.6463875530328 K, F = -8.381971280457812e-5, relative_change = 1.0267653785645977e-9 Iter 110: T = 773.64638512677 K, F = -3.50544051944679e-5, relative_change = 4.294055533357274e-10 Iter 115: T = 773.646384112078 K, F = -1.4660169922242616e-5, relative_change = 1.795825198529142e-10 Iter 120: T = 773.6463836877217 K, F = -6.13105968039207e-6, relative_change = 7.510357352532198e-11 Iter 125: T = 773.6463835102509 K, F = -2.564084017664392e-6, relative_change = 3.1409231486028096e-11 Iter 130: T = 773.6463834360304 K, F = -1.0723301001602792e-6, relative_change = 1.3135710112742077e-11 Iter 135: T = 773.6463834049905 K, F = -4.4846172253532046e-7, relative_change = 5.493516580509828e-12 Iter 140: T = 773.6463833920093 K, F = -1.875520628802363e-7, relative_change = 2.2974544213025117e-12 Iter 145: T = 773.6463833865803 K, F = -7.843492755288395e-8, relative_change = 9.60803460807603e-13 Iter 150: T = 773.6463833843098 K, F = -3.280389238025094e-8, relative_change = 4.0183747611795635e-13 Converged in 154 iterations to T = 773.6463833834904 K Iter 1: T = 970.3104327660683 K, F = -6764.79613632077, relative_change = 0.02968956723393166 Iter 2: T = 942.7845272940639 K, F = -5729.677729895951, relative_change = 0.02836814337194762 Iter 3: T = 917.3777269871154 K, F = -4851.201031080428, relative_change = 0.02694868187948515 Iter 5: T = 872.706468720103 K, F = -3473.5328816867705, relative_change = 0.023860209197818342 Iter 10: T = 793.3744013372484 K, F = -1495.1881567325704, relative_change = 0.01555445629017418 Iter 15: T = 750.1166603107255 K, F = -636.5011977637546, relative_change = 0.008525115065593362 Iter 20: T = 729.1066173350013 K, F = -268.6802444259874, relative_change = 0.004104008297981237 Iter 25: T = 719.6471043328629 K, F = -112.85656555523191, relative_change = 0.0018328968628330328 Iter 30: T = 715.5564679293898 K, F = -47.288828641271905, relative_change = 0.000789016971485502 Iter 35: T = 713.8207194174475 K, F = -19.793038392780613, relative_change = 0.00033407905386705013 Iter 40: T = 713.0903215691947 K, F = -8.280563214843715, relative_change = 0.0001404465899876776 Iter 45: T = 712.7840669505774 K, F = -3.4635360399008213, relative_change = 5.8865231977623905e-5 Iter 50: T = 712.6558481781741 K, F = -1.4485807304280125, relative_change = 2.4640741242938656e-5 Iter 55: T = 712.6022011216547 K, F = -0.6058292684445566, relative_change = 1.0309010045018578e-5 Iter 60: T = 712.5797610048032 K, F = -0.2533677482683198, relative_change = 4.312043727416828e-6 Iter 65: T = 712.5703755316146 K, F = -0.10596189274284862, relative_change = 1.8034693502758149e-6 Iter 70: T = 712.566450283739 K, F = -0.044314611995878384, relative_change = 7.542536144246523e-7 Iter 75: T = 712.564808675304 K, F = -0.018532914478759932, relative_change = 3.1544157622973563e-7 Iter 80: T = 712.5641221310472 K, F = -0.007750688701739894, relative_change = 1.3192208268891422e-7 Iter 85: T = 712.5638350093394 K, F = -0.003241431020935548, relative_change = 5.5171503848800986e-8 Iter 90: T = 712.5637149314898 K, F = -0.001355605240443758, relative_change = 2.307340161303532e-8 Iter 95: T = 712.5636647134777 K, F = -0.000566930313394054, relative_change = 9.649575559684071e-9 Iter 100: T = 712.5636437117015 K, F = -0.00023709702972130042, relative_change = 4.035568341069245e-9 Iter 105: T = 712.5636349285072 K, F = -9.915680943861638e-5, relative_change = 1.6877229753825838e-9 Iter 110: T = 712.5636312552704 K, F = -4.146856093156792e-5, relative_change = 7.058259049906094e-10 Iter 115: T = 712.563629719079 K, F = -1.734264862252033e-5, relative_change = 2.9518484629282393e-10 Iter 120: T = 712.5636290766253 K, F = -7.25290238001719e-6, relative_change = 1.23449821882022e-10 Iter 125: T = 712.5636288079435 K, F = -3.0332501262941847e-6, relative_change = 5.1628185361842565e-11 Iter 130: T = 712.5636286955776 K, F = -1.2685422146052616e-6, relative_change = 2.1591537102859504e-11 Iter 135: T = 712.5636286485849 K, F = -5.305202207539494e-7, relative_change = 9.029850880750726e-12 Iter 140: T = 712.5636286289318 K, F = -2.2186996606610165e-7, relative_change = 3.7763927375096024e-12 Iter 145: T = 712.5636286207128 K, F = -9.278983581495481e-8, relative_change = 1.5793523941908817e-12 Iter 150: T = 712.5636286172755 K, F = -3.8806391322587785e-8, relative_change = 6.605137999044401e-13 Iter 155: T = 712.563628615838 K, F = -1.6229250388022365e-8, relative_change = 2.762339779132392e-13 Converged in 157 iterations to T = 712.5636286155337 K Iter 1: T = 969.3478926124787 K, F = -6984.111825928233, relative_change = 0.030652107387521308 Iter 2: T = 940.8374014416133 K, F = -5916.983746704058, relative_change = 0.02941203193213445 Iter 3: T = 914.4293138972953 K, F = -5011.214923714868, relative_change = 0.028068705074706622 Iter 5: T = 867.7337794952898 K, F = -3590.3710398618405, relative_change = 0.02510453376768725 Iter 10: T = 783.6353595595767 K, F = -1548.2447519103373, relative_change = 0.016834214849133184 Iter 15: T = 736.8201500276589 K, F = -660.1588959312653, relative_change = 0.009461771281937379 Iter 20: T = 713.722585016203 K, F = -278.96810526733367, relative_change = 0.004630722116281438 Iter 25: T = 703.2270398393058 K, F = -117.24526784553461, relative_change = 0.0020861968404904986 Iter 30: T = 698.6676616122547 K, F = -49.140982560700024, relative_change = 0.0009016998968564096 Iter 35: T = 696.7290301971547 K, F = -20.57069916252754, relative_change = 0.00038246861142403636 Iter 40: T = 695.912533483769 K, F = -8.606337565009115, relative_change = 0.00016091135728128807 Iter 45: T = 695.5700484704822 K, F = -3.5998752978912254, relative_change = 6.74641576901013e-5 Iter 50: T = 695.4266384402049 K, F = -1.505616379825236, relative_change = 2.8244002570016055e-5 Iter 55: T = 695.3666313268127 K, F = -0.6296852259735268, relative_change = 1.1817179341350973e-5 Iter 60: T = 695.3415301512688 K, F = -0.2633451139977346, relative_change = 4.942995629259269e-6 Iter 65: T = 695.3310315803377 K, F = -0.11013463710977195, relative_change = 2.067379024592082e-6 Iter 70: T = 695.3266407847422 K, F = -0.04605971941744491, relative_change = 8.646304486777505e-7 Iter 75: T = 695.3248044722277 K, F = -0.01926274202315159, relative_change = 3.6160365082415714e-7 Iter 80: T = 695.3240364992689 K, F = -0.008055911782993364, relative_change = 1.512278172224159e-7 Iter 85: T = 695.3237153229079 K, F = -0.003369079044337142, relative_change = 6.324542821940101e-8 Iter 90: T = 695.323581002961 K, F = -0.0014089891839115243, relative_change = 2.6450019450286624e-8 Iter 95: T = 695.3235248287276 K, F = -0.0005892561191672696, relative_change = 1.1061718561168262e-8 Iter 100: T = 695.3235013359875 K, F = -0.00024643394847279065, relative_change = 4.626143593186448e-9 Iter 105: T = 695.3234915110422 K, F = -0.00010306161982454043, relative_change = 1.9347086198328118e-9 Iter 110: T = 695.3234874021326 K, F = -4.310160035514432e-5, relative_change = 8.091182752978994e-10 Iter 115: T = 695.3234856837377 K, F = -1.8025603991778105e-5, relative_change = 3.3838292927563866e-10 Iter 120: T = 695.3234849650842 K, F = -7.53852175439107e-6, relative_change = 1.4151576210012943e-10 Iter 125: T = 695.3234846645348 K, F = -3.152700389530416e-6, relative_change = 5.918359245379435e-11 Iter 130: T = 695.3234845388414 K, F = -1.3184950623523761e-6, relative_change = 2.4751249674374034e-11 Iter 135: T = 695.3234844862749 K, F = -5.514093290859279e-7, relative_change = 1.0351248458638393e-11 Iter 140: T = 695.323484464291 K, F = -2.3060585818690527e-7, relative_change = 4.3290136901139175e-12 Iter 145: T = 695.3234844550971 K, F = -9.644112930473625e-8, relative_change = 1.81042655359672e-12 Iter 150: T = 695.323484451252 K, F = -4.0332318151925506e-8, relative_change = 7.571323591779361e-13 Iter 155: T = 695.3234844496441 K, F = -1.686758266394861e-8, relative_change = 3.1664415142265213e-13 Converged in 158 iterations to T = 695.3234844491733 K Iter 1: T = 963.5978883658989 K, F = -8294.255763177527, relative_change = 0.036402111634101085 Iter 2: T = 929.0758142682351 K, F = -7037.885371586169, relative_change = 0.03582622431459196 Iter 3: T = 896.4003849969454 K, F = -5970.896786545296, relative_change = 0.035169820126063484 Iter 5: T = 836.4710024289623 K, F = -4295.297307168613, relative_change = 0.03358634371349527 Iter 10: T = 717.0254714855304 K, F = -1876.8724394181138, relative_change = 0.027832000273384724 Iter 15: T = 637.6570932902267 K, F = -812.6253095026035, relative_change = 0.019900675625187568 Iter 20: T = 591.2412004940011 K, F = -347.8900489626553, relative_change = 0.01190673744114176 Iter 25: T = 567.3941957403918 K, F = -147.43481128375618, relative_change = 0.006090441518385694 Iter 30: T = 556.281152471267 K, F = -62.06414189573719, relative_change = 0.0028116700676685366 Iter 35: T = 551.3905370201223 K, F = -26.03307973299345, relative_change = 0.001229530739365838 Iter 40: T = 549.2986193473605 K, F = -10.901352174527528, relative_change = 0.000524230171999562 Iter 45: T = 548.4152663447701 K, F = -4.561565823118874, relative_change = 0.00022104344123021405 Iter 50: T = 548.044327062121 K, F = -1.9081398518744903, relative_change = 9.276237536477124e-5 Iter 55: T = 547.8889296955949 K, F = -0.7980837995131721, relative_change = 3.885047481816357e-5 Iter 60: T = 547.8238939717362 K, F = -0.33378164677305416, relative_change = 1.6257572650597287e-5 Iter 65: T = 547.7966870787991 K, F = -0.1395938280911912, relative_change = 6.800833615389979e-6 Iter 70: T = 547.7853074004008 K, F = -0.05838021836788493, relative_change = 2.8444912293780802e-6 Iter 75: T = 547.7805480326791 K, F = -0.02441537665354096, relative_change = 1.1896529244529472e-6 Iter 80: T = 547.7785575644751 K, F = -0.010210814711287514, relative_change = 4.975362821131178e-7 Iter 85: T = 547.777725119243 K, F = -0.004270286861010747, relative_change = 2.0807722792508803e-7 Iter 90: T = 547.777376979366 K, F = -0.0017858853485394621, relative_change = 8.702066376142438e-8 Iter 95: T = 547.7772313828774 K, F = -0.0007468786477504985, relative_change = 3.639313014900329e-8 Iter 100: T = 547.7771704926462 K, F = -0.0003123535810824474, relative_change = 1.5220050243637966e-8 Iter 105: T = 547.7771450276172 K, F = -0.00013062999967231037, relative_change = 6.365208272885396e-9 Iter 110: T = 547.7771343778367 K, F = -5.4631026140394834e-5, relative_change = 2.6620063737571533e-9 Iter 115: T = 547.7771299239711 K, F = -2.2847347897037018e-5, relative_change = 1.1132829158904942e-9 Iter 120: T = 547.7771280613113 K, F = -9.555033528091395e-6, relative_change = 4.6558820777497517e-10 Iter 125: T = 547.7771272823247 K, F = -3.9960296507324244e-6, relative_change = 1.9471457535200046e-10 Iter 130: T = 547.7771269565433 K, F = -1.6711872987129617e-6, relative_change = 8.143195986152726e-11 Iter 135: T = 547.7771268202976 K, F = -6.98910666896424e-7, relative_change = 3.405582694694241e-11 Iter 140: T = 547.7771267633179 K, F = -2.9229301581890077e-7, relative_change = 1.4242564666613052e-11 Iter 145: T = 547.7771267394884 K, F = -1.2224046300191027e-7, relative_change = 5.956412248388133e-12 Iter 150: T = 547.7771267295225 