Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.1260 (89243d1cdf*) started at 2025-11-16T16:03:12.780 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.3s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.4 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 5.33s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 22117.2 ms ✓ AbstractAlgebra 1257.3 ms ✓ FLINT_jll 32224.3 ms ✓ Nemo 127056.5 ms ✓ Groebner 10336.6 ms ✓ ParamPunPam 11021.1 ms ✓ RationalFunctionFields 12458.7 ms ✓ StructuralIdentifiability 7 dependencies successfully precompiled in 219 seconds. 28 already precompiled. Precompilation completed after 228.51s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_fPPcaZ/Project.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_fPPcaZ/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_fPPcaZ/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.28.0 Updating `/tmp/jl_fPPcaZ/Manifest.toml` [47edcb42] + ADTypes v1.19.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.2 [70df07ce] + BracketingNonlinearSolve v1.6.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.191.0 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.11 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.17 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.15.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.3.0 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.12 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.2.0 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.28.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.4.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.127.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.5.0 [c0aeaf25] + SciMLOperators v1.11.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.8 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 ⌅ [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_fPPcaZ/Project.toml` ⌅ [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_fPPcaZ/Manifest.toml` WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.airybiprime), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:29 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.airyaix), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:25 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.gamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:55 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.gamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:54 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.besselj0), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:30 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.polygamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:147 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.besselj1), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:31 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.logabsgamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:167 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.loggamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:174 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.loggamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:173 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.expint), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:184 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.expint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:183 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.bessely1), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:36 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.airyai), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:24 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.airyaiprimex), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:27 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.digamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:41 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erfi), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:51 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.logerfcx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:50 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.besselk), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:104 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.sinint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:200 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.ellipk), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:204 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.airyaiprime), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:26 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.hankelh1), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:118 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.besselj), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:83 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.besselkx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:111 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.cosint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:201 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.bessely), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:97 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.ellipe), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:208 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.airybi), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:28 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erfinv), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:52 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.trigamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:80 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.expintx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:192 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.expintx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:191 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.besseli), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:90 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.hankelh1x), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:125 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.hankelh2), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:132 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erfc), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:46 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erf), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:45 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erf), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:44 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.expinti), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:199 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.beta), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:155 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.gamma_inc), Number, Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:62 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.invdigamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:76 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.dawson), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:40 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.logbeta), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:160 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.hankelh2x), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:139 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.bessely0), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:35 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.logerfc), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:47 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erfcinv), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:48 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(SpecialFunctions.erfcx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:49 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.airybiprime), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:29 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.airyaix), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:25 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.gamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:55 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.gamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:54 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselj0), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:30 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.polygamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:147 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselj1), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:31 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.logabsgamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:167 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.loggamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:174 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.loggamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:173 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselyx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:272 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselix), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:214 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.expint), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:184 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.expint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:183 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.bessely1), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:36 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.airyai), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:24 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.airyaiprimex), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:27 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.digamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:41 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erfi), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:51 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.logerfcx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:50 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselk), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:104 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.sinint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:200 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.ellipk), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:204 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.airyaiprime), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:26 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.hankelh1), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:118 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselj), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:83 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besselkx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:111 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.cosint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:201 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.bessely), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:97 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.ellipe), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:208 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.airybi), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:28 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erfinv), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:52 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.trigamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:80 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.expintx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:192 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.expintx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:191 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besseli), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:90 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.hankelh1x), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:125 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.hankelh2), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:132 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erfc), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:46 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erf), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:45 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erf), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:44 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.expinti), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:199 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.beta), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:155 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.gamma_inc), Number, Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:62 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.invdigamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:76 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.dawson), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:40 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.logbeta), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:160 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.hankelh2x), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:139 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.bessely0), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:35 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.logerfc), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:47 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.besseljx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:241 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erfcinv), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:48 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(SpecialFunctions.erfcx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:49 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.airybiprime), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:29 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.airyaix), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:25 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.gamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:55 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.gamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:54 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselj0), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:30 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.polygamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:147 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselj1), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:31 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.logabsgamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:167 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.loggamma), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:174 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.loggamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:173 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselix), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:229 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.expint), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:184 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.expint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:183 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.bessely1), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:36 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselyx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:287 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.airyai), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:24 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.airyaiprimex), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:27 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.digamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:41 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erfi), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:51 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.logerfcx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:50 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselk), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:104 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.sinint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:200 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.ellipk), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:204 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.airyaiprime), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:26 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselj), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:83 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besselkx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:111 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.hankelh1), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:118 