Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1272 (5444ac0564*) started at 2025-11-20T15:58:54.017 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.72s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.13s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1403.9 ms ✓ Measurements 5000.8 ms ✓ StatsBase 1676.6 ms ✓ EarCut_jll 22851.3 ms ✓ GeometryBasics 8228.1 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 40 seconds. 54 already precompiled. Precompilation completed after 51.16s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_aEs1T6/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_aEs1T6/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:30 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011401765292273459 Iteration 10: d = 1.1840891991651703e-5 Iteration 20: d = 1.435910139820651e-7 Iteration 30: d = 1.8682961883131244e-9 Iteration 40: d = 2.5084525549626756e-11 Iteration 50: d = 3.494756089187881e-13 Iteration 60: d = 5.1324985403887364e-15 Converged after 62 iterations. d = 2.1956943138230026e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012746723071394796 Iteration 10: d = 1.3843563901742288e-5 Iteration 20: d = 2.1023219950166242e-7 Iteration 30: d = 3.5283091318029827e-9 Iteration 40: d = 6.019674975047562e-11 Iteration 50: d = 1.0321924962396695e-12 Iteration 60: d = 1.770636389418873e-14 Converged after 66 iterations. d = 1.5627130483965135e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012562897328084375 Iteration 10: d = 1.4891857580921848e-5 Iteration 20: d = 2.2702687766808142e-7 Iteration 30: d = 3.8349661313730234e-9 Iteration 40: d = 6.644432649085878e-11 Iteration 50: d = 1.1623088823172678e-12 Iteration 60: d = 2.038903862630444e-14 Converged after 66 iterations. d = 1.8152164571213797e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 59%|███████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001148125344190811 Iteration 10: d = 7.340863153889008e-6 Iteration 20: d = 7.193208757712623e-8 Iteration 30: d = 9.97930959360212e-10 Iteration 40: d = 1.5793413382586404e-11 Iteration 50: d = 2.653727643087261e-13 Iteration 60: d = 4.5745512110834554e-15 Converged after 62 iterations. d = 2.0714246870948765e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 61%|████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013092836579034182 Iteration 10: d = 2.0359705403814868e-5 Iteration 20: d = 3.026785457496552e-7 Iteration 30: d = 4.695103125396053e-9 Iteration 40: d = 7.389059617229501e-11 Iteration 50: d = 1.1704336935251204e-12 Iteration 60: d = 1.858696896882211e-14 Converged after 66 iterations. d = 1.5817241491393918e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001264354467612986 Iteration 10: d = 1.4222369702418324e-5 Iteration 20: d = 1.9651562440007984e-7 Iteration 30: d = 2.9386309501614964e-9 Iteration 40: d = 4.496516528351879e-11 Iteration 50: d = 6.955218440564447e-13 Iteration 60: d = 1.0841092074305275e-14 Converged after 64 iterations. d = 2.0485053900652355e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 55%|██████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011448049075453795 Iteration 10: d = 1.0450129185765526e-5 Iteration 20: d = 1.3316653607761334e-7 Iteration 30: d = 1.9234109334544066e-9 Iteration 40: d = 2.907616866304246e-11 Iteration 50: d = 4.4947031562976647e-13 Iteration 60: d = 7.020309387911127e-15 Converged after 63 iterations. d = 1.990319258339753e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010069622863798596 Iteration 10: d = 8.051711448841122e-6 Iteration 20: d = 1.007838375627057e-7 Iteration 30: d = 1.4566124256556733e-9 Iteration 40: d = 2.192852960465171e-11 Iteration 50: d = 3.3718784481533564e-13 Iteration 60: d = 5.240473040648325e-15 Converged after 63 iterations. d = 1.4666026027843435e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012803584827240208 Iteration 10: d = 1.7583044554884814e-5 Iteration 20: d = 2.5242519728972517e-7 Iteration 30: d = 3.839786733430935e-9 Iteration 40: d = 5.942634123572132e-11 Iteration 50: d = 9.267149395394488e-13 Iteration 60: d = 1.4539139629127992e-14 Converged after 65 iterations. d = 1.801945675405862e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012791335693870948 Iteration 10: d = 1.7366613907369984e-5 Iteration 20: d = 2.470801139027637e-7 Iteration 30: d = 3.797754347318434e-9 Iteration 40: d = 5.941725033653732e-11 Iteration 50: d = 9.336362485795119e-13 Iteration 60: d = 1.465518724715785e-14 Converged after 65 iterations. d = 1.8326226322134866e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005335216907414695 Iteration 10: d = 3.2249809907411694e-5 Iteration 20: d = 2.2890481854568348e-7 Iteration 30: d = 2.3241666321729993e-9 Iteration 40: d = 2.755729960165872e-11 Iteration 50: d = 3.5610224216093263e-13 Iteration 60: d = 4.8129244518315655e-15 Converged after 62 iterations. d = 2.0699036536129527e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0037950257376074097 Iteration 10: d = 3.1190236292069046e-5 Iteration 20: d = 3.8730051377866705e-7 Iteration 30: d = 5.860526668427648e-9 Iteration 40: d = 9.099462843559548e-11 Iteration 50: d = 1.4185069593466137e-12 Iteration 60: d = 2.2138069852769406e-14 Converged after 66 iterations. d = 1.8185844225931006e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002556692297957694 Iteration 10: d = 2.769237688008667e-5 Iteration 20: d = 4.214800939308533e-7 Iteration 30: d = 6.97858696690673e-9 Iteration 40: d = 1.1691821720198367e-10 Iteration 50: d = 1.9649712049419043e-12 Iteration 60: d = 3.3095078066899666e-14 Converged after 67 iterations. d = 1.9342835565378276e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021282142936295714 Iteration 10: d = 2.0131350526646087e-5 Iteration 20: d = 2.840220924503727e-7 Iteration 30: d = 4.693184994861907e-9 Iteration 40: d = 8.191434338162549e-11 Iteration 50: d = 1.4665407714636104e-12 Iteration 60: d = 2.6597337249527425e-14 Converged after 67 iterations. d = 1.6156139796342144e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013092836579034182 Iteration 10: d = 2.0359705403814868e-5 Iteration 20: d = 3.026785457496552e-7 Iteration 30: d = 4.695103125396053e-9 Iteration 40: d = 7.389059617229501e-11 Iteration 50: d = 1.1704336935251204e-12 Iteration 60: d = 1.858696896882211e-14 Converged after 66 iterations. d = 1.5817241491393918e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012299652784614895 Iteration 10: d = 1.4225836712295305e-5 Iteration 20: d = 1.8184845596895676e-7 Iteration 30: d = 2.4862105680080367e-9 Iteration 40: d = 3.452105282054567e-11 Iteration 50: d = 4.825470514718097e-13 Iteration 60: d = 6.777305708054149e-15 Converged after 63 iterations. d = 1.895808238464545e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016562010867945192 Iteration 10: d = 1.84081264247304e-5 Iteration 20: d = 2.2425522206427088e-7 Iteration 30: d = 3.09791321159944e-9 Iteration 40: d = 4.37876461712532e-11 Iteration 50: d = 6.223333366793951e-13 Iteration 60: d = 8.868822551031221e-15 Converged after 64 iterations. d = 1.630943299996888e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.458687192786 Iteration 2: convergence error = 4834.147543175981 Iteration 3: convergence error = 1096.4621519636835 Iteration 4: convergence error = 320.1774755060037 Iteration 5: convergence error = 95.03912094424891 Iteration 6: convergence error = 28.35404988525829 Iteration 7: convergence error = 8.526382396226154 Iteration 8: convergence error = 2.556925075395384 Iteration 9: convergence error = 0.7649440103077723 Iteration 10: convergence error = 0.22852800040004695 Iteration 11: convergence error = 0.06821904761841324 Iteration 12: convergence error = 0.020355243715357574 Iteration 13: convergence error = 0.006072050838611176 Iteration 14: convergence error = 0.0018110507178334956 Iteration 15: convergence error = 0.0005401185524078755 Iteration 16: convergence error = 0.0001610743420314975 Iteration 17: convergence error = 4.803428441846336e-5 Iteration 18: convergence error = 1.4324170251711621e-5 Iteration 19: convergence error = 4.271519173926208e-6 Iteration 20: convergence error = 1.273781208510627e-6 Iteration 21: convergence error = 3.7983932088536676e-7 Iteration 22: convergence error = 1.1313250070088543e-7 Iteration 23: convergence error = 3.2832531360327266e-8 Iteration 24: convergence error = 9.464201866649091e-9 Iteration 25: convergence error = 2.7214355213800445e-9 Iteration 26: convergence error = 7.837570592528209e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.52562448522076e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012299652784614895 Iteration 10: d = 1.4225836712295305e-5 Iteration 20: d = 1.8184845596895676e-7 Iteration 30: d = 2.4862105680080367e-9 Iteration 40: d = 3.452105282054567e-11 Iteration 50: d = 4.825470514718097e-13 Iteration 60: d = 6.777305708054149e-15 Converged after 63 iterations. d = 1.895808238464545e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.630851935453 Iteration 2: convergence error = 4821.99204394097 Iteration 3: convergence error = 1097.3035445072626 Iteration 4: convergence error = 321.29577752850037 Iteration 5: convergence error = 95.31400158419387 Iteration 6: convergence error = 28.43703545809717 Iteration 7: convergence error = 8.56087926621126 Iteration 8: convergence error = 2.568145991078609 Iteration 9: convergence error = 0.7686241905430506 Iteration 10: convergence error = 0.2297352897694509 Iteration 11: convergence error = 0.06861368960335312 Iteration 12: convergence error = 0.020483591735455775 Iteration 13: convergence error = 0.006113566440035356 Iteration 14: convergence error = 0.001824408728907656 Iteration 15: convergence error = 0.0005443956397357397 Iteration 16: convergence error = 0.0001624377434836788 Iteration 17: convergence error = 4.84671666072245e-5 Iteration 18: convergence error = 1.4461102182394825e-5 Iteration 19: convergence error = 4.314706529839896e-6 Iteration 20: convergence error = 1.2873551895609125e-6 Iteration 21: convergence error = 3.8410985325754154e-7 Iteration 22: convergence error = 1.1446331882325467e-7 Iteration 23: convergence error = 3.32413492287742e-8 Iteration 24: convergence error = 9.595169103704393e-9 Iteration 25: convergence error = 2.7614532882580534e-9 Iteration 26: convergence error = 7.883045327616856e-10 Iteration 27: convergence error = 2.3010215954855084e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:32:47 Bin 1 ray tracing: 8%|██▍ | ETA: 0:01:05 Bin 1 ray tracing: 16%|████▋ | ETA: 0:00:36 Bin 1 ray tracing: 23%|██████▉ | ETA: 0:00:25 Bin 1 ray tracing: 31%|█████████▏ | ETA: 0:00:20 Bin 1 ray tracing: 38%|███████████▌ | ETA: 0:00:15 Bin 1 ray tracing: 46%|█████████████▉ | ETA: 0:00:12 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 65%|███████████████████▌ | ETA: 0:00:07 Bin 1 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:05 Bin 1 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 2 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 34%|██████████ | ETA: 0:00:08 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 3 ray tracing: 58%|█████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 3 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 4 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 4 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 4 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 4 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 4 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|████████ | ETA: 0:00:09 Bin 5 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 6 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 21%|██████▎ | ETA: 0:00:08 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 43%|████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 56%|████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 8 ray tracing: 22%|██████▌ | ETA: 0:00:08 Bin 8 ray tracing: 33%|█████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 44%|█████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 56%|████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 9 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 10 ray tracing: 32%|█████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 41%|███████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 50%|██████████████▍ | ETA: 0:00:06 Bin 10 ray tracing: 59%|█████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 69%|███████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 78%|██████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 87%|█████████████████████████▍ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████▏| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 27%|████████▊ | ETA: 0:00:03 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 2 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 3 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 4 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 4 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 27%|████████▊ | ETA: 0:00:03 Bin 6 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 6 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 7 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 7 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 8 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 8 progress: 87%|████████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 29%|█████████▎ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 73%|███████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 96%|██████████████████████████████▋ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012299652784614895 Iteration 10: d = 1.4225836712295305e-5 Iteration 20: d = 1.8184845596895676e-7 Iteration 30: d = 2.4862105680080367e-9 Iteration 40: d = 3.452105282054567e-11 Iteration 50: d = 4.825470514718097e-13 Iteration 60: d = 6.777305708054149e-15 Converged after 63 iterations. d = 1.895808238464545e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016637590956636449 Iteration 10: d = 1.8619346959748562e-5 Iteration 20: d = 2.2731561381078478e-7 Iteration 30: d = 3.1427224792264517e-9 Iteration 40: d = 4.4440236147959765e-11 Iteration 50: d = 6.317684236621292e-13 Iteration 60: d = 9.02931111062351e-15 Converged after 64 iterations. d = 1.6484025229290518e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015265046414602108 Iteration 10: d = 1.8063739729560714e-5 Iteration 20: d = 2.1317233059416328e-7 Iteration 30: d = 2.8577188042378824e-9 Iteration 40: d = 3.9689609775809344e-11 Iteration 50: d = 5.580268504633391e-13 Iteration 60: d = 7.921623698408398e-15 Converged after 63 iterations. d = 2.174611592784754e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014859406481508854 Iteration 10: d = 9.148292281528923e-6 Iteration 20: d = 7.463883615851835e-8 Iteration 30: d = 9.348790671007766e-10 Iteration 40: d = 1.2932152702816627e-11 Iteration 50: d = 1.8246106815535998e-13 Iteration 60: d = 2.591065608639445e-15 Converged after 61 iterations. d = 1.6978117136524435e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013408993849795853 Iteration 10: d = 1.931920043049177e-5 Iteration 20: d = 2.4431162707600614e-7 Iteration 30: d = 3.2048138391786526e-9 Iteration 40: d = 4.233183372607219e-11 Iteration 50: d = 5.605384851521888e-13 Iteration 60: d = 7.42517496694191e-15 Converged after 63 iterations. d = 2.0171725874456257e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001539585815874583 Iteration 10: d = 1.7614018737828188e-5 Iteration 20: d = 2.1185963947207587e-7 Iteration 30: d = 2.7802063226466603e-9 Iteration 40: d = 3.7166770695604136e-11 Iteration 50: d = 5.00386866835923e-13 Iteration 60: d = 6.784619086561e-15 Converged after 63 iterations. d = 1.8854802742577154e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011741240565377523 Iteration 10: d = 1.6911679838419617e-5 Iteration 20: d = 2.1837780936218175e-7 Iteration 30: d = 2.9792747891897073e-9 Iteration 40: d = 4.149791005668425e-11 Iteration 50: d = 5.833542011998913e-13 Iteration 60: d = 8.214688667487643e-15 Converged after 64 iterations. d = 1.4783421342191503e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013408654591028368 Iteration 10: d = 8.229482419951965e-6 Iteration 20: d = 6.886437200799864e-8 Iteration 30: d = 8.127589550712345e-10 Iteration 40: d = 1.0266901674743853e-11 Iteration 50: d = 1.3205497050388563e-13 Converged after 60 iterations. d = 1.7029687844153458e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013752605502567962 Iteration 10: d = 1.3309818008261878e-5 Iteration 20: d = 1.2517390796220917e-7 Iteration 30: d = 1.3840655414898494e-9 Iteration 40: d = 1.6659992706236405e-11 Iteration 50: d = 2.1178956399944765e-13 Iteration 60: d = 2.7714907775326516e-15 Converged after 61 iterations. d = 1.81964950812077e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021551420740723716 Iteration 10: d = 2.9809796699260223e-5 Iteration 20: d = 3.755981873024059e-7 Iteration 30: d = 4.945047864864951e-9 Iteration 40: d = 6.560240733479687e-11 Iteration 50: d = 8.728338726409179e-13 Iteration 60: d = 1.1683798753850556e-14 Converged after 64 iterations. d = 2.0752050360416346e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8653.137014272554 Iteration 2: convergence error = 4820.63389069216 Iteration 3: convergence error = 1097.8577232695593 Iteration 4: convergence error = 322.4592262113497 Iteration 5: convergence error = 95.88650881471062 Iteration 6: convergence error = 28.673161938198064 Iteration 7: convergence error = 8.584845359150222 Iteration 8: convergence error = 2.579438904771905 Iteration 9: convergence error = 0.7740116111049247 Iteration 10: convergence error = 0.23194620405934074 Iteration 11: convergence error = 0.06945374441897911 Iteration 12: convergence error = 0.020788165650401425 Iteration 13: convergence error = 0.006220567465106797 Iteration 14: convergence error = 0.001861157279336112 Iteration 15: convergence error = 0.0005568027720528335 Iteration 16: convergence error = 0.00016657113292239956 Iteration 17: convergence error = 4.982950849807821e-5 Iteration 18: convergence error = 1.4906193655406241e-5 Iteration 19: convergence error = 4.459059027794865e-6 Iteration 20: convergence error = 1.3338808457774576e-6 Iteration 21: convergence error = 3.9901397030916996e-7 Iteration 22: convergence error = 1.1923566489713266e-7 Iteration 23: convergence error = 3.4752247302094474e-8 Iteration 24: convergence error = 1.0052872312371619e-8 Iteration 25: convergence error = 2.8976501198485494e-9 Iteration 26: convergence error = 8.324150257976726e-10 Iteration 27: convergence error = 2.4147084332071245e-10 Iteration 28: convergence error = 7.185008144006133e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.303815562085 K, F = -7449.856726279685, relative_change = 0.032696184437915006 Iter 2: T = 936.6819086237862 K, F = -6315.067528065415, relative_change = 0.03165696903666701 Iter 3: T = 908.1029704089457 K, F = -5351.625310528308, relative_change = 0.030510825448555882 Iter 5: T = 856.935962935077 K, F = -3839.57024241206, relative_change = 0.027903075518076255 Iter 10: T = 761.7619963878986 K, F = -1662.5929257486578, relative_change = 0.01998634813520852 Iter 15: T = 706.025148765987 K, F = -711.8492646085136, relative_change = 0.011979671656068199 Iter 20: T = 677.3546574343311 K, F = -301.7062916788086, relative_change = 0.0061360366195769905 Iter 25: T = 663.9832657887825 K, F = -127.01274448790964, relative_change = 0.002834916098864246 Iter 30: T = 658.0963499958647 K, F = -53.27739519024273, relative_change = 0.0012401643671935665 Iter 35: T = 655.5777844364493 K, F = -22.310160556740946, relative_change = 0.0005288534137022332 Iter 40: T = 654.5141803292025 K, F = -9.335517151674482, relative_change = 0.00022300908971934215 Iter 45: T = 654.0675333879997 K, F = -3.905130313871861, relative_change = 9.359015975429595e-5 Iter 50: T = 653.8804169825245 K, F = -1.63333098073438, relative_change = 3.919767342147958e-5 Iter 55: T = 653.802105942503 K, F = -0.6831063386748351, relative_change = 1.64029523440647e-5 Iter 60: T = 653.7693453962522 K, F = -0.28568809642838844, relative_change = 6.861664154356939e-6 Iter 65: T = 653.7556428061417 K, F = -0.11947902527178356, relative_change = 2.869936714847532e-6 Iter 70: T = 653.7499119151934 K, F = -0.04996770418424895, relative_change = 1.2002954798273079e-6 Iter 75: T = 653.7475151349618 K, F = -0.02089711667720806, relative_change = 5.019872919587235e-7 Iter 80: T = 653.746512763541 K, F = -0.008739428312443287, relative_change = 2.0993872241673236e-7 Iter 85: T = 653.7460935582146 K, F = -0.003654934086012751, relative_change = 8.779916805380554e-8 Iter 90: T = 653.7459182412563 K, F = -0.0015285372219456805, relative_change = 3.671871082140401e-8 Iter 95: T = 653.7458449215609 K, F = -0.0006392525455261033, relative_change = 1.535621217300779e-8 Iter 100: T = 653.7458142583798 K, F = -0.0002673430523963405, relative_change = 6.422152842541805e-9 Iter 105: T = 653.7458014346699 K, F = -0.00011180605978144964, relative_change = 2.685821326796895e-9 Iter 110: T = 653.7457960716409 K, F = -4.675862873493308e-5, relative_change = 1.12324258111389e-9 Iter 115: T = 653.7457938287581 K, F = -1.955501736944365e-5, relative_change = 4.697534794503718e-10 Iter 120: T = 653.7457928907578 K, F = -8.17814145598339e-6, relative_change = 1.9645650822238189e-10 Iter 125: T = 653.7457924984749 K, F = -3.4201969899005924e-6, relative_change = 8.216047174099289e-11 Iter 130: T = 653.7457923344174 K, F = -1.4303671074800128e-6, relative_change = 3.436048765635082e-11 Iter 135: T = 653.7457922658067 K, F = -5.98197305745618e-7, relative_change = 1.4369983092394531e-11 Iter 140: T = 653.7457922371128 K, F = -2.5017318761033636e-7, relative_change = 6.0096968715050964e-12 Iter 145: T = 653.7457922251126 K, F = -1.0462525296128788e-7, relative_change = 2.5133231161293824e-12 Iter 150: T = 653.7457922200941 K, F = -4.375574563786344e-8, relative_change = 1.0511069160313475e-12 Iter 155: T = 653.7457922179952 K, F = -1.8299655402120862e-8, relative_change = 4.395969963270149e-13 Converged in 159 iterations to T = 653.7457922172376 K Iter 1: T = 970.3569086670508 K, F = -6754.206558071933, relative_change = 0.029643091332949248 Iter 2: T = 942.8783879509751 K, F = -5720.636139611921, relative_change = 0.028317952364374923 Iter 3: T = 917.5196011896154 K, F = -4843.479377339406, relative_change = 0.026895076910680348 Iter 5: T = 872.9448187992059 K, F = -3467.8994456709183, relative_change = 0.023801257136940347 Iter 10: T = 793.8363053139107 K, F = -1492.63819367828, relative_change = 0.01549553368411409 Iter 15: T = 750.7416089722742 K, F = -635.3685957986872, relative_change = 0.008483086751739472 Iter 20: T = 729.8255446942114 K, F = -268.18921762560126, relative_change = 0.004080773749643135 Iter 25: T = 720.41217846465 K, F = -112.64746682029121, relative_change = 0.0018218236512673358 Iter 30: T = 716.342309638053 K, F = -47.20065865180305, relative_change = 0.000784111667406404 Iter 35: T = 714.6155280983311 K, F = -19.75603275124499, relative_change = 0.0003319764573975246 Iter 40: T = 713.8889316347176 K, F = -8.265063516553207, relative_change = 0.00013955806833289316 Iter 45: T = 713.5842759253085 K, F = -3.457049739311008, relative_change = 5.849201562218782e-5 Iter 50: T = 713.4567274432472 K, F = -1.445867355315636, relative_change = 2.44843719477767e-5 Iter 55: T = 713.4033609921397 K, F = -0.6046943752867747, relative_change = 1.0243564458130791e-5 Iter 60: T = 713.3810382772043 K, F = -0.2528931001207397, relative_change = 4.284664834902983e-6 Iter 65: T = 713.3717019115404 K, F = -0.10576338532080931, relative_change = 1.7920176366221724e-6 Iter 70: T = 713.36779720253 K, F = -0.04423159314006353, relative_change = 7.494641027151915e-7 Iter 75: T = 713.3661641839582 K, F = -0.018498194882729746, relative_change = 3.1343849830718977e-7 Iter 80: T = 713.3654812321308 K, F = -0.007736168531093046, relative_change = 1.310843633702042e-7 Iter 85: T = 713.3651956128282 K, F = -0.0032353585083129133, relative_change = 5.482115818621397e-8 Iter 90: T = 713.3650761633038 K, F = -0.0013530656432509947, relative_change = 2.2926882634536713e-8 Iter 95: T = 713.3650262080649 K, F = -0.0005658682243239177, relative_change = 9.588299544767571e-9 Iter 100: T = 713.3650053161839 K, F = -0.00023665285237428613, relative_change = 4.009941989222406e-9 Iter 105: T = 713.3649965789491 K, F = -9.897105018141783e-5, relative_change = 1.6770057449178016e-9 Iter 110: T = 713.364992924933 K, F = -4.1390875292979246e-5, relative_change = 7.013438497325846e-10 Iter 115: T = 713.3649913967798 K, F = -1.7310159143968384e-5, relative_change = 2.9331039006550477e-10 Iter 120: T = 713.3649907576878 K, F = -7.2393138487170106e-6, relative_change = 1.226658842458257e-10 Iter 125: T = 713.364990490412 K, F = -3.027568557190108e-6, relative_change = 5.130035561462581e-11 Iter 130: T = 713.3649903786339 K, F = -1.2661640111932826e-6, relative_change = 2.145439908696866e-11 Iter 135: T = 713.364990331887 K, F = -5.295243803438154e-7, relative_change = 8.972476934495862e-12 Iter 140: T = 713.364990312337 K, F = -2.214520576915291e-7, relative_change = 3.75237392979532e-12 Iter 145: T = 713.3649903041609 K, F = -9.26134587908578e-8, relative_change = 1.5692801952557564e-12 Iter 150: T = 713.3649903007416 K, F = -3.87328539241949e-8, relative_change = 6.563052645255531e-13 Iter 155: T = 713.3649902993117 K, F = -1.619902978422516e-8, relative_change = 2.744829634424017e-13 Converged in 157 iterations to T = 713.364990299009 K Iter 1: T = 974.3902052398116 K, F = -5835.216097312853, relative_change = 0.02560979476018838 Iter 2: T = 950.9698185794807 K, F = -4936.833480503406, relative_change = 0.02403594220712308 Iter 3: T = 929.6643076498203 K, F = -4174.961302811033, relative_change = 0.0224039822436065 Iter 5: T = 893.0453486622301 K, F = -2981.744331711444, relative_change = 0.01905000212826534 Iter 10: T = 831.3437391077766 K, F = -1275.063135408088, relative_change = 0.011198508141020901 Iter 15: T = 800.0106959466615 K, F = -539.9126453956725, relative_change = 0.005654498799450066 Iter 20: T = 785.5180114184499 K, F = -227.17165191268273, relative_change = 0.0025913230228164718 Iter 25: T = 779.1650450245958 K, F = -95.26570796010174, relative_change = 0.00112915406739239 Iter 30: T = 776.4525671932012 K, F = -39.88830663337536, relative_change = 0.0004806696994246263 Iter 35: T = 775.3080848591425 K, F = -16.690119263255717, relative_change = 0.0002025377359134957 Iter 40: T = 774.8276553640712 K, F = -6.981477432439405, relative_change = 8.497178204800812e-5 Iter 45: T = 774.6264182497594 K, F = -2.9199950688742424, relative_change = 3.558332004451778e-5 Iter 50: T = 774.5422031025721 K, F = -1.2212219548113685, relative_change = 1.4889624335623071e-5 Iter 55: T = 774.5069736243607 K, F = -0.5107375054685488, relative_change = 6.2284636905949966e-6 Iter 60: T = 774.4922385388326 K, F = -0.21359790614673002, relative_change = 2.6050707123245406e-6 Iter 65: T = 774.486075853221 K, F = -0.08932943694295425, relative_change = 1.0895159064907379e-6 Iter 70: T = 774.4834984925734 K, F = -0.037358679616404045, relative_change = 4.556562987906339e-7 Iter 75: T = 774.482420600488 K, F = -0.015623853361841467, relative_change = 1.9056225871486719e-7 Iter 80: T = 774.4819698115567 K, F = -0.0065340833545682875, relative_change = 7.969564898625549e-8 Iter 85: T = 774.4817812859643 K, F = -0.00273263191627926, relative_change = 3.332971353335312e-8 Iter 90: T = 774.4817024422616 K, F = -0.0011428193406783915, relative_change = 1.3938891469603278e-8 Iter 95: T = 774.481669468875 K, F = -0.0004779407020125692, relative_change = 5.8294121280254394e-9 Iter 100: T = 774.4816556790095 K, F = -0.00019988050950325853, relative_change = 2.4379299777697093e-9 Iter 105: T = 774.4816499119228 K, F = -8.359241506239456e-5, relative_change = 1.0195714545979396e-9 Iter 110: T = 774.4816475000582 K, F = -3.49593465540643e-5, relative_change = 4.2639696819156873e-10 Iter 115: T = 774.4816464913877 K, F = -1.4620416968424976e-5, relative_change = 1.7832431444475693e-10 Iter 120: T = 774.4816460695496 K, F = -6.114433549808673e-6, relative_change = 7.457736507584208e-11 Iter 125: T = 774.4816458931319 K, F = -2.557129501035149e-6, relative_change = 3.1189149247962566e-11 Iter 130: T = 774.4816458193519 K, F = -1.0694225163199178e-6, relative_change = 1.3043679826250503e-11 Iter 135: T = 774.4816457884962 K, F = -4.4724500181114735e-7, relative_change = 5.455019433008525e-12 Iter 140: T = 774.4816457755919 K, F = -1.8704351378850959e-7, relative_change = 2.2813580889301945e-12 Iter 145: T = 774.4816457701952 K, F = -7.822356895559324e-8, relative_change = 9.540879989537224e-13 Iter 150: T = 774.4816457679383 K, F = -3.271340764943176e-8, relative_change = 3.9900339578414346e-13 Converged in 154 iterations to T = 774.4816457671237 K Iter 1: T = 970.3703640910005 K, F = -6751.140726925568, relative_change = 0.029629635908999488 Iter 2: T = 942.90555925497 K, F = -5718.018514167033, relative_change = 0.028303425014178332 Iter 3: T = 917.5606673920182 K, F = -4841.24392874895, relative_change = 0.02687956563006987 Iter 5: T = 873.0137946432325 K, F = -3466.268624549371, relative_change = 0.023784208781540098 Iter 10: T = 793.9698934284264 K, F = -1491.9001426454192, relative_change = 0.01547852189505342 Iter 15: T = 750.922258911834 K, F = -635.0408517817355, relative_change = 0.008470970125408619 Iter 20: T = 730.0332940057034 K, F = -268.0471517797881, relative_change = 0.004074081575208275 Iter 25: T = 720.6332267329021 K, F = -112.58697532742102, relative_change = 0.0018186358296593895 Iter 30: T = 716.5693411467313 K, F = -47.17515257763071, relative_change = 0.0007826998199895409 Iter 35: T = 714.84514269786 K, F = -19.745327870553368, relative_change = 0.0003313713469888926 Iter 40: T = 714.1196412266671 K, F = -8.260579850072975, relative_change = 0.00013930236975225513 Iter 45: T = 713.8154460735091 K, F = -3.455173425381978, relative_change = 5.838461341331583e-5 Iter 50: T = 713.6880906626295 K, F = -1.445082449426665, relative_change = 2.443937316456876e-5 Iter 55: T = 713.6348050370773 K, F = -0.6043660816648918, relative_change = 1.0224731076949411e-5 Iter 60: T = 713.6125161385186 K, F = -0.2527557974022859, relative_change = 4.276785977586625e-6 Iter 65: T = 713.6031939177459 K, F = -0.1057059625629233, relative_change = 1.7887221648125312e-6 Iter 70: T = 713.5992951247314 K, F = -0.04420757806125697, relative_change = 7.480858201603954e-7 Iter 75: T = 713.5976645803756 K, F = -0.018488151455492208, relative_change = 3.128620706298004e-7 Iter 80: T = 713.5969826633083 K, F = -0.007731968244382492, relative_change = 1.3084329208763276e-7 Iter 85: T = 713.596697476757 K, F = -0.00323360189856825, relative_change = 5.472033890858527e-8 Iter 90: T = 713.5965782082146 K, F = -0.001352331006643892, relative_change = 2.288471871548569e-8 Iter 95: T = 713.5965283286648 K, F = -0.0005655609912219584, relative_change = 9.570666090092247e-9 Iter 100: T = 713.5965074684377 K, F = -0.00023652436309706815, relative_change = 4.00256745350116e-9 Iter 105: T = 713.596498744441 K, F = -9.891731355504696e-5, relative_change = 1.6739216107987613e-9 Iter 110: T = 713.5964950959612 K, F = -4.136840170665401e-5, relative_change = 7.000540230817152e-10 Iter 115: T = 713.5964935701235 K, F = -1.730076111605694e-5, relative_change = 2.927709808770106e-10 Iter 120: T = 713.5964929319998 K, F = -7.2353846587436266e-6, relative_change = 1.2244031683760435e-10 Iter 125: T = 713.596492665129 K, F = -3.0259249645947506e-6, relative_change = 5.120601454184804e-11 Iter 130: T = 713.5964925535203 K, F = -1.265477872713916e-6, relative_change = 2.1414965393733038e-11 Iter 135: T = 713.5964925068442 K, F = -5.292385137911637e-7, relative_change = 8.956003661361692e-12 Iter 140: T = 713.5964924873238 K, F = -2.2133311694538804e-7, relative_change = 3.7454949977126175e-12 Iter 145: T = 713.5964924791601 K, F = -9.256462585316427e-8, relative_change = 1.5664187442975202e-12 Iter 150: T = 713.5964924757459 K, F = -3.8711023719884e-8, relative_change = 6.550847325126482e-13 Iter 155: T = 713.5964924743181 K, F = -1.6190096263635212e-8, relative_change = 2.739758306849115e-13 Converged in 157 iterations to T = 713.5964924740159 K Iter 1: T = 969.2907699016632 K, F = -6997.127289925259, relative_change = 0.030709230098336756 Iter 2: T = 940.7216540119031 K, F = -5928.102565548562, relative_change = 0.029474247333087206 Iter 3: T = 914.2537277022419 K, F = -5020.716747541135, relative_change = 0.02813576810609508 Iter 5: T = 867.4364671923214 K, F = -3597.3149696458645, relative_change = 0.025179807991535248 Iter 10: T = 783.0467234267134 K, F = -1551.408542956322, relative_change = 0.016913903509402268 Iter 15: T = 736.0089010496494 K, F = -661.57546336174, relative_change = 0.009521640705301008 Iter 20: T = 712.7782947832583 K, F = -279.58615644623814, relative_change = 0.004664977773199251 Iter 25: T = 702.2159945821421 K, F = -117.50943159241776, relative_change = 0.0021028229667085377 Iter 30: T = 697.6262474243846 K, F = -49.25257211302723, relative_change = 0.0009091280835476301 Iter 35: T = 695.6744387227333 K, F = -20.61757186472357, relative_change = 0.0003856645400375101 Iter 40: T = 694.8523438070629 K, F = -8.625976848627372, relative_change = 0.00016226406111280103 Iter 45: T = 694.507501986055 K, F = -3.6080951331149014, relative_change = 6.803273298624871e-5 Iter 50: T = 694.3631035643054 K, F = -1.5090551458741213, relative_change = 2.848229026956053e-5 Iter 55: T = 694.3026826117856 K, F = -0.6311235574450341, relative_change = 1.1916922234209334e-5 Iter 60: T = 694.2774082793492 K, F = -0.2639466761270005, relative_change = 4.984724727480825e-6 Iter 65: T = 694.2668372773625 K, F = -0.11038622365293727, relative_change = 2.0848333315181366e-6 Iter 70: T = 694.2624161876495 K, F = -0.04616493697803703, relative_change = 8.719305205569178e-7 Iter 75: T = 694.2605672053211 K, F = -0.019306745449342078, relative_change = 3.6465671066727817e-7 Iter 80: T = 694.2597939336157 K, F = -0.008074314573666141, relative_change = 1.5250465775433112e-7 Iter 85: T = 694.2594705412419 K, F = -0.0033767753162249337, relative_change = 6.377942069353994e-8 Iter 90: T = 694.2593352945296 K, F = -0.001412207858069725, relative_change = 2.6673341928694083e-8 Iter 95: T = 694.2592787327114 K, F = -0.0005906022086922258, relative_change = 1.1155114791949021e-8 Iter 100: T = 694.2592550778787 K, F = -0.00024699690165108645, relative_change = 4.665203071687444e-9 Iter 105: T = 694.2592451851443 K, F = -0.00010329705401668221, relative_change = 1.95104377086108e-9 Iter 110: T = 694.2592410478844 K, F = -4.3200061552672864e-5, relative_change = 8.159498272906598e-10 Iter 115: T = 694.2592393176328 K, F = -1.806678100835235e-5, relative_change = 3.412399540312959e-10 Iter 120: T = 694.259238594021 K, F = -7.555742884135519e-6, relative_change = 1.4271061159469311e-10 Iter 125: T = 694.2592382913979 K, F = -3.1599006914406758e-6, relative_change = 5.968325922480915e-11 Iter 130: T = 694.2592381648374 K, F = -1.321509377150143e-6, relative_change = 2.4960273911951222e-11 Iter 135: T = 694.2592381119082 K, F = -5.526703942271283e-7, relative_change = 1.0438673131242647e-11 Iter 140: T = 694.2592380897726 K, F = -2.3113208891256676e-7, relative_change = 4.365553776478052e-12 Iter 145: T = 694.2592380805153 K, F = -9.666257583251792e-8, relative_change = 1.825733825977596e-12 Iter 150: T = 694.2592380766437 K, F = -4.042563361839058e-8, relative_change = 7.63547278768081e-13 Iter 155: T = 694.2592380750245 K, F = -1.690639805929095e-8, relative_change = 3.1932299080186525e-13 Converged in 158 iterations to T = 694.2592380745505 K Iter 1: T = 963.5640149270433 K, F = -8301.973858442721, relative_change = 0.03643598507295662 Iter 2: T = 929.0058578499511 K, F = -7044.498621015511, relative_change = 0.03586493117399037 Iter 3: T = 896.2919953751265 K, F = -5976.56977136809, relative_change = 0.03521383874859097 Iter 5: T = 836.2783051018687 K, F = -4299.487174497158, relative_change = 0.03364230625072173 Iter 10: T = 716.5801553686125 K, F = -1878.8798065784897, relative_change = 0.027920869496831133 Iter 15: T = 636.929106821013 K, F = -813.6041322551488, relative_change = 0.02000718105886567 Iter 20: T = 590.2681821595044 K, F = -348.35877926420113, relative_change = 0.011997181539246435 Iter 25: T = 566.2596084765046 K, F = -147.6494639519023, relative_change = 0.006146931547848573 Iter 30: T = 555.0604191140352 K, F = -62.158414576753515, relative_change = 0.0028404614774926286 Iter 35: T = 550.1293679779086 K, F = -26.073427619018133, relative_change = 0.0012426994775965236 Iter 40: T = 548.0196498101617 K, F = -10.918399242882055, relative_change = 0.0005299553538079076 Iter 45: T = 547.1286866296923 K, F = -4.568726328795988, relative_change = 0.00022347755260972903 Iter 50: T = 546.7545348841182 K, F = -1.9111399924201455, relative_change = 9.378743347925233e-5 Iter 55: T = 546.5977887558562 K, F = -0.7993394669021703, relative_change = 3.928041480606485e-5 Iter 60: T = 546.5321880373119 K, F = -0.3343069524019598, relative_change = 1.6437597742585404e-5 Iter 65: T = 546.5047446944906 K, F = -0.13981354703334442, relative_change = 6.876160623095245e-6 Iter 70: T = 546.4932661015062 K, F = -0.058472112677195126, relative_change = 2.876000597314382e-6 Iter 75: T = 546.4884653615507 K, F = -0.02445380886421053, relative_change = 1.2028316929016555e-6 Iter 80: T = 546.4864575901146 K, F = -0.01022688768092539, relative_change = 5.030480059250455e-7 Iter 85: T = 546.485617908312 K, F = -0.004277008796127635, relative_change = 2.1038233254657779e-7 Iter 90: T = 546.4852667419882 K, F = -0.0017886965474872285, relative_change = 8.798469235293004e-8 Iter 95: T = 546.485119879799 K, F = -0.0007480543262430861, relative_change = 3.6796299550632475e-8 Iter 100: T = 546.4850584602357 K, F = -0.00031284526433927873, relative_change = 1.5388660709932886e-8 Iter 105: T = 546.4850327738335 K, F = -0.00013083562772220336, relative_change = 6.435723227532744e-9 Iter 110: T = 546.4850220314721 K, F = -5.471702254220001e-5, relative_change = 2.6914965900523043e-9 Iter 115: T = 546.4850175388881 K, F = -2.2883312579685677e-5, relative_change = 1.1256160756987913e-9 Iter 120: T = 546.4850156600357 K, F = -9.570074811365847e-6, relative_change = 4.70746103394044e-10 Iter 125: T = 546.4850148742772 K, F = -4.0023197408478595e-6, relative_change = 1.96871651745162e-10 Iter 130: T = 546.4850145456636 K, F = -1.6738175955266499e-6, relative_change = 8.233406050287558e-11 Iter 135: T = 546.4850144082335 K, F = -7.000109565891144e-7, relative_change = 3.4433109483087704e-11 Iter 140: T = 546.4850143507587 K, F = -2.927530416141355e-7, relative_change = 1.4400342514025383e-11 Iter 145: T = 546.485014326722 K, F = -1.224332410731943e-7, relative_change = 6.022416017283498e-12 Iter 150: T = 546.4850143166694 K, F = -5.120290094695612e-8, relative_change = 2.51863928552691e-12 Iter 155: T = 546.4850143124653 K, F = -2.1412855599756142e-8, relative_change = 1.0532852305908662e-12 Iter 160: T = 546.4850143107071 K, F = -8.954864766375081e-9, relative_change = 4.404843042332612e-13 Converged in 164 iterations to T = 546.4850143100725 K Iter 1: T = 966.9051988429459 K, F = -7540.681924917921, relative_change = 0.03309480115705411 Iter 2: T = 935.868269000015 K, F = -6392.747961399775, relative_change = 0.03209924807527307 Iter 3: T = 906.8587961747078 K, F = -5418.104607856398, relative_change = 0.0309973890409856 Iter 5: T = 854.7911887556216 K, F = -3888.3418187435245, relative_change = 0.02847504339720854 Iter 10: T = 757.2883110993373 K, F = -1685.1814489993135, relative_change = 0.02068195652004253 Iter 15: T = 699.5463909898682 K, F = -722.1970705412955, relative_change = 0.012579677070195765 Iter 20: T = 669.5505067736603 K, F = -306.31323099235914, relative_change = 0.006515294079747077 Iter 25: T = 655.4697930640983 K, F = -129.00682570972623, relative_change = 0.0030295651838258045 Iter 30: T = 649.2491166315489 K, F = -54.12515025481257, relative_change = 0.0013294995294913813 Iter 35: T = 646.5834416585077 K, F = -22.667295302273583, relative_change = 0.0005677523156842561 Iter 40: T = 645.4569090459389 K, F = -9.485343005321587, relative_change = 0.00023955831245786726 Iter 45: T = 644.9836918039667 K, F = -3.9678721814233686, relative_change = 0.00010056136989688198 Iter 50: T = 644.7854186291917 K, F = -1.6595849597496464, relative_change = 4.212195413671692e-5 Iter 55: T = 644.7024338286132 K, F = -0.6940886223336747, relative_change = 1.76274722935757e-5 Iter 60: T = 644.6677172811573 K, F = -0.29028146610793704, relative_change = 7.374044642199437e-6 Iter 65: T = 644.6531964266316 K, F = -0.12140010562798842, relative_change = 3.08426788857644e-6 Iter 70: T = 644.6471232855044 K, F = -0.050771136628734004, relative_change = 1.289939652212487e-6 Iter 75: T = 644.6445833647739 K, F = -0.021233124115366042, relative_change = 5.394790100059731e-7 Iter 80: T = 644.6435211289951 K, F = -0.008879951055799418, relative_change = 2.256184610925081e-7 Iter 85: T = 644.6430768874534 K, F = -0.003713702449917089, relative_change = 9.435666654975553e-8 Iter 90: T = 644.6428911000112 K, F = -0.0015531148676070639, relative_change = 3.946114281762553e-8 Iter 95: T = 644.6428134014272 K, F = -0.0006495312120564645, relative_change = 1.6503131330714185e-8 Iter 100: T = 644.6427809069417 K, F = -0.0002716417142258898, relative_change = 6.901808377199923e-9 Iter 105: T = 644.642767317358 K, F = -0.00011360380942315729, relative_change = 2.886418989392647e-9 Iter 110: T = 644.6427616340316 K, F = -4.751046999668107e-5, relative_change = 1.2071349477263765e-9 Iter 115: T = 644.6427592571965 K, F = -1.986944528420409e-5, relative_change = 5.048382433853731e-10 Iter 120: T = 644.6427582631757 K, F = -8.309639548065295e-6, relative_change = 2.1112939004608523e-10 Iter 125: T = 644.6427578474643 K, F = -3.47519052912304e-6, relative_change = 8.829683342055321e-11 Iter 130: T = 644.6427576736088 K, F = -1.4533650513626206e-6, relative_change = 3.692676154840251e-11 Iter 135: T = 644.6427576009004 K, F = -6.078144174637146e-7, relative_change = 1.5443207506863503e-11 Iter 140: T = 644.6427575704929 K, F = -2.5419539134707847e-7, relative_change = 6.458537448196099e-12 Iter 145: T = 644.642757557776 K, F = -1.0630687563573105e-7, relative_change = 2.701020398993438e-12 Iter 150: T = 644.6427575524577 K, F = -4.4458484338427695e-8, relative_change = 1.1295908415426961e-12 Iter 155: T = 644.6427575502336 K, F = -1.859324061381784e-8, relative_change = 4.724127379700076e-13 Converged in 160 iterations to T = 644.6427575493034 K Iter 1: T = 965.1605148231085 K, F = -7938.20983846082, relative_change = 0.034839485176891484 Iter 2: T = 932.2944089535566 K, F = -6732.934232787987, relative_change = 0.03405247662413489 Iter 3: T = 901.3722031961735 K, F = -5709.44415182658, relative_change = 0.03316785498273175 Iter 5: T = 845.2465412137789 K, F = -4102.500778966121, relative_change = 0.03108686436411497 Iter 10: T = 736.7987674806315 K, F = -1785.2921782138762, relative_change = 0.024110447906395223 Iter 15: T = 668.9403729753002 K, F = -768.7548581720516, relative_change = 0.015805951555791228 Iter 20: T = 631.7884584032345 K, F = -327.3621520807117, relative_change = 0.008705461552582505 Iter 25: T = 613.6893562383688 K, F = -138.21485937629097, relative_change = 0.00420406830630419 Iter 30: T = 605.5261969776523 K, F = -58.06214025212876, relative_change = 0.0018806749687801916 Iter 35: T = 601.9931183734137 K, F = -24.330258613650734, relative_change = 0.0008102009872752501 Iter 40: T = 600.4933747952728 K, F = -10.183809274916568, relative_change = 0.00034316286548686327 Iter 45: T = 599.862181858727 K, F = -4.2605117930898855, relative_change = 0.0001442858957603015 Iter 50: T = 599.5975049842126 K, F = -1.7820641641520034, relative_change = 6.0478014969971185e-5 Iter 55: T = 599.4866901554391 K, F = -0.7453273467951024, relative_change = 2.5316481172680086e-5 Iter 60: T = 599.4403243746634 K, F = -0.31171299476507536, relative_change = 1.0591832473381197e-5 Iter 65: T = 599.4209298535873 K, F = -0.13036353121293234, relative_change = 4.430361941752946e-6 Iter 70: T = 599.4128181687767 K, F = -0.05451983648474834, relative_change = 1.8529581761174951e-6 Iter 75: T = 599.4094256490806 K, F = -0.022800890597837076, relative_change = 7.749516106920874e-7 Iter 80: T = 599.4080068364979 K, F = -0.009535612420142225, relative_change = 3.24097931531248e-7 Iter 85: T = 599.4074134685757 K, F = -0.003987908334238344, relative_change = 1.3554230989141487e-7 Iter 90: T = 599.4071653144025 K, F = -0.001667791124627116, relative_change = 5.668553238062516e-8 Iter 95: T = 599.4070615332549 K, F = -0.000697490206785667, relative_change = 2.3706587539204825e-8 Iter 100: T = 599.4070181307206 K, F = -0.00029169874180184907, relative_change = 9.914381699176723e-9 Iter 105: T = 599.4069999792592 K, F = -0.0001219918995409297, relative_change = 4.1463134985032235e-9 Iter 110: T = 599.4069923881007 K, F = -5.101846967725532e-5, relative_change = 1.7340379406049117e-9 Iter 115: T = 599.4069892133873 K, F = -2.1336533309712635e-5, relative_change = 7.251953938843008e-10 Iter 120: T = 599.4069878856842 K, F = -8.923192493570653e-6, relative_change = 3.0328535893766823e-10 Iter 125: T = 599.406987330423 K, F = -3.7317856385055137e-6, relative_change = 1.2683755871675133e-10 Iter 130: T = 599.4069870982062 K, F = -1.560678371592683e-6, relative_change = 5.304501762304809e-11 Iter 135: T = 599.4069870010903 K, F = -6.526946775275988e-7, relative_change = 2.2184071573501346e-11 Iter 140: T = 599.4069869604753 K, F = -2.729648246324601e-7, relative_change = 9.277647600232118e-12 Iter 145: T = 599.4069869434895 K, F = -1.1415674094905626e-7, relative_change = 3.880009137753472e-12 Iter 150: T = 599.4069869363859 K, F = -4.77413763522172e-8, relative_change = 1.6226547373899356e-12 Iter 155: T = 599.406986933415 K, F = -1.996585968777609e-8, relative_change = 6.786083536884135e-13 Iter 160: T = 599.4069869321727 K, F = -8.350068469997751e-9, relative_change = 2.8380577176628347e-13 Converged in 162 iterations to T = 599.4069869319097 K Iter 1: T = 980.0049979081463 K, F = -4555.880246786129, relative_change = 0.019995002091853745 Iter 2: T = 962.0596020066441 K, F = -3848.509174245248, relative_change = 0.018311535083807888 Iter 3: T = 946.0438901182165 K, F = -3249.453118613872, relative_change = 0.016647317749360204 Iter 5: T = 919.2813626347818 K, F = -2313.3865780990727, relative_change = 0.013465993769608128 Iter 10: T = 876.736509344866 K, F = -982.2606486138261, relative_change = 0.007091090203027705 Iter 15: T = 856.5677438644706 K, F = -413.9567093649038, relative_change = 0.003329914427967877 Iter 20: T = 847.6098755751897 K, F = -173.73283187989372, relative_change = 0.001468458462770933 Iter 25: T = 843.7615767374126 K, F = -72.76896616214921, relative_change = 0.000628478717755898 Iter 30: T = 842.1334465859625 K, F = -30.452793647923745, relative_change = 0.0002654344416267924 Iter 35: T = 841.449199283054 K, F = -12.739239052861496, relative_change = 0.00011146871252806941 Iter 40: T = 841.1624488917712 K, F = -5.328319198110272, relative_change = 4.669864371836022e-5 Iter 45: T = 841.0424228808831 K, F = -2.2284748442286797, relative_change = 1.9544150699097635e-5 Iter 50: T = 840.9922084266957 K, F = -0.931993715562166, relative_change = 8.17608701646042e-6 Iter 55: T = 840.97120496698 K, F = -0.38977421248501254, relative_change = 3.419772894485752e-6 Iter 60: T = 840.962420513782 K, F = -0.16300880955488606, relative_change = 1.4302660768576264e-6 Iter 65: T = 840.9587466533762 K, F = -0.0681723321530987, relative_change = 5.981676847734427e-7 Iter 70: T = 840.9572101840838 K, F = -0.028510501163206525, relative_change = 2.50163200957634e-7 Iter 75: T = 840.9565676113039 K, F = -0.011923435168919028, relative_change = 1.0462164600106821e-7 Iter 80: T = 840.9562988791735 K, F = -0.004986523525042141, relative_change = 4.3754093127184554e-8 Iter 85: T = 840.9561864920963 K, F = -0.002085423786003293, relative_change = 1.829849676730156e-8 Iter 90: T = 840.9561394904625 K, F = -0.0008721491470142784, relative_change = 7.652652041878297e-9 Iter 95: T = 840.9561198338151 K, F = -0.00036474319108226183, relative_change = 3.200430850841278e-9 Iter 100: T = 840.95611161317 K, F = -0.0001525399588844234, relative_change = 1.3384584690214523e-9 Iter 105: T = 840.956108175198 K, F = -6.37940340257881e-5, relative_change = 5.597593404465691e-10 Iter 110: T = 840.956106737397 K, F = -2.66794264098813e-5, relative_change = 2.3409803879500227e-10 Iter 115: T = 840.9561061360914 K, F = -1.1157654690396868e-5, relative_change = 9.790259540582719e-11 Iter 120: T = 840.9561058846184 K, F = -4.666266980590805e-6, relative_change = 4.0944056935189455e-11 Iter 125: T = 840.9561057794493 K, F = -1.9514906268724985e-6, relative_change = 1.7123311571130172e-11 Iter 130: T = 840.9561057354663 K, F = -8.161360933733874e-7, relative_change = 7.161168197437942e-12 Iter 135: T = 840.956105717072 K, F = -3.4131779846902077e-7, relative_change = 2.9948855144581673e-12 Iter 140: T = 840.9561057093794 K, F = -1.427432956280228e-7, relative_change = 1.2524979075177241e-12 Iter 145: T = 840.9561057061622 K, F = -5.96984652823096e-8, relative_change = 5.238228704227508e-13 Converged in 150 iterations to T = 840.9561057048168 K Iter 1: T = 976.4214543985806 K, F = -5372.394044270558, relative_change = 0.023578545601419358 Iter 2: T = 955.0048800209942 K, F = -4542.7333318163755, relative_change = 0.021933740067989253 Iter 3: T = 935.6587683185969 K, F = -3839.45829756689, relative_change = 0.020257605073150962 Iter 5: T = 902.757453358631 K, F = -2738.8670886920113, relative_change = 0.016904501340543214 Iter 10: T = 848.5633994777179 K, F = -1167.9365533787156, relative_change = 0.009514652448264263 Iter 15: T = 821.8014996774698 K, F = -493.57389976619027, relative_change = 0.0046609994960901445 Iter 20: T = 809.6344226879099 K, F = -207.44713773970577, relative_change = 0.0021008962993889334 Iter 25: T = 804.3475094988968 K, F = -86.94863895539791, relative_change = 0.0009082680796091755 Iter 30: T = 802.0992617925363 K, F = -36.3974548024444, relative_change = 0.0003852946708255116 Iter 35: T = 801.1523139703017 K, F = -15.22795646333648, relative_change = 0.00016210753593468092 Iter 40: T = 800.7551015509991 K, F = -6.369586658390359, relative_change = 6.796694594432991e-5 Iter 45: T = 800.5887737556677 K, F = -2.664025348864223, relative_change = 2.8454719948596947e-5 Iter 50: T = 800.5191768805238 K, F = -1.114160151048858, relative_change = 1.1905381935101849e-5 Iter 55: T = 800.4900642279282 K, F = -0.4659608434884187, relative_change = 4.979896675068083e-6 Iter 60: T = 800.4778878476839 K, F = -0.19487139747730575, relative_change = 2.0828138741303765e-6 Iter 65: T = 800.4727953439095 K, F = -0.08149772197696337, relative_change = 8.710859054468571e-7 Iter 70: T = 800.4706655637066 K, F = -0.03408335144897778, relative_change = 3.643034731227245e-7 Iter 75: T = 800.4697748581904 K, F = -0.014254070006474606, relative_change = 1.5235692794784733e-7 Iter 80: T = 800.4694023534568 K, F = -0.005961223246510161, relative_change = 6.371763802199068e-8 Iter 85: T = 800.4692465673451 K, F = -0.0024930549177704098, relative_change = 2.6647503615778075e-8 Iter 90: T = 800.4691814157006 K, F = -0.0010426253694895138, relative_change = 1.114430888471287e-8 Iter 95: T = 800.4691541684992 K, F = -0.00043603838741668177, relative_change = 