Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.1260 (89243d1cdf*) started at 2025-11-16T16:15:04.312 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 8.85s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.81s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1302.8 ms ✓ Measurements 4836.0 ms ✓ StatsBase 8308.6 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 16 seconds. 56 already precompiled. Precompilation completed after 27.71s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_uzGcEY/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_uzGcEY/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:07 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012252108200408497 Iteration 10: d = 1.312227586526786e-5 Iteration 20: d = 1.936553335539442e-7 Iteration 30: d = 3.1790228979061785e-9 Iteration 40: d = 5.37417481131378e-11 Iteration 50: d = 9.2049986046637e-13 Iteration 60: d = 1.5868032335616644e-14 Converged after 65 iterations. d = 2.0599760129883916e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 63%|████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012382627062060704 Iteration 10: d = 1.583873840836801e-5 Iteration 20: d = 2.382637921708211e-7 Iteration 30: d = 3.884204006614431e-9 Iteration 40: d = 6.508505490946964e-11 Iteration 50: d = 1.1046044425292306e-12 Iteration 60: d = 1.886250442774503e-14 Converged after 66 iterations. d = 1.6366640328544795e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 59%|███████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011542497616696319 Iteration 10: d = 1.4835160313086187e-5 Iteration 20: d = 2.3069071546156586e-7 Iteration 30: d = 3.785135322565181e-9 Iteration 40: d = 6.315154363183645e-11 Iteration 50: d = 1.0621783013091279e-12 Iteration 60: d = 1.7944415773058315e-14 Converged after 66 iterations. d = 1.5652876440527757e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 61%|████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011827164722241377 Iteration 10: d = 1.7161811371121427e-5 Iteration 20: d = 2.9067708819123773e-7 Iteration 30: d = 5.014604322066257e-9 Iteration 40: d = 8.622353847937616e-11 Iteration 50: d = 1.4788775557807126e-12 Iteration 60: d = 2.5332102354184156e-14 Converged after 66 iterations. d = 2.2157449418139414e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013443047077866285 Iteration 10: d = 1.2400219005386215e-5 Iteration 20: d = 1.4700768857923786e-7 Iteration 30: d = 2.0085509963443638e-9 Iteration 40: d = 2.929696849997384e-11 Iteration 50: d = 4.424252319179794e-13 Iteration 60: d = 6.848019685288792e-15 Converged after 63 iterations. d = 1.9390647303470167e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012765831643231724 Iteration 10: d = 9.208249097857622e-6 Iteration 20: d = 9.62517855250037e-8 Iteration 30: d = 1.274686698450878e-9 Iteration 40: d = 1.839245429866137e-11 Iteration 50: d = 2.7669973474686375e-13 Iteration 60: d = 4.264403377398385e-15 Converged after 62 iterations. d = 1.880792514324181e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014693713718379917 Iteration 10: d = 1.3004836399069275e-5 Iteration 20: d = 1.4816435459097845e-7 Iteration 30: d = 2.002951110966719e-9 Iteration 40: d = 2.9093260776555936e-11 Iteration 50: d = 4.3869283905018493e-13 Iteration 60: d = 6.696017235727314e-15 Converged after 63 iterations. d = 1.93580596110285e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014067142512805978 Iteration 10: d = 1.4931711762518796e-5 Iteration 20: d = 2.1535338727987245e-7 Iteration 30: d = 3.296142398820707e-9 Iteration 40: d = 5.096415230222865e-11 Iteration 50: d = 7.916942782976305e-13 Iteration 60: d = 1.2320676643333377e-14 Converged after 65 iterations. d = 1.5942972230146949e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012264029936892285 Iteration 10: d = 1.0833974021075356e-5 Iteration 20: d = 1.6237460244823028e-7 Iteration 30: d = 2.524950076453651e-9 Iteration 40: d = 3.912976114485598e-11 Iteration 50: d = 6.06042929042947e-13 Iteration 60: d = 9.392073310043353e-15 Converged after 64 iterations. d = 1.7541445259117644e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014187395118016924 Iteration 10: d = 1.0512865568391213e-5 Iteration 20: d = 1.3342056727925494e-7 Iteration 30: d = 1.9966300720268014e-9 Iteration 40: d = 3.0778423539088995e-11 Iteration 50: d = 4.792148779744045e-13 Iteration 60: d = 7.5120812545409e-15 Converged after 63 iterations. d = 2.165138268403404e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004939213947982171 Iteration 10: d = 6.049263978210456e-5 Iteration 20: d = 7.593731085876248e-7 Iteration 30: d = 1.0340639428754071e-8 Iteration 40: d = 1.4333547551251503e-10 Iteration 50: d = 1.998812449290288e-12 Iteration 60: d = 2.802139258430271e-14 Converged after 66 iterations. d = 2.1142505582487614e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003239835675309927 Iteration 10: d = 2.9947821851612206e-5 Iteration 20: d = 3.448602071307397e-7 Iteration 30: d = 4.7581176224154016e-9 Iteration 40: d = 6.854593089398839e-11 Iteration 50: d = 1.0040651552046287e-12 Iteration 60: d = 1.4802822550527892e-14 Converged after 65 iterations. d = 1.7999829816704196e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003111607882989594 Iteration 10: d = 3.850292444467808e-5 Iteration 20: d = 5.409729222967891e-7 Iteration 30: d = 8.347044663346217e-9 Iteration 40: d = 1.3301033367284532e-10 Iteration 50: d = 2.1500981218999214e-12 Iteration 60: d = 3.499189378095991e-14 Converged after 67 iterations. d = 1.9474463504865063e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002634837006811062 Iteration 10: d = 3.8353393381551905e-5 Iteration 20: d = 5.559694065869795e-7 Iteration 30: d = 8.83457961201076e-9 Iteration 40: d = 1.4554168845223348e-10 Iteration 50: d = 2.440333414152767e-12 Iteration 60: d = 4.1286228862548394e-14 Converged after 68 iterations. d = 1.5930535975447975e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013443047077866285 Iteration 10: d = 1.2400219005386215e-5 Iteration 20: d = 1.4700768857923786e-7 Iteration 30: d = 2.0085509963443638e-9 Iteration 40: d = 2.929696849997384e-11 Iteration 50: d = 4.424252319179794e-13 Iteration 60: d = 6.848019685288792e-15 Converged after 63 iterations. d = 1.9390647303470167e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014309445169278818 Iteration 10: d = 1.6753960785158037e-5 Iteration 20: d = 2.1554520923615703e-7 Iteration 30: d = 2.9918370090256917e-9 Iteration 40: d = 4.19485028384063e-11 Iteration 50: d = 5.888744595049798e-13 Iteration 60: d = 8.260052754172393e-15 Converged after 64 iterations. d = 1.5126328333334292e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013019901040077656 Iteration 10: d = 1.3120985824725538e-5 Iteration 20: d = 1.3594320607666016e-7 Iteration 30: d = 1.6846150106623407e-9 Iteration 40: d = 2.240457667267538e-11 Iteration 50: d = 3.0767039640912916e-13 Iteration 60: d = 4.279355667919321e-15 Converged after 62 iterations. d = 1.8381901890820187e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.668946836382 Iteration 2: convergence error = 4828.1451517104715 Iteration 3: convergence error = 1103.3888031469578 Iteration 4: convergence error = 319.5424913481943 Iteration 5: convergence error = 94.84307812279008 Iteration 6: convergence error = 28.299035496708257 Iteration 7: convergence error = 8.493975692255844 Iteration 8: convergence error = 2.5478902888098673 Iteration 9: convergence error = 0.7624232922523788 Iteration 10: convergence error = 0.2278254879522592 Iteration 11: convergence error = 0.06802373006939888 Iteration 12: convergence error = 0.02030113058299321 Iteration 13: convergence error = 0.0060571274013909715 Iteration 14: convergence error = 0.0018069586749334121 Iteration 15: convergence error = 0.000539004402980936 Iteration 16: convergence error = 0.00016077360692179354 Iteration 17: convergence error = 4.7953979219528264e-5 Iteration 18: convergence error = 1.4303002444648882e-5 Iteration 19: convergence error = 4.266043561074184e-6 Iteration 20: convergence error = 1.2723933195957216e-6 Iteration 21: convergence error = 3.795003067352809e-7 Iteration 22: convergence error = 1.1305769476166461e-7 Iteration 23: convergence error = 3.2806383387651294e-8 Iteration 24: convergence error = 9.472842066315934e-9 Iteration 25: convergence error = 2.7221176424063742e-9 Iteration 26: convergence error = 7.812559488229454e-10 Iteration 27: convergence error = 2.2805579646956176e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014309445169278818 Iteration 10: d = 1.6753960785158037e-5 Iteration 20: d = 2.1554520923615703e-7 Iteration 30: d = 2.9918370090256917e-9 Iteration 40: d = 4.19485028384063e-11 Iteration 50: d = 5.888744595049798e-13 Iteration 60: d = 8.260052754172393e-15 Converged after 64 iterations. d = 1.5126328333334292e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.705735594995 Iteration 2: convergence error = 4818.776216117177 Iteration 3: convergence error = 1098.5604376278925 Iteration 4: convergence error = 319.8783391949121 Iteration 5: convergence error = 94.82894336151412 Iteration 6: convergence error = 28.416228148742903 Iteration 7: convergence error = 8.548818630828919 Iteration 8: convergence error = 2.561225314197827 Iteration 9: convergence error = 0.7654570400547982 Iteration 10: convergence error = 0.22844260456213306 Iteration 11: convergence error = 0.0681210684024336 Iteration 12: convergence error = 0.02030417741821111 Iteration 13: convergence error = 0.006050273155324248 Iteration 14: convergence error = 0.0018025986360044044 Iteration 15: convergence error = 0.0005370137230329419 Iteration 16: convergence error = 0.00015997419222912868 Iteration 17: convergence error = 4.765428184327902e-5 Iteration 18: convergence error = 1.4195362155078328e-5 Iteration 19: convergence error = 4.228501666148077e-6 Iteration 20: convergence error = 1.2595769476320129e-6 Iteration 21: convergence error = 3.751906660909299e-7 Iteration 22: convergence error = 1.1162410373799503e-7 Iteration 23: convergence error = 3.233776624256279e-8 Iteration 24: convergence error = 9.323002814198844e-9 Iteration 25: convergence error = 2.6693669497035444e-9 Iteration 26: convergence error = 7.751168595859781e-10 Iteration 27: convergence error = 2.191882231272757e-10 Iteration 28: convergence error = 6.048139766789973e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:56:10 Bin 1 ray tracing: 7%|██▎ | ETA: 0:01:11 Bin 1 ray tracing: 15%|████▋ | ETA: 0:00:37 Bin 1 ray tracing: 23%|██████▉ | ETA: 0:00:26 Bin 1 ray tracing: 30%|█████████▏ | ETA: 0:00:20 Bin 1 ray tracing: 38%|███████████▍ | ETA: 0:00:16 Bin 1 ray tracing: 45%|█████████████▌ | ETA: 0:00:13 Bin 1 ray tracing: 53%|███████████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 60%|██████████████████▏ | ETA: 0:00:08 Bin 1 ray tracing: 68%|████████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:18 