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.cosint), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:201 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.bessely), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:97 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.ellipe), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:208 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.airybi), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:28 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erfinv), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:52 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.trigamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:80 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.expintx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:192 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.expintx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:191 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besseli), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:90 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.hankelh1x), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:125 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.hankelh2), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:132 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erfc), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:46 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erf), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:45 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erf), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:44 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.expinti), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:199 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.beta), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:155 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.gamma_inc), Number, Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:62 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.invdigamma), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:76 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.dawson), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:40 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.logbeta), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:160 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.hankelh2x), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:139 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.bessely0), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:35 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.logerfc), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:47 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.besseljx), Number, Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:256 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erfcinv), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:48 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(SpecialFunctions.erfcx), Number) in module SpecialFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/SpecialFunctions/6nmlv/ext/SpecialFunctionsChainRulesCoreExt.jl:49 overwritten in module SpecialFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `SpecialFunctionsChainRulesCoreExt` └ @ Base loading.jl:2628 WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where Union{ChainRulesCore.HasForwardsMode, ChainRulesCore.HasReverseMode}<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/RS9ka/ext/ADTypesChainRulesCoreExt.jl:22 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/RS9ka/ext/ADTypesChainRulesCoreExt.jl:16 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasForwardsMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/RS9ka/ext/ADTypesChainRulesCoreExt.jl:10 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ADTypesChainRulesCoreExt` └ @ Base loading.jl:2628 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ WARNING: Method definition inplace_support(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition check_available(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:20 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition value_and_pullback(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:36 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_nokwarg(Base.Val{x} where x, Any, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:9 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(DifferentiationInterface.DifferentiateWith{F, B} where B<:ADTypes.AbstractADType where F, Any) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/differentiate_with.jl:1 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_same_point(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `DifferentiationInterfaceChainRulesCoreExt` └ @ Base loading.jl:2628 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.814619 seconds (967.49 k allocations: 48.683 MiB, 99.37% compilation time) 0.001901 seconds (7.25 k allocations: 320.852 KiB) 0.001980 seconds (10.77 k allocations: 483.469 KiB) 0.001968 seconds (10.76 k allocations: 479.391 KiB) 0.002549 seconds (14.35 k allocations: 630.531 KiB) 0.001484 seconds (7.93 k allocations: 359.648 KiB) 0.001050 seconds (7.44 k allocations: 300.680 KiB) 15.578330 seconds (6.70 M allocations: 343.417 MiB, 2.14% gc time, 99.76% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.333643 seconds (112.45 k allocations: 6.016 MiB, 97.94% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011588 seconds (9.81 k allocations: 520.414 KiB, 90.15% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004057011 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.041267656 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.054151919 seconds [ Info: Global identifiability assessed in 49.012513223 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002538445 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.944879881 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.851e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.030043446 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.512566537 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 7.4569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:10 ✓ # Computing specializations.. Time: 0:00:12 [ Info: Search for polynomial generators concluded in 12.989585902 [ Info: Selecting generators in 0.014036083 [ Info: Inclusion checked with probability 0.9955 in 0.062174471 seconds [ Info: Global identifiability assessed in 88.101429806 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.645902689 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.78250172 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.098421455 seconds [ Info: Global identifiability assessed in 37.015788841 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013830494 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.028919987 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000254557 seconds [ Info: Global identifiability assessed in 0.074287832 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 6.230089955 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002934891 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 2.001e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.78146768 [ Info: Selecting generators in 0.000386406 [ Info: Inclusion checked with probability 0.9955 in 0.002794492 seconds [ Info: Global identifiability assessed in 8.266305527 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002177089 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001840872 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.63e-5 seconds [ Info: Global identifiability assessed in 0.006594015 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002102219 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001563435 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.257e-5 seconds [ Info: Global identifiability assessed in 0.006649385 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005048631 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003662224 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 1.4949e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.965583966 [ Info: Selecting generators in 0.015925934 [ Info: Inclusion checked with probability 0.9955 in 0.005555665 seconds [ Info: Global identifiability assessed in 2.002911178 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00821574 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003939141 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.251e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007491737 [ Info: Selecting generators in 0.004168029 [ Info: Inclusion checked with probability 0.9955 in 0.004048081 seconds [ Info: Global identifiability assessed in 0.273099933 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001483206 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001337687 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.344e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9589e-5 [ Info: Selecting generators in 1.101237396 [ Info: Inclusion checked with probability 0.995 in 0.001926371 seconds [ Info: The search for identifiable functions concluded in 2.465980259 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001567635 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001562694 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.921e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106349 [ Info: Selecting generators in 0.000769203 [ Info: Inclusion checked with probability 0.995 in 0.00205 seconds [ Info: The search for identifiable functions concluded in 0.011603877 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001318187 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000929861 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.753e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.285e-5 [ Info: Selecting generators in 0.000628504 [ Info: Inclusion checked with probability 0.995 in 0.001878771 seconds [ Info: The search for identifiable functions concluded in 0.008569966 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001207238 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00104448 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.265e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000483515 [ Info: Selecting generators in 0.000731493 [ Info: Inclusion checked with probability 0.995 in 0.001974821 seconds [ Info: The search for identifiable functions concluded in 0.010524387 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001164848 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000890962 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.59e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000339277 [ Info: Selecting generators in 0.000518585 [ Info: Inclusion checked with probability 0.995 in 0.001491176 seconds [ Info: The search for identifiable functions concluded in 0.008012922 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001259678 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001205329 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.3259e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000411026 [ Info: Selecting generators in 0.000800732 [ Info: Inclusion checked with probability 0.995 in 0.001889152 seconds [ Info: The search for identifiable functions concluded in 0.010889333 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001792153 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001185048 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.977e-5 seconds [ Info: The search for identifiable functions concluded in 0.035000907 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001689823 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001197369 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.543e-5 seconds [ Info: The search for identifiable functions concluded in 0.003707164 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001463016 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001083669 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.829e-5 seconds [ Info: The search for identifiable functions concluded in 0.003516345 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001451826 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001122469 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6e-5 seconds [ Info: The search for identifiable functions concluded in 0.003487906 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001590784 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001242948 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.559e-5 seconds [ Info: The search for identifiable functions concluded in 0.003459057 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001558675 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001186648 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.94e-5 seconds [ Info: The search for identifiable functions concluded in 0.003855582 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001883652 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001242968 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.955e-5 seconds [ Info: The search for identifiable functions concluded in 0.004330767 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001543025 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001139539 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.913e-5 seconds [ Info: The search for identifiable functions concluded in 0.003645425 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001693884 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001152289 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.908e-5 seconds [ Info: The search for identifiable functions concluded in 0.003963451 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001637004 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001371406 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.029e-5 seconds [ Info: The search for identifiable functions concluded in 0.00408421 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001721803 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001251958 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.624e-5 seconds [ Info: The search for identifiable functions concluded in 0.004052181 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001701653 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001235518 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.077e-5 seconds [ Info: The search for identifiable functions concluded in 0.00406548 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.306179279 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001784052 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.189e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.2049e-5 [ Info: Selecting generators in 0.000579354 [ Info: Inclusion checked with probability 0.995 in 0.001654764 seconds [ Info: The search for identifiable functions concluded in 0.314955533 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002544525 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001757243 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.868e-5 [ Info: Selecting generators in 0.000485065 [ Info: Inclusion checked with probability 0.995 in 0.001749743 seconds [ Info: The search for identifiable functions concluded in 0.011042702 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002604395 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001684424 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.14e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.7799e-5 [ Info: Selecting generators in 0.000502185 [ Info: Inclusion checked with probability 0.995 in 0.00207991 seconds [ Info: The search for identifiable functions concluded in 0.012207681 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002527085 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001378147 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.451e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000518015 [ Info: Selecting generators in 0.000934521 [ Info: Inclusion checked with probability 0.995 in 0.002492965 seconds [ Info: The search for identifiable functions concluded in 0.013649176 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002712333 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001620935 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.025e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000399286 [ Info: Selecting generators in 0.000680493 [ Info: Inclusion checked with probability 0.995 in 0.002099749 seconds [ Info: The search for identifiable functions concluded in 0.01332404 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001974611 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001605465 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.763e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000412836 [ Info: Selecting generators in 0.000663713 [ Info: Inclusion checked with probability 0.995 in 0.001900511 seconds [ Info: The search for identifiable functions concluded in 0.010990512 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001347756 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001339927 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.3289e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109019 [ Info: Selecting generators in 0.002206558 [ Info: Inclusion checked