4.6606838896412136e-9 Iter 100: T = 800.4691427733932 K, F = -0.0001823564603241623, relative_change = 1.949153787688031e-9 Iter 105: T = 800.4691380078236 K, F = -7.626364980795053e-5, relative_change = 8.151594181827015e-10 Iter 110: T = 800.4691360148055 K, F = -3.1894370489227164e-5, relative_change = 3.409094223130157e-10 Iter 115: T = 800.4691351813016 K, F = -1.3338607854351814e-5, relative_change = 1.4257240543960585e-10 Iter 120: T = 800.4691348327202 K, F = -5.578365797065388e-6, relative_change = 5.962549018930549e-11 Iter 125: T = 800.4691346869394 K, F = -2.332940160276742e-6, relative_change = 2.493610240343394e-11 Iter 130: T = 800.469134625972 K, F = -9.756631853541364e-7, relative_change = 1.0428573147451838e-11 Iter 135: T = 800.4691346004747 K, F = -4.080337627776487e-7, relative_change = 4.361351341608275e-12 Iter 140: T = 800.4691345898113 K, F = -1.7064373469821703e-7, relative_change = 1.823960047433328e-12 Iter 145: T = 800.4691345853518 K, F = -7.136291557685581e-8, relative_change = 7.627769464503829e-13 Iter 150: T = 800.4691345834868 K, F = -2.984405100825427e-8, relative_change = 3.1899417104842965e-13 Converged in 153 iterations to T = 800.4691345829408 K Iter 1: T = 980.7038068511075 K, F = -4396.6559643935025, relative_change = 0.019296193148892533 Iter 2: T = 963.4259182441534 K, F = -3713.288821547825, relative_change = 0.01761784596557319 Iter 3: T = 948.041535113975 K, F = -3134.6776497674928, relative_change = 0.0159684131793097 Iter 5: T = 922.418134679548 K, F = -2230.845119451896, relative_change = 0.012842236645823214 Iter 10: T = 881.9414590084147 K, F = -946.4942934000723, relative_change = 0.006683975752855021 Iter 15: T = 862.8858230571525 K, F = -398.70097367836263, relative_change = 0.003116962819964671 Iter 20: T = 854.4541947449139 K, F = -167.2917982430783, relative_change = 0.0013697984052130768 Iter 25: T = 850.838437422579 K, F = -70.06380845476403, relative_change = 0.0005853363373701878 Iter 30: T = 849.3098994532912 K, F = -29.31940025812137, relative_change = 0.0002470460644399073 Iter 35: T = 848.6677248967462 K, F = -12.264874576712103, relative_change = 0.00010371672759088637 Iter 40: T = 848.3986446215935 K, F = -5.129869968399953, relative_change = 4.3445775980358e-5 Iter 45: T = 848.286021616907 K, F = -2.145469726796435, relative_change = 1.818184994789224e-5 Iter 50: T = 848.2389054939962 K, F = -0.8972780094273403, relative_change = 7.606021536170568e-6 Iter 55: T = 848.2191981970727 K, F = -0.37525534405951744, relative_change = 3.181306066300184e-6 Iter 60: T = 848.2109558852613 K, F = -0.15693678494522167, relative_change = 1.3305261430927015e-6 Iter 65: T = 848.2075087672127 K, F = -0.06563292837700585, relative_change = 5.564534589603937e-7 Iter 70: T = 848.2060671264428 K, F = -0.02744849032562202, relative_change = 2.3271749967400555e-7 Iter 75: T = 848.2054642124615 K, F = -0.011479289230398537, relative_change = 9.732559048663589e-8 Iter 80: T = 848.2052120661805 K, F = -0.004800776331392864, relative_change = 4.070278596493624e-8 Iter 85: T = 848.2051066155152 K, F = -0.0020077420814621494, relative_change = 1.7022401992275947e-8 Iter 90: T = 848.2050625147737 K, F = -0.0008396617311017263, relative_change = 7.118973694195932e-9 Iter 95: T = 848.2050440713144 K, F = -0.00035115656573014853, relative_change = 2.9772401434920192e-9 Iter 100: T = 848.2050363580391 K, F = -0.00014685786979695692, relative_change = 1.2451174403337222e-9 Iter 105: T = 848.2050331322553 K, F = -6.141771497181203e-5, relative_change = 5.207229925594496e-10 Iter 110: T = 848.2050317831939 K, F = -2.5685622703219835e-5, relative_change = 2.1777258283215522e-10 Iter 115: T = 848.2050312190004 K, F = -1.0742035739141897e-5, relative_change = 9.1075108523794e-11 Iter 120: T = 848.2050309830479 K, F = -4.492449461102055e-6, relative_change = 3.8088713600028526e-11 Iter 125: T = 848.2050308843696 K, F = -1.878795487852969e-6, relative_change = 1.5929150435437908e-11 Iter 130: T = 848.2050308431012 K, F = -7.857340060812845e-7, relative_change = 6.661754974891112e-12 Iter 135: T = 848.2050308258424 K, F = -3.286037497662875e-7, relative_change = 2.786028920783478e-12 Iter 140: T = 848.2050308186246 K, F = -1.3742866511456953e-7, relative_change = 1.1651730567337913e-12 Iter 145: T = 848.2050308156058 K, F = -5.747441367276451e-8, relative_change = 4.872901749309987e-13 Converged in 150 iterations to T = 848.2050308143434 K Iter 1: T = 967.292324392404 K, F = -7452.475000222411, relative_change = 0.032707675607595944 Iter 2: T = 936.6584683567914 K, F = -6317.3066422399515, relative_change = 0.03166969825265069 Iter 3: T = 908.0671521429357 K, F = -5353.541311673222, relative_change = 0.030524804055862904 Iter 5: T = 856.8743168686714 K, F = -3840.975398802155, relative_change = 0.02791943984816302 Iter 10: T = 761.6340408255179 K, F = -1663.2427045037584, relative_change = 0.020005992938563043 Iter 15: T = 705.840764821027 K, F = -712.1462220535503, relative_change = 0.011996383302987006 Iter 20: T = 677.133360732723 K, F = -301.8382019466604, relative_change = 0.006146488294197066 Iter 25: T = 663.7423521914159 K, F = -127.06975660092431, relative_change = 0.0028402471054360477 Iter 30: T = 657.8462408226789 K, F = -53.3016144596016, relative_change = 0.0012426035982424277 Iter 35: T = 655.3236294318325 K, F = -22.32035982185067, relative_change = 0.0005299140609370816 Iter 40: T = 654.2582960189293 K, F = -9.339795305646906, relative_change = 0.00022346006585296566 Iter 45: T = 653.8109191599104 K, F = -3.906921738381774, relative_change = 9.378008159699908e-5 Iter 50: T = 653.6234963084643 K, F = -1.6340805713846782, relative_change = 3.9277333341516835e-5 Iter 55: T = 653.5450569007099 K, F = -0.6834198957702244, relative_change = 1.6436307840977288e-5 Iter 60: T = 653.5122426330228 K, F = -0.28581924188921165, relative_change = 6.875620961346009e-6 Iter 65: T = 653.4985175695737 K, F = -0.11953387399351456, relative_change = 2.8757748676750883e-6 Iter 70: T = 653.4927772788882 K, F = -0.0499906429465935, relative_change = 1.2027372836550847e-6 Iter 75: T = 653.4903765673785 K, F = -0.020906710005646034, relative_change = 5.030085216933367e-7 Iter 80: T = 653.4893725518162 K, F = -0.008743440369235467, relative_change = 2.1036581959700579e-7 Iter 85: T = 653.4889526588843 K, F = -0.0036566119784852136, relative_change = 8.797778637491902e-8 Iter 90: T = 653.4887770543601 K, F = -0.0015292389377590254, relative_change = 3.6793411360112874e-8 Iter 95: T = 653.4887036144008 K, F = -0.0006395460105613759, relative_change = 1.5387452843130874e-8 Iter 100: T = 653.488672900924 K, F = -0.00026746578288916467, relative_change = 6.435218067698987e-9 Iter 105: T = 653.4886600561798 K, F = -0.00011185738509594811, relative_change = 2.691285311944222e-9 Iter 110: T = 653.4886546843542 K, F = -4.6780095157739066e-5, relative_change = 1.1255277227216607e-9 Iter 115: T = 653.4886524377926 K, F = -1.9563995257432243e-5, relative_change = 4.707091619970981e-10 Iter 120: T = 653.4886514982536 K, F = -8.181897003467498e-6, relative_change = 1.9685620742256407e-10 Iter 125: T = 653.4886511053271 K, F = -3.4217671400216254e-6, relative_change = 8.232761956189839e-11 Iter 130: T = 653.4886509410006 K, F = -1.4310245325943605e-6, relative_change = 3.4430409382993336e-11 Iter 135: T = 653.4886508722773 K, F = -5.984718835505554e-7, relative_change = 1.4399216432591118e-11 Iter 140: T = 653.4886508435363 K, F = -2.502880945276509e-7, relative_change = 6.02192441017937e-12 Iter 145: T = 653.4886508315166 K, F = -1.0467323358076541e-7, relative_change = 2.518435012409191e-12 Iter 150: T = 653.4886508264898 K, F = -4.377633949781412e-8, relative_change = 1.0532574789081805e-12 Iter 155: T = 653.4886508243875 K, F = -1.830783602496666e-8, relative_change = 4.404860122482133e-13 Converged in 159 iterations to T = 653.4886508236285 K Iter 1: T = 973.5653556046673 K, F = -6023.158871315053, relative_change = 0.026434644395332708 Iter 2: T = 949.3236721483571 K, F = -5096.992063013357, relative_change = 0.024899903552190444 Iter 3: T = 927.2071219282294 K, F = -4311.426120883578, relative_change = 0.023297164991237438 Iter 5: T = 889.0254170172748 K, F = -3080.7387353162208, relative_change = 0.01996609115906727 Iter 10: T = 824.0556260214596 K, F = -1319.002575021431, relative_change = 0.011962606669933233 Iter 15: T = 790.644886035081 K, F = -559.0277428067855, relative_change = 0.006125417467841902 Iter 20: T = 775.0654919802124 K, F = -235.33758555971667, relative_change = 0.002829512201355738 Iter 25: T = 768.2071193337213 K, F = -98.7153121180582, relative_change = 0.0012376942893863167 Iter 30: T = 765.2730693868264 K, F = -41.33739767692177, relative_change = 0.0005277798178530545 Iter 35: T = 764.0340277605819 K, F = -17.29730099675579, relative_change = 0.00022255269124978877 Iter 40: T = 763.513712350579 K, F = -7.2356123425718675, relative_change = 9.339796909579084e-5 Iter 45: T = 763.2957343396556 K, F = -3.0263132207370886, relative_change = 3.911706446592536e-5 Iter 50: T = 763.2045073846446 K, F = -1.2656917668185463, relative_change = 1.636919991663881e-5 Iter 55: T = 763.1663436333141 K, F = -0.5293364131974202, relative_change = 6.847541340675929e-6 Iter 60: T = 763.1503810756632 K, F = -0.22137638415461347, relative_change = 2.8640291350417637e-6 Iter 65: T = 763.1437049898532 K, F = -0.09258252304569237, relative_change = 1.1978246406638564e-6 Iter 70: T = 763.1409129091934 K, F = -0.038719164969292175, relative_change = 5.009539192325784e-7 Iter 75: T = 763.1397452169001 K, F = -0.01619282561705082, relative_change = 2.0950654693437532e-7 Iter 80: T = 763.139256872146 K, F = -0.0067720345285402495, relative_change = 8.76184259662531e-8 Iter 85: T = 763.1390526402068 K, F = -0.0028321459717541853, relative_change = 3.664312213649461e-8 Iter 90: T = 763.138967227913 K, F = -0.0011844373122130714, relative_change = 1.5324600022498957e-8 Iter 95: T = 763.1389315074616 K, F = -0.0004953458381183884, relative_change = 6.408932288285437e-9 Iter 100: T = 763.1389165687405 K, F = -0.00020715954704420003, relative_change = 2.6802922957090977e-9 Iter 105: T = 763.1389103211885 K, F = -8.66365975014105e-5, relative_change = 1.1209303031115018e-9 Iter 110: T = 763.1389077083877 K, F = -3.623245983763734e-5, relative_change = 4.687864484714469e-10 Iter 115: T = 763.1389066156831 K, F = -1.5152847080313059e-5, relative_change = 1.9605208830063456e-10 Iter 120: T = 763.138906158701 K, F = -6.337101804865242e-6, relative_change = 8.199132741027417e-11 Iter 125: T = 763.1389059675856 K, F = -2.650251408775617e-6, relative_change = 3.42897491513758e-11 Iter 130: T = 763.1389058876589 K, F = -1.108366428081986e-6, relative_change = 1.4340377927861471e-11 Iter 135: T = 763.1389058542326 K, F = -4.635317581991316e-7, relative_change = 5.997313187328157e-12 Iter 140: T = 763.1389058402533 K, F = -1.9385337690636106e-7, relative_change = 2.5081332471087432e-12 Iter 145: T = 763.1389058344071 K, F = -8.107219784392328e-8, relative_change = 1.0489364595085687e-12 Iter 150: T = 763.138905831962 K, F = -3.390520575408118e-8, relative_change = 4.3867574123998765e-13 Converged in 154 iterations to T = 763.1389058310795 K Iter 1: T = 969.9497445721312 K, F = -6846.979284412403, relative_change = 0.03005025542786883 Iter 2: T = 942.0556108035506 K, F = -5799.854877356822, relative_change = 0.028758328897633065 Iter 3: T = 916.2751491947348 K, F = -4911.141175475212, relative_change = 0.02736617808244427 Iter 5: T = 870.8512327013733 K, F = -3517.277721243168, relative_change = 0.024321223557774583 Iter 10: T = 789.7639751745533 K, F = -1515.0143973483327, relative_change = 0.016020485723584957 Iter 15: T = 745.2144515526446 K, F = -645.320693843551, relative_change = 0.00886087851689258 Iter 20: T = 723.4546484973567 K, F = -272.5083380955488, relative_change = 0.004290848620337523 Iter 25: T = 713.6254687593006 K, F = -114.48781877776318, relative_change = 0.0019222488690377431 Iter 30: T = 709.3681314791555 K, F = -47.976898184760266, relative_change = 0.000828662231933093 Iter 35: T = 707.5603389925458 K, F = -20.08186858887555, relative_change = 0.00035108440345064034 Iter 40: T = 706.7993872380379 K, F = -8.401546403299053, relative_change = 0.00014763491085501864 Iter 45: T = 706.480279096021 K, F = -3.5141663196867317, relative_change = 6.188500879509977e-5 Iter 50: T = 706.3466715211375 K, F = -1.4697608260161183, relative_change = 2.5906027036141293e-5 Iter 55: T = 706.2907684687037 K, F = -0.6146880721176218, relative_change = 1.0838584639008185e-5 Iter 60: T = 706.2673844586067 K, F = -0.2570727868447784, relative_change = 4.533591137915251e-6 Iter 65: T = 706.2576041664497 K, F = -0.10751141580219548, relative_change = 1.8961358939831048e-6 Iter 70: T = 706.2535137880512 K, F = -0.044962646587179855, relative_change = 7.930101036622782e-7 Iter 75: T = 706.2518031178704 K, F = -0.018803931252602823, relative_change = 3.316503936138227e-7 Iter 80: T = 706.2510876907836 K, F = -0.007864031323105758, relative_change = 1.3870087204293483e-7 Iter 85: T = 706.2507884898647 K, F = -0.0032888322885888943, relative_change = 5.8006486468153084e-8 Iter 90: T = 706.250663360333 K, F = -0.0013754290229225363, relative_change = 2.425902731022118e-8 Iter 95: T = 706.2506110296449 K, F = -0.0005752208578085893, relative_change = 1.0145418766988534e-8 Iter 100: T = 706.2505891443221 K, F = -0.0002405642346504644, relative_change = 4.2429359572802074e-9 Iter 105: T = 706.2505799916181 K, F = -0.0001006068367002122, relative_change = 1.7744466127413107e-9 Iter 110: T = 706.2505761638479 K, F = -4.2074980986406274e-5, relative_change = 7.420947906504388e-10 Iter 115: T = 706.2505745630286 K, F = -1.759626089992139e-5, relative_change = 3.103529314462793e-10 Iter 120: T = 706.2505738935469 K, F = -7.358965822823471e-6, relative_change = 1.297932918148623e-10 Iter 125: T = 706.2505736135615 K, F = -3.0776072720284375e-6, relative_change = 5.428110268769167e-11 Iter 130: T = 706.2505734964684 K, F = -1.2870916334950522e-6, relative_change = 2.270099691287626e-11 Iter 135: T = 706.2505734474986 K, F = -5.382767062078742e-7, relative_change = 9.493821210499746e-12 Iter 140: T = 706.2505734270189 K, F = -2.251141165698911e-7, relative_change = 3.970435930667708e-12 Iter 145: T = 706.2505734184541 K, F = -9.414637003324344e-8, relative_change = 1.6605006209259919e-12 Iter 150: T = 706.2505734148721 K, F = -3.937219783534118e-8, relative_change = 6.944246382659118e-13 Iter 155: T = 706.250573413374 K, F = -1.646471969873886e-8, relative_change = 2.9039544779486286e-13 Converged in 157 iterations to T = 706.250573413057 K Iter 1: T = 973.5740625524201 K, F = -6021.174984987146, relative_change = 0.026425937447579966 Iter 2: T = 949.3410715658682 K, F = -5095.301092572658, relative_change = 0.024890752453922405 Iter 3: T = 927.2331296504495 K, F = -4309.984947515835, relative_change = 0.023287670340600822 Iter 5: T = 889.0680865436979 K, F = -3079.692642728702, relative_change = 0.0199562795915038 Iter 10: T = 824.1335075452196 K, F = -1318.5373637050511, relative_change = 0.01195427168398159 Iter 15: T = 790.7454520858068 K, F = -558.8249897250472, relative_change = 0.006120210153332555 Iter 20: T = 775.1780272582885 K, F = -235.25086599904193, relative_change = 0.0028268577663227985 Iter 25: T = 768.3252472971182 K, F = -98.67865565228432, relative_change = 0.0012364801011414334 Iter 30: T = 765.393654581643 K, F = -41.3219948135672, relative_change = 0.000527251925006919 Iter 35: T = 764.1556626279885 K, F = -17.290846256599004, relative_change = 0.00022232824970788717 Iter 40: T = 763.6357901613483 K, F = -7.232910578023084, relative_change = 9.33034512197292e-5 Iter 45: T = 763.4179980947431 K, F = -3.025182903567597, relative_change = 3.907742074339127e-5 Iter 50: T = 763.3268490269023 K, F = -1.2652189833487328, relative_change = 1.635260022196588e-5 Iter 55: T = 763.2887178704789 K, F = -0.5291386770173176, relative_change = 6.8405956094916195e-6 Iter 60: T = 763.2727689481817 K, F = -0.22129368633894098, relative_change = 2.8611237277169886e-6 Iter 65: T = 763.2660985654999 K, F = -0.09254793744932843, relative_change = 1.1966094562265592e-6 Iter 70: T = 763.2633088700719 K, F = -0.03870470079277799, relative_change = 5.004456956252728e-7 Iter 75: T = 763.2621421753312 K, F = -0.016186776514454215, relative_change = 2.0929399844187182e-7 Iter 80: T = 763.261654247769 K, F = -0.0067695047181890455, relative_change = 8.752953505072453e-8 Iter 85: T = 763.2614501903053 K, F = -0.002831087975792901, relative_change = 3.660594680937418e-8 Iter 90: T = 763.2613648509791 K, F = -0.0011839948471301653, relative_change = 1.5309052858724872e-8 Iter 95: T = 763.2613291610437 K, F = -0.0004951607920929968, relative_change = 6.40243025191433e-9 Iter 100: T = 763.2613142350847 K, F = -0.00020708215721187972, relative_change = 2.677573048152517e-9 Iter 105: T = 763.2613079928702 K, F = -8.660423330364431e-5, relative_change = 1.119793096138045e-9 Iter 110: T = 763.2613053823013 K, F = -3.621892445837549e-5, relative_change = 4.683108512294451e-10 Iter 115: T = 763.2613042905302 K, F = -1.514718531314685e-5, relative_change = 1.9585317350306058e-10 Iter 120: T = 763.2613038339387 K, F = -6.334734970914191e-6, relative_change = 8.190815159640504e-11 Iter 125: T = 763.2613036429865 K, F = -2.649261082399157e-6, relative_change = 3.4254957722843265e-11 Iter 130: T = 763.261303563128 K, F = -1.10795234764538e-6, relative_change = 1.4325828850380408e-11 Iter 135: T = 763.2613035297303 K, F = -4.6335794889884596e-7, relative_change = 5.991220369610792e-12 Iter 140: T = 763.261303515763 K, F = -1.9378242954726232e-7, relative_change = 2.5056076884759194e-12 Iter 145: T = 763.2613035099217 K, F = -8.104281645771039e-8, relative_change = 1.0478839825364848e-12 Iter 150: T = 763.2613035074787 K, F = -3.389190716962531e-8, relative_change = 4.3822251266078955e-13 Converged in 154 iterations to T = 763.261303506597 K Iter 1: T = 964.352640783877 K, F = -8122.284706786342, relative_change = 0.03564735921612308 Iter 2: T = 930.6324988075104 K, F = -6890.562216614309, relative_change = 0.034966609257125136 Iter 3: T = 898.8086846714925 K, F = -5844.553584240696, relative_change = 0.034195898141098774 Iter 5: T = 840.737176000107 K, F = -4202.0576523239015, relative_change = 0.03235930143992326 Iter 10: T = 726.7588409471239 K, F = -1832.3952320060368, relative_change = 0.025946289307146767 Iter 15: T = 653.2993347485182 K, F = -791.138159898953, relative_change = 0.017740324689172693 Iter 20: T = 611.8054558878293 K, F = -337.72863676055977, relative_change = 0.010153480521935588 Iter 25: T = 591.0962239866169 K, F = -142.83150641036468, relative_change = 0.005030891000837254 Iter 30: T = 581.6202828123305 K, F = -60.05585917112175, relative_change = 0.0022815900947919785 Iter 35: T = 577.4893913813357 K, F = -25.17643064168732, relative_change = 0.0009892457237400485 Iter 40: T = 575.7301463195893 K, F = -10.53996715684008, relative_change = 0.00042018193980852836 Iter 45: T = 574.9886885808041 K, F = -4.409868690568865, relative_change = 0.0001768824234989831 Iter 50: T = 574.6775875940511 K, F = -1.8445989270957768, relative_change = 7.417872076457119e-5 Iter 55: T = 574.5473029662735 K, F = -0.7714927605162438, relative_change = 3.1058318156810935e-5 Iter 60: T = 574.4927850859377 K, F = -0.3226578957200659, relative_change = 1.2995247656257877e-5 Iter 65: T = 574.4699795784763 K, F = -0.13494120672836785, relative_change = 5.435868341115674e-6 Iter 70: T = 574.4604410842369 K, F = -0.05643434279989806, relative_change = 2.2735376070290525e-6 Iter 75: T = 574.4564518043313 K, F = -0.02360157185301448, relative_change = 9.508542601143913e-7 Iter 80: T = 574.4547834104997 K, F = -0.009870468956222955, relative_change = 3.976644982747725e-7 Iter 85: T = 574.4540856631439 K, F = -0.0041279496990014874, relative_change = 1.6630907262899069e-7 Iter 90: T = 574.4537938559697 K, F = -0.0017263581603710887, relative_change = 6.955262054038938e-8 Iter 95: T = 574.4536718185675 K, F = -0.000721983651464364, relative_change = 2.9087768047317316e-8 Iter 100: T = 574.4536207810411 K, F = -0.00030194219451573634, relative_change = 1.2164857493588235e-8 Iter 105: T = 574.4535994365333 K, F = -0.00012627583360358408, relative_change = 5.087489659640272e-9 Iter 110: T = 574.4535905100042 K, F = -5.28100617274152e-5, relative_change = 2.127649093040154e-9 Iter 115: T = 574.4535867768232 K, F = -2.2085798441262572e-5, relative_change = 8.898082853801735e-10 Iter 120: T = 574.4535852155622 K, F = -9.236545190749457e-6, relative_change = 3.7212847736611273e-10 Iter 125: T = 574.4535845626242 K, F = -3.862833344414618e-6, relative_change = 1.556285677023887e-10 Iter 130: T = 574.4535842895576 K, F = -1.6154825003278361e-6, relative_change = 6.50857041520571e-11 Iter 135: T = 574.4535841753581 K, F = -6.756139581676202e-7, relative_change = 2.721961409980772e-11 Iter 140: T = 574.4535841275983 K, F = -2.825497606995242e-7, relative_change = 1.138356506744957e-11 Iter 145: T = 574.4535841076246 K, F = -1.1816473016734719e-7, relative_change = 4.760704420453441e-12 Iter 150: T = 574.4535840992714 K, F = -4.941735787244994e-8, relative_change = 1.990961547947575e-12 Iter 155: T = 574.453584095778 K, F = -2.066591664462436e-8, relative_change = 8.326031007146661e-13 Iter 160: T = 574.4535840943171 K, F = -8.642654425461416e-9, relative_change = 3.4820138863781946e-13 Converged in 163 iterations to T = 574.4535840938894 K Iter 1: T = 963.6631792414537 K, F = -8279.379175074704, relative_change = 0.03633682075854625 Iter 2: T = 929.2106325415244 K, F = -7025.138696742909, relative_change = 0.0357516479223047 Iter 3: T = 896.609231333412 K, F = -5959.962787578282, relative_change = 0.03508504968237704 Iter 5: T = 836.8421248110565 K, F = -4287.222639782426, relative_change = 0.033478695327310536 Iter 10: T = 717.8817080947632 K, F = -1873.0060295349097, relative_change = 0.02766177513345636 Iter 15: T = 639.0536814679062 K, F = -810.7423103779482, relative_change = 0.019697891895439856 Iter 20: T = 593.1036603944473 K, F = -346.9898829909413, relative_change = 0.011735613545395518 Iter 25: T = 569.5623880955246 K, F = -147.02321439547708, relative_change = 0.005984064699217869 Iter 30: T = 558.6118469839136 K, F = -61.883547493709706, relative_change = 0.002757600560042487 Iter 35: T = 553.7973801362789 K, F = -25.955824696062596, relative_change = 0.0012048331720224319 Iter 40: T = 551.7389580634091 K, F = -10.868719044668865, relative_change = 0.000513499191538762 Iter 45: T = 550.8699203474596 K, F = -4.547859827472589, relative_change = 0.0002164822471951731 Iter 50: T = 550.5050230411712 K, F = -1.9023974895496734, relative_change = 9.084176557914345e-5 Iter 55: T = 550.3521622570082 K, F = -0.7956804547911126, relative_change = 3.8044950720000295e-5 Iter 60: T = 550.2881890765747 K, F = -0.3327762202301717, relative_change = 1.5920288932996818e-5 Iter 65: T = 550.2614268524318 K, F = -0.1391732908437619, relative_change = 6.659706797353615e-6 Iter 70: T = 550.2502331924253 K, F = -0.05820433489488147, relative_change = 2.7854579294467472e-6 Iter 75: T = 550.2455516290182 K, F = -0.024341818373933483, relative_change = 1.1649623277313677e-6 Iter 80: T = 550.2435937011173 K, F = -0.010180051460320527, relative_change = 4.872100008448747e-7 Iter 85: T = 550.24277486491 K, F = -0.004257421248866827, relative_change = 2.0375858747780515e-7 Iter 90: T = 550.2424324165391 K, F = -0.0017805047869394741, relative_change = 8.521454517220171e-8 Iter 95: T = 550.2422892003152 K, F = -0.0007446284317929042, relative_change = 3.5637787795347215e-8 Iter 100: T = 550.2422293055404 K, F = -0.00031141251400093606, relative_change = 1.4904156715288638e-8 Iter 105: T = 550.2422042568234 K, F = -0.00013023643409831864, relative_change = 6.23309776344129e-9 Iter 110: T = 550.2421937811496 K, F = -5.446643231019066e-5, relative_change = 2.6067561703228084e-9 Iter 115: T = 550.2421894000975 K, F = -2.2778511435034288e-5, relative_change = 1.0901765540044349e-9 Iter 120: T = 550.2421875678891 K, F = -9.526245515895093e-6, relative_change = 4.5592486161241774e-10 Iter 125: T = 550.2421868016377 K, F = -3.983989206396421e-6, relative_change = 1.906732024283153e-10 Iter 130: T = 550.2421864811822 K, F = -1.6661516929472597e-6, relative_change = 7.97418023614131e-11 Iter 135: T = 550.242186347164 K, F = -6.968043868571527e-7, relative_change = 3.334896696438926e-11 Iter 140: T = 550.2421862911159 K, F = -2.914120966479583e-7, relative_change = 1.3946944898958124e-11 Iter 145: T = 550.242186267676 K, F = -1.218722564533259e-7, relative_change = 5.832790283460124e-12 Iter 150: T = 550.2421862578732 K, F = -5.096861890874216e-8, relative_change = 2.4393514472374023e-12 Iter 155: T = 550.2421862537733 K, F = -2.131541804173409e-8, relative_change = 1.0201531248770092e-12 Iter 160: T = 550.2421862520589 K, F = -8.914891685973814e-9, relative_change = 4.266655523112268e-13 Converged in 164 iterations to T = 550.24218625144 K Iter 1: T = 969.4368966388939 K, F = -6963.832173844839, relative_change = 0.03056310336110609 Iter 2: T = 941.0177064735376 K, F = -5899.659963185643, relative_change = 0.029315152191842175 Iter 3: T = 914.7027613839551 K, F = -4996.4112122754605, relative_change = 0.027964346375795302 Iter 5: T = 868.1965308871722 K, F = -3579.553829313039, relative_change = 0.024987571310727943 Iter 10: T = 784.550086592325 K, F = -1543.3186307744575, relative_change = 0.016710919016401135 Iter 15: T = 738.0790425724755 K, F = -657.9546256790601, relative_change = 0.009369504512530087 Iter 20: T = 715.1865923855671 K, F = -278.0068631770331, relative_change = 0.004578070047119768 Iter 25: T = 704.7937925895416 K, F = -116.8345419415, relative_change = 0.0020606784800933186 Iter 