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 2 ray tracing: 15%|████▌ | ETA: 0:00:12 Bin 2 ray tracing: 23%|██████▊ | ETA: 0:00:10 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 2 ray tracing: 38%|███████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 45%|█████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 3 ray tracing: 22%|██████▋ | ETA: 0:00:07 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:06 Bin 3 ray tracing: 45%|█████████████▌ | ETA: 0:00:05 Bin 3 ray tracing: 56%|████████████████▉ | ETA: 0:00:04 Bin 3 ray tracing: 68%|████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 91%|███████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:06 Bin 4 ray tracing: 40%|███████████▉ | ETA: 0:00:05 Bin 4 ray tracing: 53%|███████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 66%|███████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:08 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 5 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 5 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 5 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 42%|████████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 49%|██████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 5 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▎ | ETA: 0:00:12 Bin 6 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 6 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 6 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 6 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 6 ray tracing: 48%|██████████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 7 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 7 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 7 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 7 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:02 Bin 7 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 8 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 8 ray tracing: 44%|█████████████▍ | ETA: 0:00:06 Bin 8 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 8 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 8 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:02 Bin 8 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:10 Bin 9 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 9 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 9 ray tracing: 44%|█████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 54%|████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 9 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|████▉ | ETA: 0:00:10 Bin 10 ray tracing: 25%|███████▎ | ETA: 0:00:09 Bin 10 ray tracing: 34%|█████████▊ | ETA: 0:00:08 Bin 10 ray tracing: 44%|████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 54%|███████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 63%|██████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 87%|█████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 22%|███████▍ | ETA: 0:00:04 Bin 3 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 3 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 3 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 22%|███████▍ | ETA: 0:00:04 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 22%|███████▍ | ETA: 0:00:04 Bin 5 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 5 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 5 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 6 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 7 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 7 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 8 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 9 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 27%|████████▌ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 76%|████████████████████████▏ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014309445169278818 Iteration 10: d = 1.6753960785158037e-5 Iteration 20: d = 2.1554520923615703e-7 Iteration 30: d = 2.9918370090256917e-9 Iteration 40: d = 4.19485028384063e-11 Iteration 50: d = 5.888744595049798e-13 Iteration 60: d = 8.260052754172393e-15 Converged after 64 iterations. d = 1.5126328333334292e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013119247058125145 Iteration 10: d = 1.3469893522626617e-5 Iteration 20: d = 1.417449708614813e-7 Iteration 30: d = 1.7723006431162629e-9 Iteration 40: d = 2.3662553889020072e-11 Iteration 50: d = 3.2528443906159e-13 Iteration 60: d = 4.577267058073034e-15 Converged after 62 iterations. d = 1.90846870575781e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016428116596255786 Iteration 10: d = 1.8340876371450707e-5 Iteration 20: d = 2.2973760033488408e-7 Iteration 30: d = 3.1517672295107657e-9 Iteration 40: d = 4.3694312122509036e-11 Iteration 50: d = 6.077419435315919e-13 Iteration 60: d = 8.501007981086115e-15 Converged after 64 iterations. d = 1.4934342023035093e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016220019793515667 Iteration 10: d = 1.6730199566406875e-5 Iteration 20: d = 2.0905860193390245e-7 Iteration 30: d = 2.878746013454395e-9 Iteration 40: d = 4.023564267697915e-11 Iteration 50: d = 5.644439296904173e-13 Iteration 60: d = 7.913528721674454e-15 Converged after 63 iterations. d = 2.1830321949699463e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014494470305832698 Iteration 10: d = 1.0635824168667414e-5 Iteration 20: d = 1.0371049046862587e-7 Iteration 30: d = 1.32079723696932e-9 Iteration 40: d = 1.79417574351681e-11 Iteration 50: d = 2.4900686329791947e-13 Iteration 60: d = 3.449037868617373e-15 Converged after 62 iterations. d = 1.4809336794294488e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015153222828309099 Iteration 10: d = 2.096546470396708e-5 Iteration 20: d = 2.873293282210339e-7 Iteration 30: d = 4.044469655530635e-9 Iteration 40: d = 5.695659221154375e-11 Iteration 50: d = 8.012992280286627e-13 Iteration 60: d = 1.1269581992924621e-14 Converged after 64 iterations. d = 2.051251620471752e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001577218662998723 Iteration 10: d = 1.851689076632755e-5 Iteration 20: d = 2.1353739593118667e-7 Iteration 30: d = 2.8132711892290014e-9 Iteration 40: d = 3.849249101779691e-11 Iteration 50: d = 5.332403681400076e-13 Iteration 60: d = 7.427528307466795e-15 Converged after 63 iterations. d = 2.0442819216958504e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012941747065185608 Iteration 10: d = 8.468692006770604e-6 Iteration 20: d = 7.417478500449998e-8 Iteration 30: d = 9.107660828491593e-10 Iteration 40: d = 1.2047503404792565e-11 Iteration 50: d = 1.6284218677288768e-13 Converged after 60 iterations. d = 2.1990366749139413e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013373591479287567 Iteration 10: d = 1.2312098604084343e-5 Iteration 20: d = 1.218548448415582e-7 Iteration 30: d = 1.4814994510131917e-9 Iteration 40: d = 1.9391425730986886e-11 Iteration 50: d = 2.600967629315872e-13 Iteration 60: d = 3.5028244036016857e-15 Converged after 62 iterations. d = 1.5078412278491033e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00174012810798963 Iteration 10: d = 1.7464589158630303e-5 Iteration 20: d = 2.0762277095996263e-7 Iteration 30: d = 2.747231789301489e-9 Iteration 40: d = 3.6984293986828695e-11 Iteration 50: d = 5.008346019700905e-13 Iteration 60: d = 6.837153465018452e-15 Converged after 63 iterations. d = 1.8835558639765075e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.62381797988 Iteration 2: convergence error = 4815.328244829528 Iteration 3: convergence error = 1098.5379006001192 Iteration 4: convergence error = 316.57534197346695 Iteration 5: convergence error = 94.48021592798978 Iteration 6: convergence error = 28.756227578114476 Iteration 7: convergence error = 8.69992650650397 Iteration 8: convergence error = 2.621938811789505 Iteration 9: convergence error = 0.7883471328441374 Iteration 10: convergence error = 0.2367128243913612 Iteration 11: convergence error = 0.07102094944639248 Iteration 12: convergence error = 0.021298883807730817 Iteration 13: convergence error = 0.006385810237134137 Iteration 14: convergence error = 0.0019143060358146613 Iteration 15: convergence error = 0.0005738124852996407 Iteration 16: convergence error = 0.00017199165995407384 Iteration 17: convergence error = 5.1550456419136026e-5 Iteration 18: convergence error = 1.5450779756065458e-5 Iteration 19: convergence error = 4.630886678569368e-6 Iteration 20: convergence error = 1.3879578091291478e-6 Iteration 21: convergence error = 4.1598968891776167e-7 Iteration 22: convergence error = 1.2455666364985518e-7 Iteration 23: convergence error = 3.645936885732226e-8 Iteration 24: convergence error = 1.0579242371022701e-8 Iteration 25: convergence error = 3.055902197957039e-9 Iteration 26: convergence error = 8.883489499567077e-10 Iteration 27: convergence error = 2.539763954700902e-10 Iteration 28: convergence error = 7.344169716816396e-11 Iteration 29: convergence error = 2.114575181622058e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3313688822574 K, F = -7443.578676068426, relative_change = 0.03266863111774258 Iter 2: T = 936.738109644774 K, F = -6309.698675371959, relative_change = 0.031626452135873215 Iter 3: T = 908.1888431444411 K, F = -5347.031263383961, relative_change = 0.030477319334386015 Iter 5: T = 857.083732802273 K, F = -3836.201179399596, relative_change = 0.027863867218015943 Iter 10: T = 762.0685648305447 K, F = -1661.0352313127833, relative_change = 0.019939340720607716 Iter 15: T = 706.4666972781567 K, F = -711.1375438344126, relative_change = 0.011939737156230274 Iter 20: T = 677.8844136844654 K, F = -301.3902102481598, relative_change = 0.00611108670076296 Iter 25: T = 664.5598674470505 K, F = -126.87615231637649, relative_change = 0.0028221976390072957 Iter 30: T = 658.6949028629897 K, F = -53.21937384550732, relative_change = 0.0012343466585428193 Iter 35: T = 656.1859936596103 K, F = -22.285727323059916, relative_change = 0.0005263240381810812 Iter 40: T = 655.1265166487293 K, F = -9.32526860980476, relative_change = 0.00022193368616888642 Iter 45: T = 654.6816116461465 K, F = -3.9008388895638575, relative_change = 9.313728045711384e-5 Iter 50: T = 654.4952265597497 K, F = -1.6315353130841712, relative_change = 3.900772177395044e-5 Iter 55: T = 654.4172218616148 K, F = -0.6823552037645904, relative_change = 1.6323415420643512e-5 Iter 60: T = 654.38458951804 K, F = -0.2853739339085133, relative_change = 6.8283838966466476e-6 Iter 65: T = 654.3709405590209 K, F = -0.11934763369038742, relative_change = 2.8560155444588233e-6 Iter 70: T = 654.3652320998951 K, F = -0.04991275377040233, relative_change = 1.194472960695529e-6 Iter 75: T = 654.3628447013848 K, F = -0.02087413560314272, relative_change = 4.995521540688601e-7 Iter 80: T = 654.3618462535934 K, F = -0.008729817325859757, relative_change = 2.08920302781266e-7 Iter 85: T = 654.3614286891901 K, F = -0.0036509146535760872, relative_change = 8.737325006038657e-8 Iter 90: T = 654.3612540584877 K, F = -0.0015268562481638992, relative_change = 3.654058638454072e-8 Iter 95: T = 654.3611810257931 K, F = -0.0006385495420251353, relative_change = 1.5281718320111413e-8 Iter 100: T = 654.3611504826393 K, F = -0.00026704904789187633, relative_change = 6.390998608343591e-9 Iter 105: T = 654.3611377091262 K, F = -0.00011168310130865722, relative_change = 2.6727921968263505e-9 Iter 110: T = 654.3611323670902 K, F = -4.670720748656265e-5, relative_change = 1.1177936777814929e-9 Iter 115: T = 654.361130132987 K, F = -1.9533512803926456e-5, relative_change = 4.674746928146673e-10 Iter 120: T = 654.3611291986583 K, F = -8.169148478731625e-6, relative_change = 1.9550350415444305e-10 Iter 125: T = 654.3611288079109 K, F = -3.4164358854171795e-6, relative_change = 8.176191079840381e-11 Iter 130: T = 654.3611286444956 K, F = -1.428793085678226e-6, relative_change = 3.419377880268128e-11 Iter 135: T = 654.3611285761533 K, F = -5.975383374212662e-7, relative_change = 1.4300246796313216e-11 Iter 140: T = 654.3611285475718 K, F = -2.4989690294852096e-7, relative_change = 5.9805156635865154e-12 Iter 145: T = 654.3611285356187 K, F = -1.0451038368053389e-7, relative_change = 2.5011353853872423e-12 Iter 150: T = 654.3611285306197 K, F = -4.37070452052879e-8, relative_change = 1.0459940295674453e-12 Iter 155: T = 654.3611285285292 K, F = -1.8279254720976468e-8, relative_change = 4.374578792405192e-13 Converged in 159 iterations to T = 654.3611285277746 K Iter 1: T = 970.17208770374 K, F = -6796.318190372419, relative_change = 0.029827912296260035 Iter 2: T = 942.5050470776982 K, F = -5756.593196092179, relative_change = 0.028517662976189816 Iter 3: T = 916.9551437970958 K, F = -4874.18860128334, relative_change = 0.027108505529834216 Iter 5: T = 871.996022598401 K, F = -3490.306325546531, relative_change = 0.024036299488441024 Iter 10: T = 791.9950010632145 K, F = -1502.7849835594745, relative_change = 0.015731359094794884 Iter 15: T = 748.2473770233045 K, F = -639.877736383463, relative_change = 0.008651865326626674 Iter 20: T = 726.9540893277851 K, F = -270.1448739540805, relative_change = 0.004174284805942058 Iter 25: T = 717.35523962338 K, F = -113.48045023783169, relative_change = 0.0018664408115378133 Iter 30: T = 713.201840342672 K, F = -47.551938226602964, relative_change = 0.0008038871102190696 Iter 35: T = 711.4389811447113 K, F = -19.903474698324843, relative_change = 0.00034045493287029064 Iter 40: T = 710.6970881798263 K, F = -8.326820402887313, relative_change = 0.0001431412857837547 Iter 45: T = 710.3859982103203 K, F = -3.482893935942476, relative_change = 5.999718050922296e-5 Iter 50: T = 710.2557523112749 K, F = -1.456678642593089, relative_change = 2.511501345832503e-5 Iter 55: T = 710.2012566221413 K, F = -0.6092162988862869, relative_change = 1.0507510194976703e-5 Iter 60: T = 710.1784614456807 K, F = -0.2547843125496694, relative_change = 4.395085791433042e-6 Iter 65: T = 710.1689274558438 K, F = -0.10655432868472348, relative_change = 1.8382032450413715e-6 Iter 70: T = 710.1649400919001 K, F = -0.04456237785498873, relative_change = 7.687805682858143e-7 Iter 75: T = 710.1632725049734 K, F = -0.018636533483186946, relative_change = 3.215170660057572e-7 Iter 80: T = 710.1625750960592 K, F = -0.007794023469948286, relative_change = 1.344629502803805e-7 Iter 85: T = 710.1622834305973 K, F = -0.0032595541499114145, relative_change = 5.623412943521936e-8 Iter 90: T = 710.1621614524912 K, F = -0.0013631845527170006, relative_change = 2.351780511832209e-8 Iter 95: T = 710.1621104397683 K, F = -0.0005701000731161976, relative_change = 9.8354305557394e-9 Iter 100: T = 710.1620891056344 K, F = -0.00023842266207374507, relative_change = 4.113295159439447e-9 Iter 105: T = 710.1620801834442 K, F = -9.971120477070272e-5, relative_change = 1.7202292638262254e-9 Iter 110: T = 710.1620764520776 K, F = -4.1700416711365484e-5, relative_change = 7.194204412645013e-10 Iter 115: T = 710.1620748915756 K, F = -1.743961239042413e-5, relative_change = 3.0087022533859867e-10 Iter 120: T = 710.1620742389548 K, F = -7.293453634038549e-6, relative_change = 1.2582751261008022e-10 Iter 125: T = 710.1620739660211 K, F = -3.050209346433519e-6, relative_change = 5.2622567436754456e-11 Iter 130: T = 710.162073851877 K, F = -1.2756338059194405e-6, relative_change = 2.200738323304195e-11 Iter 135: T = 710.1620738041405 K, F = -5.334853195870792e-7, relative_change = 9.203750971972604e-12 Iter 140: T = 710.1620737841765 K, F = -2.2310866920616235e-7, relative_change = 3.8490967903783074e-12 Iter 145: T = 710.1620737758274 K, F = -9.330720085465316e-8, relative_change = 1.6097467150281982e-12 Iter 150: T = 710.1620737723357 K, F = -3.902139145139927e-8, relative_change = 6.732015978492119e-13 Iter 155: T = 710.1620737708754 K, F = -1.631981494387702e-8, relative_change = 2.815513514071535e-13 Converged in 157 iterations to T = 710.1620737705664 K Iter 1: T = 974.4049369857433 K, F = -5831.859454988795, relative_change = 0.02559506301425663 Iter 2: T = 950.9991786104383 K, F = -4933.973703251541, relative_change = 0.024020566282955447 Iter 3: T = 929.708071135738 K, F = -4172.525231089825, relative_change = 0.022388144967496207 Iter 5: T = 893.116737068202 K, F = -2979.9782514411827, relative_change = 0.019033883896490737 Iter 10: T = 831.4722823744718 K, F = -1274.280769005629, relative_change = 0.011185315394489415 Iter 15: T = 800.1750833674427 K, F = -539.5729101119318, relative_change = 0.005646481198861021 Iter 20: T = 785.7009791787389 K, F = -227.02668897925446, relative_change = 0.0025873001147022254 Iter 25: T = 779.3566129798866 K, F = -95.20450739665796, relative_change = 0.0011273280018080543 Iter 30: T = 776.6478970829368 K, F = -39.86260504066994, relative_change = 0.00047987850606283084 Iter 35: T = 775.5050186325559 K, F = -16.679351388166708, relative_change = 0.0002022018459493107 Iter 40: T = 775.025265384723 K, F = -6.976970790390318, relative_change = 8.483041914552361e-5 Iter 45: T = 774.8243120541728 K, F = -2.9181097420508593, relative_change = 3.552404369339903e-5 Iter 50: T = 774.7402157589746 K, F = -1.220433384301123, relative_change = 1.486480677117473e-5 Iter 55: T = 774.7050360159122 K, F = -0.5104076976050183, relative_change = 6.2180798754819784e-6 Iter 60: T = 774.690321735438 K, F = -0.2134599733635124, relative_change = 2.600727234540618e-6 Iter 65: T = 774.6841677516619 K, F = -0.08927175124582543, relative_change = 1.087699264849199e-6 Iter 70: T = 774.6815940303857 K, F = -0.03733455467132274, relative_change = 4.5489653178889514e-7 Iter 75: T = 774.6805176603568 K, F = -0.015613764003959196, relative_change = 1.9024451056548228e-7 Iter 80: T = 774.6800675079727 K, F = -0.006529863862692942, relative_change = 7.95627621401209e-8 Iter 85: T = 774.6798792485928 K, F = -0.002730867276595772, relative_change = 3.327413856272104e-8 Iter 90: T = 774.6798005162233 K, F = -0.0011420813463627333, relative_change = 1.3915649318904261e-8 Iter 95: T = 774.6797675893978 K, F = -0.0004776320654948929, relative_change = 5.8196919975299655e-9 Iter 100: T = 774.6797538190046 K, F = -0.0001997514360436714, relative_change = 2.433864927011981e-9 Iter 105: T = 774.6797480600615 K, F = -8.353843731323529e-5, relative_change = 1.0178714299011623e-9 Iter 110: T = 774.6797456516026 K, F = -3.493677132382356e-5, relative_change = 4.256859842441718e-10 Iter 115: T = 774.6797446443563 K, F = -1.4610974181761271e-5, relative_change = 1.7802695349789011e-10 Iter 120: T = 774.679744223114 K, F = -6.1104844198967e-6, relative_change = 7.445300463570941e-11 Iter 125: T = 774.6797440469454 K, F = -2.5554786863279944e-6, relative_change = 3.113714946496122e-11 Iter 130: T = 774.6797439732695 K, F = -1.0687306165602095e-6, relative_change = 1.3021914500292863e-11 Iter 135: T = 774.6797439424574 K, F = -4.4695681122863817e-7, relative_change = 5.4459311748529475e-12 Iter 140: T = 774.6797439295714 K, F = -1.8692334646797093e-7, relative_change = 2.2775616219385573e-12 Iter 145: T = 774.6797439241823 K, F = -7.817397940090842e-8, relative_change = 9.525083874642136e-13 Iter 150: T = 774.6797439219285 K, F = -3.2692273999046506e-8, relative_change = 3.9833798187635207e-13 Converged in 154 iterations to T = 774.6797439211151 K Iter 1: T = 970.3520656547324 K, F = -6755.310043035556, relative_change = 0.02964793434526757 Iter 2: T = 942.8686078869362 K, F = -5721.578306407384, relative_change = 0.028323181596209827 Iter 3: T = 917.5048193074493 K, F = -4844.283991212537, relative_change = 0.026900660778525286 Iter 5: T = 872.9199890377088 K, F = -3468.486442410814, relative_change = 0.02380739545008416 Iter 10: T = 793.7882076089262 K, F = -1492.9038623173421, relative_change = 0.015501661909208535 Iter 15: T = 750.6765567401999 K, F = -635.4865783074554, relative_change = 0.008487453496603216 Iter 20: T = 729.7507266630452 K, F = -268.24036163262525, relative_change = 0.00408318624864977 Iter 25: T = 720.3325670376242 K, F = -112.66924452104584, relative_change = 0.0018229730178684477 Iter 30: T = 716.2605414581369 K, F = -47.20984128942612, relative_change = 0.0007846207430354068 Iter 35: T = 714.5328287657685 K, F = -19.759886721662767, relative_change = 0.0003321946511357666 Iter 40: T = 713.8058375724747 K, F = -8.26667773019074, relative_change = 0.0001396502705934409 Iter 45: T = 713.5010158376717 K, F = -3.457725252308378, relative_change = 5.853074395689599e-5 Iter 50: T = 713.3733977553882 K, F = -1.446149938296085, relative_change = 2.4500598168126806e-5 Iter 55: T = 713.3200021674419 K, F = -0.6048125680634199, relative_change = 1.0250355639148754e-5 Iter 60: T = 713.29766726202 K, F = -0.2529425320613657, relative_change = 4.287505894988306e-6 Iter 65: T = 713.2883257972546 K, F = -0.10578405875285268, relative_change = 1.7932059605847734e-6 Iter 70: T = 713.2844189555825 K, F = -0.04424023908817942, relative_change = 7.499611017709713e-7 Iter 75: T = 713.2827850450786 K, F = -0.01850181073313828, relative_change = 3.1364635409151393e-7 Iter 80: T = 713.2821017202299 K, F = -0.007737680723963081, relative_change = 1.3117129197191898e-7 Iter 85: T = 713.2818159449243 K, F = -0.0032359909253922847, relative_change = 5.4857512907076245e-8 Iter 90: T = 713.2816964301577 K, F = -0.0013533301288000121, relative_change = 2.2942086657724077e-8 Iter 95: T = 713.2816464476338 K, F = -0.0005659788363405749, relative_change = 9.594658070162217e-9 Iter 100: T = 713.2816255443416 K, F = -0.00023669911169832414, relative_change = 4.012601202223304e-9 Iter 105: T = 713.2816168023345 K, F = -9.899039617000671e-5, relative_change = 1.6781178560769969e-9 Iter 110: T = 713.2816131463226 K, F = -4.139896463628556e-5, relative_change = 7.01808924527646e-10 Iter 115: T = 713.2816116173348 K, F = -1.7313542664654236e-5, relative_change = 2.935048977192276e-10 Iter 120: T = 713.2816109778938 K, F = -7.240730100832593e-6, relative_change = 1.2274725039762308e-10 Iter 125: T = 713.2816107104719 K, F = -3.028160254658907e-6, relative_change = 5.133437381452734e-11 Iter 130: T = 713.2816105986329 K, F = -1.266412954170626e-6, relative_change = 2.146865111959188e-11 Iter 135: T = 713.2816105518605 K, F = -5.296292798773194e-7, relative_change = 8.97845066927892e-12 Iter 140: T = 713.2816105322996 K, F = -2.2149737133325687e-7, relative_change = 3.75489667529506e-12 Iter 145: T = 713.2816105241192 K, F = -9.263215139387881e-8, relative_change = 1.5703308586446995e-12 Iter 150: T = 713.281610520698 K, F = -3.8740544772153385e-8, relative_change = 6.567425243005675e-13 Iter 155: T = 713.2816105192672 K, F = -1.6202617802996144e-8, relative_change = 2.7467213429500637e-13 Converged in 157 iterations to T = 713.2816105189644 K Iter 1: T = 969.2877354664814 K, F = -6997.8186888679365, relative_change = 0.030712264533518607 Iter 2: T = 940.7155047445164 K, F = -5928.693221528962, relative_change = 0.029477553131541833 Iter 3: T = 914.2443984055686 K, F = -5021.221515001058, relative_change = 0.028139332460706937 Iter 5: T = 867.4206665792108 K, F = -3597.6838723383166, relative_change = 0.025183811215781397 Iter 10: T = 783.0154199161032 K, F = -1551.5766563082152, relative_change = 0.016918148953836126 Iter 15: T = 735.9657339429019 K, F = -661.6507544486618, relative_change = 0.009524835479162323 Iter 20: T = 712.7280294081681 K, F = -279.6190129986975, relative_change = 0.004666807757177342 Iter 25: T = 702.1621650726814 K, F = -117.52347668954276, relative_change = 0.0021037116851276537 Iter 30: T = 697.5707959048212 K, F = -49.25850548562245, relative_change = 0.0009095252544100588 Iter 35: T = 695.6182832878883 K, F = -20.62006422033436, relative_change = 0.0003858354412521625 Iter 40: T = 694.7958893017166 K, F = -8.627021137867317, relative_change = 0.0001623364003095369 Iter 45: T = 694.4509215701503 K, F = -3.6085322126302186, relative_change = 6.806313963857565e-5 Iter 50: T = 694.3064703437146 K, F = -1.5092379983684836, relative_change = 2.849503369854343e-5 Iter 55: T = 694.246027281776 K, F = -0.6312000391597962, relative_change = 1.1922256422416533e-5 Iter 60: T = 694.2207436983856 K, F = -0.26397866355152594, relative_change = 4.986956377482256e-6 Iter 65: T = 694.2101688267466 K, F = -0.11039960150047329, relative_change = 2.085766779206815e-6 Iter 70: T = 694.2057461185602 K, F = -0.04617053181129904, relative_change = 8.723209249107762e-7 Iter 75: T = 694.2038964593426 K, F = -0.019309085286569938, relative_change = 3.648199868902013e-7 Iter 80: T = 694.2031229045497 K, F = -0.008075293123051663, relative_change = 1.5257294259248634e-7 Iter 85: T = 694.2027993937846 K, F = -0.0033771845582520887, relative_change = 6.380797837699851e-8 Iter 90: T = 694.2026640975595 K, F = -0.0014123790084812349, relative_change = 2.6685285125308623e-8 Iter 95: T = 694.2026075150344 K, F = -0.0005906737841603338, relative_change = 1.1160109551683364e-8 Iter 100: T = 694.2025838515418 K, F = -0.0002470268334607839, relative_change = 4.667291904556189e-9 Iter 105: T = 694.2025739551858 K, F = -0.000103309572314636, relative_change = 1.9519173544784427e-9 Iter 110: T = 694.2025698164113 K, F = -4.3205295466974825e-5, relative_change = 8.163151441991743e-10 Iter 115: T = 694.2025680855264 K, F = -1.8068970342399737e-5, relative_change = 3.4139274240026984e-10 Iter 120: T = 694.2025673616497 K, F = -7.55666009522038e-6, relative_change = 1.4277453984458845e-10 Iter 125: T = 694.2025670589157 K, F = -3.1602857230028647e-6, relative_change = 5.971002203756326e-11 Iter 130: T = 694.2025669323089 K, F = -1.3216684566774717e-6, relative_change = 2.4971429693421265e-11 Iter 135: T = 694.2025668793602 K, F = -5.527363846624667e-7, relative_change = 1.0443328433747443e-11 Iter 140: T = 694.2025668572165 K, F = -2.3116060376970893e-7, relative_change = 4.367517994950229e-12 Iter 145: T = 694.2025668479558 K, F = -9.667408618074802e-8, relative_change = 1.826547448747974e-12 Iter 150: T = 694.2025668440829 K, F = -4.042965973116708e-8, relative_change = 7.638726649001368e-13 Iter 155: T = 694.2025668424632 K, F = -1.6908925815073417e-8, relative_change = 3.194750168313986e-13 Converged in 158 iterations to T = 694.202566841989 K Iter 1: T = 963.64051622231 K, F = -8284.542965544717, relative_change = 0.036359483777690056 Iter 2: T = 929.1638393054973 K, F = -7029.563127124703, relative_change = 0.03577752941726558 Iter 3: T = 896.5367500417777 K, F = -5963.757974870605, relative_change = 0.03511446300805966 Iter 5: T = 836.7133498983013 K, F = -4290.025234760225, relative_change = 0.033516028351683366 Iter 10: T = 717.5848146974089 K, F = -1874.3476795902673, relative_change = 0.02772070283486729 Iter 15: T = 638.5698934587698 K, F = -811.3953697696018, relative_change = 0.019767909511167886 Iter 20: T = 592.4591126048429 K, F = -347.30184873657845, relative_change = 0.011794540308011952 Iter 25: T = 568.8125546002173 K, F = -147.16576668460493, relative_change = 0.006020621429562282 Iter 30: T = 557.8061273152496 K, F = -61.946068977613045, relative_change = 0.0027761599820356874 Iter 35: T = 552.9654909192743 K, F = -25.98256471730779, relative_change = 0.0012133057949166076 Iter 40: T = 550.8955614803295 K, F = -10.880013169218751, relative_change = 0.0005171795637595222 Iter 45: T = 550.0216064966652 K, F = -4.552603192905586, relative_change = 0.00021804641337943442 Iter 50: T = 549.6546339170656 K, F = -1.9043847692751534, relative_change = 9.150036774159212e-5 Iter 55: T = 549.5009019012874 K, F = -0.7965121827190329, relative_change = 3.832117000986148e-5 Iter 60: T = 549.4365637766529 K, F = -0.3331241681330057, relative_change = 1.6035944691230087e-5 Iter 65: T = 549.4096488260141 K, F = -0.1393188259549273, relative_change = 6.708099506269029e-6 Iter 70: T = 549.398391276026 K, F = -0.05826520276685751, relative_change = 2.8057005539031835e-6 Iter 75: T = 549.3936829899271 K, F = -0.024367274631602265, relative_change = 1.1734287725474575e-6 Iter 80: T = 549.3917138857284 K, F = -0.010190697675078547, relative_change = 4.907508982388457e-7 Iter 85: T = 549.3908903753639 K, F = -0.004261873642104064, relative_change = 2.0523945567352496e-7 Iter 90: T = 549.3905459721877 K, F = -0.0017823668340423426, relative_change = 8.583386588044232e-8 Iter 95: T = 549.3904019384379 K, F = -0.0007454071626983305, relative_change = 3.589679580311387e-8 Iter 100: T = 549.3903417017635 K, F = -0.00031173818906929385, relative_change = 1.5012477097574396e-8 Iter 105: T = 549.39031651006 K, F = -0.00013037263501691765, relative_change = 6.278398647447708e-9 Iter 110: T = 549.3903059745875 K, F = -5.452339351033619e-5, relative_change = 2.6257015613593788e-9 Iter 115: T = 549.3903015685269 K, F = -2.2802334214255815e-5, relative_change = 1.0980997876384594e-9 Iter 120: T = 549.3902997258597 K, F = -9.536208443905458e-6, relative_change = 4.5923845058785517e-10 Iter 125: T = 549.3902989552342 K, F = -3.988156606654636e-6, relative_change = 1.9205902259227597e-10 Iter 130: T = 549.3902986329495 K, F = -1.6678944820824881e-6, relative_change = 8.032136560935004e-11 Iter 135: T = 549.3902984981661 K, F = -6.97533492882707e-7, relative_change = 3.35913592699727e-11 Iter 140: T = 549.3902984417981 K, F = -2.9171657245363747e-7, relative_change = 1.4048294877690573e-11 Iter 145: T = 549.3902984182242 K, F = -1.2199906998522358e-7, relative_change = 5.87515099293488e-12 Iter 150: T = 549.3902984083654 K, F = -5.102142910939911e-8, relative_change = 2.4570564345692034e-12 Iter 155: T = 549.3902984042423 K, F = -2.133748255861434e-8, relative_change = 1.0275564549086023e-12 Iter 160: T = 549.390298402518 K, F = -8.923583677544755e-9, relative_change = 4.297360751778695e-13 Converged in 164 iterations to T = 549.3902984018957 K Iter 1: T = 966.9180310820767 K, F = -7537.758087025348, relative_change = 0.03308196891792327 Iter 2: T = 935.8944783567105 K, F = -6390.247025662989, relative_change = 0.03208498727720266 Iter 3: T = 906.8989023969917 K, F = -5415.9640230851455, relative_change = 0.030981672218678497 Iter 5: T = 854.8604372878775 K, F = -3886.770861898771, relative_change = 0.02845649158821477 Iter 10: T = 757.4334647570444 K, F = -1684.452713318791, relative_change = 0.020659100891229524 Iter 15: T = 699.7576578861122 K, F = -721.8624294991976, relative_change = 0.012559689276169114 Iter 20: T = 669.8059332320644 K, F = -306.1639006826108, relative_change = 0.006502526018786529 Iter 25: T = 655.7490186274929 K, F = -128.94209055865826, relative_change = 0.0030229716338248404 Iter 30: T = 649.5395828603005 K, F = -54.097607150816586, relative_change = 0.0013264641960173851 Iter 35: T = 646.8788712118572 K, F = -22.655687927193508, relative_change = 0.0005664288459236203 Iter 40: T = 645.7544634194176 K, F = -9.480472676630717, relative_change = 0.00023899492115524572 Iter 45: T = 645.2821436432494 K, F = -3.9658325175936135, relative_change = 0.00010032398714366879 Iter 50: T = 645.0842473647576 K, F = -1.6587314494252174, relative_change = 4.2022366446119256e-5 Iter 55: T = 645.0014204619083 K, F = -0.6937315867157454, relative_change = 1.7585768881695137e-5 Iter 60: T = 644.9667699974061 K, F = -0.290132134246463, relative_change = 7.356594205107124e-6 Iter 65: T = 644.9522767880053 K, F = -0.12133765058238233, relative_change = 3.076968232175593e-6 Iter 70: T = 644.9462152098771 K, F = -0.05074501671556081, relative_change = 1.2868865556902467e-6 Iter 75: T = 644.9436801251892 K, F = -0.021222200374703404, relative_change = 5.382021173380403e-7 Iter 80: T = 644.9426199119463 K, F = -0.008875382601881365, relative_change = 2.2508444034315702e-7 Iter 85: T = 644.9421765162612 K, F = -0.0037117918648252868, relative_change = 9.413333111142271e-8 Iter 90: T = 644.9419910825677 K, F = -0.0015523158375604362, relative_change = 3.9367740993157554e-8 Iter 95: T = 644.9419135319259 K, F = -0.0006491970478537112, relative_change = 1.6464069518775665e-8 Iter 100: T = 644.9418810993117 K, F = -0.00027150196372416335, relative_change = 6.885472277227999e-9 Iter 105: T = 644.9418675356034 K, F = -0.00011354536462504505, relative_change = 2.879587049357862e-9 Iter 110: T = 644.9418618630982 K, F = -4.748602771653676e-5, relative_change = 1.204277749386994e-9 Iter 115: T = 644.9418594907887 K, F = -1.985922351782632e-5, relative_change = 5.03643336187591e-10 Iter 120: T = 644.9418584986606 K, F = -8.30536415807881e-6, relative_change = 2.1062965224741461e-10 Iter 125: T = 644.9418580837408 K, F = -3.4734037677175422e-6, relative_change = 8.808786899951144e-11 Iter 130: T = 644.9418579102163 K, F = -1.4526183456653463e-6, relative_change = 3.683938386099332e-11 Iter 135: T = 644.9418578376464 K, F = -6.075027616514461e-7, relative_change = 1.540668098531398e-11 Iter 140: T = 644.9418578072967 K, F = -2.540648013082958e-7, relative_change = 6.4432552266764675e-12 Iter 145: T = 644.9418577946042 K, F = -1.0625358182192457e-7, relative_change = 2.6946627118984698e-12 Iter 150: T = 644.9418577892959 K, F = -4.4435779111839935e-8, relative_change = 1.1269214175970193e-12 Iter 155: T = 644.941857787076 K, F = -1.8583501626423526e-8, relative_change = 4.712901723721293e-13 Converged in 160 iterations to T = 644.9418577861476 K Iter 1: T = 965.2299467291657 K, F = -7922.389712618901, relative_change = 0.03477005327083432 Iter 2: T = 932.4370314970502 K, F = -6719.390158261147, relative_change = 0.03397419997508315 Iter 3: T = 901.5918384582917 K, F = -5697.838381459686, relative_change = 0.0330801887921973 Iter 5: T = 845.6313922681275 K, F = -4093.956154079254, relative_change = 0.030979424575722288 Iter 10: T = 737.6444008881197 K, F = -1781.267108146066, relative_change = 0.02396068427819708 Iter 15: T = 670.2368517138258 K, F = -766.8579228907106, relative_change = 0.015654931783472135 Iter 20: T = 633.4218657568317 K, F = -326.49218681786965, relative_change = 0.008596897030393246 Iter 25: T = 615.5195798318338 K, F = -137.83035424285728, relative_change = 0.00414374477890825 Iter 30: T = 607.4537135689633 K, F = -57.896811664472644, relative_change = 0.0018518490945721464 Iter 35: T = 603.9645556630514 K, F = -24.260238003220042, relative_change = 0.0007974156631630689 Iter 40: T = 602.4838017854385 K, F = -10.154365013963446, relative_change = 0.00033767963101176293 Iter 45: T = 601.8606638498817 K, F = -4.248169170125921, relative_change = 0.00014196823877868567 Iter 50: T = 601.5993758360286 K, F = -1.776897273769339, relative_change = 5.9504407075516245e-5 Iter 55: T = 601.4899818218936 K, F = -0.7431656037958021, relative_change = 2.4908544603128937e-5 Iter 60: T = 601.4442108660527 K, F = -0.3108087725334527, relative_change = 1.0421094957583645e-5 Iter 65: T = 601.4250652170225 K, F = -0.12998534746444892, relative_change = 4.358934091810093e-6 Iter 70: T = 601.4170576325754 K, F = -0.05436167076448628, relative_change = 1.823082105285053e-6 Iter 75: T = 601.413708652236 K, F = -0.02273474297098349, relative_change = 7.624563654176576e-7 Iter 80: T = 601.4123080489169 K, F = -0.009507948547019585, relative_change = 3.1887214556413865e-7 Iter 85: T = 601.4117222964285 K, F = -0.003976338947614233, relative_change = 1.333568019307841e-7 Iter 90: T = 601.4114773271384 K, F = -0.0016629526650885906, relative_change = 5.577152304151482e-8 Iter 95: T = 601.4113748779502 K, F = -0.0006954667040969809, relative_change = 2.3324337236745205e-8 Iter 100: T = 601.4113320324576 K, F = -0.00029085248789689766, relative_change = 9.754519914250598e-9 Iter 105: T = 601.4113141139578 K, F = -0.00012163798507286439, relative_change = 4.079457338005258e-9 Iter 110: T = 601.4113066202267 K, F = -5.087045890084241e-5, relative_change = 1.7060779084532301e-9 Iter 115: T = 601.4113034862587 K, F = -2.1274633595358416e-5, relative_change = 7.135021793043642e-10 Iter 120: T = 601.4113021755958 K, F = -8.897305428856583e-6, relative_change = 2.9839512162867623e-10 Iter 125: T = 601.411301627461 K, F = -3.7209591885467574e-6, relative_change = 1.2479239735420838e-10 Iter 130: T = 601.4113013982244 K, F = -1.556149811843266e-6, relative_change = 5.218967910542255e-11 Iter 135: T = 601.4113013023549 K, F = -6.508002597382934e-7, relative_change = 2.1826341194626074e-11 Iter 140: T = 601.4113012622611 K, F = -2.7217184705996544e-7, relative_change = 9.128016638740648e-12 Iter 145: T = 601.4113012454934 K, F = -1.1382568798623538e-7, relative_change = 3.817451309589185e-12 Iter 150: T = 601.4113012384811 K, F = -4.760427857464222e-8, relative_change = 1.5965378185887183e-12 Iter 155: T = 601.4113012355484 K, F = -1.99089472685543e-8, relative_change = 6.677002192866932e-13 Iter 160: T = 601.4113012343219 K, F = -8.325752698379318e-9, relative_change = 2.792265621833808e-13 Converged in 162 iterations to T = 601.4113012340623 K Iter 1: T = 980.0017337359428 K, F = -4556.623991527701, relative_change = 0.019998266264057138 Iter 2: T = 962.0532127359116 K, F = -3849.140915805732, relative_change = 0.018314784945949233 Iter 3: T = 946.0345382924963 K, F = -3249.9894527420843, relative_change = 0.016650507717614692 Iter 5: T = 919.2666473190808 K, F = -2313.7724549780455, relative_change = 0.013468941275325967 Iter 10: T = 876.7119903762217 K, F = -982.4280331312001, relative_change = 0.0070930363132782 Iter 15: T = 856.5379094043207 K, F = -414.02815926669, relative_change = 0.003330939467905168 Iter 20: T = 847.5775178628564 K, F = -173.76301066873023, relative_change = 0.0014689350092804586 Iter 25: T = 843.7281018235691 K, F = -72.78164333687036, relative_change = 0.000628687431018563 Iter 30: T = 842.0994927814749 K, F = -30.45810551726045, relative_change = 0.0002655234610470589 Iter 35: T = 841.415043095003 K, F = -12.741462335131974, relative_change = 0.00011150625126713233 Iter 40: T = 841.1282076912097 K, F = -5.329249317091668, relative_change = 4.6714397540609684e-5 Iter 45: T = 841.0081460614158 K, F = -2.2288638864566837, relative_change = 1.955074873477676e-5 Iter 50: T = 840.9579166994657 K, F = -0.9321564273640486, relative_change = 8.17884807539039e-6 Iter 55: T = 840.9369070031303 K, F = -0.3898422621976696, relative_change = 3.420927896594328e-6 Iter 60: T = 840.9281199413508 K, F = -0.1630372690537769, relative_change = 1.4307491640196158e-6 Iter 65: T = 840.9244449899434 K, F = -0.06818423430578857, relative_change = 5.983697265871147e-7 Iter 70: T = 840.9229080643702 K, F = -0.028515478792238147, relative_change = 2.5024769881090606e-7 Iter 75: T = 840.9222653007664 K, F = -0.011925516873611652, relative_change = 1.0465698428092188e-7 Iter 80: T = 840.9219964888309 K, F = -0.0049873941195055504, relative_change = 4.376887206974652e-8 Iter 85: T = 840.9218840683783 K, F = -0.002085787878950196, relative_change = 1.8304677505102635e-8 Iter 90: T = 840.9218370527865 K, F = -0.0008723014176266197, relative_change = 7.655236924399572e-9 Iter 95: T = 840.9218173903016 K, F = -0.0003648068722013065, relative_change = 3.2015118774600263e-9 Iter 100: T = 840.9218091672152 K, F = -0.00015256659148099594, relative_change = 1.3389105707471037e-9 Iter 105: T = 840.9218057282222 K, F = -6.38051712991139e-5, relative_change = 5.599484078059171e-10 Iter 110: T = 840.9218042899943 K, F = -2.668408496497854e-5, relative_change = 2.3417711617019254e-10 Iter 115: T = 840.9218036885101 K, F = -1.1159601982724254e-5, relative_change = 9.793565798682338e-11 Iter 120: T = 840.9218034369623 K, F = -4.667078548292736e-6, relative_change = 4.0957859416653774e-11 Iter 125: T = 840.9218033317619 K, F = -1.9518292149189875e-6, relative_change = 1.7129076746915038e-11 Iter 130: T = 840.9218032877658 K, F = -8.162761735430735e-7, relative_change = 7.163565910330321e-12 Iter 135: T = 840.9218032693661 K, F = -3.4137507753939644e-7, relative_change = 2.9958768216126467e-12 Iter 140: T = 840.9218032616712 K, F = -1.4276800386348043e-7, relative_change = 1.2529190963326256e-12 Iter 145: T = 840.9218032584531 K, F = -5.970653216280652e-8, relative_change = 5.239791290734507e-13 Converged in 150 iterations to T = 840.9218032571072 K Iter 1: T = 976.4407402524353 K, F = -5367.999744124191, relative_change = 0.0235592597475647 Iter 2: T = 955.0430645928017 K, F = -4538.9935758369365, relative_change = 0.021913952150441517 Iter 3: T = 935.7153029559079 K, F = -3836.276576900313, relative_change = 0.020237581270887046 Iter 5: T = 902.8484249912779 K, F = -2736.567113902832, relative_change = 0.016884849854395322 Iter 10: T = 848.7222352953504 K, F = -1166.9263777433823, relative_change = 0.009499876274977387 Iter 15: T = 822.000440735549 K, F = -493.13853000350946, relative_change = 0.004652540251607987 Iter 20: T = 809.853387328153 K, F = -207.26223326509387, relative_change = 0.002096789338240143 Iter 25: T = 804.5755640839213 K, F = -86.87075938401239, relative_change = 0.0009064329210610716 Iter 30: T = 802.3312570101356 K, F = -36.36478371989862, relative_change = 0.0003845050568388855 Iter 35: T = 801.3859826808181 K, F = -15.214275014094882, relative_change = 0.00016177331625413417 Iter 40: T = 800.9894746795025 K, F = -6.3638617353848295, relative_change = 6.782646346731613e-5 Iter 45: T = 800.8234422813813 K, F = -2.6616305599281973, relative_change = 2.8395844010568417e-5 Iter 50: T = 800.7539690854937 K, F = -1.1131585240124275, relative_change = 1.1880737490682985e-5 Iter 55: T = 800.7249081816697 K, F = -0.4655419340026148, relative_change = 4.969586253347279e-6 Iter 60: T = 800.7127534476899 K, F = -0.19469620153536737, relative_change = 2.0785012640974884e-6 Iter 65: T = 800.7076699973959 K, F = -0.08142445241648244, relative_change = 8.69282203459735e-7 Iter 70: T = 800.7055440035986 K, F = -0.034052709151763616, relative_change = 3.635491229504376e-7 Iter 75: T = 800.7046548816255 K, F = -0.01424125501563811, relative_change = 1.5204144611719803e-7 Iter 80: T = 800.7042830391525 K, F = -0.005955863861569988, relative_change = 6.358569912778791e-8 Iter 85: T = 800.7041275300069 K, F = -0.0024908135595999026, relative_change = 2.6592325096907645e-8 Iter 90: T = 800.7040624941931 K, F = -0.0010416880048614852, relative_change = 1.1121232530910565e-8 Iter 95: T = 800.7040352954334 K, F = -0.0004356463700118107, relative_change = 4.6510330762394375e-9 Iter 100: T = 800.7040239205863 K, F = -0.00018219251405660053, relative_change = 1.9451177027215633e-9 Iter 105: T = 800.7040191634893 K, F = -7.61950853621629e-5, relative_change = 8.13471477454321e-10 Iter 110: T = 800.7040171740144 K, F = -3.1865694465560424e-5, relative_change = 3.40203488721824e-10 Iter 115: T = 800.7040163419922 K, F = -1.3326612915642855e-5, relative_change = 1.422771511877041e-10 Iter 120: T = 800.7040159940306 K, F = -5.573347639287185e-6, relative_change = 5.950199284369001e-11 Iter 125: T = 800.704015848509 K, F = -2.3308412221423325e-6, relative_change = 2.488445128777931e-11 Iter 130: T = 800.7040157876502 K, F = -9.747868237042212e-7, relative_change = 1.0406987403852374e-11 Iter 135: T = 800.7040157621982 K, F = -4.0766831177485585e-7, relative_change = 4.352335180435425e-12 Iter 140: T = 800.7040157515538 K, F = -1.7049042144723359e-7, relative_change = 1.8201842964160236e-12 Iter 145: T = 800.7040157471023 K, F = -7.130041024261402e-8, relative_change = 7.612151225470938e-13 Iter 150: T = 800.7040157452406 K, F = -2.981792257550353e-8, relative_change = 3.183411359125274e-13 Converged in 153 iterations to T = 800.7040157446955 K Iter 1: T = 980.6823780854521 K, F = -4401.538529032087, relative_change = 0.01931762191454786 Iter 2: T = 963.3840657164743 K, F = -3717.4345499657607, relative_change = 0.017639057003092755 Iter 3: T = 947.980408796526 K, F = -3138.19586319769, relative_change = 0.015989113239580605 Iter 5: T = 922.3223449199096 K, F = -2233.3742004291694, relative_change = 0.012861151385397939 Iter 10: T = 881.7831417244307 K, F = -947.5890653548971, relative_change = 0.006696184170122451 Iter 15: T = 862.6940901560337 