with probability 0.995 in 0.003601135 seconds [ Info: The search for identifiable functions concluded in 0.017393929 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001387926 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001350817 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.1229e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116979 [ Info: Selecting generators in 0.002143459 [ Info: Inclusion checked with probability 0.995 in 0.003724543 seconds [ Info: The search for identifiable functions concluded in 0.018134592 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001259048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001352607 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.166e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111879 [ Info: Selecting generators in 0.002202759 [ Info: Inclusion checked with probability 0.995 in 0.003690914 seconds [ Info: The search for identifiable functions concluded in 0.018234292 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001439686 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001372216 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.366e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.241650052 [ Info: Selecting generators in 0.003626645 [ Info: Inclusion checked with probability 0.995 in 0.003549545 seconds [ Info: The search for identifiable functions concluded in 0.261311789 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001252997 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00103248 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.053e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010748304 [ Info: Selecting generators in 0.002522035 [ Info: Inclusion checked with probability 0.995 in 0.002586605 seconds [ Info: The search for identifiable functions concluded in 0.026071205 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001113959 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101327 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.929e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01122299 [ Info: Selecting generators in 0.002635434 [ Info: Inclusion checked with probability 0.995 in 0.002571775 seconds [ Info: The search for identifiable functions concluded in 0.024974196 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00106118 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001066999 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.762e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107529 [ Info: Selecting generators in 0.002142389 [ Info: Inclusion checked with probability 0.995 in 0.002567335 seconds [ Info: The search for identifiable functions concluded in 0.926116002 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001117379 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107417 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.422e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7429e-5 [ Info: Selecting generators in 0.001866252 [ Info: Inclusion checked with probability 0.995 in 0.002666994 seconds [ Info: The search for identifiable functions concluded in 0.013554777 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001288648 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001050349 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.966e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.927e-5 [ Info: Selecting generators in 0.001924971 [ Info: Inclusion checked with probability 0.995 in 0.002576915 seconds [ Info: The search for identifiable functions concluded in 0.012564467 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001183669 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000911921 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.77e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.210261049 [ Info: Selecting generators in 0.002123049 [ Info: Inclusion checked with probability 0.995 in 0.002491255 seconds [ Info: The search for identifiable functions concluded in 0.223856686 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001268507 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001130039 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.122e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00508204 [ Info: Selecting generators in 0.002357627 [ Info: Inclusion checked with probability 0.995 in 0.002935602 seconds [ Info: The search for identifiable functions concluded in 0.019526909 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001271537 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001128219 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.3929e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005492396 [ Info: Selecting generators in 0.001741863 [ Info: Inclusion checked with probability 0.995 in 0.002213788 seconds [ Info: The search for identifiable functions concluded in 0.018580268 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002017881 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001374207 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.133e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6029e-5 [ Info: Selecting generators in 0.000571124 [ Info: Inclusion checked with probability 0.995 in 0.002651184 seconds [ Info: The search for identifiable functions concluded in 0.015379139 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001961061 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001759403 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6899e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102899 [ Info: Selecting generators in 0.000536974 [ Info: Inclusion checked with probability 0.995 in 0.002168689 seconds [ Info: The search for identifiable functions concluded in 0.016503568 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002283348 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001823532 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8709e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.8129e-5 [ Info: Selecting generators in 0.000609444 [ Info: Inclusion checked with probability 0.995 in 0.003024761 seconds [ Info: The search for identifiable functions concluded in 0.017536409 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00196415 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001409506 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.559e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006002702 [ Info: Selecting generators in 0.000722083 [ Info: Inclusion checked with probability 0.995 in 0.00307448 seconds [ Info: The search for identifiable functions concluded in 0.022804407 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002203908 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001433176 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.565e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00508371 [ Info: Selecting generators in 0.000563174 [ Info: Inclusion checked with probability 0.995 in 0.002308207 seconds [ Info: The search for identifiable functions concluded in 0.020521318 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00197679 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001428266 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.668e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006676875 [ Info: Selecting generators in 0.000736083 [ Info: Inclusion checked with probability 0.995 in 0.002625354 seconds [ Info: The search for identifiable functions concluded in 0.295563633 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002789453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002029 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.4319e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110269 [ Info: Selecting generators in 0.002947501 [ Info: Inclusion checked with probability 0.995 in 0.003627234 seconds [ Info: The search for identifiable functions concluded in 0.022002235 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002187268 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001976441 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.131e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102809 [ Info: Selecting generators in 0.00308503 [ Info: Inclusion checked with probability 0.995 in 0.003664214 seconds [ Info: The search for identifiable functions concluded in 0.020857416 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002692663 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00203005 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.986e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000131489 [ Info: Selecting generators in 0.002906732 [ Info: Inclusion checked with probability 0.995 in 0.003177449 seconds [ Info: The search for identifiable functions concluded in 0.022160713 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002403647 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00199092 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.4119e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015077722 [ Info: Selecting generators in 0.003387987 [ Info: Inclusion checked with probability 0.995 in 0.003407757 seconds [ Info: The search for identifiable functions concluded in 0.037921139 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002601224 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0020395 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.481e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012546247 [ Info: Selecting generators in 0.003082019 [ Info: Inclusion checked with probability 0.995 in 0.002985651 seconds [ Info: The search for identifiable functions concluded in 0.034416043 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002883791 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00208483 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.389e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013720555 [ Info: Selecting generators in 0.003467486 [ Info: Inclusion checked with probability 0.995 in 0.002997261 seconds [ Info: The search for identifiable functions concluded in 0.035074866 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01426194 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004386267 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.617e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104019 [ Info: Selecting generators in 0.007817633 [ Info: Inclusion checked with probability 0.995 in 0.004712164 seconds [ Info: The search for identifiable functions concluded in 0.277934916 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006222559 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004570606 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.813e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132639 [ Info: Selecting generators in 0.008038431 [ Info: Inclusion checked with probability 0.995 in 0.005551896 seconds [ Info: The search for identifiable functions concluded in 0.041231496 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008359428 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004271798 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.706e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000129099 [ Info: Selecting generators in 0.008704125 [ Info: Inclusion checked with probability 0.995 in 0.005424496 seconds [ Info: The search for identifiable functions concluded in 0.043586613 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006196039 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004752513 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.9099e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001990911 [ Info: Selecting generators in 0.008039621 [ Info: Inclusion checked with probability 0.995 in 0.005834133 seconds [ Info: The search for identifiable functions concluded in 0.043041458 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006898353 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004713503 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.4339e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002288078 [ Info: Selecting generators in 0.010083731 [ Info: Inclusion checked with probability 0.995 in 0.005887772 seconds [ Info: The search for identifiable functions concluded in 0.048039279 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007285458 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005410297 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.776e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002312167 [ Info: Selecting generators in 0.00911016 [ Info: Inclusion checked with probability 0.995 in 0.005653035 seconds [ Info: The search for identifiable functions concluded in 0.049555464 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005002281 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003466686 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.679e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109449 [ Info: Selecting generators in 0.00209113 [ Info: Inclusion checked with probability 0.995 in 0.003838742 seconds [ Info: The search for identifiable functions concluded in 0.024887566 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004774483 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002724073 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.823e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5959e-5 [ Info: Selecting generators in 0.001553235 [ Info: Inclusion checked with probability 0.995 in 0.00306525 seconds [ Info: The search for identifiable functions concluded in 0.022876215 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005372198 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003753303 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.541e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104269 [ Info: Selecting generators in 0.00204718 [ Info: Inclusion checked with probability 0.995 in 0.004399977 seconds [ Info: The search for identifiable functions concluded in 0.025203653 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005527166 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003208539 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.436e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001155019 [ Info: Selecting generators in 0.001885292 [ Info: Inclusion checked with probability 0.995 in 0.003450786 seconds [ Info: The search for identifiable functions concluded in 0.026214434 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004786063 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003190639 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.883e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.307905332 [ Info: Selecting generators in 0.002378327 [ Info: Inclusion checked with probability 0.995 in 0.003585395 seconds [ Info: The search for identifiable functions concluded in 0.333112645 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004682364 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002888282 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.668e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001077269 [ Info: Selecting generators in 0.001892071 [ Info: Inclusion checked with probability 0.995 in 0.00306979 seconds [ Info: The search for identifiable functions concluded in 0.023038304 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004425867 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002479536 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.806e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115348 [ Info: Selecting generators in 0.002070799 [ Info: Inclusion checked with probability 0.995 in 0.003299418 seconds [ Info: The search for identifiable functions concluded in 0.024054914 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00412009 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002727253 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.8989e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4429e-5 [ Info: Selecting generators in 0.001871562 [ Info: Inclusion checked with probability 0.995 in 0.003432346 seconds [ Info: The search for identifiable functions concluded in 0.024121943 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004183269 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002682193 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.864e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108039 [ Info: Selecting generators in 0.002269978 [ Info: Inclusion checked with probability 0.995 in 0.003492935 seconds [ Info: The search for identifiable functions concluded in 0.024808767 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004296228 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002833883 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.8129e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017436759 [ Info: Selecting generators in 0.003473866 [ Info: Inclusion checked with probability 0.995 in 0.003284608 seconds [ Info: The search for identifiable functions concluded in 0.044572774 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004217138 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002628954 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.929e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016047642 [ Info: Selecting generators in 0.015489858 [ Info: Inclusion checked with probability 0.995 in 0.003691824 seconds [ Info: The search for identifiable functions concluded in 0.05408031 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004692834 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003331568 