K, F = -5.112215170632872e-8, relative_change = 2.491029591479451e-12 Iter 155: T = 547.7771267253547 K, F = -2.1379392700637823e-8, relative_change = 1.0417538794730501e-12 Iter 160: T = 547.7771267236118 K, F = -8.941785700766758e-9, relative_change = 4.357064802431745e-13 Converged in 164 iterations to T = 547.7771267229826 K Iter 1: T = 966.8622067694495 K, F = -7550.477709760101, relative_change = 0.033137793230550536 Iter 2: T = 935.7804512183269 K, F = -6401.127012489478, relative_change = 0.03214703743046824 Iter 3: T = 906.7244014346395 K, F = -5425.276483062906, relative_change = 0.031050071355795336 Iter 5: T = 854.5590847444876 K, F = -3893.6054633643007, relative_change = 0.02853726578970537 Iter 10: T = 756.8014414369068 K, F = -1687.623713958187, relative_change = 0.020758759510150184 Iter 15: T = 698.8372393182839 K, F = -723.318980315285, relative_change = 0.012646981214733927 Iter 20: T = 668.6926523481209 K, F = -306.8140468294516, relative_change = 0.006558356146451557 Iter 25: T = 654.5317125508012 K, F = -129.22398124262958, relative_change = 0.003051823797452477 Iter 30: T = 648.2731222931707 K, F = -54.21755544751914, relative_change = 0.0013397510333154582 Iter 35: T = 645.5907018548113 K, F = -22.70623942673578, relative_change = 0.000572223128650879 Iter 40: T = 644.4569995689067 K, F = -9.501683939307147, relative_change = 0.00024146167747334616 Iter 45: T = 643.9807538960001 K, F = -3.974715736191574, relative_change = 0.00010136337631493085 Iter 50: T = 643.7812088851044 K, F = -1.6624487014844407, relative_change = 4.24584202901531e-5 Iter 55: T = 643.6976912538869 K, F = -0.6952865688191642, relative_change = 1.77683720560477e-5 Iter 60: T = 643.6627517066535 K, F = -0.2907825133682289, relative_change = 7.433003114157207e-6 Iter 65: T = 643.6481375623107 K, F = -0.1216096586268981, relative_change = 3.108930714874916e-6 Iter 70: T = 643.6420254012556 K, F = -0.050858775778603815, relative_change = 1.3002549360045639e-6 Iter 75: T = 643.6394691610485 K, F = -0.021269776131901785, relative_change = 5.437931589881713e-7 Iter 80: T = 643.6384001001163 K, F = -0.00889527941521212, relative_change = 2.2742272016823866e-7 Iter 85: T = 643.6379530041871 K, F = -0.0037201129617658313, relative_change = 9.511123457907755e-8 Iter 90: T = 643.6377660230013 K, F = -0.0015557958218667678, relative_change = 3.9776713114678776e-8 Iter 95: T = 643.6376878251788 K, F = -0.0006506524192599894, relative_change = 1.663510675683522e-8 Iter 100: T = 643.6376551219055 K, F = -0.00027211061715048945, relative_change = 6.957002121242304e-9 Iter 105: T = 643.6376414450043 K, F = -0.0001137999108811738, relative_change = 2.9095016937745238e-9 Iter 110: T = 643.6376357251605 K, F = -4.759248115876469e-5, relative_change = 1.216788390507795e-9 Iter 115: T = 643.6376333330535 K, F = -1.9903744124860623e-5, relative_change = 5.08875448760785e-10 Iter 120: T = 643.6376323326458 K, F = -8.323983402391821e-6, relative_change = 2.1281778916281334e-10 Iter 125: T = 643.6376319142634 K, F = -3.4811893693253992e-6, relative_change = 8.900294386901914e-11 Iter 130: T = 643.6376317392908 K, F = -1.4558751070814502e-6, relative_change = 3.722209763862739e-11 Iter 135: T = 643.6376316661152 K, F = -6.088646615221016e-7, relative_change = 1.556673356245852e-11 Iter 140: T = 643.6376316355123 K, F = -2.5463415853632654e-7, relative_change = 6.51018584790904e-12 Iter 145: T = 643.6376316227138 K, F = -1.0649097442749778e-7, relative_change = 2.722635638119498e-12 Iter 150: T = 643.6376316173614 K, F = -4.4536179633070105e-8, relative_change = 1.1386485146874464e-12 Iter 155: T = 643.6376316151228 K, F = -1.8624982889292596e-8, relative_change = 4.761815961325947e-13 Converged in 160 iterations to T = 643.6376316141867 K Iter 1: T = 965.1651396156682 K, F = -7937.156075076782, relative_change = 0.034834860384331805 Iter 2: T = 932.3039099289366 K, F = -6732.032059728874, relative_change = 0.03404726127988529 Iter 3: T = 901.3868362407209 K, F = -5708.671072778424, relative_change = 0.03316201225689624 Iter 5: T = 845.2721889412204 K, F = -4101.93157254938, relative_change = 0.03107969860195895 Iter 10: T = 736.855176770327 K, F = -1785.0239610001136, relative_change = 0.02410043463434933 Iter 15: T = 669.0269535018475 K, F = -768.6283798398463, relative_change = 0.015795823564919948 Iter 20: T = 631.8976428552594 K, F = -327.3041088159481, relative_change = 0.008698161155679889 Iter 25: T = 613.811769645622 K, F = -138.18919283977428, relative_change = 0.004200004740165185 Iter 30: T = 605.6551571653752 K, F = -58.05110113476206, relative_change = 0.0018787313855550291 Iter 35: T = 602.125035583183 K, F = -24.325582656745027, relative_change = 0.0008093385682988028 Iter 40: T = 600.626570831631 K, F = -10.181842878263408, relative_change = 0.0003427929310099346 Iter 45: T = 599.9959204028802 K, F = -4.259687486012394, relative_change = 0.00014412951911785905 Iter 50: T = 599.7314717800426 K, F = -1.7817190875556275, relative_change = 6.04123216124803e-5 Iter 55: T = 599.6207526499724 K, F = -0.7451829716975172, relative_change = 2.528895561297196e-5 Iter 60: T = 599.574426933842 K, F = -0.31165260487497193, relative_change = 1.0580311874583722e-5 Iter 65: T = 599.5550491756877 K, F = -0.13033827360071729, relative_change = 4.4255423000471145e-6 Iter 70: T = 599.546944502628 K, F = -0.054509273128436786, relative_change = 1.8509422662717616e-6 Iter 75: T = 599.5435549155567 K, F = -0.022796472819630875, relative_change = 7.741084844591887e-7 Iter 80: T = 599.5421373294724 K, F = -0.009533764843897785, relative_change = 3.2374531760224114e-7 Iter 85: T = 599.5415444744934 K, F = -0.003987135654690943, relative_change = 1.3539484106794558e-7 Iter 90: T = 599.5412965348405 K, F = -0.001667467982114812, relative_change = 5.6623858951637154e-8 Iter 95: T = 599.541192843408 K, F = -0.0006973550650647975, relative_change = 2.36807949423673e-8 Iter 100: T = 599.5411494783935 K, F = -0.0002916422237581595, relative_change = 9.903594913984463e-9 Iter 105: T = 599.5411313426233 K, F = -0.00012196826231919422, relative_change = 4.141802310949437e-9 Iter 110: T = 599.541123758027 K, F = -5.1008583173639543e-5, relative_change = 1.7321512693063825e-9 Iter 115: T = 599.5411205860581 K, F = -2.1332398747408998e-5, relative_change = 7.24406368485646e-10 Iter 120: T = 599.5411192595029 K, F = -8.921463909350447e-6, relative_change = 3.029553974099125e-10 Iter 125: T = 599.5411187047217 K, F = -3.731063090761655e-6, relative_change = 1.2669957732140782e-10 Iter 130: T = 599.5411184727055 K, F = -1.5603755190718438e-6, relative_change = 5.298728922135815e-11 Iter 135: T = 599.5411183756736 K, F = -6.525676520818813e-7, relative_change = 2.215991632871573e-11 Iter 140: T = 599.5411183350936 K, F = -2.7291061061029964e-7, relative_change = 9.267508554857017e-12 Iter 145: T = 599.5411183181227 K, F = -1.1413461825648952e-7, relative_change = 3.875787566025786e-12 Iter 150: T = 599.5411183110252 K, F = -4.773287148873706e-8, relative_change = 1.6209146063066773e-12 Iter 155: T = 599.541118308057 K, F = -1.996269655135663e-8, relative_change = 6.778939840181138e-13 Iter 160: T = 599.5411183068156 K, F = -8.348646218792055e-9, relative_change = 2.8350363548885825e-13 Converged in 162 iterations to T = 599.5411183065529 K Iter 1: T = 980.1009916225713 K, F = -4534.007987640784, relative_change = 0.019899008377428692 Iter 2: T = 962.2474698028519 K, F = -3829.931237218468, relative_change = 0.01821600220010254 Iter 3: T = 946.3188248990368 K, F = -3233.6813329326374, relative_change = 0.016553584606544755 Iter 5: T = 919.713850258531 K, F = -2302.0399416525725, relative_change = 0.013379454906585129 Iter 10: T = 877.4567025536154 K, F = -977.3394918744091, relative_change = 0.007034046808506204 Iter 15: T = 857.4437644004965 K, F = -411.85628910770737, relative_change = 0.0032998990566153945 Iter 20: T = 848.5598231439058 K, F = -172.8457155424842, relative_change = 0.0014545111746725092 Iter 25: T = 844.7442470755271 K, F = -72.39632649534079, relative_change = 0.0006223716148016547 Iter 30: T = 843.1301418182014 K, F = -30.29665564132185, relative_change = 0.00026282992636427653 Iter 35: T = 842.4518212393389 K, F = -12.673887853915476, relative_change = 0.00011037045663248438 Iter 40: T = 842.1675603487552 K, F = -5.300979325060629, relative_change = 4.62377486004396e-5 Iter 45: T = 842.0485773893768 K, F = -2.2170393661189904, relative_change = 1.9351119458871016e-5 Iter 50: T = 841.9987994870904 K, F = -0.9272109790040008, relative_change = 8.095310101557122e-6 Iter 55: T = 841.9779786572959 K, F = -0.38777396541199494, relative_change = 3.385982457740851e-6 Iter 60: T = 841.9692705923835 K, F = -0.1621722736782627, relative_change = 1.4161330140121064e-6 Iter 65: T = 841.9656286802679 K, F = -0.06782248134573421, relative_change = 5.922568069760677e-7 Iter 70: T = 841.9641055724461 K, F = -0.028364189112803917, relative_change = 2.4769115542326117e-7 Iter 75: T = 841.9634685876476 K, F = -0.011862245674195915, relative_change = 1.0358779900290837e-7 Iter 80: T = 841.9632021924875 K, F = -0.004960933341376261, relative_change = 4.3321724579668665e-8 Iter 85: T = 841.9630907827609 K, F = -0.002074721661195378, relative_change = 1.811767480583871e-8 Iter 90: T = 841.9630441898671 K, F = -0.0008676733936274772, relative_change = 7.57703012382568e-9 Iter 95: T = 841.9630247041597 K, F = -0.00036287137707913253, relative_change = 3.1688048502658512e-9 Iter 100: T = 841.9630165550037 K, F = -0.00015175714292148257, relative_change = 1.3252320879754725e-9 Iter 105: T = 841.9630131469294 K, F = -6.346664884437914e-5, relative_change = 5.542278904746204e-10 Iter 110: T = 841.9630117216319 K, F = -2.654251111389172e-5, relative_change = 2.317847299168137e-10 Iter 115: T = 841.9630111255556 K, F = -1.1100397101060366e-5, relative_change = 9.693515966410709e-11 Iter 120: T = 841.9630108762692 K, F = -4.642319862524502e-6, relative_change = 4.053945220365662e-11 Iter 125: T = 841.9630107720147 K, F = -1.9414751055712998e-6, relative_change = 1.695409614676967e-11 Iter 130: T = 841.9630107284142 K, F = -8.119473191570137e-7, relative_change = 7.090398882268062e-12 Iter 135: T = 841.9630107101799 K, F = -3.395645735704278e-7, relative_change = 2.965276461100388e-12 Iter 140: T = 841.9630107025541 K, F = -1.4200858711177489e-7, relative_change = 1.2401020407610088e-12 Iter 145: T = 841.963010699365 K, F = -5.9390002693504584e-8, relative_change = 5.186282396033944e-13 Converged in 150 iterations to T = 841.9630106980313 K Iter 1: T = 976.3769695268116 K, F = -5382.529964619161, relative_change = 0.02362303047318835 Iter 2: T = 954.9167942006732 K, F = -4551.359624352253, relative_change = 0.021979395249909342 Iter 3: T = 935.5283381417441 K, F = -3846.797541811634, relative_change = 0.020303817229603154 Iter 5: T = 902.5475303342207 K, F = -2744.1726528482245, relative_change = 0.016949879571298974 Iter 10: T = 848.1967076826191 K, F = -1170.2671106937566, relative_change = 0.009548816030956394 Iter 15: T = 821.34208297458 K, F = -494.578438103446, relative_change = 0.004680574671112851 Iter 20: T = 