30: T = 700.2811165711729 K, F = -48.96750680594632, relative_change = 0.0008903065246482765 Iter 35: T = 698.3627416707659 K, F = -20.497836226223654, relative_change = 0.0003775681400978963 Iter 40: T = 697.554849222366 K, F = -8.575809449191716, relative_change = 0.0001588374541029716 Iter 45: T = 697.2159862893731 K, F = -3.5870981991336275, relative_change = 6.659249087017865e-5 Iter 50: T = 697.0740952310056 K, F = -1.5002711107030684, relative_change = 2.7878698592817742e-5 Iter 55: T = 697.0147241024772 K, F = -0.6274494668669126, relative_change = 1.1664271185529325e-5 Iter 60: T = 696.9898890317281 K, F = -0.26241003968179616, relative_change = 4.8790242108312414e-6 Iter 65: T = 696.9795017714588 K, F = -0.10974356856515016, relative_change = 2.04062131884164e-6 Iter 70: T = 696.9751575312403 K, F = -0.045896168255610936, relative_change = 8.534393403186511e-7 Iter 75: T = 696.9733406894277 K, F = -0.01919434268953568, relative_change = 3.569232703735555e-7 Iter 80: T = 696.9725808594692 K, F = -0.008027306316565785, relative_change = 1.4927040433777323e-7 Iter 85: T = 696.9722630886292 K, F = -0.003357115887295148, relative_change = 6.24268109297532e-8 Iter 90: T = 696.9721301929155 K, F = -0.00140398604679004, relative_change = 2.610766324466256e-8 Iter 95: T = 696.9720746143141 K, F = -0.0005871637475179936, relative_change = 1.0918540996032007e-8 Iter 100: T = 696.9720513706746 K, F = -0.00024555889418276244, relative_change = 4.566265015715615e-9 Iter 105: T = 696.9720416499061 K, F = -0.00010269566292320231, relative_change = 1.9096667036709067e-9 Iter 110: T = 696.9720375845646 K, F = -4.294855273301312e-5, relative_change = 7.986454448823165e-10 Iter 115: T = 696.9720358843902 K, F = -1.7961598557714176e-5, relative_change = 3.340030833332506e-10 Iter 120: T = 696.9720351733569 K, F = -7.511755204414605e-6, relative_change = 1.396840823295149e-10 Iter 125: T = 696.9720348759943 K, F = -3.1415049135397055e-6, relative_change = 5.841753623905994e-11 Iter 130: T = 696.9720347516336 K, F = -1.3138137405777073e-6, relative_change = 2.4430890283184607e-11 Iter 135: T = 696.9720346996246 K, F = -5.494525207039302e-7, relative_change = 1.021728867594541e-11 Iter 140: T = 696.9720346778738 K, F = -2.2978790359395873e-7, relative_change = 4.272997678854473e-12 Iter 145: T = 696.9720346687773 K, F = -9.609963380619035e-8, relative_change = 1.7870110036067547e-12 Iter 150: T = 696.9720346649731 K, F = -4.01901966151641e-8, relative_change = 7.473527290970513e-13 Iter 155: T = 696.972034663382 K, F = -1.680676220416899e-8, relative_change = 3.125284437142609e-13 Converged in 157 iterations to T = 696.9720346630454 K Iter 1: T = 966.5307724478523 K, F = -7625.995335211453, relative_change = 0.03346922755214773 Iter 2: T = 935.1030265756607 K, F = -6465.729101538979, relative_change = 0.03251603235828403 Iter 3: T = 905.6869704435994 K, F = -5480.57813163774, relative_change = 0.03145755632914874 Iter 5: T = 852.7645845552488 K, F = -3934.206780497333, relative_change = 0.029020487862560777 Iter 10: T = 753.0188188009457 K, F = -1706.4918101009496, relative_change = 0.02136294901050005 Iter 15: T = 693.2995100373139 K, F = -732.0078874643656, relative_change = 0.013183969419617053 Iter 20: T = 661.9680514278118 K, F = -310.7021495583379, relative_change = 0.006905760457283659 Iter 25: T = 647.1620326366461 K, F = -130.912618446368, relative_change = 0.0032325849991854095 Iter 30: T = 640.597349402598 K, F = -54.936728857481, relative_change = 0.0014232767773253033 Iter 35: T = 637.7794753299787 K, F = -23.009455174516784, relative_change = 0.0006087039080725042 Iter 40: T = 636.5877281236159 K, F = -9.628935226087997, relative_change = 0.0002570026674356775 Iter 45: T = 636.0869555980737 K, F = -4.028012303653902, relative_change = 0.00010791354995644708 Iter 50: T = 635.8771085612381 K, F = -1.6847517849740916, relative_change = 4.520673307736781e-5 Iter 55: T = 635.7892746564621 K, F = -0.7046164083198322, relative_change = 1.8919320628918665e-5 Iter 60: T = 635.7525286171821 K, F = -0.29468478801029696, relative_change = 7.914618796289233e-6 Iter 65: T = 635.7371587355929 K, F = -0.12324171073559753, relative_change = 3.3103963156084902e-6 Iter 70: T = 635.7307304740809 K, F = -0.05154133245020798, relative_change = 1.3845186835731242e-6 Iter 75: T = 635.7280420295205 K, F = -0.02155523175464985, relative_change = 5.79034738632929e-7 Iter 80: T = 635.7269176778601 K, F = -0.00901466076211499, relative_change = 2.4216142745699305e-7 Iter 85: T = 635.7264474584628 K, F = -0.003770039735086106, relative_change = 1.0127518304928975e-7 Iter 90: T = 635.7262508067271 K, F = -0.0015766758073686993, relative_change = 4.235455787881313e-8 Iter 95: T = 635.7261685645583 K, F = -0.0006593846819411553, relative_change = 1.771319363593146e-8 Iter 100: T = 635.7261341698899 K, F = -0.00027576255400851846, relative_change = 7.407871169403172e-9 Iter 105: T = 635.7261197856267 K, F = -0.00011532719379253598, relative_change = 3.0980605363482936e-9 Iter 110: T = 635.7261137699558 K, F = -4.823121016922505e-5, relative_change = 1.2956459848159266e-9 Iter 115: T = 635.7261112541303 K, F = -2.0170867634783374e-5, relative_change = 5.418546219754256e-10 Iter 120: T = 635.7261102019821 K, F = -8.435698284903204e-6, relative_change = 2.2661009055455046e-10 Iter 125: T = 635.7261097619611 K, F = -3.5279100698559773e-6, relative_change = 9.477105463380729e-11 Iter 130: T = 635.726109577939 K, F = -1.4754144369022448e-6, relative_change = 3.9634395330712535e-11 Iter 135: T = 635.7261095009789 K, F = -6.170359089785471e-7, relative_change = 1.657557670043122e-11 Iter 140: T = 635.7261094687932 K, F = -2.5805281167468053e-7, relative_change = 6.932131682234614e-12 Iter 145: T = 635.7261094553328 K, F = -1.0792079341293004e-7, relative_change = 2.899100949181746e-12 Iter 150: T = 635.7261094497034 K, F = -4.513350942980665e-8, relative_change = 1.212431783490718e-12 Iter 155: T = 635.7261094473492 K, F = -1.8875846941046603e-8, relative_change = 5.070661923072281e-13 Converged in 160 iterations to T = 635.7261094463645 K Iter 1: T = 966.4179245218008 K, F = -7651.707842508365, relative_change = 0.03358207547819917 Iter 2: T = 934.8722047304494 K, F = -6487.7276097938775, relative_change = 0.03264190262919716 Iter 3: T = 905.3331933132426 K, F = -5499.412387663589, relative_change = 0.03159684421864235 Iter 5: T = 852.1514886528784 K, F = -3948.040124358568, relative_change = 0.029186458581533965 Iter 10: T = 751.7188987676816 K, F = -1712.932545740658, relative_change = 0.021573679033610654 Iter 15: T = 691.3846777973947 K, F = -734.9828448114066, relative_change = 0.013374455099568498 Iter 20: T = 659.6319507126617 K, F = -312.0373751094146, relative_change = 0.007030653759823287 Iter 25: T = 644.5949068471466 K, F = -131.49369591589007, relative_change = 0.003298090711961549 Iter 30: T = 637.9200601357504 K, F = -55.18446976392523, relative_change = 0.0014536663270063052 Iter 35: T = 635.0533213109355 K, F = -23.113959168931324, relative_change = 0.0006220008400300612 Iter 40: T = 633.840612605302 K, F = -9.672802271604343, relative_change = 0.0002626716505107217 Iter 45: T = 633.3309788424964 K, F = -4.046386823036355, relative_change = 0.00011030368930500907 Iter 50: T = 633.1174091112802 K, F = -1.6924412965757092, relative_change = 4.62097242996349e-5 Iter 55: T = 633.0280153730084 K, F = -0.7078331426513789, relative_change = 1.9339381556625717e-5 Iter 60: T = 632.9906164741124 K, F = -0.29603022033648796, relative_change = 8.09039805150404e-6 Iter 65: T = 632.9749734680385 K, F = -0.1238044138309794, relative_change = 3.383927633808879e-6 Iter 70: T = 632.9684309667184 K, F = -0.05177666636907696, relative_change = 1.4152735666116085e-6 Iter 75: T = 632.9656947429266 K, F = -0.021653652044348104, relative_change = 5.918973591166459e-7 Iter 80: T = 632.9645504089352 K, F = -0.00905582144886441, relative_change = 2.4754082710499263e-7 Iter 85: T = 632.9640718326033 K, F = -0.003787253652040079, relative_change = 1.0352492940892935e-7 Iter 90: T = 632.9638716858827 K, F = -0.0015838748762457278, relative_change = 4.329543164288558e-8 Iter 95: T = 632.963787982067 K, F = -0.0006623954187702785, relative_change = 1.810667879144952e-8 Iter 100: T = 632.9637529761198 K, F = -0.00027702168045878883, relative_change = 7.572431458502066e-9 Iter 105: T = 632.9637383362126 K, F = -0.00011585377508377404, relative_change = 3.1668816180143384e-9 Iter 110: T = 632.9637322136282 K, F = -4.845143147763631e-5, relative_change = 1.324427751002175e-9 Iter 115: T = 632.9637296530902 K, F = -2.0262967326267756e-5, relative_change = 5.538915145121558e-10 Iter 120: T = 632.9637285822427 K, F = -8.474214381881673e-6, relative_change = 2.316440332015572e-10 Iter 125: T = 632.9637281344015 K, F = -3.5440182505896978e-6, relative_change = 9.687631762387042e-11 Iter 130: T = 632.9637279471089 K, F = -1.4821502842821133e-6, relative_change = 4.051482011550332e-11 Iter 135: T = 632.9637278687809 K, F = -6.198521929068335e-7, relative_change = 1.6943760949841953e-11 Iter 140: T = 632.9637278360233 K, F = -2.5923066526711835e-7, relative_change = 7.08611258377364e-12 Iter 145: T = 632.9637278223236 K, F = -1.0841313141662923e-7, relative_change = 2.9634906582723985e-12 Iter 150: T = 632.9637278165942 K, F = -4.53389003562954e-8, relative_change = 1.2393462481188471e-12 Iter 155: T = 632.9637278141981 K, F = -1.8961693104557753e-8, relative_change = 5.183209787370846e-13 Converged in 160 iterations to T = 632.9637278131961 K Iter 1: T = 976.3506791525286 K, F = -5388.5202514081475, relative_change = 0.023649320847471365 Iter 2: T = 954.8647299120056 K, F = -4556.457824368759, relative_change = 0.02200638530734965 Iter 3: T = 935.4512367148571 K, F = -3851.135180031734, relative_change = 0.020331144914041848 Iter 5: T = 902.4234093987233 K, F = -2747.3084999999382, relative_change = 0.0169767307516141 Iter 10: T = 847.9797840030741 K, F = -1171.6447756353934, relative_change = 0.009569059712889719 Iter 15: T = 821.0702158249227 K, F = -495.17232103685257, relative_change = 0.004692185042520115 Iter 20: T = 808.8293561740309 K, F = -208.1260581386335, relative_change = 0.002116046767957033 Iter 25: T = 803.5089356787682 K, F = -87.23460471407238, relative_change = 0.0009150400123336177 Iter 30: T = 801.2461594963497 K, F = -36.51742202078705, relative_change = 0.0003882088264365982 Iter 35: T = 800.293041307086 K, F = -15.278194756261058, relative_change = 0.00016334108122782043 Iter 40: T = 799.8932315311076 K, F = -6.3906086564511755, relative_change = 6.848545442655442e-5 Iter 45: T = 799.7258145211689 K, F = -2.6728190610038904, relative_change = 2.8672028096901388e-5 Iter 50: T = 799.655761602375 K, F = -1.1178381475905428, relative_change = 1.1996343740699687e-5 Iter 55: T = 799.6264581356062 K, F = -0.46749908876339263, relative_change = 5.017952159338234e-6 Iter 60: T = 799.6142019386225 K, F = -0.19551472107591483, relative_change = 2.0987316116239727e-6 Iter 65: T = 799.60907605174 K, F = -0.08176676952423267, relative_change = 8.777433271245443e-7 Iter 70: T = 799.6069323098338 K, F = -0.034195870683771834, relative_change = 3.670877622332256e-7 Iter 75: T = 799.606035765281 K, F = -0.014301126952124044, relative_change = 1.5352136416126373e-7 Iter 80: T = 799.6056608185778 K, F = -0.005980903033780627, relative_change = 6.420462147646903e-8 Iter 85: T = 799.6055040112026 K, F = -0.0025012852429860954, relative_change = 2.6851166332560474e-8 Iter 90: T = 799.605438432453 K, F = -0.0010460673881704796, relative_change = 1.1229483115411109e-8 Iter 95: T = 799.605411006631 K, F = -0.0004374778792377576, relative_change = 4.696304765919045e-9 Iter 100: T = 799.6053995368238 K, F = -0.00018295847454430358, relative_change = 1.9640508821784275e-9 Iter 105: T = 799.6053947400134 K, F = -7.65154214358299e-5, relative_change = 8.21389583827686e-10 Iter 110: T = 799.6053927339299 K, F = -3.199966362987805e-5, relative_change = 3.435149439461129e-10 Iter 115: T = 799.6053918949617 K, F = -1.3382641506520798e-5, relative_change = 1.4366205292347885e-10 Iter 120: T = 799.6053915440951 K, F = -5.596778988148365e-6, relative_change = 6.008117011013466e-11 Iter 125: T = 799.6053913973586 K, F = -2.340640042119979e-6, relative_change = 2.512666534767022e-11 Iter 130: T = 799.6053913359916 K, F = -9.788823832623805e-7, relative_change = 1.0508258264980406e-11 Iter 135: T = 799.6053913103273 K, F = -4.0938112266797333e-7, relative_change = 4.394687901239932e-12 Iter 140: T = 799.6053912995941 K, F = -1.712075835547111e-7, relative_change = 1.837905693337829e-12 Iter 145: T = 799.6053912951054 K, F = -7.16010082335572e-8, relative_change = 7.686335964355695e-13 Iter 150: T = 799.6053912932281 K, F = -2.9943743928839694e-8, relative_change = 3.214447415593835e-13 Converged in 153 iterations to T = 799.6053912926785 K Iter 1: T = 965.2758988197455 K, F = -7911.919485068557, relative_change = 0.034724101180254464 Iter 2: T = 932.5314051934635 K, F = -6710.426558932732, relative_change = 0.033922419140806466 Iter 3: T = 901.7371403323693 K, F = -5690.157866775961, relative_change = 0.03302222819477646 Iter 5: T = 845.8858654317047 K, F = -4088.302078783735, relative_change = 0.030908481952945897 Iter 10: T = 738.2026128266069 K, F = -1778.6051577041276, relative_change = 0.023862228423830213 Iter 15: T = 671.0909755345457 K, F = -765.604676932637, relative_change = 0.015556184289824694 Iter 20: T = 634.4961593624847 K, F = -325.918094929465, relative_change = 0.008526247588073545 Iter 25: T = 616.722056955508 K, F = -137.57683924180935, relative_change = 0.004104610324005234 Iter 30: T = 608.7194321461764 K, F = -57.78785925099921, relative_change = 0.0018331789390273418 Iter 35: T = 605.2587954057522 K, F = -24.214104884121014, relative_change = 0.0007891410299658684 Iter 40: T = 603.7903676131006 K, F = -10.134967668482133, relative_change = 0.0003341320689618182 Iter 45: T = 603.1724571286786 K, F = -4.240038437562619, relative_change = 0.00014046896481582948 Iter 50: T = 602.913368204907 K, F = -1.7734936366751162, relative_change = 5.88746253456583e-5 Iter 55: T = 602.804896150541 K, F = -0.7417415886423654, relative_change = 2.4644675978044604e-5 Iter 60: T = 602.7595111682324 K, F = -0.310213131945564, relative_change = 1.0310656705104616e-5 Iter 65: T = 602.7405270078083 K, F = -0.12973622587802774, relative_change = 4.312732574045941e-6 Iter 70: T = 602.7325869720507 K, F = -0.05425748206602765, relative_change = 1.8037574680334522e-6 Iter 75: T = 602.7292662435192 K, F = -0.02269116947548, relative_change = 7.543741146588748e-7 Iter 80: T = 602.7278774558174 K, F = -0.009489725496702905, relative_change = 3.154919718935271e-7 Iter 85: T = 602.7272966448268 K, F = -0.003968717833292668, relative_change = 1.3194315894277467e-7 Iter 90: T = 602.7270537421415 K, F = -0.0016597654209788426, relative_change = 5.518031821110409e-8 Iter 95: T = 602.7269521572341 K, F = -0.0006941337599876141, relative_change = 2.307708788710957e-8 Iter 100: T = 602.7269096731945 K, F = -0.0002902950354440881, relative_change = 9.65111723477182e-9 Iter 105: T = 602.7268919058587 K, F = -0.00012140485151168612, relative_change = 4.036213080452439e-9 Iter 110: T = 602.7268844753461 K, F = -5.077295920696834e-5, relative_change = 1.6879926260018393e-9 Iter 115: T = 602.7268813678169 K, F = -2.12338579633764e-5, relative_change = 7.059386946002096e-10 Iter 120: T = 602.726880068211 K, F = -8.880252602039285e-6, relative_change = 2.9523198303249314e-10 Iter 125: T = 602.7268795247004 K, F = -3.7138281701598608e-6, relative_change = 1.2346955758597204e-10 Iter 130: T = 602.7268792973977 K, F = -1.5531668793866693e-6, relative_change = 5.163642985429691e-11 Iter 135: T = 602.726879202337 K, F = -6.495536175044059e-7, relative_change = 2.1594994251552074e-11 Iter 140: T = 602.7268791625814 K, F = -2.7165070737300567e-7, relative_change = 9.031272104265532e-12 Iter 145: T = 602.7268791459553 K, F = -1.1360796386972183e-7, relative_change = 3.776998944622411e-12 Iter 150: T = 602.726879139002 K, F = -4.751189142115919e-8, relative_change = 1.5795755654099506e-12 Iter 155: T = 602.7268791360941 K, F = -1.987090053612306e-8, relative_change = 6.606259614470774e-13 Iter 160: T = 602.7268791348779 K, F = -8.310536259159562e-9, relative_change = 2.7629125295153784e-13 Converged in 162 iterations to T = 602.7268791346205 K Iter 1: T = 964.6067603201924 K, F = -8064.3833287067655, relative_change = 0.03539323967980756 Iter 2: T = 931.1557408893675 K, F = -6840.972635680877, relative_change = 0.03467840036671645 Iter 3: T = 899.6166325076438 K, F = -5802.040411040928, relative_change = 0.03387092727538795 Iter 5: T = 842.161899082184 K, F = -4170.714568421985, relative_change = 0.031954569422667264 Iter 10: T = 729.9576242480724 K, F = -1817.5243020512771, relative_change = 0.025349639654340183 Iter 15: T = 658.3340502129525 K, F = -784.033145873127, relative_change = 0.01709430903023237 Iter 20: T = 618.2961714144392 K, F = -334.4165197635104, relative_change = 0.009657731886321875 Iter 25: T = 598.4778557209748 K, F = -141.34891406615188, relative_change = 0.0047430802304685655 Iter 30: T = 589.4548067454125 K, F = -59.41369854298489, relative_change = 0.002140793756674087 Iter 35: T = 585.5312616526977 K, F = -24.903492968107038, relative_change = 0.0009261061209848283 Iter 40: T = 583.8622426993365 K, F = -10.4250124350402, relative_change = 0.00039297180799674453 Iter 45: T = 583.159163649368 K, F = -4.361648404557301, relative_change = 0.00016535739199555232 Iter 50: T = 582.8642282948505 K, F = -1.8244070402960273, relative_change = 6.93330205312662e-5 Iter 55: T = 582.7407246557968 K, F = -0.7630437783283367, relative_change = 2.902725036274866e-5 Iter 60: T = 582.689046234553 K, F = -0.31912364308651564, relative_change = 1.2145035173691492e-5 Iter 65: T = 582.6674288479193 K, F = -0.13346300225362728, relative_change = 5.080160019109542e-6 Iter 70: T = 582.6583873494053 K, F = -0.05581611592410693, relative_change = 2.1247517630779457e-6 Iter 75: T = 582.6546059381878 K, F = -0.023343017772239516, relative_change = 8.886259791840327e-7 Iter 80: T = 582.6530244808721 K, F = -0.00976233781409408, relative_change = 3.7163914217768943e-7 Iter 85: T = 582.6523630919912 K, F = -0.004082727835382105, relative_change = 1.5542482746523566e-7 Iter 90: T = 582.6520864904678 K, F = -0.001707445813987185, relative_change = 6.500067639597081e-8 Iter 95: T = 582.6519708122684 K, F = -0.0007140742785645138, relative_change = 2.7184086660956728e-8 Iter 100: T = 582.6519224342396 K, F = -0.0002986343998700458, relative_change = 1.1368714514454324e-8 Iter 105: T = 582.6519022019659 K, F = -0.00012489247383767887, relative_change = 4.754533019019338e-9 Iter 110: T = 582.6518937405867 K, F = -5.223152414152166e-5, relative_change = 1.9884026291050698e-9 Iter 115: T = 582.6518902019367 K, F = -2.1843847424818374e-5, relative_change = 8.315737596989305e-10 Iter 120: T = 582.651888722031 K, F = -9.135357487477513e-6, relative_change = 3.477740672775189e-10 Iter 125: T = 582.6518881031168 K, F = -3.820515410479786e-6, relative_change = 1.4544326173767265e-10 Iter 130: T = 582.6518878442795 K, F = -1.5977852634296852e-6, relative_change = 6.082611265580853e-11 Iter 135: T = 582.6518877360306 K, F = -6.682128099178009e-7, relative_change = 2.5438204131899644e-11 Iter 140: T = 582.6518876907596 K, F = -2.7945436581466865e-7, relative_change = 1.0638552718928315e-11 Iter 145: T = 582.6518876718267 K, F = -1.1687057899223419e-7, relative_change = 4.4491479403741856e-12 Iter 150: T = 582.6518876639088 K, F = -4.887663118680052e-8, relative_change = 1.860685254290569e-12 Iter 155: T = 582.6518876605975 K, F = -2.0441191184161767e-8, relative_change = 7.781760341086031e-13 Iter 160: T = 582.6518876592125 K, F = -8.548619867543295e-9, relative_change = 3.2543754646042784e-13 Converged in 163 iterations to T = 582.6518876588071 K Iter 1: T = 964.3986912766704 K, F = -8111.792058198013, relative_change = 0.03560130872332957 Iter 2: T = 930.7273514871168 K, F = -6881.575310260417, relative_change = 0.03491433583861416 Iter 3: T = 898.9552059245527 K, F = -5836.848565388725, relative_change = 0.03413689896595226 Iter 5: T = 840.9957903303903 K, F = -4196.375930192531, relative_change = 0.0322856480900689 Iter 10: T = 727.3413565378039 K, F = -1829.6965853287709, relative_change = 0.025836803346732634 Iter 15: T = 654.2199100688841 K, F = -789.8460289709984, relative_change = 0.017620484114745268 Iter 20: T = 612.9966252185037 K, F = -337.12467545199377, relative_change = 0.010060564069790775 Iter 25: T = 592.4542022829247 K, F = -142.56057426490972, relative_change = 0.0049765637836331755 Iter 30: T = 583.0634456946023 K, F = -59.93836055393582, relative_change = 0.0022549107079429965 Iter 35: T = 578.9716450740068 K, F = -25.126459103843413, relative_change = 0.0009772596050370902 Iter 40: T = 577.2294284558611 K, F = -10.518914480573804, relative_change = 0.00041501233522966643 Iter 45: T = 576.4952173319917 K, F = -4.401036619453345, relative_change = 0.00017469204773009177 Iter 50: T = 576.187169324457 K, F = -1.84090037429305, relative_change = 7.325764292805854e-5 Iter 55: T = 576.0581654351399 K, F = -0.7699451252182278, relative_change = 3.0672226173757397e-5 Iter 60: T = 576.0041838677294 K, F = -0.32201050610953685, relative_change = 1.2833623982250995e-5 Iter 65: T = 575.9816027741039 K, F = -0.1346704343980493, relative_change = 5.368248182718243e-6 Iter 70: T = 575.9721581536518 K, F = -0.056321097982754004, relative_change = 2.245253288465279e-6 Iter 75: T = 575.9682081366012 K, F = -0.023554210713029267, relative_change = 9.39024587437441e-7 Iter 80: T = 575.9665561636145 K, F = -0.009850661820930195, relative_change = 3.927170421998149e-7 Iter 85: T = 575.965865283766 K, F = -0.004119666094196117, relative_change = 1.642399619473251e-7 Iter 90: T = 575.9655763486851 K, F = -0.001722893853380425, relative_change = 6.868728927726395e-8 Iter 95: T = 575.9654555124303 K, F = -0.0007205348364404673, relative_change = 2.8725875410925645e-8 Iter 100: T = 575.9654049772386 K, F = -0.0003013362823543475, relative_change = 1.2013509523459787e-8 Iter 105: T = 575.9653838428131 K, F = -0.0001260224331969817, relative_change = 5.024194079909243e-9 Iter 110: T = 575.9653750041433 K, F = -5.270408698754281e-5, relative_change = 2.1011781351810016e-9 Iter 115: T = 575.9653713077058 K, F = -2.204147860784822e-5, relative_change = 8.787378167445251e-10 Iter 120: T = 575.9653697618115 K, F = -9.21800960651531e-6, relative_change = 3.674986548761746e-10 Iter 125: T = 575.9653691153001 K, F = -3.855081562365026e-6, relative_change = 1.5369232151557173e-10 Iter 130: T = 575.9653688449212 K, F = -1.612240992765468e-6, relative_change = 6.427595825559497e-11 Iter 135: T = 575.9653687318455 K, F = -6.742574539253532e-7, relative_change = 2.688093417609921e-11 Iter 140: T = 575.965368684556 K, F = -2.8198237683740857e-7, relative_change = 1.1241922012757616e-11 Iter 145: T = 575.9653686647789 K, F = -1.1792843668256836e-7, relative_change = 4.701507602558473e-12 Iter 150: T = 575.9653686565078 K, F = -4.931810249075852e-8, relative_change = 1.966187633302067e-12 Iter 155: T = 575.9653686530489 K, F = -2.0626093666376022e-8, relative_change = 8.223100290388806e-13 Iter 160: T = 575.9653686516024 K, F = -8.626407754785959e-9, relative_change = 3.4391299322895104e-13 Converged in 163 iterations to T = 575.9653686511788 K Iter 1: T = 980.040047111768 K, F = -4547.894252400521, relative_change = 0.01995995288823203 Iter 2: T = 962.1282029154307 K, F = -3841.725889838567, relative_change = 0.01827664517294414 Iter 3: T = 946.1442936098717 K, F = -3243.694329903546, relative_change = 0.01661307636251045 Iter 5: T = 919.4393317201431 K, F = -2309.243396004719, relative_change = 0.013434364851220628 Iter 10: T = 876.9996605078045 K, F = -980.4635378037, relative_change = 0.007070220352187744 Iter 15: T = 856.8879008605699 K, F = -413.18962542344605, relative_change = 0.0033189262824031766 Iter 20: T = 847.9570869060958 K, F = -173.40884078052537, relative_change = 0.0014633510100688716 Iter 25: T = 844.1207653893181 K, F = -72.6328690092031, relative_change = 0.0006262420026606881 Iter 30: T = 842.4977690872028 K, F = -30.39576778409818, relative_change = 0.00026448048481252426 Iter 35: T = 841.8156913499729 K, F = -12.7153709332039, relative_change = 0.00011106644353893443 Iter 40: T = 841.5298522904625 K, F = -5.318333883949309, relative_change = 4.652982529721129e-5 Iter 45: T = 841.4102081118233 K, F = -2.224298273735723, relative_change = 1.9473446158446737e-5 Iter 50: T = 841.3601534675872 K, F = -0.9302469201103294, relative_change = 8.146499548958544e-6 Iter 55: T = 841.3392168638611 K, F = -0.3890436636025659, relative_change = 3.4073959146427125e-6 Iter 60: T = 841.3304603744087 K, F = -0.16270328211112584, relative_change = 1.4250893254119863e-6 Iter 65: T = 841.3267982094352 K, F = -0.06804455637262197, relative_change = 5.960026091805043e-7 Iter 70: T = 841.3252666314274 K, F = -0.028457063706212926, relative_change = 2.4925772361900283e-7 Iter 75: T = 841.3246261042614 K, F = -0.011901086967013308, relative_change = 1.0424296159824278e-7 Iter 80: T = 841.3243582276348 K, F = -0.004977177235858665, relative_change = 4.359572226087495e-8 Iter 85: T = 841.32424619834 K, F = -0.0020815150517874415, relative_change = 1.8232264054977476e-8 Iter 90: T = 841.3241993463353 K, F = -0.0008705144678360366, relative_change = 7.624952716983411e-9 Iter 95: T = 841.3241797522646 K, F = -0.0003640595495975063, relative_change = 3.188846667382346e-9 Iter 100: T = 841.3241715577898 K, F = -0.00015225404917074137, relative_change = 1.3336138012203814e-9 Iter 105: T = 841.3241681307625 K, F = -6.367446113508812e-5, relative_change = 