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.384e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014812405 [ Info: Selecting generators in 0.003493835 [ Info: Inclusion checked with probability 0.995 in 0.003520886 seconds [ Info: The search for identifiable functions concluded in 0.043369755 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002120089 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001827402 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.5819e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9179e-5 [ Info: Selecting generators in 0.001454656 [ Info: Inclusion checked with probability 0.995 in 0.002987911 seconds [ Info: The search for identifiable functions concluded in 0.016793285 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002192029 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001671384 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.565e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121118 [ Info: Selecting generators in 0.001791152 [ Info: Inclusion checked with probability 0.995 in 0.003229008 seconds [ Info: The search for identifiable functions concluded in 0.017415969 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002743453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001932111 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.1999e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104329 [ Info: Selecting generators in 0.001750373 [ Info: Inclusion checked with probability 0.995 in 0.00308279 seconds [ Info: The search for identifiable functions concluded in 0.018766726 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001827862 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001643794 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.319e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009053311 [ Info: Selecting generators in 0.00204486 [ Info: Inclusion checked with probability 0.995 in 0.002763062 seconds [ Info: The search for identifiable functions concluded in 0.02652762 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002284398 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001590065 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.776e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009914573 [ Info: Selecting generators in 0.002479856 [ Info: Inclusion checked with probability 0.995 in 0.003173239 seconds [ Info: The search for identifiable functions concluded in 0.027000785 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002178268 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001611344 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.174e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009824203 [ Info: Selecting generators in 0.002582224 [ Info: Inclusion checked with probability 0.995 in 0.002983851 seconds [ Info: The search for identifiable functions concluded in 0.027946896 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012504158 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.028814358 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000286197 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:05 ✓ # Computing specializations.. Time: 0:00:05 [ Info: Search for polynomial generators concluded in 0.000210578 [ Info: Selecting generators in 0.019039914 [ Info: Inclusion checked with probability 0.995 in 0.029540291 seconds [ Info: The search for identifiable functions concluded in 11.674626025 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.381255823 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.027105044 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000334457 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124428 [ Info: Selecting generators in 0.014728335 [ Info: Inclusion checked with probability 0.995 in 0.024052654 seconds [ Info: The search for identifiable functions concluded in 0.507622084 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011347048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.022567658 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000296247 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8819e-5 [ Info: Selecting generators in 0.011969663 [ Info: Inclusion checked with probability 0.995 in 0.019585138 seconds [ Info: The search for identifiable functions concluded in 0.113354559 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011721005 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.02763722 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000283097 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.003739301 [ Info: Selecting generators in 0.013088161 [ Info: Inclusion checked with probability 0.995 in 0.023126304 seconds [ Info: The search for identifiable functions concluded in 1.147215864 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012311309 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.027303072 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000284858 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.038065387 [ Info: Selecting generators in 0.013876914 [ Info: Inclusion checked with probability 0.995 in 0.038320354 seconds [ Info: The search for identifiable functions concluded in 0.194201696 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011928333 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.027772328 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000266307 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.04174218 [ Info: Selecting generators in 0.013960973 [ Info: Inclusion checked with probability 0.995 in 0.02442759 seconds [ Info: The search for identifiable functions concluded in 0.522911165 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.277874075 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.184407596 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.15705174 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000116299 [ Info: Selecting generators in 0.671549627 [ Info: Inclusion checked with probability 0.995 in 1.822901991 seconds [ Info: The search for identifiable functions concluded in 14.275633116 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.3507806 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.30028871 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.16729752 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000121479 [ Info: Selecting generators in 0.51922455 [ Info: Inclusion checked with probability 0.995 in 2.581508954 seconds [ Info: The search for identifiable functions concluded in 14.073888958 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.58533887 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.312846059 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.18672665 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000160548 [ Info: Selecting generators in 0.61405649 [ Info: Inclusion checked with probability 0.995 in 2.736500524 seconds [ Info: The search for identifiable functions concluded in 18.849902048 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.011496042 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.852512779 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.185929627 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ⌝ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.032377763 [ Info: Selecting generators in 0.607313546 [ Info: Inclusion checked with probability 0.995 in 2.838544953 seconds [ Info: The search for identifiable functions concluded in 19.037493903 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.037731473 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.449319025 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.17955877 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.027460961 [ Info: Selecting generators in 1.167544464 [ Info: Inclusion checked with probability 0.995 in 2.654517276 seconds [ Info: The search for identifiable functions concluded in 19.467842539 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.458778708 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.13822147 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.140018397 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.024727428 [ Info: Selecting generators in 1.064286896 [ Info: Inclusion checked with probability 0.995 in 2.097705114 seconds [ Info: The search for identifiable functions concluded in 15.174496324 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012123131 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010318458 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.123e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106569 [ Info: Selecting generators in 0.008868703 [ Info: Inclusion checked with probability 0.995 in 0.008408507 seconds [ Info: The search for identifiable functions concluded in 0.077342332 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013506908 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011748225 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.5829e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124009 [ Info: Selecting generators in 0.006793203 [ Info: Inclusion checked with probability 0.995 in 0.007534786 seconds [ Info: The search for identifiable functions concluded in 0.074812807 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011266279 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009521977 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.151e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100509 [ Info: Selecting generators in 0.006409527 [ Info: Inclusion checked with probability 0.995 in 0.007673724 seconds [ Info: The search for identifiable functions concluded in 0.06526835 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009533966 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00822375 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.02e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.026122804 [ Info: Selecting generators in 0.009992872 [ Info: Inclusion checked with probability 0.995 in 0.006918192 seconds [ Info: The search for identifiable functions concluded in 0.08975262 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009282659 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007831643 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.0139e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.025017185 [ Info: Selecting generators in 0.009507597 [ Info: Inclusion checked with probability 0.995 in 0.006538796 seconds [ Info: The search for identifiable functions concluded in 0.087224405 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009624146 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008307028 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.893e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.02350373 [ Info: Selecting generators in 0.008900803 [ Info: Inclusion checked with probability 0.995 in 0.006473156 seconds [ Info: The search for identifiable functions concluded in 0.083755539 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009409717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005373248 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.068e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000205518 [ Info: Selecting generators in 0.029662269 [ Info: Inclusion checked with probability 0.995 in 0.011498217 seconds [ Info: The search for identifiable functions concluded in 0.579608238 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010331259 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006266728 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 1.943e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000241407 [ Info: Selecting generators in 0.041172876 [ Info: Inclusion checked with probability 0.995 in 0.013375489 seconds [ Info: The search for identifiable functions concluded in 1.086045563 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011686676 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008198699 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.028e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000177078 [ Info: Selecting generators in 0.027382881 [ Info: Inclusion checked with probability 0.995 in 0.009983062 seconds [ Info: The search for identifiable functions concluded in 0.373178721 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008622615 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006056131 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 1.9009e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.141318106 [ Info: Selecting generators in 0.045102898 [ Info: Inclusion checked with probability 0.995 in 0.010315079 seconds [ Info: The search for identifiable functions concluded in 2.494395755 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008795683 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005724604 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.184e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.24066449 [ Info: Selecting generators in 0.046072928 [ Info: Inclusion checked with probability 0.995 in 0.01119965 seconds [ Info: The search for identifiable functions concluded in 1.273999119 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008876223 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006420278 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.077e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.194654192 [ Info: Selecting generators in 0.044984179 [ Info: Inclusion checked with probability 0.995 in 0.009776784 seconds [ Info: The search for identifiable functions concluded in 0.549409394 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01636118 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010277969 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 5.9239e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104659 [ Info: Selecting generators in 0.006257469 [ Info: Inclusion checked with probability 0.995 in 0.010695106 seconds [ Info: The search for identifiable functions concluded in 0.072585408 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016589997 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011717875 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.9169e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111659 [ Info: Selecting generators in 0.008371288 [ Info: Inclusion checked with probability 0.995 in 0.011373168 seconds [ Info: The search for identifiable functions concluded in 0.079976116 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017866115 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012983563 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 6.631e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000164418 [ Info: Selecting generators in 0.012097801 [ Info: Inclusion checked with probability 0.995 in 0.015893744 seconds [ Info: The search for identifiable functions concluded in 0.684100373 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022915696 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013130891 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 6.3699e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.039678171 [ Info: Selecting generators in 0.011765235 [ Info: Inclusion checked with probability 0.995 in 0.011068011 seconds [ Info: The search for identifiable functions concluded in 0.133737489 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016730086 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012770565 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.9829e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.030524511 [ Info: Selecting generators in 0.011715345 [ Info: Inclusion checked with probability 0.995 in 0.010347349 seconds [ Info: The search for identifiable functions concluded in 0.118148071 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017934414 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012130411 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 6.475e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.034797059 [ Info: Selecting generators in 0.011819964 [ Info: Inclusion checked with probability 0.995 in 0.009624436 seconds [ Info: The search for identifiable functions concluded in 0.117964254 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008055571 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01022099 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.1789e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000144099 [ Info: Selecting generators in 0.05710044 [ Info: Inclusion checked with probability 0.995 in 0.014393549 seconds [ Info: The search for identifiable functions concluded in 0.358310747 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007948852 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011546627 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 4.717e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132159 [ Info: Selecting generators in 0.056530596 [ Info: Inclusion checked with probability 0.995 in 0.013086781 seconds [ Info: The search for identifiable functions concluded in 0.400114918 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00808403 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.025609739 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.6319e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135008 [ Info: Selecting generators in 0.065497258 [ Info: Inclusion checked with probability 0.995 in 0.014997993 seconds [ Info: The search for identifiable functions concluded in 1.158560132 