809.1286860727909 K, F = -207.87379865698682, relative_change = 0.002110404432724197 Iter 25: T = 803.8207397308001 K, F = -87.12834904451303, relative_change = 0.0009125176271635212 Iter 30: T = 801.5633726992263 K, F = -36.47284562809693, relative_change = 0.0003871232995878891 Iter 35: T = 800.6125519084512 K, F = -15.259527562207722, relative_change = 0.00016288157081164893 Iter 40: T = 800.2137092157188 K, F = -6.382797435212452, relative_change = 6.829230146444602e-5 Iter 45: T = 800.0466977597387 K, F = -2.6695515465326203, relative_change = 2.859107681658554e-5 Iter 50: T = 799.9768146429545 K, F = -1.1164714994057756, relative_change = 1.1962458723815789e-5 Iter 55: T = 799.9475822234821 K, F = -0.46692751661277243, relative_change = 5.003775749073865e-6 Iter 60: T = 799.9353557452883 K, F = -0.19527567865585727, relative_change = 2.092801941683343e-6 Iter 65: T = 799.9302422882018 K, F = -0.08166679840663049, relative_change = 8.752633063562251e-7 Iter 70: T = 799.9281037447671 K, F = -0.034154061441044825, relative_change = 3.660505595861632e-7 Iter 75: T = 799.9272093743093 K, F = -0.014283641809044068, relative_change = 1.530875887109621e-7 Iter 80: T = 799.9268353368441 K, F = -0.005973590536285878, relative_change = 6.402321055777131e-8 Iter 85: T = 799.9266789097239 K, F = -0.002498227068509662, relative_change = 2.6775297968057973e-8 Iter 90: T = 799.9266134900017 K, F = -0.0010447884247898331, relative_change = 1.1197754052394368e-8 Iter 95: T = 799.9265861306869 K, F = -0.0004369429994298679, relative_change = 4.68303526647903e-9 Iter 100: T = 799.9265746886938 K, F = -0.00018273478126584752, relative_change = 1.9585014166085404e-9 Iter 105: T = 799.9265699035154 K, F = -7.642186775869142e-5, relative_change = 8.19068704334277e-10 Iter 110: T = 799.9265679022967 K, F = -3.196053747900329e-5, relative_change = 3.425443148972829e-10 Iter 115: T = 799.9265670653631 K, F = -1.3366278085125138e-5, relative_change = 1.432561199952219e-10 Iter 120: T = 799.9265667153475 K, F = -5.589935237582111e-6, relative_change = 5.991140014661777e-11 Iter 125: T = 799.9265665689668 K, F = -2.3377771661836633e-6, relative_change = 2.505565761070743e-11 Iter 130: T = 799.9265665077486 K, F = -9.776862675003883e-7, relative_change = 1.0478574576077331e-11 Iter 135: T = 799.9265664821464 K, F = -4.088779612665405e-7, relative_change = 4.38224239484585e-12 Iter 140: T = 799.9265664714393 K, F = -1.7099684068710985e-7, relative_change = 1.8326974688739022e-12 Iter 145: T = 799.9265664669615 K, F = -7.151371372859927e-8, relative_change = 7.664644657586924e-13 Iter 150: T = 799.9265664650889 K, F = -2.990792136170484e-8, relative_change = 3.205449384953453e-13 Converged in 153 iterations to T = 799.9265664645405 K Iter 1: T = 980.9333682127483 K, F = -4344.350189774404, relative_change = 0.019066631787251678 Iter 2: T = 963.8740957288651 K, F = -3668.8796316393095, relative_change = 0.017390857561472375 Iter 3: T = 948.6958497828389 K, F = -3096.9931690627313, relative_change = 0.015747125079182335 Iter 5: T = 923.4427398910344 K, F = -2203.759669861311, relative_change = 0.012640439731494951 Iter 10: T = 883.6324373360655 K, F = -934.7740497545639, relative_change = 0.006554252490661004 Iter 15: T = 864.9320115316747 K, F = -393.7066740564687, relative_change = 0.0030497217129686165 Iter 20: T = 856.6674155932017 K, F = -165.1842839798048, relative_change = 0.0013387866661656712 Iter 25: T = 853.1252797208268 K, F = -69.1788939526148, relative_change = 0.0005718032513728528 Iter 30: T = 851.6282362283725 K, F = -28.948683085694057, relative_change = 0.00024128304692102874 Iter 35: T = 850.9993600168767 K, F = -12.109723697435776, relative_change = 0.00010128813006683685 Iter 40: T = 850.7358637532684 K, F = -5.0649642316468935, relative_change = 4.242685604725319e-5 Iter 45: T = 850.6255800019941 K, F = -2.118321904241512, relative_change = 1.775515477646372e-5 Iter 50: T = 850.5794428757042 K, F = -0.8859238586470359, relative_change = 7.427472558631276e-6 Iter 55: T = 850.5601451281603 K, F = -0.37050679637554695, relative_change = 3.106617257536984e-6 Iter 60: T = 850.552074116014 K, F = -0.15495086701182936, relative_change = 1.2992873307853505e-6 Iter 65: T = 850.5486986412437 K, F = -0.06480239052786119, relative_change = 5.43388479220673e-7 Iter 70: T = 850.5472869631978 K, F = -0.02710114891128046, relative_change = 2.2725347549375968e-7 Iter 75: T = 850.546696580099 K, F = -0.011334026802310104, relative_change = 9.504045393422146e-8 Iter 80: T = 850.5464496744027 K, F = -0.004740025832344008, relative_change = 3.974711170888467e-8 Iter 85: T = 850.5463464154158 K, F = -0.001982335491906184, relative_change = 1.662272708483403e-8 Iter 90: T = 850.5463032312612 K, F = -0.0008290363933547429, relative_change = 6.9518248035277445e-9 Iter 95: T = 850.5462851711295 K, F = -0.00034671292174226487, relative_change = 2.9073364596181295e-9 Iter 100: T = 850.5462776181664 K, F = -0.00014499948615487313, relative_change = 1.215882893633352e-9 Iter 105: T = 850.5462744594271 K, F = -6.0640517918209014e-5, relative_change = 5.084967654493799e-10 Iter 110: T = 850.5462731384044 K, F = -2.5360588890910307e-5, relative_change = 2.1265942242903341e-10 Iter 115: T = 850.546272585937 K, F = -1.0606101822574487e-5, relative_change = 8.89367161184542e-11 Iter 120: T = 850.5462723548885 K, F = -4.4355957926622835e-6, relative_change = 3.719437460979303e-11 Iter 125: T = 850.5462722582613 K, F = -1.8550209339718293e-6, relative_change = 1.5555146769373495e-11 Iter 130: T = 850.5462722178506 K, F = -7.75791678009341e-7, relative_change = 6.505346217730061e-12 Iter 135: T = 850.5462722009505 K, F = -3.244469259922056e-7, relative_change = 2.720626738963043e-12 Iter 140: T = 850.5462721938826 K, F = -1.356874481661663e-7, relative_change = 1.1377974949468569e-12 Iter 145: T = 850.5462721909267 K, F = -5.674679304235042e-8, relative_change = 4.758462174913391e-13 Converged in 150 iterations to T = 850.5462721896905 K Iter 1: T = 967.2439488755167 K, F = -7463.497407762187, relative_change = 0.03275605112448328 Iter 2: T = 936.5597797658411 K, F = -6326.733011448822, relative_change = 0.031723299117402536 Iter 3: T = 907.9163330356906 K, F = -5361.607577071129, relative_change = 0.030583682268858433 Iter 5: T = 856.614680843007 K, F = -3846.8913522876537, relative_change = 0.02798841072798129 Iter 10: T = 761.0947228099035 K, F = -1665.979042172677, relative_change = 0.020088954653169785 Iter 15: T = 705.0630204696989 K, F = -713.397214248944, relative_change = 0.012067105874835247 Iter 20: T = 676.1994042479612 K, F = -302.3940880830838, relative_change = 0.00619078926542638 Iter 25: T = 662.7252916601919 K, F = -127.31006551948153, relative_change = 0.0028628641431412373 Iter 30: T = 656.7902027765272 K, F = -53.40371152054279, relative_change = 0.0012529568081122216 Iter 35: T = 654.250437692386 K, F = -22.363357385121596, relative_change = 0.0005344168423802947 Iter 40: T = 653.177771439973 K, F = -9.35783135003106, relative_change = 0.00022537476850477723 Iter 45: T = 652.7272993289265 K, F = -3.9144741841987494, relative_change = 9.458645973188209e-5 Iter 50: T = 652.5385769510868 K, F = -1.637240774859659, relative_change = 3.9615562030732175e-5 Iter 55: T = 652.4595931774528 K, F = -0.6847418251747581, relative_change = 1.6577933133466232e-5 Iter 60: T = 652.426551093752 K, F = -0.286372140121298, relative_change = 6.934880826720575e-6 Iter 65: T = 652.4127307276697 K, F = -0.11976511166022036, relative_change = 2.9005633845196856e-6 Iter 70: T = 652.4069505755161 K, F = -0.050087350878611325, relative_change = 1.2131050704766293e-6 Iter 75: T = 652.4045331926304 K, F = -0.02094715469422903, relative_change = 5.073446171751793e-7 Iter 80: T = 652.4035222047537 K, F = -0.008760354868922682, relative_change = 2.1217925504823565e-7 Iter 85: T = 652.4030993958911 K, F = -0.0036636858340020617, relative_change = 8.873619176171197e-8 Iter 90: T = 652.4029225718853 K, F = -0.0015321973102221387, relative_change = 3.711058642644607e-8 Iter 95: T = 652.4028486219236 K, F = -0.0006407832384947021, relative_change = 1.5520099420124988e-8 Iter 100: T = 652.4028176951576 K, F = -0.00026798320777932094, relative_change = 6.490692509558973e-9 Iter 105: T = 652.4028047612131 K, F = -0.00011207377830818599, relative_change = 2.714485389111188e-9 Iter 110: T = 652.4027993520828 K, F = -4.6870592809555855e-5, relative_change = 1.1352302590614465e-9 Iter 115: T = 652.4027970899199 K, F = -1.960184189603309e-5, relative_change = 4.74766865260062e-10 Iter 120: T = 652.4027961438563 K, F = -8.197724363112613e-6, relative_change = 1.985531740157225e-10 Iter 125: T = 652.4027957482011 K, F = -3.4283862969664014e-6, relative_change = 8.303731045693585e-11 Iter 130: T = 652.4027955827335 K, F = -1.433790717819683e-6, relative_change = 3.472716164306825e-11 Iter 135: T = 652.402795513533 K, F = -5.99628503683558e-7, relative_change = 1.452331621688233e-11 Iter 140: T = 652.4027954845925 K, F = -2.5077233911652286e-7, relative_change = 6.07383731399087e-12 Iter 145: T = 652.4027954724892 K, F = -1.0487580393014895e-7, relative_change = 2.540146866062478e-12 Iter 150: T = 652.4027954674275 K, F = -4.386019925028961e-8, relative_change = 1.0623169835133598e-12 Iter 155: T = 652.4027954653106 K, F = -1.8343855545666088e-8, relative_change = 4.4429778301677844e-13 Converged in 159 iterations to T = 652.4027954645466 K Iter 1: T = 973.4600628798925 K, F = -6047.149918814227, relative_change = 0.026539937120107496 Iter 2: T = 949.113222812898 K, F = -5117.441513981833, relative_change = 0.0250106203586478 Iter 3: T = 926.8924926930629 K, F = -4328.855312182855, relative_change = 0.02341209624493405 Iter 5: T = 888.5090140949542 K, F = -3093.3910019396435, relative_change = 0.020084984647397587 Iter 10: T = 823.1121695123145 K, F = -1324.6307563306486, relative_change = 0.01206387281492056 Iter 15: T = 789.4257818455218 K, F = -561.481327371775, relative_change = 0.006188809732511186 Iter 20: T = 773.7007585317219 K, F = -236.38719399261745, relative_change = 0.002861863715899862 Iter 25: T = 766.7742928172171 K, F = -99.1590238504052, relative_change = 0.001252500826678905 Iter 30: T = 763.810315397851 K, F = -41.5238510798157, relative_change = 0.0005342188893768575 Iter 35: T = 762.5584876082268 K, F = -17.375437812276388, relative_change = 0.00022529065787342623 Iter 40: T = 762.0327763304216 K, F = -7.268318376974201, relative_change = 9.455104781498954e-5 Iter 45: T = 761.812533115629 K, F = -3.0399962472435598, relative_change = 3.9600710779808404e-5 Iter 50: T = 761.7203573161164 K, F = -1.271415043435275, relative_change = 1.657171487010994e-5 Iter 55: T = 761.6817964821934 K, F = -0.5317301083950422, relative_change = 6.932278997502692e-6 Iter 60: T = 761.6656678135614 K, F = -0.2223774827679913, relative_change = 2.8994750449521193e-6 Iter 65: T = 761.6589222500547 K, F = -0.09300119910915494, relative_change = 1.2126498747600356e-6 Iter 70: T = 761.6561011115756 K, F = -0.03889426111646954, relative_change = 5.071542420556615e-7 Iter 75: T = 761.6549212667072 K, F = -0.016266053058539676, relative_change = 2.1209963670069062e-7 Iter 80: T = 761.6544278395578 K, F = -0.006802659144019896, relative_change = 8.870289419757064e-8 Iter 85: T = 761.6542214820927 K, F = -0.002844953555755536, relative_change = 3.709666094412455e-8 Iter 90: T = 761.6541351808771 K, F = -0.0011897935985031305, relative_change = 1.5514275598325592e-8 Iter 95: T = 761.6540990886679 K, F = -0.0004975859001868921, relative_change = 6.488256905019286e-9 Iter 100: T = 761.654083994473 K, F = -0.00020809636645224838, relative_change = 2.7134667872096275e-9 Iter 105: T = 761.6540776819002 K, F = -8.702838502849808e-5, relative_change = 1.1348042527792838e-9 Iter 110: T = 761.6540750419067 K, F = -3.639630887453116e-5, relative_change = 4.745886846501667e-10 Iter 115: T = 761.6540739378299 K, F = -1.5221371298834718e-5, relative_change = 1.9847866051598932e-10 Iter 120: T = 761.654073476092 K, F = -6.365759615878375e-6, relative_change = 8.300615106011522e-11 Iter 125: T = 761.6540732829876 K, F = -2.6622373050511072e-6, relative_change = 3.471417167819124e-11 Iter 130: T = 761.654073202229 K, F = -1.1133805695173749e-6, relative_change = 1.4517895974024873e-11 Iter 135: T = 761.6540731684547 K, F = -4.6562722100240705e-7, relative_change = 6.071533619043416e-12 Iter 140: T = 761.6540731543299 K, F = -1.9473102974565393e-7, relative_change = 2.5391900227198332e-12 Iter 145: T = 761.6540731484229 K, F = -8.143786067726921e-8, relative_change = 1.0619067930832466e-12 Iter 150: T = 761.6540731459525 K, F = -3.4058872500075665e-8, relative_change = 4.441097515622734e-13 Converged in 154 iterations to T = 761.6540731450608 K Iter 1: T = 969.9711580862838 K, F = -6842.100194843207, relative_change = 0.03002884191371616 Iter 2: T = 942.0989095724235 K, F = -5795.688192124803, relative_change = 0.028735131226840994 Iter 3: T = 916.3406832308115 K, F = -4907.581913478682, relative_change = 0.02734131849627396 Iter 5: T = 870.9616464266448 K, F = -3514.679410580156, relative_change = 0.024293679468280864 Iter 10: T = 789.9796053299251 K, F = -1513.8355164206002, relative_change = 0.015992378142833327 Iter 15: T = 745.5081079038429 K, F = -644.7956044438691, relative_change = 0.008840457419455728 Iter 20: T = 723.7938550728176 K, F = -272.280194516575, relative_change = 0.004279422727238554 Iter 25: T = 713.9872107530164 K, F = -114.3905445278776, relative_change = 0.0019167689843234339 Iter 30: T = 709.7400531272094 K, F = -47.93585600429391, relative_change = 0.0008262275710699356 Iter 35: T = 707.9366634303796 K, F = -20.064638205640755, relative_change = 0.00035003947413744904 Iter 40: T = 707.1775795265513 K, F = -8.394328672286049, relative_change = 0.00014719309914380495 Iter 45: T = 706.8592572699112 K, F = -3.5111457012837457, relative_change = 6.169938641352796e-5 Iter 50: T = 706.7259791948655 K, F = -1.4684972027888632, relative_change = 2.5828247864158517e-5 Iter 55: T = 706.6702140893871 K, F = -0.6141595459433166, relative_change = 1.0806030226448414e-5 Iter 60: T = 706.6468877959566 K, F = -0.2568517397140426, relative_change = 4.5199719014020225e-6 Iter 65: T = 706.6371316460792 K, F = -0.10741896929630268, relative_change = 1.8904393630876958e-6 Iter 70: T = 706.6330513650541 K, F = -0.044923984011867146, relative_change = 7.906276058431282e-7 Iter 75: T = 706.6313449178526 K, F = -0.018787762042430156, relative_change = 3.3065397999397516e-7 Iter 80: T = 706.6306312568902 K, F = -0.007857269155588487, relative_change = 1.3828415566276961e-7 Iter 85: T = 706.6303327945897 K, F = -0.003286004267390008, relative_change = 5.7832209946500895e-8 Iter 90: T = 706.6302079739578 K, F = -0.0013742463106057867, relative_change = 2.4186142660284316e-8 Iter 95: T = 706.6301557724556 K, F = -0.0005747262345638937, relative_change = 1.011493753454661e-8 Iter 100: T = 706.6301339411598 K, F = -0.00024035737786576306, relative_change = 4.230188347919803e-9 Iter 105: T = 706.6301248110505 K, F = -0.00010052032659246812, relative_change = 1.769115407292261e-9 Iter 110: T = 706.6301209927295 K, F = -4.203880181241626e-5, relative_change = 7.398652235316321e-10 Iter 115: T = 706.6301193958622 K, F = -1.7581128993748862e-5, relative_change = 3.0942047613285383e-10 Iter 120: T = 706.6301187280332 K, F = -7.352638265012423e-6, relative_change = 1.294033417216125e-10 Iter 125: T = 706.630118448739 K, F = -3.0749608846969423e-6, relative_change = 5.4118018668929435e-11 Iter 130: T = 706.6301183319349 K, F = -1.285985559706937e-6, relative_change = 2.263280516162536e-11 Iter 135: T = 706.6301182830861 K, F = -5.378143678180791e-7, relative_change = 9.465306754089467e-12 Iter 140: T = 706.6301182626569 K, F = -2.2492214335478877e-7, relative_change = 3.958535156973614e-12 Iter 145: T = 706.6301182541131 K, F = -9.406392764699234e-8, relative_change = 1.6554855785262955e-12 Iter 150: T = 706.63011825054 K, F = -3.933857206650515e-8, relative_change = 6.923423289519298e-13 Iter 155: T = 706.6301182490457 K, F = -1.645263503213812e-8, relative_change = 2.89559459260598e-13 Converged in 157 iterations to T = 706.6301182487294 K Iter 1: T = 973.4868686111832 K, F = -6041.042207440801, relative_change = 0.026513131388816762 Iter 2: T = 949.1668064544903 K, F = -5112.235323640888, relative_change = 0.02498242445877978 Iter 3: T = 926.9726127997073 K, F = -4324.417936365722, relative_change = 0.023382816912537147 Iter 5: T = 888.6405520394175 K, F = -3090.169614635029, relative_change = 0.020054673803544133 Iter 10: T = 823.3526452637254 K, F = -1323.1974956368858, relative_change = 0.01203800925018564 Iter 15: T = 789.736665896064 K, F = -560.8563876743666, relative_change = 0.006172597084191328 Iter 20: T = 774.0488733598629 K, F = -236.1198210740997, relative_change = 0.0028535832233195003 Iter 25: T = 767.139824223311 K, F = -99.04598733807823, relative_change = 0.0012487095673649486 Iter 30: T = 764.1835032516768 K, F = -41.476350274250265, relative_change = 0.0005325698582318144 Iter 35: T = 762.9349469135485 K, F = -17.355531446971966, relative_change = 0.00022458941837507317 Iter 40: T = 762.4106162740518 K, F = -7.259986045524814, relative_change = 9.425571548287912e-5 Iter 45: T = 762.190952666332 K, F = -3.0365102918792677, relative_change = 3.947683519147528e-5 Iter 50: T = 762.0990196534045 K, F = -1.2699569518223583, relative_change = 1.6519844734925525e-5 Iter 55: T = 762.0605604237272 K, F = -0.5311202779516293, relative_change = 6.910575098801763e-6 Iter 60: T = 762.0444742591068 K, F = -0.22212243754891214, relative_change = 2.8903962572814387e-6 Iter 65: T = 762.0377464733681 K, F = -0.09289453495601196, relative_change = 1.2088526747980506e-6 Iter 70: T = 762.0349327701281 K, F = -0.03884965268553475, relative_change = 5.055661477816611e-7 Iter 75: T = 762.0337560348291 K, F = -0.016247397244199657, relative_change = 2.1143546624050784e-7 Iter 80: T = 762.0332639081499 K, F = -0.006794857051539149, relative_change = 8.842512832390629e-8 Iter 85: T = 762.0330580945589 K, F = -0.0028416906264890907, relative_change = 3.698049561935174e-8 Iter 90: T = 762.0329720207985 K, F = -0.0011884290034498424, relative_change = 1.5465693830832095e-8 Iter 95: T = 762.0329360237135 K, F = -0.0004970152096289704, relative_change = 6.4679394123625585e-9 Iter 100: T = 762.0329209693009 K, F = -0.00020785769701658907, relative_change = 2.704969769750181e-9 Iter 105: T = 762.0329146733656 K, F = -8.692857140646382e-5, relative_change = 1.13125070857013e-9 Iter 110: T = 762.0329120403302 K, F = -3.635456835837658e-5, relative_change = 4.731025855636521e-10 Iter 115: T = 762.0329109391633 K, F = -1.5203915389339073e-5, relative_change = 1.9785716226826755e-10 Iter 120: T = 762.0329104786421 K, F = -6.358459381239356e-6, relative_change = 8.274623351772365e-11 Iter 125: T = 762.0329102860467 K, F = -2.6591835263767294e-6, relative_change = 3.460546149811916e-11 Iter 130: T = 762.032910205501 K, F = -1.1121033297589733e-6, relative_change = 1.4472430577858372e-11 Iter 135: T = 762.0329101718157 K, F = -4.650951669349368e-7, relative_change = 6.052546860406225e-12 Iter 140: T = 762.0329101577281 K, F = -1.94507340012251e-7, relative_change = 2.531234194453431e-12 Iter 145: T = 762.0329101518365 K, F = -8.134487572419857e-8, relative_change = 1.0585869457228034e-12 Iter 150: T = 762.0329101493726 K, F = -3.401771775379814e-8, relative_change = 4.426918305229575e-13 Converged in 154 iterations to T = 762.0329101484832 K Iter 1: T = 964.3050146075624 K, F = -8133.136376363794, relative_change = 0.035694985392437595 Iter 2: T = 930.5343852741161 K, F = -6899.856849689733, relative_change = 0.0350206924384706 Iter 3: T = 898.657099489737 K, F = -5852.522687254577, relative_change = 0.03425696705983482 Iter 5: T = 840.4695109955089 K, F = -4207.934649782969, relative_change = 0.032435619846344466 Iter 10: T = 726.1550546589367 K, F = -1835.1880018029228, relative_change = 0.026060167544404933 Iter 15: T = 652.3433635229309 K, F = -792.4766818615716, relative_change = 0.017865600066830026 Iter 20: T = 610.5663685236369 K, F = -338.3550636200885, relative_change = 0.01025108061102797 Iter 25: T = 589.6819966045706 K, F = -143.11280232047028, relative_change = 0.005088149214856813 Iter 30: T = 580.1164218209333 K, F = -60.1779259355898, relative_change = 0.0023097608278741335 Iter 35: T = 575.9443520251098 K, F = -25.228360415111577, relative_change = 0.0010019129666165186 Iter 40: T = 574.1671599403539 K, F = -10.561847748298824, relative_change = 0.0004256474359303292 Iter 45: T = 573.4180629651092 K, F = -4.419048619951529, relative_change = 0.000179198554936402 Iter 50: T = 573.1037432816584 K, F = -1.8484432443110448, relative_change = 7.515274880839292e-5 Iter 55: T = 572.9721083419018 K, F = -0.7731014065093353, relative_change = 3.146661756103809e-5 Iter 60: T = 572.9170250049904 K, F = -0.3233308095444145, relative_change = 1.316616979322568e-5 Iter 65: T = 572.8939828872038 K, F = -0.13522265513108464, relative_change = 5.50737916355508e-6 Iter 70: T = 572.8843454170125 K, F = -0.056552052748466614, relative_change = 2.3034493865403266e-6 Iter 75: T = 572.8803147402125 K, F = -0.023650800409753786, relative_change = 9.633646155878602e-7 Iter 80: T = 572.8786290330108 K, F = -0.009891057075597953, relative_change = 4.028966343838853e-7 Iter 85: T = 572.8779240448756 K, F = -0.004136559923133887, relative_change = 1.684972417547724e-7 Iter 90: T = 572.8776292094996 K, F = -0.0017299590623366945, relative_change = 7.046774372777169e-8 Iter 95: T = 572.8775059056637 K, F = -0.0007234895932344831, relative_change = 2.9470484359143797e-8 Iter 100: T = 572.877454338499 K, F = -0.0003025719978189123, relative_change = 1.2324914185315263e-8 Iter 105: T = 572.8774327724898 K, F = -0.00012653922402316997, relative_change = 5.154427269938351e-9 Iter 110: T = 572.8774237533265 K, F = -5.292021571090544e-5, relative_change = 2.1556432445544004e-9 Iter 115: T = 572.8774199814044 K, F = -2.213186605909412e-5, relative_change = 9.015157707554851e-10 Iter 120: T = 572.8774184039415 K, F = -9.255810824448929e-6, relative_change = 3.770246718681203e-10 Iter 125: T = 572.8774177442277 K, F = -3.870890785684367e-6, relative_change = 