Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1262 (4060c45d70*) started at 2025-11-18T15:57:21.043 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.41s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.24s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1561.5 ms ✓ Measurements 4690.7 ms ✓ StatsBase 9667.4 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 17 seconds. 56 already precompiled. Precompilation completed after 28.66s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_hhYyHJ/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_hhYyHJ/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:49 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012575130459254035 Iteration 10: d = 1.5423067928915413e-5 Iteration 20: d = 2.347598325944644e-7 Iteration 30: d = 4.013115635569633e-9 Iteration 40: d = 7.128156527595973e-11 Iteration 50: d = 1.2837141556262509e-12 Iteration 60: d = 2.322950718245105e-14 Converged after 66 iterations. d = 2.142202717014085e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▍ | ETA: 0:00:01 Bin 1 progress: 90%|█████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013066323099196098 Iteration 10: d = 1.6464037537071372e-5 Iteration 20: d = 2.6234004252169924e-7 Iteration 30: d = 4.565978351268881e-9 Iteration 40: d = 8.147172775924471e-11 Iteration 50: d = 1.4661093604523198e-12 Iteration 60: d = 2.6461871298605893e-14 Converged after 67 iterations. d = 1.581632438856162e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▋ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001270970846287177 Iteration 10: d = 1.101236911928754e-5 Iteration 20: d = 1.6060111136250093e-7 Iteration 30: d = 2.7604405943017556e-9 Iteration 40: d = 4.9176588595033853e-11 Iteration 50: d = 8.848060139505259e-13 Iteration 60: d = 1.5987620150446e-14 Converged after 65 iterations. d = 2.1735315470938023e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001404812483149605 Iteration 10: d = 1.5726274583505213e-5 Iteration 20: d = 2.136072364529585e-7 Iteration 30: d = 3.3368713350734815e-9 Iteration 40: d = 5.6111585187803356e-11 Iteration 50: d = 9.829801790821545e-13 Iteration 60: d = 1.758982049998607e-14 Converged after 66 iterations. d = 1.561843880911182e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015253105606563972 Iteration 10: d = 1.4345700754892694e-5 Iteration 20: d = 1.3457346228673717e-7 Iteration 30: d = 1.4519053466454803e-9 Iteration 40: d = 1.7158201716860782e-11 Iteration 50: d = 2.2064517675943188e-13 Iteration 60: d = 3.017635168200897e-15 Converged after 61 iterations. d = 1.9805266501087232e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015897743964692936 Iteration 10: d = 1.8814777385341704e-5 Iteration 20: d = 2.3608574521881012e-7 Iteration 30: d = 3.379234596492648e-9 Iteration 40: d = 5.085498090992456e-11 Iteration 50: d = 7.817002782779266e-13 Iteration 60: d = 1.2128454286429237e-14 Converged after 65 iterations. d = 1.502393980573009e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016101277459530106 Iteration 10: d = 1.7252931325532058e-5 Iteration 20: d = 2.0873032891774155e-7 Iteration 30: d = 2.984596208948062e-9 Iteration 40: d = 4.509464285343526e-11 Iteration 50: d = 6.956945904626306e-13 Iteration 60: d = 1.0795914386306024e-14 Converged after 64 iterations. d = 2.0470864091874115e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 45%|███████████████ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001452427836304006 Iteration 10: d = 1.2788383920445445e-5 Iteration 20: d = 1.3218673250061166e-7 Iteration 30: d = 1.7503400826468263e-9 Iteration 40: d = 2.5490130116364387e-11 Iteration 50: d = 3.858049793505022e-13 Iteration 60: d = 5.940843784040754e-15 Converged after 63 iterations. d = 1.683706443582079e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016157578753077401 Iteration 10: d = 1.7054291936827627e-5 Iteration 20: d = 1.9710855140962593e-7 Iteration 30: d = 2.667161621774215e-9 Iteration 40: d = 3.8750384045243785e-11 Iteration 50: d = 5.852324043483199e-13 Iteration 60: d = 9.014278159924835e-15 Converged after 64 iterations. d = 1.7248979084565858e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015119067586669744 Iteration 10: d = 1.7235086522002294e-5 Iteration 20: d = 1.9032841467837646e-7 Iteration 30: d = 2.406977907556319e-9 Iteration 40: d = 3.3066900849283547e-11 Iteration 50: d = 4.807868344803954e-13 Iteration 60: d = 7.23257777641379e-15 Converged after 63 iterations. d = 2.072950343029793e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0061657310249709114 Iteration 10: d = 7.82678644381853e-5 Iteration 20: d = 9.479340209648302e-7 Iteration 30: d = 1.2346374039360434e-8 Iteration 40: d = 1.6520605224495146e-10 Iteration 50: d = 2.2409070915898418e-12 Iteration 60: d = 3.062103521893814e-14 Converged after 67 iterations. d = 1.5200216467685044e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0035450229341956654 Iteration 10: d = 3.879145903543698e-5 Iteration 20: d = 5.311760121415166e-7 Iteration 30: d = 8.109769692278471e-9 Iteration 40: d = 1.2835643998833442e-10 Iteration 50: d = 2.0647382481516497e-12 Iteration 60: d = 3.346972320657052e-14 Converged after 67 iterations. d = 1.8921695412869755e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0028021999668682187 Iteration 10: d = 2.7829808519236764e-5 Iteration 20: d = 4.160864799484188e-7 Iteration 30: d = 6.763288001125261e-9 Iteration 40: d = 1.0955305029819043e-10 Iteration 50: d = 1.7668155154311272e-12 Iteration 60: d = 2.844353784793984e-14 Converged after 67 iterations. d = 1.576740527850519e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002286357715271483 Iteration 10: d = 3.337107927830343e-5 Iteration 20: d = 5.650600985492321e-7 Iteration 30: d = 1.0108768038945101e-8 Iteration 40: d = 1.8335303519677137e-10 Iteration 50: d = 3.3440096772977367e-12 Iteration 60: d = 6.112532703504007e-14 Converged after 69 iterations. d = 1.6949568000317714e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015253105606563972 Iteration 10: d = 1.4345700754892694e-5 Iteration 20: d = 1.3457346228673717e-7 Iteration 30: d = 1.4519053466454803e-9 Iteration 40: d = 1.7158201716860782e-11 Iteration 50: d = 2.2064517675943188e-13 Iteration 60: d = 3.017635168200897e-15 Converged after 61 iterations. d = 1.9805266501087232e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318879530717507 Iteration 10: d = 9.089540726711805e-6 Iteration 20: d = 8.713117496380023e-8 Iteration 30: d = 1.1505408014644963e-9 Iteration 40: d = 1.617050826227625e-11 Iteration 50: d = 2.298093389911668e-13 Iteration 60: d = 3.276597615612835e-15 Converged after 61 iterations. d = 2.157552768693353e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001251956031222925 Iteration 10: d = 9.425803767761624e-6 Iteration 20: d = 9.249379985204644e-8 Iteration 30: d = 1.210277290119144e-9 Iteration 40: d = 1.648290569681233e-11 Iteration 50: d = 2.2586224493446245e-13 Iteration 60: d = 3.107600635508166e-15 Converged after 61 iterations. d = 2.035692298630946e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.431069314129 Iteration 2: convergence error = 4828.427793112784 Iteration 3: convergence error = 1095.8688475476833 Iteration 4: convergence error = 322.2320734015857 Iteration 5: convergence error = 95.75449567596888 Iteration 6: convergence error = 28.59971673081941 Iteration 7: convergence error = 8.549773890974393 Iteration 8: convergence error = 2.5660783512446415 Iteration 9: convergence error = 0.768407441262525 Iteration 10: convergence error = 0.22979386859447004 Iteration 11: convergence error = 0.06866843315015103 Iteration 12: convergence error = 0.020511103105491202 Iteration 13: convergence error = 0.006125116537987196 Iteration 14: convergence error = 0.0018288526259766513 Iteration 15: convergence error = 0.0005460193144699588 Iteration 16: convergence error = 0.0001630110725727718 Iteration 17: convergence error = 4.866474228037987e-5 Iteration 18: convergence error = 1.4527972098221653e-5 Iteration 19: convergence error = 4.3370246203267016e-6 Iteration 20: convergence error = 1.294720959776896e-6 Iteration 21: convergence error = 3.865095550281694e-7 Iteration 22: convergence error = 1.1525617082952522e-7 Iteration 23: convergence error = 3.3491687645437196e-8 Iteration 24: convergence error = 9.674522516434081e-9 Iteration 25: convergence error = 2.7841906558023766e-9 Iteration 26: convergence error = 8.033111953409389e-10 Iteration 27: convergence error = 2.2737367544323206e-10 Iteration 28: convergence error = 6.59383658785373e-11 Iteration 29: convergence error = 2.1373125491663814e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318879530717507 Iteration 10: d = 9.089540726711805e-6 Iteration 20: d = 8.713117496380023e-8 Iteration 30: d = 1.1505408014644963e-9 Iteration 40: d = 1.617050826227625e-11 Iteration 50: d = 2.298093389911668e-13 Iteration 60: d = 3.276597615612835e-15 Converged after 61 iterations. d = 2.157552768693353e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.642656655244 Iteration 2: convergence error = 4833.581770508081 Iteration 3: convergence error = 1094.1192626655677 Iteration 4: convergence error = 317.6478538884305 Iteration 5: convergence error = 94.0561026645712 Iteration 6: convergence error = 28.003161309006828 Iteration 7: convergence error = 8.40974610103217 Iteration 8: convergence error = 2.5171322415258146 Iteration 9: convergence error = 0.751629790974448 Iteration 10: convergence error = 0.2241360962671024 Iteration 11: convergence error = 0.0667857645114509 Iteration 12: convergence error = 0.019891403289648224 Iteration 13: convergence error = 0.005922955986534362 Iteration 14: convergence error = 0.0017633950935760367 Iteration 15: convergence error = 0.0005249587607067951 Iteration 16: convergence error = 0.0001562716706757783 Iteration 17: convergence error = 4.651825929613551e-5 Iteration 18: convergence error = 1.3847132549926755e-5 Iteration 19: convergence error = 4.121847950955271e-6 Iteration 20: convergence error = 1.2269356375327334e-6 Iteration 21: convergence error = 3.65211008102051e-7 Iteration 22: convergence error = 1.0856160770345014e-7 Iteration 23: convergence error = 3.1412128009833395e-8 Iteration 24: convergence error = 9.035147741087712e-9 Iteration 25: convergence error = 2.6000179786933586e-9 Iteration 26: convergence error = 7.412381819449365e-10 Iteration 27: convergence error = 2.1714186004828662e-10 Iteration 28: convergence error = 5.95719029661268e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:52:10 Bin 1 ray tracing: 9%|██▋ | ETA: 0:01:01 Bin 1 ray tracing: 17%|█████ | ETA: 0:00:34 Bin 1 ray tracing: 24%|███████▍ | ETA: 0:00:24 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:18 Bin 1 ray tracing: 41%|████████████▎ | ETA: 0:00:14 Bin 1 ray tracing: 49%|██████████████▊ | ETA: 0:00:11 Bin 1 ray tracing: 57%|█████████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 65%|███████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 73%|██████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▋ | ETA: 0:00:11 Bin 2 ray tracing: 23%|███████ | ETA: 0:00:10 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 3 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 3 ray tracing: 32%|█████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 40%|████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 3 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 3 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:11 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▎ | ETA: 0:00:09 Bin 5 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 5 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 5 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 5 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▌ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 6 ray tracing: 27%|████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 40%|████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 53%|███████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 66%|███████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 7 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 7 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 7 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 7 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 7 ray tracing: 59%|█████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 8 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 86%|█████████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 9 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 9 ray tracing: 30%|████████▉ | ETA: 0:00:08 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 46%|██████████████ | ETA: 0:00:06 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 9 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|███ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:08 Bin 10 ray tracing: 37%|██████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 47%|█████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 56%|████████████████▏ | ETA: 0:00:05 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 73%|█████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▋| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 2 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 4 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 4 progress: 82%|███████████████████████████▏ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 5 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 27%|████████▊ | ETA: 0:00:03 Bin 6 progress: 58%|███████████████████▏ | ETA: 0:00:02 Bin 6 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 7 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 7 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 22%|███████▏ | ETA: 0:00:04 Bin 10 progress: 44%|██████████████▎ | ETA: 0:00:03 Bin 10 progress: 69%|██████████████████████ | ETA: 0:00:01 Bin 10 progress: 93%|█████████████████████████████▉ | ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318879530717507 Iteration 10: d = 9.089540726711805e-6 Iteration 20: d = 8.713117496380023e-8 Iteration 30: d = 1.1505408014644963e-9 Iteration 40: d = 1.617050826227625e-11 Iteration 50: d = 2.298093389911668e-13 Iteration 60: d = 3.276597615612835e-15 Converged after 61 iterations. d = 2.157552768693353e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012745149977449318 Iteration 10: d = 9.597661199334867e-6 Iteration 20: d = 9.445570648312032e-8 Iteration 30: d = 1.2352557834538196e-9 Iteration 40: d = 1.6805203787793213e-11 Iteration 50: d = 2.300060932080674e-13 Iteration 60: d = 3.1462703517833294e-15 Converged after 61 iterations. d = 2.0537574281396764e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014608998975611826 Iteration 10: d = 1.3625460473158102e-5 Iteration 20: d = 1.6611072964570258e-7 Iteration 30: d = 2.328352751467208e-9 Iteration 40: d = 3.313629005392148e-11 Iteration 50: d = 4.717337780654764e-13 Iteration 60: d = 6.689917535301388e-15 Converged after 63 iterations. d = 1.8699408252707055e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012921716987832363 Iteration 10: d = 1.4093615177729658e-5 Iteration 20: d = 1.5125361151026345e-7 Iteration 30: d = 1.9379283191372565e-9 Iteration 40: d = 2.644980925208208e-11 Iteration 50: d = 3.6991348756212264e-13 Iteration 60: d = 5.249605329937345e-15 Converged after 62 iterations. d = 2.2075567662027957e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015879417279895175 Iteration 10: d = 1.4966496673362605e-5 Iteration 20: d = 1.654906631920775e-7 Iteration 30: d = 2.085607034293217e-9 Iteration 40: d = 2.74377810385781e-11 Iteration 50: d = 3.686796219452165e-13 Iteration 60: d = 5.020431797389932e-15 Converged after 62 iterations. d = 2.135843146816664e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017539618849239697 Iteration 10: d = 1.7919124646663805e-5 Iteration 20: d = 2.253111169775944e-7 Iteration 30: d = 3.072464568575934e-9 Iteration 40: d = 4.244768380596023e-11 Iteration 50: d = 5.897134704192998e-13 Iteration 60: d = 8.208908980843032e-15 Converged after 64 iterations. d = 1.4734532889213362e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015989684140369238 Iteration 10: d = 1.7097744885093676e-5 Iteration 20: d = 1.823904176135201e-7 Iteration 30: d = 2.2389507533279046e-9 Iteration 40: d = 2.8949391897047384e-11 Iteration 50: d = 3.8165538631476234e-13 Iteration 60: d = 5.0706544962625345e-15 Converged after 62 iterations. d = 2.1219211314978987e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012321500030027506 Iteration 10: d = 1.3644616260052139e-5 Iteration 20: d = 1.7568746307325656e-7 Iteration 30: d = 2.4488591402734817e-9 Iteration 40: d = 3.454460086140506e-11 Iteration 50: d = 4.887178097882637e-13 Iteration 60: d = 6.919863667573513e-15 Converged after 63 iterations. d = 1.929789298232847e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015140513524384714 Iteration 10: d = 1.1707625011914402e-5 Iteration 20: d = 1.1573361975840527e-7 Iteration 30: d = 1.4955775306683525e-9 Iteration 40: d = 2.03070904710708e-11 Iteration 50: d = 2.7844848729942796e-13 Iteration 60: d = 3.865050555013517e-15 Converged after 62 iterations. d = 1.641317094945349e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013048014838503914 Iteration 10: d = 1.5819980339645402e-5 Iteration 20: d = 1.8704621652567914e-7 Iteration 30: d = 2.387603320113565e-9 Iteration 40: d = 3.09957450288203e-11 Iteration 50: d = 4.0409010213868164e-13 Iteration 60: d = 5.311937258823885e-15 Converged after 63 iterations. d = 1.4227900084541016e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.640451185338 Iteration 2: convergence error = 4805.589737190659 Iteration 3: convergence error = 1108.501725969645 Iteration 4: convergence error = 321.3803535889074 Iteration 5: convergence error = 95.75228311777346 Iteration 6: convergence error = 28.68053859732595 Iteration 7: convergence error = 8.658878676202676 Iteration 8: convergence error = 2.608105439141127 Iteration 9: convergence error = 0.7837998929217065 Iteration 10: convergence error = 0.2352396973883515 Iteration 11: convergence error = 0.07054803983737656 Iteration 12: convergence error = 0.02114800304957498 Iteration 13: convergence error = 0.006337891019484232 Iteration 14: convergence error = 0.0018991419949543342 Iteration 15: convergence error = 0.0005690283401236229 Iteration 16: convergence error = 0.00017048624977178406 Iteration 17: convergence error = 5.107785318614333e-5 Iteration 18: convergence error = 1.530272584204795e-5 Iteration 19: convergence error = 4.584591124512372e-6 Iteration 20: convergence error = 1.3735077573073795e-6 Iteration 21: convergence error = 4.11490418628091e-7 Iteration 22: convergence error = 1.231467194884317e-7 Iteration 23: convergence error = 3.593163455661852e-8 Iteration 24: convergence error = 1.0402800398878753e-8 Iteration 25: convergence error = 3.0033788789296523e-9 Iteration 26: convergence error = 8.658389560878277e-10 Iteration 27: convergence error = 2.4783730623312294e-10 Iteration 28: convergence error = 7.275957614183426e-11 Iteration 29: convergence error = 2.0236257114447653e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3346930785889 K, F = -7442.821254772171, relative_change = 0.032665306921411105 Iter 2: T = 936.7448897237134 K, F = -6309.050950320249, relative_change = 0.031622770871084935 Iter 3: T = 908.1992022295353 K, F = -5346.47702033805, relative_change = 0.030473278058231447 Iter 5: T = 857.1015564448949 K, F = -3835.7947342798634, relative_change = 0.027859139736412634 Iter 10: T = 762.1055280955175 K, F = -1660.8473335690921, relative_change = 0.0199336786581895 Iter 15: T = 706.5199146182757 K, F = -711.051707929748, relative_change = 0.01193493218680747 Iter 20: T = 677.9482443224479 K, F = -301.3520963454456, relative_change = 0.006108087127299522 Iter 25: T = 664.6293315945182 K, F = -126.8596835280006, relative_change = 0.0028206692945351546 Iter 30: T = 658.7670060528218 K, F = -53.212378671846686, relative_change = 0.001233647719944226 Iter 35: T = 656.2592576103681 K, F = -22.282781680127805, relative_change = 0.0005260201907046619 Iter 40: T = 655.2002766756608 K, F = -9.324033071552387, relative_change = 0.00022180450640077042 Iter 45: T = 654.7555810484472 K, F = -3.9003215288710407, relative_change = 9.308288065359363e-5 Iter 50: T = 654.5692838632885 K, F = -1.6313188334575988, relative_change = 3.898490498673405e-5 Iter 55: T = 654.4913159858944 K, F = -0.6822646495545146, relative_change = 1.631386156275792e-5 Iter 60: T = 654.4586990516019 K, F = -0.28533605958290353, relative_change = 6.824386326753206e-6 Iter 65: T = 654.4450565387509 K, F = -0.11933179359020096, relative_change = 2.8543433573835204e-6 Iter 70: T = 654.4393507758082 K, F = -0.04990612914509951, relative_change = 1.1937735698702925e-6 Iter 75: T = 654.4369645049295 K, F = -0.020871365086411908, relative_change = 4.992596495723018e-7 Iter 80: T = 654.435966528737 K, F = -0.00872865866003636, relative_change = 2.087979720185835e-7 Iter 85: T = 654.4355491615635 K, F = -0.003650430084320866, relative_change = 8.732208952236343e-8 Iter 90: T = 654.4353746133454 K, F = -0.0015266535948781357, relative_change = 3.6519190365474526e-8 Iter 95: T = 654.4353016151467 K, F = -0.0006384647897473839, relative_change = 1.52727702335802e-8 Iter 100: T = 654.4352710864196 K, F = -0.00026701360335262825, relative_change = 6.387256407013556e-9 Iter 105: T = 654.4352583189399 K, F = -0.00011166827802117085, relative_change = 2.6712271642530424e-9 Iter 110: T = 654.4352529794271 K, F = -4.6701008060978655e-5, relative_change = 1.117139158828302e-9 Iter 115: T = 654.435250746379 K, F = -1.9530918459464974e-5, relative_change = 4.672009251902649e-10 Iter 120: T = 654.4352498124916 K, F = -8.168063336255749e-6, relative_change = 1.9538900751433962e-10 Iter 125: T = 654.4352494219288 K, F = -3.4159803322664217e-6, relative_change = 8.17139854613869e-11 Iter 130: T = 654.4352492585908 K, F = -1.4286043141242821e-6, relative_change = 3.417377763872873e-11 Iter 135: T = 654.4352491902808 K, F = -5.974588316859375e-7, relative_change = 1.429186869353122e-11 Iter 140: T = 654.4352491617129 K, F = -2.4986573815555246e-7, relative_change = 5.977061735612201e-12 Iter 145: T = 654.4352491497655 K, F = -1.0449687337654723e-7, relative_change = 2.4996794999382052e-12 Iter 150: T = 654.4352491447688 K, F = -4.3702143015522665e-8, relative_change = 1.0454030582292828e-12 Iter 155: T = 654.4352491426791 K, F = -1.8276676061468322e-8, relative_change = 4.371980807080533e-13 Converged in 159 iterations to T = 654.4352491419248 K Iter 1: T = 970.3031904817335 K, F = -6766.446297695648, relative_change = 0.029696809518266472 Iter 2: T = 942.769899811244 K, F = -5731.086690176554, relative_change = 0.028375966337717346 Iter 3: T = 917.3556148619225 K, F = -4852.4043249541055, relative_change = 0.026957038991603254 Iter 5: T = 872.6693125043333 K, F = -3474.4107996675975, relative_change = 0.02386940484829633 Iter 10: T = 793.3023559441586 K, F = -1495.585610582085, relative_change = 0.015563660934946957 Iter 15: T = 750.0191391576437 K, F = -636.677767225834, relative_change = 0.0085316890825131 Iter 20: T = 728.9943988657507 K, F = -268.75680570442387, relative_change = 0.004107645674069714 Iter 25: T = 719.5276651906107 K, F = -112.88917120432015, relative_change = 0.0018346311399013236 Iter 30: T = 715.4337784005418 K, F = -47.30257793275022, relative_change = 0.0007897853927156294 Iter 35: T = 713.6966262799891 K, F = -19.79880918611528, relative_change = 0.0003344084572802162 Iter 40: T = 712.9656333671813 K, F = -8.282980313004595, relative_change = 0.00014058579558558353 Iter 45: T = 712.6591284516857 K, F = -3.464547548497529, relative_change = 5.892370510416525e-5 Iter 50: T = 712.5308047495581 K, F = -1.4490038693343719, relative_change = 2.4665240338401966e-5 Iter 55: T = 712.4771137658647 K, F = -0.6060062501405756, relative_change = 1.0319263734487736e-5 Iter 60: T = 712.4546552703848 K, F = -0.2534417676182546, relative_change = 4.316333321339121e-6 Iter 65: T = 712.4452621096765 K, F = -0.10599284912973628, relative_change = 1.8052635508751907e-6 Iter 70: T = 712.4413336465508 K, F = -0.044327558434992365, relative_change = 7.550040127606052e-7 Iter 75: T = 712.4396906934182 K, F = -0.018538328852151564, relative_change = 3.15755409142466e-7 Iter 80: T = 712.4390035867855 K, F = -0.007752953060933154, relative_change = 1.320533326570068e-7 Iter 85: T = 712.4387162298842 K, F = -0.003242378003541435, relative_change = 5.5226394378274466e-8 Iter 90: T = 712.4385960536737 K, F = -0.0013560012813631506, relative_change = 2.3096357551043195e-8 Iter 95: T = 712.4385457945258 K, F = -0.0005670959424568522, relative_change = 9.65917601405649e-9 Iter 100: T = 712.4385247755462 K, F = -0.00023716629829972913, relative_change = 4.0395833758586524e-9 Iter 105: T = 712.4385159851572 K, F = -9.918577888179403e-5, relative_change = 1.6894021195348727e-9 Iter 110: T = 712.4385123089114 K, F = -4.148067757059337e-5, relative_change = 7.06528164815588e-10 Iter 115: T = 712.4385107714616 K, F = -1.7347714517779167e-5, relative_change = 2.954785154380438e-10 Iter 120: T = 712.4385101284817 K, F = -7.255022355767693e-6, relative_change = 1.2357266095003015e-10 Iter 125: T = 712.4385098595798 K, F = -3.0341367295294575e-6, relative_change = 5.167955819321207e-11 Iter 130: T = 712.4385097471218 K, F = -1.268912098062458e-6, relative_change = 2.1613006436049168e-11 Iter 135: T = 712.4385097000905 K, F = -5.306740100685658e-7, relative_change = 9.038814285224258e-12 Iter 140: T = 712.4385096804215 K, F = -2.2193417770211e-7, relative_change = 3.780139554597416e-12 Iter 145: T = 712.4385096721957 K, F = -9.28156731472285e-8, relative_change = 1.5809020539443268e-12 Iter 150: T = 712.4385096687556 K, F = -3.881756804879899e-8, relative_change = 6.61168216294009e-13 Iter 155: T = 712.4385096673168 K, F = -1.6233760113948392e-8, relative_change = 2.765048599874709e-13 Converged in 157 iterations to T = 712.4385096670123 K Iter 1: T = 974.4128993496693 K, F = -5830.045222794125, relative_change = 0.02558710065033077 Iter 2: T = 951.0150468352152 K, F = -4932.428031127052, relative_change = 0.024012256539368428 Iter 3: T = 929.7317230996601 K, F = -4171.208575455901, relative_change = 0.022379586744060063 Iter 5: T = 893.1553159009403 K, F = -2979.0237307589164, relative_change = 0.019025175653212646 Iter 10: T = 831.5417355060831 K, F = -1273.857941955577, relative_change = 0.011178191264037081 Iter 15: T = 800.2638921283648 K, F = -539.3893101368618, relative_change = 0.005642153242514726 Iter 20: T = 785.7998188828935 K, F = -226.9483503937312, relative_change = 0.0025851289681053545 Iter 25: T = 779.4600950912512 K, F = -95.1714348682455, relative_change = 0.0011263425799400517 Iter 30: T = 776.7534097800298 K, F = -39.84871610687468, relative_change = 0.0004794515637650766 Iter 35: T = 775.6113970389292 K, F = -16.673532533260083, relative_change = 0.0002020205970876059 Iter 40: T = 775.1320087971395 K, F = -6.974535448107333, relative_change = 8.47541392295616e-5 Iter 45: T = 774.931208638852 K, F = -2.9170909317012255, relative_change = 3.549205807587675e-5 Iter 50: T = 774.8471764938836 K, F = -1.2200072493725356, relative_change = 1.485141519121373e-5 Iter 55: T = 774.8120235952915 K, F = -0.5102294730388466, relative_change = 6.212476762893726e-6 Iter 60: T = 774.7973205443096 K, F = -0.21338543599800064, relative_change = 2.5983834920283157e-6 Iter 65: T = 774.7911712573338 K, F = -0.08924057853084633, relative_change = 1.0867190043692734e-6 Iter 70: T = 774.7885995004013 K, F = -0.03732151781557014, relative_change = 4.5448656124362526e-7 Iter 75: T = 774.7875239518999 K, F = -0.01560831182807243, relative_change = 1.900730535836453e-7 Iter 80: T = 774.7870741430908 K, F = -0.006527583695682182, relative_change = 7.94910563537823e-8 Iter 85: T = 774.7868860273984 K, F = -0.0027299136816916203, relative_change = 3.324415025336414e-8 Iter 90: T = 774.786807355121 K, F = -0.001141682543569389, relative_change = 1.390310786156809e-8 Iter 95: T = 774.7867744534266 K, F = -0.00047746527927583493, relative_change = 5.814446982209316e-9 Iter 100: T = 774.7867606935437 K, F = -0.00019968168460871016, relative_change = 2.431671405323551e-9 Iter 105: T = 774.7867549389961 K, F = -8.35092668570736e-5, relative_change = 1.0169540780609868e-9 Iter 110: T = 774.7867525323754 K, F = -3.492457204068433e-5, relative_change = 4.253023385698996e-10 Iter 115: T = 774.7867515258979 K, F = -1.4605873747464138e-5, relative_change = 1.778665259759678e-10 Iter 120: T = 774.786751104977 K, F = -6.108351106370868e-6, relative_change = 7.438590886975135e-11 Iter 125: T = 774.7867509289429 K, F = -2.554584636604851e-6, relative_change = 3.110906640352194e-11 Iter 130: T = 774.7867508553232 K, F = -1.0683588772542052e-6, relative_change = 1.3010196175962604e-11 Iter 135: T = 774.7867508245347 K, F = -4.4680079858139266e-7, relative_change = 5.441023766433649e-12 Iter 140: T = 774.7867508116585 K, F = -1.8685731051348853e-7, relative_change = 2.2754996650504013e-12 Iter 145: T = 774.7867508062736 K, F = -7.81453676212962e-8, relative_change = 9.516339358879311e-13 Iter 150: T = 774.7867508040216 K, F = -3.2683162287661105e-8, relative_change = 3.98007038833423e-13 Converged in 154 iterations to T = 774.7867508032087 K Iter 1: T = 970.5117922850486 K, F = -6718.916178378776, relative_change = 0.02948820771495144 Iter 2: T = 943.1910807621251 K, F = -5690.506124757455, relative_change = 0.02815082901630437 Iter 3: T = 917.9920818362983 K, F = -4817.749547413859, relative_change = 0.02671674853568939 Iter 5: T = 873.7379818306599 K, F = -3449.1310067915033, relative_change = 0.02360553259672119 Iter 10: T = 795.370249877825 K, F = -1484.1479645670206, relative_change = 0.01530098214936543 Iter 15: T = 752.8134625792609 K, F = -631.6002925904006, relative_change = 0.008344984624125832 Iter 20: T = 732.2064222441326 K, F = -266.5564251726681, relative_change = 0.00400466391975578 Iter 25: T = 722.9445033221327 K, F = -111.95237994147331, relative_change = 0.0017856098024036028 Iter 30: T = 718.9427254162549 K, F = -46.90760854154249, relative_change = 0.0007680814206284423 Iter 35: T = 717.2453312605141 K, F = -19.6330456965897, relative_change = 0.00032510755635287375 Iter 40: T = 716.5311907077865 K, F = -8.21355227953993, relative_change = 0.00013665579434379626 Iter 45: T = 716.2317736912403 K, F = -3.4354936277523236, relative_change = 5.727301095167951e-5 Iter 50: T = 716.106421286169 K, F = -1.4368499637859533, relative_change = 2.397364896708959e-5 Iter 55: T = 716.0539741716582 K, F = -0.6009227796930118, relative_change = 1.0029812661829259e-5 Iter 60: T = 716.032036093795 K, F = -0.25131570121848784, relative_change = 4.195243037819356e-6 Iter 65: T = 716.0228606158645 K, F = -0.10510368556450655, relative_change = 1.7546154316957652e-6 Iter 70: T = 716.0190231969091 K, F = -0.04395569660211451, relative_change = 7.338211895396959e-7 Iter 75: T = 716.0174183206962 K, F = -0.01838281126809893, relative_change = 3.068962940248631e-7 Iter 80: T = 716.0167471384887 K, F = -0.0076879136563478, relative_change = 1.283483089451733e-7 Iter 85: T = 716.0164664414078 K, F = -0.0032151777309226137, relative_change = 5.36769029152937e-8 Iter 90: T = 716.01634905042 K, F = -0.0013446257995085587, relative_change = 2.2448340613573875e-8 Iter 95: T = 716.0162999560866 K, F = -0.0005623385812519865, relative_change = 9.388167427473305e-9 Iter 100: T = 716.0162794242466 K, F = -0.00023517671496420256, relative_change = 3.9262443484573835e-9 Iter 105: T = 716.0162708375852 K, F = -9.835371266109227e-5, relative_change = 1.6420024005895174e-9 Iter 110: T = 716.0162672465408 K, F = -4.113269862338065e-5, relative_change = 6.867050532988559e-10 Iter 115: T = 716.016265744723 K, F = -1.7202185786602264e-5, relative_change = 2.8718825705001174e-10 Iter 120: T = 716.0162651166448 K, F = -7.194159017842594e-6, relative_change = 1.201055507441815e-10 Iter 125: T = 716.016264853975 K, F = -3.0086827861319776e-6, relative_change = 5.0229568567757696e-11 Iter 130: T = 716.0162647441233 K, F = -1.2582659660864692e-6, relative_change = 2.1006586988001e-11 Iter 135: T = 716.0162646981821 K, F = -5.262206506095879e-7, relative_change = 8.785185464143763e-12 Iter 140: T = 716.0162646789689 K, F = -2.2007218591912903e-7, relative_change = 3.674076581385406e-12 Iter 145: T = 716.0162646709338 K, F = -9.203575535021713e-8, relative_change = 1.5365249905986612e-12 Iter 150: T = 716.0162646675734 K, F = -3.8491489440239945e-8, relative_change = 6.426104205540717e-13 Iter 155: T = 716.0162646661679 K, F = -1.6096612043270397e-8, relative_change = 2.6873084895240957e-13 Converged in 157 iterations to T = 716.0162646658705 K Iter 1: T = 969.3784445424999 K, F = -6977.150539610505, relative_change = 0.030621555457500064 Iter 2: T = 940.8992997216726 K, F = -5911.03701362005, relative_change = 0.029378768406871314 Iter 3: T = 914.5231975162184 K, F = -5006.133159748939, relative_change = 0.02803286410485855 Iter 5: T = 867.8926938084721 K, F = -3586.6575639322296, relative_change = 0.0250643403044277 Iter 10: T = 783.9496869806615 K, F = -1546.5533170674626, relative_change = 0.01679177296372671 Iter 15: T = 737.2529850832354 K, F = -659.40184971601, relative_change = 0.00942996062104019 Iter 20: T = 714.2261259813939 K, F = -278.63790498089725, relative_change = 0.004612550133343013 Iter 25: T = 703.7660222737267 K, F = -117.1041609825251, relative_change = 0.002077384604654526 Iter 30: T = 699.2227591744305 K, F = -49.08138066641987, relative_change = 0.0008977643829954794 Iter 35: T = 697.2911185794599 K, F = -20.54566464221258, relative_change = 0.00038077568531572466 Iter 40: T = 696.4775915233498 K, F = -8.595848482791, relative_change = 0.00016019486679818786 Iter 45: T = 696.1363566626378 K, F = -3.595485224211788, relative_change = 6.716300852368268e-5 Iter 50: T = 695.9934709082761 K, F = -1.5037797991807844, relative_change = 2.8117793834871853e-5 Iter 55: T = 695.9336833073219 K, F = -0.628917041013368, relative_change = 1.1764350962645643e-5 Iter 60: T = 695.9086739789883 K, F = -0.2630238314963607, relative_change = 4.920894050892889e-6 Iter 65: T = 695.8982138274431 K, F = -0.11000026971659393, relative_change = 2.0581344599049336e-6 Iter 70: T = 695.8938391006557 K, F = -0.04600352480670156, relative_change = 8.607640128044022e-7 Iter 75: T = 695.8920095085468 K, F = -0.019239240668895263, relative_change = 3.59986617724219e-7 Iter 80: T = 695.8912443461835 K, F = -0.00804608321894107, relative_change = 1.5055154706871974e-7 Iter 85: T = 695.8909243452545 K, F = -0.003364968618515096, relative_change = 6.296260263592987e-8 Iter 90: T = 695.8907905168885 K, F = -0.001407270153634399, relative_change = 2.6331738170146158e-8 Iter 95: T = 695.8907345482404 K, F = -0.0005885372008365142, relative_change = 1.1012251890679344e-8 Iter 100: T = 695.8907111414785 K, F = -0.00024613328818612334, relative_change = 4.605456033024032e-9 Iter 105: T = 695.8907013524905 K, F = -0.00010293588187304525, relative_change = 1.926056867116656e-9 Iter 110: T = 695.8906972586186 K, F = -4.3049016201779366e-5, relative_change = 8.055000267321341e-10 Iter 115: T = 695.8906955465123 K, F = -1.800361165638087e-5, relative_change = 3.368697154979976e-10 Iter 120: T = 695.8906948304891 K, F = -7.5293244277130356e-6, relative_change = 1.4088292053235342e-10 Iter 125: T = 695.8906945310397 K, F = -3.1488541383239976e-6, relative_change = 5.891893389711274e-11 Iter 130: T = 695.8906944058062 K, F = -1.3168865100610105e-6, relative_change = 2.4640566343940502e-11 Iter 135: T = 695.8906943534323 K, F = -5.507391249714999e-7, relative_change = 1.030500642860863e-11 Iter 140: T = 695.8906943315287 K, F = -2.303248189949869e-7, relative_change = 4.3096606599176585e-12 Iter 145: T = 695.8906943223685 K, F = -9.632459707642482e-8, relative_change = 1.8023516894101622e-12 Iter 150: T = 695.8906943185375 K, F = -4.0283379298955424e-8, relative_change = 7.537515747812611e-13 Iter 155: T = 695.8906943169354 K, F = -1.6846541273096705e-8, relative_change = 3.1521950827701817e-13 Converged in 158 iterations to T = 695.8906943164664 K Iter 1: T = 963.585914651829 K, F = -8296.983985318306, relative_change = 0.03641408534817102 Iter 2: T = 929.0510867087145 K, F = -7040.223035238985, relative_change = 0.03583990531409214 Iter 3: T = 896.3620740164021 K, F = -5972.902068835422, relative_change = 0.03518537695070954 Iter 5: T = 836.402899222955 K, F = -4296.778305796689, relative_change = 0.033606116680641174 Iter 10: T = 716.8681450389928 K, F = -1877.5818984565215, relative_change = 0.027863370579486884 Iter 15: T = 637.4000306983598 K, F = -812.9711578374726, relative_change = 0.01993822118253476 Iter 20: T = 590.8977862616317 K, F = -348.0556023645939, relative_change = 0.011938576254675842 Iter 25: T = 566.9939034430146 K, F = -147.51059967935504, relative_change = 0.006110306458173286 Iter 30: T = 555.8505549775235 K, F = -62.09741999856654, relative_change = 0.0028217884598150953 Iter 35: T = 550.9457200753972 K, F = -26.047320904580424, relative_change = 0.001234157340908989 Iter 40: T = 548.8475438607819 K, F = -10.907368797651408, relative_change = 0.0005262413410482059 Iter 45: T = 547.9615153765731 K, F = -4.564093009747167, relative_change = 0.00022189845765315736 Iter 50: T = 547.5894467381479 K, F = -1.9091986939498689, relative_change = 9.312243280192507e-5 Iter 55: T = 547.4335752150622 K, F = -0.7985269615073001, relative_change = 3.900149209457793e-5 Iter 60: T = 547.3683408687618 K, F = -0.33396704229290214, relative_change = 1.632080654753366e-5 Iter 65: T = 547.3410508526769 K, F = -0.13967137319463785, relative_change = 6.82729221356184e-6 Iter 70: T = 547.3296364012303 K, F = -0.05841265049103281, relative_change = 2.8555588809073067e-6 Iter 75: T = 547.3248624892628 K, F = -0.024428940475109157, relative_change = 1.1942819595449596e-6 Iter 80: T = 547.3228659381767 K, F = -0.010216487318663592, relative_change = 4.994722717300804e-7 Iter 85: T = 547.3220309489574 K, F = -0.004272659222676695, relative_change = 2.0888689446534433e-7 Iter 90: T = 547.3216817451453 K, F = -0.0017868775000745851, relative_change = 8.735927816967643e-8 Iter 95: T = 547.3215357037047 K, F = -0.0007472935774530398, relative_change = 3.6534743112416065e-8 Iter 100: T = 547.3214746273891 K, F = -0.00031252711017454304, relative_change = 1.5279274566906577e-8 Iter 105: T = 547.3214490845372 K, F = -0.00013070257152811293, relative_change = 6.389976599384728e-9 Iter 110: T = 547.3214384022103 K, F = -5.466137698595386e-5, relative_change = 2.672364806615775e-9 Iter 115: T = 547.3214339347334 K, F = -2.286004069995684e-5, relative_change = 1.1176149227644176e-9 Iter 120: T = 547.3214320663811 K, F = -9.560341895920033e-6, relative_change = 4.673999090157895e-10 Iter 125: T = 547.3214312850139 K, F = -3.998248805231475e-6, relative_change = 1.954722080898324e-10 Iter 130: T = 547.3214309582368 K, F = -1.6721154592613807e-6, relative_change = 8.17488150073011e-11 Iter 135: T = 547.3214308215747 K, F = -6.992989362020197e-7, relative_change = 3.4188344543857444e-11 Iter 140: T = 547.3214307644209 K, F = -2.9245488378237816e-7, relative_change = 1.4297960167878824e-11 Iter 145: T = 547.3214307405186 K, F = -1.223076563083847e-7, relative_change = 5.97955478079405e-12 Iter 150: T = 547.3214307305225 K, F = -5.1151238522617604e-8, relative_change = 2.5007562249975166e-12 Iter 155: T = 547.3214307263419 K, F = -2.1391971222195494e-8, relative_change = 1.0458418358172123e-12 Iter 160: T = 547.3214307245935 K, F = -8.946610424720447e-9, relative_change = 4.3739491671366604e-13 Converged in 164 iterations to T = 547.3214307239624 K Iter 1: T = 966.956693412654 K, F = -7528.94883822594, relative_change = 0.03304330658734597 Iter 2: T = 935.9734379516418 K, F = -6382.712043091465, relative_change = 0.03204203008478469 Iter 3: T = 907.0197169787403 K, F = -5409.514838814402, relative_change = 0.03093434044054296 Iter 5: T = 855.0689941963574 K, F = -3882.03808183018, relative_change = 0.02840065300004685 Iter 10: T = 757.870336862675 K, F = -1682.2577376027914, relative_change = 0.020590428391866065 Iter 15: T = 700.3930786080748 K, F = -720.8548116754494, relative_change = 0.012499746571862064 Iter 20: T = 670.5737825304601 K, F = -305.7144043240355, relative_change = 0.006464290897188473 Iter 25: T = 656.5881690522943 K, F = -128.7472737095468, relative_change = 0.0030032436135671013 Iter 30: T = 650.412392116513 K, F = -54.01472688651682, relative_change = 0.0013173862822687037 Iter 35: T = 647.7665388388091 K, F = -22.62076183453072, relative_change = 0.0005624714415753921 Iter 40: T = 646.6484912742156 K, F = -9.46581839517919, relative_change = 0.00023731042286056873 Iter 45: T = 646.1788577567737 K, F = -3.959695452834711, relative_change = 9.961425520677866e-5 Iter 50: T = 645.9820895665731 K, F = -1.6561633659111827, relative_change = 4.172462147764581e-5 Iter 55: T = 645.8997352634542 K, F = -0.6926573223407978, relative_change = 1.7461085759971323e-5 Iter 60: T = 645.865282589485 K, F = -0.2896828183279388, relative_change = 7.3044217511949376e-6 Iter 65: T = 645.8508721236001 K, F = -0.12114973329746076, relative_change = 3.0551441040905017e-6 Iter 70: T = 645.8448451541992 K, F = -0.05066642606192079, relative_change = 1.2777585725982275e-6 Iter 75: T = 645.8423245440644 K, F = -0.02118933258022504, relative_change = 5.343845332643572e-7 Iter 80: T = 645.841270384387 K, F = -0.008861636854647137, relative_change = 2.2348785440557676e-7 Iter 85: T = 645.8408295203989 K, F = -0.0037060432219800377, relative_change = 9.346561514616627e-8 Iter 90: T = 645.8406451454955 K, F = -0.001549911685840677, relative_change = 3.908849340329389e-8 Iter 95: T = 645.8405680376533 K, F = -0.0006481916028803214, relative_change = 1.634728470455526e-8 Iter 100: T = 645.840535790223 K, F = -0.0002710814748455581, relative_change = 6.836631454639326e-9 Iter 105: T = 645.8405223039608 K, F = -0.00011336951118112726, relative_change = 2.859161230531423e-9 Iter 110: T = 645.8405166638447 K, F = -4.7412483728137556e-5, relative_change = 1.1957354278295721e-9 Iter 115: T = 645.8405143050807 K, F = -1.9828467296645336e-5, relative_change = 5.000708542159724e-10 Iter 120: T = 645.8405133186174 K, F = -8.292502012841041e-6, relative_change = 2.0913560958928035e-10 Iter 125: T = 645.8405129060667 K, F = -3.4680235779793733e-6, relative_change = 8.74630149179798e-11 Iter 130: T = 645.840512733533 K, F = -1.4503690558553828e-6, relative_change = 3.657808191837895e-11 Iter 135: T = 645.8405126613774 K, F = -6.065622860096376e-7, relative_change = 1.529740648319071e-11 Iter 140: T = 645.840512631201 K, F = -2.536716829371066e-7, relative_change = 6.39756037843338e-12 Iter 145: T = 645.840512618581 K, F = -1.0608895217867342e-7, relative_change = 2.675546869294086e-12 Iter 150: T = 645.840512613303 K, F = -4.436738448854172e-8, relative_change = 1.1189385344458755e-12 Iter 155: T = 645.8405126110957 K, F = -1.8554421665761822e-8, relative_change = 4.679396278560873e-13 Converged in 160 iterations to T = 645.8405126101726 K Iter 1: T = 965.2356794929915 K, F = -7921.083496927924, relative_change = 0.03476432050700851 Iter 2: T = 932.4488058976891 K, F = -6718.271890581192, relative_change = 0.03396773895938483 Iter 3: T = 901.6099682029369 K, F = -5696.880174107588, relative_change = 0.03307295531904611 Iter 5: T = 845.6631492356972 K, F = -4093.250734679036, relative_change = 0.03097056698112917 Iter 10: T = 737.7141037852266 K, F = -1780.9349308495964, relative_change = 0.023948372720953258 Iter 15: T = 670.3435780001251 K, F = -766.7014785710776, relative_change = 0.015642560651935828 Iter 20: T = 633.556180924879 K, F = -326.4204934085242, relative_change = 0.008588031443146326 Iter 25: T = 615.6699758279748 K, F = -137.79868542573436, relative_change = 0.004138828658939239 Iter 30: T = 607.6120486623831 K, F = -57.88319915312253, relative_change = 0.0018495024123038265 Iter 35: T = 604.1264723952223 K, F = -24.25447366694454, relative_change = 0.0007963753407335385 Iter 40: T = 602.6472666401169 K, F = -10.151941227433037, relative_change = 0.0003372335655346822 Iter 45: T = 602.0247853010502 K, F = -4.247153182483393, relative_change = 0.00014177971302835804 Iter 50: T = 601.7637735126207 K, F = -1.776471964524948, relative_change = 5.942521374283082e-5 Iter 55: T = 601.6544953062482 K, F = -0.7429876622446105, relative_change = 2.487536355929228e-5 Iter 60: T = 601.6087728329459 K, F = -0.31073434261486194, relative_change = 1.0407207479782724e-5 Iter 65: T = 601.5896474687099 K, F = -0.12995421777266303, relative_change = 4.353124297641001e-6 Iter 70: T = 601.5816483691489 K, F = -0.054348651568851214, relative_change = 1.8206520501570066e-6 Iter 75: T = 601.5783029375602 K, F = -0.022729298120394703, relative_change = 7.614400296525863e-7 Iter 80: T = 601.5769038184181 K, F = -0.009505671433759966, relative_change = 3.1844709172195025e-7 Iter 85: T = 601.5763186866386 K, F = -0.003975386628911948, relative_change = 1.3317903755016408e-7 Iter 90: T = 601.5760739769379 K, F = -0.0016625543941699017, relative_change = 5.56971795625637e-8 Iter 95: T = 601.5759716363132 K, F = -0.0006953001431196371, relative_change = 2.329324587683334e-8 Iter 100: T = 601.5759288362234 K, F = -0.0002907828308421623, relative_change = 9.741517151797243e-9 Iter 105: T = 601.5759109367114 K, F = -0.00012160885325046555, relative_change = 4.074019412135636e-9 Iter 110: T = 601.575903450921 K, F = -5.085827375200802e-5, relative_change = 1.7038036398694371e-9 Iter 115: T = 601.5759003202742 K, F = -2.1269537522905502e-5, relative_change = 7.125510496963563e-10 Iter 120: T = 601.5758990110003 K, F = -8.895174896939029e-6, relative_change = 2.979973715411704e-10 Iter 125: T = 601.5758984634463 K, F = -3.720068692314449e-6, relative_change = 1.2462607086541627e-10 Iter 130: T = 601.5758982344527 K, F = -1.555777140727077e-6, relative_change = 5.2120110831018675e-11 Iter 135: T = 601.5758981386847 K, F = -6.506445858756038e-7, relative_change = 2.1797253003275728e-11 Iter 140: T = 601.5758980986334 K, F = -2.7210696607049556e-7, relative_change = 9.1158591249791e-12 Iter 145: T = 601.5758980818835 K, F = -1.1379743053430147e-7, relative_change = 3.8123292492410825e-12 Iter 150: T = 601.5758980748784 K, F = -4.7591183827133676e-8, relative_change = 1.5943528888867194e-12 Iter 155: T = 601.5758980719489 K, F = -1.9903100556550868e-8, relative_change = 6.667740392031057e-13 Iter 160: T = 601.5758980707237 K, F = -8.32301566555671e-9, relative_change = 2.7882945965929984e-13 Converged in 162 iterations to T = 601.5758980704645 K Iter 1: T = 980.0952403976621 K, F = -4535.3184097071835, relative_change = 0.01990475960233794 Iter 2: T = 962.2362157888249 K, F = -3831.044260902153, relative_change = 0.018221723637379495 Iter 3: T = 946.3023575688936 K, F = -3234.626212222862, relative_change = 0.016559196129267418 Iter 5: T = 919.6879532381957 K, F = -2302.7196741423422, relative_change = 0.013384631930863337 Iter 10: T = 877.4136011472982 K, F = -977.6342581318722, relative_change = 0.007037454191242104 Iter 15: T = 857.3913537111328 K, F = -411.9820871398466, relative_change = 0.0033016903376666433 Iter 20: T = 848.5029983582667 K, F = -172.89884371344166, relative_change = 0.0014553431513250753 Iter 25: T = 844.6854689589616 K, F = -72.4186428037682, relative_change = 0.000622735836930998 Iter 30: T = 843.0705266059224 K, F = -30.30600618901324, relative_change = 0.00026298524331297126 Iter 35: T = 842.3918522997151 K, F = -12.677801485169287, relative_change = 0.00011043594721638109 Iter 40: T = 842.1074428302647 K, F = -5.3026166013093174, relative_change = 4.626523199860129e-5 Iter 45: T = 841.988397619833 K, F = -2.2177241908332177, relative_change = 1.9362629927017607e-5 Iter 50: T = 841.9385936634981 K, F = -0.9274973977284564, relative_change = 8.10012682178035e-6 Iter 55: T = 841.9177619341027 K, F = -0.3878937520923007, relative_change = 3.387997376090824e-6 Iter 60: T = 841.9090493102369 K, F = -0.162222370413188, relative_change = 1.41697576586792e-6 Iter 65: T = 841.9054054914059 K, F = -0.06784343248863456, relative_change = 5.926092714244561e-7 Iter 70: T = 841.9038815861542 K, F = -0.02837295114645455, relative_change = 2.478385629836808e-7 Iter 75: T = 841.9032442678579 K, F = -0.011865910064759788, relative_change = 1.0364944708710337e-7 Iter 80: T = 841.9029777332244 K, F = -0.004962465831912288, relative_change = 4.334750661187336e-8 Iter 85: T = 841.9028662651682 K, F = -0.0020753625682139454, relative_change = 1.8128457183688877e-8 Iter 90: T = 841.9028196478803 K, F = -0.0008679414270456043, relative_change = 7.581539431883242e-9 Iter 95: T = 841.902800151971 K, F = -0.0003629834730864978, relative_change = 3.170690707919996e-9 Iter 100: T = 841.9027919985484 K, F = -0.00015180402469816556, relative_change = 1.3260207927287761e-9 Iter 105: T = 841.9027885886898 K, F = -6.348625538543651e-5, relative_change = 5.545577364261593e-10 Iter 110: T = 841.9027871626461 K, F = -2.6550711296646767e-5, relative_change = 2.319226797442621e-10 Iter 115: T = 841.9027865662575 K, F = -1.1103824857139344e-5, relative_change = 9.69928374495084e-11 Iter 120: T = 841.9027863168407 K, F = -4.643752377520016e-6, relative_change = 4.0563564892173003e-11 Iter 125: T = 841.9027862125317 K, F = -1.942073725169635e-6, relative_change = 1.696417621321254e-11 Iter 130: T = 841.9027861689084 K, F = -8.122001160515424e-7, relative_change = 7.094635859555616e-12 Iter 135: T = 841.9027861506646 K, F = -3.396726548920981e-7, relative_change = 2.967069014803796e-12 Iter 140: T = 841.9027861430349 K, F = -1.4205676479583929e-7, relative_change = 1.2408777071592219e-12 Iter 145: T = 841.9027861398439 K, F = -5.940888536670741e-8, relative_change = 5.189415763902743e-13 Converged in 150 iterations to T = 841.9027861385094 K Iter 1: T = 976.5532163774068 K, F = -5342.3719520570185, relative_change = 0.023446783622593198 Iter 2: T = 955.2657118003171 K, F = -4517.183892782723, relative_change = 0.021798611913907924 Iter 3: T = 936.0448748873363 K, F = -3817.7220091031554, relative_change = 0.02012093250657646 Iter 5: T = 903.3785211772944 K, F = -2723.1557712501385, relative_change = 0.016770501777590846 Iter 10: T = 849.646908127011 K, F = -1161.0374783922887, relative_change = 0.009414120167824532 Iter 15: T = 823.1578789128095 K, F = -490.6010510350664, relative_change = 0.004603531930108289 Iter 20: T = 811.1269131137876 K, F = -206.1846869964064, relative_change = 0.0020730183168358447 Iter 25: T = 805.9017601085457 K, F = -86.41693846659692, relative_change = 0.0008958157816372992 Iter 30: T = 803.6802806322202 K, F = -36.17440777468485, relative_change = 0.00037993771399588727 Iter 35: T = 802.7446995747711 K, F = -15.134553544837038, relative_change = 0.00015984026045495208 Iter 40: T = 802.3522715404179 K, F = -6.330502923816916, relative_change = 6.701397134921962e-5 Iter 45: T = 802.1879500400142 K, F = -2.64767628716699, relative_change = 2.8055335174280588e-5 Iter 50: T = 802.1191931704911 K, F = -1.1073221165771563, relative_change = 1.1738207297081381e-5 Iter 55: T = 802.0904319845196 K, F = -0.4631009800183823, relative_change = 4.909956482284392e-6 Iter 60: T = 802.0784026209082 K, F = -0.19367534816386411, relative_change = 2.0535595425067837e-6 Iter 65: T = 802.0733716063351 K, F = -0.08099751632596597, relative_change = 8.588506060386425e-7 Iter 70: T = 802.0712675425408 K, F = -0.03387415885048062, relative_change = 3.591863868446619e-7 Iter 75: T = 802.0703875920897 K, F = -0.014166583057274362, relative_change = 1.5021687725456554e-7 Iter 80: T = 802.07001958528 K, F = -0.005924635141850931, relative_change = 6.282263905876411e-8 Iter 85: T = 802.0698656802584 K, F = -0.002477753334725996, relative_change = 2.6273203650415456e-8 Iter 90: T = 