K, F = -399.167603630057, relative_change = 0.0031233061467331215 Iter 20: T = 854.2467265031469 K, F = -167.4887355552837, relative_change = 0.0013727274416768587 Iter 25: T = 850.6240289854416 K, F = -70.14650485716331, relative_change = 0.0005866152145341912 Iter 30: T = 849.0925211886873 K, F = -29.35404523072504, relative_change = 0.0002475907963741281 Iter 35: T = 848.4490924807255 K, F = -12.279374208515712, relative_change = 0.00010394630610889069 Iter 40: T = 848.1794855554745 K, F = -5.135935767425839, relative_change = 4.3542099815828804e-5 Iter 45: T = 848.0666419215826 K, F = -2.148006845919257, relative_change = 1.822218837756801e-5 Iter 50: T = 848.0194334626717 K, F = -0.8983391206329012, relative_change = 7.622901122062014e-6 Iter 55: T = 847.999687538136 K, F = -0.37569912353393153, relative_change = 3.1883669860727205e-6 Iter 60: T = 847.9914290697668 K, F = -0.15712238058640393, relative_change = 1.3334793971590191e-6 Iter 65: T = 847.987975194498 K, F = -0.06571054699686729, relative_change = 5.576885963266686e-7 Iter 70: T = 847.9865307277158 K, F = -0.027480951416994026, relative_change = 2.3323405786877682e-7 Iter 75: T = 847.9859266318515 K, F = -0.011492864853074103, relative_change = 9.754162283690374e-8 Iter 80: T = 847.985673991291 K, F = -0.004806453819766743, relative_change = 4.079313354123349e-8 Iter 85: T = 847.9855683339117 K, F = -0.0020101164728532073, relative_change = 1.7060186455798095e-8 Iter 90: T = 847.9855241467201 K, F = -0.0008406547293762223, relative_change = 7.13477561128259e-9 Iter 95: T = 847.9855056671064 K, F = -0.0003515718499642606, relative_change = 2.983848699537307e-9 Iter 100: T = 847.9854979387108 K, F = -0.000147031544632803, relative_change = 1.2478812007441728e-9 Iter 105: T = 847.9854947066034 K, F = -6.149034906477446e-5, relative_change = 5.2187884041679e-10 Iter 110: T = 847.9854933548975 K, F = -2.5715997478137353e-5, relative_change = 2.1825595804914901e-10 Iter 115: T = 847.985492789598 K, F = -1.0754738073437409e-5, relative_change = 9.127725538283129e-11 Iter 120: T = 847.9854925531829 K, F = -4.4977618200992e-6, relative_change = 3.817325462005369e-11 Iter 125: T = 847.9854924543114 K, F = -1.8810205038022332e-6, relative_change = 1.5964534706167006e-11 Iter 130: T = 847.9854924129621 K, F = -7.866660240996026e-7, relative_change = 6.676565737284853e-12 Iter 135: T = 847.9854923956693 K, F = -3.2899367408134594e-7, relative_change = 2.792224177829928e-12 Iter 140: T = 847.9854923884373 K, F = -1.3758937944530203e-7, relative_change = 1.1677440090243118e-12 Iter 145: T = 847.9854923854126 K, F = -5.75406293723546e-8, relative_change = 4.883569174967366e-13 Converged in 150 iterations to T = 847.9854923841477 K Iter 1: T = 967.2573789824091 K, F = -7460.437345131418, relative_change = 0.03274262101759085 Iter 2: T = 936.5871794721213 K, F = -6324.116020134759, relative_change = 0.03170841616380744 Iter 3: T = 907.9582088248051 K, F = -5359.36815824139, relative_change = 0.030567331343839342 Iter 5: T = 856.6867807187488 K, F = -3845.248868083173, relative_change = 0.027969249866199763 Iter 10: T = 761.244554959218 K, F = -1665.2192287216465, relative_change = 0.02006588025653271 Iter 15: T = 705.2791871022355 K, F = -713.0497714701582, relative_change = 0.012047411554333759 Iter 20: T = 676.4590717402555 K, F = -302.2396691467484, relative_change = 0.006178441225744623 Iter 25: T = 663.0081155010819 K, F = -127.24330179001916, relative_change = 0.002856556699118125 Iter 30: T = 657.0838909770612 K, F = -53.37534455127598, relative_change = 0.0012500687440185681 Iter 35: T = 654.5489079479488 K, F = -22.35141043937488, relative_change = 0.0005331606275172886 Iter 40: T = 653.4782860614615 K, F = -9.352819937418175, relative_change = 0.000224840565284888 Iter 45: T = 653.0286769192348 K, F = -3.912375684258451, relative_change = 9.43614748838666e-5 Iter 50: T = 652.8403168590755 K, F = -1.636362688091192, relative_change = 3.952119312738488e-5 Iter 55: T = 652.7614848595041 K, F = -0.6843745165835401, relative_change = 1.6538418229030557e-5 Iter 60: T = 652.7285062930771 K, F = -0.2862185128887048, relative_change = 6.9183466921671466e-6 Iter 65: T = 652.7147124983005 K, F = -0.11970086039899763, relative_change = 2.8936471193163508e-6 Iter 70: T = 652.708943459918 K, F = -0.05006047979288897, relative_change = 1.2102123446265022e-6 Iter 75: T = 652.7065307251773 K, F = -0.020935916807998667, relative_change = 5.061347989958748e-7 Iter 80: T = 652.7055216812512 K, F = -0.008755655037125998, relative_change = 2.1167328664596882e-7 Iter 85: T = 652.7050996853791 K, F = -0.0036617203049459923, relative_change = 8.85245883139e-8 Iter 90: T = 652.7049232013768 K, F = -0.001531375301329907, relative_change = 3.702209107484682e-8 Iter 95: T = 652.7048493936089 K, F = -0.000640439464606124, relative_change = 1.548308956734552e-8 Iter 100: T = 652.7048185263101 K, F = -0.00026783943727948234, relative_change = 6.475214536213621e-9 Iter 105: T = 652.7048056172355 K, F = -0.0001120136518071857, relative_change = 2.7080123155160678e-9 Iter 110: T = 652.7048002185061 K, F = -4.684544678096314e-5, relative_change = 1.132523132294089e-9 Iter 115: T = 652.704797960693 K, F = -1.9591325089496348e-5, relative_change = 4.736347019018527e-10 Iter 120: T = 652.7047970164485 K, F = -8.193327282413065e-6, relative_change = 1.9807971814009496e-10 Iter 125: T = 652.7047966215544 K, F = -3.426547808771385e-6, relative_change = 8.28393157889536e-11 Iter 130: T = 652.7047964564049 K, F = -1.433024353181267e-6, relative_change = 3.4644418725333276e-11 Iter 135: T = 652.7047963873373 K, F = -5.993076674926101e-7, relative_change = 1.4488704076999526e-11 Iter 140: T = 652.7047963584524 K, F = -2.5063803554825625e-7, relative_change = 6.059359032494061e-12 Iter 145: T = 652.7047963463724 K, F = -1.0482007295475881e-7, relative_change = 2.5341024338613755e-12 Iter 150: T = 652.7047963413204 K, F = -4.383618834591374e-8, relative_change = 1.0597721261902255e-12 Iter 155: T = 652.7047963392076 K, F = -1.833427054620529e-8, relative_change = 4.4324448845492413e-13 Converged in 159 iterations to T = 652.704796338445 K Iter 1: T = 973.5212855230374 K, F = -6033.200281335903, relative_change = 0.02647871447696264 Iter 2: T = 949.2355977154318 K, F = -5105.551004328174, relative_change = 0.02494623196097633 Iter 3: T = 927.0754611861706 K, F = -4318.720819876048, relative_change = 0.023345243881071245 Iter 5: T = 888.809367967963 K, F = -3086.033887976291, relative_change = 0.020015799227810434 Iter 10: T = 823.6611127988426 K, F = -1321.3576997547136, relative_change = 0.01200488522345307 Iter 15: T = 790.1352994428031 K, F = -560.0543033069781, relative_change = 0.006151855396964528 Iter 20: T = 774.4951522568914 K, F = -235.7766917138413, relative_change = 0.0028429961268678027 Iter 25: T = 767.6083833417654 K, F = -98.90093073160162, relative_change = 0.0012438636930462731 Iter 30: T = 764.6618551884725 K, F = -41.41539522278115, relative_change = 0.000530462403701819 Iter 35: T = 763.4174828071557 K, F = -17.329987011280494, relative_change = 0.0002236932901640353 Iter 40: T = 762.8949178485501 K, F = -7.249293797775611, relative_change = 9.387831370875659e-5 Iter 45: T = 762.6759954826067 K, F = -3.032037038376837, relative_change = 3.9318537669747726e-5 Iter 50: T = 762.584372960198 K, F = -1.2680858984702035, relative_change = 1.645356147561164e-5 Iter 55: T = 762.5460436680013 K, F = -0.53033773114912, relative_change = 6.882840401549883e-6 Iter 60: T = 762.530011859953 K, F = -0.22179515839381803, relative_change = 2.878794782536109e-6 Iter 65: T = 762.5233068094351 K, F = -0.09275766137634711, relative_change = 1.204000363351936e-6 Iter 70: T = 762.5205026148001 K, F = -0.0387924102517796, relative_change = 5.035367768842515e-7 Iter 75: T = 762.5193298561946 K, F = -0.016223457727030044, relative_change = 2.1058674573850855e-7 Iter 80: T = 762.5188393926303 K, F = -0.0067848452526331204, relative_change = 8.807018095650715e-8 Iter 85: T = 762.5186342745764 K, F = -0.0028375035727082887, relative_change = 3.6832052002873564e-8 Iter 90: T = 762.5185484916981 K, F = -0.0011866779245681691, relative_change = 1.5403612830685194e-8 Iter 95: T = 762.5185126162637 K, F = -0.0004962828884372827, relative_change = 6.441976396590714e-9 Iter 100: T = 762.518497612727 K, F = -0.00020755143256057096, relative_change = 2.694111737565305e-9 Iter 105: T = 762.5184913380683 K, F = -8.680048773124227e-5, relative_change = 1.1267097465924572e-9 Iter 110: T = 762.5184887139311 K, F = -3.630100052576246e-5, relative_change = 4.712034787205605e-10 Iter 115: T = 762.5184876164856 K, F = -1.5181511853978868e-5, relative_change = 1.9706292232291015e-10 Iter 120: T = 762.5184871575208 K, F = -6.349090385104894e-6, relative_change = 8.241407845284865e-11 Iter 125: T = 762.5184869655761 K, F = -2.6552641542165745e-6, relative_change = 3.446653541022133e-11 Iter 130: T = 762.5184868853027 K, F = -1.1104627801739042e-6, relative_change = 1.4414311545238061e-11 Iter 135: T = 762.5184868517313 K, F = -4.644096999184555e-7, relative_change = 6.028248960861193e-12 Iter 140: T = 762.5184868376914 K, F = -1.9422181052330956e-7, relative_change = 2.5210873669777837e-12 Iter 145: T = 762.5184868318197 K, F = -8.122761463447148e-8, relative_change = 1.0543713528385463e-12 Iter 150: T = 762.5184868293641 K, F = -3.3970836477159594e-8, relative_change = 4.409568959424859e-13 Converged in 154 iterations to T = 762.5184868284778 K Iter 1: T = 970.0239637974904 K, F = -6830.068363313591, relative_change = 0.029976036202509593 Iter 2: T = 942.2056713002362 K, F = -5785.413350819806, relative_change = 0.02867794357198148 Iter 3: T = 916.5022492502048 K, F = -4898.805156880301, relative_change = 0.027280054485939204 Iter 5: T = 871.2337798700469 K, F = -3508.2726515202617, relative_change = 0.02422585028028317 Iter 10: T = 790.5106508310937 K, F = -1510.9293890976369, relative_change = 0.015923305334921038 Iter 15: T = 746.2308345812982 K, F = -643.5015469107694, relative_change = 0.008790367153890189 Iter 20: T = 724.6283369794484 K, F = -271.71807179216216, relative_change = 0.004251430820117059 Iter 25: T = 714.8769397659238 K, F = -114.15090163306836, relative_change = 0.0019033526737763586 Iter 30: T = 710.6547286951542 K, F = -47.83475166698672, relative_change = 0.0008202686258017997 Iter 35: T = 708.8621267276224 K, F = -20.022193638956097, relative_change = 0.000347482298882369 Iter 40: T = 708.1076190928205 K, F = -8.376549046520738, relative_change = 0.00014611194819790974 Iter 45: T = 707.791222208473 K, F = -3.5037049709237054, relative_change = 6.124516340758286e-5 Iter 50: T = 707.6587513775136 K, F = -1.4653845092080782, relative_change = 2.5637922017881127e-5 Iter 55: T = 707.6033242273928 K, F = -0.6128576242051845, relative_change = 1.0726369822855354e-5 Iter 60: T = 707.580139333318 K, F = -0.256307233174522, relative_change = 4.4866457899124945e-6 