1.576762278304475e-10 Iter 130: T = 572.8774174683275 K, F = -1.6188528478844333e-6, relative_change = 6.594208547455348e-11 Iter 135: T = 572.8774173529428 K, F = -6.77023501260976e-7, relative_change = 2.7577763902126757e-11 Iter 140: T = 572.8774173046875 K, F = -2.8313944666624735e-7, relative_change = 1.1533355637032754e-11 Iter 145: T = 572.8774172845066 K, F = -1.1841183167327074e-7, relative_change = 4.823368070501132e-12 Iter 150: T = 572.8774172760666 K, F = -4.952087773180125e-8, relative_change = 2.017175286592849e-12 Iter 155: T = 572.877417272537 K, F = -2.0710063886042462e-8, relative_change = 8.436003352396515e-13 Iter 160: T = 572.8774172710608 K, F = -8.661485972893956e-9, relative_change = 3.528155446889255e-13 Converged in 163 iterations to T = 572.8774172706287 K Iter 1: T = 963.5340063200268 K, F = -8308.81134809699, relative_change = 0.036465993679973135 Iter 2: T = 928.9438765746438 K, F = -7050.357420901963, relative_change = 0.0358992308714575 Iter 3: T = 896.1959506499129 K, F = -5981.595682328357, relative_change = 0.035252857304452614 Iter 5: T = 836.107504643231 K, F = -4303.199373070969, relative_change = 0.03369194870401291 Iter 10: T = 716.1850210242269 K, F = -1880.658967191659, relative_change = 0.027999918313725055 Iter 15: T = 636.2822077472289 K, F = -814.4723735528626, relative_change = 0.020102287906820535 Iter 20: T = 589.4022698751452 K, F = -348.77502342990056, relative_change = 0.01207827851784059 Iter 25: T = 565.2488339235629 K, F = -147.84027281329975, relative_change = 0.006197741233172013 Iter 30: T = 553.972246858444 K, F = -62.24226863270066, relative_change = 0.0028664044422391254 Iter 35: T = 549.0048262758157 K, F = -26.109328058402788, relative_change = 0.0012545758498632884 Iter 40: T = 546.8790893193949 K, F = -10.933569503026407, relative_change = 0.0005351207168773629 Iter 45: T = 545.9812761176973 K, F = -4.57509890419976, relative_change = 0.0002256740270732943 Iter 50: T = 545.6042325084867 K, F = -1.9138100755114382, relative_change = 9.471248434058638e-5 Iter 55: T = 545.4462721727522 K, F = -0.8004570061826957, relative_change = 3.9668420566082957e-5 Iter 60: T = 545.3801628153014 K, F = -0.33477447470871646, relative_change = 1.6600066145545005e-5 Iter 65: T = 545.3525066059002 K, F = -0.14000909741143547, relative_change = 6.944141835140376e-6 Iter 70: T = 545.3409389637125 K, F = -0.05855389889914914, relative_change = 2.90443727456433e-6 Iter 75: T = 545.3361009777925 K, F = -0.024488013664130226, relative_change = 1.214725322007213e-6 Iter 80: T = 545.3340776288579 K, F = -0.010241192680732425, relative_change = 5.080222509901173e-7 Iter 85: T = 545.3332314322209 K, F = -0.004282991343779852, relative_change = 2.1246265403879679e-7 Iter 90: T = 545.3328775412914 K, F = -0.0017911985238193984, relative_change = 8.88547133291611e-8 Iter 95: T = 545.3327295396352 K, F = -0.0007491006831425451, relative_change = 3.716015370302295e-8 Iter 100: T = 545.3326676435327 K, F = -0.0003132828638610363, relative_change = 1.554082905850659e-8 Iter 105: T = 545.3326417578359 K, F = -0.00013101863674452874, relative_change = 6.499361861583338e-9 Iter 110: T = 545.332630932127 K, F = -5.4793559109089784e-5, relative_change = 2.7181110324464434e-9 Iter 115: T = 545.332626404686 K, F = -2.291532063614099e-5, relative_change = 1.136746532033625e-9 Iter 120: T = 545.3326245112561 K, F = -9.583460469003713e-6, relative_change = 4.754009689010012e-10 Iter 125: T = 545.3326237194012 K, F = -4.0079176382434856e-6, relative_change = 1.9881836501865742e-10 Iter 130: T = 545.332623388238 K, F = -1.6761588473857003e-6, relative_change = 8.314820627359535e-11 Iter 135: T = 545.3326232497415 K, F = -7.00989384205819e-7, relative_change = 3.477355984185397e-11 Iter 140: T = 545.3326231918207 K, F = -2.9316220070962906e-7, relative_change = 1.4542721422879014e-11 Iter 145: T = 545.3326231675975 K, F = -1.2260395368390853e-7, relative_change = 6.0819407816893715e-12 Iter 150: T = 545.3326231574671 K, F = -5.127448185482386e-8, relative_change = 2.5435424626225113e-12 Iter 155: T = 545.3326231532304 K, F = -2.144388097646832e-8, relative_change = 1.0637537397943736e-12 Iter 160: T = 545.3326231514586 K, F = -8.968040421386547e-9, relative_change = 4.4487220142161793e-13 Converged in 164 iterations to T = 545.332623150819 K Iter 1: T = 969.3845674811101 K, F = -6975.755422223744, relative_change = 0.03061543251888983 Iter 2: T = 940.9117040612264 K, F = -5909.845235258239, relative_change = 0.029372103059025267 Iter 3: T = 914.5420104508944 K, F = -5005.114740953404, relative_change = 0.028025683490292795 Iter 5: T = 867.9245333885635 K, F = -3585.913382101117, relative_change = 0.025056290685169777 Iter 10: T = 784.0126395469442 K, F = -1546.214394571507, relative_change = 0.016783282122374434 Iter 15: T = 737.3396414808009 K, F = -659.250179626623, relative_change = 0.009423602932235887 Iter 20: T = 714.3269150843358 K, F = -278.57175951172195, relative_change = 0.004608920701893116 Iter 25: T = 703.8738924261066 K, F = -117.07589667225324, relative_change = 0.002075625196931433 Iter 30: T = 699.3338483697295 K, F = -49.06944258883805, relative_change = 0.0008969787702366225 Iter 35: T = 697.4036040746921 K, F = -20.54065038671047, relative_change = 0.0003804377661661018 Iter 40: T = 696.5906701329966 K, F = -8.593747601116021, relative_change = 0.00016005185514571493 Iter 45: T = 696.2496849543377 K, F = -3.594605929203485, relative_change = 6.710289989253964e-5 Iter 50: T = 696.1069039082288 K, F = -1.5034119479174122, relative_change = 2.8092603024404365e-5 Iter 55: T = 696.0471601481032 K, F = -0.6287631802727343, relative_change = 1.1753806632782491e-5 Iter 60: T = 696.0221691633882 K, F = -0.2629594814302443, relative_change = 4.916482669949624e-6 Iter 65: T = 696.011716684914 K, F = -0.10997335710859085, relative_change = 2.0562892849040605e-6 Iter 70: T = 696.0073451673677 K, F = -0.04599226952215274, relative_change = 8.599922891449679e-7 Iter 75: T = 696.0055169174492 K, F = -0.019234533552539235, relative_change = 3.5966386497721277e-7 Iter 80: T = 696.0047523164144 K, F = -0.008044114642998923, relative_change = 1.504165664976065e-7 Iter 85: T = 696.004432550241 K, F = -0.0033641453351161976, relative_change = 6.290615186885872e-8 Iter 90: T = 696.0042988200529 K, F = -0.0014069258470638113, relative_change = 2.6308129747953225e-8 Iter 95: T = 696.004242892464 K, F = -0.0005883932071276687, relative_change = 1.1002378547801927e-8 Iter 100: T = 696.0042195028736 K, F = -0.00024607306865775946, relative_change = 4.601326888509316e-9 Iter 105: T = 696.0042097210668 K, F = -0.00010291069635681716, relative_change = 1.924329990803604e-9 Iter 110: T = 696.0042056301983 K, F = -4.303848201825389e-5, relative_change = 8.047778020749156e-10 Iter 115: T = 696.0042039193481 K, F = -1.7999207114871574e-5, relative_change = 3.3656769084886025e-10 Iter 120: T = 696.0042032038501 K, F = -7.527483607217e-6, relative_change = 1.4075663287915295e-10 Iter 125: T = 696.0042029046203 K, F = -3.1480824759233528e-6, relative_change = 5.886608505118756e-11 Iter 130: T = 696.004202779479 K, F = -1.3165662390290933e-6, relative_change = 2.461851011251591e-11 Iter 135: T = 696.0042027271433 K, F = -5.506040707814464e-7, relative_change = 1.0295761419018705e-11 Iter 140: T = 696.0042027052558 K, F = -2.3026874973464118e-7, relative_change = 4.305802001270718e-12 Iter 145: T = 696.0042026961023 K, F = -9.630098907198459e-8, relative_change = 1.8007349758675705e-12 Iter 150: T = 696.0042026922741 K, F = -4.0273294255044334e-8, relative_change = 7.530714924034104e-13 Iter 155: T = 696.0042026906732 K, F = -1.684301909055108e-8, relative_change = 3.1494810041894305e-13 Converged in 158 iterations to T = 696.0042026902045 K Iter 1: T = 966.4388174230559 K, F = -7646.947375083136, relative_change = 0.03356118257694418 Iter 2: T = 934.914946086861 K, F = -6483.654661807613, relative_change = 0.03261858978331505 Iter 3: T = 905.3987134314352 K, F = -5495.92518404099, relative_change = 0.03157103518236358 Iter 5: T = 852.2650792976422 K, F = -3945.478634006046, relative_change = 0.029155674758500102 Iter 10: T = 751.9600346770868 K, F = -1711.7394562932757, relative_change = 0.021534467664837683 Iter 15: T = 691.7403432403394 K, F = -734.4314074702598, relative_change = 0.013338883709631348 Iter 20: T = 660.0662960435158 K, F = -311.7897184740448, relative_change = 0.007007264388495012 Iter 25: T = 645.0724834912232 K, F = -131.38587065214924, relative_change = 0.003285802012831632 Iter 30: T = 638.4182733845563 K, F = -55.13848796443144, relative_change = 0.0014479604129738009 Iter 35: T = 635.5606929105562 K, F = -23.094560648921043, relative_change = 0.0006195032437340557 Iter 40: T = 634.3519137488794 K, F = -9.664659075273741, relative_change = 0.00026160665065747506 Iter 45: T = 633.8439413177928 K, F = -4.042975825622057, relative_change = 0.00010985463501067853 Iter 50: T = 633.6310695573151 K, F = -1.6910138235681815, relative_change = 4.6021278737337104e-5 Iter 55: T = 633.5419682784338 K, F = -0.7072359892444947, relative_change = 1.9260458011705055e-5 Iter 60: T = 633.504691787671 K, F = -0.29578045438332373, relative_change = 8.057371424217782e-6 Iter 65: T = 633.4890999913193 K, F = -0.12369995360609243, relative_change = 3.370112028344853e-6 Iter 70: T = 633.4825789095224 K, F = -0.05173297895874479, relative_change = 1.4094951073465664e-6 Iter 75: T = 633.479851644157 K, F = -0.021635381290937006, relative_change = 5.894806320840031e-7 Iter 80: T = 633.4787110567783 K, F = -0.009048180373479486, relative_change = 2.4653010437586465e-7 Iter 85: T = 633.4782340473407 K, F = -0.0037840580584410644, relative_change = 1.0310222984404754e-7 Iter 90: T = 633.4780345559169 K, F = -0.0015825384406284448, relative_change = 4.3118653084816747e-8 Iter 95: T = 633.4779511261546 K, F = -0.000661836504925184, relative_change = 1.8032747777834335e-8 Iter 100: T = 633.47791623482 K, F = -0.0002767879359473202, relative_change = 7.541512607120588e-9 Iter 105: T = 633.4779016428452 K, F = -0.00011575602198093948, relative_change = 3.1539510270534326e-9 Iter 110: T = 633.4778955403066 K, F = -4.84105506096677e-5, relative_change = 1.3190200406466355e-9 Iter 115: T = 633.477892988152 K, F = -2.0245870368473806e-5, relative_change = 5.51629942900169e-10 Iter 120: T = 633.4778919208105 K, F = -8.467065257422579e-6, relative_change = 2.306982449726747e-10 Iter 125: T = 633.4778914744355 K, F = -3.541026753484111e-6, relative_change = 9.648073273729667e-11 Iter 130: T = 633.4778912877562 K, F = -1.4808999267978962e-6, relative_change = 4.034940151410857e-11 Iter 135: T = 633.4778912096847 K, F = -6.193298706103079e-7, relative_change = 1.687459711584515e-11 Iter 140: T = 633.4778911770343 K, F = -2.590113428180274e-7, relative_change = 7.057163342135827e-12 Iter 145: T = 633.4778911633794 K, F = -1.0832176000619143e-7, relative_change = 2.9513933468421596e-12 Iter 150: T = 633.4778911576688 K, F = -4.5301363882366275e-8, relative_change = 1.234305498390977e-12 Iter 155: T = 633.4778911552806 K, F = -1.8946236413075468e-8, relative_change = 5.162194197865421e-13 