802.0698013153092 K, F = -0.0010362260634060316, relative_change = 1.0987772032189686e-8 Iter 95: T = 802.0697743971133 K, F = -0.00043336212071753977, relative_change = 4.595218281867e-9 Iter 100: T = 802.0697631396013 K, F = -0.00018123721468388254, relative_change = 1.9217752962493577e-9 Iter 105: T = 802.0697584315752 K, F = -7.579556874159898e-5, relative_change = 8.037094141938941e-10 Iter 110: T = 802.0697564626224 K, F = -3.1698613497166406e-5, relative_change = 3.3612089473452567e-10 Iter 115: T = 802.0697556391829 K, F = -1.3256740254874444e-5, relative_change = 1.4056978920894142e-10 Iter 120: T = 802.0697552948105 K, F = -5.5441272661660435e-6, relative_change = 5.87879665560408e-11 Iter 125: T = 802.06975515079 K, F = -2.3186207513958834e-6, relative_change = 2.4585835202155868e-11 Iter 130: T = 802.0697550905588 K, F = -9.696749654342085e-7, relative_change = 1.028209071880039e-11 Iter 135: T = 802.0697550653695 K, F = -4.055316400464193e-7, relative_change = 4.300114225448254e-12 Iter 140: T = 802.0697550548349 K, F = -1.6959775739344707e-7, relative_change = 1.7983546959093293e-12 Iter 145: T = 802.0697550504292 K, F = -7.092656617579962e-8, relative_change = 7.520802474669823e-13 Iter 150: T = 802.0697550485867 K, F = -2.9660728761982114e-8, relative_change = 3.1451188786322283e-13 Converged in 152 iterations to T = 802.0697550481967 K Iter 1: T = 980.6476399225511 K, F = -4409.45365249362, relative_change = 0.01935236007744893 Iter 2: T = 963.3162125409297 K, F = -3724.1552911421227, relative_change = 0.017673450356735877 Iter 3: T = 947.8812994094468 K, F = -3143.8994176649344, relative_change = 0.01602268593691618 Iter 5: T = 922.1670069413733 K, F = -2237.4743640519814, relative_change = 0.012891842364798602 Iter 10: T = 881.5263221575111 K, F = -949.3640647910129, relative_change = 0.006716011536498309 Iter 15: T = 862.3830060744076 K, F = -399.9242139369147, relative_change = 0.0031336137548847163 Iter 20: T = 853.910081245578 K, F = -167.80806658122066, relative_change = 0.0013774882699171297 Iter 25: T = 850.276108055189 K, F = -70.28059783456676, relative_change = 0.0005886941425199836 Iter 30: T = 848.7397748805874 K, F = -29.41022273097373, relative_change = 0.00024847635297811497 Iter 35: T = 848.0943083673969 K, F = -12.302885708946258, relative_change = 0.00010431953430387877 Iter 40: T = 847.8238457053766 K, F = -5.14577161720639, relative_change = 4.369869595394337e-5 Iter 45: T = 847.710643576354 K, F = -2.152120852081799, relative_change = 1.8287767859272988e-5 Iter 50: T = 847.6632850825566 K, F = -0.9000597410328777, relative_change = 7.650342852692371e-6 Iter 55: T = 847.6434763927429 K, F = -0.37641872396373444, relative_change = 3.1998461771636454e-6 Iter 60: T = 847.6351916718786 K, F = -0.15742332895395372, relative_change = 1.3382806098506913e-6 Iter 65: T = 847.6317268169245 K, F = -0.06583640770159715, relative_change = 5.596966044103927e-7 Iter 70: T = 847.6302777582056 K, F = -0.027533587951689364, relative_change = 2.3407384542519156e-7 Iter 75: T = 847.6296717419208 K, F = -0.011514878097883985, relative_change = 9.789283459646673e-8 Iter 80: T = 847.6294182982144 K, F = -0.004815660025148771, relative_change = 4.094001494764143e-8 Iter 85: T = 847.6293123049495 K, F = -0.002013966620367791, relative_change = 1.7121614109380153e-8 Iter 90: T = 847.6292679772863 K, F = -0.0008422649092787449, relative_change = 7.160465421560561e-9 Iter 95: T = 847.6292494389256 K, F = -0.0003522452466655501, relative_change = 2.994592489277492e-9 Iter 100: T = 847.6292416859615 K, F = -0.00014731316969984753, relative_change = 1.2523744037501545e-9 Iter 105: T = 847.6292384435791 K, F = -6.160812610112032e-5, relative_change = 5.237579352512896e-10 Iter 110: T = 847.629237087576 K, F = -2.576525404784924e-5, relative_change = 2.19041824806775e-10 Iter 115: T = 847.6292365204794 K, F = -1.0775336679813563e-5, relative_change = 9.160590508399555e-11 Iter 120: T = 847.6292362833128 K, F = -4.506374631008114e-6, relative_change = 3.831068481083868e-11 Iter 125: T = 847.6292361841269 K, F = -1.8846170120045969e-6, relative_change = 1.6021963171785246e-11 Iter 130: T = 847.6292361426462 K, F = -7.881688492972216e-7, relative_change = 6.7005721582120795e-12 Iter 135: T = 847.6292361252985 K, F = -3.296223223259176e-7, relative_change = 2.8022652225939235e-12 Iter 140: T = 847.6292361180434 K, F = -1.3785225272400226e-7, relative_change = 1.171943001173585e-12 Iter 145: T = 847.6292361150093 K, F = -5.765302724114463e-8, relative_change = 4.901338965287487e-13 Converged in 150 iterations to T = 847.6292361137405 K Iter 1: T = 967.2493110241621 K, F = -7462.275637092606, relative_change = 0.032750688975837855 Iter 2: T = 936.5707196087076 K, F = -6325.688140677254, relative_change = 0.03171735669986758 Iter 3: T = 907.9330529702216 K, F = -5360.713455081699, relative_change = 0.03057715348014564 Iter 5: T = 856.6434694479046 K, F = -3846.2355607614404, relative_change = 0.027980759297342866 Iter 10: T = 761.1545550346805 K, F = -1665.675663085113, relative_change = 0.020079737976725655 Iter 15: T = 705.1493507529253 K, F = -713.2584801841454, relative_change = 0.012059237087979024 Iter 20: T = 676.3031151301462 K, F = -302.33242569849415, relative_change = 0.006185854597194042 Iter 25: T = 662.8382558797363 K, F = -127.2834047097953, relative_change = 0.002860343174746014 Iter 30: T = 656.9075087521813 K, F = -53.392383542088936, relative_change = 0.0012518024320226325 Iter 35: T = 654.3696548031942 K, F = -22.358586494427602, relative_change = 0.0005339147121990243 Iter 40: T = 653.2978055889045 K, F = -9.355830087391382, relative_change = 0.00022516123598056886 Iter 45: T = 652.8476783687503 K, F = -3.913636165977203, relative_change = 9.449652799552629e-5 Iter 50: T = 652.6591007938533 K, F = -1.6368901181331474, relative_change = 3.957784048068285e-5 Iter 55: T = 652.5801776779193 K, F = -0.6845951434756304, relative_change = 1.6562138049379025e-5 Iter 60: T = 652.5471609794101 K, F = -0.28631079032862494, relative_change = 6.928271721969817e-6 Iter 65: T = 652.533351232767 K, F = -0.11973945343613634, relative_change = 2.8977987808589543e-6 Iter 70: T = 652.5275755223232 K, F = -0.05007662012527214, relative_change = 1.211948775716525e-6 Iter 75: T = 652.5251599971069 K, F = -0.020942666932987186, relative_change = 5.068610225960754e-7 Iter 80: T = 652.524149786146 K, F = -0.008758478027546646, relative_change = 2.1197700680859188e-7 Iter 85: T = 652.5237273022018 K, F = -0.003662900915028633, relative_change = 8.865160856018554e-8 Iter 90: T = 652.5235506140812 K, F = -0.00153186904695779, relative_change = 3.7075212608887994e-8 Iter 95: T = 652.5234767209485 K, F = -0.0006406459553576771, relative_change = 1.5505305662388996e-8 Iter 100: T = 652.523445817949 K, F = -0.000267925792772683, relative_change = 6.4845055427830884e-9 Iter 105: T = 652.523432893944 K, F = -0.00011204976767842378, relative_change = 2.7118979497074464e-9 Iter 110: T = 652.5234274889706 K, F = -4.686055149749624e-5, relative_change = 1.1341481662377886e-9 Iter 115: T = 652.523425228546 K, F = -1.9597641549795597e-5, relative_change = 4.743142981160535e-10 Iter 120: T = 652.5234242832095 K, F = -8.195968126567532e-6, relative_change = 1.9836391467159706e-10 Iter 125: T = 652.5234238878585 K, F = -3.4276517092424186e-6, relative_change = 8.295815730827922e-11 Iter 130: T = 652.523423722518 K, F = -1.4334857456055339e-6, relative_change = 3.469411311713036e-11 Iter 135: T = 652.5234236533706 K, F = -5.995006593928487e-7, relative_change = 1.4509487635314714e-11 Iter 140: T = 652.5234236244523 K, F = -2.5071841303070386e-7, relative_change = 6.068042891339788e-12 Iter 145: T = 652.5234236123583 K, F = -1.0485393281411959e-7, relative_change = 2.537740064667544e-12 Iter 150: T = 652.5234236073005 K, F = -4.385045282440103e-8, relative_change = 1.0612959190350774e-12 Iter 155: T = 652.5234236051853 K, F = -1.8338333351852754e-8, relative_change = 4.438357438739264e-13 Converged in 159 iterations to T = 652.5234236044217 K Iter 1: T = 973.5286388904864 K, F = -6031.5248095677825, relative_change = 0.026471361109513605 Iter 2: T = 949.2502943592864 K, F = -5104.122877700395, relative_change = 0.024938500585734817 Iter 3: T = 927.097432277663 K, F = -4317.503628140991, relative_change = 0.023337219080427966 Iter 5: T = 888.8454261435834 K, F = -3085.1503156935983, relative_change = 0.020007499670665438 Iter 10: T = 823.7269766331156 K, F = -1320.9646785235475, relative_change = 0.011997820183923855 Iter 15: T = 790.2203937608535 K, F = -559.8829770621591, relative_change = 0.006147434615371147 Iter 20: T = 774.5904035223384 K, F = -235.70340360165554, relative_change = 0.0028407405978534014 Iter 25: T = 767.7083830597053 K, F = -98.86994951800229, relative_change = 0.0012428315168888271 Iter 30: T = 764.7639417426773 K, F = -41.402376637316486, relative_change = 0.0005300135554549215 Iter 35: T = 763.5204609098367 K, F = -17.324531349583847, relative_change = 0.0002235024393285528 Iter 40: T = 762.9982721870873 K, F = -7.247010203929337, relative_change = 9.379793880253686e-5 Iter 45: T = 762.7795077653551 K, F = -3.0310816656755644, relative_change = 3.9284825433876997e-5 Iter 50: T = 762.6879514021746 K, F = -1.2676862894699998, relative_change = 1.643944533434603e-5 Iter 55: T = 762.6496497969714 K, F = -0.5301705992609326, relative_change = 6.8769338360191155e-6 Iter 60: T = 762.6336295711777 K, F = -0.22172525998116144, relative_change = 2.876324056614363e-6 Iter 65: T = 762.6269293650611 K, F = -0.09272842869966014, relative_change = 1.2029669835991455e-6 Iter 70: T = 762.6241271965113 K, F = -0.03878018473994704, relative_change = 5.031045889170127e-7 Iter 75: T = 762.6229552852561 K, F = -0.01621834486341278, relative_change = 2.104059967523109e-7 Iter 80: T = 762.6224651760667 K, F = -0.00678270699092709, relative_change = 8.799458908461717e-8 Iter 85: T = 762.6222602062171 K, F = -0.002836609324813555, relative_change = 3.680043847948133e-8 Iter 90: T = 762.6221744853199 K, F = -0.0011863039415334065, relative_change = 1.5390391690624253e-8 Iter 95: T = 762.6221386358068 K, F = -0.0004961264857392678, relative_change = 6.436447174503058e-9 Iter 100: T = 762.6221236431104 K, F = -0.0002074860218507224, relative_change = 2.6917993344047718e-9 Iter 105: T = 762.6221173729854 K, F = -8.67731324925014e-5, relative_change = 1.1257426758081386e-9 Iter 110: T = 762.6221147507441 K, F = -3.6289560049085345e-5, relative_change = 4.707990357026153e-10 Iter 115: T = 762.6221136540915 K, F = -1.5176726383070438e-5, relative_change = 1.9689376739557733e-10 Iter 120: T = 762.6221131954583 K, F = -6.347087385116801e-6, relative_change = 8.234331431427464e-11 Iter 125: T = 762.6221130036524 K, F = -2.654426244030894e-6, relative_change = 3.443693800570107e-11 Iter 130: T = 762.6221129234369 K, F = -1.110113172164695e-6, relative_change = 1.4401944146784857e-11 Iter 135: T = 762.6221128898899 K, F = -4.642619069183951e-7, relative_change = 6.023056227033917e-12 Iter 140: T = 762.62211287586 K, F = -1.9415847496428995e-7, relative_change = 2.5188958954865566e-12 Iter 145: T = 762.6221128699926 K, F = -8.120022143565109e-8, relative_change = 1.0534430934934556e-12 Iter 150: T = 762.6221128675389 K, F = -3.395946135409389e-8, relative_change = 4.4056973478977954e-13 Converged in 154 iterations to T = 762.6221128666532 K Iter 1: T = 970.0088206989741 K, F = -6833.518732715339, relative_change = 0.02999117930102591 Iter 2: T = 942.175057122521 K, F = -5788.359838637013, relative_change = 0.028694340693104687 Iter 3: T = 916.455922893996 K, F = -4901.322012708791, relative_change = 0.027297617395087213 Iter 5: T = 871.1557614767316 K, F = -3510.109820455655, relative_change = 0.0242452879219572 Iter 10: T = 790.3584643238427 K, F = -1511.7626353000037, relative_change = 0.01594307844955812 Iter 15: T = 746.0237857347837 K, F = -643.8725259389222, relative_change = 0.008804692683578886 Iter 20: T = 724.3893228997541 K, F = -271.87920225589073, relative_change = 0.004259431373613807 Iter 25: T = 714.6221295626957 K, F = -114.21958991688575, relative_change = 0.001907186022315865 Iter 30: T = 710.3927872160599 K, F = -47.86373004709816, relative_change = 0.0008219709735854745 Iter 35: T = 708.5971017166046 K, F = -20.034358867276577, relative_change = 0.00034821278220837834 Iter 40: T = 707.8412860648156 K, F = -8.381644914019711, relative_change = 0.00014642078122366713 Iter 45: T = 707.52433886779 K, F = -3.505837573638522, relative_change = 6.137491159403826e-5 Iter 50: T = 707.3916373107381 K, F = -1.4662766436162764, relative_change = 2.569228806305181e-5 Iter 55: T = 707.3361135666659 K, F = -0.6132307700424381, relative_change = 1.0749124545922439e-5 Iter 60: T = 707.3128882580633 K, F = -0.25646329502062715, relative_change = 4.496165271753581e-6 Iter 65: T = 707.3031743490529 K, F = -0.10725651367202826, relative_change = 1.8804817475087026e-6 Iter 70: T = 707.2991117350284 K, F = -0.044856042530864504, relative_change = 7.864629673816822e-7 Iter 75: T = 707.2974126766164 K, F = -0.018759347999526055, relative_change = 3.289122356611301e-7 Iter 80: T = 707.2967021057757 K, F = -0.007845386043536573, relative_change = 1.375557298666694e-7 Iter 85: T = 707.2964049358084 K, F = -0.0032810346050829997, relative_change = 5.752757227476193e-8 Iter 90: T = 707.2962806556469 K, F = -0.0013721679372937778, relative_change = 2.405873930783749e-8 Iter 95: T = 707.2962286801761 K, F = -0.0005738570330109383, relative_change = 1.0061655874869986e-8 Iter 100: T = 707.2962069434095 K, F = -0.0002399938684136682, relative_change = 4.207905332641952e-9 Iter 105: T = 707.2961978528333 K, F = -0.00010036830188775436, relative_change = 1.7597963705383875e-9 Iter 110: T = 707.2961940510457 K, F = -4.1975223027512776e-5, relative_change = 7.359678866476757e-10 Iter 115: T = 707.2961924610927 K, F = -1.755453898399928e-5, relative_change = 3.0779055270138974e-10 Iter 120: T = 707.2961917961552 K, F = -7.341516958025984e-6, relative_change = 1.2872166989695642e-10 Iter 125: T = 707.2961915180705 K, F = -3.0703098395923334e-6, relative_change = 5.383293570699001e-11 Iter 130: T = 707.2961914017721 K, F = -1.284039533255843e-6, relative_change = 2.2513564201809387e-11 Iter 135: T = 707.2961913531349 K, F = -5.370013623773318e-7, relative_change = 9.415453604955701e-12 Iter 140: T = 707.2961913327943 K, F = -2.2458176907047545e-7, relative_change = 3.937679446715541e-12 Iter 145: T = 707.2961913242875 K, F = -9.392343103264977e-8, relative_change = 1.6467960221979953e-12 Iter 150: T = 707.2961913207298 K, F = -3.928000136266263e-8, relative_change = 6.887115311516622e-13 Iter 155: T = 707.296191319242 K, F = -1.6427896820658816e-8, relative_change = 2.88036700116444e-13 Converged in 157 iterations to T = 707.2961913189272 K Iter 1: T = 973.4777444904146 K, F = -6043.121147037228, relative_change = 0.026522255509585462 Iter 2: T = 949.1485682065747 K, F = -5114.0073956215, relative_change = 0.02499202105187872 Iter 3: T = 926.9453431608882 K, F = -4325.928312599839, relative_change = 0.023392781477445303 Iter 5: T = 888.5957846390618 K, F = -3091.2660829708966, relative_change = 0.020064987722198026 Iter 10: T = 823.2708143689083 K, F = -1323.685315761691, relative_change = 0.012046806295641066 Iter 15: T = 789.630887406236 K, F = -561.0690813346935, relative_change = 0.0061781098297177955 Iter 20: T = 773.9304343033707 K, F = -236.21081697726103, relative_change = 0.002856398312333539 Iter 25: T = 767.0154631856398 K, F = -99.0844568686695, relative_change = 0.0012499983545165474 Iter 30: T = 764.0565390027423 K, F = -41.49251603716556, relative_change = 0.0005331304018126344 Iter 35: T = 762.806870387955 K, F = -17.36230608241447, relative_change = 0.00022482778172742285 Iter 40: T = 762.2820703430568 K, F = -7.262821743393023, relative_change = 9.435610329034378e-5 Iter 45: T = 762.062209674612 K, F = -3.0376966478304146, relative_change = 3.9518942199567976e-5 Iter 50: T = 761.9701941167654 K, F = -1.2704531759841164, relative_change = 1.653747608139502e-5 Iter 55: T = 761.9317003427236 K, F = -0.5313278181151548, relative_change = 6.917952537703476e-6 Iter 60: T = 761.9155997271951 K, F = -0.22220923564873063, relative_change = 2.8934822551924586e-6 Iter 65: T = 761.9088658972067 K, F = -0.09293083536572677, relative_change = 1.2101433923050622e-6 Iter 70: T = 761.9060496660654 K, F = -0.03886483401905261, relative_change = 5.061059615702922e-7 Iter 75: T = 761.9048718735464 K, F = -0.016253746269368485, relative_change = 2.1166122634280641e-7 Iter 80: T = 761.9043793047215 K, F = -0.006797512291837671, relative_change = 8.851954451686153e-8 Iter 85: T = 761.9041733062191 K, F = -0.002842801081335944, relative_change = 3.701998172411141e-8 Iter 90: T = 761.9040871551265 K, F = -0.0011888934077435298, relative_change = 1.5482207394156458e-8 Iter 95: T = 761.9040511257002 K, F = -0.0004972094285272677, relative_change = 6.474845578116045e-9 Iter 100: T = 761.9040360577623 K, F = -0.0002079389228653028, relative_change = 2.707858026739716e-9 Iter 105: T = 761.9040297561702 K, F = -8.696254106166368e-5, relative_change = 1.1324586126915252e-9 Iter 110: T = 761.9040271207692 K, F = -3.6368774923634106e-5, relative_change = 4.73607746171918e-10 Iter 115: T = 761.904026018613 K, F = -1.5209856398690214e-5, relative_change = 1.980684219724699e-10 Iter 120: T = 761.904025557678 K, F = -6.360942509386902e-6, relative_change = 8.283456567212644e-11 Iter 125: T = 761.9040253649094 K, F = -2.660220873584862e-6, relative_change = 3.4642388387505745e-11 Iter 130: T = 761.9040252842915 K, F = -1.1125362533448424e-6, relative_change = 1.4487862036445125e-11 Iter 135: T = 761.9040252505761 K, F = -4.652769279855917e-7, relative_change = 6.0590096929875964e-12 Iter 140: T = 761.9040252364758 K, F = -1.9458413635931038e-7, relative_change = 2.5339471989530423e-12 Iter 145: T = 761.904025230579 K, F = -8.137796192464464e-8, relative_change = 1.0597341722774656e-12 Iter 150: T = 761.9040252281129 K, F = -3.4034030704788165e-8, relative_change = 4.432038417496639e-13 Converged in 154 iterations to T = 761.9040252272226 K Iter 1: T = 964.2914513640633 K, F = -8136.2267742970425, relative_change = 0.035708548635936706 Iter 2: T = 930.5064411113678 K, F = -6902.503868432137, relative_change = 0.03503609847925536 Iter 3: T = 898.6139208329481 K, F = -5854.7922550485155, relative_change = 0.03427436809607497 Iter 5: T = 840.3932462994089 K, F = -4209.6084947527215, relative_change = 0.03245738122824315 Iter 10: T = 725.9828550362788 K, F = -1835.9836752565557, relative_change = 0.0260927193434452 Iter 15: T = 652.0703866613844 K, F = -792.8582816427943, relative_change = 0.017901527852708002 Iter 20: T = 610.2121487437279 K, F = -338.53379936365945, relative_change = 0.010279160459348513 Iter 25: T = 589.2774025986363 K, F = -143.19311746270895, relative_change = 0.005104659250564666 Iter 30: T = 579.6860101037947 K, F = -60.21279220935243, relative_change = 0.002317893602828773 Iter 35: T = 575.5020706916939 K, F = -25.243196197131088, relative_change = 0.0010055720732765339 Iter 40: T = 573.7197036380371 K, F = -10.568099356247835, relative_change = 0.0004272266256873446 Iter 45: T = 572.9684035853937 K, F = -4.421671562042718, relative_change = 0.00017986784723710567 Iter 50: T = 572.6531556041496 K, F = -1.8495416825670596, relative_change = 7.54342267264764e-5 Iter 55: T = 572.5211312132726 K, F = -0.7735610487025404, relative_change = 3.158461161358757e-5 Iter 60: T = 572.4658847880063 K, F = -0.3235230833415745, relative_change = 1.3215564822512757e-5 Iter 65: T = 572.442774427014 K, F = -0.1353030743704682, relative_change = 5.52804524786392e-6 Iter 70: T = 572.4331084100994 K, F = -0.05658568644089029, relative_change = 2.3120936759077604e-6 Iter 75: T = 572.4290657935642 K, F = -0.02366486666722392, relative_change = 9.669800205924415e-7 Iter 80: T = 572.4273750928209 K, F = -0.009896939795447979, relative_change = 4.0440868540505317e-7 Iter 85: T = 572.4266680162915 K, F = -0.004139020153791473, relative_change = 1.6912960747991686e-7 Iter 90: T = 572.4263723075179 K, F = -0.001730987961991337, relative_change = 7.07322080372864e-8 Iter 95: T = 572.4262486384157 K, F = -0.0007239198911935252, relative_change = 2.958108671898885e-8 Iter 100: T = 572.4261969184919 K, F = -0.0003027519530785505, relative_change = 1.2371169434185699e-8 Iter 105: T = 572.4261752885972 K, F = -0.00012661448372847106, relative_change = 5.1737717853977324e-9 Iter 110: T = 572.4261662427159 K, F = -5.2951689226587995e-5, relative_change = 2.1637333127588827e-9 Iter 115: T = 572.4261624596203 K, F = -2.214502872954771e-5, relative_change = 9.048991369609016e-10 Iter 120: T = 572.4261608774844 K, F = -9.261315622233202e-6, relative_change = 3.784396365571909e-10 Iter 125: T = 572.4261602158165 K, F = -3.873193188119739e-6, relative_change = 1.5826799239789803e-10 Iter 130: T = 572.426159939099 K, F = -1.6198158906965965e-6, relative_change = 6.618957465151231e-11 Iter 135: T = 572.4261598233724 K, F = -6.774260597475212e-7, relative_change = 2.768125874874152e-11 Iter 140: T = 572.4261597749742 K, F = -2.833085239184463e-7, relative_change = 1.157666795751875e-11 Iter 145: T = 572.4261597547334 K, F = -1.1848307701622929e-7, relative_change = 4.841503610487051e-12 Iter 150: T = 572.4261597462684 K, F = -4.955002075313075e-8, relative_change = 2.0247330710361317e-12 Iter 155: T = 572.4261597427283 K, F = -2.0722386973037743e-8, relative_change = 8.467665921956687e-13 Iter 160: T = 572.4261597412478 K, F = -8.666324935457936e-9, relative_change = 3.5412688905464824e-13 Converged in 163 iterations to T = 572.4261597408143 K Iter 1: T = 963.5925031715042 K, F = -8295.482784843005, relative_change = 0.0364074968284958 Iter 2: T = 929.0646931368044 K, F = -7038.936737232475, relative_change = 0.03583237719373826 Iter 3: T = 896.383154986794 K, F = -5971.7986614576885, relative_change = 0.035176816417022146 Iter 5: T = 836.440374567078 K, F = -4295.963381324971, relative_change = 0.03359523543089051 Iter 10: T = 716.9547252716079 K, F = -1877.191504340644, relative_change = 0.02784610323189879 Iter 15: T = 637.5415153415682 K, F = -812.7808350507713, relative_change = 0.01991754798400917 Iter 20: T = 591.0868212378715 K, F = -347.96448859908764, relative_change = 0.011921039262528917 Iter 25: T = 567.214266975374 K, F = -147.46888538082572, relative_change = 0.0060993619075360925 Iter 30: T = 556.087613537114 K, F = -62.07910260491998, relative_change = 0.0028162129169815838 Iter 35: T = 551.1906127991708 K, F = -26.03948187151725, relative_change = 0.0012316077557442324 Iter 40: T = 549.0958848582266 K, F = -10.904056915221222, relative_change = 0.0005251330080632191 Iter 45: T = 548.2113305142155 K, F = -4.562701898918163, relative_change = 0.00022142726090529225 Iter 50: T = 547.8398841347015 K, F = -1.9086158442333545, relative_change = 9.292400513907464e-5 Iter 55: T = 547.684273866008 K, F = -0.7982830185296306, relative_change = 3.891826625988285e-5 Iter 60: T = 547.6191489583709 K, F = -0.3338649894228626, relative_change = 1.628595822062864e-5 Iter 65: T = 547.5919047422046 K, F = -0.13962868768794567, relative_change = 6.812710820807666e-6 Iter 70: T = 547.5805094503211 K, F = -0.05839479789086657, relative_change = 2.849459472202284e-6 Iter 75: T = 547.575743552072 K, F = -0.024421474127657578, relative_change = 1.1917308872412215e-6 Iter 80: T = 547.5737503525868 K, F = -0.010213364772184846, relative_change = 4.984053431716901e-7 Iter 85: T = 547.5729167650765 K, F = -0.004271353331283673, relative_change = 2.08440685275428e-7 Iter 90: T = 547.5725681474809 K, F = -0.0017863313597106523, relative_change = 8.717266694231985e-8 Iter 95: T = 547.5724223512041 K, F = -0.0007470651751928792, relative_change = 3.645669987237517e-8 Iter 100: T = 547.5723613774188 K, F = -0.00031243158962171447, relative_change = 1.5246635916218847e-8 Iter 105: T = 547.5723358774466 K, F = -0.00013066262417299468, relative_change = 6.376326743133456e-9 Iter 110: T = 547.5723252130524 K, F = -5.4644670710174426e-5, relative_change = 2.6666562816373705e-9 Iter 115: T = 547.5723207530751 K, F = -2.2853053872562423e-5, relative_change = 1.1152275461630683e-9 Iter 120: T = 547.5723188878593 K, F = -9.557419723721372e-6, relative_change = 4.664014699491119e-10 Iter 125: T = 547.5723181078038 K, F = -3.99702704603766e-6, relative_change = 1.9505466498607668e-10 Iter 130: T = 547.5723177815753 K, F = -1.6716049751619444e-6, relative_change = 8.157421643351493e-11 Iter 135: T = 547.5723176451426 K, F = -6.990848499810465e-7, relative_change = 3.411529624088783e-11 Iter 140: T = 547.5723175880848 K, F = -2.923659479792118e-7, relative_change = 1.426743968386281e-11 Iter 145: T = 547.5723175642227 K, F = -1.2227156248600934e-7, relative_change = 5.966844481173203e-12 Iter 150: T = 547.5723175542431 K, F = -5.113527731803735e-8, relative_change = 2.495398284615678e-12 Iter 155: T = 547.5723175500696 K, F = -2.1385173520904743e-8, relative_change = 1.0435951093079742e-12 Iter 160: T = 547.5723175483241 K, F = -8.943441931474894e-9, relative_change = 4.36439398122491e-13 Converged in 164 iterations to T = 547.5723175476941 K Iter 1: T = 969.4470432731988 K, F = -6961.5202535665285, relative_change = 0.030552956726801195 Iter 2: T = 941.0382582517021 K, F = -5897.685069439095, relative_change = 0.029304112296406035 Iter 3: T = 914.7339243589375 K, F = -4994.7236581009665, relative_change = 0.027952459596737186 Iter 5: T = 868.249247093527 K, F = -3578.320820931575, relative_change = 0.024974262340508264 Iter 10: T = 784.6541794568057 K, F = -1542.7573086784694, relative_change = 0.01669692976043263 Iter 15: T = 738.2221645794366 K, F = -657.7035582723072, relative_change = 0.009359063693535178 Iter 20: T = 715.3529312965007 K, F = -277.8974143432052, relative_change = 0.004572122692486838 Iter 25: T = 704.9717480154238 K, F = -116.78778525378311, relative_change = 0.0020577988134297216 