5.577332245970451e-10 Iter 110: T = 841.3241666975388 K, F = -2.662942259679113e-5, relative_change = 2.332507192015703e-10 Iter 115: T = 841.3241660981474 K, F = -1.113674180341917e-5, relative_change = 9.754823014203531e-11 Iter 120: T = 841.3241658474748 K, F = -4.657515301431658e-6, relative_change = 4.079580753314659e-11 Iter 125: T = 841.3241657426406 K, F = -1.9478302990538765e-6, relative_change = 1.706130949481839e-11 Iter 130: T = 841.3241656987977 K, F = -8.146056034163962e-7, relative_change = 7.135240850447635e-12 Iter 135: T = 841.3241656804621 K, F = -3.40680056609699e-7, relative_change = 2.98406277456457e-12 Iter 140: T = 841.3241656727939 K, F = -1.4247583668414165e-7, relative_change = 1.2479651576130287e-12 Iter 145: T = 841.3241656695869 K, F = -5.958408100248391e-8, relative_change = 5.219050385764004e-13 Converged in 150 iterations to T = 841.3241656682459 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 1 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 1 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 42%|████████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 1 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:04 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▌ | ETA: 0:00:16 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:15 Bin 2 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 2 ray tracing: 30%|████████▉ | ETA: 0:00:12 Bin 2 ray tracing: 36%|██████████▋ | ETA: 0:00:11 Bin 2 ray tracing: 42%|████████████▌ | ETA: 0:00:10 Bin 2 ray tracing: 47%|██████████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 2 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 3 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 3 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 3 ray tracing: 29%|████████▉ | ETA: 0:00:12 Bin 3 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 3 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 3 ray tracing: 47%|██████████████▏ | ETA: 0:00:09 Bin 3 ray tracing: 53%|███████████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 59%|█████████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 64%|███████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:14 Bin 4 ray tracing: 13%|████ | ETA: 0:00:13 Bin 4 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 4 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 4 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 4 ray tracing: 52%|███████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 4 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 11%|███▏ | ETA: 0:00:08 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:07 Bin 5 ray tracing: 32%|█████████▌ | ETA: 0:00:06 Bin 5 ray tracing: 43%|████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 5 ray tracing: 64%|███████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 6 ray tracing: 21%|██████▍ | ETA: 0:00:07 Bin 6 ray tracing: 33%|█████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 54%|████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 6 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 7 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 68%|████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 7 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 8 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 8 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 65%|███████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 71%|█████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 8 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 9 ray tracing: 12%|███▊ | ETA: 0:00:15 Bin 9 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 9 ray tracing: 24%|███████▍ | ETA: 0:00:13 Bin 9 ray tracing: 31%|█████████▏ | ETA: 0:00:12 Bin 9 ray tracing: 37%|███████████ | ETA: 0:00:10 Bin 9 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 9 ray tracing: 50%|███████████████▏ | ETA: 0:00:08 Bin 9 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 9 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|█▉ | ETA: 0:00:14 Bin 10 ray tracing: 14%|████ | ETA: 0:00:13 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 10 ray tracing: 28%|████████ | ETA: 0:00:11 Bin 10 ray tracing: 34%|█████████▉ | ETA: 0:00:10 Bin 10 ray tracing: 40%|███████████▊ | ETA: 0:00:09 Bin 10 ray tracing: 46%|█████████████▌ | ETA: 0:00:08 Bin 10 ray tracing: 53%|███████████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 59%|█████████████████ | ETA: 0:00:06 Bin 10 ray tracing: 65%|██████████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 71%|████████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████ | ETA: 0:00:03 Bin 10 ray tracing: 89%|█████████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 95%|███████████████████████████▋ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3127209626404 K, F = -7447.8276222919285, relative_change = 0.032687279037359664 Iter 2: T = 936.7000736956966 K, F = -6313.332273745507, relative_change = 0.031647105019438806 Iter 3: T = 908.1307267985993 K, F = -5350.140470209724, relative_change = 0.030499994287796463 Iter 5: T = 856.9837298391728 K, F = -3838.481310559009, relative_change = 0.027890398559268028 Iter 10: T = 761.8611183672048 K, F = -1662.0894180036132, relative_change = 0.019971140165625387 Iter 15: T = 706.1679469017485 K, F = -711.6191830197953, relative_change = 0.011966743566002806 Iter 20: T = 677.5260112254242 K, F = -301.6040997683962, relative_change = 0.006127955570972633 Iter 25: T = 664.1697898157905 K, F = -126.96858004553344, relative_change = 0.0028307955411342274 Iter 30: T = 658.2899838437536 K, F = -53.25863445134181, relative_change = 0.0012382792706540824 Iter 35: T = 655.7745461547394 K, F = -22.30226013831336, relative_change = 0.0005280337759856492 Iter 40: T = 654.7122789373735 K, F = -9.332203290790638, relative_change = 0.00022266059858915167 Iter 45: T = 654.2661962708016 K, F = -3.9037426798257404, relative_change = 9.34433997682316e-5 Iter 50: T = 654.0793167665964 K, F = -1.6327503500343477, relative_change = 3.913611742983157e-5 Iter 55: T = 654.0011049623001 K, F = -0.6828634584183346, relative_change = 1.6377177447890616e-5 Iter 60: T = 653.9683859457929 K, F = -0.28558651162756804, relative_change = 6.850879277739009e-6 Iter 65: T = 653.9547007288497 K, F = -0.1194365396536563, relative_change = 2.8654253868728015e-6 Iter 70: T = 653.9489771044302 K, F = -0.04994993590399316, relative_change = 1.1984086199804939e-6 Iter 75: T = 653.9465833632988 K, F = -0.020889685718818496, relative_change = 5.011981551168439e-7 Iter 80: T = 653.9455822628926 K, F = -0.00873632058935414, relative_change = 2.0960869083651674e-7 Iter 85: T = 653.9451635891243 K, F = -0.003653634398066985, relative_change = 8.766114401538545e-8 Iter 90: T = 653.9449884944706 K, F = -0.0015279936779051262, relative_change = 3.666098739237642e-8 Iter 95: T = 653.9449152677458 K, F = -0.000639025227790968, relative_change = 1.5332071492124737e-8 Iter 100: T = 653.9448846434462 K, F = -0.000267247985970831, relative_change = 6.4120569304678336e-9 Iter 105: T = 653.944871835997 K, F = -0.00011176630057058157, relative_change = 2.6815990638311675e-9 Iter 110: T = 653.9448664797685 K, F = -4.67420025352383e-5, relative_change = 1.1214768180397394e-9 Iter 115: T = 653.9448642397298 K, F = -1.9548064013219513e-5, relative_change = 4.690150142665173e-10 Iter 120: T = 653.9448633029187 K, F = -8.175233994600628e-6, relative_change = 1.9614768563108899e-10 Iter 125: T = 653.9448629111332 K, F = -3.418980418445905e-6, relative_change = 8.203130315927073e-11 Iter 130: T = 653.9448627472839 K, F = -1.429859297241709e-6, relative_change = 3.4306491196685874e-11 Iter 135: T = 653.94486267876 K, F = -5.979836638081437e-7, relative_change = 1.4347370645492735e-11 Iter 140: T = 653.9448626501026 K, F = -2.500838521268811e-7, relative_change = 6.000240369136162e-12 Iter 145: T = 653.9448626381177 K, F = -1.0458793398004929e-7, relative_change = 2.5093693107702347e-12 Iter 150: T = 653.9448626331055 K, F = -4.374074302759823e-8, relative_change = 1.0494678880327158e-12 Iter 155: T = 653.9448626310092 K, F = -1.8292249881479705e-8, relative_change = 4.3888437923113813e-13 Converged in 159 iterations to T = 653.9448626302526 K Iter 1: T = 970.3557885285223 K, F = -6754.461782701157, relative_change = 0.029644211471477656 Iter 2: T = 942.876125937387 K, F = -5720.854052806987, relative_change = 0.0283191618126032 Iter 3: T = 917.5161823368087 K, F = -4843.665475779913, relative_change = 0.026896368359487333 Iter 5: T = 872.9390760871196 K, F = -3468.0352112190976, relative_change = 0.023802676766435212 Iter 10: T = 793.8251815346599 K, F = -1492.6996390513048, relative_change = 0.015496950835597514 Iter 15: T = 750.7265645194378 K, F = -635.3958831024328, relative_change = 0.008484096470476585 Iter 20: T = 729.8082420747559 K, F = -268.2010462223149, relative_change = 0.004081331557372 Iter 25: T = 720.3937674981256 K, F = -112.65250354161488, relative_change = 0.0018220893948479823 Iter 30: T = 716.3233999879297 K, F = -47.202782395481236, relative_change = 0.000784229368475589 Iter 35: T = 714.596403149184 K, F = -19.75692408935563, relative_change = 0.00033202690467250544 Iter 40: T = 713.86971541738 K, F = -8.265436848257696, relative_change = 0.00013957938581260308 Iter 45: T = 713.5650213201438 K, F = -3.4572059704045723, relative_change = 5.850096973646525e-5 Iter 50: T = 713.4374567453658 K, F = -1.4459327104516535, relative_change = 2.448812349983847e-5 Iter 55: T = 713.3840835573434 K, F = -0.6047217106357347, relative_change = 1.0245134599750775e-5 Iter 60: T = 713.3617580237681 K, F = -0.252904532625032, relative_change = 4.285321696560777e-6 Iter 65: T = 713.3524204791084 K, F = -0.1057681666254946, relative_change = 1.7922923807200291e-6 Iter 70: T = 713.3485152769917 K, F = -0.04423359275543237, relative_change = 7.495790104002085e-7 Iter 75: T = 713.3468820521907 K, F = -0.018499031148788814, relative_change = 3.13486555198681e-7 Iter 80: T = 713.3461990141147 K, F = -0.007736518268440684, relative_change = 1.311044615391452e-7 Iter 85: T = 713.3459133587417 K, F = -0.003235504772791664, relative_change = 5.4829563515767135e-8 Iter 90: T = 713.3457938941322 K, F = -0.0013531268133522012, relative_change = 2.2930397858793108e-8 Iter 95: T = 713.3457439325845 K, F = -0.0005658938060036922, relative_change = 9.589769647977488e-9 Iter 100: T = 713.3457230380649 K, F = -0.0002366635490311797, relative_change = 4.010556771800486e-9 Iter 105: T = 713.3457142997266 K, F = -9.897552267268406e-5, relative_change = 1.6772628377859296e-9 Iter 110: T = 713.3457106452491 K, F = -4.139274469527887e-5, relative_change = 7.014513513038327e-10 Iter 115: T = 713.3457091169029 K, F = -1.7310940110926154e-5, relative_change = 2.9335533428396476e-10 Iter 120: T = 713.3457084777303 K, F = -7.239641310330391e-6, relative_change = 1.226846948888545e-10 Iter 125: T = 713.3457082104208 K, F = -3.0277045195425956e-6, relative_change = 5.130820574306261e-11 Iter 130: T = 713.3457080986286 K, F = -1.2662219734949076e-6, relative_change = 2.1457700763598076e-11 Iter 135: T = 713.3457080518759 K, F = -5.295505004498935e-7, relative_change = 8.973889585923278e-12 Iter 140: T = 713.3457080323233 K, F = -2.214637214725812e-7, relative_change = 3.752977255905767e-12 Iter 145: T = 713.3457080241462 K, F = -9.261825217876662e-8, relative_change = 1.569531079927514e-12 Iter 150: T = 713.3457080207264 K, F = -3.873492115946675e-8, relative_change = 6.564112495058556e-13 Iter 155: T = 713.3457080192962 K, F = -1.619823852827551e-8, relative_change = 2.744992289636324e-13 Converged in 157 iterations to T = 713.3457080189936 K Iter 1: T = 974.4508815779872 K, F = -5821.390935941461, relative_change = 0.025549118422012854 Iter 2: T = 951.090736125641 K, F = -4925.054925512068, relative_change = 0.023972624884404332 Iter 3: T = 929.8445310822331 K, F = -4164.928004351197, relative_change = 0.022338778243132025 Iter 5: T = 893.3392884868615 K, F = -2974.4707307136237, relative_change = 0.018983669209586395 Iter 10: T = 831.8728180881194 K, F = -1271.841294749325, relative_change = 0.011144269446135417 Iter 15: T = 800.6871340244879 K, F = -538.513725417702, relative_change = 0.005621560668003434 Iter 20: T = 786.2707994283254 K, F = -226.57477812267754, relative_change = 0.002574802864994785 Iter 25: T = 779.9531640358915 K, F = -95.01372726481895, relative_change = 0.0011216567952414358 Iter 30: T = 777.2561390611394 K, F = -39.78248715582871, relative_change = 0.0004774215899484801 Iter 35: T = 776.1182446487553 K, F = -16.645785677806174, relative_change = 0.0002011588500015918 Iter 40: T = 775.6405927662778 K, F = -6.96292269764772, relative_change = 8.439147254027094e-5 Iter 45: T = 775.4405212525248 K, F = -2.9122328149780303, relative_change = 3.533998608602734e-5 Iter 50: T = 775.3567942707404 K, F = -1.217975259568079, relative_change = 1.4787746626222422e-5 Iter 55: T = 775.321769071315 K, F = -0.5093796238345258, relative_change = 6.185837508177585e-6 Iter 60: T = 775.3071194390011 K, F = -0.21303001072409744, relative_change = 2.587240485117004e-6 Iter 65: T = 775.3009924946858 K, F = -0.0890919340017754, relative_change = 1.082058489225156e-6 Iter 70: T = 775.2984300821297 K, F = -0.03725935264768643, relative_change = 4.5253741228652566e-7 Iter 75: T = 775.2973584416293 K, F = -0.015582313567295558, relative_change = 1.8925788467564842e-7 Iter 80: T = 775.2969102672056 K, F = -0.006516710905496992, relative_change = 7.915014097395838e-8 Iter 85: T = 775.2967228350349 K, F = -0.002725366549269803, relative_change = 3.310157501316604e-8 Iter 90: T = 775.2966444486148 K, F = -0.0011397808774157303, relative_change = 1.3843481121601975e-8 Iter 95: T = 775.2966116664693 K, F = -0.000476669980949862, relative_change = 5.789510371452995e-9 Iter 100: T = 775.2965979565831 K, F = -0.00019934907884733288, relative_change = 2.4212425846458352e-9 Iter 105: T = 775.2965922229448 K, F = -8.33701660231112e-5, relative_change = 1.0125926065926526e-9 Iter 110: T = 775.2965898250687 K, F = -3.4866400421051935e-5, relative_change = 4.2347834349962123e-10 Iter 115: T = 775.2965888222483 K, F = -1.458154471201123e-5, relative_change = 1.7710369765065445e-10 Iter 120: T = 775.2965884028567 K, F = -6.098174903601539e-6, relative_change = 7.406686660846311e-11 Iter 125: T = 775.2965882274623 K, F = -2.5503296021689437e-6, relative_change = 3.0975648557302864e-11 Iter 130: T = 775.2965881541102 K, F = -1.066578595776413e-6, relative_change = 1.295438978879316e-11 Iter 135: T = 775.2965881234335 K, F = -4.4605550042486897e-7, relative_change = 5.417675588005952e-12 Iter 140: T = 775.2965881106041 K, F = -1.86545298985763e-7, relative_change = 2.2657313080758473e-12 Iter 145: T = 775.2965881052387 K, F = -7.801546964003592e-8, relative_change = 9.47555864685632e-13 Iter 150: T = 775.2965881029949 K, F = -3.2626179091721497e-8, relative_change = 3.962691948624183e-13 Converged in 154 iterations to T = 775.296588102185 K Iter 1: T = 970.3207224240527 K, F = -6762.451627961021, relative_change = 0.029679277575947204 Iter 2: T = 942.8053090614577 K, F = -5727.6759233561315, relative_change = 0.028357029512732754 Iter 3: T = 917.4091414739388 K, F = -4849.4914384956055, relative_change = 0.02693681011703274 Iter 5: T = 872.7592526671712 K, F = -3472.285588365448, relative_change = 0.02384714852401579 Iter 10: T = 793.4767303405653 K, F = -1494.623508777834, relative_change = 0.015541389150752642 Iter 15: T = 750.2551527243114 K, F = -636.2503682130167, relative_change = 0.00851578639110953 Iter 20: T = 729.2659668188857 K, F = -268.57148903697856, relative_change = 0.0040988482013725736 Iter 25: T = 719.816698968785 K, F = -112.81025049903666, relative_change = 0.0018304369166973738 Iter 30: T = 715.7306740290793 K, F = -47.26929857385852, relative_change = 0.0007879270945164465 Iter 35: T = 713.9969168006712 K, F = -19.784841366873007, relative_change = 0.0003336118638810946 Iter 40: T = 713.2673631496707 K, F = -8.277129897545908, relative_change = 0.000140249158362881 Iter 45: T = 712.9614636159656 K, F = -3.4620992649350315, relative_change = 5.8782301521486484e-5 Iter 50: T = 712.8333937021954 K, F = -1.447979692425962, relative_change = 2.4605995081700557e-5 Iter 55: T = 712.7798089629172 K, F = -0.6055778788797379, relative_change = 1.0294467629753994e-5 Iter 60: T = 712.7573949188749 K, F = -0.25326260919796845, relative_change = 4.3059599628802826e-6 Iter 65: T = 712.7480203515704 K, F = -0.10591792146201551, relative_change = 1.8009247056295993e-6 Iter 70: T = 712.7440996650024 K, F = -0.04429622253096921, relative_change = 7.531893539012084e-7 Iter 75: T = 712.7424599642196 K, F = -0.018525223758461995, relative_change = 3.1499647931583703e-7 Iter 80: T = 712.7417742177759 K, F = -0.007747472345583373, relative_change = 1.3173593600795172e-7 Iter 85: T = 712.7414874297251 K, F = -0.0032400859029872997, relative_change = 5.509365478809872e-8 Iter 90: T = 712.741367491415 K, F = -0.0013550426958245376, relative_change = 2.304084414873403e-8 Iter 95: T = 712.74131733176 K, F = -0.0005666950515786917, relative_change = 9.635959648020506e-9 Iter 100: T = 712.7412963543896 K, F = -0.00023699864083093214, relative_change = 4.0298740095498745e-9 Iter 105: T = 712.7412875814022 K, F = -9.911566359044333e-5, relative_change = 1.6853415641953033e-9 Iter 110: T = 712.7412839124339 K, F = -4.1451355125898814e-5, relative_change = 7.048300023167218e-10 Iter 115: T = 712.7412823780276 K, F = -1.7335451929723078e-5, relative_change = 2.947683305386709e-10 Iter 120: T = 712.7412817363204 K, F = -7.249892969185545e-6, relative_change = 1.2327563567047348e-10 Iter 125: T = 712.7412814679508 K, F = -3.031991158142233e-6, relative_change = 5.1555331868477676e-11 Iter 130: T = 712.7412813557154 K, F = -1.2680144547694283e-6, relative_change = 2.156104773034115e-11 Iter 135: T = 712.7412813087773 K, F = -5.302987230448863e-7, relative_change = 9.017086547782214e-12 Iter 140: T = 712.7412812891473 K, F = -2.217787383740344e-7, relative_change = 3.77107843510605e-12 Iter 145: T = 712.7412812809378 K, F = -9.275059098534655e-8, relative_change = 1.5771112961129285e-12 Iter 150: T = 712.7412812775043 K, F = -3.878857746109077e-8, relative_change = 6.595527103984206e-13 Iter 155: T = 712.7412812760684 K, F = -1.6221192833398845e-8, relative_change = 2.758217083366431e-13 Converged in 157 iterations to T = 712.7412812757645 K Iter 1: T = 969.3527559341553 K, F = -6983.003713458013, relative_change = 0.03064724406584474 Iter 2: T = 940.8472549586581 K, F = -5916.037126572484, relative_change = 0.029406736403226833 Iter 3: T = 914.4442598073277 K, F = -5010.405985455963, relative_change = 0.02806299854963237 Iter 5: T = 867.7590805880379 K, F = -3589.7798990614306, relative_change = 0.025098132575911154 Iter 10: T = 783.6854182940218 K, F = -1547.9754726057447, relative_change = 0.016827450516273854 Iter 15: T = 736.8890989142126 K, F = -660.038359729899, relative_change = 0.009456697826794197 Iter 20: T = 713.8028099494625 K, F = -278.915526417068, relative_change = 0.0046278225248971286 Iter 25: T = 703.3129185873025 K, F = -117.22279777025818, relative_change = 0.002084790372678218 Iter 30: T = 698.756111517888 K, F = -49.131491218443855, relative_change = 0.0009010716989544224 Iter 35: T = 696.8185955597264 K, F = -20.566712478036347, relative_change = 0.0003821983676783218 Iter 40: T = 696.0025726996689 K, F = -8.604667196681827, relative_change = 0.00016079698053335291 Iter 45: T = 695.6602871694868 K, F = -3.59917618472333, relative_change = 6.741608337953878e-5 Iter 50: T = 695.5169607967937 K, F = -1.505323906636431, relative_change = 2.822385500680939e-5 Iter 55: T = 695.4569887106092 K, F = -0.6295628934271827, relative_change = 1.1808745972178825e-5 Iter 60: T = 695.4319021909741 K, F = -0.26329395013144963, relative_change = 4.939467394944303e-6 Iter 65: T = 695.421409750564 K, F = -0.11011323925718358, relative_change = 2.065903247657996e-6 Iter 70: T = 695.4170215190433 K, F = -0.04605077048969719, relative_change = 8.640132213831524e-7 Iter 75: T = 695.4151862788935 K, F = -0.01925899945944065, relative_change = 3.6134551205440155e-7 Iter 80: T = 695.4144187544172 K, F = -0.008054346595264272, relative_change = 1.5111985928740128e-7 Iter 85: T = 695.4140977656181 K, F = -0.0033684244620795223, relative_change = 6.320027867942461e-8 Iter 90: T = 695.4139635241121 K, F = -0.0014087154308496386, relative_change = 2.6431137357655216e-8 Iter 95: T = 695.4139073826835 K, F = -0.000589141632295398, relative_change = 1.105382183695298e-8 Iter 100: T = 695.413883903663 K, F = -0.00024638606883331526, relative_change = 4.622841090310731e-9 Iter 105: T = 695.4138740844553 K, F = -0.00010304159662022361, relative_change = 1.9333274853801745e-9 Iter 110: T = 695.4138699779452 K, F = -4.309322628703871e-5, relative_change = 8.085406659977682e-10 Iter 115: T = 695.4138682605537 K, F = -1.8022102119652494e-5, relative_change = 3.3814137110034314e-10 Iter 120: T = 695.41386754232 K, F = -7.537059104611998e-6, relative_change = 1.41414774775411e-10 Iter 125: T = 695.413867241946 K, F = -3.152087063362785e-6, relative_change = 5.914132778683654e-11 Iter 130: T = 695.4138671163261 K, F = -1.3182399148936597e-6, relative_change = 2.4733599487666167e-11 Iter 135: T = 695.4138670637902 K, F = -5.513026338777038e-7, relative_change = 1.0343867147150592e-11 Iter 140: T = 695.4138670418192 K, F = -2.30560842418015e-7, relative_change = 4.3259193356127824e-12 Iter 145: T = 695.4138670326307 K, F = -9.642277898347373e-8, relative_change = 1.8091413947391758e-12 Iter 150: T = 695.4138670287879 K, F = -4.032478140292284e-8, relative_change = 7.565974766632615e-13 Iter 155: T = 695.4138670271808 K, F = -1.6864463492360926e-8, relative_change = 3.1642107110878235e-13 Converged in 158 iterations to T = 695.4138670267102 K Iter 1: T = 963.5090447420873 K, F = -8314.498867375109, relative_change = 0.036490955257912704 Iter 2: T = 928.8923149452253 K, F = -7055.230922031534, relative_change = 0.03592776838553527 Iter 3: T = 896.1160435887102 K, F = -5985.77644287365, relative_change = 0.03528532945010724 Iter 5: T = 835.9653665453505 K, F = -4306.287503330728, relative_change = 0.033733288613182276 Iter 10: T = 715.8558923975353 K, F = -1882.139491087501, relative_change = 0.02806590195481411 Iter 15: T = 635.7426865986226 K, F = -815.195380037911, relative_change = 0.020181944108914277 Iter 20: T = 588.6791648137274 K, F = -349.121980012069, relative_change = 0.012146443528544958 Iter 25: T = 564.4039720207254 K, F = -147.99945971095647, relative_change = 0.0062405644722355064 Iter 30: T = 553.0622151022046 K, F = -62.31226484881543, relative_change = 0.0028883040033308807 Iter 35: T = 548.0641414304931 K, F = -26.139304062009746, relative_change = 0.0012646089339530355 Iter 40: T = 545.9248972955244 K, F = -10.94623795311258, relative_change = 0.0005394858946066004 Iter 45: T = 545.0213069394863 K, F = -4.5804208444688115, relative_change = 0.00022753051497128817 Iter 50: T = 544.6418241880255 K, F = -1.9160400003709708, relative_change = 9.549439848678281e-5 Iter 55: T = 544.4828396919434 K, F = -0.8013903306386038, relative_change = 3.999639741832675e-5 Iter 60: T = 544.4163013009559 K, F = -0.33516493244105106, relative_change = 1.6737400369697247e-5 Iter 65: T = 544.388465538865 K, F = -0.14017241431023608, relative_change = 7.001606489585637e-6 Iter 70: T = 544.3768227835869 K, F = -0.05862220396838069, relative_change = 2.928474901686019e-6 Iter 75: T = 544.3719533806244 K, F = -0.02451658035798715, relative_change = 1.2247790583480898e-6 Iter 80: T = 544.3699168920336 K, F = -0.010253139735143496, relative_change = 5.122270033897009e-7 Iter 85: T = 544.3690652001178 K, F = -0.004287987765349277, relative_change = 2.142211596279855e-7 Iter 90: T = 544.3687090109764 K, F = -0.0017932880912473192, relative_change = 8.959014628210644e-8 Iter 95: T = 544.368560048177 K, F = -0.0007499745653551659, relative_change = 3.746772137724692e-8 Iter 100: T = 544.3684977501122 K, F = -0.0003136483319013672, relative_change = 1.5669457679950828e-8 Iter 105: T = 544.3684716963099 K, F = -0.00013117148072366858, relative_change = 6.553155956197474e-9 Iter 110: T = 544.3684608002973 K, F = -5.4857479764830464e-5, relative_change = 2.7406083436454343e-9 Iter 115: T = 544.3684562434545 K, F = -2.294205317873721e-5, relative_change = 1.1461551849862763e-9 Iter 120: T = 544.3684543377284 K, F = -9.594640574428492e-6, relative_change = 4.793357917911615e-10 Iter 125: T = 544.3684535407309 K, F = -4.012593227020744e-6, relative_change = 2.0046395173389388e-10 Iter 130: T = 544.3684532074171 K, F = -1.6781144014932359e-6, relative_change = 8.383641857843832e-11 Iter 135: T = 544.3684530680213 K, F = -7.018073265863123e-7, relative_change = 3.506138366518905e-11 Iter 140: T = 544.3684530097242 K, F = -2.935044783880514e-7, relative_change = 1.4663103019338028e-11 Iter 145: T = 544.3684529853438 K, F = -1.2274659780264763e-7, relative_change = 6.132260806111485e-12 Iter 150: T = 544.3684529751475 K, F = -5.133395727940915e-8, relative_change = 2.5645779183331702e-12 Iter 155: T = 544.3684529708834 K, F = -2.14688321842349e-8, relative_change = 1.0725550078763825e-12 Iter 160: T = 544.3684529691 K, F = -8.977982274283036e-9, relative_change = 4.485283487440434e-13 Converged in 165 iterations to T = 544.3684529683543 K Iter 1: T = 966.8698792931391 K, F = -7548.729517938951, relative_change = 0.033130120706860854 Iter 2: T = 935.796124419733 K, F = -6399.63164233708, relative_change = 0.032138507506432504 Iter 3: T = 906.7483889699735 K, F = -5423.996537063768, relative_change = 0.031040666542374775 Iter 5: T = 854.6005181160808 K, F = -3892.666044199021, relative_change = 0.02852615367415334 Iter 10: T = 756.8883931839732 K, F = -1687.1877714017305, relative_change = 0.020745027002017115 Iter 15: T = 698.9639488765296 K, F = -723.1186745861473, relative_change = 0.012634931464949168 Iter 20: T = 668.8459854989269 K, F = -306.7246113940272, relative_change = 0.006550638769435922 Iter 25: T = 654.6994189535087 K, F = -129.18519600599868, relative_change = 0.003047832337210863 Iter 30: T = 648.4476237943384 K, F = -54.20105006946822, relative_change = 0.0013379121702365004 Iter 35: T = 645.7682050797943 K, F = -22.699282994107502, relative_change = 0.000571421069992449 Iter 40: T = 644.6357880990125 K, F = -9.498764978211481, relative_change = 0.0002411201963509028 Iter 45: T = 644.1600853498567 K, F = -3.973493272207535, relative_change = 0.00010121948550443507 Iter 50: T = 643.9607683513074 K, F = -1.6619371499478839, relative_change = 4.2398053086858656e-5 Iter 55: T = 643.8773462455054 K, F = -0.6950725788192347, relative_change = 1.774309236255848e-5 Iter 60: T = 643.8424466775771 K, F = -0.29069301091030586, relative_change = 7.4224249928373745e-6 Iter 65: T = 643.8278492582101 K, F = -0.12157222600640633, relative_change = 3.104505794155774e-6 Iter 70: T = 643.8217440926413 K, F = -0.050843120726339563, relative_change = 1.2984042021794161e-6 Iter 75: T = 643.8191907781876 K, F = -0.021263228951666657, relative_change = 5.430191286438527e-7 Iter 80: T = 643.8181229408681 K, F = -0.008892541296763201, relative_change = 2.2709900593289642e-7 Iter 85: T = 643.817676356673 K, F = -0.003718967845257992, relative_change = 9.497585243177983e-8 Iter 90: T = 643.8174895895015 K, F = -0.001555316920122618, relative_change = 3.9720094514174236e-8 Iter 95: T = 643.8174114811825 K, F = -0.0006504521371269445, relative_change = 1.6611428161358923e-8 Iter 100: T = 643.8173788153407 K, F = -0.00027202685701982476, relative_change = 6.947099451267571e-9 Iter 105: T = 643.8173651540939 K, F = -0.00011376488194525525, relative_change = 2.9053602921318817e-9 Iter 110: T = 643.8173594407968 K, F = -4.757783315029185e-5, relative_change = 1.215056445338407e-9 Iter 115: T = 643.8173570514278 K, F = -1.9897618384945304e-5, relative_change = 5.081511345068551e-10 Iter 120: T = 643.8173560521651 K, F = -8.32142172529915e-6, relative_change = 2.1251487689938934e-10 Iter 125: T = 643.8173556342616 K, F = -3.4801189734423588e-6, relative_change = 8.887628604057142e-11 Iter 130: T = 643.8173554594892 K, F = -1.4554279677558846e-6, relative_change = 3.71691409196137e-11 Iter 135: T = 643.8173553863974 K, F = -6.086772778579608e-7, relative_change = 1.5544576597893615e-11 Iter 140: T = 643.8173553558295 K, F = -2.5455622165715397e-7, relative_change = 6.500930510893611e-12 Iter 145: T = 643.8173553430455 K, F = -1.0645808895537456e-7, relative_change = 2.7187575074042473e-12 Iter 150: T = 643.8173553376993 K, F = -4.45223248268789e-8, relative_change = 1.1370240257242768e-12 Iter 155: T = 643.8173553354634 K, F = -1.8620032515848095e-8, relative_change = 4.755237830225576e-13 Converged in 160 iterations to T = 643.8173553345283 K Iter 1: T = 965.1535095810157 K, F = -7939.805989535374, relative_change = 0.0348464904189843 Iter 2: T = 932.2800174061999 K, F = -6734.300771891798, relative_change = 0.03406037676751182 Iter 3: T = 901.3500373947466 K, F = -5710.6151542723865, relative_change = 0.03317670596169926 Iter 5: T = 845.2076886367868 K, F = -4103.362979940502, relative_change = 0.03109772098242141 Iter 10: T = 736.7133010170606 K, F = -1785.6984811034579, relative_change = 0.0241256254392006 Iter 15: T = 668.8091671756287 K, F = -768.9464709975796, relative_change = 0.015821311397259754 Iter 20: T = 631.6229698292743 K, F = -327.45009727039474, relative_change = 0.008716538540295134 Iter 25: T = 613.5037968002836 K, F = -138.25375193951945, relative_change = 0.004210235973800016 Iter 30: T = 605.3307028157745 K, F = -58.07886870131441, relative_change = 0.001883625427526217 Iter 35: T = 601.7931364881487 K, F = -24.337344634324523, relative_change = 0.0008115102854454597 Iter 40: T = 600.2914520112976 K, F = -10.186789216462229, relative_change = 0.0003437245079023569 Iter 45: T = 599.6594356844932 K, F = -4.261760980693814, relative_change = 0.0001445233135746319 Iter 50: T = 599.3944123785072 K, F = -1.782587107925626, relative_change = 6.057775409312465e-5 Iter 55: T = 599.2834523014741 K, F = -0.7455461391486298, relative_change = 2.53582720382262e-5 Iter 60: T = 599.2370257118432 K, F = -0.311804512283766, relative_change = 1.0609323718613675e-5 Iter 65: T = 599.217605748517 K, F = -0.1304018077221957, relative_change = 4.437679406205954e-6 Iter 70: T = 599.2094834214831 K, F = -0.054535844666467215, relative_change = 1.856018850007749e-6 Iter 75: T = 599.2060864507373 K, F = -0.02280758549508144, relative_change = 7.76231695003415e-7 Iter 80: T = 599.2046657766123 K, F = -0.009538412321585144, relative_change = 3.2463329103366436e-7 Iter 85: T = 599.2040716301603 K, F = -0.003989079289247743, relative_change = 1.3576620589775357e-7 Iter 90: T = 599.2038231503948 K, F = -0.0016682808328738474, relative_change = 5.677916877442364e-8 Iter 95: T = 599.2037192330804 K, F = -0.0006976950090308853, relative_change = 2.3745747477731034e-8 Iter 100: T = 599.2036757735995 K, F = -0.0002917843928584851, relative_change = 9.930758875398084e-9 Iter 105: T = 599.2036575983221 K, F = -0.00012202771957370295, relative_change = 4.153162622340123e-9 Iter 110: T = 599.2036499972035 K, F = -5.103344986934211e-5, relative_change = 1.7369023204517743e-9 Iter 115: T = 599.2036468183247 K, F = -2.1342798400048046e-5, relative_change = 7.263933184449737e-10 Iter 120: T = 599.2036454888797 K, F = -8.925813175575392e-6, relative_change = 3.037863638771249e-10 Iter 125: T = 599.2036449328898 K, F = -3.7328810786885214e-6, relative_change = 1.2704706589570115e-10 Iter 130: T = 599.2036447003684 K, F = -1.5611360154599296e-6, relative_change = 5.313261966127214e-11 Iter 135: T = 599.203644603125 K, F = -6.52884932117459e-7, relative_change = 2.2220669092279604e-11 Iter 140: T = 599.2036445624567 K, F = -2.730445322618458e-7, relative_change = 9.292957920057625e-12 Iter 145: T = 599.2036445454487 K, F = -1.1419019146918785e-7, relative_change = 3.8864160199781845e-12 Iter 150: T = 599.2036445383358 K, F = -4.775582224114672e-8, relative_change = 1.625349692716758e-12 Iter 155: T = 599.203644535361 K, F = -1.9971686804343136e-8, relative_change = 6.797281145600944e-13 Iter 160: T = 599.2036445341171 K, F = -8.352910529918489e-9, relative_change = 2.8428786117415355e-13 Converged in 162 iterations to T = 599.2036445338538 K Iter 1: T = 980.1270722545582 K, F = -4528.065490833471, relative_change = 0.019872927745441735 Iter 2: T = 962.2985018733146 K, F = -3824.8839454213676, relative_change = 0.018190060131930638 Iter 3: T = 946.3934933620395 K, F = -3229.3965749310555, relative_change = 0.016528144313134385 Iter 5: T = 919.8312649538542 K, F = -2298.957610195399, relative_change = 0.013355990510364358 Iter 10: T = 877.6520833421363 K, F = -976.0029029508526, relative_change = 0.007018611324122983 Iter 15: T = 857.6813183181242 K, F = -411.2858899651216, relative_change = 0.003291787126735779 Iter 20: T = 848.8173701193738 K, F = -172.60482392688567, relative_change = 0.001450744120086902 Iter 25: T = 845.0106405961035 K, F = -72.29514168739061, relative_change = 0.0006207225965995486 Iter 30: T = 843.400326352603 K, F = -30.254259307349184, relative_change = 0.0002621267500259598 Iter 35: T = 842.7236076955388 K, F = -12.656143081601604, relative_change = 0.00011007396090868268 Iter 40: T = 842.4400196677486 K, F = -5.293555765755468, relative_change = 4.611332362926672e-5 Iter 45: T = 842.3213186211933 K, F = -2.213934309533565, relative_change = 1.9299008498234698e-5 Iter 50: T = 842.2716587082504 K, F = -0.9259123310237929, relative_change = 8.073503545534366e-6 Iter 55: T = 842.250887238771 K, F = -0.38723084198005375, relative_change = 3.376860397633482e-6 Iter 60: T = 842.2421998196899 K, F = -0.1619451306385069, relative_change = 1.4123176574991222e-6 Iter 65: T = 842.2385665423898 K, F = -0.06772748700552822, relative_change = 5.906611089925663e-7 Iter 70: T = 842.2370470458354 K, F = -0.028324461274287893, relative_change = 2.470238031733615e-7 Iter 75: T = 842.2364115713269 K, F = -0.011845631007143531, relative_change = 1.0330870218782952e-7 Iter 80: T = 842.2361458077906 K, F = -0.004953984884752183, relative_change = 4.320500256249262e-8 Iter 85: T = 842.2360346622171 K, F = -0.0020718157329180364, relative_change = 1.806886019542657e-8 Iter 90: T = 842.2359881797953 K, F = -0.0008664580978698933, relative_change = 7.556615243724467e-9 Iter 95: T = 842.2359687402889 K, F = -0.0003623631273723671, relative_change = 3.1602671147233167e-9 Iter 100: T = 842.2359606104545 K, F = -0.00015154459011013088, relative_change = 1.3216615333436838e-9 Iter 105: T = 842.2359572104606 K, F = -6.33777573344485e-5, relative_change = 5.527346471930339e-10 Iter 110: T = 842.2359557885426 K, F = -2.650533466730387e-5, relative_change = 2.3116022939277232e-10 Iter 115: T = 842.2359551938795 K, F = -1.1084847237441409e-5, relative_change = 9.66739666172062e-11 Iter 120: T = 842.2359549451842 K, F = -4.6358155159076375e-6, relative_change = 4.043020760310497e-11 Iter 125: T = 842.2359548411769 K, F = -1.938752697050461e-6, relative_change = 1.6908389432225015e-11 Iter 130: T = 842.2359547976798 K, F = -8.108106279713923e-7, relative_change = 7.071299953704979e-12 Iter 135: T = 842.2359547794888 K, F = -3.3908947960625824e-7, relative_change = 2.9572915536237433e-12 Iter 140: T = 842.2359547718811 K, F = -1.4181168217497486e-7, relative_change = 1.2367782403813751e-12 Iter 145: T = 842.2359547686995 K, F = -5.930702506873331e-8, relative_change = 5.17232691856646e-13 Converged in 150 iterations to T = 842.2359547673689 K Iter 1: T = 976.4562099609171 K, F = -5364.4749563311225, relative_change = 0.023543790039082902 Iter 2: T = 955.0736917631616 K, F = -4535.993843770319, relative_change = 0.021898082043649843 Iter 3: T = 935.7606458072993 K, F = -3833.72448278704, relative_change = 0.02022152439379682 Iter 5: T = 902.9213792845965 K, F = -2734.722322548991, relative_change = 0.016869096324933937 Iter 10: T = 848.8495812622197 K, F = -1166.1161791725294, relative_change = 0.00948803916894316 Iter 15: T = 822.1599150364847 K, F = -492.7893670125302, relative_change = 0.004645766760571515 Iter 20: T = 810.0288979043545 K, F = -207.11394642763798, relative_change = 0.002093501635047464 Iter 25: T = 804.7583534523625 K, F = -86.80830377782024, relative_change = 0.0009049640140124385 Iter 30: T = 802.5172016367554 K, F = -36.338583308642654, relative_change = 0.0003838730628294965 Iter 35: T = 801.5732672314471 K, F = -15.203303280203595, relative_change = 0.00016150581828663755 Iter 40: T = 801.177323233035 K, F = -6.359270683402916, relative_change = 6.771402716778206e-5 Iter 45: T = 801.0115273479175 K, F = -2.6597100809867826, relative_change = 2.8348722357840184e-5 Iter 50: T = 800.9421531769608 K, F = -1.1123552786314148, relative_change = 1.1861013218430586e-5 Iter 55: T = 800.9131337062272 K, F = -0.4652059935119326, relative_change = 4.961334274857129e-6 Iter 60: T = 800.900996303505 K, F = -0.19455570481740014, relative_change = 2.075049654083833e-6 Iter 65: T = 800.8959201019526 K, F = -0.08136569459250864, relative_change = 8.678386055067134e-7 Iter 70: T = 800.8937971397709 K, F = -0.034028135853824915, relative_change = 3.62945376694329e-7 Iter 75: T = 800.8929092856741 K, F = -0.014230978157434904, relative_change = 1.517889493780334e-7 Iter 80: T = 800.8925379734455 K, F = -0.0059515659547164645, relative_change = 6.348010147847734e-8 Iter 85: T = 800.8923826860548 K, F = -0.0024890161218004137, relative_change = 2.654816279613522e-8 Iter 90: T = 800.8923177429816 K, F = -0.001040936295369277, relative_change = 1.110276331969022e-8 Iter 95: T = 800.8922905830074 K, F = -0.000435331994501742, relative_change = 4.643309011669191e-9 Iter 100: T = 800.8922792243808 K, F = -0.00018206104060602968, relative_change = 1.9418874290916036e-9 Iter 105: T = 800.8922744740672 K, F = -7.614010008494265e-5, relative_change = 8.121205222602568e-10 Iter 110: T = 800.8922724874294 K, F = -3.18426984495801e-5, relative_change = 3.396384976066277e-10 Iter 115: T = 800.8922716565937 K, F = -1.3316997843237921e-5, relative_change = 1.420408879482954e-10 Iter 120: T = 800.8922713091284 K, F = -5.5693285234692524e-6, relative_change = 5.940320631538718e-11 Iter 125: T = 800.8922711638143 K, F = -2.329161135183888e-6, relative_change = 2.4843145630857748e-11 Iter 130: T = 800.892271103042 K, F = -9.740829111093419e-7, relative_change = 1.038969921849206e-11 Iter 135: T = 800.8922710776264 K, F = -4.073729679143767e-7, relative_change = 4.345094815588235e-12 Iter 140: T = 800.8922710669973 K, F = -1.7036937982606304e-7, relative_change = 1.8171826983364783e-12 Iter 145: T = 800.892271062552 K, F = -7.124974032990394e-8, relative_change = 7.59959304448222e-13 Iter 150: T = 800.892271060693 K, F = -2.979710678197023e-8, relative_change = 3.1781994488675616e-13 Converged in 153 iterations to T = 800.8922710601487 K Iter 1: T = 980.876574639263 K, F = -4357.290659517671, relative_change = 0.019123425360737002 Iter 2: T = 963.7632468870729 K, F = -3679.865967008592, relative_change = 0.017446973650567514 Iter 3: T = 948.5340600865773 K, F = -3106.3154194202225, relative_change = 0.01580179245233251 Iter 5: T = 923.1895187217466 K, F = -2210.459259536318, relative_change = 0.012690223042896317 Iter 10: T = 883.2149435067814 K, F = -937.6723197853355, relative_change = 0.006586166199531701 Iter 15: T = 864.427106180832 K, F = -394.94148610270776, relative_change = 0.0030662366470937145 Iter 20: T = 856.1214460708973 K, F = -165.7053060894243, relative_change = 0.0013463971461863656 Iter 25: T = 852.561219060799 K, F = -69.39765396777881, relative_change = 0.000575123127519219 Iter 30: T = 851.0564379594431 K, F = -29.040326444410017, relative_change = 0.00024269657812883626 Iter 35: T = 850.4242948788551 K, F = -12.148077548300694, relative_change = 0.00010188376682828188 Iter 40: T = 850.159426899022 K, F = -5.081009105851952, relative_change = 4.267674875687483e-5 Iter 45: T = 850.0485685175462 K, F = -2.125032909884164, relative_change = 1.785980159985215e-5 Iter 50: T = 850.002190905409 K, F = -0.888730629740639, relative_change = 7.471261405540275e-6 Iter 55: T = 849.9827925542907 K, F = -0.37168064752765595, relative_change = 3.1249345281740837e-6 Iter 60: T = 849.9746794633628 K, F = -0.1554417901221461, relative_change = 1.3069485759610182e-6 Iter 65: T = 849.9712863898401 K, F = -0.06500770123113053, relative_change = 5.465926335735929e-7 Iter 70: T = 849.9698673516277 K, F = -0.02718701243670374, relative_change = 2.2859351385494672e-7 Iter 75: T = 849.9692738903917 K, F = -0.011369935978634116, relative_change = 9.560087796297434e-8 Iter 80: T = 849.9690256973768 K, F = -0.004755043483060328, relative_change = 3.998148842744723e-8 Iter 85: T = 849.9689219000172 K, F = -0.001988616053117731, relative_change = 1.672074634588591e-8 Iter 90: T = 849.9688784907083 K, F = -0.0008316629956046651, relative_change = 6.992817620305897e-9 Iter 95: T = 849.9688603364147 K, F = -0.0003478114013253375, relative_change = 2.9244801751763717e-9 Iter 100: T = 849.9688527440718 K, F = -0.00014545888241657146, relative_change = 1.2230525923005483e-9 Iter 105: T = 849.9688495688633 K, F = -6.0832641828767464e-5, relative_change = 5.114952100033944e-10 Iter 110: T = 849.9688482409532 K, F = -2.5440938164589255e-5, relative_change = 2.1391341416022962e-10 Iter 115: T = 849.9688476856053 K, F = -1.0639704928649962e-5, relative_change = 8.946115112976435e-11 Iter 120: T = 849.9688474533522 K, F = -4.4496516531378205e-6, relative_change = 3.741372173415883e-11 Iter 125: T = 849.9688473562211 K, F = -1.860895909144844e-6, relative_change = 1.5646852200163767e-11 Iter 130: T = 849.9688473155998 K, F = -7.782481405982367e-7, relative_change = 6.543694128146949e-12 Iter 135: T = 849.9688472986114 K, F = -3.254718334844142e-7, relative_change = 2.736644027462374e-12 Iter 140: T = 849.9688472915066 K, F = -1.361142631939316e-7, relative_change = 1.1444808647467105e-12 Iter 145: T = 849.9688472885354 K, F = -5.692261750844807e-8, relative_change = 4.786188088016897e-13 Converged in 150 iterations to T = 849.9688472872928 K Iter 1: T = 967.3106843150848 K, F = -7448.291674374806, relative_change = 0.032689315684915184 Iter 2: T = 936.6959194267547 K, F = -6313.729122272793, relative_change = 0.031649360835921396 Iter 3: T = 908.1243791185996 K, F = -5350.480048886142, relative_change = 0.03050247120286441 Iter 5: T = 856.9728062140248 K, F = -3838.7303445824714, relative_change = 0.027893297367301284 Iter 10: T = 761.8384525011363 K, F = -1662.2045648973271, relative_change = 0.019974616942897178 Iter 15: T = 706.135296583578 K, F = -711.6717980846375, relative_change = 0.011969698421176855 Iter 20: T = 677.4868341993878 K, F = -301.62746811780517, relative_change = 0.006129802248490393 Iter 25: T = 664.1271458786521 K, F = -126.978678930217, relative_change = 0.0028317370706017046 Iter 30: T = 658.2457151760794 K, F = -53.26292432976629, relative_change = 0.0012387099849315909 Iter 35: T = 655.7295627300988 K, F = -22.304066657400323, relative_change = 0.000528221045732195 Iter 40: T = 654.6669900209491 K, F = -9.33296104020226, relative_change = 0.00022274022059455694 Iter 45: T = 654.2207784131009 K, F = -3.904059976706173, relative_change = 9.347693082343966e-5 Iter 50: T = 654.033844775186 K, F = -1.6328831171886842, relative_change = 3.915018143844282e-5 Iter 55: T = 653.955610294808 K, F = -0.6829189954653563, relative_change = 1.638306636437807e-5 Iter 60: T = 653.9228817884577 K, F = -0.28560974002641515, relative_change = 6.853343350447653e-6 Iter 65: T = 653.9091926016225 K, F = -0.11944625442360651, relative_change = 2.8664561115999515e-6 Iter 70: T = 653.9034673167496 K, F = -0.049953998802659105, relative_change = 1.198839719875708e-6 Iter 75: T = 653.9010728811621 K, F = -0.020891384882354147, relative_change = 5.013784529591933e-7 Iter 80: T = 653.9000714903201 K, F = -0.008737031200338308, relative_change = 2.0968409468911356e-7 Iter 85: T = 653.8996526950871 K, F = -0.0036539315843815423, relative_change = 8.769267901217964e-8 Iter 90: T = 653.8994775496352 K, F = -0.0015281179643824583, relative_change = 3.667417572987572e-8 Iter 95: T = 653.8994043016659 K, F = -0.0006390772056931171, relative_change = 1.5337587013921306e-8 Iter 100: T = 653.8993736684818 K, F = -0.0002672697232548593, relative_change = 6.4143635767194265e-9 Iter 105: T = 653.8993608573168 K, F = -0.000111775391075708, relative_change = 2.682563724149317e-9 Iter 110: T = 653.8993554995344 K, F = -4.6745804273828906e-5, relative_change = 1.121880250081318e-9 Iter 115: T = 653.8993532588457 K, F = -1.954965433936806e-5, relative_change = 4.691837438199093e-10 Iter 120: T = 653.8993523217629 K, F = -8.175898227380518e-6, relative_change = 1.962182296932393e-10 Iter 125: T = 653.8993519298637 K, F = -3.4192576765512683e-6, relative_change = 8.206079276102733e-11 Iter 130: T = 653.8993517659668 K, F = -1.4299742011059102e-6, relative_change = 3.4318798935608535e-11 Iter 135: T = 653.8993516974231 K, F = -5.980314601861103e-7, relative_change = 1.4352511698228964e-11 Iter 140: T = 653.8993516687574 K, F = -2.5010429305361015e-7, relative_change = 6.002401264076183e-12 Iter 145: T = 653.899351656769 K, F = -1.0459608074109283e-7, relative_change = 2.5102633771183443e-12 Iter 150: T = 653.8993516517553 K, F = -4.3742897581910967e-8, relative_change = 1.0498117428005919e-12 Iter 155: T = 653.8993516496586 K, F = -1.8294142090091725e-8, relative_change = 4.390519662071054e-13 Converged in 159 iterations to T = 653.8993516489018 K Iter 1: T = 973.4361954156323 K, F = -6052.588143249742, relative_change = 0.02656380458436773 Iter 2: T = 949.0655087277313 K, F = -5122.077098824944, relative_change = 0.025035730952551388 Iter 3: T = 926.8211428174905 K, F = -4332.80640781692, relative_change = 0.023438177560641264 Iter 5: T = 888.3918538490669 K, F = -3096.25947543652, relative_change = 0.020111997551452713 Iter 10: T = 822.8978871687888 K, F = -1325.907155558047, relative_change = 0.012086949302552058 Iter 15: T = 789.1486741148535 K, F = -562.037937863549, relative_change = 0.006203288144186154 Iter 20: T = 773.3904106466615 K, F = -236.62535199968622, relative_change = 0.002869262271459427 Iter 25: T = 766.4483903571099 K, F = -99.25971344199458, relative_change = 0.0012558891433788212 Iter 30: T = 763.4775740406881 K, F = -41.56616421059409, relative_change = 0.0005356928254919651 Iter 35: T = 762.2228239347572 K, F = -17.393170305607374, relative_change = 0.00022591747006572954 Iter 40: T = 761.6958793288244 K, F = -7.275740803856876, relative_change = 9.481503999943799e-5 Iter 45: T = 761.4751183433525 K, F = -3.0431015351203046, relative_change = 3.971144187455494e-5 Iter 50: T = 761.3827256583047 K, F = -1.2727139117826682, relative_change = 1.661808121184284e-5 Iter 55: T = 761.3440740593325 K, F = -0.5322733456396376, relative_change = 6.951679986549961e-6 Iter 60: T = 761.3279074210074 K, F = -0.2226046771950051, relative_change = 2.9075905257577186e-6 Iter 65: T = 761.3211459762556 K, F = -0.09309621560300729, relative_change = 1.2160441728620953e-6 Iter 70: T = 761.3183181957235 K, F = -0.03893399833364464, relative_change = 5.085738317428189e-7 Iter 75: T = 761.3171355730123 K, F = -0.016282671669509474, relative_change = 2.1269333544953831e-7 Iter 80: T = 761.3166409841258 K, F = -0.006809609251481885, relative_change = 8.895118774997875e-8 Iter 85: T = 761.3164341408067 K, F = -0.0028478601761745548, relative_change = 3.7200500579652164e-8 Iter 90: T = 761.3163476364009 K, F = -0.0011910091821003554, relative_change = 1.55577026249333e-8 Iter 95: T = 761.316311459215 K, F = -0.0004980942739346572, relative_change = 6.506418642919665e-9 Iter 100: T = 761.3162963294819 K, F = -0.00020830897582502228, relative_change = 2.7210622626351086e-9 Iter 105: T = 761.3162900020466 K, F = -8.711730258159633e-5, relative_change = 1.137980794725279e-9 Iter 110: T = 761.3162873558374 K, F = -3.643349674387064e-5, relative_change = 4.759171718673915e-10 Iter 115: T = 761.3162862491612 K, F = -1.5236922890182747e-5, relative_change = 1.9903423904172406e-10 Iter 120: T = 761.3162857863359 K, F = -6.37226476729591e-6, relative_change = 8.323851749747671e-11 Iter 125: T = 761.3162855927769 K, F = -2.664957641118626e-6, relative_change = 3.4811347552173674e-11 Iter 130: T = 761.3162855118281 K, F = -1.1145168675730233e-6, relative_change = 1.45585180983215e-11 Iter 135: T = 761.3162854779744 K, F = -4.661033150554772e-7, relative_change = 6.088533737615129e-12 Iter 140: T = 761.3162854638164 K, F = -1.949305207249452e-7, relative_change = 2.54630467901422e-12 Iter 145: T = 761.3162854578953 K, F = -8.152182229270721e-8, relative_change = 1.0648891552815153e-12 Iter 150: T = 761.3162854554191 K, F = -3.409297300027703e-8, relative_change = 4.453437889244844e-13 Converged in 154 iterations to T = 761.3162854545253 K Iter 1: T = 970.0344242271724 K, F = -6827.684944460102, relative_change = 0.02996557577282756 Iter 2: T = 942.2268178309055 K, F = -5783.3780130762825, relative_change = 0.028666618113497612 Iter 3: T = 916.5342474125265 K, F = -4897.066609174791, relative_change = 0.02726792523006899 Iter 5: T = 871.2876627842742 K, F = -3507.0036324787798, relative_change = 0.024212429745706966 Iter 10: T = 790.6157294579184 K, F = -1510.3538734932395, relative_change = 0.015909662962211267 Iter 15: T = 746.3737609324231 K, F = -643.2453402114932, relative_change = 0.008780489646067377 Iter 20: T = 724.7933053050562 K, F = -271.60679990679535, relative_change = 0.004245916725446143 Iter 25: T = 715.0527976135636 K, F = -114.10346965364243, relative_change = 0.0019007112609012555 Iter 30: T = 710.8355020522336 K, F = -47.8147413776893, relative_change = 0.0008190957244905395 Iter 35: T = 709.0450254026142 K, F = -20.013793327935108, relative_change = 0.0003469790256317918 Iter 40: T = 708.2914192925356 K, F = -8.373030271991459, relative_change = 0.0001458991789318639 Iter 45: T = 707.9754016961174 K, F = -3.5022323786653673, relative_change = 6.115577464609868e-5 Iter 50: T = 707.8430898860606 K, F = -1.4647684782662331, relative_change = 2.5600467183462064e-5 Iter 55: T = 707.787729310238 K, F = -0.6125999620086835, relative_change = 1.0710693251887376e-5 Iter 60: T = 707.7645722705639 K, F = -0.25619947039400587, relative_change = 4.480087470440454e-6 Iter 65: T = 707.7548869176878 K, F = -0.1071461767587848, relative_change = 1.8737568785359383e-6 Iter 70: T = 707.7508362470987 K, F = -0.04480989791462986, relative_change = 7.836503823807946e-7 Iter 75: T = 707.7491421837346 K, F = -0.018740049699818573, relative_change = 3.277359502558006e-7 Iter 80: T = 707.7484337019109 K, F = -0.007837315254247135, relative_change = 1.3706378827234435e-7 Iter 85: T = 707.7481374056002 K, F = -0.0032776593014457456, relative_change = 5.7321835527000625e-8 Iter 90: T = 707.7480134908133 K, F = -0.0013707563457402427, relative_change = 2.3972697608449463e-8 Iter 95: T = 707.7479616681464 K, F = -0.0005732666869797676, relative_change = 1.0025672155120894e-8 Iter 100: T = 707.7479399952844 K, F = -0.00023974697676454326, relative_change = 4.192856473705541e-9 Iter 105: T = 707.7479309314339 K, F = -0.00010026504844373729, relative_change = 1.7535027501090138e-9 Iter 110: T = 707.7479271408232 K, F = -4.1932039786418684e-5, relative_change = 7.333357944706688e-10 Iter 115: T = 707.7479255555446 K, F = -1.7536480079183292e-5, relative_change = 3.066897950525596e-10 Iter 120: T = 707.7479248925622 K, F = -7.333965449052293e-6, relative_change = 1.2826133638950743e-10 Iter 125: T = 