Converged in 160 iterations to T = 633.4778911542818 K Iter 1: T = 966.4351442870251 K, F = -7647.784302621802, relative_change = 0.03356485571297496 Iter 2: T = 934.9074320355141 K, F = -6484.370714802447, relative_change = 0.03262268806953422 Iter 3: T = 905.3871951746996 K, F = -5496.538255551801, relative_change = 0.03157557192217626 Iter 5: T = 852.245111833252 K, F = -3945.9289523830626, relative_change = 0.02916108496074964 Iter 10: T = 751.9176564797765 K, F = -1711.9491897167404, relative_change = 0.0215413548339054 Iter 15: T = 691.6778525000117 K, F = -734.5283330573759, relative_change = 0.013345127327811896 Iter 20: T = 659.9899955411911 K, F = -311.8332435277988, relative_change = 0.007011367551378063 Iter 25: T = 644.9885978674179 K, F = -131.4048191003522, relative_change = 0.0032879570957688436 Iter 30: T = 638.3307677101678 K, F = -55.146568120946725, relative_change = 0.0014489609012581295 Iter 35: T = 635.4715808439163 K, F = -23.09796938512141, relative_change = 0.0006199411454452725 Iter 40: T = 634.2621124624105 K, F = -9.66608999657022, relative_change = 0.0002617933702588232 Iter 45: T = 633.7538486485108 K, F = -4.0435752032716055, relative_change = 0.0001099333637426829 Iter 50: T = 633.5408544711293 K, F = -1.6912646575352848, relative_change = 4.605431704618072e-5 Iter 55: T = 633.4517018980414 K, F = -0.7073409203042014, relative_change = 1.927429486785165e-5 Iter 60: T = 633.4144039382486 K, F = -0.2958243429361497, relative_change = 8.063161638388113e-6 Iter 65: T = 633.3988031602843 K, F = -0.12371830922075189, relative_change = 3.3725341733629956e-6 Iter 70: T = 633.3922783217434 K, F = -0.05174065565279551, relative_change = 1.410508183734807e-6 Iter 75: T = 633.3895494851706 K, F = -0.021638591802670026, relative_change = 5.899043313200712e-7 Iter 80: T = 633.3884082406784 K, F = -0.009049523053304864, relative_change = 2.467073037307471e-7 Iter 85: T = 633.3879309564251 K, F = -0.0037846195840762764, relative_change = 1.0317633730150315e-7 Iter 90: T = 633.3877313500695 K, F = -0.001582773276170013, relative_change = 4.3149645771844614e-8 Iter 95: T = 633.3876478722414 K, F = -0.000661934716247925, relative_change = 1.8045709314434348e-8 Iter 100: T = 633.387612960805 K, F = -0.00027682900793685183, relative_change = 7.546933247866996e-9 Iter 105: T = 633.3875983604232 K, F = -0.0001157731971050957, relative_change = 3.156217958680049e-9 Iter 110: T = 633.387592254369 K, F = -4.841773364927526e-5, relative_change = 1.3199681039958285e-9 Iter 115: T = 633.3875897007441 K, F = -2.024887435614353e-5, relative_change = 5.520264330952881e-10 Iter 120: T = 633.3875886327877 K, F = -8.46832065881653e-6, relative_change = 2.3086403732372984e-10 Iter 125: T = 633.3875881861555 K, F = -3.5415527721016637e-6, relative_change = 9.655009618183432e-11 Iter 130: T = 633.3875879993686 K, F = -1.4811197185382596e-6, relative_change = 4.03784048084641e-11 Iter 135: T = 633.3875879212521 K, F = -6.194208858056882e-7, relative_change = 1.6886701983314066e-11 Iter 140: T = 633.3875878885829 K, F = -2.5904902928308715e-7, relative_change = 7.062215462681033e-12 Iter 145: T = 633.3875878749202 K, F = -1.0833700708756666e-7, relative_change = 2.953492197327931e-12 Iter 150: T = 633.3875878692063 K, F = -4.530780900457998e-8, relative_change = 1.2351851318048449e-12 Iter 155: T = 633.3875878668166 K, F = -1.8947223234810906e-8, relative_change = 5.16540723182628e-13 Converged in 160 iterations to T = 633.3875878658173 K Iter 1: T = 976.4000872618565 K, F = -5377.262566698547, relative_change = 0.023599912738143495 Iter 2: T = 954.9625718921963 K, F = -4546.876718529463, relative_change = 0.02195566719968041 Iter 3: T = 935.5961243247041 K, F = -3842.983463719088, relative_change = 0.020279797488941206 Iter 5: T = 902.6566375660922 K, F = -2741.415402204226, relative_change = 0.01692628886889634 Iter 10: T = 848.3873245144769 K, F = -1169.055891599289, relative_change = 0.00953104794156471 Iter 15: T = 821.5809247500971 K, F = -494.05634896850967, relative_change = 0.004670390919264901 Iter 20: T = 809.3916224825986 K, F = -207.65204533787755, relative_change = 0.002105457174119549 Iter 25: T = 804.0946181292214 K, F = -87.03494530875618, relative_change = 0.0009103063474778411 Iter 30: T = 801.8419954021076 K, F = -36.43366130724376, relative_change = 0.00038617173018727305 Iter 35: T = 800.89318954909 K, F = -15.243118475781987, relative_change = 0.00016247877827698772 Iter 40: T = 800.495195023495 K, F = -6.3759311248050405, relative_change = 6.812299186618888e-5 Iter 45: T = 800.3285392504049 K, F = -2.666679300426499, relative_change = 2.8520118799001105e-5 Iter 50: T = 800.2588050545683 K, F = -1.1152701738798014, relative_change = 1.1932756810267465e-5 Iter 55: T = 800.2296349454112 K, F = -0.46642508729899246, relative_change = 4.991349428162503e-6 Iter 60: T = 800.2174345313502 K, F = -0.19506555310636742, relative_change = 2.0876042964537954e-6 Iter 65: T = 800.2123319755075 K, F = -0.08157892076151851, relative_change = 8.730894474616556e-7 Iter 70: T = 800.2101979912628 K, F = -0.03411730984990591, relative_change = 3.6514140106843465e-7 Iter 75: T = 800.2093055275406 K, F = -0.014268271834514401, relative_change = 1.527073634198676e-7 Iter 80: T = 800.2089322874996 K, F = -0.005967162624398448, relative_change = 6.386419502537868e-8 Iter 85: T = 800.208776193873 K, F = -0.0024955388393226308, relative_change = 2.670879565069844e-8 Iter 90: T = 800.2087109136219 K, F = -0.0010436641765080301, relative_change = 1.1169941980565752e-8 Iter 95: T = 800.2086836126355 K, F = -0.0004364728268660967, relative_change = 4.6714039380587874e-9 Iter 100: T = 800.208672195036 K, F = -0.00018253814759738862, relative_change = 1.953637035284994e-9 Iter 105: T = 800.2086674200594 K, F = -7.633963608544292e-5, relative_change = 8.170343926294855e-10 Iter 110: T = 800.208665423107 K, F = -3.192614656966075e-5, relative_change = 3.416935345655035e-10 Iter 115: T = 800.2086645879577 K, F = -1.3351894751489901e-5, relative_change = 1.4290030660290258e-10 Iter 120: T = 800.2086642386884 K, F = -5.583922404017727e-6, relative_change = 5.976262096809629e-11 Iter 125: T = 800.2086640926198 K, F = -2.335263939112764e-6, relative_change = 2.4993451498276034e-11 Iter 130: T = 800.2086640315321 K, F = -9.766348666451208e-7, relative_change = 1.0452555606697787e-11 Iter 135: T = 800.2086640059844 K, F = -4.084372149382176e-7, relative_change = 4.371349874391447e-12 Iter 140: T = 800.2086639953001 K, F = -1.7081298286925062e-7, relative_change = 1.8281471030262075e-12 Iter 145: T = 800.2086639908318 K, F = -7.14370886889526e-8, relative_change = 7.645642886452802e-13 Iter 150: T = 800.2086639889632 K, F = -2.9876216722790616e-8, relative_change = 3.1975390942630985e-13 Converged in 153 iterations to T = 800.208663988416 K Iter 1: T = 965.1916756868192 K, F = -7931.109806022715, relative_change = 0.03480832431318084 Iter 2: T = 932.3584216673752 K, F = -6726.85562567396, relative_change = 0.034017340644883015 Iter 3: T = 901.470788276508 K, F = -5704.235392759139, relative_change = 0.0331284972313862 Iter 5: T = 845.4193137729478 K, F = -4098.665745546076, relative_change = 0.03103860866862098 Iter 10: T = 737.1786134222135 K, F = -1783.4852949932178, relative_change = 0.02404308474146795 Iter 15: T = 669.5231165012223 K, F = -767.9030206676109, relative_change = 0.015737901617364016 Iter 20: T = 632.523054997399 K, F = -326.9713339213928, relative_change = 0.008656464497657855 Iter 25: T = 614.5127559717411 K, F = -138.042076151787, relative_change = 0.00417681514316201 Iter 30: T = 606.3935237717327 K, F = -57.98783513973444, relative_change = 0.0018676448674678616 Iter 35: T = 602.8802814529429 K, F = -24.298786141890435, relative_change = 0.0008044202094729879 Iter 40: T = 601.3891156136638 K, F = -10.17057437021534, relative_change = 0.0003406833935975581 Iter 45: T = 600.7615613903247 K, F = -4.25496382255752, relative_change = 0.00014323782179075271 Iter 50: T = 600.4984154186269 K, F = -1.77974164829067, relative_change = 6.003772837212686e-5 Iter 55: T = 600.3882424438473 K, F = -0.7443556412963321, relative_change = 2.5132001877943045e-5 Iter 60: T = 600.3421453769215 K, F = -0.31130654557219156, relative_change = 1.0514620356253654e-5 Iter 65: T = 600.3228632847208 K, F = -0.13019353699401504, relative_change = 4.398060291281845e-6 Iter 70: T = 600.3147986276771 K, F = -0.054448740719136635, relative_change = 1.8394473818645766e-6 Iter 75: T = 600.311425777071 K, F = -0.022771157121872165, relative_change = 7.693009100842604e-7 Iter 80: T = 600.310015190602 K, F = -0.009523177459289545, relative_change = 3.21734684188676e-7 Iter 85: T = 600.3094252629852 K, F = -0.0039827078734936405, relative_change = 1.345539616822114e-7 Iter 90: T = 600.3091785475968 K, F = -0.0016656162278406161, relative_change = 5.6272191617690155e-8 Iter 95: T = 600.3090753681678 K, F = -0.0006965806383842921, relative_change = 2.353372318356777e-8 Iter 100: T = 600.3090322172795 K, F = -0.0002913183487568971, relative_change = 9.842087687145563e-9 Iter 105: T = 600.3090141710595 K, F = -0.00012183281423139292, relative_change = 4.116079256830366e-9 Iter 110: T = 600.3090066239142 K, F = -5.095193859439018e-5, relative_change = 1.7213936279784273e-9 Iter 115: T = 600.3090034676078 K, F = -2.130870890604264e-5, relative_change = 7.199073805906548e-10 Iter 120: T = 600.3090021476028 K, F = -8.911557205948384e-6, relative_change = 3.010738895804636e-10 Iter 125: T = 600.3090015955609 K, F = -3.7269191591748907e-6, relative_change = 1.259126801731553e-10 Iter 130: T = 600.3090013646903 K, F = -1.558641951115991e-6, relative_change = 5.265818158988906e-11 Iter 135: T = 600.3090012681375 K, F = -6.518427941859528e-7, relative_change = 2.2022284352100183e-11 Iter 140: T = 600.309001227758 K, F = -2.7260840962384236e-7, relative_change = 9.209981254652028e-12 Iter 145: T = 600.3090012108707 K, F = -1.1400818072937469e-7, relative_change = 3.851727131176935e-12 Iter 150: T = 600.3090012038083 K, F = -4.7678905545911476e-8, relative_change = 1.6108154073804877e-12 Iter 155: T = 600.3090012008547 K, F = -1.9939480844222146e-8, relative_change = 6.73648494906522e-13 Iter 160: T = 600.3090011996195 K, F = -8.339040236116091e-9, relative_change = 2.8173160314288553e-13 Converged in 162 iterations to T = 600.309001199358 K Iter 1: T = 964.5768786774452 K, F = -8071.191889431525, relative_change = 0.03542312132255489 Iter 2: T = 931.0942364225067 K, F = -6846.803480298361, relative_change = 0.03471225881015033 Iter 3: T = 899.5217024486714 K, F = -5807.038820134417, relative_change = 0.0339090639151036 Iter 5: T = 841.9946688303684 K, F = -4174.39887040387, relative_change = 0.03200194570214998 Iter 10: T = 729.5834600093785 K, F = -1819.2703171134517, relative_change = 0.02541885521344473 Iter 15: T = 657.7476946944854 K, F = -784.8654436388039, relative_change = 0.01716837203590545 Iter 20: T = 617.5432167945468 K, F = -334.8034086501087, relative_change = 0.009713933398511178 Iter 25: T = 597.6237802304214 K, F = -141.52170199622577, relative_change = 0.004775456547612157 Iter 30: T = 