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00912733 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011771275 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 4.8989e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.061695565 [ Info: Selecting generators in 0.061636566 [ Info: Inclusion checked with probability 0.995 in 0.012531117 seconds [ Info: The search for identifiable functions concluded in 0.424853365 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007594856 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011026212 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.0499e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.063442958 [ Info: Selecting generators in 0.067835635 [ Info: Inclusion checked with probability 0.995 in 0.011756595 seconds [ Info: The search for identifiable functions concluded in 0.451437474 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007429067 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012737566 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.2299e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.103254874 [ Info: Selecting generators in 0.075735838 [ Info: Inclusion checked with probability 0.995 in 0.014567457 seconds [ Info: The search for identifiable functions concluded in 2.261711507 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.437261415 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.06633207 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.1519e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 24   ⌟ # Computing specializations.. Time: 0:00:01 Points: 37   ⌞ # Computing specializations.. Time: 0:00:01 Points: 49   ⌜ # Computing specializations.. Time: 0:00:01 Points: 63   ⌝ # Computing specializations.. Time: 0:00:02 Points: 76   ⌟ # Computing specializations.. Time: 0:00:02 Points: 89   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 24   ⌟ # Computing specializations.. Time: 0:00:01 Points: 37   ⌞ # Computing specializations.. Time: 0:00:01 Points: 50   ⌜ # Computing specializations.. Time: 0:00:04 Points: 61   ⌝ # Computing specializations.. Time: 0:00:04 Points: 74   ⌟ # Computing specializations.. Time: 0:00:04 Points: 86   ⌞ # Computing specializations.. Time: 0:00:05 Points: 98   ⌜ # Computing specializations.. Time: 0:00:05 Points: 111   ⌝ # Computing specializations.. Time: 0:00:06 Points: 122   ⌟ # Computing specializations.. Time: 0:00:06 Points: 136   ⌞ # Computing specializations.. Time: 0:00:07 Points: 149   ⌜ # Computing specializations.. Time: 0:00:07 Points: 160   ⌝ # Computing specializations.. Time: 0:00:07 Points: 172   ⌟ # Computing specializations.. Time: 0:00:08 Points: 184   ⌞ # Computing specializations.. Time: 0:00:08 Points: 196   ⌜ # Computing specializations.. Time: 0:00:08 Points: 208   ⌝ # Computing specializations.. Time: 0:00:09 Points: 220   ⌟ # Computing specializations.. Time: 0:00:09 Points: 234   ⌞ # Computing specializations.. Time: 0:00:10 Points: 246   ⌜ # Computing specializations.. Time: 0:00:10 Points: 257   ⌝ # Computing specializations.. Time: 0:00:10 Points: 266   ⌟ # Computing specializations.. Time: 0:00:11 Points: 278   ⌞ # Computing specializations.. Time: 0:00:11 Points: 289   ⌜ # Computing specializations.. Time: 0:00:11 Points: 305   ⌝ # Computing specializations.. Time: 0:00:12 Points: 319   ⌟ # Computing specializations.. Time: 0:00:12 Points: 328   ⌞ # Computing specializations.. Time: 0:00:13 Points: 339   ⌜ # Computing specializations.. Time: 0:00:13 Points: 350   ⌝ # Computing specializations.. Time: 0:00:14 Points: 361   ⌟ # Computing specializations.. Time: 0:00:14 Points: 371   ⌞ # Computing specializations.. Time: 0:00:14 Points: 382   ⌜ # Computing specializations.. Time: 0:00:15 Points: 393   ⌝ # Computing specializations.. Time: 0:00:15 Points: 404   ⌟ # Computing specializations.. Time: 0:00:16 Points: 415   ⌞ # Computing specializations.. Time: 0:00:16 Points: 426   ⌜ # Computing specializations.. Time: 0:00:16 Points: 437   ⌝ # Computing specializations.. Time: 0:00:17 Points: 448   ⌟ # Computing specializations.. Time: 0:00:17 Points: 459   ⌞ # Computing specializations.. Time: 0:00:17 Points: 470   ⌜ # Computing specializations.. Time: 0:00:18 Points: 480   ⌝ # Computing specializations.. Time: 0:00:18 Points: 491   ⌟ # Computing specializations.. Time: 0:00:19 Points: 501   ⌞ # Computing specializations.. Time: 0:00:19 Points: 512   ⌜ # Computing specializations.. Time: 0:00:19 Points: 523   ⌝ # Computing specializations.. Time: 0:00:20 Points: 532   ⌟ # Computing specializations.. Time: 0:00:20 Points: 542   ⌞ # Computing specializations.. Time: 0:00:20 Points: 551   ⌜ # Computing specializations.. Time: 0:00:21 Points: 562   ⌝ # Computing specializations.. Time: 0:00:21 Points: 572   ⌟ # Computing specializations.. Time: 0:00:22 Points: 582   ⌞ # Computing specializations.. Time: 0:00:22 Points: 592   ⌜ # Computing specializations.. Time: 0:00:22 Points: 603   ⌝ # Computing specializations.. Time: 0:00:23 Points: 614   ⌟ # Computing specializations.. Time: 0:00:23 Points: 623   ⌞ # Computing specializations.. Time: 0:00:23 Points: 633   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 0.000289397 [ Info: Selecting generators in 0.032919367 [ Info: Inclusion checked with probability 0.995 in 8.225208323 seconds [ Info: The search for identifiable functions concluded in 51.888271615 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.656222116 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.085773749 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000120719 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 60   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:03 Points: 83   ⌜ # Computing specializations.. Time: 0:00:03 Points: 94   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 43   ⌜ # Computing specializations.. Time: 0:00:01 Points: 58   ⌝ # Computing specializations.. Time: 0:00:02 Points: 72   ⌟ # Computing specializations.. Time: 0:00:02 Points: 82   ⌞ # Computing specializations.. Time: 0:00:02 Points: 92   ⌜ # Computing specializations.. Time: 0:00:03 Points: 105   ⌝ # Computing specializations.. Time: 0:00:03 Points: 117   ⌟ # Computing specializations.. Time: 0:00:04 Points: 128   ⌞ # Computing specializations.. Time: 0:00:04 Points: 142   ⌜ # Computing specializations.. Time: 0:00:04 Points: 155   ⌝ # Computing specializations.. Time: 0:00:05 Points: 164   ⌟ # Computing specializations.. Time: 0:00:05 Points: 172   ⌞ # Computing specializations.. Time: 0:00:05 Points: 186   ⌜ # Computing specializations.. Time: 0:00:06 Points: 198   ⌝ # Computing specializations.. Time: 0:00:06 Points: 210   ⌟ # Computing specializations.. Time: 0:00:06 Points: 220   ⌞ # Computing specializations.. Time: 0:00:07 Points: 232   ⌜ # Computing specializations.. Time: 0:00:07 Points: 244   ⌝ # Computing specializations.. Time: 0:00:08 Points: 256   ⌟ # Computing specializations.. Time: 0:00:08 Points: 266   ⌞ # Computing specializations.. Time: 0:00:08 Points: 277   ⌜ # Computing specializations.. Time: 0:00:09 Points: 286   ⌝ # Computing specializations.. Time: 0:00:09 Points: 297   ⌟ # Computing specializations.. Time: 0:00:09 Points: 309   ⌞ # Computing specializations.. Time: 0:00:10 Points: 320   ⌜ # Computing specializations.. Time: 0:00:10 Points: 331   ⌝ # Computing specializations.. Time: 0:00:11 Points: 342   ⌟ # Computing specializations.. Time: 0:00:11 Points: 353   ⌞ # Computing specializations.. Time: 0:00:11 Points: 362   ⌜ # Computing specializations.. Time: 0:00:12 Points: 372   ⌝ # Computing specializations.. Time: 0:00:12 Points: 382   ⌟ # Computing specializations.. Time: 0:00:12 Points: 396   ⌞ # Computing specializations.. Time: 0:00:13 Points: 409   ⌜ # Computing specializations.. Time: 0:00:13 Points: 419   ⌝ # Computing specializations.. Time: 0:00:14 Points: 429   ⌟ # Computing specializations.. Time: 0:00:14 Points: 440   ⌞ # Computing specializations.. Time: 0:00:14 Points: 449   ⌜ # Computing specializations.. Time: 0:00:15 Points: 462   ⌝ # Computing specializations.. Time: 0:00:15 Points: 473   ⌟ # Computing specializations.. Time: 0:00:15 Points: 485   ⌞ # Computing specializations.. Time: 0:00:16 Points: 497   ⌜ # Computing specializations.. Time: 0:00:16 Points: 510   ⌝ # Computing specializations.. Time: 0:00:17 Points: 523   ⌟ # Computing specializations.. Time: 0:00:17 Points: 533   ⌞ # Computing specializations.. Time: 0:00:17 Points: 542   ⌜ # Computing specializations.. Time: 0:00:18 Points: 553   ⌝ # Computing specializations.. Time: 0:00:18 Points: 563   ⌟ # Computing specializations.. Time: 0:00:18 Points: 574   ⌞ # Computing specializations.. Time: 0:00:19 Points: 585   ⌜ # Computing specializations.. Time: 0:00:19 Points: 595   ⌝ # Computing specializations.. Time: 0:00:19 Points: 608   ⌟ # Computing specializations.. Time: 0:00:20 Points: 619   ⌞ # Computing specializations.. Time: 0:00:20 Points: 632   ✓ # Computing specializations.. Time: 0:00:21 [ Info: Search for polynomial generators concluded in 0.000380136 [ Info: Selecting generators in 0.040776211 [ Info: Inclusion checked with probability 0.995 in 6.909074424 seconds [ Info: The search for identifiable functions concluded in 47.597024842 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.738932542 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.087013617 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000169259 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 13   ⌝ # Computing specializations.. Time: 0:00:00 Points: 25   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 42   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 60   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:02 Points: 77   ⌜ # Computing specializations.. Time: 0:00:03 Points: 84   ⌝ # Computing specializations.. Time: 0:00:03 Points: 93   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 33   ⌜ # Computing specializations.. Time: 0:00:01 Points: 42   ⌝ # Computing specializations.. Time: 0:00:02 Points: 51   ⌟ # Computing specializations.. Time: 0:00:02 Points: 60   ⌞ # Computing specializations.. Time: 0:00:02 Points: 69   ⌜ # Computing specializations.. Time: 0:00:03 Points: 78   ⌝ # Computing specializations.. Time: 0:00:03 Points: 87   ⌟ # Computing specializations.. Time: 0:00:03 Points: 96   ⌞ # Computing specializations.. Time: 0:00:04 Points: 105   ⌜ # Computing specializations.. Time: 0:00:04 Points: 114   ⌝ # Computing specializations.. Time: 0:00:05 Points: 123   ⌟ # Computing specializations.. Time: 0:00:05 Points: 133   ⌞ # Computing specializations.. Time: 0:00:05 Points: 141   ⌜ # Computing specializations.. Time: 0:00:06 Points: 151   ⌝ # Computing specializations.. Time: 0:00:06 Points: 159   ⌟ # Computing specializations.. Time: 0:00:06 Points: 168   ⌞ # Computing specializations.. Time: 0:00:07 Points: 177   ⌜ # Computing specializations.. Time: 0:00:07 Points: 186   ⌝ # Computing specializations.. Time: 0:00:08 Points: 195   ⌟ # Computing specializations.. Time: 0:00:08 Points: 204   ⌞ # Computing specializations.. Time: 0:00:08 Points: 213   ⌜ # Computing specializations.. Time: 0:00:09 Points: 223   ⌝ # Computing specializations.. Time: 0:00:09 Points: 232   ⌟ # Computing specializations.. Time: 0:00:09 Points: 246   ⌞ # Computing specializations.. Time: 0:00:10 Points: 257   ⌜ # Computing specializations.. Time: 0:00:10 Points: 266   ⌝ # Computing specializations.. Time: 0:00:11 Points: 273   ⌟ # Computing specializations.. Time: 0:00:11 Points: 283   ⌞ # Computing specializations.. Time: 0:00:12 Points: 292   ⌜ # Computing specializations.. Time: 0:00:12 Points: 301   ⌝ # Computing specializations.. Time: 0:00:12 Points: 310   ⌟ # Computing specializations.. Time: 0:00:13 Points: 320   ⌞ # Computing specializations.. Time: 0:00:13 Points: 329   ⌜ # Computing specializations.. Time: 0:00:13 Points: 336   ⌝ # Computing specializations.. Time: 0:00:14 Points: 345   ⌟ # Computing specializations.. Time: 0:00:14 Points: 352   ⌞ # Computing specializations.. Time: 0:00:14 Points: 362   ⌜ # Computing specializations.. Time: 0:00:15 Points: 371   ⌝ # Computing specializations.. Time: 0:00:15 Points: 381   ⌟ # Computing specializations.. Time: 0:00:16 Points: 390   ⌞ # Computing specializations.. Time: 0:00:16 Points: 400   ⌜ # Computing specializations.. Time: 0:00:16 Points: 410   ⌝ # Computing specializations.. Time: 0:00:17 Points: 418   ⌟ # Computing specializations.. Time: 0:00:17 Points: 429   ⌞ # Computing specializations.. Time: 0:00:17 Points: 440   ⌜ # Computing specializations.. Time: 0:00:18 Points: 451   ⌝ # Computing specializations.. Time: 0:00:18 Points: 462   ⌟ # Computing specializations.. Time: 0:00:19 Points: 472   ⌞ # Computing specializations.. Time: 0:00:19 Points: 482   ⌜ # Computing specializations.. Time: 0:00:19 Points: 490   ⌝ # Computing specializations.. Time: 0:00:20 Points: 500   ⌟ # Computing specializations.. Time: 0:00:20 Points: 509   ⌞ # Computing specializations.. Time: 0:00:20 Points: 518   ⌜ # Computing specializations.. Time: 0:00:21 Points: 527   ⌝ # Computing specializations.. Time: 0:00:21 Points: 535   ⌟ # Computing specializations.. Time: 0:00:21 Points: 544   ⌞ # Computing specializations.. Time: 0:00:22 Points: 551   ⌜ # Computing specializations.. Time: 0:00:22 Points: 560   ⌝ # Computing specializations.. Time: 0:00:22 Points: 569   ⌟ # Computing specializations.. Time: 0:00:23 Points: 577   ⌞ # Computing specializations.. Time: 0:00:23 Points: 586   ⌜ # Computing specializations.. Time: 0:00:24 Points: 593   ⌝ # Computing specializations.. Time: 0:00:24 Points: 602   ⌟ # Computing specializations.. Time: 0:00:24 Points: 611   ⌞ # Computing specializations.. Time: 0:00:25 Points: 619   ⌜ # Computing specializations.. Time: 0:00:25 Points: 628   ⌝ # Computing specializations.. Time: 0:00:25 Points: 636   ✓ # Computing specializations.. Time: 0:00:26 [ Info: Search for polynomial generators concluded in 0.000339497 [ Info: Selecting generators in 0.059051181 [ Info: Inclusion checked with probability 0.995 in 8.405523199 seconds [ Info: The search for identifiable functions concluded in 65.120127999 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.749732964 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.078891996 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000134499 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 15   ⌟ # Computing specializations.. Time: 0:00:00 Points: 24   ⌞ # Computing specializations.. Time: 0:00:01 Points: 33   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 52   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 81   ⌝ # Computing specializations.. Time: 0:00:03 Points: 91   ⌟ # Computing specializations.. Time: 0:00:04 Points: 101   ⌞ # Computing specializations.. Time: 0:00:04 Points: 111   ⌜ # Computing specializations.. Time: 0:00:04 Points: 122   ⌝ # Computing specializations.. Time: 0:00:05 Points: 132   ⌟ # Computing specializations.. Time: 0:00:05 Points: 142   ⌞ # Computing specializations.. Time: 0:00:06 Points: 152   ⌜ # Computing specializations.. Time: 0:00:06 Points: 162   ⌝ # Computing specializations.. Time: 0:00:06 Points: 171   ⌟ # Computing specializations.. Time: 0:00:07 Points: 182   ⌞ # Computing specializations.. Time: 0:00:07 Points: 192   ⌜ # Computing specializations.. Time: 0:00:07 Points: 202   ⌝ # Computing specializations.. Time: 0:00:08 Points: 212   ⌟ # Computing specializations.. Time: 0:00:08 Points: 223   ⌞ # Computing specializations.. Time: 0:00:09 Points: 233   ⌜ # Computing specializations.. Time: 0:00:09 Points: 243   ⌝ # Computing specializations.. Time: 0:00:09 Points: 253   ⌟ # Computing specializations.. Time: 0:00:10 Points: 264   ⌞ # Computing specializations.. Time: 0:00:10 Points: 274   ⌜ # Computing specializations.. Time: 0:00:11 Points: 285   ⌝ # Computing specializations.. Time: 0:00:11 Points: 295   ⌟ # Computing specializations.. Time: 0:00:11 Points: 306   ⌞ # Computing specializations.. Time: 0:00:12 Points: 316   ⌜ # Computing specializations.. Time: 0:00:12 Points: 326   ⌝ # Computing specializations.. Time: 0:00:12 Points: 335   ⌟ # Computing specializations.. Time: 0:00:13 Points: 343   ⌞ # Computing specializations.. Time: 0:00:13 Points: 352   ⌜ # Computing specializations.. Time: 0:00:14 Points: 361   ⌝ # Computing specializations.. Time: 0:00:14 Points: 371   ⌟ # Computing specializations.. Time: 0:00:14 Points: 380   ⌞ # Computing specializations.. Time: 0:00:15 Points: 392   ⌜ # Computing specializations.. Time: 0:00:15 Points: 403   ⌝ # Computing specializations.. Time: 0:00:16 Points: 413   ⌟ # Computing specializations.. Time: 0:00:16 Points: 423   ⌞ # Computing specializations.. Time: 0:00:16 Points: 434   ⌜ # Computing specializations.. Time: 0:00:17 Points: 444   ⌝ # Computing specializations.. Time: 0:00:17 Points: 454   ⌟ # Computing specializations.. Time: 0:00:17 Points: 464   ⌞ # Computing specializations.. Time: 0:00:18 Points: 473   ⌜ # Computing specializations.. Time: 0:00:18 Points: 482   ⌝ # Computing specializations.. Time: 0:00:19 Points: 491   ⌟ # Computing specializations.. Time: 0:00:19 Points: 501   ⌞ # Computing specializations.. Time: 0:00:19 Points: 510   ⌜ # Computing specializations.. Time: 0:00:20 Points: 521   ⌝ # Computing specializations.. Time: 0:00:20 Points: 530   ⌟ # Computing specializations.. Time: 0:00:21 Points: 540   ⌞ # Computing specializations.. Time: 0:00:21 Points: 550   ⌜ # Computing specializations.. Time: 