Iter 30: T = 700.4643491717928 K, F = -48.947760409462745, relative_change = 0.0008890214011870852 Iter 35: T = 698.5482625814917 K, F = -20.489542749588328, relative_change = 0.0003770154982946233 Iter 40: T = 697.7413420170899 K, F = -8.57233471394628, relative_change = 0.00015860359337479995 Iter 45: T = 697.4028881918256 K, F = -3.585643910931979, relative_change = 6.649420214745104e-5 Iter 50: T = 697.2611686952174 K, F = -1.4996627147193275, relative_change = 2.7837507718609113e-5 Iter 55: T = 697.201869398003 K, F = -0.6271949941912056, relative_change = 1.1647029706912112e-5 Iter 60: T = 697.1770643823538 K, F = -0.26230361018318005, relative_change = 4.871810999011141e-6 Iter 65: T = 697.1666896940039 K, F = -0.10969905742918523, relative_change = 2.0376042091447225e-6 Iter 70: T = 697.1623507119527 K, F = -0.04587755298272167, relative_change = 8.521774688133863e-7 Iter 75: T = 697.1605360692456 K, F = -0.019186557529297987, relative_change = 3.5639552663894555e-7 Iter 80: T = 697.1597771589926 K, F = -0.008024050461363341, relative_change = 1.4904969310392027e-7 Iter 85: T = 697.1594597727869 K, F = -0.003355754249236176, relative_change = 6.233450643525966e-8 Iter 90: T = 697.1593270379324 K, F = -0.001403416594748852, relative_change = 2.6069060354217783e-8 Iter 95: T = 697.1592715266041 K, F = -0.0005869255955225361, relative_change = 1.090239678714842e-8 Iter 100: T = 697.1592483110992 K, F = -0.0002454592963261337, relative_change = 4.559513315384093e-9 Iter 105: T = 697.1592386020968 K, F = -0.00010265400932851776, relative_change = 1.9068430507662386e-9 Iter 110: T = 697.159234541676 K, F = -4.293113342179744e-5, relative_change = 7.974645728150357e-10 Iter 115: T = 697.1592328435596 K, F = -1.7954313420665002e-5, relative_change = 3.335092252880616e-10 Iter 120: T = 697.1592321333869 K, F = -7.508708607217862e-6, relative_change = 1.3947754748283277e-10 Iter 125: T = 697.1592318363842 K, F = -3.140230707243674e-6, relative_change = 5.833115937459473e-11 Iter 130: T = 697.1592317121741 K, F = -1.313282375847713e-6, relative_change = 2.439479477023556e-11 Iter 135: T = 697.159231660228 K, F = -5.492304134824266e-7, relative_change = 1.0202195254908545e-11 Iter 140: T = 697.1592316385036 K, F = -2.296943695245801e-7, relative_change = 4.26667342096403e-12 Iter 145: T = 697.1592316294182 K, F = -9.606152640007082e-8, relative_change = 1.7843848865001758e-12 Iter 150: T = 697.1592316256184 K, F = -4.0173353643702114e-8, relative_change = 7.462376225957633e-13 Iter 155: T = 697.1592316240294 K, F = -1.6801778190966843e-8, relative_change = 3.121003818587117e-13 Converged in 157 iterations to T = 697.1592316236931 K Iter 1: T = 966.47976958861 K, F = -7637.6163852060445, relative_change = 0.03352023041138998 Iter 2: T = 934.9987148068194 K, F = -6475.671407790088, relative_change = 0.03257290609941146 Iter 3: T = 905.527111587262 K, F = -5489.09016846372, relative_change = 0.03152047457695875 Iter 5: T = 852.4876217049165 K, F = -3940.458327648744, relative_change = 0.029095408839668272 Iter 10: T = 752.4320697501428 K, F = -1709.4017247304378, relative_change = 0.021457869041514973 Iter 15: T = 692.4359635147155 K, F = -733.3513913117495, relative_change = 0.013269563485553568 Iter 20: T = 660.9152286337659 K, F = -311.3048825363506, relative_change = 0.006961772220531716 Iter 25: T = 646.0055451214773 K, F = -131.17484466036987, relative_change = 0.003261928488003939 Iter 30: T = 639.3914653312291 K, F = -55.04851076997259, relative_change = 0.0014368818995525849 Iter 35: T = 636.5516881977243 K, F = -23.056604432853046, relative_change = 0.0006146552393389709 Iter 40: T = 635.3505466836133 K, F = -9.648726165046565, relative_change = 0.00025953965172895226 Iter 45: T = 634.8458030822933 K, F = -4.036301988974621, relative_change = 0.00010898313318383616 Iter 50: T = 634.634287803332 K, F = -1.688220896808319, relative_change = 4.5655560669873656e-5 Iter 55: T = 634.5457549022937 K, F = -0.7060676297515889, relative_change = 1.9107291672025215e-5 Iter 60: T = 634.5087163034602 K, F = -0.29529177573200244, relative_change = 7.99327712485188e-6 Iter 65: T = 634.4932240295357 K, F = -0.12349557242638198, relative_change = 3.3433003225664778e-6 Iter 70: T = 634.4867445750122 K, F = -0.05164750257105599, relative_change = 1.398280958869656e-6 Iter 75: T = 634.4840347196852 K, F = -0.02159963374001428, relative_change = 5.84790536073697e-7 Iter 80: T = 634.4829014135703 K, F = -0.00903323026820424, relative_change = 2.4456861434330666e-7 Iter 85: T = 634.4824274492752 K, F = -0.0037778057368418327, relative_change = 1.0228190501798427e-7 Iter 90: T = 634.4822292313717 K, F = -0.0015799236425534935, relative_change = 4.2775582323990405e-8 Iter 95: T = 634.4821463342117 K, F = -0.0006607429642672136, relative_change = 1.7889271280523732e-8 Iter 100: T = 634.482111665618 K, F = -0.0002763306042823377, relative_change = 7.481508992816741e-9 Iter 105: T = 634.482097166796 K, F = -0.0001155647599606624, relative_change = 3.128856780842238e-9 Iter 110: T = 634.4820911032151 K, F = -4.833056173808581e-5, relative_change = 1.3085253043231348e-9 Iter 115: T = 634.4820885673531 K, F = -2.021241771504867e-5, relative_change = 5.472409091434752e-10 Iter 120: T = 634.4820875068255 K, F = -8.453074265835081e-6, relative_change = 2.2886267978032305e-10 Iter 125: T = 634.4820870633001 K, F = -3.5351771727754056e-6, relative_change = 9.571312146425934e-11 Iter 130: T = 634.4820868778124 K, F = -1.4784529061562246e-6, relative_change = 4.002835950425102e-11 Iter 135: T = 634.4820868002394 K, F = -6.183066653675517e-7, relative_change = 1.6740338090280948e-11 Iter 140: T = 634.4820867677973 K, F = -2.5858294988578834e-7, relative_change = 7.0010016857101576e-12 Iter 145: T = 634.4820867542297 K, F = -1.0814347134457947e-7, relative_change = 2.9279294152744107e-12 Iter 150: T = 634.4820867485555 K, F = -4.5226344835835874e-8, relative_change = 1.2244802552517962e-12 Iter 155: T = 634.4820867461826 K, F = -1.8915180866052594e-8, relative_change = 5.121188895428521e-13 Converged in 160 iterations to T = 634.4820867451901 K Iter 1: T = 966.4627598487837 K, F = -7641.492070605908, relative_change = 0.033537240151216285 Iter 2: T = 934.9639223229584 K, F = -6478.987281815537, relative_change = 0.03259187920572712 Iter 3: T = 905.4737850733326 K, F = -5491.92909493782, relative_change = 0.031541470794248766 Iter 5: T = 852.395204440848 K, F = -3942.543468014008, relative_change = 0.029120428869230972 Iter 10: T = 752.2361058098088 K, F = -1710.3725809542225, relative_change = 0.021489643122519754 Iter 15: T = 692.1472769787259 K, F = -733.7998455220626, relative_change = 0.013298291500974186 Iter 20: T = 660.5630082285286 K, F = -311.5061667253009, relative_change = 0.006980611175613045 Iter 25: T = 645.6184785238542 K, F = -131.26244402032316, relative_change = 0.0032718103858843718 Iter 30: T = 638.9877814180782 K, F = -55.08585907311752, relative_change = 0.0014414665569109167 Iter 35: T = 636.1406331942741 K, F = -23.072359089695333, relative_change = 0.00061666129839 Iter 40: T = 634.9363296643749 K, F = -9.655339426817575, relative_change = 0.0002603949184857322 Iter 45: T = 634.4302493490997 K, F = -4.039072078839392, relative_change = 0.00010934372961034707 Iter 50: T = 634.2181725019148 K, F = -1.6893801461422957, relative_change = 4.5806880578965683e-5 Iter 55: T = 634.1294042998541 K, F = -0.7065525757602001, relative_change = 1.9170665733091858e-5 Iter 60: T = 634.0922672170483 K, F = -0.29549460942258043, relative_change = 8.019796726794187e-6 Iter 65: T = 634.0767337422465 K, F = -0.12358040400582004, relative_change = 3.35439390428025e-6 Iter 70: T = 634.0702370546263 K, F = -0.05168298086919748, relative_change = 1.4029209113923957e-6 Iter 75: T = 634.0675199917931 K, F = -0.021614471314826356, relative_change = 5.867311043531053e-7 Iter 80: T = 634.0663836713396 K, F = -0.009039435541269292, relative_change = 2.453801979887705e-7 Iter 85: T = 634.0659084463991 K, F = -0.0037804008590923144, relative_change = 1.0262132155740377e-7 Iter 90: T = 634.0657097012767 K, F = -0.0015810089542978023, relative_change = 4.291753082611536e-8 Iter 95: T = 634.065626583627 K, F = -0.0006611968559153136, relative_change = 1.794863595105643e-8 Iter 100: T = 634.0655918228217 K, F = -0.0002765204270840371, relative_change = 7.506336017459348e-9 Iter 105: T = 634.0655772854359 K, F = -0.00011564414649373189, relative_change = 3.1392397514467152e-9 Iter 110: T = 634.0655712057271 K, F = -4.836376342071125e-5, relative_change = 1.312867621873274e-9 Iter 115: T = 634.0655686631202 K, F = -2.02263033677319e-5, relative_change = 5.49056926725396e-10 Iter 120: T = 634.0655675997716 K, F = -8.458881950945685e-6, relative_change = 2.2962217465853012e-10 Iter 125: T = 634.0655671550666 K, F = -3.537605815284728e-6, relative_change = 9.603074588503538e-11 Iter 130: T = 634.0655669690856 K, F = -1.479469217691154e-6, relative_change = 4.016121074693552e-11 Iter 135: T = 634.065566891306 K, F = -6.18731490154012e-7, relative_change = 1.679589239790486e-11 Iter 140: T = 634.0655668587779 K, F = -2.5876130244073536e-7, relative_change = 7.024253755883681e-12 Iter 145: T = 634.0655668451741 K, F = -1.0821733203991712e-7, relative_change = 2.937634004546885e-12 Iter 150: T = 634.0655668394847 K, F = -4.52569157705085e-8, relative_change = 1.2285301458457694e-12 Iter 155: T = 634.0655668371055 K, F = -1.892662904179332e-8, relative_change = 5.13776379623522e-13 Converged in 160 iterations to T = 634.0655668361105 K Iter 1: T = 976.4640790457362 K, F = -5362.681977869656, relative_change = 0.023535920954263795 Iter 2: T = 955.0892705145923 K, F = -4534.4679586521825, relative_change = 0.021890010078028394 Iter 3: T = 935.7837089239454 K, F = -3832.4263085279845, relative_change = 0.02021335825523965 Iter 5: T = 902.95848381118 K, F = -2733.783947303976, relative_change = 0.016861086097039017 Iter 10: T = 848.9143385556638 K, F = -1165.7040807934934, relative_change = 0.009482023111766576 Iter 15: T = 822.2410012344461 K, F = -492.6117759445533, relative_change = 0.004642325297617799 Iter 20: T = 810.1181328014053 K, F = -207.03852658428855, relative_change = 0.0020918315058462596 Iter 25: T = 804.8512866433646 K, F = -86.77653872690455, relative_change = 0.0009042178790383349 Iter 30: T = 802.6117379162013 K, F = -36.3252577927746, relative_change = 0.0003835520511032713 Iter 35: T = 801.6684842712535 K, F = -15.197723074149126, relative_change = 0.00016136994879688987 Iter 40: T = 801.2728268171714 K, F = -6.3569356839866025, relative_change = 6.765691807422999e-5 Iter 45: T = 801.1071510931777 K, F = -2.6587333298024305, relative_change = 2.8324788203369017e-5 Iter 50: T = 801.037827232053 K, F = -1.1119467499395215, relative_change = 1.1850994824994608e-5 Iter 55: T = 801.0088288114783 K, F = -0.46503513498891647, relative_change = 4.957142914706234e-6 Iter 60: T = 800.9967002139317 K, F = -0.1944842485254159, relative_change = 2.073296506268559e-6 Iter 65: T = 800.9916276951147 K, F = -0.08133581050770611, relative_change = 8.671053707864664e-7 Iter 70: T = 800.9895062731504 K, F = -0.034015637936458454, relative_change = 3.6263872089834794e-7 Iter 75: T = 800.9886190632003 K, F = -0.014225751371726547, relative_change = 1.516607008023481e-7 Iter 80: T = 800.9882480203631 K, F = -0.005949380050229713, relative_change = 6.342646614804665e-8 Iter 85: T = 800.9880928456355 K, F = -0.002488101950003818, relative_change = 2.652573181354309e-8 Iter 90: T = 800.9880279496793 K, F = -0.0010405539771338734, relative_change = 1.1093382400333936e-8 Iter 95: T = 800.98800080941 K, F = -0.00043517210414056873, relative_change = 4.639385794576619e-9 Iter 100: T = 800.9879894590242 K, F = -0.00018199417246389515, relative_change = 1.9402466917297903e-9 Iter 105: T = 800.9879847121572 K, F = -7.611213578628817e-5, relative_change = 8.114343543392031e-10 Iter 110: T = 800.9879827269607 K, F = -3.183100469161815e-5, relative_change = 3.393515472647652e-10 Iter 115: T = 800.9879818967277 K, F = -1.3312104996998642e-5, relative_change = 1.4192085654042435e-10 Iter 120: T = 800.9879815495144 K, F = -5.56728030620679e-6, relative_change = 5.935298673398159e-11 Iter 125: T = 800.9879814043056 K, F = -2.3283022180242696e-6, relative_change = 2.4822118373366157e-11 Iter 130: T = 800.9879813435776 K, F = -9.73722723784931e-7, relative_change = 1.0380894943209216e-11 Iter 135: T = 800.9879813181805 K, F = -4.0722390415304233e-7, relative_change = 4.3414295104281934e-12 Iter 140: T = 800.987981307559 K, F = -1.7030547549978792e-7, relative_change = 1.8156331434097178e-12 Iter 145: T = 800.9879813031171 K, F = -7.122460687902787e-8, relative_change = 7.593282394462198e-13 Iter 150: T = 800.9879813012594 K, F = -2.9786883071203363e-8, relative_change = 3.175590918980125e-13 Converged in 153 iterations to T = 800.9879813007154 K Iter 1: T = 965.219104239113 K, F = -7924.860184291262, relative_change = 0.03478089576088695 Iter 2: T = 932.4147617250229 K, F = -6721.505169283317, relative_change = 0.033986420668652075 Iter 3: T = 901.5575473043731 K, F = -5699.650675935684, relative_change = 0.033093871619494925 Iter 5: T = 845.5713218005701 K, F = -4095.290362039613, relative_change = 0.030996182684305665 Iter 10: T = 737.5125211864739 K, F = -1781.895428063116, relative_change = 0.02398399179142444 Iter 15: T = 670.0348653083805 K, F = -767.153883692188, relative_change = 0.015678370210131336 Iter 20: T = 633.1676045890063 K, F = -326.62783873156417, relative_change = 0.008613705316382959 Iter 25: T = 615.2348345241774 K, F = -137.89028264343938, relative_change = 0.004153069406577933 Iter 30: T = 607.1539140316485 K, F = -57.922573069799135, relative_change = 0.0018563011909156159 Iter 35: T = 603.6579636257574 K, F = -24.271147261045414, relative_change = 0.000799389563566953 Iter 40: T = 602.1742735826458 K, F = -10.158952204172966, relative_change = 0.00033852603260326787 Iter 45: T = 601.5498903138065 K, F = -4.250092012075941, relative_change = 0.00014232597038769043 Iter 50: T = 601.2880783911361 K, F = -1.777702209416402, relative_change = 5.965467938456198e-5 Iter 55: T = 601.1784647266799 K, F = -0.7435023744205949, relative_change = 2.497150709932217e-5 Iter 60: T = 601.1326018147677 K, F = -0.3109496380138288, relative_change = 1.044744709955605e-5 Iter 65: T = 601.1134176918534 K, F = -0.13004426328731236, relative_change = 4.3699584562911216e-6 Iter 70: T = 601.1053940142361 K, F = -0.05438631079913975, relative_change = 1.827693253230267e-6 Iter 75: T = 601.1020383030279 K, F = -0.022745047856740586, relative_change = 7.643849122677846e-7 Iter 80: T = 601.1006348846893 K, F = -0.0095122581957236, relative_change = 3.196787060731656e-7 Iter 85: T = 601.1000479549105 K, F = -0.00397814129789964, relative_change = 1.3369411851710137e-7 Iter 90: T = 601.0998024932607 K, F = -0.001663706429940015, relative_change = 5.5912593444829654e-8 Iter 95: T = 601.0996998381612 K, F = -0.0006957819380038477, relative_change = 2.338333467765274e-8 Iter 100: T = 601.0996569065542 K, F = -0.00029098432262658624, relative_change = 9.779193370713106e-9 Iter 105: T = 601.0996389520401 K, F = -0.00012169311981247155, relative_change = 4.089776071178164e-9 Iter 110: T = 601.0996314432474 K, F = -5.0893516572503295e-5, relative_change = 1.7103933152168885e-9 Iter 115: T = 601.0996283029805 K, F = -2.1284276939592672e-5, relative_change = 7.153069458326727e-10 Iter 120: T = 601.0996269896832 K, F = -8.901337754774197e-6, relative_change = 2.9914987516342903e-10 Iter 125: T = 601.0996264404467 K, F = -3.7226452330729742e-6, relative_change = 1.2510803345246582e-10 Iter 130: T = 601.0996262107495 K, F = -1.5568550907896217e-6, relative_change = 5.2321687117286545e-11 Iter 135: T = 601.0996261146873 K, F = -6.510952290650351e-7, relative_change = 2.1881548954784268e-11 Iter 140: T = 601.099626074513 K, F = -2.7229592863831087e-7, relative_change = 9.15112940259065e-12 Iter 145: T = 601.0996260577117 K, F = -1.1387777154592271e-7, relative_change = 3.82712377979878e-12 Iter 150: T = 601.0996260506851 K, F = -4.76250571757042e-8, relative_change = 1.6005493114875036e-12 Iter 155: T = 601.0996260477465 K, F = -1.9916928439833725e-8, relative_change = 6.693540751973355e-13 Iter 160: T = 601.0996260465175 K, F = -8.329394562966996e-9, relative_change = 2.79928414240429e-13 Converged in 162 iterations to T = 601.0996260462575 K Iter 1: T = 964.6040132311027 K, F = -8065.009255569022, relative_change = 0.035395986768897304 Iter 2: T = 931.1500868961266 K, F = -6841.508675029548, relative_change = 0.0346815126996171 Iter 3: T = 899.6079062065957 K, F = -5802.499919001901, relative_change = 0.033874432417949844 Iter 5: T = 842.1465285583173 K, F = -4171.053260486657, relative_change = 0.031958922445701726 Iter 10: T = 729.9232482585597 K, F = -1817.684788126848, relative_change = 0.025355992453404294 Iter 15: T = 658.280207244128 K, F = -784.1096262098085, relative_change = 0.01710109723854164 Iter 20: T = 618.2270622767411 K, F = -334.45205936030806, relative_change = 0.009662876251666869 Iter 25: T = 598.3994891742176 K, F = -141.3647821549049, relative_change = 0.004746041116308348 Iter 30: T = 589.3717602859011 K, F = -59.420561305600486, relative_change = 0.0021422354138716363 Iter 35: T = 585.4460786601534 K, F = -24.906407718561095, relative_change = 0.0009267511877552373 Iter 40: T = 583.7761312082679 K, F = -10.426239654763984, relative_change = 0.00039324952716928227 Iter 45: T = 583.0726574344919 K, F = -4.362163116131377, relative_change = 0.0001654749722094834 Iter 50: T = 582.7775558569134 K, F = -1.8246225590483955, relative_change = 6.938244833702703e-5 Iter 55: T = 582.6539824994406 K, F = -0.763133956542434, relative_change = 2.9047966402143783e-5 Iter 60: T = 582.6022748856734 K, F = -0.31916136469938555, relative_change = 1.2153706712652522e-5 Iter 65: T = 582.5806452841688 K, F = -0.13347877928501933, relative_change = 5.083787933573795e-6 Iter 70: T = 582.5715986761629 K, F = -0.055822714311713484, relative_change = 2.1262692405006216e-6 Iter 75: T = 582.567815127905 K, F = -0.023345777339522755, relative_change = 8.892606483945307e-7 Iter 80: T = 582.5662327768201 K, F = -0.009763491905631194, relative_change = 3.719045757749048e-7 Iter 85: T = 582.5655710141485 K, F = -0.004083210491553968, relative_change = 1.5553583625133274e-7 Iter 90: T = 582.5652942563003 K, F = -0.0017076476666302298, relative_change = 6.504710181479406e-8 Iter 95: T = 582.5651785127237 K, F = -0.0007141586957577495, relative_change = 2.7203502363626903e-8 Iter 100: T = 582.5651301073534 K, F = -0.0002986697034842445, relative_change = 1.1376834374503974e-8 Iter 105: T = 582.5651098636453 K, F = -0.000124907238069627, relative_change = 4.757928836480346e-9 Iter 110: T = 582.565101397484 K, F = -5.223769949402879e-5, relative_change = 1.989822830217114e-9 Iter 115: T = 582.5650978568341 K, F = -2.1846429262339928e-5, relative_change = 8.321676755258206e-10 Iter 120: T = 582.5650963760921 K, F = -9.136438120616042e-6, relative_change = 3.4802248340558007e-10 Iter 125: T = 582.5650957568281 K, F = -3.820968279888426e-6, relative_change = 1.4554718796922775e-10 Iter 130: T = 582.5650954978444 K, F = -1.5979741987970364e-6, relative_change = 6.086955832602115e-11 Iter 135: T = 582.5650953895343 K, F = -6.682918206046828e-7, relative_change = 2.5456373463181818e-11 Iter 140: T = 582.5650953442378 K, F = -2.794873755207483e-7, relative_change = 1.0646150069137293e-11 Iter 145: T = 582.5650953252942 K, F = -1.1688495876738259e-7, relative_change = 4.452347122071517e-12 Iter 150: T = 582.5650953173717 K, F = -4.888248428258635e-8, relative_change = 1.8620170681029047e-12 Iter 155: T = 582.5650953140586 K, F = -2.0443866433073055e-8, relative_change = 7.787416862319645e-13 Iter 160: T = 582.5650953126728 K, F = -8.549383812006539e-9, relative_change = 3.256605881219728e-13 Converged in 163 iterations to T = 582.5650953122672 K Iter 1: T = 964.3253635720657 K, F = -8128.499845444852, relative_change = 0.03567463642793428 Iter 2: T = 930.5763075914831 K, F = -6895.885556646816, relative_change = 0.03499758199407814 Iter 3: T = 898.7218727095081 K, F = -5849.117718613427, relative_change = 0.034230868142797036 Iter 5: T = 840.5838998241775 K, F = -4205.423510689574, relative_change = 0.03240299366457582 Iter 10: T = 726.4131980161874 K, F = -1833.9945284032715, relative_change = 0.026011430719775904 Iter 15: T = 652.7523031097754 K, F = -791.9045068436607, relative_change = 0.017811907015062946 Iter 20: T = 611.0966833999714 K, F = -338.0871881883394, relative_change = 0.010209190179743298 Iter 25: T = 590.2874729819462 K, F = -142.99247733424102, relative_change = 0.005063549490397571 Iter 30: T = 580.7603890280491 K, F = -60.125702318495335, relative_change = 0.002297651352158724 Iter 35: T = 576.6060079945439 K, F = -25.206141442160867, relative_change = 0.000996466423764649 Iter 40: T = 574.8365264736462 K, F = -10.552485423083617, relative_change = 0.00042329716547245106 Iter 45: T = 574.0907117524687 K, F = -4.415120620752117, relative_change = 0.0001782025244447104 Iter 50: T = 573.7777750443827 K, F = -1.846798287893299, relative_change = 7.473386859732027e-5 Iter 55: T = 573.6467202991552 K, F = -0.7724130760676686, relative_change = 3.129102711251847e-5 Iter 60: T = 573.5918799256768 K, F = -0.3230428731926556, relative_change = 1.3092663921721317e-5 Iter 65: T = 573.56893947401 K, F = -0.13510222474832578, relative_change = 5.476625550254671e-6 Iter 70: T = 573.5593445315895 K, F = -0.056501685231242826, relative_change = 2.290585656932138e-6 Iter 75: T = 573.5553316421232 K, F = -0.0236297357458293, relative_change = 9.579844651426256e-7 Iter 80: T = 573.5536533740965 K, F = -0.009882247517594922, relative_change = 4.0064652386238046e-7 Iter 85: T = 573.5529514971654 K, F = -0.004132875649400014, relative_change = 1.6755620687513118e-7 Iter 90: T = 573.5526579629412 K, F = -0.0017284182538369608, relative_change = 7.007418967225289e-8 Iter 95: T = 573.5525352032643 K, F = -0.0007228452082277403, relative_change = 2.9305894986626257e-8 Iter 100: T = 573.5524838636734 K, F = -0.00030230250774304634, relative_change = 1.2256080860312787e-8 Iter 105: T = 573.5524623928385 K, F = -0.0001264265209288129, relative_change = 5.125640376310263e-9 Iter 110: T = 573.552453413478 K, F = -5.287308079243713e-5, relative_change = 2.1436041736993094e-9 Iter 115: T = 573.5524496582021 K, F = -2.2112152984310463e-5, relative_change = 8.964808593288041e-10 Iter 120: T = 573.5524480877009 K, F = -9.247566497894155e-6, relative_change = 3.7491900832492666e-10 Iter 125: T = 573.5524474308986 K, F = -3.867443328642306e-6, relative_change = 1.5679563112769147e-10 Iter 130: T = 573.552447156216 K, F = -1.6174109923050572e-6, relative_change = 6.557380583482197e-11 Iter 135: T = 573.5524470413404 K, F = -6.764212999721408e-7, relative_change = 2.7423777407369297e-11 Iter 140: T = 573.5524469932981 K, F = -2.8288705677947945e-7, relative_change = 1.1468934641708536e-11 Iter 145: T = 573.5524469732063 K, F = -1.183074874178125e-7, relative_change = 4.79647551391388e-12 Iter 150: T = 573.5524469648036 K, F = -4.9477794417107646e-8, relative_change = 2.0059510568639065e-12 Iter 155: T = 573.5524469612895 K, F = -2.0692498048369146e-8, relative_change = 8.389245886865798e-13 Iter 160: T = 573.5524469598199 K, F = -8.65448762654708e-9, relative_change = 3.5087414073985604e-13 Converged in 163 iterations to T = 573.5524469593896 K Iter 1: T = 980.1034976569706 K, F = -4533.43698531905, relative_change = 0.019896502343029393 Iter 2: T = 962.2523735539195 K, F = -3829.4462502058104, relative_change = 0.018213509232163683 Iter 3: T = 946.3260001735639 K, F = -3233.269613860247, relative_change = 0.016551139615830934 Iter 5: T = 919.7251340329555 K, F = -2301.743758441218, relative_change = 0.013377199381947848 Iter 10: T = 877.4754816501895 K, F = -977.2110535388081, relative_change = 0.007032562484748414 Iter 15: T = 857.4665988550906 K, F = -411.80147569583943, relative_change = 0.0032991188037139493 Iter 20: T = 848.5845803954843 K, F = -172.82256635648585, relative_change = 0.00145414879426872 Iter 25: T = 844.7698551853017 K, F = -72.38660278055667, relative_change = 0.0006222129751768559 Iter 30: T = 843.1561145575607 K, F = -30.292581402675967, relative_change = 0.0002627622774811311 Iter 35: T = 842.4779480576984 K, F = -12.672182599712258, relative_change = 0.00011034193206092415 Iter 40: T = 842.1937518859997 K, F = -5.300265928343625, relative_change = 4.622577816193538e-5 Iter 45: T = 842.0747960422912 K, F = -2.216740973179772, relative_change = 1.934610605890612e-5 Iter 50: T = 842.0250294887728 K, F = -0.9270861801771635, relative_change = 8.093212173108547e-6 Iter 55: T = 842.0042134066865 K, F = -0.38772177176813893, relative_change = 3.3851048576590765e-6 Iter 60: T = 841.995507327588 K, F = -0.1621504454483902, relative_change = 1.4157659524514667e-6 Iter 65: T = 841.9918662460099 K, F = -0.06781335247762765, relative_change = 5.92103290652967e-7 Iter 70: T = 841.9903434855369 K, F = -0.028360371302571963, relative_change = 2.4762695186395207e-7 Iter 75: T = 841.9897066460054 K, F = -0.011860649020458913, relative_change = 1.035609481117635e-7 Iter 80: T = 841.9894403115978 K, F = -0.004960265599145197, relative_change = 4.331049515947192e-8 Iter 85: T = 841.9893289272788 K, F = -0.002074442406316601, relative_change = 1.8112978547481484e-8 Iter 90: T = 841.9892823450108 K, F = -0.0008675566051474792, relative_change = 7.575066084852096e-9 Iter 95: T = 841.9892628637472 K, F = -0.00036282253640229634, relative_change = 3.167983480025172e-9 Iter 100: T = 841.9892547164496 K, F = -0.00015173671760737584, relative_change = 1.324888584944395e-9 Iter 105: T = 841.9892513091525 K, F = -6.345811025787462e-5, relative_change = 5.540842641678573e-10 Iter 110: T = 841.9892498841799 K, F = -2.6538937125453188e-5, relative_change = 2.3172463705094226e-10 Iter 115: T = 841.9892492882395 