707.747924615295 K, F = -3.0671519057889896e-6, relative_change = 5.3640422198979227e-11 Iter 130: T = 707.7479244993385 K, F = -1.282718981587827e-6, relative_change = 2.243305512805649e-11 Iter 135: T = 707.7479244508443 K, F = -5.364488457892946e-7, relative_change = 9.381779413603726e-12 Iter 140: T = 707.7479244305633 K, F = -2.2435019086941566e-7, relative_change = 3.9235875311224646e-12 Iter 145: T = 707.7479244220816 K, F = -9.382612697894643e-8, relative_change = 1.6408946232784244e-12 Iter 150: T = 707.7479244185344 K, F = -3.923868330257818e-8, relative_change = 6.862325722099723e-13 Iter 155: T = 707.7479244170509 K, F = -1.641035041188843e-8, relative_change = 2.8699528185721836e-13 Converged in 157 iterations to T = 707.7479244167369 K Iter 1: T = 973.481801669839 K, F = -6042.196714845985, relative_change = 0.026518198330160978 Iter 2: T = 949.1566781883662 K, F = -5113.219415729553, relative_change = 0.02498775368963984 Iter 3: T = 926.9574692255965 K, F = -4325.256698812135, relative_change = 0.023388350388200276 Iter 5: T = 888.6156918362611 K, F = -3090.778518320987, relative_change = 0.020060401064403606 Iter 10: T = 823.3072045406941 K, F = -1323.4683949782893, relative_change = 0.01204289374281153 Iter 15: T = 789.6779285257102 K, F = -560.9745009284561, relative_change = 0.006175657777013373 Iter 20: T = 773.9831066673764 K, F = -236.1703526889457, relative_change = 0.0028551461048278597 Iter 25: T = 767.070769646034 K, F = -99.06735006968736, relative_change = 0.0012494250619557873 Iter 30: T = 764.1130033879895 K, F = -41.48532736129557, relative_change = 0.0005328810517942945 Iter 35: T = 762.8638295240804 K, F = -17.35929349962784, relative_change = 0.00022472174858694476 Iter 40: T = 762.3392382755919 K, F = -7.261560748952281, relative_change = 9.431144685977371e-5 Iter 45: T = 762.119465261911 K, F = -3.0371690921624452, relative_change = 3.950021133607956e-5 Iter 50: T = 762.0274864209644 K, F = -1.27023251212192, relative_change = 1.652963295790177e-5 Iter 55: T = 761.989008012644 K, F = -0.5312355279387571, relative_change = 6.9146707592316055e-6 Iter 60: T = 761.9729138250424 K, F = -0.22217063776134716, relative_change = 2.8921094804111188e-6 Iter 65: T = 761.9661826836044 K, F = -0.09291469308609035, relative_change = 1.2095692297253549e-6 Iter 70: T = 761.9633675769021 K, F = -0.03885808309362315, relative_change = 5.05865830873973e-7 Iter 75: T = 761.9621902546468 K, F = -0.016250922948403468, relative_change = 2.1156079926315594e-7 Iter 80: T = 761.9616978824931 K, F = -0.006796331544796863, relative_change = 8.847754444201016e-8 Iter 85: T = 761.9614919662415 K, F = -0.0028423072779686365, relative_change = 3.7002416733871856e-8 Iter 90: T = 761.961405849547 K, F = -0.001188686892568236, relative_change = 1.5474861488142077e-8 Iter 95: T = 761.9613698345065 K, F = -0.0004971230605752552, relative_change = 6.471773420154046e-9 Iter 100: T = 761.9613547725849 K, F = -0.00020790280396776328, relative_change = 2.7065732291123903e-9 Iter 105: T = 761.9613484735089 K, F = -8.694743548443018e-5, relative_change = 1.1319212920347193e-9 Iter 110: T = 761.9613458391601 K, F = -3.636245596960741e-5, relative_change = 4.733830111363237e-10 Iter 115: T = 761.9613447374439 K, F = -1.5207212686552118e-5, relative_change = 1.9797442142317764e-10 Iter 120: T = 761.9613442766931 K, F = -6.359837468328244e-6, relative_change = 8.279526121681252e-11 Iter 125: T = 761.9613440840016 K, F = -2.659759230749792e-6, relative_change = 3.46259572898795e-11 Iter 130: T = 761.9613440034157 K, F = -1.1123426486570054e-6, relative_change = 1.448098332293254e-11 Iter 135: T = 761.9613439697138 K, F = -4.651957684620456e-7, relative_change = 6.056130432964751e-12 Iter 140: T = 761.9613439556192 K, F = -1.9455063371420778e-7, relative_change = 2.532748777118529e-12 Iter 145: T = 761.9613439497247 K, F = -8.136243057066395e-8, relative_change = 1.0592131858153975e-12 Iter 150: T = 761.9613439472595 K, F = -3.402702641874811e-8, relative_change = 4.4297933093431126e-13 Converged in 154 iterations to T = 761.9613439463697 K Iter 1: T = 964.2805303958512 K, F = -8138.7151272927, relative_change = 0.03571946960414884 Iter 2: T = 930.483939872462 K, F = -6904.63523117979, relative_change = 0.0350485045150867 Iter 3: T = 898.579150844406 K, F = -5856.619711756939, relative_change = 0.03428838227173386 Iter 5: T = 840.3318267192078 K, F = -4210.956307575354, relative_change = 0.03247491195661862 Iter 10: T = 725.8441211017113 K, F = -1836.6244499840084, relative_change = 0.026118968804701652 Iter 15: T = 651.85035244561 K, F = -793.1656735365383, relative_change = 0.01793053807217304 Iter 20: T = 609.9264984685339 K, F = -338.6778251773616, relative_change = 0.010301862862578767 Iter 25: T = 588.9510295200687 K, F = -143.2578533197405, relative_change = 0.005118019532101986 Iter 30: T = 579.3387537092223 K, F = -60.24089979671902, relative_change = 0.0023244780788245056 Iter 35: T = 575.1452103811521 K, F = -25.255157082660745, relative_change = 0.0010085352657566965 Iter 40: T = 573.3586555912769 K, F = -10.573139701873831, relative_change = 0.00042850560773152887 Iter 45: T = 572.6055726366047 K, F = -4.423786336515757, relative_change = 0.00018040992974407955 Iter 50: T = 572.2895733851278 K, F = -1.8504273157441395, relative_change = 7.56622095390515e-5 Iter 55: T = 572.1572338085435 K, F = -0.7739316435056276, relative_change = 3.1680181560484754e-5 Iter 60: T = 572.1018553940519 K, F = -0.32367810773727906, relative_change = 1.3255572737644682e-5 Iter 65: T = 572.0786898029669 K, F = -0.13536791393953143, relative_change = 5.544783938207732e-6 Iter 70: T = 572.0690006828085 K, F = -0.056612804263973165, relative_change = 2.319095203946655e-6 Iter 75: T = 572.0649484032831 K, F = -0.023676207864538085, relative_change = 9.699083545365764e-7 Iter 80: T = 572.0632536611978 K, F = -0.009901682854572436, relative_change = 4.0563338659241533e-7 Iter 85: T = 572.0625448945024 K, F = -0.0041410037648965115, relative_change = 1.6964179864874755e-7 Iter 90: T = 572.0622484788761 K, F = -0.0017318175333773667, relative_change = 7.094641365052676e-8 Iter 95: T = 572.0621245141585 K, F = -0.0007242668268603314, relative_change = 2.967067021397108e-8 Iter 100: T = 572.062072670605 K, F = -0.00030289704640518167, relative_change = 1.2408634383036638e-8 Iter 105: T = 572.0620509890066 K, F = -0.0001266751634146912, relative_change = 5.189440077113825e-9 Iter 110: T = 572.0620419215024 K, F = -5.297706662554802e-5, relative_change = 2.1702859980602796e-9 Iter 115: T = 572.0620381293638 K, F = -2.2155642316334934e-5, relative_change = 9.076395670328349e-10 Iter 120: T = 572.0620365434461 K, F = -9.265754132403714e-6, relative_change = 3.7958570823137256e-10 Iter 125: T = 572.0620358801964 K, F = -3.87504957299889e-6, relative_change = 1.5874729932381815e-10 Iter 130: T = 572.0620356028173 K, F = -1.6205920046474809e-6, relative_change = 6.639001638328577e-11 Iter 135: T = 572.0620354868141 K, F = -6.777503139265839e-7, relative_change = 2.776507249188271e-11 Iter 140: T = 572.0620354383002 K, F = -2.834432532017317e-7, relative_change = 1.1611683999177108e-11 Iter 145: T = 572.0620354180111 K, F = -1.1853938586270374e-7, relative_change = 4.8561462471890835e-12 Iter 150: T = 572.062035409526 K, F = -4.957434562857799e-8, relative_change = 2.0308884742907924e-12 Iter 155: T = 572.0620354059773 K, F = -2.073258187351712e-8, relative_change = 8.493417520005975e-13 Iter 160: T = 572.0620354044933 K, F = -8.670104800767575e-9, relative_change = 3.551840309387599e-13 Converged in 163 iterations to T = 572.0620354040589 K Iter 1: T = 963.5171990868462 K, F = -8312.640892165009, relative_change = 0.036482800913153805 Iter 2: T = 928.9091593579665 K, F = -7053.638859937397, relative_change = 0.03591844521475985 Iter 3: T = 896.1421488664666 K, F = -5984.410675603025, relative_change = 0.035274719988924896 Iter 5: T = 836.0118060150552 K, F = -4305.278658597119, relative_change = 0.03371977920217118 Iter 10: T = 715.9634558345514 K, F = -1881.655780333846, relative_change = 0.028044323681397445 Iter 15: T = 635.9190775952727 K, F = -814.9591119825075, relative_change = 0.020155867606422937 Iter 20: T = 588.9156696066599 K, F = -349.0085654868819, relative_change = 0.01212410439204663 Iter 25: T = 564.6803786847523 K, F = -147.94740998093852, relative_change = 0.00622651870010462 Iter 30: T = 553.3599908813603 K, F = -62.2893740850758, relative_change = 0.0028811176029319343 Iter 35: T = 548.3719713022437 K, F = -26.12950019145955, relative_change = 0.0012613157693565124 Iter 40: T = 546.2371580884017 K, F = -10.942094477721717, relative_change = 0.0005380529572861719 Iter 45: T = 545.3354629982717 K, F = -4.5786801647900415, relative_change = 0.00022692106599846236 Iter 50: T = 544.9567804582949 K, F = -1.9153106397416833, relative_change = 9.523770623667734e-5 Iter 55: T = 544.7981319631217 K, F = -0.8010850592580785, relative_change = 3.988872599910783e-5 Iter 60: T = 544.7317343277628 K, F = -0.33503722151871107, relative_change = 1.669231480499006e-5 Iter 65: T = 544.7039574727249 K, F = -0.14011899658690632, relative_change = 6.982741344101571e-6 Iter 70: T = 544.6923393603214 K, F = -0.058599862727672064, relative_change = 2.920583553340123e-6 Iter 75: T = 544.6874802645704 K, F = -0.024507236754780448, relative_change = 1.2214785014532337e-6 Iter 80: T = 544.6854480868002 K, F = -0.010249232087925997, relative_change = 5.10846618437478e-7 Iter 85: T = 544.6845981977598 K, F = -0.004286353533757253, relative_change = 2.1364385696186993e-7 Iter 90: T = 544.6842427626093 K, F = -0.001792604635131173, relative_change = 8.934870981725232e-8 Iter 95: T = 544.684094115139 K, F = -0.0007496887365044946, relative_change = 3.736674952641409e-8 Iter 100: T = 544.6840319489487 K, F = -0.0003135287947020893, relative_change = 1.5627229990729964e-8 Iter 105: T = 544.684005950298 K, F = -0.00013112148770308418, relative_change = 6.5354957672907726e-9 Iter 110: T = 544.6839950773506 K, F = -5.483657307844836e-5, relative_change = 2.7332226897686438e-9 Iter 115: T = 544.6839905301538 K, F = -2.2933309267114677e-5, relative_change = 1.143066391876578e-9 Iter 120: T = 544.6839886284619 K, F = -9.590984052315621e-6, relative_change = 4.78044035850285e-10 Iter 125: T = 544.6839878331515 K, F = -4.0110643185209405e-6, relative_change = 1.9992373856018312e-10 Iter 130: T = 544.6839875005433 K, F = -1.6774750115355896e-6, relative_change = 8.361049586612521e-11 Iter 135: T = 544.6839873614424 K, F = -7.015400528276317e-7, relative_change = 3.4966906424726116e-11 Iter 140: T = 544.6839873032689 K, F = -2.9339258289518e-7, relative_change = 1.4623585575293617e-11 Iter 145: T = 544.68398727894 K, F = -1.2270026586436167e-7, relative_change = 6.115757326426292e-12 Iter 150: T = 544.6839872687653 K, F = -5.13148583625167e-8, relative_change = 2.5576898208184753e-12 Iter 155: T = 544.6839872645102 K, F = -2.1460660637462325e-8, relative_change = 1.069665103131478e-12 Iter 160: T = 544.6839872627306 K, F = -8.975037130154462e-9, relative_change = 4.4734335907750787e-13 Converged in 165 iterations to T = 544.6839872619864 K Iter 1: T = 969.3429723616539 K, F = -6985.23290975904, relative_change = 0.03065702763834615 Iter 2: T = 940.8274324207293 K, F = -5917.941450269775, relative_change = 0.029417389669056875 Iter 3: T = 914.4141925266406 K, F = -5012.033335950784, relative_change = 0.02807447889367764 Iter 5: T = 867.7081803932346 K, F = -3590.969108828721, relative_change = 0.02511101108974956 Iter 10: T = 783.5847058131455 K, F = -1548.5171961069825, relative_change = 0.016841061583770675 Iter 15: T = 736.7503750230782 K, F = -660.2808538976685, relative_change = 0.00946690789869999 Iter 20: T = 713.641393883791 K, F = -279.0213061053334, relative_change = 0.00463365833101279 Iter 25: T = 703.1401240073543 K, F = -117.26800418829339, relative_change = 0.002087621209596412 Iter 30: T = 698.5781422376041 K, F = -49.1505864686274, relative_change = 0.0009023361191147045 Iter 35: T = 696.6383812862523 K, F = -20.57473314623263, relative_change = 0.0003827423126072296 Iter 40: T = 695.821404733097 K, F = -8.608027754305029, relative_change = 0.00016102719832559033 Iter 45: T = 695.4787177155524 K, F = -3.600582707467468, relative_change = 6.751284764200989e-5 Iter 50: T = 695.3352229702175 K, F = -1.5059123239089471, relative_change = 2.826440817445677e-5 Iter 55: T = 695.2751803868263 K, F = -0.6298090103074683, relative_change = 1.1825720726873662e-5 Iter 60: T = 695.2500643700973 K, F = -0.26339688505635267, relative_change = 4.946569054870955e-6 Iter 65: T = 695.2395595911441 K, F = -0.1101562889050956, relative_change = 2.068873704160997e-6 Iter 70: T = 695.235166199059 K, F = -0.0460687745485423, relative_change = 8.652555818237605e-7 Iter 75: T = 695.2333288006228 K, F = -0.019266529002842647, relative_change = 3.6186509601452587e-7 Iter 80: T = 695.2325603735119 K, F = -0.008057495547166948, relative_change = 1.5133715797943586e-7 Iter 85: T = 695.2322390072179 K, F = -0.003369741394340209, relative_change = 6.329115605333309e-8 Iter 90: T = 695.2321046078386 K, F = -0.001409266186426561, relative_change = 2.646914340951916e-8 Iter 95: T = 695.2320484003855 K, F = -0.0005893719649415763, relative_change = 1.1069716435886858e-8 Iter 100: T = 695.2320248937526 K, F = -0.0002464823972262442, relative_change = 4.629488413537613e-9 Iter 105: T = 695.2320150629972 K, F = -0.00010308188290442111, relative_change = 1.936107486983609e-9 Iter 110: T = 695.2320109516577 K, F = -4.311007443591475e-5, relative_change = 8.09703294876703e-10 Iter 115: T = 695.2320092322464 K, F = -1.8029147832221426e-5, relative_change = 3.3862758917670514e-10 Iter 120: T = 695.232008513168 K, F = -7.540005082073975e-6, relative_change = 1.4161810528465155e-10 Iter 125: T = 695.2320082124409 K, F = -3.1533205797629194e-6, relative_change = 5.922639068805123e-11 Iter 130: T = 695.2320080866732 K, F = -1.3187567259320687e-6, relative_change = 2.476919144887297e-11 Iter 135: T = 695.2320080340758 K, F = -5.515205862005601e-7, relative_change = 1.03587862142366e-11 Iter 140: T = 695.2320080120787 K, F = -2.3065264531663132e-7, relative_change = 4.332170915691232e-12 Iter 145: T = 695.2320080028793 K, F = -9.646163257048812e-8, relative_change = 1.8117645195641613e-12 Iter 150: T = 695.232007999032 K, F = -4.034000533614801e-8, relative_change = 7.576752377229413e-13 Iter 155: T = 695.2320079974231 K, F = -1.6871745889268652e-8, relative_change = 3.168890031389911e-13 Converged in 158 iterations to T = 695.232007996952 K Iter 1: T = 966.5419483712271 K, F = -7623.448890439456, relative_change = 0.03345805162877292 Iter 2: T = 935.1258813758222 K, F = -6463.550544410909, relative_change = 0.03250357322653795 Iter 3: T = 905.7219916520667 K, F = -5478.713013329983, relative_change = 0.031443777045818154 Iter 5: T = 852.8252444494614 K, F = -3932.8370484578286, relative_change = 0.029004090990428905 Iter 10: T = 753.1472216177175 K, F = -1705.8544092854877, relative_change = 0.021342220222777503 Iter 15: T = 693.4883212848114 K, F = -731.7137264130489, relative_change = 0.013165322240074098 Iter 20: T = 662.1980936993664 K, F = -310.57023746931196, relative_change = 0.0068935813886049305 Iter 25: T = 647.4146276086518 K, F = -130.85524529345273, relative_change = 0.00322621198864092 Iter 30: T = 640.8606831533268 K, F = -54.91227560357362, relative_change = 0.0014203236361773539 Iter 35: T = 638.0475691685658 K, F = -22.999141616134764, relative_change = 0.0006074124451009803 Iter 40: T = 636.8578632730449 K, F = -9.624606239133714, relative_change = 0.00025645219413786914 Iter 45: T = 636.3579535756091 K, F = -4.026199077228348, relative_change = 0.00010768148363942154 Iter 50: T = 636.1484690014106 K, F = -1.6839929806185452, relative_change = 4.5109353416877684e-5 Iter 55: T = 636.0607869673349 K, F = -0.7042989811049216, relative_change = 1.8878537930095075e-5 Iter 60: T = 636.0241044920703 K, F = -0.29455202107074063, relative_change = 7.89755293638719e-6 Iter 65: T = 636.0087612024431 K, F = -0.1231861833764924, relative_change = 3.303257410621254e-6 Iter 70: T = 636.002344063535 K, F = -0.05151810978421767, relative_change = 1.381532800604409e-6 Iter 75: T = 635.9996602708475 K, F = -0.02154551967809787, relative_change = 5.777859529131278e-7 Iter 80: T = 635.9985378647028 K, F = -0.009010599042083622, relative_change = 2.416391609557976e-7 Iter 85: T = 635.9980684589516 K, F = -0.0037683410731764178, relative_change = 1.0105676332535047e-7 Iter 90: T = 635.9978721474937 K, F = -0.0015759654059278039, relative_change = 4.2263211845438656e-8 Iter 95: T = 635.9977900476334 K, F = -0.0006590875824888376, relative_change = 1.767499155638141e-8 Iter 100: T = 635.9977557124802 K, F = -0.00027563830357590913, relative_change = 7.391894597896524e-9 Iter 105: T = 635.997741353107 K, F = -0.00011527523172200071, relative_change = 3.0913789672092687e-9 Iter 110: T = 635.9977353478453 K, F = -4.820947754596849e-5, relative_change = 1.2928516332539864e-9 Iter 115: T = 635.9977328363732 K, F = -2.0161779909488864e-5, relative_change = 5.406860207206185e-10 Iter 120: T = 635.9977317860454 K, F = -8.43189689681001e-6, relative_change = 2.2612134625886377e-10 Iter 125: T = 635.9977313467858 K, F = -3.526319768742958e-6, relative_change = 9.456664210055014e-11 Iter 130: T = 635.9977311630823 K, F = -1.4747493212174945e-6, relative_change = 3.9548906674763825e-11 Iter 135: T = 635.9977310862552 K, F = -6.167569742143719e-7, relative_change = 1.6539803529528075e-11 Iter 140: T = 635.9977310541252 K, F = -2.579355616871837e-7, relative_change = 6.917154881053286e-12 Iter 145: T = 635.9977310406881 K, F = -1.0787115917176848e-7, relative_change = 2.8928214100615247e-12 Iter 150: T = 635.9977310350686 K, F = -4.511371132220887e-8, relative_change = 1.2098313488770424e-12 Iter 155: T = 635.9977310327183 K, F = -1.8865900897058197e-8, relative_change = 5.059339535923722e-13 Converged in 160 iterations to T = 635.9977310317354 K Iter 1: T = 966.4802343565212 K, F = -7637.510487395363, relative_change = 0.033519765643478756 Iter 2: T = 934.9996654363795 K, F = -6475.580806475491, relative_change = 0.03257238772306754 Iter 3: T = 905.5285685723334 K, F = -5489.012599478125, relative_change = 0.031519900972682605 Iter 5: T = 852.4901465390733 K, F = -3940.401355540872, relative_change = 0.029094725436661212 Iter 10: T = 752.4374222294953 K, F = -1709.3752001050757, relative_change = 0.021457001686736425 Iter 15: T = 692.4438466304711 K, F = -733.339140644995, relative_change = 0.013268779814715753 Iter 20: T = 660.9248448387668 K, F = -311.29938461882267, relative_change = 0.006961258592924285 Iter 25: T = 646.0161115197935 K, F = -131.172452153069, relative_change = 0.003261659155120081 Iter 30: T = 639.402484762297 K, F = -55.04749076112209, relative_change = 0.0014367569644411484 Iter 35: T = 636.5629085650692 K, F = -23.05617417082235, relative_change = 0.0006146005769093428 Iter 40: T = 635.3618532439449 K, F = -9.648545557519375, relative_change = 0.0002595163476057839 Iter 45: T = 634.8571460792662 K, F = -4.036226338385474, relative_change = 0.0001089733078654509 Iter 50: T = 634.6456461076186 K, F = -1.6881892379971486, relative_change = 4.56514376182152e-5 Iter 55: T = 634.557119620431 K, F = -0.7060543860072392, relative_change = 1.9105564907253965e-5 Iter 60: T = 634.5200837060763 K, F = -0.2952862364006281, relative_change = 7.992554541089857e-6 Iter 65: T = 634.5045925552058 K, F = -0.12349325570038377, relative_change = 3.34299805414217e-6 Iter 70: T = 634.498113570422 K, F = -0.05164653366873162, relative_change = 1.3981545334277804e-6 Iter 75: T = 634.4954039115572 K, F = -0.021599228529927184, relative_change = 5.847376611366255e-7 Iter 80: T = 634.4942706876071 K, F = -0.009033060803997905, relative_change = 2.445465010126769e-7 Iter 85: T = 634.4937967576747 K, F = -0.0037777348631944374, relative_change = 1.022726568455684e-7 Iter 90: T = 634.4935985541422 K, F = -0.0015798940027336172, relative_change = 4.2771714626457695e-8 Iter 95: T = 634.4935156629924 K, F = -0.0006607305691158638, relative_change = 1.7887653776732402e-8 Iter 100: T = 634.4934809969121 K, F = -0.00027632541941818856, relative_change = 7.480832504250715e-9 Iter 105: T = 634.4934664991414 K, F = -0.00011556259185774298, relative_change = 3.128573872468735e-9 Iter 110: T = 634.4934604360002 K, F = -4.832965666201616e-5, relative_change = 1.308407033336158e-9 Iter 115: T = 634.4934579003221 K, F = -2.0212039572364837e-5, relative_change = 5.471914568453677e-10 Iter 120: T = 634.4934568398712 K, F = -8.452917169055052e-6, relative_change = 2.2884202658387893e-10 Iter 125: T = 634.493456396378 K, F = -3.535110740693348e-6, relative_change = 9.570446422359477e-11 Iter 130: T = 634.4934562109037 K, F = -1.4784250172428237e-6, relative_change = 4.002473606785814e-11 Iter 135: T = 634.4934561333362 K, F = -6.182939817911404e-7, relative_change = 1.6738795109197358e-11 Iter 140: T = 634.4934561008965 K, F = -2.585785529585216e-7, relative_change = 7.0003809613678214e-12 Iter 145: T = 634.49345608733 K, F = -1.0814019130167551e-7, relative_change = 2.9276308021780176e-12 Iter 150: T = 634.4934560816563 K, F = -4.522610214108269e-8, relative_change = 1.2243859392383773e-12 Iter 155: T = 634.4934560792834 K, F = -1.8914742716535926e-8, relative_change = 5.120703295324052e-13 Converged in 160 iterations to T = 634.493456078291 K Iter 1: T = 976.5491877670848 K, F = -5343.289874751085, relative_change = 0.023450812232915206 Iter 2: T = 955.2577385328773 K, F = -4517.965037689629, relative_change = 0.021802741224833985 Iter 3: T = 936.033074610843 K, F = -3818.386545639849, relative_change = 0.020125106708436907 Iter 5: T = 903.3595478756179 K, F = -2723.636065861953, relative_change = 0.016774589774195336 Iter 10: T = 849.6138376703101 K, F = -1161.2483303857025, relative_change = 0.009417179428979197 Iter 15: T = 823.1165045521708 K, F = -490.6918895029581, relative_change = 0.004605277720734807 Iter 20: T = 811.0814010343715 K, F = -206.22325771379917, relative_change = 0.0020738644371989983 Iter 25: T = 805.8543715525961 K, F = -86.43318212212591, relative_change = 0.000896193556321187 Iter 30: T = 803.6320789689792 K, F = -36.181221759950944, relative_change = 0.000380100201110033 Iter 35: T = 802.6961526733519 K, F = -15.137406927596178, relative_change = 0.00015990902582188108 Iter 40: T = 802.3035793313795 K, F = -6.33169689392418, relative_change = 6.704287361515888e-5 Iter 45: T = 802.1391968985089 K, F = -2.6481757340533987, relative_change = 2.8067447730782222e-5 Iter 50: T = 802.0704145176791 K, F = -1.1075310112571788, relative_change = 1.174327734522024e-5 Iter 55: T = 802.0416426575613 K, F = -0.4631883457727922, relative_change = 4.912077612930805e-6 Iter 60: T = 802.0296088290172 K, F = -0.1937118861785907, relative_change = 2.0544467604442023e-6 Iter 65: T = 802.0245759470024 K, F = -0.08101279706694087, relative_change = 8.592216749222671e-7 Iter 70: T = 802.0224711021949 K, F = -0.033880549458439435, relative_change = 3.5934157644643537e-7 Iter 75: T = 802.0215908251099 K, F = -0.014169255686987903, relative_change = 1.5028178010334248e-7 Iter 80: T = 802.0212226816973 K, F = -0.0059257528691294414, relative_change = 6.284978234334541e-8 Iter 85: T = 802.0210687195466 K, F = -0.0024782207792253264, relative_change = 2.6284555291930938e-8 Iter 90: T = 802.0210043307052 K, F = -0.0010364215528253506, relative_change = 1.0992519412531624e-8 Iter 95: T = 802.0209774025174 K, F = -0.0004334438755446701, relative_change = 4.5972036811278025e-9 Iter 100: T = 802.0209661408265 K, F = -0.0001812714059021836, relative_change = 1.9226056180014636e-9 Iter 105: T = 802.0209614310528 K, F = -7.58098656281625e-5, relative_change = 8.040566404086901e-10 Iter 110: T = 802.0209594613692 K, F = -3.170459114687496e-5, relative_change = 3.3626609320493307e-10 Iter 115: T = 802.0209586376241 K, F = -1.325923964246023e-5, relative_change = 1.4063050725324587e-10 Iter 120: T = 802.020958293124 K, F = -5.545173330956388e-6, relative_change = 5.881336795793244e-11 Iter 125: T = 802.0209581490499 K, F = -2.3190569371500658e-6, relative_change = 2.4596444680140515e-11 Iter 130: T = 802.0209580887964 K, F = -9.698580114569921e-7, relative_change = 1.0286534389380654e-11 Iter 135: T = 802.0209580635976 K, F = -4.0560575387260656e-7, relative_change = 4.301946766514286e-12 Iter 140: T = 802.0209580530592 K, F = -1.6962791526964338e-7, relative_change = 1.7991122036194054e-12 Iter 145: T = 802.0209580486519 K, F = -7.094003406926674e-8, relative_change = 7.524061167623981e-13 Iter 150: T = 802.0209580468087 K, F = -2.9667220680096307e-8, relative_change = 3.1465728202911966e-13 Converged in 152 iterations to T = 802.0209580464186 K Iter 1: T = 965.189927528643 K, F = -7931.508125526075, relative_change = 0.03481007247135697 Iter 2: T = 932.3548306606651 K, F = -6727.196639492243, relative_change = 0.034019311569124834 Iter 3: T = 901.4652581216842 K, F = -5704.527604661502, relative_change = 0.03313070466647621 Iter 5: T = 845.4096233048554 K, F = -4098.880885263852, relative_change = 0.03104131426933575 Iter 10: T = 737.1573178067754 K, F = -1783.5866440191487, relative_change = 0.024046857422265352 Iter 15: T = 669.4904623020575 K, F = -767.9507881613225, relative_change = 0.015741707489167915 Iter 20: T = 632.4819094143106 K, F = -326.99324280357297, relative_change = 0.008659201422406084 Iter 25: T = 614.4666489279555 K, F = -138.05176002543777, relative_change = 0.00417833625612822 Iter 30: T = 606.3449637517709 K, F = -57.99199914258607, relative_change = 0.00186837182545976 Iter 35: T = 602.8306140133961 K, F = -24.300549727975568, relative_change = 0.0008047426597126066 Iter 40: T = 601.3389693509237 K, F = -10.171315978973936, relative_change = 0.00034082168600463 Iter 45: T = 600.711212018776 K, F = -4.255274695641774, relative_change = 0.00014329627591765442 Iter 50: T = 600.4479805956237 K, F = -1.779871786709337, relative_change = 6.006228405419446e-5 Iter 55: T = 600.3377717943542 K, F = -0.7444100891288219, relative_change = 2.51422905979831e-5 Iter 60: T = 600.2916597286305 K, F = -0.3113293202288082, relative_change = 1.0518926594011929e-5 Iter 65: T = 600.2723713609982 K, F = -0.13020306231436443, relative_change = 4.399861801658951e-6 Iter 70: T = 600.2643040790118 K, F = -0.05445272444166627, relative_change = 1.8402008982907951e-6 Iter 75: T = 600.2609301305391 K, F = -0.022772823183343616, relative_change = 7.69616057723671e-7 Iter 80: T = 600.2595190849144 K, F = -0.00952387423005363, relative_change = 3.218664858648609e-7 Iter 85: T = 600.2589289652707 K, F = -0.003982999272336862, relative_change = 1.3460908328162844e-7 Iter 90: T = 600.2586821695738 K, F = -0.0016657380949672285, relative_change = 5.629524424369677e-8 Iter 95: T = 600.2585789565588 K, F = -0.00069663160532768, relative_change = 2.3543364105466744e-8 Iter 100: T = 600.2585357916244 K, F = -0.0002913396630456755, relative_change = 9.846119615149511e-9 Iter 105: T = 600.2585177395301 K, F = -0.00012184172764012624, relative_change = 4.117765441506414e-9 Iter 110: T = 600.2585101899281 K, F = -5.0955664959217994e-5, relative_change = 1.7220987657194602e-9 Iter 115: T = 600.2585070325943 K, F = -2.1310267416307926e-5, relative_change = 7.202022810056698e-10 Iter 120: T = 600.2585057121595 K, F = -8.912208187827897e-6, relative_change = 3.0119719323564916e-10 Iter 125: T = 600.258505159938 K, F = -3.727191354052639e-6, relative_change = 1.2596424542046584e-10 Iter 130: T = 600.2585049289924 K, F = -1.5587561214003287e-6, relative_change = 5.2679758116762775e-11 Iter 135: T = 600.2585048324081 K, F = -6.518908987063199e-7, relative_change = 2.2031319984696797e-11 Iter 140: T = 600.2585047920154 K, F = -2.726284519249944e-7, relative_change = 9.213757509325593e-12 Iter 145: T = 600.2585047751228 K, F = -1.1401686877965389e-7, relative_change = 3.853316752640698e-12 Iter 150: T = 600.258504768058 K, F = -4.768308564662149e-8, relative_change = 1.6114986731052123e-12 Iter 155: T = 600.2585047651035 K, F = -1.9941351903085547e-8, relative_change = 6.739383933886927e-13 Iter 160: T = 600.2585047638678 K, F = -8.339371693200093e-9, relative_change = 2.8183759998598046e-13 Converged in 162 iterations to T = 600.2585047636063 K Iter 1: T = 964.5379557392441 K, F = -8080.060517925899, relative_change = 0.035462044260755894 Iter 2: T = 931.014113343522 K, F = -6854.398701138583, relative_change = 0.034756374486091236 Iter 3: T = 899.398019169177 K, F = -5813.549866381835, relative_change = 0.03395877003497093 Iter 5: T = 841.7767194810514 K, F = -4179.19845033672, relative_change = 0.03206374256072489 Iter 10: T = 729.0952997192442 K, F = -1821.5456741240412, relative_change = 0.025509386553289305 Iter 15: T = 656.9816861708892 K, F = -785.9508232026436, relative_change = 0.01726558888013521 Iter 20: T = 616.5584016734578 K, F = -335.3083710046891, relative_change = 0.009787951913989066 Iter 25: T = 596.5058366547031 K, F = -141.7473754705761, relative_change = 0.004818194515403221 Iter 30: T = 587.3642002432226 K, F = -59.58609371435313, relative_change = 0.00217741051274661 Iter 35: T = 583.3864773118032 K, F = -24.97672615278064, relative_change = 0.0009424994311241068 Iter 40: T = 581.6939059254514 K, F = -10.45584892243376, relative_change = 0.0004000313344362513 Iter 45: T = 580.9808128221462 K, F = -4.374582082095396, relative_change = 0.00016834655811096783 Iter 50: T = 580.6816601701364 K, F = -1.8298226796162285, relative_change = 7.058964815705925e-5 Iter 55: T = 580.5563876379028 K, F = -0.7653098260969212, relative_change = 2.9553934422321186e-5 Iter 60: T = 580.503968537073 K, F = -0.3200715350352423, relative_change = 1.236550189786027e-5 Iter 65: T = 580.4820412304574 K, F = -0.13385945764176327, relative_change = 5.172397054694218e-6 Iter 70: T = 580.4728700918903 K, F = -0.05598192453919021, relative_change = 2.1633325552319516e-6 Iter 75: T = 580.4690344587882 K, F = -0.023412362005037823, relative_change = 9.047620051543954e-7 Iter 80: T = 580.4674303243818 K, F = -0.009791338591368326, relative_change = 3.78387609502921e-7 Iter 85: T = 580.4667594515219 K, F = -0.004094856340542519, relative_change = 1.5824715008812498e-7 Iter 90: T = 580.466478883659 K, F = -0.0017125181055544503, relative_change = 6.618101119152277e-8 Iter 95: T = 580.4663615466844 K, F = -0.0007161955721636803, relative_change = 2.767771776455859e-8 Iter 100: T = 580.4663124749353 K, F = -0.00029952154973250655, relative_change = 1.1575157089347553e-8 Iter 105: T = 580.4662919525394 K, F = -0.00012526349077174315, relative_change = 4.840869809185777e-9 Iter 110: T = 580.4662833698277 K, F = -5.2386688113637e-5, relative_change = 2.0245097209245e-9 Iter 115: T = 580.4662797804349 K, F = -2.1908738431442032e-5, relative_change = 8.466741615201293e-10 Iter 120: T = 580.4662782793081 K, F = -9.16249640298128e-6, relative_change = 3.540892634787522e-10 Iter 125: T = 580.4662776515189 K, F = -3.8318659387748255e-6, relative_change = 1.4808437955347593e-10 Iter 130: T = 580.46627738897 K, F = -1.602532875344398e-6, relative_change = 6.193068621453926e-11 Iter 135: T = 580.4662772791687 K, F = -6.701978420564636e-7, relative_change = 2.590013155675161e-11 Iter 140: T = 580.4662772332487 K, F = -2.802850985195171e-7, relative_change = 1.0831758135047979e-11 Iter 145: T = 580.4662772140443 K, F = -1.1721881482129604e-7, relative_change = 4.529979859535178e-12 Iter 150: T = 580.4662772060128 K, F = -4.9022738424220336e-8, relative_change = 1.89450830119861e-12 Iter 155: T = 580.466277202654 K, F = -2.0502427588997563e-8, relative_change = 7.923265919383832e-13 Iter 160: T = 580.4662772012492 K, F = -8.574459531285328e-9, relative_change = 3.3136428692283156e-13 Converged in 163 iterations to T = 580.4662772008379 K Iter 1: T = 964.3016589408493 K, F = -8133.9009682164315, relative_change = 0.03569834105915067 Iter 2: T = 930.5274717582222 K, F = -6900.511743857383, relative_change = 0.03502450386710242 Iter 3: T = 898.6464170951394 K, F = -5853.084195027648, relative_change = 0.03426127183848079 Iter 5: T = 840.4506439857528 K, F = -4208.3487672062065, relative_change = 0.03244100268946744 Iter 10: T = 726.1124612845218 K, F = -1835.384844698567, relative_change = 0.026068216142227922 Iter 15: T = 652.2758568640558 K, F = -792.5710761293805, relative_change = 0.017874478493986386 Iter 20: T = 610.478787220666 K, F = -338.3992703869855, relative_change = 0.010258015963756612 Iter 25: T = 589.5819729564511 K, F = -143.13266443575196, relative_change = 0.00509222544989447 Iter 30: T = 580.010022786234 K, F = -60.18654786139976, relative_change = 0.0023117683508461755 Iter 35: T = 575.8350222902546 K, F = -25.23202896736642, relative_change = 0.0010028161048939123 Iter 40: T = 574.0565525389397 K, F = -10.563393605888747, relative_change = 0.0004260371935658117 Iter 45: T = 573.3069116516724 K, F = -4.419697200078145, relative_change = 0.00017936373896543798 Iter 50: T = 572.9923627856504 K, F = -1.8487148565854756, relative_change = 7.522221814282396e-5 Iter 55: T = 572.8606316967828 K, F = -0.7732150627085979, relative_change = 3.149573864184856e-5 Iter 60: T = 572.8055080961003 K, F = -0.323378353260772, relative_change = 1.3178360531760652e-5 Iter 65: T = 572.7824491302277 K, F = -0.13524254046608605, relative_change = 5.512479569190334e-6 Iter 70: T = 572.7728046123385 K, F = -0.05656036937997211, relative_change = 2.305582803340683e-6 Iter 75: T = 572.7687709878223 K, F = -0.02365427858361735, relative_change = 9.642568999833744e-7 Iter 80: T = 572.767084047801 K, F = -0.009892511699941986, relative_change = 4.032698095761268e-7 Iter 85: T = 572.7663785440772 K, F = -0.0041371682662529885, relative_change = 1.686533100365331e-7 Iter 90: T = 572.7660834930743 K, F = -0.0017302134798557467, relative_change = 7.053301372396337e-8 Iter 95: T = 572.7659600990603 K, F = -0.0007235959925357971, relative_change = 2.9497781062081202e-8 Iter 100: T = 572.765908494182 K, F = -0.0003026164950301613, relative_change = 1.2336329992491079e-8 Iter 105: T = 572.7658869124006 K, F = -0.00012655783368564766, relative_change = 5.159201514775751e-9 Iter 110: T = 572.765877886641 K, F = -5.292799661243963e-5, relative_change = 2.1576398143910905e-9 Iter 115: T = 572.7658741119604 K, F = -2.2135120420874177e-5, relative_change = 9.023507722126908e-10 Iter 120: T = 572.765872533344 K, F = -9.25717224770084e-6, relative_change = 3.7737389618848994e-10 Iter 125: T = 572.7658718731477 K, F = -3.871460436177809e-6, relative_change = 1.5782228931953067e-10 Iter 130: T = 572.7658715970456 K, F = -1.6190902892843084e-6, relative_change = 6.600313780000386e-11 Iter 135: T = 572.7658714815766 K, F = -6.771230945945561e-7, relative_change = 2.760330863496209e-11 Iter 140: T = 572.7658714332861 K, F = -2.831815663073556e-7, relative_change = 1.154405785307323e-11 Iter 145: T = 572.7658714130903 K, F = -1.1842955238705599e-7, relative_change = 4.827848162317811e-12 Iter 150: T = 572.7658714046443 K, F = -4.952903737143188e-8, relative_change = 2.01907942107497e-12 Iter 155: T = 572.765871401112 K, F = -2.071391225211272e-8, relative_change = 8.444144319983241e-13 Iter 160: T = 572.7658713996348 K, F = -8.6630095874618e-9, relative_change = 3.531525204533152e-13 Converged in 163 iterations to T = 572.7658713992022 K Iter 1: T = 980.134750544657 K, F = -4526.315985130525, relative_change = 0.019865249455342963 Iter 2: T = 962.313525204419 K, F = -3823.3980069071317, relative_change = 0.01818242372320214 Iter 3: T = 946.4154738450966 K, F = -3228.135141195864, relative_change = 0.0165206566705433 Iter 5: T = 919.8658253428243 K, F = -2298.050190289505, relative_change = 0.013349086310021345 Iter 10: T = 877.7095810921553 K, F = -975.6094395551597, relative_change = 0.00701407211092975 Iter 15: T = 857.7512188091433 K, F = -411.1179827429868, relative_change = 0.0032894024073587998 Iter 20: T = 848.8931492114255 K, F = -172.53391457468211, relative_change = 0.001449636881659692 Iter 25: T = 845.0890206054814 K, F = -72.26535699935796, relative_change = 0.000620237943340152 Iter 30: T = 843.4798208862983 K, F = -30.24177960442423, relative_change = 0.0002619200905165391 Iter 35: T = 842.8035731712811 K, F = -12.65091977398428, relative_change = 0.00010998682374803998 Iter 40: T = 842.520182953961 K, F = -5.291370586700662, relative_change = 4.6076756579781305e-5 Iter 45: T = 842.4015647848145 K, F = -2.2130203136703965, relative_change = 1.9283693732414062e-5 Iter 50: T = 842.3519395586144 K, F = -0.9255300646516819, relative_change = 8.067094875602237e-6 Iter 55: T = 842.3311826001706 K, F = -0.3870709696961583, relative_change = 3.3741795411307624e-6 Iter 60: T = 842.3225012505872 K, F = -0.16187826945499584, relative_change = 1.4111963733505537e-6 Iter 65: T = 842.3188705117651 K, F = -0.06769952474066643, relative_change = 5.901921539435177e-7 Iter 70: T = 842.3173520768572 K, F = -0.028312767095893587, relative_change = 2.468276769251e-7 Iter 75: T = 842.3167170463465 K, F = -0.01184074035783067, relative_change = 1.0322667921233069e-7 Iter 80: T = 842.3164514684961 K, F = -0.004951939556111951, relative_change = 4.3170699463757325e-8 Iter 85: T = 842.3163404005787 K, F = -0.0020709603522464093, relative_change = 1.8054514213221462e-8 Iter 90: T = 842.3162939506337 K, F = -0.0008661003678913648, relative_change = 7.550615583216599e-9 Iter 95: T = 842.3162745247095 K, F = -0.00036221352097531856, relative_change = 3.157757989299915e-9 Iter 100: T = 842.3162664005554 K, F = -0.00015148202158821178, relative_change = 1.3206121753388838e-9 Iter 105: T = 842.316263002937 K, F = -6.335159100445686e-5, relative_change = 5.522957981230917e-10 Iter 110: T = 842.3162615820123 K, F = -2.6494390967579662e-5, relative_change = 2.3097669199380991e-10 Iter 115: T = 842.3162609877647 K, F = -1.1080268074614708e-5, relative_change = 9.659718836366658e-11 Iter 120: T = 842.3162607392434 K, F = -4.633902812800628e-6, relative_change = 4.039811857272332e-11 Iter 125: T = 842.3162606353087 K, F = -1.937952908592777e-6, relative_change = 1.6894970524503512e-11 Iter 130: T = 842.3162605918419 K, F = -8.10473264722944e-7, relative_change = 7.0656628760394446e-12 Iter 135: T = 842.3162605736637 K, F = -3.3894993389793626e-7, relative_change = 2.9549475217340404e-12 Iter 140: T = 842.3162605660614 K, F = -1.4175522200510215e-7, relative_change = 1.2358144967243675e-12 Iter 145: T = 842.3162605628819 K, F = -5.928233393071025e-8, relative_change = 5.168202386922043e-13 Converged in 150 iterations to T = 842.3162605615522 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012299652784614895 Iteration 10: d = 1.4225836712295305e-5 Iteration 20: d = 1.8184845596895676e-7 Iteration 30: d = 2.4862105680080367e-9 Iteration 40: d = 3.452105282054567e-11 Iteration 50: d = 4.825470514718097e-13 Iteration 60: d = 6.777305708054149e-15 Converged after 63 iterations. d = 1.895808238464545e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.630851935453 Iteration 2: convergence error = 4821.99204394097 Iteration 3: convergence error = 1097.3035445072626 Iteration 4: convergence error = 321.29577752850037 Iteration 5: convergence error = 95.31400158419387 Iteration 6: convergence error = 28.43703545809717 Iteration 7: convergence error = 8.56087926621126 Iteration 8: convergence error = 2.568145991078609 Iteration 9: convergence error = 0.7686241905430506 Iteration 10: convergence error = 0.2297352897694509 Iteration 11: convergence error = 0.06861368960335312 Iteration 12: convergence error = 0.020483591735455775 Iteration 13: convergence error = 0.006113566440035356 Iteration 14: convergence error = 0.001824408728907656 Iteration 15: convergence error = 0.0005443956397357397 Iteration 16: convergence error = 0.0001624377434836788 Iteration 17: convergence error = 4.84671666072245e-5 Iteration 18: convergence error = 1.4461102182394825e-5 Iteration 19: convergence error = 4.314706529839896e-6 Iteration 20: convergence error = 1.2873551895609125e-6 Iteration 21: convergence error = 3.8410985325754154e-7 Iteration 22: convergence error = 1.1446331882325467e-7 Iteration 23: convergence error = 3.32413492287742e-8 Iteration 24: convergence error = 9.595169103704393e-9 Iteration 25: convergence error = 2.7614532882580534e-9 Iteration 26: convergence error = 7.883045327616856e-10 Iteration 27: convergence error = 2.3010215954855084e-10 Iteration 28: convergence error = 6.389200279954821e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 50%|████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018267169545970949 Iteration 10: d = 1.8255827765920608e-5 Iteration 20: d = 1.832375975415024e-7 Iteration 30: d = 2.0892686280989364e-9 Iteration 40: d = 2.523917079046093e-11 Iteration 50: d = 3.1528483503303466e-13 Iteration 60: d = 4.036745397895881e-15 Converged after 62 iterations. d = 1.6630222398764515e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12294.663483064063 Iteration 2: convergence error = 8327.072751778822 Iteration 3: convergence error = 1954.398378660425 Iteration 4: convergence error = 481.1134477871067 Iteration 5: convergence error = 122.60575142659377 Iteration 6: convergence error = 32.72288600259935 Iteration 7: convergence error = 8.911659364418028 Iteration 8: convergence error = 2.4409198766618374 Iteration 9: convergence error = 0.6693908472857402 Iteration 10: convergence error = 0.1835969982403185 Iteration 11: convergence error = 0.050353253166576906 Iteration 12: convergence error = 0.013809086741730425 Iteration 13: convergence error = 0.003786933976925866 Iteration 14: convergence error = 0.0010384917775354552 Iteration 15: convergence error = 0.000284783547385814 Iteration 16: convergence error = 7.809534804437135e-5 Iteration 17: convergence error = 2.1415824221548974e-5 Iteration 18: convergence error = 5.872786459804047e-6 Iteration 19: convergence error = 1.6104759197332896e-6 Iteration 20: convergence error = 4.4163016355014406e-7 Iteration 21: convergence error = 1.219691512233112e-7 Iteration 22: convergence error = 3.2778189051896334e-8 Iteration 23: convergence error = 8.764573067310266e-9 Iteration 24: convergence error = 2.3385382519336417e-9 Iteration 25: convergence error = 6.220943760126829e-10 Iteration 26: convergence error = 1.6621015674900264e-10 Iteration 27: convergence error = 4.501998773775995e-11 Iteration 28: convergence error = 1.2732925824820995e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018267169545970949 Iteration 10: d = 1.8255827765920608e-5 Iteration 20: d = 1.832375975415024e-7 Iteration 30: d = 2.0892686280989364e-9 Iteration 40: d = 2.523917079046093e-11 Iteration 50: d = 3.1528483503303466e-13 Iteration 60: d = 4.036745397895881e-15 Converged after 62 iterations. d = 1.6630222398764515e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.87664814147 Iteration 2: convergence error = 5730.235971978604 Iteration 3: convergence error = 2012.8710407240583 Iteration 4: convergence error = 891.3981099577627 Iteration 5: convergence error = 411.0186872289901 Iteration 6: convergence error = 193.84574842073198 Iteration 7: convergence error = 91.5140651030215 Iteration 8: convergence error = 43.22748002689241 Iteration 9: convergence error = 20.419795859939313 Iteration 10: convergence error = 9.644018062247142 Iteration 11: convergence error = 4.5536133783348305 Iteration 12: convergence error = 2.149599624483926 Iteration 13: convergence error = 1.0145745507052197 Iteration 14: convergence error = 0.4788022035481845 Iteration 15: convergence error = 0.22593875947359265 Iteration 16: convergence error = 0.10652018248265449 Iteration 17: convergence error = 0.049779734430558165 Iteration 18: convergence error = 0.022732724432898976 Iteration 19: convergence error = 0.010342692427002476 Iteration 20: convergence error = 0.004695544242622418 Iteration 21: convergence error = 0.002129118131051655 Iteration 22: convergence error = 0.0009647149918237119 Iteration 23: convergence error = 0.0004369310418042005 Iteration 24: convergence error = 0.00019784109326792532 Iteration 25: convergence error = 8.956822239269968e-5 Iteration 26: convergence error = 4.054631472172332e-5 Iteration 27: convergence error = 1.8353729501541238e-5 Iteration 28: convergence error = 8.307732514367672e-6 Iteration 29: convergence error = 3.760376330319559e-6 Iteration 30: convergence error = 1.7020588529703673e-6 Iteration 31: convergence error = 7.703984010731801e-7 Iteration 32: convergence error = 3.48702997143846e-7 Iteration 33: convergence error = 1.5783143680891953e-7 Iteration 34: convergence error = 7.142989488784224e-8 Iteration 35: convergence error = 3.233890311094001e-8 Iteration 36: convergence error = 1.4633769751526415e-8 Iteration 37: convergence error = 6.619302439503372e-9 Iteration 38: convergence error = 3.0004230211488903e-9 Iteration 39: convergence error = 1.3546923582907766e-9 Iteration 40: convergence error = 6.116351869422942e-10 Iteration 41: convergence error = 2.823981049004942e-10 Iteration 42: convergence error = 1.2823875294998288e-10 Iteration 43: convergence error = 5.6843418860808015e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.3642420526593924e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018267169545970949 Iteration 10: d = 1.8255827765920608e-5 Iteration 20: d = 1.832375975415024e-7 Iteration 30: d = 2.0892686280989364e-9 Iteration 40: d = 2.523917079046093e-11 Iteration 50: d = 3.1528483503303466e-13 Iteration 60: d = 4.036745397895881e-15 Converged after 62 iterations. d = 1.6630222398764515e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.760468457353 Iteration 2: convergence error = 7345.730435167607 Iteration 3: convergence error = 1727.5884978027989 Iteration 4: convergence error = 506.0934418443312 Iteration 5: convergence error = 157.21263638181108 Iteration 6: convergence error = 48.8386156674419 Iteration 7: convergence error = 15.146783405768929 Iteration 8: convergence error = 4.689810949123057 Iteration 9: convergence error = 1.4503845179328891 Iteration 10: convergence error = 0.4482264761654733 Iteration 11: convergence error = 0.13846121659526034 Iteration 12: convergence error = 0.042761557401718164 Iteration 13: convergence error = 0.013204412354298256 Iteration 14: convergence error = 0.004077094040439988 Iteration 15: convergence error = 0.0012588185209096991 Iteration 16: convergence error = 0.00038865528813403216 Iteration 17: convergence error = 0.00011999406069662655 Iteration 18: convergence error = 3.7046857414679835e-5 Iteration 19: convergence error = 1.1437758075771853e-5 Iteration 20: convergence error = 3.531261427269783e-6 Iteration 21: convergence error = 1.0902281246671919e-6 Iteration 22: convergence error = 3.3642209018580616e-7 Iteration 23: convergence error = 1.0264557204209268e-7 Iteration 24: convergence error = 3.054356056964025e-8 Iteration 25: convergence error = 9.064024197869003e-9 Iteration 26: convergence error = 2.685737854335457e-9 Iteration 27: convergence error = 7.871676643844694e-10 Iteration 28: convergence error = 2.34194885706529e-10 Iteration 29: convergence error = 7.09405867382884e-11 Iteration 30: convergence error = 2.1827872842550278e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018267169545970949 Iteration 10: d = 1.8255827765920608e-5 Iteration 20: d = 1.832375975415024e-7 Iteration 30: d = 2.0892686280989364e-9 Iteration 40: d = 2.523917079046093e-11 Iteration 50: d = 3.1528483503303466e-13 Iteration 60: d = 4.036745397895881e-15 Converged after 62 iterations. d = 1.6630222398764515e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.737217729615 Iteration 2: convergence error = 5514.163082032751 Iteration 3: convergence error = 934.9012752949011 Iteration 4: convergence error = 169.80230221005604 Iteration 5: convergence error = 30.80266398436106 Iteration 6: convergence error = 5.615766300581072 Iteration 7: convergence error = 1.0301561975120421 Iteration 8: convergence error = 0.1885063782947327 Iteration 9: convergence error = 0.03445319002457836 Iteration 10: convergence error = 0.006293247959547443 Iteration 11: convergence error = 0.0011491847776596842 Iteration 12: convergence error = 0.00020981574516554247 Iteration 13: convergence error = 3.8304683130263584e-5 Iteration 14: convergence error = 6.992719590925844e-6 Iteration 15: convergence error = 1.2765403880621307e-6 Iteration 16: convergence error = 2.3304482965613715e-7 Iteration 17: convergence error = 4.2527972254902124e-8 Iteration 18: convergence error = 7.763446774333715e-9 Iteration 19: convergence error = 1.4179022400639951e-9 Iteration 20: convergence error = 2.5920599000528455e-10 Iteration 21: convergence error = 4.5702108764089644e-11 Iteration 22: convergence error = 9.322320693172514e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018267169545970949 Iteration 10: d = 1.8255827765920608e-5 Iteration 20: d = 1.832375975415024e-7 Iteration 30: d = 2.0892686280989364e-9 Iteration 40: d = 2.523917079046093e-11 Iteration 50: d = 3.1528483503303466e-13 Iteration 60: d = 4.036745397895881e-15 Converged after 62 iterations. d = 1.6630222398764515e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4885313841564 Iteration 2: convergence error = 2711.4396325783437 Iteration 3: convergence error = 204.0887462163402 Iteration 4: convergence error = 19.34559908164235 Iteration 5: convergence error = 1.599254396295315 Iteration 6: convergence error = 0.13024771428007223 Iteration 7: convergence error = 0.01062056586159159 Iteration 8: convergence error = 0.0008680045613152617 Iteration 9: convergence error = 7.10486687368039e-5 Iteration 10: convergence error = 5.820506884416971e-6 Iteration 11: convergence error = 4.77049995056542e-7 Iteration 12: convergence error = 3.910836562862412e-8 Iteration 13: convergence error = 3.2074573710996912e-9 Iteration 14: convergence error = 2.620423316356471e-10 Iteration 15: convergence error = 2.205524651799351e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012299652784614895 Iteration 10: d = 1.4225836712295305e-5 Iteration 20: d = 1.8184845596895676e-7 Iteration 30: d = 2.4862105680080367e-9 Iteration 40: d = 3.452105282054567e-11 Iteration 50: d = 4.825470514718097e-13 Iteration 60: d = 6.777305708054149e-15 Converged after 63 iterations. d = 1.895808238464545e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.320286713378 Iteration 2: convergence error = 3608.077263802467 Iteration 3: convergence error = 593.8943376006052 Iteration 4: convergence error = 105.36161453342834 Iteration 5: convergence error = 18.756544262459784 Iteration 6: convergence error = 3.309413594023681 Iteration 7: convergence error = 0.5817716467133778 Iteration 8: convergence error = 0.10211483940133803 Iteration 9: convergence error = 0.017912327867179556 Iteration 10: convergence error = 0.0031412619694037858 Iteration 11: convergence error = 0.0005508221972831961 Iteration 12: convergence error = 9.658299472903309e-5 Iteration 13: convergence error = 1.6934905715970672e-5 Iteration 14: convergence error = 2.9693517262785463e-6 Iteration 15: convergence error = 5.206463811191497e-7 Iteration 16: convergence error = 9.128712008532602e-8 Iteration 17: convergence error = 1.6016656445572153e-8 Iteration 18: convergence error = 2.789420250337571e-9 Iteration 19: convergence error = 4.922640073345974e-10 Iteration 20: convergence error = 8.640199666842818e-11 Iteration 21: convergence error = 1.4551915228366852e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 9m46.0s Testing RayTraceHeatTransfer tests passed Testing completed after 589.97s PkgEval succeeded after 678.08s