0:00:21 Points: 559   ⌝ # Computing specializations.. Time: 0:00:22 Points: 568   ⌟ # Computing specializations.. Time: 0:00:22 Points: 577   ⌞ # Computing specializations.. Time: 0:00:22 Points: 587   ⌜ # Computing specializations.. Time: 0:00:23 Points: 596   ⌝ # Computing specializations.. Time: 0:00:23 Points: 607   ⌟ # Computing specializations.. Time: 0:00:24 Points: 617   ⌞ # Computing specializations.. Time: 0:00:24 Points: 627   ⌜ # Computing specializations.. Time: 0:00:24 Points: 637   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 2.101367551 [ Info: Selecting generators in 0.034384263 [ Info: Inclusion checked with probability 0.995 in 8.439685138 seconds [ Info: The search for identifiable functions concluded in 56.824203712 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.321058026 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.078204983 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000109579 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:03 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 91   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 67   ⌞ # Computing specializations.. Time: 0:00:02 Points: 77   ⌜ # Computing specializations.. Time: 0:00:03 Points: 87   ⌝ # Computing specializations.. Time: 0:00:03 Points: 97   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 117   ⌜ # Computing specializations.. Time: 0:00:04 Points: 127   ⌝ # Computing specializations.. Time: 0:00:05 Points: 137   ⌟ # Computing specializations.. Time: 0:00:05 Points: 148   ⌞ # Computing specializations.. Time: 0:00:06 Points: 158   ⌜ # Computing specializations.. Time: 0:00:06 Points: 168   ⌝ # Computing specializations.. Time: 0:00:06 Points: 177   ⌟ # Computing specializations.. Time: 0:00:07 Points: 188   ⌞ # Computing specializations.. Time: 0:00:07 Points: 198   ⌜ # Computing specializations.. Time: 0:00:07 Points: 209   ⌝ # Computing specializations.. Time: 0:00:08 Points: 219   ⌟ # Computing specializations.. Time: 0:00:08 Points: 230   ⌞ # Computing specializations.. Time: 0:00:09 Points: 240   ⌜ # Computing specializations.. Time: 0:00:09 Points: 251   ⌝ # Computing specializations.. Time: 0:00:09 Points: 261   ⌟ # Computing specializations.. Time: 0:00:10 Points: 272   ⌞ # Computing specializations.. Time: 0:00:10 Points: 282   ⌜ # Computing specializations.. Time: 0:00:11 Points: 293   ⌝ # Computing specializations.. Time: 0:00:11 Points: 303   ⌟ # Computing specializations.. Time: 0:00:11 Points: 314   ⌞ # Computing specializations.. Time: 0:00:12 Points: 324   ⌜ # Computing specializations.. Time: 0:00:12 Points: 335   ⌝ # Computing specializations.. Time: 0:00:13 Points: 345   ⌟ # Computing specializations.. Time: 0:00:13 Points: 354   ⌞ # Computing specializations.. Time: 0:00:13 Points: 363   ⌜ # Computing specializations.. Time: 0:00:14 Points: 372   ⌝ # Computing specializations.. Time: 0:00:14 Points: 382   ⌟ # Computing specializations.. Time: 0:00:14 Points: 390   ⌞ # Computing specializations.. Time: 0:00:15 Points: 401   ⌜ # Computing specializations.. Time: 0:00:15 Points: 411   ⌝ # Computing specializations.. Time: 0:00:15 Points: 422   ⌟ # Computing specializations.. Time: 0:00:16 Points: 432   ⌞ # Computing specializations.. Time: 0:00:16 Points: 443   ⌜ # Computing specializations.. Time: 0:00:17 Points: 453   ⌝ # Computing specializations.. Time: 0:00:17 Points: 463   ⌟ # Computing specializations.. Time: 0:00:17 Points: 473   ⌞ # Computing specializations.. Time: 0:00:18 Points: 482   ⌜ # Computing specializations.. Time: 0:00:18 Points: 492   ⌝ # Computing specializations.. Time: 0:00:18 Points: 500   ⌟ # Computing specializations.. Time: 0:00:19 Points: 510   ⌞ # Computing specializations.. Time: 0:00:19 Points: 520   ⌜ # Computing specializations.. Time: 0:00:20 Points: 530   ⌝ # Computing specializations.. Time: 0:00:20 Points: 540   ⌟ # Computing specializations.. Time: 0:00:20 Points: 551   ⌞ # Computing specializations.. Time: 0:00:21 Points: 561   ⌜ # Computing specializations.. Time: 0:00:21 Points: 570   ⌝ # Computing specializations.. Time: 0:00:21 Points: 579   ⌟ # Computing specializations.. Time: 0:00:22 Points: 588   ⌞ # Computing specializations.. Time: 0:00:22 Points: 598   ⌜ # Computing specializations.. Time: 0:00:23 Points: 606   ⌝ # Computing specializations.. Time: 0:00:23 Points: 616   ⌟ # Computing specializations.. Time: 0:00:23 Points: 626   ⌞ # Computing specializations.. Time: 0:00:24 Points: 637   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 2.932845483 [ Info: Selecting generators in 0.039282215 [ Info: Inclusion checked with probability 0.995 in 9.129589252 seconds [ Info: The search for identifiable functions concluded in 57.063855135 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.425066454 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.090459903 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000113489 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 24   ⌞ # Computing specializations.. Time: 0:00:01 Points: 33   ⌜ # Computing specializations.. Time: 0:00:01 Points: 41   ⌝ # Computing specializations.. Time: 0:00:02 Points: 50   ⌟ # Computing specializations.. Time: 0:00:02 Points: 59   ⌞ # Computing specializations.. Time: 0:00:03 Points: 69   ⌜ # Computing specializations.. Time: 0:00:03 Points: 78   ⌝ # Computing specializations.. Time: 0:00:03 Points: 88   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:03 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 81   ⌝ # Computing specializations.. Time: 0:00:03 Points: 90   ⌟ # Computing specializations.. Time: 0:00:04 Points: 100   ⌞ # Computing specializations.. Time: 0:00:04 Points: 109   ⌜ # Computing specializations.. Time: 0:00:05 Points: 118   ⌝ # Computing specializations.. Time: 0:00:05 Points: 127   ⌟ # Computing specializations.. Time: 0:00:05 Points: 136   ⌞ # Computing specializations.. Time: 0:00:06 Points: 145   ⌜ # Computing specializations.. Time: 0:00:06 Points: 153   ⌝ # Computing specializations.. Time: 0:00:06 Points: 161   ⌟ # Computing specializations.. Time: 0:00:07 Points: 168   ⌞ # Computing specializations.. Time: 0:00:07 Points: 177   ⌜ # Computing specializations.. Time: 0:00:08 Points: 184   ⌝ # Computing specializations.. Time: 0:00:08 Points: 194   ⌟ # Computing specializations.. Time: 0:00:08 Points: 203   ⌞ # Computing specializations.. Time: 0:00:09 Points: 212   ⌜ # Computing specializations.. Time: 0:00:09 Points: 221   ⌝ # Computing specializations.. Time: 0:00:09 Points: 229   ⌟ # Computing specializations.. Time: 0:00:10 Points: 237   ⌞ # Computing specializations.. Time: 0:00:10 Points: 245   ⌜ # Computing specializations.. Time: 0:00:11 Points: 254   ⌝ # Computing specializations.. Time: 0:00:11 Points: 262   ⌟ # Computing specializations.. Time: 0:00:11 Points: 271   ⌞ # Computing specializations.. Time: 0:00:12 Points: 280   ⌜ # Computing specializations.. Time: 0:00:12 Points: 289   ⌝ # Computing specializations.. Time: 0:00:13 Points: 298   ⌟ # Computing specializations.. Time: 0:00:13 Points: 308   ⌞ # Computing specializations.. Time: 0:00:13 Points: 317   ⌜ # Computing specializations.. Time: 0:00:14 Points: 325   ⌝ # Computing specializations.. Time: 0:00:14 Points: 333   ⌟ # Computing specializations.. Time: 0:00:14 Points: 341   ⌞ # Computing specializations.. Time: 0:00:15 Points: 350   ⌜ # Computing specializations.. Time: 0:00:15 Points: 357   ⌝ # Computing specializations.. Time: 0:00:15 Points: 366   ⌟ # Computing specializations.. Time: 0:00:16 Points: 374   ⌞ # Computing specializations.. Time: 0:00:16 Points: 382   ⌜ # Computing specializations.. Time: 0:00:16 Points: 390   ⌝ # Computing specializations.. Time: 0:00:17 Points: 398   ⌟ # Computing specializations.. Time: 0:00:17 Points: 407   ⌞ # Computing specializations.. Time: 0:00:18 Points: 414   ⌜ # Computing specializations.. Time: 0:00:18 Points: 424   ⌝ # Computing specializations.. Time: 0:00:18 Points: 433   ⌟ # Computing specializations.. Time: 0:00:19 Points: 441   ⌞ # Computing specializations.. Time: 0:00:19 Points: 449   ⌜ # Computing specializations.. Time: 0:00:19 Points: 457   ⌝ # Computing specializations.. Time: 0:00:20 Points: 466   ⌟ # Computing specializations.. Time: 0:00:20 Points: 473   ⌞ # Computing specializations.. Time: 0:00:20 Points: 483   ⌜ # Computing specializations.. Time: 0:00:21 Points: 492   ⌝ # Computing specializations.. Time: 0:00:21 Points: 500   ⌟ # Computing specializations.. Time: 0:00:22 Points: 509   ⌞ # Computing specializations.. Time: 0:00:22 Points: 516   ⌜ # Computing specializations.. Time: 0:00:22 Points: 525   ⌝ # Computing specializations.. Time: 0:00:23 Points: 534   ⌟ # Computing specializations.. Time: 0:00:23 Points: 543   ⌞ # Computing specializations.. Time: 0:00:23 Points: 552   ⌜ # Computing specializations.. Time: 0:00:24 Points: 560   ⌝ # Computing specializations.. Time: 0:00:24 Points: 569   ⌟ # Computing specializations.. Time: 0:00:25 Points: 576   ⌞ # Computing specializations.. Time: 0:00:25 Points: 585   ⌜ # Computing specializations.. Time: 0:00:25 Points: 593   ⌝ # Computing specializations.. Time: 0:00:26 Points: 603   ⌟ # Computing specializations.. Time: 0:00:26 Points: 612   ⌞ # Computing specializations.. Time: 0:00:26 Points: 620   ⌜ # Computing specializations.. Time: 0:00:27 Points: 628   ⌝ # Computing specializations.. Time: 0:00:27 Points: 636   ✓ # Computing specializations.. Time: 0:00:28 [ Info: Search for polynomial generators concluded in 1.623337696 [ Info: Selecting generators in 0.039810219 [ Info: Inclusion checked with probability 0.995 in 8.253778338 seconds [ Info: The search for identifiable functions concluded in 59.67212094 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002071299 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5109e-5 [ Info: Selecting generators in 0.000171868 [ Info: Inclusion checked with probability 0.995 in 0.002125839 seconds [ Info: The search for identifiable functions concluded in 0.024732978 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001215478 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9789e-5 [ Info: Selecting generators in 0.000148028 [ Info: Inclusion checked with probability 0.995 in 0.002275238 seconds [ Info: The search for identifiable functions concluded in 0.009038341 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001073879 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1069e-5 [ Info: Selecting generators in 0.000121179 [ Info: Inclusion checked with probability 0.995 in 0.0020859 seconds [ Info: The search for identifiable functions concluded in 0.008432067 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000968321 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000497845 [ Info: Selecting generators in 0.000136549 [ Info: Inclusion checked with probability 0.995 in 0.001890982 seconds [ Info: The search for identifiable functions concluded in 0.008358368 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000913641 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000380107 [ Info: Selecting generators in 0.000147178 [ Info: Inclusion checked with probability 0.995 in 0.001889272 seconds [ Info: The search for identifiable functions concluded in 0.007869062 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000940531 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000409426 [ Info: Selecting generators in 0.000141709 [ Info: Inclusion checked with probability 0.995 in 0.001954921 seconds [ Info: The search for identifiable functions concluded in 0.008655315 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001316017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001787873 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.3909e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000434896 [ Info: Selecting generators in 0.000786743 [ Info: Inclusion checked with probability 0.995 in 0.001880312 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2039e-5 [ Info: Selecting generators in 0.000479395 [ Info: Inclusion checked with probability 0.995 in 0.002321607 seconds [ Info: The search for identifiable functions concluded in 0.020168842 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001158819 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000988991 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.631e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000337787 [ Info: Selecting generators in 0.000596164 [ Info: Inclusion checked with probability 0.995 in 0.001654124 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5479e-5 [ Info: Selecting generators in 0.000411026 [ Info: Inclusion checked with probability 0.995 in 0.002232369 seconds [ Info: The search for identifiable functions concluded in 0.015653977 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001117539 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00100515 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.885e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000430926 [ Info: Selecting generators in 0.000747072 [ Info: Inclusion checked with probability 0.995 in 0.001753653 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6899e-5 [ Info: Selecting generators in 0.000440456 [ Info: Inclusion checked with probability 0.995 in 0.002348367 seconds [ Info: The search for identifiable functions concluded in 0.017786666 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001167659 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001042849 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.755e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000423106 [ Info: Selecting generators in 0.000824722 [ Info: Inclusion checked with probability 0.995 in 0.001854081 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.219883254 [ Info: Selecting generators in 0.000476236 [ Info: Inclusion checked with probability 0.995 in 0.001866702 seconds [ Info: The search for identifiable functions concluded in 0.238044695 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000936261 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000832932 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.636e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000308237 [ Info: Selecting generators in 0.000672303 [ Info: Inclusion checked with probability 0.995 in 0.001857402 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000613324 [ Info: Selecting generators in 0.000515185 [ Info: Inclusion checked with probability 0.995 in 0.002411376 seconds [ Info: The search for identifiable functions concluded in 0.017929214 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001167969 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001093379 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.841e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000395956 [ Info: Selecting generators in 0.000731773 [ Info: Inclusion checked with probability 0.995 in 0.001821042 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000605854 [ Info: Selecting generators in 0.000492975 [ Info: Inclusion checked with probability 0.995 in 0.002402746 seconds [ Info: The search for identifiable functions concluded in 0.01932872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001891051 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001576734 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.8709e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007322718 [ Info: Selecting generators in 0.002187198 [ Info: Inclusion checked with probability 0.995 in 0.00306638 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000129968 [ Info: Selecting generators in 0.003345807 [ Info: Inclusion checked with probability 0.995 in 0.005319168 seconds [ Info: The search for identifiable functions concluded in 0.047777921 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002514886 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001986441 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.15e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00815507 [ Info: Selecting generators in 0.002595294 [ Info: Inclusion checked with probability 0.995 in 0.003476936 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123769 [ Info: Selecting generators in 0.003371257 [ Info: Inclusion checked with probability 0.995 in 0.005392357 seconds [ Info: The search for identifiable functions concluded in 0.052076809 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002417586 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00199527 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.786e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007920513 [ Info: Selecting generators in 0.002514215 [ Info: Inclusion checked with probability 0.995 in 0.003448036 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000128229 [ Info: Selecting generators in 0.003413846 [ Info: Inclusion checked with probability 0.995 in 0.005569056 seconds [ Info: The search for identifiable functions concluded in 0.051209318 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002382357 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00205606 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.218e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00817154 [ Info: Selecting generators in 0.002352007 [ Info: Inclusion checked with probability 0.995 in 0.003114009 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.027348511 [ Info: Selecting generators in 0.004280628 [ Info: Inclusion checked with