Iter 65: T = 707.5704423292578 K, F = -0.10719124537996694, relative_change = 1.8765000292751342e-6 Iter 70: T = 707.5663867856298 K, F = -0.044828746313342216, relative_change = 7.847976677933204e-7 Iter 75: T = 707.5646906842372 K, F = -0.018747932354530206, relative_change = 3.282157704512449e-7 Iter 80: T = 707.5639813500742 K, F = -0.007840611878712878, relative_change = 1.372644568433626e-7 Iter 85: T = 707.5636846973031 K, F = -0.003279037991808176, relative_change = 5.7405757909390226e-8 Iter 90: T = 707.5635606334397 K, F = -0.001371332928604807, relative_change = 2.4007794977628407e-8 Iter 95: T = 707.5635087484274 K, F = -0.0005735078219873957, relative_change = 1.0040350324984233e-8 Iter 100: T = 707.5634870494915 K, F = -0.0002398478235529078, relative_change = 4.198995083320714e-9 Iter 105: T = 707.5634779747368 K, F = -0.00010030722419973603, relative_change = 1.7560699977020208e-9 Iter 110: T = 707.5634741795659 K, F = -4.1949679994823796e-5, relative_change = 7.344094796868288e-10 Iter 115: T = 707.56347259238 K, F = -1.7543857077750857e-5, relative_change = 3.071388169675249e-10 Iter 120: T = 707.5634719285999 K, F = -7.337051634248581e-6, relative_change = 1.2844914086172582e-10 Iter 125: T = 707.5634716509991 K, F = -3.068441760345486e-6, relative_change = 5.371894982952719e-11 Iter 130: T = 707.5634715349032 K, F = -1.283259254081237e-6, relative_change = 2.2465911014832805e-11 Iter 135: T = 707.5634714863504 K, F = -5.366737525491772e-7, relative_change = 9.395501909968697e-12 Iter 140: T = 707.5634714660451 K, F = -2.2444354053074989e-7, relative_change = 3.929314046025924e-12 Iter 145: T = 707.5634714575532 K, F = -9.386386878862396e-8, relative_change = 1.6432667974956456e-12 Iter 150: T = 707.5634714540018 K, F = -3.9255899531021043e-8, relative_change = 6.872497068276762e-13 Iter 155: T = 707.5634714525165 K, F = -1.6417671111490506e-8, relative_change = 2.874227770366508e-13 Converged in 157 iterations to T = 707.5634714522022 K Iter 1: T = 973.3961276264235 K, F = -6061.717627135248, relative_change = 0.026603872373576417 Iter 2: T = 948.9853998186201 K, F = -5129.859274682396, relative_change = 0.02507789697841494 Iter 3: T = 926.7013379266738 K, F = -4339.439601480395, relative_change = 0.02348198602023325 Iter 5: T = 888.1950835744757 K, F = -3101.0753692314765, relative_change = 0.02015739782863619 Iter 10: T = 822.5378058824704 K, F = -1328.0504417944348, relative_change = 0.012125791084355514 Iter 15: T = 788.6828373128646 K, F = -562.9727208915025, relative_change = 0.006227685259602214 Iter 20: T = 772.8685791364298 K, F = -237.02535971551484, relative_change = 0.0028817374872314437 Iter 25: T = 765.9003461060969 K, F = -99.42883956013617, relative_change = 0.0012616042487069868 Iter 30: T = 762.9180026711525 K, F = -41.63723839251637, relative_change = 0.0005381792851184941 Iter 35: T = 761.658326531168 K, F = -17.42295623455886, relative_change = 0.00022697493786664644 Iter 40: T = 761.1293028796156 K, F = -7.2882085871977615, relative_change = 9.526042153980943e-5 Iter 45: T = 760.9076690649713 K, F = -3.0483176364473223, relative_change = 3.9898258508338796e-5 Iter 50: T = 760.8149107640156 K, F = -1.274895685139526, relative_change = 1.6696307152588317e-5 Iter 55: T = 760.7761061569961 K, F = -0.5331858483921665, relative_change = 6.984411996620288e-6 Iter 60: T = 760.7598755108294 K, F = -0.2229863070781144, relative_change = 2.9212824160604083e-6 Iter 65: T = 760.753087294076 K, F = -0.09325581958481388, relative_change = 1.221770804960974e-6 Iter 70: T = 760.7502483166206 K, F = -0.039000746943525066, relative_change = 5.109688686778703e-7 Iter 75: T = 760.7490610111258 K, F = -0.016310586790782566, relative_change = 2.1369498441195628e-7 Iter 80: T = 760.7485644638264 K, F = -0.006821283698334346, relative_change = 8.93700920923234e-8 Iter 85: T = 760.7483568014726 K, F = -0.002852742570981892, relative_change = 3.7375691865405046e-8 Iter 90: T = 760.7482699545362 K, F = -0.0011930510573670006, relative_change = 1.5630969786903782e-8 Iter 95: T = 760.7482336340997 K, F = -0.0004989482080747232, relative_change = 6.537059826838286e-9 Iter 100: T = 760.7482184444576 K, F = -0.00020866610070313651, relative_change = 2.733876766625507e-9 Iter 105: T = 760.7482120919676 K, F = -8.726665499536601e-5, relative_change = 1.143339954473892e-9 Iter 110: T = 760.7482094352803 K, F = -3.649595738630662e-5, relative_change = 4.781584323652614e-10 Iter 115: T = 760.748208324222 K, F = -1.526304535903744e-5, relative_change = 1.999715698781559e-10 Iter 120: T = 760.7482078595641 K, F = -6.383187524328093e-6, relative_change = 8.363049468517783e-11 Iter 125: T = 760.7482076652386 K, F = -2.669525547283058e-6, relative_change = 3.4975275520990414e-11 Iter 130: T = 760.7482075839695 K, F = -1.1164289298593033e-6, relative_change = 1.46270971188252e-11 Iter 135: T = 760.7482075499818 K, F = -4.6690498167745176e-7, relative_change = 6.117240722678866e-12 Iter 140: T = 760.7482075357676 K, F = -1.9526562911043044e-7, relative_change = 2.5583082321132157e-12 Iter 145: T = 760.748207529823 K, F = -8.166299203526961e-8, relative_change = 1.0699225754290164e-12 Iter 150: T = 760.7482075273371 K, F = -3.415270299900186e-8, relative_change = 4.4745786359800827e-13 Converged in 155 iterations to T = 760.7482075262973 K Iter 1: T = 964.3993594060364 K, F = -8111.6398242864125, relative_change = 0.035600640593963555 Iter 2: T = 930.7287275618888 K, F = -6881.444924186672, relative_change = 0.03491357757110597 Iter 3: T = 898.9573313934661 K, F = -5836.736779273023, relative_change = 0.0341360433255887 Iter 5: T = 840.9995410585145 K, F = -4196.293502274483, relative_change = 0.03228458049321606 Iter 10: T = 727.3497987011556 K, F = -1829.6574441265818, relative_change = 0.02583521935131031 Iter 15: T = 654.2332392564603 K, F = -789.827297078491, relative_change = 0.01761875463070375 Iter 20: T = 613.0138577987125 K, F = -337.1159252801725, relative_change = 0.010059226345030432 Iter 25: T = 592.4738369656696 K, F = -142.55665097230386, relative_change = 0.004975782932259276 Iter 30: T = 583.0843057466429 K, F = -59.93665959288521, relative_change = 0.0022545275914667984 Iter 35: T = 578.9930671329059 K, F = -25.125735799560914, relative_change = 0.0009770875586730462 Iter 40: T = 577.2510952699658 K, F = -10.518609777255334, relative_change = 0.00041493814596987546 Iter 45: T = 576.5169882924835 K, F = -4.400908793171717, relative_change = 0.00017466061611579904 Iter 50: T = 576.2089841594762 K, F = -1.8408468458969873, relative_change = 7.32444260363998e-5 Iter 55: T = 576.0799986753555 K, F = -0.7699227267232387, relative_change = 3.066668607567736e-5 Iter 60: T = 576.0260248151097 K, F = -0.32200113663997, relative_change = 1.2831304831439795e-5 Iter 65: T = 576.0034469464456 K, F = -0.13466651559714982, relative_change = 5.367277898217746e-6 Iter 70: T = 575.9940036750141 K, F = -0.05631945902810148, relative_change = 2.2448474360438723e-6 Iter 75: T = 575.9900542221932 K, F = -0.02355352527174079, relative_change = 9.388548432594666e-7 Iter 80: T = 575.9884024851832 K, F = -0.009850375159030367, relative_change = 3.926460510744294e-7 Iter 85: T = 575.9877117040247 K, F = -0.004119546208038227, relative_change = 1.6421027223264598e-7 Iter 90: T = 575.9874228102175 K, F = -0.00172284371527065, relative_change = 6.86748726115043e-8 Iter 95: T = 575.9873019912237 K, F = -0.0007205138679337031, relative_change = 2.8720682596338043e-8 Iter 100: T = 575.9872514632509 K, F = -0.00030132751306044536, relative_change = 1.2011337823960584e-8 Iter 105: T = 575.9872303318446 K, F = -0.00012601876661461064, relative_change = 5.023285882444635e-9 Iter 110: T = 575.9872214944372 K, F = -5.270255359457465e-5, relative_change = 2.100798316717777e-9 Iter 115: T = 575.9872177985278 K, F = -2.204083741319529e-5, relative_change = 8.785789756491271e-10 Iter 120: T = 575.9872162528543 K, F = -9.2177411856742e-6, relative_change = 3.674322150449005e-10 Iter 125: T = 575.9872156064351 K, F = -3.854969623851012e-6, relative_change = 1.5366454827261658e-10 Iter 130: T = 575.9872153360949 K, F = -1.612193474831436e-6, relative_change = 6.426431509572492e-11 Iter 135: T = 575.9872152230355 K, F = -6.74238874676103e-7, relative_change = 2.68761164270276e-11 Iter 140: T = 575.9872151757527 K, F = -2.8197471563240484e-7, relative_change = 1.1239911512691835e-11 Iter 145: T = 575.9872151559784 K, F = -1.1792606174898523e-7, relative_change = 4.700699835241347e-12 Iter 150: T = 575.9872151477086 K, F = -4.931818908815444e-8, relative_change = 1.965892864551046e-12 Iter 155: T = 575.9872151442501 K, F = -2.0625947338981376e-8, relative_change = 8.221794727091361e-13 Iter 160: T = 575.9872151428036 K, F = -8.62549620617159e-9, relative_change = 3.438244947579619e-13 Converged in 163 iterations to T = 575.9872151423801 K Iter 1: T = 963.5891818080581 K, F = -8296.239560663622, relative_change = 0.03641081819194185 Iter 2: T = 929.0578339866121 K, F = -7039.585177209969, relative_change = 0.03583617217106175 Iter 3: T = 896.3725279036945 K, F = -5972.354903214329, relative_change = 0.03518113177374982 Iter 5: T = 836.4214832346627 K, F = -4296.374193820901, relative_change = 0.0336007204510244 Iter 10: T = 716.9110825251249 K, F = -1877.3883027198633, relative_change = 0.02785480614021427 Iter 15: T = 637.4702020966132 K, F = -812.8767732000239, relative_change = 0.019927965400631256 Iter 20: T = 590.991548074999 K, F = -348.01041472002663, relative_change = 0.011929874470726163 Iter 25: T = 567.1032103001429 K, F = -147.48991050756862, relative_change = 0.006104874947917182 Iter 30: T = 555.9681466858842 K, F = -62.08833476739396, relative_change = 0.0028190211997134646 Iter 35: T = 551.0671996817199 K, F = -26.043432763589916, relative_change = 0.0012328918705065764 Iter 40: T = 548.9707348039095 K, F = -10.905726099715567, relative_change = 0.0005256912158457661 Iter 45: T = 548.0854379263685 K, F = -4.563403014717639, relative_change = 0.00022166457534703786 Iter 50: T = 547.7136781127464 K, F = -1.9089095983854494, relative_change = 9.302394126601684e-5 Iter 55: T = 547.5579362495273 K, F = -0.7984059648384721, relative_change = 3.896018206279785e-5 Iter 60: T = 547.4927562173955 K, F = -0.3339164236584764, relative_change = 1.6303509197037623e-5 Iter 65: T = 547.4654889317183 K, F = -0.13965020100979786, relative_change = 6.820054576875534e-6 Iter 70: T = 547.4540839891258 K, F = -0.05840379552836936, relative_change = 2.8525313711199024e-6 Iter 75: T = 547.4493140543516 K, F = -0.024425237135732747, relative_change = 1.1930157061677073e-6 Iter 80: T = 547.4473191666588 K, F = -0.010214938523711498, relative_change = 4.989426898052537e-7 Iter 85: T = 547.4464848731049 K, F = -0.004272011494832861, relative_change = 2.0866541350480941e-7 Iter 90: T = 547.446135960231 K, F = -0.0017866066126954183, relative_change = 8.726665161421832e-8 Iter 95: T = 547.4459900404648 