588.5495820659539 K, F = -59.48843884542247, relative_change = 0.0021565654560509436 Iter 35: T = 584.6026788779466 K, F = -24.93523904332894, relative_change = 0.0009331647538844213 Iter 40: T = 582.9235075627125 K, F = -10.43837918044689, relative_change = 0.0003960110526109171 Iter 45: T = 582.2161122839505 K, F = -4.367254669382486, relative_change = 0.0001666441972024687 Iter 50: T = 581.9193592673062 K, F = -1.8267544960695434, relative_change = 6.987397139849189e-5 Iter 55: T = 581.7950932439577 K, F = -0.7640260126591287, relative_change = 2.9253973867494025e-5 Iter 60: T = 581.7430955954719 K, F = -0.3195345128640526, relative_change = 1.2239939801620551e-5 Iter 65: T = 581.72134463605 K, F = -0.13363484824242103, relative_change = 5.119865350824791e-6 Iter 70: T = 581.7122472638749 K, F = -0.05588798665269673, relative_change = 2.1413596460989062e-6 Iter 75: T = 581.7084424835388 K, F = -0.02337307543826811, relative_change = 8.955720558508547e-7 Iter 80: T = 581.7068512526135 K, F = -0.009774908371402158, relative_change = 3.7454415515598027e-7 Iter 85: T = 581.7061857762286 K, F = -0.004087985006946626, relative_change = 1.5663975271011235e-7 Iter 90: T = 581.7059074652511 K, F = -0.0017096444289397827, relative_change = 6.550877513236007e-8 Iter 95: T = 581.7057910721355 K, F = -0.0007149937662981887, relative_change = 2.7396580062619606e-8 Iter 100: T = 581.70574239512 K, F = -0.00029901894051503897, relative_change = 1.145758186136463e-8 Iter 105: T = 581.7057220378064 K, F = -0.00012505329384188135, relative_change = 4.791698437170428e-9 Iter 110: T = 581.7057135241339 K, F = -5.229878083756745e-5, relative_change = 2.0039456472356763e-9 Iter 115: T = 581.7057099636143 K, F = -2.1871974324461085e-5, relative_change = 8.380740108900352e-10 Iter 120: T = 581.7057084745625 K, F = -9.147121490804544e-6, relative_change = 3.5049258816789333e-10 Iter 125: T = 581.7057078518231 K, F = -3.825434470527966e-6, relative_change = 1.465801494627074e-10 Iter 130: T = 581.7057075913862 K, F = -1.5998421586393974e-6, relative_change = 6.130156065582544e-11 Iter 135: T = 581.7057074824684 K, F = -6.690732786140963e-7, relative_change = 2.563705174740359e-11 Iter 140: T = 581.7057074369176 K, F = -2.798139696058577e-7, relative_change = 1.0721703362545579e-11 Iter 145: T = 581.7057074178678 K, F = -1.1702166491378563e-7, relative_change = 4.483949032851183e-12 Iter 150: T = 581.7057074099008 K, F = -4.893941524253265e-8, relative_change = 1.8752240777042135e-12 Iter 155: T = 581.705707406569 K, F = -2.046721075954494e-8, relative_change = 7.842473439984196e-13 Iter 160: T = 581.7057074051756 K, F = -8.559685349407431e-9, relative_change = 3.2798365051676303e-13 Converged in 163 iterations to T = 581.7057074047676 K Iter 1: T = 964.3401521446923 K, F = -8125.130255104326, relative_change = 0.03565984785530772 Iter 2: T = 930.6067727724829 K, F = -6892.999453133419, relative_change = 0.0349807889852832 Iter 3: T = 898.768940644515 K, F = -5846.643215842923, relative_change = 0.034211906746730414 Iter 5: T = 840.6670081661651 K, F = -4203.59864601487, relative_change = 0.03237929955034464 Iter 10: T = 726.6006467832826 K, F = -1833.1273822620535, relative_change = 0.02597608694457576 Iter 15: T = 653.0490427056124 K, F = -791.4889348995961, relative_change = 0.017773042579510474 Iter 20: T = 611.4812479319698 K, F = -337.8927216762886, relative_change = 0.010178924054719594 Iter 25: T = 590.7263510124718 K, F = -142.90516009779108, relative_change = 0.005045798696162179 Iter 30: T = 581.2270585303263 K, F = -60.08781346593795, relative_change = 0.002288919459625724 Iter 35: T = 577.0854438735863 K, F = -25.190023139228582, relative_change = 0.0009925403443033377 Iter 40: T = 575.321526153413 K, F = -10.545694060285085, relative_change = 0.00042160324957254795 Iter 45: T = 574.5780796444897 K, F = -4.412271341267152, relative_change = 0.0001774846985209991 Iter 50: T = 574.2661407447092 K, F = -1.8456050857892943, relative_change = 7.443199527922405e-5 Iter 55: T = 574.1355045999007 K, F = -0.7719137837428596, relative_change = 3.116448622036012e-5 Iter 60: T = 574.0808395192549 K, F = -0.32283401395130723, relative_change = 1.303969148025764e-5 Iter 65: T = 574.0579724172852 K, F = -0.13501486870215487, relative_change = 5.454462820420082e-6 Iter 70: T = 574.0484081576095 K, F = -0.056465150381333096, relative_change = 2.2813153599169297e-6 Iter 75: T = 574.0444081012625 K, F = -0.023614456172374176, relative_change = 9.541072400856519e-7 Iter 80: T = 574.0427352004145 K, F = -0.009875857370541197, relative_change = 3.9902497370052443e-7 Iter 85: T = 574.0420355681395 K, F = -0.0041302032060159255, relative_change = 1.668780468032029e-7 Iter 90: T = 574.0417429726639 K, F = -0.0017273006049678408, relative_change = 6.979057356487937e-8 Iter 95: T = 574.0416206055837 K, F = -0.0007223777941817167, relative_change = 2.9187283097278673e-8 Iter 100: T = 574.0415694301818 K, F = -0.0003021070292828498, relative_change = 1.2206475895126194e-8 Iter 105: T = 574.0415480280127 K, F = -0.0001263447688199526, relative_change = 5.104894952246197e-9 Iter 110: T = 574.0415390773691 K, F = -5.283889090385019e-5, relative_change = 2.1349281810413773e-9 Iter 115: T = 574.0415353341031 K, F = -2.209785547957477e-5, relative_change = 8.928525005267006e-10 Iter 120: T = 574.0415337686244 K, F = -9.24158704096456e-6, relative_change = 3.7340158248021636e-10 Iter 125: T = 574.0415331139226 K, F = -3.864942244857783e-6, relative_change = 1.561610091279476e-10 Iter 130: T = 574.0415328401184 K, F = -1.6163649551592663e-6, relative_change = 6.530839715023933e-11 Iter 135: T = 574.0415327256102 K, F = -6.759828686253577e-7, relative_change = 2.7312741192485994e-11 Iter 140: T = 574.0415326777215 K, F = -2.827043228958992e-7, relative_change = 1.1422523212786893e-11 Iter 145: T = 574.0415326576939 K, F = -1.1823035078739608e-7, relative_change = 4.777036702925061e-12 Iter 150: T = 574.0415326493181 K, F = -4.944557824293483e-8, relative_change = 1.997823236649323e-12 Iter 155: T = 574.0415326458152 K, F = -2.0678522172357106e-8, relative_change = 8.355050858891806e-13 Iter 160: T = 574.0415326443504 K, F = -8.647970006769867e-9, relative_change = 3.494167940598769e-13 Converged in 163 iterations to T = 574.0415326439214 K Iter 1: T = 980.0988653659213 K, F = -4534.492457241088, relative_change = 0.019901134634078735 Iter 2: T = 962.2433091615354 K, F = -3830.3427272433255, relative_change = 0.01821811741177708 Iter 3: T = 946.3127369144487 K, F = -3234.0306588243247, relative_change = 0.01655565915128894 Iter 5: T = 919.7042762141091 K, F = -2302.2912410738995, relative_change = 0.013381368763651478 Iter 10: T = 877.4407684473006 K, F = -977.4484673590744, relative_change = 0.007035306383488232 Iter 15: T = 857.4243890012303 K, F = -411.9027966265784, relative_change = 0.0033005611984169465 Iter 20: T = 848.5388160539208 K, F = -172.86535697926914, relative_change = 0.0014548187067824462 Iter 25: T = 844.7225179353991 K, F = -72.404576806027, relative_change = 0.0006225062448643899 Iter 30: T = 843.1081032464891 K, F = -30.300112525300523, relative_change = 0.00026288733708569026 Iter 35: T = 842.4296519129313 K, F = -12.675334717463079, relative_change = 0.00011039466426691972 Iter 40: T = 842.145336100475 K, F = -5.301584623559141, relative_change = 4.624790742918052e-5 Iter 45: T = 842.0263301301309 K, F = -2.2172925447453355, relative_change = 1.9355374130783635e-5 Iter 50: T = 841.9765425970239 K, F = -0.9273168675571974, relative_change = 8.09709052974349e-6 Iter 55: T = 841.9557177382167 K, F = -0.3878182503594735, relative_change = 3.3867272419682596e-6 Iter 60: T = 841.9470079880975 K, F = -0.16219079436047568, relative_change = 1.4164445245224942e-6 Iter 65: T = 841.9433653711689 K, F = -0.0678302269489901, relative_change = 5.923870901367746e-7 Iter 70: T = 841.941841968579 K, F = -0.02836742842103912, relative_change = 2.4774564239065715e-7 Iter 75: T = 841.9412048605038 K, F = -0.011863600395395801, relative_change = 1.036105863036594e-7 Iter 80: T = 841.9409384137878 K, F = -0.004961499899415189, relative_change = 4.3331254507958407e-8 Iter 85: T = 841.9408269824997 K, F = -0.0020749586037209777, relative_change = 1.8121660351139883e-8 Iter 90: T = 841.9407803805888 K, F = -0.0008677724863572767, relative_change = 7.578696932043e-9 Iter 95: T = 841.9407608911102 K, F = -0.0003629128191624531, relative_change = 3.1695019323207532e-9 Iter 100: T = 841.9407527403771 K, F = -0.0001517744744956584, relative_change = 1.3255236160421647e-9 Iter 105: T = 841.940749331643 K, F = -6.347389691230276e-5, relative_change = 5.543498092215397e-10 Iter 110: T = 841.9407479060698 K, F = -2.6545540748657004e-5, relative_change = 2.3183570387471215e-10 Iter 115: T = 841.940747309878 K, F = -1.1101662673818069e-5, relative_change = 9.695646486206995e-11 Iter 120: T = 841.9407470605435 K, F = -4.642848211000583e-6, relative_change = 4.0548354178168705e-11 Iter 125: T = 841.9407469562688 K, F = -1.9416932306448587e-6, relative_change = 1.6957794287011673e-11 Iter 130: T = 841.9407469126598 K, F = -8.120399268563006e-7, relative_change = 7.091957585540856e-12 Iter 135: T = 841.9407468944221 K, F = -3.396033332325743e-7, relative_change = 2.965928590193963e-12 Iter 140: T = 841.9407468867947 K, F = -1.420236372950967e-7, relative_change = 1.2403646405512674e-12 Iter 145: T = 841.940746883605 K, F = -5.939639158292209e-8, relative_change = 5.18738889527553e-13 Converged in 150 iterations to T = 841.9407468822709 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012480846075048867 Iteration 10: d = 1.2182134683524348e-5 Iteration 20: d = 1.3876235857898438e-7 Iteration 30: d = 1.7890559785644898e-9 Iteration 40: d = 2.425573221854528e-11 Iteration 50: d = 3.368650167445912e-13 Iteration 60: d = 4.742481450640035e-15 Converged after 62 iterations. d = 2.0019371106893454e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.493444708585 Iteration 2: convergence error = 4831.261248238037 Iteration 3: convergence error = 1096.5442061041033 Iteration 4: convergence error = 321.7662593607604 Iteration 5: convergence error = 95.50220340251553 Iteration 6: convergence error = 28.485133258851874 Iteration 7: convergence error = 8.502807422281194 Iteration 8: convergence error = 2.536987829184227 Iteration 9: convergence error = 0.7578456680146246 Iteration 10: convergence error = 0.2262880305950148 Iteration 11: convergence error = 0.06751524481114757 Iteration 12: convergence error = 0.02013481617314028 Iteration 13: convergence error = 0.00600319279942596 Iteration 14: convergence error = 0.0017895881451295281 Iteration 15: convergence error = 0.0005334418885922787 Iteration 16: convergence error = 0.000159000999019554 Iteration 17: convergence error = 4.739147607324412e-5 Iteration 18: convergence error = 1.4125164852885064e-5 Iteration 19: convergence error = 4.209997086945805e-6 Iteration 20: convergence error = 1.2547870937851258e-6 Iteration 21: convergence error = 3.739864951057825e-7 Iteration 22: convergence error = 1.1132328836538363e-7 Iteration 23: convergence error = 3.2262732929666527e-8 