K, F = -1.109889921457885e-5, relative_change = 9.6910000150824e-11 Iter 120: T = 841.9892490390101 K, F = -4.641693553075754e-6, relative_change = 4.052893128101816e-11 Iter 125: T = 841.9892489347794 K, F = -1.9412124572237843e-6, relative_change = 1.694968989818765e-11 Iter 130: T = 841.9892488911889 K, F = -8.118385914634985e-7, relative_change = 7.0885658727736805e-12 Iter 135: T = 841.9892488729587 K, F = -3.395182395227181e-7, relative_change = 2.9645023424847256e-12 Iter 140: T = 841.9892488653347 K, F = -1.4199145326188045e-7, relative_change = 1.2397978866099672e-12 Iter 145: T = 841.9892488621463 K, F = -5.938238945013552e-8, relative_change = 5.184971295960414e-13 Converged in 150 iterations to T = 841.9892488608127 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 12%|███▊ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 1 ray tracing: 29%|████████▉ | ETA: 0:00:12 Bin 1 ray tracing: 35%|██████████▋ | ETA: 0:00:11 Bin 1 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 1 ray tracing: 47%|██████████████ | ETA: 0:00:09 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 2 ray tracing: 18%|█████▎ | ETA: 0:00:14 Bin 2 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 2 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 2 ray tracing: 43%|████████████▉ | ETA: 0:00:10 Bin 2 ray tracing: 49%|██████████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 55%|████████████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:03 Bin 2 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 3 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 3 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 36%|███████████ | ETA: 0:00:11 Bin 3 ray tracing: 43%|████████████▉ | ETA: 0:00:09 Bin 3 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 3 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 3 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 6%|██ | ETA: 0:00:15 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 4 ray tracing: 19%|█████▉ | ETA: 0:00:13 Bin 4 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 4 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 4 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 4 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 4 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 4 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 5 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 5 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 5 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 5 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 5 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 5 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 5 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 57%|█████████████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 5 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 6 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 6 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 6 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 6 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 6 ray tracing: 37%|███████████▎ | ETA: 0:00:10 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 6 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 6 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 6 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 6 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 7 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 7 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 7 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 7 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 7 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 7 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 7 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 7 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 8 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 8 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 8 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 8 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 8 ray tracing: 38%|███████████▎ | ETA: 0:00:10 Bin 8 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 8 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 9 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 9 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 9 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 9 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:10 Bin 9 ray tracing: 44%|█████████████▎ | ETA: 0:00:09 Bin 9 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 9 ray tracing: 56%|████████████████▉ | ETA: 0:00:07 Bin 9 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▊ | ETA: 0:00:15 Bin 10 ray tracing: 12%|███▋ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 10 ray tracing: 25%|███████▎ | ETA: 0:00:12 Bin 10 ray tracing: 31%|█████████▏ | ETA: 0:00:11 Bin 10 ray tracing: 37%|██████████▉ | ETA: 0:00:10 Bin 10 ray tracing: 44%|████████████▋ | ETA: 0:00:09 Bin 10 ray tracing: 50%|██████████████▌ | ETA: 0:00:08 Bin 10 ray tracing: 56%|████████████████▎ | ETA: 0:00:07 Bin 10 ray tracing: 62%|██████████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 69%|███████████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 75%|█████████████████████▋ | ETA: 0:00:04 Bin 10 ray tracing: 81%|███████████████████████▌ | ETA: 0:00:03 Bin 10 ray tracing: 87%|█████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2964504286019 K, F = -7451.5348789498485, relative_change = 0.03270354957139806 Iter 2: T = 936.6668849558991 K, F = -6316.502661073817, relative_change = 0.03166512754092202 Iter 3: T = 908.08001343133 K, F = -5352.853346505304, relative_change = 0.030519784550635694 Iter 5: T = 856.8964528377986 K, F = -3840.470855762615, relative_change = 0.02791356320566484 Iter 10: T = 761.6799915548298 K, F = -1663.009384567129, relative_change = 0.019998936514875016 Iter 15: T = 705.9069859495007 K, F = -712.0395870679247, relative_change = 0.011990378930578062 Iter 20: T = 677.2128443395077 K, F = -301.7908320888641, relative_change = 0.006142732355250044 Iter 25: T = 663.8288849033613 K, F = -127.04928261979906, relative_change = 0.0028383311268293677 Iter 30: T = 657.9360780850342 K, F = -53.29291680326879, relative_change = 0.0012417268835781324 Iter 35: T = 655.4149206635116 K, F = -22.316697024694207, relative_change = 0.0005295328309785042 Iter 40: T = 654.3502087280922 K, F = -9.338258915154897, relative_change = 0.00022329796912734645 Iter 45: T = 653.9030941883726 K, F = -3.9062783929412364, relative_change = 9.371181668131864e-5 Iter 50: T = 653.7157814683648 K, F = -1.633811374460046, relative_change = 3.924870057360588e-5 Iter 55: T = 653.6373881938268 K, F = -0.6833072894785068, relative_change = 1.6424318612759982e-5 Iter 60: T = 653.6045932327343 K, F = -0.2857721442294115, relative_change = 6.8706043549211266e-6 Iter 65: T = 653.5908762458323 K, F = -0.11951417642571122, relative_change = 2.8736764135459437e-6 Iter 70: T = 653.5851393332576 K, F = -0.04998240505483598, relative_change = 1.2018596064560528e-6 Iter 75: T = 653.5827400345846 K, F = -0.020903264797307308, relative_change = 5.026414528488499e-7 Iter 80: T = 653.5817366098998 K, F = -0.00874199953818694, relative_change = 2.1021230462464828e-7 Iter 85: T = 653.581316964082 K, F = -0.003656009405524907, relative_change = 8.79135841716105e-8 Iter 90: T = 653.5811414629043 K, F = -0.0015289869348096286, relative_change = 3.6766561167608646e-8 Iter 95: T = 653.5810680661658 K, F = -0.0006394406203010239, relative_change = 1.5376223768832142e-8 Iter 100: T = 653.5810373707646 K, F = -0.0002674217087412223, relative_change = 6.430521964258221e-9 Iter 105: T = 653.5810245335797 K, F = -0.00011183895236760444, relative_change = 2.689321335570206e-9 Iter 110: T = 653.5810191649153 K, F = -4.677238554623431e-5, relative_change = 1.1247063444480698e-9 Iter 115: T = 653.5810169196757 K, F = -1.9560769426940627e-5, relative_change = 4.703656138052347e-10 Iter 120: T = 653.5810159806898 K, F = -8.180547876157629e-6, relative_change = 1.9671253033901686e-10 Iter 125: T = 653.5810155879946 K, F = -3.4212025790680833e-6, relative_change = 8.226752391700714e-11 Iter 130: T = 653.5810154237648 K, F = -1.430787502920694e-6, relative_change = 3.440525444990274e-11 Iter 135: T = 653.581015355082 K, F = -5.983728081915274e-7, relative_change = 1.4388697615828758e-11 Iter 140: T = 653.5810153263579 K, F = -2.502474145127387e-7, relative_change = 6.017543457903336e-12 Iter 145: T = 653.5810153143452 K, F = -1.0465638056178506e-7, relative_change = 2.5166066928554143e-12 Iter 150: T = 653.5810153093214 K, F = -4.376948570250505e-8, relative_change = 1.0524975168691799e-12 Iter 155: T = 653.5810153072204 K, F = -1.830549600789766e-8, relative_change = 4.401808425307398e-13 Converged in 159 iterations to T = 653.581015306462 K Iter 1: T = 970.3343067816704 K, F = -6759.356419155779, relative_change = 0.029665693218329556 Iter 2: T = 942.8327439780854 K, F = -5725.033164562038, relative_change = 0.028342358516416918 Iter 3: T = 917.4506113648288 K, F = -4847.234473960895, relative_change = 0.026921140335200933 Iter 5: T = 872.8289257731969 K, F = -3470.638972958278, relative_change = 0.023829913571926147 Iter 10: T = 793.6117683729716 K, F = -1493.8781433838833, relative_change = 0.015524156990413896 Iter 15: T = 750.4378762336007 K, F = -635.919288804134, relative_change = 0.008503491395863752 Iter 20: T = 729.4761817630801 K, F = -268.4279483415807, relative_change = 0.00409204984708025 Iter 25: T = 720.0404147652524 K, F = -112.7491239615952, relative_change = 0.0018271966064424727 Iter 30: T = 715.9604660157858 K, F = -47.24352329928041, relative_change = 0.000786491608168363 Iter 35: T = 714.2293324196559 K, F = -19.774023234676633, relative_change = 0.0003329965483576787 Iter 40: T = 713.5008910226558 K, F = -8.272598748172017, relative_change = 0.00013998913419622792 Iter 45: T = 713.1954593189793 K, F = -3.460203071934585, relative_change = 5.8673080069103995e-5 Iter 50: T = 713.0675855280379 K, F = -1.447186469158722, relative_change = 2.4560233669056657e-5 Iter 55: T = 713.0140828922471 K, F = -0.6052461061807703, relative_change = 1.027531499222899e-5 Iter 60: T = 712.991703199325 K, F = -0.253123851373226, relative_change = 4.297947533476112e-6 Iter 65: T = 712.9823430005998 K, F = -0.10585989014187036, relative_change = 1.7975733627170253e-6 Iter 70: T = 712.9784283235861 K, F = -0.044271952939471615, relative_change = 7.517877036721153e-7 Iter 75: T = 712.9767911361482 K, F = -0.018515073892414913, relative_change = 3.1441027873688814e-7 Iter 80: T = 712.9761064408289 K, F = -0.007743227545432663, relative_change = 1.3149077754052675e-7 Iter 85: T = 712.975820092373 K, F = -0.0032383106737702283, relative_change = 5.4991126134185364e-8 Iter 90: T = 712.9757003379074 K, F = -0.0013543002746639887, relative_change = 2.2997965386129224e-8 Iter 95: T = 712.9756502551384 K, F = -0.0005663845618752994, relative_change = 9.618027219885333e-9 Iter 100: T = 712.9756293099225 K, F = -0.00023686878954409796, relative_change = 4.022374438462019e-9 Iter 105: T = 712.9756205503825 K, F = -9.906135686643669e-5, relative_change = 1.6822051304174333e-9 Iter 110: T = 712.9756168870381 K, F = -4.142864278910974e-5, relative_change = 7.035182977042477e-10 Iter 115: T = 712.9756153549837 K, F = -1.732595319348107e-5, relative_change = 2.942197571746177e-10 Iter 120: T = 712.9756147142602 K, F = -7.245919518283905e-6, relative_change = 1.2304619933407502e-10 Iter 125: T = 712.9756144463022 K, F = -3.0303306698398202e-6, relative_change = 5.145940020112012e-11 Iter 130: T = 712.9756143342389 K, F = -1.2673211978730947e-6, relative_change = 2.1520947995079744e-11 Iter 135: T = 712.9756142873727 K, F = -5.300101327820883e-7, relative_change = 9.000339083084284e-12 Iter 140: T = 712.9756142677726 K, F = -2.2165663460249618e-7, relative_change = 3.764050436596323e-12 Iter 145: T = 712.9756142595757 K, F = -9.269926271038287e-8, relative_change = 1.5741676350992654e-12 Iter 150: T = 712.9756142561475 K, F = -3.876812437741961e-8, relative_change = 6.583388571330934e-13 Iter 155: T = 712.9756142547138 K, F = -1.621335410373348e-8, relative_change = 2.753262166395962e-13 Converged in 157 iterations to T = 712.9756142544105 K Iter 1: T = 974.4690710334776 K, F = -5817.24645120532, relative_change = 0.02553092896652239 Iter 2: T = 951.1269799629177 K, F = -4921.524043635694, relative_change = 0.023953650007387365 Iter 3: T = 929.8985441275859 K, F = -4161.920374692554, relative_change = 0.022319244730245748 Iter 5: T = 893.4273585116804 K, F = -2972.2904871723254, relative_change = 0.01896381179457559 Iter 10: T = 832.0312404556742 K, F = -1270.875728289777, relative_change = 0.011128060622368112 Iter 15: T = 800.8895909027714 K, F = -538.0945462639629, relative_change = 0.005611729776887642 Iter 20: T = 786.4960531937729 K, F = -226.39594676887992, relative_change = 0.002569875685348008 Iter 25: T = 780.1889626091557 K, F = -94.93823455580863, relative_change = 0.0011194214846631035 Iter 30: T = 777.49654874529 K, F = -39.75078472050455, relative_change = 0.000476453315368744 Iter 35: T = 776.3606199888052 K, F = -16.632503930840894, relative_change = 0.0002007478256838257 Iter 40: T = 775.8837968393252 K, F = -6.957363973621461, relative_change = 8.421849619014622e-5 Iter 45: T = 775.684073090603 K, F = -2.9099073630277754, relative_change = 3.5267454919541077e-5 Iter 50: T = 775.6004917554036 K, F = -1.2170026003641006, relative_change = 1.4757379830033294e-5 Iter 55: T = 775.5655275034063 K, F = -0.508972823833489, relative_change = 6.173131903232539e-6 Iter 60: T = 775.550903366386 K, F = -0.21285987820340402, relative_change = 2.5819258260373174e-6 Iter 65: T = 775.5447870856183 K, F = -0.08902078186694273, relative_change = 1.079835656300248e-6 Iter 70: T = 775.5422291328795 K, F = -0.03722959585672414, relative_change = 4.516077657084824e-7 Iter 75: T = 775.5411593575619 K, F = -0.01556986890226253, relative_change = 1.8886908991190966e-7 Iter 80: T = 775.5407119631858 K, F = -0.006511506393778399, relative_change = 7.898754139621272e-8 Iter 85: T = 775.5405248572415 K, F = -0.0027231899601553033, relative_change = 3.3033573766197314e-8 Iter 90: T = 775.5404466072533 K, F = -0.0011388706024485495, relative_change = 1.3815042167281271e-8 Iter 95: T = 775.5404138821654 K, F = -0.0004762892931873264, relative_change = 5.777616857455081e-9 Iter 100: T = 775.5404001961413 K, F = -0.00019918987093880958, relative_change = 2.416268577369664e-9 Iter 105: T = 775.5403944724824 K, F = -8.330358268626714e-5, relative_change = 1.0105124088456565e-9 Iter 110: T = 775.5403920787797 K, F = -3.483855289243554e-5, relative_change = 4.226083607228517e-10 Iter 115: T = 775.5403910777047 K, F = -1.4569899137506503e-5, relative_change = 1.767398676762483e-10 Iter 120: T = 775.5403906590433 K, F = -6.09330653766893e-6, relative_change = 7.391473226977485e-11 Iter 125: T = 775.540390483954 K, F = -2.548292096116178e-6, relative_change = 3.091200599668758e-11 Iter 130: T = 775.5403904107295 K, F = -1.0657253622925467e-6, relative_change = 1.2927760069196129e-11 Iter 135: T = 775.5403903801063 K, F = -4.456992184209696e-7, relative_change = 5.406545404402343e-12 Iter 140: T = 775.5403903672992 K, F = -1.8639587673341396e-7, relative_change = 2.2610714337846967e-12 Iter 145: T = 775.5403903619432 K, F = -7.795446266278816e-8, relative_change = 9.456250414849689e-13 Iter 150: T = 775.5403903597031 K, F = -3.2600619537248576e-8, relative_change = 3.9546115962757017e-13 Converged in 154 iterations to T = 775.5403903588947 K Iter 1: T = 970.3071554726354 K, F = -6765.542870746979, relative_change = 0.02969284452736461 Iter 2: T = 942.7779080784295 K, F = -5730.315314836953, relative_change = 0.028371683377720124 Iter 3: T = 917.3677208975264 K, F = -4851.745546842664, relative_change = 0.026952463526318846 Iter 5: T = 872.6896551942184 K, F = -3473.930156723793, relative_change = 0.023864370124274146 Iter 10: T = 793.3418014632346 K, F = -1495.3680101526948, relative_change = 0.015558620831602381 Iter 15: T = 750.0725343940662 K, F = -636.5810967488102, relative_change = 0.008528089122283745 Iter 20: T = 729.0558423258873 K, F = -268.71488858146523, relative_change = 0.004105653728618053 Iter 25: T = 719.5930628051362 K, F = -112.87131959248165, relative_change = 0.0018336813678030796 Iter 30: T = 715.5009560063436 K, F = -47.29505016846234, relative_change = 0.0007893645636730093 Iter 35: T = 713.7645725417593 K, F = -19.795649661755302, relative_change = 0.00033422805716214394 Iter 40: T = 713.033905504229 K, F = -8.2816569448272, relative_change = 0.00014050955847379854 Iter 45: T = 712.7275376590256 K, F = -3.4639937445255056, relative_change = 5.8891681775147747e-5 Iter 50: T = 712.5992714196841 K, F = -1.4487721995022191, relative_change = 2.4651823184847657e-5 Iter 55: T = 712.5456044918852 K, F = -0.6059093521220953, relative_change = 1.0313648206749816e-5 Iter 60: T = 712.5231560611182 K, F = -0.253401241797258, relative_change = 4.313984085432114e-6 Iter 65: T = 712.5137671103366 K, F = -0.10597590041248095, relative_change = 1.8042809402347543e-6 Iter 70: T = 712.5098404079828 K, F = -0.04432047021917018, relative_change = 7.545930501215315e-7 Iter 75: T = 712.508198191249 K, F = -0.018535364467710314, relative_change = 3.1558353565559485e-7 Iter 80: T = 712.5075113925908 K, F = -0.007751713317266651, relative_change = 1.3198145238981332e-7 Iter 85: T = 712.5072241644888 K, F = -0.003241859526565194, relative_change = 5.5196333050460847e-8 Iter 90: T = 712.5071040421439 K, F = -0.0013557844465924562, relative_change = 2.3083785498380526e-8 Iter 95: T = 712.5070538055232 K, F = -0.0005670052611826959, relative_change = 9.653918255400905e-9 Iter 100: T = 712.5070327959647 K, F = -0.00023712837377909413, relative_change = 4.0373845087595864e-9 Iter 105: T = 712.5070240095158 K, F = -9.91699185043382e-5, relative_change = 1.6884825288149627e-9 Iter 110: T = 712.5070203349179 K, F = -4.147404450849379e-5, relative_change = 7.061435799035095e-10 Iter 115: T = 712.5070187981571 K, F = -1.73449403854109e-5, relative_change = 2.9531767561838146e-10 Iter 120: T = 712.5070181554654 K, F = -7.2538623447915285e-6, relative_change = 1.2350539860726507e-10 Iter 125: T = 712.507017886684 K, F = -3.0336516689821735e-6, relative_change = 5.165142946987361e-11 Iter 130: T = 712.5070177742765 K, F = -1.2687094776975272e-6, relative_change = 2.1601246716720956e-11 Iter 135: T = 712.5070177272663 K, F = -5.305899191121455e-7, relative_change = 9.033907252389408e-12 Iter 140: T = 712.5070177076061 K, F = -2.2189942761041692e-7, relative_change = 3.778094487751589e-12 Iter 145: T = 712.5070176993839 K, F = -9.280192214689009e-8, relative_change = 1.5800600943899045e-12 Iter 150: T = 712.5070176959454 K, F = -3.8811827196560955e-8, relative_change = 6.608162624906031e-13 Iter 155: T = 712.5070176945072 K, F = -1.6230223720548054e-8, relative_change = 2.763383368730526e-13 Converged in 157 iterations to T = 712.5070176942029 K Iter 1: T = 969.3022388083964 K, F = -6994.514088616362, relative_change = 0.030697761191603598 Iter 2: T = 940.7448951383976 K, F = -5925.870139408037, relative_change = 0.029461753544596625 Iter 3: T = 914.2889868234656 K, F = -5018.808952075265, relative_change = 0.02812229803387867 Iter 5: T = 867.4961805909544 K, F = -3595.9206994310034, relative_change = 0.02516468161890125 Iter 10: T = 783.1650063599806 K, F = -1550.7731884566656, relative_change = 0.016897868699276796 Iter 15: T = 736.1719886471647 K, F = -661.2909318156775, relative_change = 0.009509578977409675 Iter 20: T = 712.9681826017977 K, F = -279.46199499640045, relative_change = 0.004658070596857789 Iter 25: T = 702.4193368659762 K, F = -117.45635824718265, relative_change = 0.002099469029490468 Iter 30: T = 697.8357122061876 K, F = -49.23015152978388, relative_change = 0.0009076293007386335 Iter 35: T = 695.8865604243566 K, F = -20.608154000983937, relative_change = 0.00038501963835862335 Iter 40: T = 695.0655943274597 K, F = -8.622030804367729, relative_change = 0.0001619910901223628 Iter 45: T = 694.721227742794 K, F = -3.60644354756839, relative_change = 6.791799450921383e-5 Iter 50: T = 694.5770286262456 K, F = -1.508364204362298, relative_change = 2.8434203478973433e-5 Iter 55: T = 694.5166911230709 K, F = -0.6308345573861956, relative_change = 1.1896793919437275e-5 Iter 60: T = 694.4914517072303 K, F = -0.26382580583819726, relative_change = 4.976303701750147e-6 Iter 65: T = 694.4808953107705 K, F = -0.11033567302679625, relative_change = 2.0813110113373035e-6 Iter 70: T = 694.4764803297866 K, F = -0.04614379588684048, relative_change = 8.704573485493798e-7 Iter 75: T = 694.474633902293 K, F = -0.019297903954993645, relative_change = 3.6404059581473654e-7 Iter 80: T = 694.4738616990661 K, F = -0.008070616948841924, relative_change = 1.522469882446856e-7 Iter 85: T = 694.4735387535455 K, F = -0.0033752289243196287, relative_change = 6.367165971768629e-8 Iter 90: T = 694.4734036937131 K, F = -0.0014115611388244576, relative_change = 2.662827492193573e-8 Iter 95: T = 694.4733472100504 K, F = -0.0005903317420973275, relative_change = 1.1136267199842927e-8 Iter 100: T = 694.4733235879032 K, F = -0.00024688378811910106, relative_change = 4.657320758808395e-9 Iter 105: T = 694.4733137088383 K, F = -0.00010324974860498326, relative_change = 1.9477472933779837e-9 Iter 110: T = 694.4733095772951 K, F = -4.3180276804610784e-5, relative_change = 8.145711809670819e-10 Iter 115: T = 694.4733078494345 K, F = -1.8058506959128806e-5, relative_change = 3.4066339085808346e-10 Iter 120: T = 694.4733071268225 K, F = -7.552283821654626e-6, relative_change = 1.4246950946587264e-10 Iter 125: T = 694.4733068246177 K, F = -3.158455592289222e-6, relative_change = 5.958245617640063e-11 Iter 130: T = 694.4733066982319 K, F = -1.3209040071737732e-6, relative_change = 2.4918097750367053e-11 Iter 135: T = 694.4733066453758 K, F = -5.524177359994553e-7, relative_change = 1.0421044280962667e-11 Iter 140: T = 694.4733066232708 K, F = -2.3102736013136393e-7, relative_change = 4.3581988656679906e-12 Iter 145: T = 694.4733066140262 K, F = -9.66179141137502e-8, relative_change = 1.8226416277319337e-12 Iter 150: T = 694.4733066101602 K, F = -4.040790912984704e-8, relative_change = 7.622720687688612e-13 Iter 155: T = 694.4733066085432 K, F = -1.6898400234666155e-8, relative_change = 3.187786446587352e-13 Converged in 158 iterations to T = 694.4733066080698 K Iter 1: T = 963.5281409231061 K, F = -8310.147784364823, relative_change = 0.036471859076893924 Iter 2: T = 928.9317611641392 K, F = -7051.502575934509, relative_change = 0.03590593599666114 Iter 3: T = 896.1771756110342 K, F = -5982.578053695369, relative_change = 0.03526048620843464 Iter 5: T = 836.0741106759565 K, F = -4303.9249904976405, relative_change = 0.03370165882381073 Iter 10: T = 716.1077201763429 K, F = -1881.0068077832866, relative_change = 0.02801540415874573 Iter 15: T = 636.155549019207 K, F = -814.6421986997599, relative_change = 0.020120960601727963 Iter 20: T = 589.2325884947677 K, F = -348.85649132765116, relative_change = 0.012094237597818422 Iter 25: T = 565.0506459312965 K, F = -147.8776395509343, relative_change = 0.006207757691159952 Iter 30: T = 553.7588104178451 K, F = -62.2586959934809, relative_change = 0.0028715239797939707 Iter 35: T = 548.7842200469906 K, F = -26.11636240395841, relative_change = 0.0012569206849740715 Iter 40: T = 546.6553242516218 K, F = -10.936542220607825, relative_change = 0.0005361407798787225 Iter 45: T = 545.7561600781887 K, F = -4.576347700358915, relative_change = 0.0002261078319320673 Iter 50: T = 545.3785460994086 K, F = -1.9143333241743594, relative_change = 9.489518987729364e-5 Iter 55: T = 545.2203462768344 K, F = -0.8006760086469917, relative_change = 3.974505637970965e-5 Iter 60: T = 545.1541365958968 K, F = -0.33486609459247474, relative_change = 1.6632155845476704e-5 Iter 65: T = 545.1264384007064 K, F = -0.14004741927053083, relative_change = 6.957569081766794e-6 Iter 70: T = 545.1148531944295 K, F = -0.05856992649020881, relative_change = 2.9100539258395104e-6 Iter 75: T = 545.1100078621001 K, F = -0.024494716757180207, relative_change = 1.2170744854461577e-6 Iter 80: T = 545.1079814406523 K, F = -0.010243996022256036, relative_change = 5.090047363895852e-7 Iter 85: T = 545.1071339590263 K, F = -0.004284163739622093, relative_change = 2.1287354767417722e-7 Iter 90: T = 545.1067795306942 K, F = -0.001791688835796612, relative_change = 8.902655515095671e-8 Iter 95: T = 545.106631304289 K, F = -0.0007493057373390011, relative_change = 3.7232020190339975e-8 Iter 100: T = 545.1065693141934 K, F = -0.0003133686193489138, relative_change = 1.5570884484169542e-8 Iter 105: T = 545.1065433891878 K, F = -0.00013105450143421904, relative_change = 6.5119314411607185e-9 Iter 110: T = 545.1065325470394 K, F = -5.480855758605019e-5, relative_change = 2.723367753722958e-9 Iter 115: T = 545.1065280127233 K, F = -2.2921593244268346e-5, relative_change = 1.1389449590876516e-9 Iter 120: T = 545.106526116418 K, F = -9.586083457330252e-6, relative_change = 4.763203628820096e-10 Iter 125: T = 545.1065253233605 K, F = -4.009013967326558e-6, relative_change = 1.9920283496826086e-10 Iter 130: T = 545.1065249916944 K, F = -1.676617548074244e-6, relative_change = 8.330900626023715e-11 Iter 135: T = 545.1065248529878 K, F = -7.011819181113044e-7, relative_change = 3.4840843067257954e-11 Iter 140: T = 545.106524794979 K, F = -2.9324323563839627e-7, relative_change = 1.457088566417758e-11 Iter 145: T = 545.106524770719 K, F = -1.2263766821507538e-7, relative_change = 6.093710697781747e-12 Iter 150: T = 545.1065247605733 K, F = -5.128884048022364e-8, relative_change = 2.5484776454713743e-12 Iter 155: T = 545.1065247563301 K, F = -2.1449505338555497e-8, relative_change = 1.0657988044169365e-12 Iter 160: T = 545.1065247545556 K, F = -8.970528431184732e-9, relative_change = 