probability 0.995 in 0.006261139 seconds [ Info: The search for identifiable functions concluded in 0.077328772 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002731633 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002255898 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.086e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008584335 [ Info: Selecting generators in 0.002788963 [ Info: Inclusion checked with probability 0.995 in 0.003843262 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.029453471 [ Info: Selecting generators in 0.003971421 [ Info: Inclusion checked with probability 0.995 in 0.00607325 seconds [ Info: The search for identifiable functions concluded in 0.085870888 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002828943 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002206758 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.924e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008605896 [ Info: Selecting generators in 0.002653464 [ Info: Inclusion checked with probability 0.995 in 0.003680474 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.029965936 [ Info: Selecting generators in 0.00409583 [ Info: Inclusion checked with probability 0.995 in 0.005945132 seconds [ Info: The search for identifiable functions concluded in 0.087862748 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002830992 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002223278 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.2919e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008612165 [ Info: Selecting generators in 0.002691214 [ Info: Inclusion checked with probability 0.995 in 0.003840282 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137058 [ Info: Selecting generators in 0.003954392 [ Info: Inclusion checked with probability 0.995 in 0.006073681 seconds [ Info: The search for identifiable functions concluded in 0.058185319 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002640454 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002230048 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.25e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008415807 [ Info: Selecting generators in 0.002596775 [ Info: Inclusion checked with probability 0.995 in 0.003739433 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134389 [ Info: Selecting generators in 0.003914971 [ Info: Inclusion checked with probability 0.995 in 0.005743154 seconds [ Info: The search for identifiable functions concluded in 0.055286147 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002644764 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002227368 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.0309e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008205 [ Info: Selecting generators in 0.002554145 [ Info: Inclusion checked with probability 0.995 in 0.003541445 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134829 [ Info: Selecting generators in 0.003821322 [ Info: Inclusion checked with probability 0.995 in 0.005756533 seconds [ Info: The search for identifiable functions concluded in 0.055238238 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002511035 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002105159 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.43e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007585006 [ Info: Selecting generators in 0.002656484 [ Info: Inclusion checked with probability 0.995 in 0.003575095 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.475806403 [ Info: Selecting generators in 0.003851372 [ Info: Inclusion checked with probability 0.995 in 0.005299178 seconds [ Info: The search for identifiable functions concluded in 0.529901932 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001926761 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001725803 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.581e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005748234 [ Info: Selecting generators in 0.001941421 [ Info: Inclusion checked with probability 0.995 in 0.002654294 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.023361 [ Info: Selecting generators in 0.002891632 [ Info: Inclusion checked with probability 0.995 in 0.004482716 seconds [ Info: The search for identifiable functions concluded in 0.063031632 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001954751 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001828892 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.8659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00603373 [ Info: Selecting generators in 0.002146739 [ Info: Inclusion checked with probability 0.995 in 0.002852862 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021590548 [ Info: Selecting generators in 0.00304997 [ Info: Inclusion checked with probability 0.995 in 0.004745383 seconds [ Info: The search for identifiable functions concluded in 0.063693735 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006402477 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004455577 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.602e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001800322 [ Info: Selecting generators in 0.007278379 [ Info: Inclusion checked with probability 0.995 in 0.004419827 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141279 [ Info: Selecting generators in 0.008995752 [ Info: Inclusion checked with probability 0.995 in 0.007592345 seconds [ Info: The search for identifiable functions concluded in 0.326174101 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005172109 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003861293 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.938e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001475975 [ Info: Selecting generators in 0.006702855 [ Info: Inclusion checked with probability 0.995 in 0.004239378 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125829 [ Info: Selecting generators in 0.008902852 [ Info: Inclusion checked with probability 0.995 in 0.007559796 seconds [ Info: The search for identifiable functions concluded in 0.077004075 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005015551 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003740273 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.842e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002589795 [ Info: Selecting generators in 0.011415008 [ Info: Inclusion checked with probability 0.995 in 0.006872962 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000254937 [ Info: Selecting generators in 0.013924853 [ Info: Inclusion checked with probability 0.995 in 0.011882063 seconds [ Info: The search for identifiable functions concluded in 0.128241262 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007996581 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005709434 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.431e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001828052 [ Info: Selecting generators in 0.009441568 [ Info: Inclusion checked with probability 0.995 in 0.005516726 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00506128 [ Info: Selecting generators in 0.012044512 [ Info: Inclusion checked with probability 0.995 in 0.009046181 seconds [ Info: The search for identifiable functions concluded in 0.119362779 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005929782 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004562455 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.8209e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00207515 [ Info: Selecting generators in 0.009703235 [ Info: Inclusion checked with probability 0.995 in 0.00513016 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003633774 [ Info: Selecting generators in 0.010748854 [ Info: Inclusion checked with probability 0.995 in 0.009105531 seconds [ Info: The search for identifiable functions concluded in 0.100120218 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007071021 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005413177 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.698e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002200038 [ Info: Selecting generators in 0.009968182 [ Info: Inclusion checked with probability 0.995 in 0.006340198 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003934192 [ Info: Selecting generators in 0.011532557 [ Info: Inclusion checked with probability 0.995 in 0.009448777 seconds [ Info: The search for identifiable functions concluded in 0.11014188 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001710283 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001167948 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.519e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2229e-5 [ Info: Selecting generators in 0.000503235 [ Info: Inclusion checked with probability 0.995 in 0.002475245 seconds [ Info: The search for identifiable functions concluded in 0.011789195 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001720043 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001145279 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.527e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.15e-5 [ Info: Selecting generators in 0.000506915 [ Info: Inclusion checked with probability 0.995 in 0.002348387 seconds [ Info: The search for identifiable functions concluded in 0.011822694 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001650394 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001115289 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5709e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.0599e-5 [ Info: Selecting generators in 0.000486836 [ Info: Inclusion checked with probability 0.995 in 0.002632495 seconds [ Info: The search for identifiable functions concluded in 0.011610636 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001719913 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001158449 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.558e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004419776 [ Info: Selecting generators in 0.000605964 [ Info: Inclusion checked with probability 0.995 in 0.002378807 seconds [ Info: The search for identifiable functions concluded in 0.016128711 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001650494 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001097569 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.352e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004375217 [ Info: Selecting generators in 0.000564855 [ Info: Inclusion checked with probability 0.995 in 0.002393457 seconds [ Info: The search for identifiable functions concluded in 0.015763765 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001657534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001109139 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.4229e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004477216 [ Info: Selecting generators in 0.000580115 [ Info: Inclusion checked with probability 0.995 in 0.002313278 seconds [ Info: The search for identifiable functions concluded in 0.015790385 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002682814 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001904012 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.755e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002937441 [ Info: Selecting generators in 0.00103099 [ Info: Inclusion checked with probability 0.995 in 0.001864672 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115169 [ Info: Selecting generators in 0.004300997 [ Info: Inclusion checked with probability 0.995 in 0.003492636 seconds [ Info: The search for identifiable functions concluded in 0.032889227 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002755283 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001924172 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.586e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002314218 [ Info: Selecting generators in 0.000774893 [ Info: Inclusion checked with probability 0.995 in 0.001910921 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110919 [ Info: Selecting generators in 0.004267978 [ Info: Inclusion checked with probability 0.995 in 0.003459206 seconds [ Info: The search for identifiable functions concluded in 0.031443752 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002871161 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00198269 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.621e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002457966 [ Info: Selecting generators in 0.000776402 [ Info: Inclusion checked with probability 0.995 in 0.001753342 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000167688 [ Info: Selecting generators in 0.00611328 [ Info: Inclusion checked with probability 0.995 in 0.007761794 seconds [ Info: The search for identifiable functions concluded in 0.039510752 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004686654 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002538945 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.477e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002306457 [ Info: Selecting generators in 0.000816782 [ Info: Inclusion checked with probability 0.995 in 0.001979441 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.023630949 [ Info: Selecting generators in 0.004389697 [ Info: Inclusion checked with probability 0.995 in 0.003527885 seconds [ Info: The search for identifiable functions concluded in 0.058422007 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002697254 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001871702 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.307e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002394157 [ Info: Selecting generators in 0.000798492 [ Info: Inclusion checked with probability 0.995 in 0.001740103 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.027187434 [ Info: Selecting generators in 0.004450656 [ Info: Inclusion checked with probability 0.995 in 0.003467126 seconds [ Info: The search for identifiable functions concluded in 0.057754024 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002755173 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001897881 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.3739e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002164288 [ Info: Selecting generators in 0.000811613 [ Info: Inclusion checked with probability 0.995 in 0.001792602 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.023044844 [ Info: Selecting generators in 0.004469086 [ Info: Inclusion checked with probability 0.995 in 0.003445346 seconds [ Info: The search for identifiable functions concluded in 0.053669813 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002319117 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001260888 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.729e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000408976 [ Info: Selecting generators in 0.000557704 [ Info: Inclusion checked with probability 0.995 in 0.001550135 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.4249e-5 [ Info: Selecting generators in 0.001172289 [ Info: Inclusion checked with probability 0.995 in 0.002295208 seconds [ Info: The search for identifiable functions concluded in 0.01941563 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00209329 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001446676 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.261e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000432426 [ Info: Selecting generators in 0.000726093 [ Info: Inclusion checked with probability 0.995 in 0.001717154 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110459 [ Info: Selecting generators in 0.001664233 [ Info: Inclusion checked with probability 0.995 in 0.003380516 seconds [ Info: The search for identifiable functions concluded in 0.023604549 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002202158 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001432146 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.621e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000419806 [ Info: Selecting generators in 0.000664223 [ Info: Inclusion checked with probability 0.995 in 0.002164119 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122179 [ Info: Selecting generators in 0.002087599 [ Info: Inclusion checked with probability 0.995 in 0.003990721 seconds [ Info: The search for identifiable functions concluded in 0.02556589 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002753073 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001848552 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.841e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000513855 [ Info: Selecting generators in 0.000904841 [ Info: Inclusion checked with probability 0.995 in 0.00197891 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006416447 [ Info: Selecting generators in 0.001835412 [ Info: Inclusion checked with probability 0.995 in 0.00310724 seconds [ Info: The search for identifiable functions concluded in 0.033239693 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002174019 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001501895 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.05e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000423526 [ Info: Selecting generators in 0.000710633 [ Info: Inclusion checked