Iteration 24: convergence error = 9.30299393075984e-9 Iteration 25: convergence error = 2.6736870495369658e-9 Iteration 26: convergence error = 7.669314072700217e-10 Iteration 27: convergence error = 2.1782398107461631e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.864464138634503e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013522851657445545 Iteration 10: d = 9.416832875311054e-6 Iteration 20: d = 8.399915439217717e-8 Iteration 30: d = 8.903694721572224e-10 Iteration 40: d = 9.87107175470384e-12 Iteration 50: d = 1.1162479375566959e-13 Converged after 59 iterations. d = 1.9655271622722507e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12275.744853003853 Iteration 2: convergence error = 8313.693916064516 Iteration 3: convergence error = 1951.0307435233633 Iteration 4: convergence error = 479.79188779986 Iteration 5: convergence error = 122.28764138600536 Iteration 6: convergence error = 32.652362059844336 Iteration 7: convergence error = 8.897258268362293 Iteration 8: convergence error = 2.4384757031580193 Iteration 9: convergence error = 0.6691675146612397 Iteration 10: convergence error = 0.1836644325137513 Iteration 11: convergence error = 0.050408041305445295 Iteration 12: convergence error = 0.013834227333063609 Iteration 13: convergence error = 0.003796628824375148 Iteration 14: convergence error = 0.0010419227799047803 Iteration 15: convergence error = 0.00028593699994416966 Iteration 16: convergence error = 7.847009169381636e-5 Iteration 17: convergence error = 2.153463856302551e-5 Iteration 18: convergence error = 5.909773790335748e-6 Iteration 19: convergence error = 1.621827095732442e-6 Iteration 20: convergence error = 4.450794222066179e-7 Iteration 21: convergence error = 1.229957433679374e-7 Iteration 22: convergence error = 3.3094920581788756e-8 Iteration 23: convergence error = 8.855295163812116e-9 Iteration 24: convergence error = 2.367414708714932e-9 Iteration 25: convergence error = 6.30961949354969e-10 Iteration 26: convergence error = 1.7075763025786728e-10 Iteration 27: convergence error = 4.4792614062316716e-11 Iteration 28: convergence error = 1.1141310096718371e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013522851657445545 Iteration 10: d = 9.416832875311054e-6 Iteration 20: d = 8.399915439217717e-8 Iteration 30: d = 8.903694721572224e-10 Iteration 40: d = 9.87107175470384e-12 Iteration 50: d = 1.1162479375566959e-13 Converged after 59 iterations. d = 1.9655271622722507e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.060568539546 Iteration 2: convergence error = 5728.41710823575 Iteration 3: convergence error = 2013.6367890036286 Iteration 4: convergence error = 893.4763612074239 Iteration 5: convergence error = 410.36965490592684 Iteration 6: convergence error = 193.63946756236737 Iteration 7: convergence error = 91.45518101762946 Iteration 8: convergence error = 43.21625566546027 Iteration 9: convergence error = 20.422215869535194 Iteration 10: convergence error = 9.648875114082784 Iteration 11: convergence error = 4.557705294640982 Iteration 12: convergence error = 2.1523994388589927 Iteration 13: convergence error = 1.016312770660079 Iteration 14: convergence error = 0.47982156501075224 Iteration 15: convergence error = 0.22651448571787114 Iteration 16: convergence error = 0.10683966046281057 Iteration 17: convergence error = 0.049959172339640645 Iteration 18: convergence error = 0.022825513942734688 Iteration 19: convergence error = 0.01038944595529756 Iteration 20: convergence error = 0.004718738896372088 Iteration 21: convergence error = 0.002140515018709266 Iteration 22: convergence error = 0.0009702778411337931 Iteration 23: convergence error = 0.00043963227017229656 Iteration 24: convergence error = 0.00019914707308998914 Iteration 25: convergence error = 9.019720346259419e-5 Iteration 26: convergence error = 4.084820784555632e-5 Iteration 27: convergence error = 1.849818363552913e-5 Iteration 28: convergence error = 8.37665174913127e-6 Iteration 29: convergence error = 3.7931740735075437e-6 Iteration 30: convergence error = 1.7176294022647198e-6 Iteration 31: convergence error = 7.777730388625059e-7 Iteration 32: convergence error = 3.5218863558839075e-7 Iteration 33: convergence error = 1.594789864611812e-7 Iteration 34: convergence error = 7.221251507871784e-8 Iteration 35: convergence error = 3.2700882002245635e-8 Iteration 36: convergence error = 1.4808847481617704e-8 Iteration 37: convergence error = 6.701156962662935e-9 Iteration 38: convergence error = 3.0322553357109427e-9 Iteration 39: convergence error = 1.3787939678877592e-9 Iteration 40: convergence error = 6.239133654162288e-10 Iteration 41: convergence error = 2.7921487344428897e-10 Iteration 42: convergence error = 1.3142198440618813e-10 Iteration 43: convergence error = 5.911715561524034e-11 Iteration 44: convergence error = 2.773958840407431e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013522851657445545 Iteration 10: d = 9.416832875311054e-6 Iteration 20: d = 8.399915439217717e-8 Iteration 30: d = 8.903694721572224e-10 Iteration 40: d = 9.87107175470384e-12 Iteration 50: d = 1.1162479375566959e-13 Converged after 59 iterations. d = 1.9655271622722507e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.81417332238 Iteration 2: convergence error = 7345.910284977537 Iteration 3: convergence error = 1729.8723957648745 Iteration 4: convergence error = 505.2647551827513 Iteration 5: convergence error = 157.05822506614686 Iteration 6: convergence error = 48.81438309514442 Iteration 7: convergence error = 15.146252227077639 Iteration 8: convergence error = 4.691904603085277 Iteration 9: convergence error = 1.4517665662756372 Iteration 10: convergence error = 0.448889139889161 Iteration 11: convergence error = 0.13874043265423097 Iteration 12: convergence error = 0.04287113734335435 Iteration 13: convergence error = 0.013245522620309202 Iteration 14: convergence error = 0.004092044991921284 Iteration 15: convergence error = 0.001264133931726974 Iteration 16: convergence error = 0.0003905127177858958 Iteration 17: convergence error = 0.00012063441499776673 Iteration 18: convergence error = 3.726524073499604e-5 Iteration 19: convergence error = 1.1511557659105165e-5 Iteration 20: convergence error = 3.556017418304691e-6 Iteration 21: convergence error = 1.0984817890857812e-6 Iteration 22: convergence error = 3.39178313879529e-7 Iteration 23: convergence error = 1.0356052371207625e-7 Iteration 24: convergence error = 3.0833234632154927e-8 Iteration 25: convergence error = 9.156337910098955e-9 Iteration 26: convergence error = 2.7107489586342126e-9 Iteration 27: convergence error = 8.021743269637227e-10 Iteration 28: convergence error = 2.3237589630298316e-10 Iteration 29: convergence error = 6.866684998385608e-11 Iteration 30: convergence error = 2.2282620193436742e-11 Iteration 31: convergence error = 8.185452315956354e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013522851657445545 Iteration 10: d = 9.416832875311054e-6 Iteration 20: d = 8.399915439217717e-8 Iteration 30: d = 8.903694721572224e-10 Iteration 40: d = 9.87107175470384e-12 Iteration 50: d = 1.1162479375566959e-13 Converged after 59 iterations. d = 1.9655271622722507e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.751836048829 Iteration 2: convergence error = 5516.0794615179075 Iteration 3: convergence error = 935.9778057865824 Iteration 4: convergence error = 170.26683805056905 Iteration 5: convergence error = 30.910455851622146 Iteration 6: convergence error = 5.626599777860747 Iteration 7: convergence error = 1.028534151274016 Iteration 8: convergence error = 0.18832139997721242 Iteration 9: convergence error = 0.03444076600635526 Iteration 10: convergence error = 0.006294988068930252 Iteration 11: convergence error = 0.00115024551996612 Iteration 12: convergence error = 0.00021014617686887505 Iteration 13: convergence error = 3.839008741124417e-5 Iteration 14: convergence error = 7.012928563199239e-6 Iteration 15: convergence error = 1.2810460248147137e-6 Iteration 16: convergence error = 2.3402935767080635e-7 Iteration 17: convergence error = 4.272942533134483e-8 Iteration 18: convergence error = 7.806193025317043e-9 Iteration 19: convergence error = 1.432454155292362e-9 Iteration 20: convergence error = 2.5784174795262516e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013522851657445545 Iteration 10: d = 9.416832875311054e-6 Iteration 20: d = 8.399915439217717e-8 Iteration 30: d = 8.903694721572224e-10 Iteration 40: d = 9.87107175470384e-12 Iteration 50: d = 1.1162479375566959e-13 Converged after 59 iterations. d = 1.9655271622722507e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4910168318233 Iteration 2: convergence error = 2712.8805878424723 Iteration 3: convergence error = 204.3985434510787 Iteration 4: convergence error = 19.407476050549295 Iteration 5: convergence error = 1.606792162871156 Iteration 6: convergence error = 0.1310103224192579 Iteration 7: convergence error = 0.01069268919041741 Iteration 8: convergence error = 0.0008746224205466108 Iteration 9: convergence error = 7.164611160680355e-5 Iteration 10: convergence error = 5.873888702143955e-6 Iteration 11: convergence error = 4.817840370837565e-7 Iteration 12: convergence error = 3.952593657381889e-8 Iteration 13: convergence error = 3.243992581314301e-9 Iteration 14: convergence error = 2.6529594118858845e-10 Iteration 15: convergence error = 2.3874235921539366e-11 Iteration 16: convergence error = 4.547473508864641e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012480846075048867 Iteration 10: d = 1.2182134683524348e-5 Iteration 20: d = 1.3876235857898438e-7 Iteration 30: d = 1.7890559785644898e-9 Iteration 40: d = 2.425573221854528e-11 Iteration 50: d = 3.368650167445912e-13 Iteration 60: d = 4.742481450640035e-15 Converged after 62 iterations. d = 2.0019371106893454e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.275248618982 Iteration 2: convergence error = 3615.595134399591 Iteration 3: convergence error = 593.5618992863002 Iteration 4: convergence error = 105.3187085125453 Iteration 5: convergence error = 18.746983652945346 Iteration 6: convergence error = 3.305363664302149 Iteration 7: convergence error = 0.5804853246183939 Iteration 8: convergence error = 0.10177506293371152 Iteration 9: convergence error = 0.01783160996001243 Iteration 10: convergence error = 0.003123308055819507 Iteration 11: convergence error = 0.0005469999284741789 Iteration 12: convergence error = 9.579395441505767e-5 Iteration 13: convergence error = 1.677568229752069e-5 Iteration 14: convergence error = 2.9377756618487183e-6 Iteration 15: convergence error = 5.144547685631551e-7 Iteration 16: convergence error = 9.009136192617007e-8 Iteration 17: convergence error = 1.5794512364664115e-8 Iteration 18: convergence error = 2.7448550099506974e-9 Iteration 19: convergence error = 4.852154233958572e-10 Iteration 20: convergence error = 8.344613888766617e-11 Iteration 21: convergence error = 1.3869794202037156e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m27.6s Testing RayTraceHeatTransfer tests passed Testing completed after 579.6s PkgEval succeeded after 693.18s