4.457342174650295e-13 Converged in 164 iterations to T = 545.1065247539151 K Iter 1: T = 966.8925787430894 K, F = -7543.557426675023, relative_change = 0.03310742125691054 Iter 2: T = 935.842491843095 K, F = -6395.2075687303195, relative_change = 0.03211327461046185 Iter 3: T = 906.819349476497 K, F = -5420.209836734706, relative_change = 0.031012849512142122 Iter 5: T = 854.7230717164514 K, F = -3889.886863894655, relative_change = 0.028493297601169122 Iter 10: T = 757.1454823608266 K, F = -1685.8982402663107, relative_change = 0.020704464957464003 Iter 15: T = 699.338437574057 K, F = -722.5262804193084, relative_change = 0.012599379639990206 Iter 20: T = 669.2990231816847 K, F = -306.4601609776432, relative_change = 0.006527889072702268 Iter 25: T = 655.1948382523389 K, F = -129.07052701960674, relative_change = 0.0030360721417400584 Iter 30: T = 648.9630731137785 K, F = -54.15225498209341, relative_change = 0.001332495634138754 Iter 35: T = 646.292501304927 K, F = -22.6787182258775, relative_change = 0.0005690588055282273 Iter 40: T = 645.163872220965 K, F = -9.490135993677947, relative_change = 0.0002401144984747455 Iter 45: T = 644.6897694660297 K, F = -3.969879465139619, relative_change = 0.00010079572082966679 Iter 50: T = 644.4911244109337 K, F = -1.6604249220918885, relative_change = 4.222027063016559e-5 Iter 55: T = 644.4079838133716 K, F = -0.694439990931633, relative_change = 1.7668643505036222e-5 Iter 60: T = 644.3732020620464 K, F = -0.29042842776312194, relative_change = 7.3912724068185675e-6 Iter 65: T = 644.3586539301318 K, F = -0.1214615693904939, relative_change = 3.0914744031798356e-6 Iter 70: T = 644.3525693798135 K, F = -0.05079684197008333, relative_change = 1.292953792675929e-6 Iter 75: T = 644.3500246873674 K, F = -0.02124387447769155, relative_change = 5.407396102899202e-7 Iter 80: T = 644.3489604559553 K, F = -0.00888444699885732, relative_change = 2.261456680332506e-7 Iter 85: T = 644.3485153798082 K, F = -0.00371558270974387, relative_change = 9.457715234734657e-8 Iter 90: T = 644.3483292433227 K, F = -0.001553901215228748, relative_change = 3.955335288464986e-8 Iter 95: T = 644.3482513987644 K, F = -0.00064986007131973, relative_change = 1.654169470960034e-8 Iter 100: T = 644.3482188432306 K, F = -0.0002717792466975233, relative_change = 6.9179360405705395e-9 Iter 105: T = 644.3482052281158 K, F = -0.00011366132704920817, relative_change = 2.8931637697500144e-9 Iter 110: T = 644.348199534112 K, F = -4.7534524065362405e-5, relative_change = 1.209955683208654e-9 Iter 115: T = 644.3481971528115 K, F = -1.9879505009146037e-5, relative_change = 5.060179093271002e-10 Iter 120: T = 644.3481961569232 K, F = -8.313846366181377e-6, relative_change = 2.1162273334789886e-10 Iter 125: T = 644.3481957404308 K, F = -3.476950357406139e-6, relative_change = 8.850316787265457e-11 Iter 130: T = 644.3481955662488 K, F = -1.454102773246202e-6, relative_change = 3.7013097335774765e-11 Iter 135: T = 644.3481954934038 K, F = -6.081230268240034e-7, relative_change = 1.5479316324958857e-11 Iter 140: T = 644.348195462939 K, F = -2.5432341532738434e-7, relative_change = 6.473612117835445e-12 Iter 145: T = 644.3481954501983 K, F = -1.0636131608787736e-7, relative_change = 2.707347665467155e-12 Iter 150: T = 644.34819544487 K, F = -4.4480905958543815e-8, relative_change = 1.1322281571804892e-12 Iter 155: T = 644.3481954426417 K, F = -1.8602453910609995e-8, relative_change = 4.735115361683888e-13 Converged in 160 iterations to T = 644.3481954417098 K Iter 1: T = 965.2084304649604 K, F = -7927.2922138853255, relative_change = 0.034791569535039604 Iter 2: T = 932.3928376994561 K, F = -6723.587281115194, relative_change = 0.033998452282162944 Iter 3: T = 901.5237871759546 K, F = -5701.434792836754, relative_change = 0.033107344110092515 Iter 5: T = 845.512175988503 K, F = -4096.603852659626, relative_change = 0.03101268714007333 Iter 10: T = 737.3826306481931 K, F = -1782.5140558524377, relative_change = 0.024006965319722736 Iter 15: T = 669.8358518736729 K, F = -767.4453345852471, relative_change = 0.0157014960237251 Iter 20: T = 632.9170075725953 K, F = -326.76145250438344, relative_change = 0.008630304171909754 Iter 25: T = 614.9541377199555 K, F = -137.94932022173208, relative_change = 0.004162283179995831 Iter 30: T = 606.8583473744244 K, F = -57.94795385683233, relative_change = 0.0018607016945071872 Iter 35: T = 603.3556864435587 K, F = -24.281895808412976, relative_change = 0.0008013408646136886 Iter 40: T = 601.8690954321183 K, F = -10.163471905851512, relative_change = 0.00033936279531641717 Iter 45: T = 601.243481714724 K, F = -4.251986580244922, relative_change = 0.00014267963743547479 Iter 50: T = 600.9811521374128 K, F = -1.7784953119588558, relative_change = 5.980324594277371e-5 Iter 55: T = 600.8713214433425 K, F = -0.7438341947811344, relative_change = 2.5033755194175135e-5 Iter 60: T = 600.8253676722699 K, F = -0.3110884329684523, relative_change = 1.0473500288889405e-5 Iter 65: T = 600.8061455343706 K, F = -0.13010231314529389, relative_change = 4.380857763459389e-6 Iter 70: T = 600.7981059555277 K, F = -0.054410588668870885, relative_change = 1.8322520951604177e-6 Iter 75: T = 600.794743593729 K, F = -0.022755201278639614, relative_change = 7.662915831211388e-7 Iter 80: T = 600.793337393945 K, F = -0.009516504500687695, relative_change = 3.204761176260554e-7 Iter 85: T = 600.792749300917 K, F = -0.0039799171566637925, relative_change = 1.340276088585108e-7 Iter 90: T = 600.7925033527798 K, F = -0.0016644491166504238, relative_change = 5.6052063693155305e-8 Iter 95: T = 600.7924004942251 K, F = -0.000696092538438442, relative_change = 2.3441662898276254e-8 Iter 100: T = 600.7923574775306 K, F = -0.0002911142204444217, relative_change = 9.803586980141715e-9 Iter 105: T = 600.7923394874318 K, F = -0.0001217474446685296, relative_change = 4.099977774193699e-9 Iter 110: T = 600.7923319637572 K, F = -5.091623581615634e-5, relative_change = 1.7146597877795036e-9 Iter 115: T = 600.7923288172665 K, F = -2.12937780564304e-5, relative_change = 7.17091224211507e-10 Iter 120: T = 600.7923275013663 K, F = -8.905312146978428e-6, relative_change = 2.9989611233525806e-10 Iter 125: T = 600.7923269510413 K, F = -3.724307924057868e-6, relative_change = 1.2542013732939866e-10 Iter 130: T = 600.7923267208888 K, F = -1.5575501615128218e-6, relative_change = 5.2452203065369223e-11 Iter 135: T = 600.7923266246363 K, F = -6.513863898827132e-7, relative_change = 2.1936148232311756e-11 Iter 140: T = 600.7923265843823 K, F = -2.724177822210905e-7, relative_change = 9.173966399423341e-12 Iter 145: T = 600.7923265675477 K, F = -1.1392857546255186e-7, relative_change = 3.836669232255912e-12 Iter 150: T = 600.7923265605071 K, F = -4.764706712512279e-8, relative_change = 1.604567034338789e-12 Iter 155: T = 600.7923265575627 K, F = -1.9925556371536146e-8, relative_change = 6.710148771888286e-13 Iter 160: T = 600.7923265563313 K, F = -8.333420231654287e-9, relative_change = 2.806370296063089e-13 Converged in 162 iterations to T = 600.7923265560707 K Iter 1: T = 980.1957736255902 K, F = -4512.411818091973, relative_change = 0.01980422637440982 Iter 2: T = 962.4329098099851 K, F = -3811.5887558679437, relative_change = 0.018121751076219262 Iter 3: T = 946.5901254078417 K, F = -3218.110305977127, relative_change = 0.016461183154336746 Iter 5: T = 920.1403773957625 K, F = -2290.839074995024, relative_change = 0.013294277550544305 Iter 10: T = 878.1661641885297 K, F = -972.482980046919, relative_change = 0.006978078761136579 Iter 15: T = 858.3061584785463 K, F = -409.78389170199114, relative_change = 0.003270505952918239 Iter 20: T = 849.494688578426 K, F = -171.9705338055803, relative_change = 0.001440866177086142 Iter 25: T = 845.7111734235111 K, F = -72.02871966177206, relative_change = 0.0006163994880203999 Iter 30: T = 844.1108060462008 K, F = -30.14263003944604, relative_change = 0.0002602834576002336 Iter 35: T = 843.4382902959073 K, F = -12.609421444973549, relative_change = 0.0001092967638637911 Iter 40: T = 843.1564675963083 K, F = -5.274009721020801, relative_change = 4.5787176935358984e-5 Iter 45: T = 843.0385061716823 K, F = -2.205758780919152, relative_change = 1.916241454940063e-5 Iter 50: T = 842.9891558124822 K, F = -0.9224930278598129, relative_change = 8.01634407656617e-6 Iter 55: T = 842.9685138432202 K, F = -0.38580081365791796, relative_change = 3.3529496310338596e-6 Iter 60: T = 842.9598805898758 K, F = -0.16134706961079281, relative_change = 1.4023168407018943e-6 Iter 65: T = 842.9562699665931 K, F = -0.06747736967517914, relative_change = 5.864784645565952e-7 Iter 70: T = 842.9547599444397 K, F = -0.0282198590317444, relative_change = 2.4527453922489945e-7 Iter 75: T = 842.9541284322773 K, F = -0.011801885067721507, relative_change = 1.025771335049485e-7 Iter 80: T = 842.9538643258481 K, F = -0.004935689802068044, relative_change = 4.289905079788626e-8 Iter 85: T = 842.9537538732978 K, F = -0.0020641645118613106, relative_change = 1.7940907359500478e-8 Iter 90: T = 842.953707680707 K, F = -0.000863258265817235, relative_change = 7.503103810896423e-9 Iter 95: T = 842.9536883624112 K, F = -0.0003610249204053506, relative_change = 3.137887998249856e-9 Iter 100: T = 842.9536802832687 K, F = -0.00015098493572596183, relative_change = 1.3123023164694975e-9 Iter 105: T = 842.9536769044746 K, F = -6.314370211879528e-5, relative_change = 5.488205014888021e-10 Iter 110: T = 842.9536754914227 K, F = -2.6407450939069932e-5, relative_change = 2.2952329522632923e-10 Iter 115: T = 842.9536749004675 K, F = -1.1043911713803922e-5, relative_change = 9.598938659587645e-11 Iter 120: T = 842.953674653323 K, F = -4.6186973663431274e-6, relative_change = 4.0143921753015875e-11 Iter 125: T = 842.9536745499641 K, F = -1.9315950992027098e-6, relative_change = 1.678867360551186e-11 Iter 130: T = 842.9536745067383 K, F = -8.078161091162883e-7, relative_change = 7.0212235463514815e-12 Iter 135: T = 842.9536744886607 K, F = -3.3783816166810254e-7, relative_change = 2.9363579520557957e-12 Iter 140: T = 842.9536744811004 K, F = -1.412883787743624e-7, relative_change = 1.2280236564052367e-12 Iter 145: T = 842.9536744779385 K, F = -5.908746647520502e-8, relative_change = 5.135652858313183e-13 Converged in 150 iterations to T = 842.9536744766162 K Iter 1: T = 976.4494390068033 K, F = -5366.017724666771, relative_change = 0.023550560993196613 Iter 2: T = 955.0602867102932 K, F = -4537.306796803695, relative_change = 0.021905027994348684 Iter 3: T = 935.740800204511 K, F = -3834.841506181592, relative_change = 0.020228551825066752 Iter 5: T = 902.8894496481958 K, F = -2735.5297624757713, relative_change = 0.016875990468820483 Iter 10: T = 848.7938496937422 K, F = -1166.470785953812, relative_change = 0.009493218494641234 Iter 15: T = 822.0901256865523 K, F = -492.94218610211226, relative_change = 0.004648730155741843 Iter 20: T = 809.9520923743057 K, F = -207.17884696859858, relative_change = 0.002094939911449896 Iter 25: T = 804.6783634268655 K, F = -86.83563854100386, relative_change = 0.0009056065999840562 Iter 30: T = 802.4358311986165 K, F = -36.350050344577724, relative_change = 0.00038414953042560147 Iter 35: T = 801.4913105862702 K, F = -15.208105233983538, relative_change = 0.00016162283539034177 Iter 40: T = 801.095119841443 K, F = -6.361280029600865, relative_change = 6.776321236100516e-5 Iter 45: T = 800.9292204840574 K, F = -2.660550608713878, relative_change = 2.8369335676810823e-5 Iter 50: T = 800.8598029906263 K, F = -1.112706831546813, relative_change = 1.1869641577651335e-5 Iter 55: T = 800.8307653933101 K, F = -0.4653530231221572, relative_change = 4.964944092310339e-6 Iter 60: T = 800.8186204083285 K, F = -0.1946171954019611, relative_change = 2.0765595563577473e-6 Iter 65: T = 800.813541035521 K, F = -0.08139141087257695, relative_change = 8.68470105520525e-7 Iter 70: T = 800.8114167470367 K, F = -0.034038890742710715, relative_change = 3.632094847019943e-7 Iter 75: T = 800.8105283382562 K, F = -0.014235475986473345, relative_change = 1.5189940375561962e-7 Iter 80: T = 800.8101567940507 K, F = -0.0059534470025180974, relative_change = 6.352629504755474e-8 Iter 85: T = 800.8100014096444 K, F = -0.0024898027990503113, relative_change = 2.6567481541134135e-8 Iter 90: T = 800.809936425998 K, F = -0.0010412652932703104, relative_change = 1.1110842656783352e-8 Iter 95: T = 800.8099092490554 K, F = -0.0004354695860433466, relative_change = 4.646687895406071e-9 Iter 100: T = 800.8098978833325 K, F = -0.00018211858128569514, relative_change = 1.943300500187325e-9 Iter 105: T = 800.8098931300514 K, F = -7.616416604494525e-5, relative_change = 8.127115042818909e-10 Iter 110: T = 800.8098911421724 K, F = -3.1852765672524264e-5, relative_change = 3.398856805697866e-10 Iter 115: T = 800.8098903108175 K, F = -1.3321205243332912e-5, relative_change = 1.4214423259407173e-10 Iter 120: T = 800.8098899631351 K, F = -5.571086511113599e-6, relative_change = 5.944640924069119e-11 Iter 125: T = 800.8098898177302 K, F = -2.329896101049833e-6, relative_change = 2.486121099622848e-11 Iter 130: T = 800.8098897569201 K, F = -9.743909505921522e-7, relative_change = 1.0397261497338925e-11 Iter 135: T = 800.8098897314886 K, F = -4.0750300234204673e-7, relative_change = 4.348270347099157e-12 Iter 140: T = 800.8098897208529 K, F = -1.7042186417626226e-7, relative_change = 1.8184905001506042e-12 Iter 145: T = 800.8098897164049 K, F = -7.127353951474902e-8, relative_change = 7.60525975640399e-13 Iter 150: T = 800.8098897145446 K, F = -2.980968549781693e-8, relative_change = 3.180849485147284e-13 Converged in 153 iterations to T = 800.809889714 K Iter 1: T = 980.8537874878606 K, F = -4362.482733640888, relative_change = 0.019146212512139417 Iter 2: T = 963.7187656423555 K, F = -3684.2740838087097, relative_change = 0.017469496538715403 Iter 3: T = 948.4691293328788 K, F = -3110.055931207967, relative_change = 0.0158237411713284 Iter 5: T = 923.0878701903174 K, F = -2213.1475714754333, relative_change = 0.012710223544666365 Iter 10: T = 883.0472758770421 K, F = -938.8354297514734, relative_change = 0.00659900395109308 Iter 15: T = 864.2242806387012 K, F = -395.4370704490176, relative_change = 0.0030728850372486074 Iter 20: T = 855.9020967319364 K, F = -165.91442411489098, relative_change = 0.001349462031460359 Iter 25: T = 852.3345884978547 K, F = -69.48545749242003, relative_change = 0.0005764603308064895 Iter 30: T = 850.826692913494 K, F = -29.077109585696235, relative_change = 0.00024326597185715305 Iter 35: T = 850.1932348249771 K, F = -12.16347179422782, relative_change = 0.00010212370659227982 Iter 40: T = 849.9278146808864 K, F = -5.0874491144607985, relative_change = 4.277741410056919e-5 Iter 45: T = 849.8167249887968 K, F = -2.1277265404023553, relative_change = 1.790195715545356e-5 Iter 50: T = 849.7702505716269 K, F = -0.8898571980665955, relative_change = 7.488901189874917e-6 Iter 55: T = 849.7508117235537 K, F = -0.37215180233009826, relative_change = 3.132313416534848e-6 Iter 60: T = 849.7426816942278 K, F = -0.155638834520065, relative_change = 1.3100348160875428e-6 Iter 65: T = 849.7392815364994 K, F = -0.06509010787301484, relative_change = 5.478833886913722e-7 Iter 70: T = 849.7378595355237 K, F = -0.027221475935077066, relative_change = 2.291333322702099e-7 Iter 75: T = 849.7372648352138 K, F = -0.01138434903703156, relative_change = 9.58266380978847e-8 Iter 80: T = 849.7370161240011 K, F = -0.004761071199022915, relative_change = 4.007590430285557e-8 Iter 85: T = 849.7369121099247 K, F = -0.001991136916039915, relative_change = 1.6760232240277942e-8 Iter 90: T = 849.7368686099823 K, F = -0.0008327172514057679, relative_change = 7.009331107978255e-9 Iter 95: T = 849.7368504177845 K, F = -0.0003482522998059512, relative_change = 2.9313862816713504e-9 Iter 100: T = 849.7368428095897 K, F = -0.00014564326983990128, relative_change = 1.2259407954089458e-9 Iter 105: T = 849.7368396277517 K, F = -6.0909755628557605e-5, relative_change = 5.127030976221759e-10 Iter 110: T = 849.736838297069 K, F = -2.54731844171463e-5, relative_change = 2.1441853639990068e-10 Iter 115: T = 849.7368377405617 K, F = -1.0653190554599234e-5, relative_change = 8.9672398096083e-11 Iter 120: T = 849.7368375078237 K, F = -4.45529189585514e-6, relative_change = 3.750207104555185e-11 Iter 125: T = 849.7368374104898 K, F = -1.8632562339693237e-6, relative_change = 1.5683813616230552e-11 Iter 130: T = 849.7368373697836 K, F = -7.792340830370392e-7, relative_change = 6.559141948243713e-12 Iter 135: T = 849.73683735276 K, F = -3.2588805942701526e-7, relative_change = 2.7431372520210583e-12 Iter 140: T = 849.7368373456403 K, F = -1.3628985850999698e-7, relative_change = 1.1472092246144267e-12 Iter 145: T = 849.7368373426629 K, F = -5.699840976980397e-8, relative_change = 4.797796563312652e-13 Converged in 150 iterations to T = 849.7368373414176 K Iter 1: T = 967.2472917724294 K, F = -7462.735725520709, relative_change = 0.032752708227570565 Iter 2: T = 936.566599958928 K, F = -6326.081612660953, relative_change = 0.03171959443513219 Iter 3: T = 907.9267567322058 K, F = -5361.050158505889, relative_change = 0.030579611986993892 Iter 5: T = 856.6326286521825 K, F = -3846.482514299821, relative_change = 0.027983640448126398 Iter 10: T = 761.13202522934 K, F = -1665.789905996973, relative_change = 0.020083208136222542 Iter 15: T = 705.1168444889657 K, F = -713.3107219636262, relative_change = 0.012062199407800655 Iter 20: T = 676.2640656865439 K, F = -302.3556448794971, relative_change = 0.006187712159808003 Iter 25: T = 662.7957230869447 K, F = -127.29344380397627, relative_change = 0.002861292096635201 Iter 30: T = 656.8633415894958 K, F = -53.396649050628945, relative_change = 0.001252236941630479 Iter 35: T = 654.3247682414275 K, F = -22.360382950417613, relative_change = 0.0005341037129130219 Iter 40: T = 653.2526114755648 K, F = -9.356583652260277, relative_change = 0.00022524160876624143 Iter 45: T = 652.8023544310657 K, F = -3.913951717136034, relative_change = 9.453037786999253e-5 Iter 50: T = 652.6137223492934 K, F = -1.6370221559656604, relative_change = 3.959203867884491e-5 Iter 55: T = 652.5347764005359 K, F = -0.6846503756457687, relative_change = 1.6568083235935652e-5 Iter 60: T = 652.501750146513 K, F = -0.2863338912483546, relative_change = 6.930759353865285e-6 Iter 65: T = 652.4879364024928 K, F = -0.11974911489703316, relative_change = 2.8988393629368396e-6 Iter 70: T = 652.4821590200975 K, F = -0.05008066073276918, relative_change = 1.2123839989437165e-6 Iter 75: T = 652.4797427956157 K, F = -0.020944356776264494, relative_change = 5.070430450557787e-7 Iter 80: T = 652.4787322922075 K, F = -0.00875918474274262, relative_change = 2.120531319903603e-7 Iter 85: T = 652.4783096859572 K, F = -0.0036631964727725785, relative_change = 8.868344524649215e-8 Iter 90: T = 652.4781329466866 K, F = -0.0015319926533509665, relative_change = 3.7088527141477663e-8 Iter 95: T = 652.4780590321623 K, F = -0.0006406976479965132, relative_change = 1.551087394014549e-8 Iter 100: T = 652.4780281202165 K, F = -0.0002679474119393621, relative_change = 6.486834280763428e-9 Iter 105: T = 652.4780151924701 K, F = -0.00011205880883558006, relative_change = 2.7128718502087855e-9 Iter 110: T = 652.4780097859319 K, F = -4.686433212336416e-5, relative_change = 1.1345554511336327e-9 Iter 115: T = 652.4780075248532 K, F = -1.9599223686994627e-5, relative_change = 4.744846545642779e-10 Iter 120: T = 652.4780065792429 K, F = -8.196630643997338e-6, relative_change = 1.9843518032420752e-10 Iter 125: T = 652.4780061837774 K, F = -3.4279285682781158e-6, relative_change = 8.298795628247587e-11 Iter 130: T = 652.4780060183889 K, F = -1.4335996251779726e-6, relative_change = 3.4706529262417086e-11 Iter 135: T = 652.4780059492216 K, F = -5.995480760745409e-7, relative_change = 1.451467515166635e-11 Iter 140: T = 652.478005920295 K, F = -2.5073935322472707e-7, relative_change = 6.0702392448533765e-12 Iter 145: T = 652.4780059081976 K, F = -1.04862503846892e-7, relative_change = 2.5386540965138294e-12 Iter 150: T = 652.4780059031382 K, F = -4.385391921823967e-8, relative_change = 1.0616753137826242e-12 Iter 155: T = 652.4780059010224 K, F = -1.8339973928416242e-8, relative_change = 4.4399902956492623e-13 Converged in 159 iterations to T = 652.4780059002586 K Iter 1: T = 973.5537413972577 K, F = -6025.805179521291, relative_change = 0.026446258602742297 Iter 2: T = 949.3004622797026 K, F = -5099.2476626191665, relative_change = 0.024912111254121846 Iter 3: T = 927.1724278589231 K, F = -4313.348526211473, relative_change = 0.023309832134327635 Iter 5: T = 888.9684921858053 K, F = -3082.134157052643, relative_change = 0.019979183583856235 Iter 10: T = 823.9517076172782 K, F = -1319.6231680569779, relative_change = 0.011973733954652784 Iter 15: T = 790.5106827769605 K, F = -559.298228711356, relative_change = 0.006132371733671781 Iter 20: T = 774.9153056290525 K, F = -235.45327876032113, relative_change = 0.0028330578704065766 Iter 25: T = 768.0494638829292 K, F = -98.76421657682845, relative_change = 0.0012393163067486877 Iter 30: T = 765.1121320841127 K, F = -41.35794724085753, relative_change = 0.000528485054256342 Iter 35: T = 763.8716884907459 K, F = -17.30591254709712, relative_change = 0.00022285253885470904 Iter 40: T = 763.350781468845 K, F = -7.2392168895465785, relative_change = 9.352424336132601e-5 Iter 45: T = 763.1325551025199 K, F = -3.0278212291803666, relative_change = 3.917002798347475e-5 Iter 50: T = 763.0412241177808 K, F = -1.2663225292797142, relative_change = 1.6391376933130537e-5 Iter 55: T = 763.0030168311413 K, F = -0.5296002222780573, relative_change = 6.85682076967114e-6 Iter 60: T = 762.9870360614567 K, F = -0.22148671518282503, relative_change = 2.8679107318458037e-6 Iter 65: T = 762.9803523582735 K, F = -0.09262866530903324, relative_change = 1.1994481157773588e-6 Iter 70: T = 762.977557091783 K, F = -0.038738462305087706, relative_change = 5.016329012856588e-7 Iter 75: T = 762.9763880671101 K, F = -0.016200896009034627, relative_change = 2.0979050977445365e-7 Iter 80: T = 762.9758991651341 K, F = -0.006775409663330456, relative_change = 8.773718336388949e-8 Iter 85: T = 762.9756947001574 K, F = -0.002833557493613026, relative_change = 3.6692788030302354e-8 Iter 90: T = 762.9756091904044 K, F = -0.001185027629625357, relative_change = 1.5345370942435312e-8 Iter 95: T = 762.9755734291942 K, F = -0.0004955927136386373, relative_change = 6.417618909620049e-9 Iter 100: T = 762.9755584734274 K, F = -0.00020726279405725023, relative_change = 2.68392515454129e-9 Iter 105: T = 762.9755522187468 K, F = -8.667977622356382e-5, relative_change = 1.1224496028576355e-9 Iter 110: T = 762.9755496029645 K, F = -3.625051794486911e-5, relative_change = 4.694218410283067e-10 Iter 115: T = 762.9755485090132 K, F = -1.5160399556735094e-5, relative_change = 1.963178217219635e-10 Iter 120: T = 762.9755480515097 K, F = -6.340260523374219e-6, relative_change = 8.210246266888188e-11 Iter 125: T = 762.9755478601762 K, F = -2.6515740804144983e-6, relative_change = 3.433624870907963e-11 Iter 130: T = 762.9755477801582 K, F = -1.1089183699075633e-6, relative_change = 1.4359808857489648e-11 Iter 135: T = 762.9755477466937 K, F = -4.6376139017922924e-7, relative_change = 6.005423934318297e-12 Iter 140: T = 762.9755477326986 K, F = -1.939505367420935e-7, relative_change = 2.5115398137745596e-12 Iter 145: T = 762.9755477268457 K, F = -8.111280391798203e-8, relative_change = 1.0503607769089931e-12 Iter 150: T = 762.9755477243979 K, F = -3.3922747610937165e-8, relative_change = 4.3927865657417847e-13 Converged in 154 iterations to T = 762.9755477235144 K Iter 1: T = 969.8962393445446 K, F = -6859.1705014146055, relative_change = 0.030103760655455364 Iter 2: T = 941.9474083195483 K, F = -5810.266239799015, relative_change = 0.028816310334272514 Iter 3: T = 916.1113596772218 K, F = -4920.034973523222, relative_change = 0.02742833454833593 Iter 5: T = 870.575195362343 K, F = -3523.7707219242284, relative_change = 0.02439014392990856 Iter 10: T = 789.2244706640687 K, F = -1517.9610454136632, relative_change = 0.016090964551812924 Iter 15: T = 744.4792323494985 K, F = -646.6335524323547, relative_change = 0.00891218075044699 Iter 20: T = 722.6050244137825 K, F = -273.0788861303934, relative_change = 0.004319588755299087 Iter 25: T = 712.7191999838533 K, F = -114.73111715989295, relative_change = 0.0019360417870226273 Iter 30: T = 708.4362652814291 K, F = -48.07955780138773, relative_change = 0.0008347921771608269 Iter 35: T = 706.6173997228648 K, F = -20.12496852292126, relative_change = 0.0003537156621302294 Iter 40: T = 705.8517499394188 K, F = -8.419600997012246, relative_change = 0.00014874751028416973 Iter 45: T = 705.5306650694367 K, F = -3.521722201536237, relative_change = 6.23524666750599e-5 Iter 50: T = 705.3962286962253 K, F = -1.472921704846716, relative_change = 2.6101902429766073e-5 Iter 55: T = 705.3399786607255 K, F = -0.6160101503276074, relative_change = 1.0920568483898248e-5 Iter 60: T = 705.3164494734175 K, F = -0.2576257239057207, relative_change = 4.567889387552173e-6 Iter 65: T = 705.3066084550865 K, F = -0.10774266561261697, relative_change = 1.910481865869048e-6 Iter 70: T = 705.3024926782944 K, F = -0.04505935888062529, relative_change = 7.990101162673838e-7 Iter 75: T = 705.3007713858553 K, F = -0.018844377640281462, relative_change = 3.3415973279749947e-7 Iter 80: T = 705.3000515163527 K, F = -0.00788094651263116, relative_change = 1.397503185580321e-7 Iter 85: T = 705.2997504575517 K, F = -0.0032959064272627403, relative_change = 5.8445379434155006e-8 Iter 90: T = 705.2996245510296 K, F = -0.0013783875126811562, relative_change = 2.4442577917373776e-8 Iter 95: T = 705.2995718953947 K, F = -0.0005764581338394414, relative_change = 1.0222181883687898e-8 Iter 100: T = 705.2995498741752 K, F = -0.000241081678692745, relative_change = 4.275039226784173e-9 Iter 105: T = 705.2995406646374 K, F = -0.0001008232377136542, relative_change = 1.787872580491068e-9 Iter 110: T = 705.2995368130987 K, F = -4.21654819940942e-5, relative_change = 7.477096825095816e-10 Iter 115: T = 705.2995352023391 K, F = -1.763410759414441e-5, relative_change = 3.127011126250723e-10 Iter 120: T = 705.2995345287002 K, F = -7.374794062542378e-6, relative_change = 1.307753344995084e-10 Iter 125: T = 705.2995342469765 K, F = -3.0842284787224727e-6, relative_change = 5.4691833876898464e-11 Iter 130: T = 705.2995341291562 K, F = -1.2898608385825128e-6, relative_change = 2.2872771991716983e-11 Iter 135: T = 705.2995340798823 K, F = -5.394337443398456e-7, relative_change = 9.565640473732529e-12 Iter 140: T = 705.2995340592754 K, F = -2.2559778944941655e-7, relative_change = 4.00046783962884e-12 Iter 145: T = 705.2995340506574 K, F = -9.43475055859011e-8, relative_change = 1.673040160494062e-12 Iter 150: T = 705.2995340470532 K, F = -3.945745996603023e-8, relative_change = 6.996890351887183e-13 Iter 155: T = 705.2995340455459 K, F = -1.6501680799585472e-8, relative_change = 2.9262008065678515e-13 Converged in 157 iterations to T = 705.2995340452269 K Iter 1: T = 973.5373044863995 K, F = -6029.5503452958665, relative_change = 0.026462695513600476 Iter 2: T = 949.2676132086381 K, F = -5102.439905176714, relative_change = 0.024929390138331852 Iter 3: T = 927.1233227937222 K, F = -4316.069238488536, relative_change = 0.02332776353768721 Iter 5: T = 888.8879143462332 K, F = -3084.1090896923597, relative_change = 0.01999772184158798 Iter 10: T = 823.8045750910517 K, F = -1320.5015493667863, relative_change = 0.011989499824562377 Iter 15: T = 790.3206391066127 K, F = -559.681096857863, relative_change = 0.006142229798863423 Iter 20: T = 774.7026080979695 K, F = -235.61704758620945, relative_change = 0.0028380854749709304 Iter 25: T = 767.8261781270534 K, F = -98.83344456013036, relative_change = 0.0012416165745438776 Iter 30: T = 764.8841935909776 K, F = -41.38703701668628, relative_change = 0.0005294852489574305 Iter 35: T = 763.6417623350419 K, F = -17.318103035103626, relative_change = 0.00022327780618670487 Iter 40: T = 763.1200165327484 K, F = -7.244319486686323, relative_change = 9.370333743240689e-5 Iter 45: T = 762.9014380488156 K, F = -3.0299559678681947, relative_change = 3.924514619632825e-5 Iter 50: T = 762.8099595706195 K, F = -1.26721543773701, relative_change = 1.642283068183718e-5 Iter 55: T = 762.771690559504 K, F = -0.529973670932256, relative_change = 6.86998183087113e-6 Iter 60: T = 762.7556839687383 K, F = -0.22164290001321763, relative_change = 2.8734160222030556e-6 Iter 65: T = 762.7489894656164 K, F = -0.09269398439426291, relative_change = 1.2017506999153742e-6 Iter 70: T = 762.7461896822431 K, F = -0.03876577965406147, relative_change = 5.025959055083831e-7 Iter 75: T = 762.7450187685174 K, F = -0.01621232047080512, relative_change = 2.1019325591710047e-7 Iter 80: T = 762.7445290765104 K, F = -0.006780187515156522, relative_change = 8.790561773342017e-8 Iter 85: T = 762.7443242811321 K, F = -0.002835555648385779, relative_change = 3.676322948016519e-8 Iter 90: T = 762.7442386332009 K, F = -0.0011858632803093405, relative_change = 1.5374830410695984e-8 Iter 95: T = 762.744202814203 K, F = -0.0004959421939818576, relative_change = 6.429939232849176e-9 Iter 100: T = 762.7441878342686 K, F = -0.00020740894937498755, relative_change = 2.6890776419471842e-9 Iter 105: T = 762.7441815694808 K, F = -8.674089996152379e-5, relative_change = 1.1246044327085141e-9 Iter 110: T = 762.7441789494717 K, F = -3.627607932621402e-5, relative_change = 4.703229998403289e-10 Iter 115: T = 762.7441778537526 K, F = -1.5171090848808966e-5, relative_change = 1.966947128850629e-10 Iter 120: T = 762.7441773955096 K, F = -6.344728912033304e-6, relative_change = 8.22600462743711e-11 Iter 125: T = 762.744177203867 K, F = -2.6534415547008194e-6, relative_change = 3.4402135751327424e-11 Iter 130: T = 762.7441771237199 K, F = -1.1096999973370103e-6, relative_change = 1.4387371714708542e-11 Iter 135: T = 762.7441770902013 K, F = -4.6408982101731056e-7, relative_change = 6.016971056509656e-12 Iter 140: T = 762.7441770761835 K, F = -1.9408868923154188e-7, relative_change = 2.516379314341205e-12 Iter 145: T = 762.744177070321 K, F = -8.117018257536301e-8, relative_change = 1.0523795548835256e-12 Iter 150: T = 762.7441770678693 K, F = -3.3945491528797334e-8, relative_change = 4.4010670091516896e-13 Converged in 154 iterations to T = 762.7441770669844 K Iter 1: T = 964.3143917575009 K, F = -8130.999783830354, relative_change = 0.03568560824249918 Iter 2: T = 930.5537041467192 K, F = -6898.026804885529, relative_change = 0.03501004226355217 Iter 3: T = 898.6869492593282 K, F = -5850.953609340719, relative_change = 0.03424493905659269 Iter 5: T = 840.5222279789986 K, F = -4206.777454043638, relative_change = 0.03242058179690069 Iter 10: T = 726.274042524658 K, F = -1834.6379875957487, relative_change = 0.026037693789061022 Iter 15: T = 652.531900399232 K, F = -792.2129632406735, relative_change = 0.017840826240108933 Iter 20: T = 610.8109135543306 K, F = -338.2315800747871, relative_change = 0.010231741460517502 Iter 25: T = 589.9612389791446 K, F = -143.05732894472976, relative_change = 0.005076787965562629 Iter 30: T = 580.413437574821 K, F = -60.1538475723053, relative_change = 0.0023041669062817873 Iter 35: T = 576.2495367572943 K, F = -25.21811571117181, relative_change = 0.0009993966965408383 Iter 40: T = 574.4759057625387 K, F = -10.557530906895995, relative_change = 0.0004245615749483703 Iter 45: T = 573.7283247222896 K, F = -4.417237460213636, relative_change = 0.00017873836446995935 Iter 50: T = 573.4146437841958 K, F = -1.8476847697318632, relative_change = 7.495921427920282e-5 Iter 55: T = 573.2832768161932 K, F = -0.7727840231551688, relative_change = 3.138548951222485e-5 Iter 60: T = 573.2283056959001 K, F = -0.32319804445534434, relative_change = 1.3132207827963395e-5 Iter 65: T = 573.205310534306 K, F = -0.13516712565786526, relative_change = 5.493170042995091e-6 Iter 70: T = 573.1956927062816 K, F = -0.056528828691814165, relative_change = 2.297505944024418e-6 Iter 75: T = 573.1916702448624 K, F = -0.02364108766281009, relative_change = 9.608788187672842e-7 Iter 80: T = 573.1899879735696 K, F = -0.009886995059180725, relative_change = 4.018570132974912e-7 Iter 85: T = 573.1892844223968 K, F = -0.004134861133832601, relative_change = 1.6806245433528501e-7 Iter 90: T = 573.1889901879798 K, F = -0.0017292486079082403, relative_change = 7.028590950143723e-8 Iter 95: T = 573.188867135473 K, F = -0.0007231924724289129, relative_change = 2.939443894243517e-8 Iter 100: T = 573.188815673417 K, F = -0.0003024477376051826, relative_change = 1.229311102553963e-8 Iter 105: T = 573.1887941513658 K, F = -0.00012648725723118925, relative_change = 5.141126816592526e-9 Iter 110: T = 573.188785150586 K, F = -5.28984820821754e-5, relative_change = 2.1500808150523623e-9 Iter 115: T = 573.1887813863523 K, F = -2.212277644364491e-5, relative_change = 8.991894818542714e-10 Iter 120: T = 573.1887798121048 K, F = -9.252009479265855e-6, relative_change = 3.7605179167926414e-10 Iter 125: T = 573.1887791537357 K, F = -3.8693011280566125e-6, relative_change = 1.572693621823429e-10 Iter 130: T = 573.188778878398 K, F = -1.6181886812738355e-6, relative_change = 6.57719556979668e-11 Iter 135: T = 573.1887787632484 K, F = -6.767466458335036e-7, relative_change = 2.7506650470476353e-11 Iter 140: T = 573.1887787150914 K, F = -2.830235781847712e-7, relative_change = 1.1503611715072013e-11 Iter 145: T = 573.1887786949517 K, F = -1.1836462687764282e-7, relative_change = 4.810979768401562e-12 Iter 150: T = 573.188778686529 K, F = -4.9501789001205054e-8, relative_change = 2.012020919453635e-12 Iter 155: T = 573.1887786830065 K, F = -2.070249222052567e-8, relative_change = 8.414614557208931e-13 Iter 160: T = 573.1887786815332 K, F = -8.657635108821893e-9, relative_change = 3.518932003092788e-13 Converged in 163 iterations to T = 573.1887786811019 K Iter 1: T = 963.5573698827833 K, F = -8303.487938098455, relative_change = 0.036442630117216726 Iter 2: T = 928.9921333799924 K, F = -7045.79597373938, relative_change = 0.035872525687801776 Iter 3: T = 896.2707292066817 K, F = -5977.6826831826975, relative_change = 0.035222477131489814 Iter 5: T = 836.2404906244903 K, F = -4300.309165389215, relative_change = 0.033653293702972036 Iter 10: T = 716.4927084965619 K, F = -1879.2737132259438, relative_change = 0.027938347987121494 Iter 15: T = 636.7860190869684 K, F = -813.7963046021101, relative_change = 0.020028180019456675 Iter 20: T = 590.0767545146441 K, F = -348.4508706266465, relative_change = 0.012015060161782842 Iter 25: T = 566.036243862293 K, F = -147.69166354098454, relative_change = 0.006158120202310927 Iter 30: T = 554.8200040348438 K, F = -62.17695552456778, relative_change = 0.0028461705042471244 Iter 35: T = 549.8809440932628 K, F = -26.08136460553533, relative_change = 0.0012453121482683704 Iter 40: T = 547.7676991542802 K, F = -10.921752950030017, relative_change = 0.0005310915102095564 Iter 45: T = 546.8752279689651 K, F = -4.570135087976555, relative_change = 0.00022396065144859918 Iter 50: T = 546.5004396142295 K, F = -1.9117302507992537, relative_change = 9.399088635082361e-5 Iter 55: T = 546.3434261968198 K, F = -0.7995865131889848, relative_change = 3.9365750651799115e-5 Iter 60: T = 546.2777135099433 K, F = -0.33441030397612015, relative_change = 1.647332997802621e-5 Iter 65: T = 546.2502233082375 K, F = -0.13985677582456457, relative_change = 6.891111935665816e-6 Iter 70: T = 546.238725112638 K, F = -0.058490192511251315, relative_change = 2.8822547561559317e-6 Iter 75: T = 546.2339161736426 K, F = -0.02446137024723266, relative_change = 1.2054474914344978e-6 Iter 80: T = 546.2319049730966 K, F = -0.010230049972250854, relative_change = 5.041420051033327e-7 Iter 85: T = 546.231063857169 K, F = -0.004278331309745004, relative_change = 2.1083986325069749e-7 Iter 90: T = 546.2307120910718 K, F = -0.0017892496394303625, relative_change = 8.817603841233691e-8 Iter 95: T = 546.2305649780492 K, F = -0.0007482856359278534, relative_change = 3.6876322970526846e-8 Iter 100: T = 546.2305034535842 K, F = -0.0003129420012913109, relative_change = 1.5422127520344553e-8 Iter 105: T = 546.230477723311 K, F = -0.00013087608453163369, relative_change = 6.449719466633353e-9 Iter 110: T = 546.2304669626022 K, F = -5.4733942596751906e-5, relative_change = 2.6973500118400854e-9 Iter 115: T = 546.2304624623449 K, F = -2.289038884725758e-5, relative_change = 1.1280640516773523e-9 Iter 120: T = 546.2304605802835 K, F = -9.573033775855944e-6, relative_change = 4.717698557783111e-10 Iter 125: T = 546.2304597931831 K, F = -4.003557334514296e-6, relative_change = 1.9729980312249196e-10 Iter 130: T = 546.2304594640082 K, F = -1.6743350320369554e-6, relative_change = 8.251311159749732e-11 Iter 135: T = 546.2304593263434 K, F = -7.002274626799476e-7, relative_change = 3.450799615103159e-11 Iter 140: T = 546.2304592687702 K, F = -2.9284357092040914e-7, relative_change = 1.4431660227336163e-11 Iter 145: T = 546.2304592446925 K, F = -1.2247093453265911e-7, relative_change = 6.035505268957921e-12 Iter 150: T = 546.2304592346228 K, F = -5.1218601693214794e-8, relative_change = 2.5241102437472694e-12 Iter 155: T = 546.2304592304116 K, F = -2.1420094781232635e-8, relative_change = 1.0556063397664703e-12 Iter 160: T = 546.2304592286505 K, F = -8.95830037928036e-9, relative_change = 4.4147510879976127e-13 Converged in 164 iterations to T = 546.2304592280148 K Iter 1: T = 969.3847705115305 K, F = -6975.7091615493255, relative_change = 0.030615229488469436 Iter 2: T = 940.9121153722388 K, F = -5909.8057171651835, relative_change = 0.02937188204872163 Iter 3: T = 914.5426342551764 K, F = -5005.080971346596, relative_change = 0.028025445401593317 Iter 5: T = 867.9255891076533 K, F = -3585.888706011501, relative_change = 0.025056023799914288 Iter 10: T = 784.0147267497167 K, F = -1546.2031565855896, relative_change = 0.016783000660202076 Iter 15: T = 737.342514413771 K, F = -659.2451506872757, relative_change = 0.009423392217635548 Iter 20: T = 714.3302564294162 K, F = -278.569566367894, relative_change = 0.00460880042449775 Iter 25: T = 703.877468447274 K, F = -117.0749595422686, relative_change = 0.0020755668947102348 Iter 30: T = 699.3375310706508 K, F = -49.06904677306139, relative_change = 0.0008969527378172727 Iter 35: T = 697.4073330485071 K, F = -20.540484135838128, relative_change = 0.00038042656886757073 Iter 40: T = 696.5944187622732 K, F = -8.593677945113932, relative_change = 0.00016004711633340563 Iter 45: T = 696.2534418579046 K, F = -3.594576775661187, relative_change = 6.710090814670171e-5 Iter 50: T = 696.1106642817501 K, F = -1.5033997515944677, relative_change = 2.8091768308267084e-5 Iter 55: T = 696.0509219744765 K, F = -0.6287580789310114, relative_change = 1.1753457238760777e-5 Iter 60: T = 696.025931597655 K, F = -0.26295734786668723, relative_change = 4.916336495665141e-6 Iter 65: T = 696.0154793734605 K, F = -0.10997246480497397, relative_change = 2.056228143694874e-6 Iter 70: T = 696.011107962266 K, F = -0.04599189634413481, relative_change = 8.599667174801618e-7 Iter 75: T = 696.0092797568268 K, F = -0.019234377485901177, relative_change = 3.596531703433569e-7 Iter 80: T = 696.0085151743938 K, F = -0.00804404937323877, relative_change = 1.5041209381052025e-7 Iter 85: T = 696.008195416 K, F = -0.0033641180373071844, relative_change = 6.290428130657482e-8 Iter 90: T = 696.0080616890656 K, F = -0.0014069144305284276, relative_change = 2.6307347450031354e-8 Iter 95: T = 696.0080057628373 K, F = -0.000588388431222997, relative_change = 1.1002051355534208e-8 Iter 100: T = 696.007982373816 K, F = -0.0002460710711760239, relative_change = 4.601190050107305e-9 Iter 105: T = 696.0079725922473 K, F = -0.0001029098613141155, relative_change = 1.9242727694753344e-9 Iter 110: T = 696.0079685014782 K, F = -4.303813401740353e-5, relative_change = 8.047538943175535e-10 Iter 115: T = 696.0079667906696 K, F = -1.799905954735781e-5, relative_change = 3.3655765439197207e-10 Iter 120: T = 696.0079660751891 K, F = -7.527422016595509e-6, relative_change = 1.4075243782917901e-10 Iter 125: T = 696.0079657759667 K, F = -3.148057479918087e-6, relative_change = 5.88643448786218e-11 Iter 130: T = 696.0079656508282 K, F = -1.3165549277438515e-6, relative_change = 2.461776631433033e-11 Iter 135: T = 696.0079655984938 K, F = -5.50598678539238e-7, relative_change = 1.0295437980197743e-11 Iter 140: T = 696.007965576607 K, F = -2.30267907630477e-7, relative_change = 4.3056931565546254e-12 Iter 145: T = 696.0079655674535 K, F = -9.62989383790358e-8, relative_change = 1.8006576958758703e-12 Iter 150: T = 696.0079655636256 K, F = -4.0273877233154565e-8, relative_change = 7.530661106470325e-13 Iter 155: T = 696.0079655620247 K, F = -1.6842940375738635e-8, relative_change = 3.1493981886389063e-13 Converged in 158 iterations to T = 696.0079655615559 K Iter 1: T = 966.4261573010693 K, F = -7649.831995920648, relative_change = 0.033573842698930705 Iter 2: T = 934.8890471754918 K, F = -6486.122672665261, relative_change = 0.03263271579243162 Iter 3: T = 905.3590124452759 K, F = -5498.038256193042, relative_change = 0.031586673113170684 Iter 5: T = 852.1962530621254 K, F = -3947.030758145298, relative_change = 0.02917432529188213 Iter 10: T = 751.8139429474674 K, F = -1712.4623780313682, relative_change = 0.02155821721051922 Iter 15: T = 691.5248893083534 K, F = -734.7655174108537, relative_change = 0.01336042163415012 Iter 20: T = 659.8032033474499 K, F = -311.93976221040145, relative_change = 0.0070214226184632965 Iter 25: T = 644.783219850661 K, F = -131.45119439967146, relative_change = 0.003293239535288876 Iter 30: T = 638.1165181682799 K, F = -55.166344511479764, relative_change = 0.0014514135472934397 Iter 35: T = 635.2533942955852 K, F = -23.106312481648263, relative_change = 0.00062101469791239 Iter 40: T = 634.0422366948266 K, F = -9.669592289971913, relative_change = 0.0002622511397490794 Iter 45: T = 633.5332587167043 K, F = -4.045042231809468, relative_change = 0.00011012638029923942 Iter 50: T = 633.3199645000917 K, F = -1.6918785960630882, relative_change = 4.613531628852559e-5 Iter 55: T = 633.2306862065273 K, F = -0.7075977485706895, relative_change = 1.9308218421936786e-5 Iter 60: T = 633.1933356267684 K, F = -0.29593176416314676, relative_change = 8.077357405632515e-6 Iter 65: T = 633.1777128351245 K, F = -0.12376323626146724, relative_change = 3.378472505956544e-6 Iter 70: T = 633.1711787889083 K, F = -0.05175944506340424, relative_change = 1.412991926596343e-6 Iter 75: T = 633.1684461013498 K, F = -0.021646449824891445, relative_change = 5.909431079142254e-7 Iter 80: T = 633.1673032462897 K, F = -0.009052809383448934, relative_change = 2.471417404903925e-7 Iter 85: T = 633.1668252884709 K, F = -0.0037859939683425603, relative_change = 1.0335802533219118e-7 Iter 90: T = 633.1666254004211 K, F = -0.001583348061591161, relative_change = 4.3225630151857325e-8 Iter 95: T = 633.1665418047847 K, F = -0.0006621750979704522, relative_change = 1.807748691959548e-8 Iter 100: T = 633.1665068440795 K, F = -0.0002769295385434134, relative_change = 7.560223031714579e-9 Iter 105: T = 633.1664922230931 K, F = -0.00011581524177817215, relative_change = 3.1617759491560456e-9 Iter 110: T = 633.1664861084216 K, F = -4.843531707082738e-5, relative_change = 1.3222925177569373e-9 Iter 115: T = 633.166483551193 K, F = -2.0256228687398625e-5, relative_change = 5.529985507720987e-10 Iter 120: T = 633.1664824817293 K, F = -8.47139615539616e-6, relative_change = 2.312705838247819e-10 Iter 125: T = 633.166482034467 K, F = -3.542840072867648e-6, relative_change = 9.672014857711564e-11 Iter 130: T = 633.1664818474164 K, F = -1.4816583402965655e-6, relative_change = 4.04495297750122e-11 Iter 135: T = 633.1664817691897 K, F = -6.196469389263548e-7, relative_change = 1.6916468958574597e-11 Iter 140: T = 633.1664817364742 K, F = -2.5914414281125175e-7, relative_change = 7.074680069164979e-12 Iter 145: T = 633.1664817227924 K, F = -1.0837743036340441e-7, relative_change = 2.9587226564353703e-12 Iter 150: T = 633.1664817170704 K, F = -4.532473968366091e-8, relative_change = 1.2373732589450205e-12 Iter 155: T = 633.1664817146773 K, F = -1.89546304207866e-8, relative_change = 5.17464699852299e-13 Converged in 160 iterations to T = 633.1664817136766 K Iter 1: T = 966.4994305641296 K, F = -7633.136613231493, relative_change = 0.03350056943587041 Iter 2: T = 935.0389278016181 K, F = -6471.838739427102, relative_change = 0.032550979097989236 Iter 3: T = 905.5887419691694 K, F = -5485.808821922089, relative_change = 0.03149621364074048 Iter 5: T = 852.5944133559778 K, F = -3938.0483189231095, relative_change = 0.029066509911025957 Iter 10: T = 752.658403182255 K, F = -1708.279784407615, relative_change = 0.02142121595324752 Iter 15: T = 692.7692163206711 K, F = -732.8332807465594, relative_change = 0.013236471450470423 Iter 20: T = 661.321662266203 K, F = -311.07239329530677, relative_change = 0.006940096210290973 Iter 25: T = 646.4520852239707 K, F = -131.0736824530629, relative_change = 0.0032505662323459167 Iter 30: T = 639.8571231482733 K, F = -55.005383904297744, relative_change = 0.001431612250688407 Iter 35: T = 637.0258245085191 K, F = -23.038412989683742, relative_change = 0.0006123498159119313 Iter 40: T = 635.828319730835 K, F = -9.641090169437827, relative_change = 0.0002585568199290378 Iter 45: T = 635.3251134678271 K, F = -4.033103533607482, relative_change = 0.00010856876485644598 Iter 50: T = 635.1142440310057 K, F = -1.6868823862340618, relative_change = 4.548167813799577e-5 Iter 55: T = 635.0259817404881 K, F = -0.7055076946197132, relative_change = 1.9034468562378226e-5 Iter 60: T = 634.9890564039001 K, F = -0.2950575772038803, relative_change = 7.962803524925114e-6 Iter 65: T = 634.9736115133023 K, F = -0.12339762308539398, relative_change = 3.3305527303361207e-6 Iter 70: T = 634.9671518777997 K, F = -0.05160653816245603, relative_change = 1.392949209212892e-6 Iter 75: T = 634.9644503115044 K, F = -0.021582501791198916, relative_change = 5.825606377335426e-7 Iter 80: T = 634.9633204720456 K, F = -0.009026065457285848, relative_change = 2.4363602726376984e-7 Iter 85: T = 634.9628479575622 K, F = -0.0037748093232300994, relative_change = 1.0189188300532178e-7 Iter 90: T = 634.9626503459899 K, F = -0.00157867050589805, relative_change = 4.261246994366142e-8 Iter 95: T = 634.9625677024054 K, F = -0.0006602188882932625, relative_change = 1.7821055668048863e-8 Iter 100: T = 634.96253313986 K, F = -0.00027611143034328434, relative_change = 7.452980417811895e-9 Iter 105: T = 634.9625186853887 K, F = -0.00011547309838794151, relative_change = 3.116925776212854e-9 Iter 110: T = 634.9625126403558 K, F = -4.82922290245269e-5, relative_change = 1.3035356490935297e-9 Iter 115: T = 634.9625101122508 K, F = -2.019638672801083e-5, relative_change = 5.451541814008682e-10 Iter 120: T = 634.9625090549672 K, F = -8.446371098980165e-6, relative_change = 2.2799001726331217e-10 Iter 125: T = 634.9625086127985 K, F = -3.532373321846194e-6, relative_change = 9.534814985757315e-11 Iter 130: T = 634.9625084278782 K, F = -1.477281495299021e-6, relative_change = 3.9875756257064025e-11 Iter 135: T = 634.9625083505424 K, F = -6.178165734005425e-7, relative_change = 1.667651235406124e-11 Iter 140: T = 634.9625083181995 K, F = -2.5837823569574425e-7, relative_change = 6.974315721135648e-12 Iter 145: T = 634.9625083046734 K, F = -1.0805606731612016e-7, relative_change = 2.9167206250714167e-12 Iter 150: T = 634.9625082990166 K, F = -4.519022983595633e-8, relative_change = 1.2198044838540842e-12 Iter 155: T = 634.9625082966509 K, F = -1.889897133233731e-8, relative_change = 5.101334968976246e-13 Converged in 160 iterations to T = 634.9625082956615 K Iter 1: T = 976.3820734028774 K, F = -5381.367041602545, relative_change = 0.023617926597122623 Iter 2: T = 954.9269011788449 K, F = -4550.369894758104, relative_change = 0.02197415623297663 Iter 3: T = 935.5433046829354 K, F = -3845.955470467512, relative_change = 0.020298513396136086 Iter 5: T = 902.5716215886465 K, F = -2743.5639000329193, relative_change = 0.01694466965252168 Iter 10: T = 848.2388019845131 K, F = -1169.9996851790704, relative_change = 0.009544890611239436 Iter 15: T = 821.39483134418 K, F = -494.4631624380685, relative_change = 0.004678324276932595 Iter 20: T = 809.1867583357027 K, F = -207.82483534112853, relative_change = 0.002109311050095402 Iter 25: T = 803.8812298942869 K, F = -87.10772524118035, relative_change = 0.0009120288870732138 Iter 30: T = 801.6249112697227 K, F = -36.46419358731798, relative_change = 0.00038691297669980675 Iter 35: T = 800.6745357511729 K, F = -15.255904369947654, relative_change = 0.00016279254160163256 Iter 40: T = 800.2758804923754 K, F = -6.3812813251653795, relative_change = 6.825487879069748e-5 Iter 45: T = 800.1089476379143 K, F = -2.6689173423912007, relative_change = 2.8575392861115357e-5 Iter 50: T = 800.039097430855 K, F = -1.116206241590817, relative_change = 1.1955893660304454e-5 Iter 55: T = 800.0098787812138 K, F = -0.46681657806338694, relative_change = 5.001029137619583e-6 Iter 60: T = 799.9976580628816 K, F = -0.19522928203181322, relative_change = 2.091653096894365e-6 Iter 65: T = 799.9925470148396 K, F = -0.08164739464221638, relative_change = 8.74782814391406e-7 Iter 70: T = 799.9904094789316 K, F = -0.03414594653326619, relative_change = 3.658496066571016e-7 Iter 75: T = 799.9895155298395 K, F = -0.014280248052202738, relative_change = 1.5300354682462777e-7 Iter 80: T = 799.9891416685955 K, F = -0.005972171223782463, relative_change = 6.398806304694501e-8 Iter 85: T = 799.9889853151734 K, F = -0.002497633494892071, relative_change = 2.6760598829448303e-8 Iter 90: T = 799.9889199262727 K, F = -0.001044540184720888, relative_change = 1.1191606686912748e-8 Iter 95: T = 799.9888925798479 K, F = -0.0004368391840154917, relative_change = 4.680464380549127e-9 Iter 100: T = 799.9888811432454 K, F = -0.00018269136352933035, relative_change = 1.9574262317208735e-9 Iter 105: T = 799.9888763603216 K, F = -7.640370995731782e-5, relative_change = 8.186190493044481e-10 Iter 110: T = 799.9888743600455 K, F = -3.1952943946866874e-5, relative_change = 3.423562667608171e-10 Iter 115: T = 799.9888735235063 K, F = -1.3363102755792333e-5, relative_change = 1.4317748005314923e-10 Iter 120: T = 799.9888731736556 K, F = -5.588609987006166e-6, relative_change = 5.987854102660856e-11 Iter 125: T = 799.9888730273439 K, F = -2.3372220869788407e-6, relative_change = 2.5041906497450374e-11 Iter 130: T = 799.9888729661545 K, F = -9.774538374252018e-7, relative_change = 1.0472820596578437e-11 Iter 135: T = 799.9888729405644 K, F = -4.087822907949956e-7, relative_change = 4.379852460842151e-12 Iter 140: T = 799.9888729298624 K, F = -1.7095866156058293e-7, relative_change = 1.8317175950305602e-12 Iter 145: T = 799.9888729253867 K, F = -7.149607816892001e-8, relative_change = 7.660367902141706e-13 Iter 150: T = 799.9888729235148 K, F = -2.989950520504436e-8, relative_change = 3.203549283137583e-13 Converged in 153 iterations to T = 799.9888729229667 K Iter 1: T = 965.1773772883924 K, F = -7934.367709705531, relative_change = 0.034822622711607555 Iter 2: T = 932.3290497730142 K, F = -6729.644828326418, relative_change = 0.034033461919366195 Iter 3: T = 901.4255544612072 K, F = -5706.625447324845, relative_change = 0.033146554126282805 Iter 5: T = 845.3400463714397 K, F = -4100.425433697604, relative_change = 0.031060743674467674 Iter 10: T = 737.0043846271856 K, F = -1784.3143075568648, relative_change = 0.024073964500632854 Iter 15: T = 669.2559001531101 K, F = -768.2937918121712, relative_change = 0.015769071428595693 Iter 20: T = 632.1862899727715 K, F = -327.15058662291113, relative_change = 0.008678891439659348 Iter 25: T = 614.1353392175621 K, F = -138.12131466110324, relative_change = 0.00418928372052205 Iter 30: T = 605.9960042226969 K, F = -58.02190902816759, relative_change = 0.0018736048174024251 Iter 