with probability 0.995 in 0.00200994 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006603075 [ Info: Selecting generators in 0.001772622 [ Info: Inclusion checked with probability 0.995 in 0.004527325 seconds [ Info: The search for identifiable functions concluded in 0.034217255 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003882192 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001484066 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.133e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000453365 [ Info: Selecting generators in 0.000681114 [ Info: Inclusion checked with probability 0.995 in 0.001887712 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006376288 [ Info: Selecting generators in 0.001766403 [ Info: Inclusion checked with probability 0.995 in 0.00306942 seconds [ Info: The search for identifiable functions concluded in 0.03158126 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001354007 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001246607 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.748e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005952502 [ Info: Selecting generators in 0.002563025 [ Info: Inclusion checked with probability 0.995 in 0.00307781 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125209 [ Info: Selecting generators in 0.002708944 [ Info: Inclusion checked with probability 0.995 in 0.003963631 seconds [ Info: The search for identifiable functions concluded in 0.037800419 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001385176 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001235018 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.934e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006089381 [ Info: Selecting generators in 0.002412236 [ Info: Inclusion checked with probability 0.995 in 0.002744913 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122759 [ Info: Selecting generators in 0.002687013 [ Info: Inclusion checked with probability 0.995 in 0.004264648 seconds [ Info: The search for identifiable functions concluded in 0.038399133 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001505395 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001506685 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.984e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005941382 [ Info: Selecting generators in 0.002450276 [ Info: Inclusion checked with probability 0.995 in 0.002831612 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123939 [ Info: Selecting generators in 0.002828712 [ Info: Inclusion checked with probability 0.995 in 0.00416448 seconds [ Info: The search for identifiable functions concluded in 0.039053237 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001436506 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001263638 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.032e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006197149 [ Info: Selecting generators in 0.002359397 [ Info: Inclusion checked with probability 0.995 in 0.002816682 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017551958 [ Info: Selecting generators in 0.003358857 [ Info: Inclusion checked with probability 0.995 in 0.00404798 seconds [ Info: The search for identifiable functions concluded in 0.056413097 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001447336 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001285057 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.449e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006444677 [ Info: Selecting generators in 0.002590565 [ Info: Inclusion checked with probability 0.995 in 0.002913772 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.816750758 [ Info: Selecting generators in 0.002536725 [ Info: Inclusion checked with probability 0.995 in 0.003363287 seconds [ Info: The search for identifiable functions concluded in 0.855987493 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001225048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001118069 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.741e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004939361 [ Info: Selecting generators in 0.00208189 [ Info: Inclusion checked with probability 0.995 in 0.002445106 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014175471 [ Info: Selecting generators in 0.002550435 [ Info: Inclusion checked with probability 0.995 in 0.003361087 seconds [ Info: The search for identifiable functions concluded in 0.047393045 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005464717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004770404 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.3879e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011788195 [ Info: Selecting generators in 0.003944311 [ Info: Inclusion checked with probability 0.995 in 0.004388127 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148988 [ Info: Selecting generators in 0.02556957 [ Info: Inclusion checked with probability 0.995 in 0.009639205 seconds [ Info: The search for identifiable functions concluded in 0.121024983 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006226879 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004956932 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.4439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012566747 [ Info: Selecting generators in 0.004171239 [ Info: Inclusion checked with probability 0.995 in 0.004675274 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000152289 [ Info: Selecting generators in 0.025435481 [ Info: Inclusion checked with probability 0.995 in 0.009691995 seconds [ Info: The search for identifiable functions concluded in 0.122092322 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005242079 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004595335 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.51e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012137431 [ Info: Selecting generators in 0.004240948 [ Info: Inclusion checked with probability 0.995 in 0.004387757 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000178518 [ Info: Selecting generators in 0.027388071 [ Info: Inclusion checked with probability 0.995 in 0.009789114 seconds [ Info: The search for identifiable functions concluded in 0.126920966 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005329758 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004882163 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.35e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012006252 [ Info: Selecting generators in 0.00408398 [ Info: Inclusion checked with probability 0.995 in 0.004478707 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.108236778 [ Info: Selecting generators in 0.028631649 [ Info: Inclusion checked with probability 0.995 in 0.009936143 seconds [ Info: The search for identifiable functions concluded in 0.246114745 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005368297 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004697164 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.6219e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011893314 [ Info: Selecting generators in 0.003965101 [ Info: Inclusion checked with probability 0.995 in 0.004486296 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.096325715 [ Info: Selecting generators in 0.027798367 [ Info: Inclusion checked with probability 0.995 in 0.009664916 seconds [ Info: The search for identifiable functions concluded in 0.219417508 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005193959 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004460516 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 2.292e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011939423 [ Info: Selecting generators in 0.003943361 [ Info: Inclusion checked with probability 0.995 in 0.004309297 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.102682203 [ Info: Selecting generators in 0.031369822 [ Info: Inclusion checked with probability 0.995 in 0.010144151 seconds [ Info: The search for identifiable functions concluded in 0.230127503 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.207625513 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.384604107 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001790183 seconds [ Info: Simplifying generating set. Simplification level: standard ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 41 running 1 of 1 signal (10): User defined signal 1 _ZNK4llvm19MachineRegisterInfo14clearKillFlagsENS_8RegisterE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_117RegisterCoalescer12joinVirtRegsERN4llvm13CoalescerPairE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_117RegisterCoalescer20copyCoalesceWorkListEN4llvm15MutableArrayRefIPNS1_12MachineInstrEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_117RegisterCoalescer14coalesceLocalsEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_117RegisterCoalescer20runOnMachineFunctionERN4llvm15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1623 addModule at /source/src/jitlayers.cpp:2114 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner_learn2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:114 groebner_learn2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:92 unknown function (ip: 0x75ce279e12f7) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner_learn1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:61 unknown function (ip: 0x75ce2a31a397) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner_learn1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:37 unknown function (ip: 0x75ce2a315360) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner_learn0 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:13 #groebner_learn#197 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:341 [inlined] groebner_learn at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:339 unknown function (ip: 0x75ce2a30d887) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #discover_shape!#60 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:187 discover_shape! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:169 [inlined] _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:129 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x75ce2a4e4494) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x75ce2a44b7e1) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #initial_identifiable_functions#206 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 initial_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 [inlined] #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x75ce27d6e2d4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2993 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3053 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x75ce2cc87dd2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:730 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2993 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3053 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_57745.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_78750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x75ce775d0249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ⌜ # Computing specializations.. Time: 0:00:08┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000075ce5d5fc010 Total snapshots: 37. Utilization: 100% ╎26 @Base/client.jl:577 _start() ╎ 26 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 26 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 26 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 26 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::Str… ╎ 26 @Base/loading.jl:3053 _include(mapexpr::Function, mod::Module, _pat… ╎ ╎ 26 @Base/loading.jl:2993 include_string(mapexpr::typeof(identity), mo… ╎ ╎ 26 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 26 @StructuralIdentifiability/…:150 top-level scope ╎ ╎ 26 @Base/timing.jl:730 macro expansion ╎ ╎ 26 @StructuralIdentifiability/…:151 macro expansion ╎ ╎ ╎ 26 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 26 @StructuralIdentifiability/…:153 macro expansion ╎ ╎ ╎ 26 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 26 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, … ╎ ╎ ╎ 26 @Base/loading.jl:3053 _include(mapexpr::Function, mod::Mo… ╎ ╎ ╎ ╎ 26 @Base/loading.jl:2993 include_string(mapexpr::typeof(ide… ╎ ╎ ╎ ╎ 26 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{s… ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:61 #find_identifiable_fu… ╎ ╎ ╎ ╎ 26 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 26 @Base/…ogging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:63 (::StructuralIdent… ╎ ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:86 _find_identifiabl… ╎ ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:108 _find_identifia… ╎ ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:86 initial_identif… ╎ ╎ ╎ ╎ ╎ ╎ 26 @StructuralIdentifiability/…:86 initial_identi… ╎ ╎ ╎ ╎ ╎ ╎ 26 @RationalFunctionFields/…:720 kwcall(::@Named… ╎ ╎ ╎ ╎ ╎ ╎ 26 @RationalFunctionFields/…:720 simplified_gen… ╎ ╎ ╎ ╎ ╎ ╎ 26 @RationalFunctionFields/…:548 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ 26 @RationalFunctionFields/…:548 groebner_bas… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @ParamPunPam/…:103 paramgb(blackbox::Rat… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @ParamPunPam/…:129 _paramgb(blackbox::R… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @ParamPunPam/…:169 discover_shape! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @ParamPunPam/…:187 discover_shape!(st… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:339 kwcall(::@NamedTupl… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:341 #groebner_learn#197 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:13 groebner_learn0(po… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:37 _groebner_learn1(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Groebner/…l:61 __groebner_learn… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 26 @Groebner/…l:92 groebner_learn2(… 25╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 26 @Groebner/…l:114 _groebner_learn… ✓ # Computing specializations.. Time: 0:00:20 ⌜ # Computing specializations.. Time: 0:00:01 Points: 11   ✓ # Computing specializations.. Time: 0:00:01 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_60660.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x0000731d653e1b40 Total snapshots: 422. Utilization: 0% ╎422 @Base/task.jl:1168 wait_forever() 421╎ 422 @Base/task.jl:1246 wait() [ Info: Search for polynomial generators concluded in 10.059133113 [ Info: Selecting generators in 0.195877238 [ Info: Inclusion checked with probability 0.995 in 4.820377314 seconds [ Info: Simplifying generating set. Simplification level: weak [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_60660.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) Allocations: 22850754 (Pool: 22850097; Big: 657); GC: 19 [41] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 _ZN12_GLOBAL__N_112AllocaSlicesC2ERKN4llvm10DataLayoutERNS1_10AllocaInstE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_14SROA11runOnAllocaERN4llvm10AllocaInstE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_14SROA7runSROAERN4llvm8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8SROAPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:787 operator() at /source/src/jitlayers.cpp:1508 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1469 [inlined] operator() at /source/src/jitlayers.cpp:1644 [inlined] addModule at /source/src/jitlayers.cpp:2101 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner_learn1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:61 unknown function (ip: 0x75ce2a31a397) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner_learn1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:37 unknown function (ip: 0x75ce2a315360) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner_learn0 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:13 #groebner_learn#197 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:341 [inlined] groebner_learn at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:339 unknown function (ip: 0x75ce2a30d887) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #discover_shape!#60 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:187 discover_shape! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:169 [inlined] _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:129 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x75ce2a4e4494) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x75ce27d6f129) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x75ce27d6e2d4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2993 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3053 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x75ce2cc87dd2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:730 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2993 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3053 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_57745.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_78750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x75ce775d0249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1438177890 (Pool: 1438174407; Big: 3483); GC: 644 PkgEval terminated after 2764.54s: test duration exceeded the time limit