35: T = 602.4736853326068 K, F = -24.313217879428347, relative_change = 0.000807064031355164 Iter 40: T = 600.9785947988476 K, F = -10.176643156166044, relative_change = 0.0003418173168976455 Iter 45: T = 600.3493757506652 K, F = -4.2575077940629145, relative_change = 0.00014371712163170733 Iter 50: T = 600.0855293515833 K, F = -1.7808066138352772, relative_change = 6.023907620570747e-5 Iter 55: T = 599.9750627135925 K, F = -0.7448012062391068, relative_change = 2.5216365944787277e-5 Iter 60: T = 599.9288427040578 K, F = -0.31149291831656994, relative_change = 1.0549930107694433e-5 Iter 65: T = 599.9095091731724 K, F = -0.13027148593085477, relative_change = 4.412832098437918e-6 Iter 70: T = 599.9014229998985 K, F = -0.054481340879470985, relative_change = 1.845625976127569e-6 Iter 75: T = 599.8980411502557 K, F = -0.022784791071303656, relative_change = 7.718850203796751e-7 Iter 80: T = 599.8966268001609 K, F = -0.009528879370589827, relative_change = 3.228154159482952e-7 Iter 85: T = 599.8960352985296 K, F = -0.00398509248554918, relative_change = 1.3500594112857114e-7 Iter 90: T = 599.895787924866 K, F = -0.0016666135024658857, relative_change = 5.6461215629381344e-8 Iter 95: T = 599.8956844701377 K, F = -0.000696997710777636, relative_change = 2.3612775423986026e-8 Iter 100: T = 599.8956412041159 K, F = -0.00029149277456358424, relative_change = 9.87514834046594e-9 Iter 105: T = 599.8956231097455 K, F = -0.00012190576076714921, relative_change = 4.1299056067817355e-9 Iter 110: T = 599.8956155424632 K, F = -5.09824448753915e-5, relative_change = 1.7271759452407592e-9 Iter 115: T = 599.8956123777352 K, F = -2.132146724370676e-5, relative_change = 7.223256231729112e-10 Iter 120: T = 599.8956110542083 K, F = -8.916892451860114e-6, relative_change = 3.0208521257425503e-10 Iter 125: T = 599.8956105006934 K, F = -3.729150208464649e-6, relative_change = 1.2633562022596926e-10 Iter 130: T = 599.8956102692069 K, F = -1.5595757688613432e-6, relative_change = 5.283508611780567e-11 Iter 135: T = 599.8956101723966 K, F = -6.522335053160688e-7, relative_change = 2.2096273959122612e-11 Iter 140: T = 599.8956101319093 K, F = -2.727721071793532e-7, relative_change = 9.240934667497704e-12 Iter 145: T = 599.895610114977 K, F = -1.1407676936414646e-7, relative_change = 3.86467657494686e-12 Iter 150: T = 599.8956101078957 K, F = -4.770840289491929e-8, relative_change = 1.616258490963472e-12 Iter 155: T = 599.8956101049341 K, F = -1.995168363855271e-8, relative_change = 6.759203019562801e-13 Iter 160: T = 599.8956101036956 K, F = -8.343043811365192e-9, relative_change = 2.8264445218904543e-13 Converged in 162 iterations to T = 599.8956101034336 K Iter 1: T = 964.5608919207932 K, F = -8074.834487142, relative_change = 0.03543910807920682 Iter 2: T = 931.0613288560049 K, F = -6849.923034650624, relative_change = 0.03473037663602386 Iter 3: T = 899.4709063488594 K, F = -5809.713055218009, relative_change = 0.033929475457820456 Iter 5: T = 841.9051673065123 K, F = -4176.3701233258935, relative_change = 0.03202731565300747 Iter 10: T = 729.3830663743828 K, F = -1820.2047269540446, relative_change = 0.02545598777317589 Iter 15: T = 657.4333807391348 K, F = -785.3110677702858, relative_change = 0.017208199302764703 Iter 20: T = 617.1392805660647 K, F = -335.01067180751517, relative_change = 0.00974422291401061 Iter 25: T = 597.1653590445187 K, F = -141.61430920530054, relative_change = 0.004792932135701179 Iter 30: T = 588.063574306862 K, F = -59.52850709725099, relative_change = 0.0021650854631060255 Iter 35: T = 584.104067029202 K, F = -24.952260291075916, relative_change = 0.0009369793681656081 Iter 40: T = 582.419416230554 K, F = -10.44554642184896, relative_change = 0.00039765379726305536 Iter 45: T = 581.7096911453643 K, F = -4.370260819990606, relative_change = 0.00016733978033193188 Iter 50: T = 581.4119569530521 K, F = -1.8280132449745143, relative_change = 7.016639167998916e-5 Iter 55: T = 581.287279386692 K, F = -0.7645527070757892, relative_change = 2.9376534744283238e-5 Iter 60: T = 581.2351094147258 K, F = -0.3197548301662596, relative_change = 1.2291243074023107e-5 Iter 65: T = 581.2132863505578 K, F = -0.133726995867084, relative_change = 5.141329194417825e-6 Iter 70: T = 581.2041588168397 K, F = -0.05592652534076395, relative_change = 2.1503375170023425e-6 Iter 75: T = 581.2003414214531 K, F = -0.02338919303216691, relative_change = 8.993269597585298e-7 Iter 80: T = 581.1987449145648 K, F = -0.009781648985299152, relative_change = 3.7611454469785225e-7 Iter 85: T = 581.1980772316746 K, F = -0.004090804019689753, relative_change = 1.5729651604184637e-7 Iter 90: T = 581.197797997904 K, F = -0.001710823374871162, relative_change = 6.578344273597442e-8 Iter 95: T = 581.1976812188643 K, F = -0.0007154868154880534, relative_change = 2.751144955749813e-8 Iter 100: T = 581.1976323804505 K, F = -0.0002992251392680556, relative_change = 1.1505621683684596e-8 Iter 105: T = 581.1976119556382 K, F = -0.00012513952855930377, relative_change = 4.811789269095512e-9 Iter 110: T = 581.1976034137369 K, F = -5.233484489125528e-5, relative_change = 2.0123478613608965e-9 Iter 115: T = 581.1975998414118 K, F = -2.18870571382368e-5, relative_change = 8.415879325523668e-10 Iter 120: T = 581.1975983474227 K, F = -9.153428952968223e-6, relative_change = 3.5196213880717186e-10 Iter 125: T = 581.1975977226186 K, F = -3.828073008638189e-6, relative_change = 1.4719475919340822e-10 Iter 130: T = 581.1975974613182 K, F = -1.6009462684984932e-6, relative_change = 6.15586224311466e-11 Iter 135: T = 581.1975973520392 K, F = -6.695354667907161e-7, relative_change = 2.5744574850711048e-11 Iter 140: T = 581.1975973063375 K, F = -2.8000812984929624e-7, relative_change = 1.0766704107498508e-11 Iter 145: T = 581.1975972872243 K, F = -1.1710224234739997e-7, relative_change = 4.5027449544233494e-12 Iter 150: T = 581.197597279231 K, F = -4.897342842369312e-8, relative_change = 1.8830967992555444e-12 Iter 155: T = 581.197597275888 K, F = -2.0480724782778736e-8, relative_change = 7.875125047868173e-13 Iter 160: T = 581.19759727449 K, F = -8.565463560650244e-9, relative_change = 3.293540504512331e-13 Converged in 163 iterations to T = 581.1975972740807 K Iter 1: T = 964.2935013089436 K, F = -8135.759692406058, relative_change = 0.035706498691056375 Iter 2: T = 930.5106646655603 K, F = -6902.103797549764, relative_change = 0.03503376990255158 Iter 3: T = 898.6204471105619 K, F = -5854.449230838742, relative_change = 0.03427173783812583 Iter 5: T = 840.404773994248 K, F = -4209.355505693107, relative_change = 0.03245409145009859 Iter 10: T = 726.0088883658748 K, F = -1835.863407898263, relative_change = 0.026087796022641076 Iter 15: T = 652.111665154799 K, F = -792.8005951049732, relative_change = 0.017896090546894505 Iter 20: T = 610.2657239097465 K, F = -338.50677561003704, relative_change = 0.01027490830235565 Iter 25: T = 589.338605583702 K, F = -143.18097274792336, relative_change = 0.005102158065959548 Iter 30: T = 579.7511235515722 K, F = -60.207519564452895, relative_change = 0.002316661243808589 Iter 35: T = 575.5689822154119 K, F = -25.240952574669098, relative_change = 0.0010050175477550958 Iter 40: T = 573.7873991457228 K, F = -10.567153906545023, relative_change = 0.0004269872929868157 Iter 45: T = 573.0364328585869 K, F = -4.421274883624166, relative_change = 0.000179766411109275 Iter 50: T = 572.7213255158468 K, F = -1.849375560675787, relative_change = 7.539156631760523e-5 Iter 55: T = 572.5893601276962 K, F = -0.7734915348001974, relative_change = 3.156672852953691e-5 Iter 60: T = 572.5341384107373 K, F = -0.3234940048336103, relative_change = 1.320807853978378e-5 Iter 65: T = 572.5110383887763 K, F = -0.1352909121729643, relative_change = 5.524913105785777e-6 Iter 70: T = 572.5013766967695 K, F = -0.05658059985157943, relative_change = 2.310783551096752e-6 Iter 75: T = 572.4973358891376 K, F = -0.023662739357860924, relative_change = 9.664320712996455e-7 Iter 80: T = 572.4956459449298 K, F = -0.009896050121960931, relative_change = 4.04179519532113e-7 Iter 85: T = 572.4949391847981 K, F = -0.004138648080818874, relative_change = 1.6903376637773323e-7 Iter 90: T = 572.4946436083468 K, F = -0.0017308323567738482, relative_change = 7.069212594660761e-8 Iter 95: T = 572.4945199945835 K, F = -0.0007238548152511126, relative_change = 2.9564323875207308e-8 Iter 100: T = 572.494468297803 K, F = -0.00030272473749332063, relative_change = 1.2364159004519032e-8 Iter 105: T = 572.4944466775871 K, F = -0.00012660310154749554, relative_change = 5.1708399267287325e-9 Iter 110: T = 572.4944376357538 K, F = -5.294692916257837e-5, relative_change = 2.162507178349145e-9 Iter 115: T = 572.494433854351 K, F = -2.214303785819105e-5, relative_change = 9.043863465160412e-10 Iter 120: T = 572.4944322729232 K, F = -9.260483529449637e-6, relative_change = 3.782252024292717e-10 Iter 125: T = 572.494431611551 K, F = -3.872844398455921e-6, relative_change = 1.58178280862033e-10 Iter 130: T = 572.4944313349573 K, F = -1.6196692719794292e-6, relative_change = 6.61520255495434e-11 Iter 135: T = 572.4944312192827 K, F = -6.773655759073627e-7, relative_change = 2.766558932870746e-11 Iter 140: T = 572.4944311709061 K, F = -2.832827663001858e-7, relative_change = 1.1570095910197081e-11 Iter 145: T = 572.4944311506744 K, F = -1.1847217445959402e-7, relative_change = 4.838749774016267e-12 Iter 150: T = 572.4944311422133 K, F = -4.954637955467689e-8, relative_change = 2.023618912913195e-12 Iter 155: T = 572.4944311386747 K, F = -2.0720978100019494e-8, relative_change = 8.463052912316255e-13 Iter 160: T = 572.4944311371949 K, F = -8.665394901630208e-9, relative_change = 3.53920047622875e-13 Converged in 163 iterations to T = 572.4944311367616 K Iter 1: T = 980.0927796166702 K, F = -4535.879100996979, relative_change = 0.019907220383329767 Iter 2: T = 962.2314004622567 K, F = -3831.5204922566213, relative_change = 0.018224171757901746 Iter 3: T = 946.2953114966859 K, F = -3235.0305003171857, relative_change = 0.016561597301766536 Iter 5: T = 919.6768721000669 K, F = -2303.010514644037, relative_change = 0.013386847329034057 Iter 10: T = 877.3951574816549 K, F = -977.7603828190353, relative_change = 0.007038912507920882 Iter 15: T = 857.3689258380153 K, F = -412.03591412746107, relative_change = 0.00330245704660174 Iter 20: T = 848.4786812381773 K, F = -172.92157652806728, relative_change = 0.0014556992709698166 Iter 25: T = 844.6603157874753 K, F = -72.42819166757315, relative_change = 0.0006228917416637258 Iter 30: T = 843.0450151426759 K, F = -30.310007173185763, relative_change = 0.00026305172704113523 Iter 35: T = 842.3661894342312 K, F = -12.679476080498269, relative_change = 0.00011046398068798559 Iter 40: T = 842.0817163699923 K, F = -5.303317172078191, relative_change = 4.627699637967501e-5 Iter 45: T = 841.9626445148173 K, F = -2.218017219097953, relative_change = 1.9367557033059943e-5 Iter 50: T = 841.9128294068046 K, F = -0.9276199528584241, relative_change = 8.102188640353133e-6 Iter 55: T = 841.8919930121516 K, F = -0.3879450073698605, relative_change = 3.3888598709338638e-6 Iter 60: T = 841.8832784369582 K, F = -0.1622438062040923, relative_change = 1.4173365096103846e-6 Iter 65: T = 841.8796338020128 K, F = -0.06785239722989056, relative_change = 5.927601454188598e-7 Iter 70: T = 841.8781095554444 K, F = -0.02837670031457984, relative_change = 2.479016614511221e-7 Iter 75: T = 841.877472094404 K, F = -0.011867478014125021, relative_change = 1.036758358349233e-7 Iter 80: T = 841.8772055000729 K, F = -0.004963121563702044, relative_change = 4.3358542705851684e-8 Iter 85: T = 841.8770940070505 K, F = -0.0020756368017709192, relative_change = 1.8133072604476544e-8 Iter 90: T = 841.8770473793214 K, F = -0.0008680561142373477, relative_change = 7.583469652146869e-9 Iter 95: T = 841.8770278790455 K, F = -0.00036303143763904977, relative_change = 3.171497957997187e-9 Iter 100: T = 841.8770197237967 K, F = -0.00015182408082603516, relative_change = 1.326358366246582e-9 Iter 105: T = 841.8770163131743 K, F = -6.349464367194635e-5, relative_change = 5.546989187248131e-10 Iter 110: T = 841.8770148868111 K, F = -2.6554218711005717e-5, relative_change = 2.3198171804068765e-10 Iter 115: T = 841.8770142902891 K, F = -1.1105291432000897e-5, relative_change = 9.701752563187631e-11 Iter 120: T = 841.8770140408166 K, F = -4.644367486594803e-6, relative_change = 4.0573905247718105e-11 Iter 125: T = 841.8770139364841 K, F = -1.9423281725217123e-6, relative_change = 1.696847622541425e-11 Iter 130: T = 841.877013892851 K, F = -8.123065646792327e-7, relative_change = 7.096434489756534e-12 Iter 135: T = 841.8770138746031 K, F = -3.397153460760194e-7, relative_change = 2.967805264252928e-12 Iter 140: T = 841.8770138669717 K, F = -1.4207370235830297e-7, relative_change = 1.2411776113720809e-12 Iter 145: T = 841.87701386378 K, F = -5.941599612313553e-8, relative_change = 5.190672370932799e-13 Converged in 150 iterations to T = 841.8770138624452 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318879530717507 Iteration 10: d = 9.089540726711805e-6 Iteration 20: d = 8.713117496380023e-8 Iteration 30: d = 1.1505408014644963e-9 Iteration 40: d = 1.617050826227625e-11 Iteration 50: d = 2.298093389911668e-13 Iteration 60: d = 3.276597615612835e-15 Converged after 61 iterations. d = 2.157552768693353e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.642656655244 Iteration 2: convergence error = 4833.581770508081 Iteration 3: convergence error = 1094.1192626655677 Iteration 4: convergence error = 317.6478538884305 Iteration 5: convergence error = 94.0561026645712 Iteration 6: convergence error = 28.003161309006828 Iteration 7: convergence error = 8.40974610103217 Iteration 8: convergence error = 2.5171322415258146 Iteration 9: convergence error = 0.751629790974448 Iteration 10: convergence error = 0.2241360962671024 Iteration 11: convergence error = 0.0667857645114509 Iteration 12: convergence error = 0.019891403289648224 Iteration 13: convergence error = 0.005922955986534362 Iteration 14: convergence error = 0.0017633950935760367 Iteration 15: convergence error = 0.0005249587607067951 Iteration 16: convergence error = 0.0001562716706757783 Iteration 17: convergence error = 4.651825929613551e-5 Iteration 18: convergence error = 1.3847132549926755e-5 Iteration 19: convergence error = 4.121847950955271e-6 Iteration 20: convergence error = 1.2269356375327334e-6 Iteration 21: convergence error = 3.65211008102051e-7 Iteration 22: convergence error = 1.0856160770345014e-7 Iteration 23: convergence error = 3.1412128009833395e-8 Iteration 24: convergence error = 9.035147741087712e-9 Iteration 25: convergence error = 2.6000179786933586e-9 Iteration 26: convergence error = 7.412381819449365e-10 Iteration 27: convergence error = 2.1714186004828662e-10 Iteration 28: convergence error = 5.95719029661268e-11 Iteration 29: convergence error = 1.9099388737231493e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012823883215194371 Iteration 10: d = 1.2545534332533915e-5 Iteration 20: d = 1.1958457507670086e-7 Iteration 30: d = 1.386823907038171e-9 Iteration 40: d = 1.7427897947011194e-11 Iteration 50: d = 2.255271766960705e-13 Iteration 60: d = 2.983109708260138e-15 Converged after 61 iterations. d = 1.9623063268326856e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12278.757740977631 Iteration 2: convergence error = 8337.88490951952 Iteration 3: convergence error = 1946.633649266311 Iteration 4: convergence error = 477.5442328011402 Iteration 5: convergence error = 121.51437850145294 Iteration 6: convergence error = 32.39879565567776 Iteration 7: convergence error = 8.815229145045578 Iteration 8: convergence error = 2.412391848877405 Iteration 9: convergence error = 0.6610128831246129 Iteration 10: convergence error = 0.18115163244988253 Iteration 11: convergence error = 0.04964288403994033 Iteration 12: convergence error = 0.013603502622117958 Iteration 13: convergence error = 0.0037276212904089334 Iteration 14: convergence error = 0.0010214249145974463 Iteration 15: convergence error = 0.0002798840862396901 Iteration 16: convergence error = 7.669176625313412e-5 Iteration 17: convergence error = 2.101448671965045e-5 Iteration 18: convergence error = 5.758224006058299e-6 Iteration 19: convergence error = 1.577824832565966e-6 Iteration 20: convergence error = 4.323417215346126e-7 Iteration 21: convergence error = 1.193336629512487e-7 Iteration 22: convergence error = 3.202717380190734e-8 Iteration 23: convergence error = 8.55311554914806e-9 Iteration 24: convergence error = 2.2794210963184014e-9 Iteration 25: convergence error = 6.075424607843161e-10 Iteration 26: convergence error = 1.6257217794191092e-10 Iteration 27: convergence error = 4.274625098332763e-11 Iteration 28: convergence error = 1.1368683772161603e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012823883215194371 Iteration 10: d = 1.2545534332533915e-5 Iteration 20: d = 1.1958457507670086e-7 Iteration 30: d = 1.386823907038171e-9 Iteration 40: d = 1.7427897947011194e-11 Iteration 50: d = 2.255271766960705e-13 Iteration 60: d = 2.983109708260138e-15 Converged after 61 iterations. d = 1.9623063268326856e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.230256258135 Iteration 2: convergence error = 5734.717985111165 Iteration 3: convergence error = 2018.1646351022705 Iteration 4: convergence error = 896.4264015267386 Iteration 5: convergence error = 409.14221775898477 Iteration 6: convergence error = 192.9398435788812 Iteration 7: convergence error = 91.06222197801026 Iteration 8: convergence error = 42.999012669225976 Iteration 9: convergence error = 20.304057963626747 Iteration 10: convergence error = 9.58557219165914 Iteration 11: convergence error = 4.524234372350293 Iteration 12: convergence error = 2.1348986903399236 Iteration 13: convergence error = 1.007248021903706 Iteration 14: convergence error = 0.4751635115935642 Iteration 15: convergence error = 0.2241369672478868 Iteration 16: convergence error = 0.10562905305869208 Iteration 17: convergence error = 0.04933801850575037 Iteration 18: convergence error = 0.02251885439909529 Iteration 19: convergence error = 0.010239813837870315 Iteration 20: convergence error = 0.004646282976409566 Iteration 21: convergence error = 0.0021056248683635204 Iteration 22: convergence error = 0.0009535501571917848 Iteration 23: convergence error = 0.000431641123668669 Iteration 24: convergence error = 0.0001953411538124783 Iteration 25: convergence error = 8.83893781065126e-5 Iteration 26: convergence error = 3.999148611910641e-5 Iteration 27: convergence error = 1.809302875699359e-5 Iteration 28: convergence error = 8.185425031115301e-6 Iteration 29: convergence error = 3.7030658859293908e-6 Iteration 30: convergence error = 1.6752410374465398e-6 Iteration 31: convergence error = 7.578587428724859e-7 Iteration 32: convergence error = 3.428467607591301e-7 Iteration 33: convergence error = 1.5509885997744277e-7 Iteration 34: convergence error = 7.016296876827255e-8 Iteration 35: convergence error = 3.1741365091875196e-8 Iteration 36: convergence error = 1.4358192856889218e-8 Iteration 37: convergence error = 6.498339644167572e-9 Iteration 38: convergence error = 2.9358488973230124e-9 Iteration 39: convergence error = 1.331500243395567e-9 Iteration 40: convergence error = 6.061782187316567e-10 Iteration 41: convergence error = 2.696651790756732e-10 Iteration 42: convergence error = 1.2323653209023178e-10 Iteration 43: convergence error = 5.638867150992155e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.318767317570746e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012823883215194371 Iteration 10: d = 1.2545534332533915e-5 Iteration 20: d = 1.1958457507670086e-7 Iteration 30: d = 1.386823907038171e-9 Iteration 40: d = 1.7427897947011194e-11 Iteration 50: d = 2.255271766960705e-13 Iteration 60: d = 2.983109708260138e-15 Converged after 61 iterations. d = 1.9623063268326856e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.823347533757 Iteration 2: convergence error = 7352.5322569216605 Iteration 3: convergence error = 1734.6762344519552 Iteration 4: convergence error = 503.8115854279713 Iteration 5: convergence error = 156.4752059426246 Iteration 6: convergence error = 48.58742585023356 Iteration 7: convergence error = 15.06079083088207 Iteration 8: convergence error = 4.660655234931255 Iteration 9: convergence error = 1.4406050745292305 Iteration 10: convergence error = 0.44497499378530847 Iteration 11: convergence error = 0.13738749211051982 Iteration 12: convergence error = 0.042408863725995616 Iteration 13: convergence error = 0.013089054080410278 Iteration 14: convergence error = 0.004039496295717981 Iteration 15: convergence error = 0.0012466015855352452 Iteration 16: convergence error = 0.0003846959807560779 Iteration 17: convergence error = 0.00011871392598550301 Iteration 18: convergence error = 3.6633833587984554e-5 Iteration 19: convergence error = 1.1304740837658755e-5 Iteration 20: convergence error = 3.488500624371227e-6 Iteration 21: convergence error = 1.0765106708277017e-6 Iteration 22: convergence error = 3.320301402709447e-7 Iteration 23: convergence error = 1.0120811566594057e-7 Iteration 24: convergence error = 3.011291482835077e-8 Iteration 25: convergence error = 8.923507266445085e-9 Iteration 26: convergence error = 2.638444129843265e-9 Iteration 27: convergence error = 7.839844329282641e-10 Iteration 28: convergence error = 2.332853910047561e-10 Iteration 29: convergence error = 6.957634468562901e-11 Iteration 30: convergence error = 2.1827872842550278e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012823883215194371 Iteration 10: d = 1.2545534332533915e-5 Iteration 20: d = 1.1958457507670086e-7 Iteration 30: d = 1.386823907038171e-9 Iteration 40: d = 1.7427897947011194e-11 Iteration 50: d = 2.255271766960705e-13 Iteration 60: d = 2.983109708260138e-15 Converged after 61 iterations. d = 1.9623063268326856e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.744213248086 Iteration 2: convergence error = 5521.144209928647 Iteration 3: convergence error = 938.374925472137 Iteration 4: convergence error = 170.7868887832003 Iteration 5: convergence error = 30.979363264657195 Iteration 6: convergence error = 5.6337630998234545 Iteration 7: convergence error = 1.0257882136081662 Iteration 8: convergence error = 0.18691556650060193 Iteration 9: convergence error = 0.034099588393019076 Iteration 10: convergence error = 0.006224958434813743 Iteration 11: convergence error = 0.0011360492289895774 Iteration 12: convergence error = 0.00020729708739963826 Iteration 13: convergence error = 3.782301428145729e-5 Iteration 14: convergence error = 6.900817425048444e-6 Iteration 15: convergence error = 1.2590285223268438e-6 Iteration 16: convergence error = 2.2970834834268317e-7 Iteration 17: convergence error = 4.1911789594450966e-8 Iteration 18: convergence error = 7.637027010787278e-9 Iteration 19: convergence error = 1.4042598195374012e-9 Iteration 20: convergence error = 2.553406375227496e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 1.0459189070388675e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012823883215194371 Iteration 10: d = 1.2545534332533915e-5 Iteration 20: d = 1.1958457507670086e-7 Iteration 30: d = 1.386823907038171e-9 Iteration 40: d = 1.7427897947011194e-11 Iteration 50: d = 2.255271766960705e-13 Iteration 60: d = 2.983109708260138e-15 Converged after 61 iterations. d = 1.9623063268326856e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4882147479193 Iteration 2: convergence error = 2714.802871546946 Iteration 3: convergence error = 204.97402927558034 Iteration 4: convergence error = 19.368848968664846 Iteration 5: convergence error = 1.601128648170059 Iteration 6: convergence error = 0.1303712435915367 Iteration 7: convergence error = 0.010626470805177863 Iteration 8: convergence error = 0.0008680494932651824 Iteration 9: convergence error = 7.101189031558634e-5 Iteration 10: convergence error = 5.816263797002071e-6 Iteration 11: convergence error = 4.7673990753694853e-7 Iteration 12: convergence error = 3.9072669493707896e-8 Iteration 13: convergence error = 3.203156018012014e-9 Iteration 14: convergence error = 2.6110118002136276e-10 Iteration 15: convergence error = 2.2168933355715126e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 87%|████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001318879530717507 Iteration 10: d = 9.089540726711805e-6 Iteration 20: d = 8.713117496380023e-8 Iteration 30: d = 1.1505408014644963e-9 Iteration 40: d = 1.617050826227625e-11 Iteration 50: d = 2.298093389911668e-13 Iteration 60: d = 3.276597615612835e-15 Converged after 61 iterations. d = 2.157552768693353e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.3192360650855 Iteration 2: convergence error = 3619.2568313001634 Iteration 3: convergence error = 591.5771958001936 Iteration 4: convergence error = 103.82749606555353 Iteration 5: convergence error = 18.431853721921925 Iteration 6: convergence error = 3.2431872465654124 Iteration 7: convergence error = 0.5685660990993711 Iteration 8: convergence error = 0.09952317561919699 Iteration 9: convergence error = 0.017409781157994075 Iteration 10: convergence error = 0.0030447422786892275 Iteration 11: convergence error = 0.0005324298840605479 Iteration 12: convergence error = 9.310136783824419e-5 Iteration 13: convergence error = 1.6279540659525082e-5 Iteration 14: convergence error = 2.846605866579921e-6 Iteration 15: convergence error = 4.977439402864547e-7 Iteration 16: convergence error = 8.703136700205505e-8 Iteration 17: convergence error = 1.52306256495649e-8 Iteration 18: convergence error = 2.6411726139485836e-9 Iteration 19: convergence error = 4.665707820095122e-10 Iteration 20: convergence error = 8.117240213323385e-11 Iteration 21: convergence error = 1.3415046851150692e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 11m22.0s Testing RayTraceHeatTransfer tests passed Testing completed after 631.57s PkgEval succeeded after 753.71s