K, F = -0.0007471802899078339, relative_change = 3.6496005518059277e-8 Iter 100: T = 547.4459290150347 K, F = -0.0003124797320842587, relative_change = 1.5263074030177368e-8 Iter 105: T = 547.4459034934639 K, F = -0.0001306827578034797, relative_change = 6.383201355877879e-9 Iter 110: T = 547.445892820037 K, F = -5.465309064422996e-5, relative_change = 2.669531318045825e-9 Iter 115: T = 547.4458883562821 K, F = -2.2856575551566394e-5, relative_change = 1.1164299385001555e-9 Iter 120: T = 547.4458864894865 K, F = -9.558892785782591e-6, relative_change = 4.66904337184586e-10 Iter 125: T = 547.4458857087702 K, F = -3.9976428887200655e-6, relative_change = 1.9526495984005388e-10 Iter 130: T = 547.4458853822654 K, F = -1.6718621967115599e-6, relative_change = 8.166214809909246e-11 Iter 135: T = 547.4458852457172 K, F = -6.991929577537803e-7, relative_change = 3.415209641443037e-11 Iter 140: T = 547.4458851886111 K, F = -2.9241065813145894e-7, relative_change = 1.4282805459246094e-11 Iter 145: T = 547.4458851647287 K, F = -1.2228979853756705e-7, relative_change = 5.973248080923221e-12 Iter 150: T = 547.4458851547407 K, F = -5.114303006092946e-8, relative_change = 2.498082504377787e-12 Iter 155: T = 547.4458851505635 K, F = -2.138850924149338e-8, relative_change = 1.0447222362301137e-12 Iter 160: T = 547.4458851488166 K, F = -8.944426754808887e-9, relative_change = 4.3689073491359973e-13 Converged in 164 iterations to T = 547.4458851481862 K Iter 1: T = 969.2983781646769 K, F = -6995.393739960263, relative_change = 0.030701621835323066 Iter 2: T = 940.7370718481409 K, F = -5926.621613358742, relative_change = 0.029465959048250584 Iter 3: T = 914.2771182678505 K, F = -5019.451148048483, relative_change = 0.0281268320045133 Iter 5: T = 867.4760810932963 K, F = -3596.3900311605335, relative_change = 0.02516977269893368 Iter 10: T = 783.12519569728 K, F = -1550.9870525851438, relative_change = 0.016903264331115754 Iter 15: T = 736.1171020584088 K, F = -661.3867037103738, relative_change = 0.009513636847770766 Iter 20: T = 712.9042795601209 K, F = -279.5037860056238, relative_change = 0.004660394019677484 Iter 25: T = 702.3509077134753 K, F = -117.47422171190976, relative_change = 0.0021005971353145574 Iter 30: T = 697.7652235250489 K, F = -49.23769780725605, relative_change = 0.0009081334024577857 Iter 35: T = 695.8151780083625 K, F = -20.611323836680423, relative_change = 0.00038523654166937993 Iter 40: T = 694.9938322027347 K, F = -8.623358949846605, relative_change = 0.00016208289933441965 Iter 45: T = 694.6493057600776 K, F = -3.6069994319773775, relative_change = 6.795658476148655e-5 Iter 50: T = 694.5050396021958 K, F = -1.508596758777307, relative_change = 2.845037659913213e-5 Iter 55: T = 694.444674028747 K, F = -0.6309318278941444, relative_change = 1.1903563709792962e-5 Iter 60: T = 694.4194228678396 K, F = -0.2638664878837455, relative_change = 4.979135959054863e-6 Iter 65: T = 694.4088615584476 K, F = -0.11035268715715613, relative_change = 2.082495678922064e-6 Iter 70: T = 694.4044445226408 K, F = -0.046150911471056655, relative_change = 8.709528228154514e-7 Iter 75: T = 694.4025972357651 K, F = -0.01930087979110684, relative_change = 3.642478147147405e-7 Iter 80: T = 694.4018246731289 K, F = -0.008071861479525766, relative_change = 1.5233365061416881e-7 Iter 85: T = 694.4015015772982 K, F = -0.0033757494032837787, relative_change = 6.370790314611319e-8 Iter 90: T = 694.4013664546039 K, F = -0.0014117788083640725, relative_change = 2.664343236687753e-8 Iter 95: T = 694.4013099446518 K, F = -0.0005904227750131996, relative_change = 1.1142606246639397e-8 Iter 100: T = 694.40128631151 K, F = -0.00024692185879970907, relative_change = 4.659971817749404e-9 Iter 105: T = 694.401276427847 K, F = -0.00010326567162277644, relative_change = 1.9488560245437886e-9 Iter 110: T = 694.4012722943809 K, F = -4.318693632843207e-5, relative_change = 8.150348717820528e-10 Iter 115: T = 694.401270565716 K, F = -1.806129241843646e-5, relative_change = 3.408573188198608e-10 Iter 120: T = 694.4012698427676 K, F = -7.553447650465728e-6, relative_change = 1.42550592011782e-10 Iter 125: T = 694.4012695404222 K, F = -3.158942978198631e-6, relative_change = 5.961637830102727e-11 Iter 130: T = 694.4012694139775 K, F = -1.3211067876328642e-6, relative_change = 2.4932264570590353e-11 Iter 135: T = 694.401269361097 K, F = -5.52502926409737e-7, relative_change = 1.0426976283234085e-11 Iter 140: T = 694.4012693389817 K, F = -2.3106390534266552e-7, relative_change = 4.360697013753021e-12 Iter 145: T = 694.4012693297327 K, F = -9.66325668372292e-8, relative_change = 1.823674472394147e-12 Iter 150: T = 694.4012693258647 K, F = -4.041220125206024e-8, relative_change = 7.62669379596755e-13 Iter 155: T = 694.4012693242472 K, F = -1.6901577248873423e-8, relative_change = 3.189708809561748e-13 Converged in 158 iterations to T = 694.4012693237735 K Iter 1: T = 966.4742334123962 K, F = -7638.87780822263, relative_change = 0.03352576658760382 Iter 2: T = 934.9873910794242 K, F = -6476.75062522164, relative_change = 0.03257908099815472 Iter 3: T = 905.5097560528548 K, F = -5490.014150283047, relative_change = 0.03152730754212435 Iter 5: T = 852.4575452400934 K, F = -3941.13696849701, relative_change = 0.029103550293324877 Iter 10: T = 752.3683045723965 K, F = -1709.7176891477063, relative_change = 0.02146820409938333 Iter 15: T = 692.3420423743809 K, F = -733.4973287556516, relative_change = 0.01327890358053543 Iter 20: T = 660.800651657263 K, F = -311.37037984150743, relative_change = 0.006967894978431563 Iter 25: T = 645.8796418374759 K, F = -131.20334768207888, relative_change = 0.0032651394634244787 Iter 30: T = 639.2601615205049 K, F = -55.06066278171738, relative_change = 0.0014383714546932166 Iter 35: T = 636.4179889800292 K, F = -23.061730453436812, relative_change = 0.0006153069759477535 Iter 40: T = 635.2158199245704 K, F = -9.650877878923561, relative_change = 0.0002598175083602243 Iter 45: T = 634.7106419446011 K, F = -4.037203272763736, relative_change = 0.0001091002816681724 Iter 50: T = 634.4989441793342 K, F = -1.6885980728427197, relative_change = 4.570472042126133e-5 Iter 55: T = 634.41033481542 K, F = -0.7062254128322991, relative_change = 1.9127880160005644e-5 Iter 60: T = 634.3732642134917 K, F = -0.29535777012649694, relative_change = 8.001892607770946e-6 Iter 65: T = 634.3577585510426 K, F = -0.12352317340461866, relative_change = 3.3469043184831703e-6 Iter 70: T = 634.3512734965 K, F = -0.05165904586380715, relative_change = 1.3997883501356333e-6 Iter 75: T = 634.3485612990419 K, F = -0.021604461323075197, relative_change = 5.854209725684186e-7 Iter 80: T = 634.3474270133959 K, F = -0.009035249228285469, relative_change = 2.448322752227565e-7 Iter 85: T = 634.346952639445 K, F = -0.0037786500887236896, relative_change = 1.0239217191727372e-7 Iter 90: T = 634.346754250218 K, F = -0.0015802767619215174, relative_change = 4.282169743521775e-8 Iter 95: T = 634.3466712814084 K, F = -0.0006608906435421336, relative_change = 1.79085572100193e-8 Iter 100: T = 634.3466365828499 K, F = -0.00027639236530296873, relative_change = 7.489574597336872e-9 Iter 105: T = 634.3466220714963 K, F = -0.00011559058958399149, relative_change = 3.132229925306002e-9 Iter 110: T = 634.3466160026746 K, F = -4.8341365427306826e-5, relative_change = 1.309936032537974e-9 Iter 115: T = 634.3466134646209 K, F = -2.021693644171929e-5, relative_change = 5.478309059522688e-10 Iter 120: T = 634.3466124031764 K, F = -8.454964124104958e-6, relative_change = 2.2910942546389676e-10 Iter 125: T = 634.3466119592676 K, F = -3.535967183276867e-6, relative_change = 9.58163039638682e-11 Iter 130: T = 634.3466117736197 K, F = -1.4787834337615102e-6, relative_change = 4.0071515327849655e-11 Iter 135: T = 634.3466116959795 K, F = -6.184447716717223e-7, relative_change = 1.6758383003301568e-11 Iter 140: T = 634.3466116635094 K, F = -2.5864037356271297e-7, relative_change = 7.008539225937501e-12 Iter 145: T = 634.3466116499301 K, F = -1.0816690015902353e-7, relative_change = 2.9310658361156017e-12 Iter 150: T = 634.346611644251 K, F = -4.5236265788783925e-8, relative_change = 1.225795257307649e-12 Iter 155: T = 634.346611641876 K, F = -1.891834883194221e-8, relative_change = 5.126422765083688e-13 Converged in 160 iterations to T = 634.3466116408828 K Iter 1: T = 966.542520109842 K, F = -7623.318619252169, relative_change = 0.033457479890157946 Iter 2: T = 935.1270505604034 K, F = -6463.439093986716, relative_change = 0.03250293587277307 Iter 3: T = 905.723783195714 K, F = -5478.6175981503975, relative_change = 0.03144307219758924 Iter 5: T = 852.8283474105726 K, F = -3932.766976859942, relative_change = 0.02900325235196855 Iter 10: T = 753.1537888399824 K, F = -1705.821803310062, relative_change = 0.021341160456513457 Iter 15: T = 693.4979765335196 K, F = -731.6986799394764, relative_change = 0.013164369329101406 Iter 20: T = 662.2098559052246 K, F = -310.5634906495955, relative_change = 0.006892959236725115 Iter 25: T = 647.4275420066024 K, F = -130.85231102801635, relative_change = 0.003225886502288966 Iter 30: T = 640.8741461100874 K, F = -54.9110250143284, relative_change = 0.001420172827871632 Iter 35: T = 638.0612752648187 K, F = -22.99861416689433, relative_change = 0.0006073464970961746 Iter 40: T = 636.871673634009 K, F = -9.624384850237917, relative_change = 0.00025642408505280496 Iter 45: T = 636.3718080069933 K, F = -4.0261063471776035, relative_change = 0.0001076696336316125 Iter 50: T = 636.1623419460981 K, F = -1.6839541747146405, relative_change = 4.51043809359115e-5 Iter 55: T = 636.0746676690212 K, F = -0.7042827476129736, relative_change = 1.8876455453437823e-5 Iter 60: T = 636.0379884403704 K, F = -0.29454523125963733, relative_change = 7.896681507256202e-6 Iter 65: T = 636.0226465089614 K, F = -0.12318334366084716, relative_change = 3.302892878834952e-6 Iter 70: T = 636.0162299381543 K, F = -0.05151692215640552, relative_change = 1.3813803333325906e-6 Iter 75: T = 636.0135463830671 K, F = -0.02154502299254718, relative_change = 5.777221864996772e-7 Iter 80: T = 636.0124240762922 K, F = -0.009010391321881861, relative_change = 2.4161249260940446e-7 Iter 85: T = 636.0119547120988 K, F = -0.0037682542013514064, relative_change = 1.0104561020354414e-7 Iter 90: T = 636.0117584180211 K, F = -0.0015759290743004861, relative_change = 4.2258547441352565e-8 Iter 95: T = 636.0116763254294 K, F = -0.0006590723877336058, relative_change = 1.7673040832763934e-8 Iter 100: T = 636.011641993316 K, F = -0.0002756319479375602, relative_change = 7.391078754461314e-9 Iter 105: T = 636.0116276352142 K, F = -0.00011527257353238785, relative_change = 3.091037766683957e-9 Iter 110: T = 636.0116216304842 K, F = -4.82083676307532e-5, relative_change = 1.2927089866099603e-9 Iter 115: T = 636.0116191192343 K, F = -2.016131393600684e-5, relative_change = 5.406263160890534e-10 Iter 120: T = 636.0116180689996 K, F = -8.431701543187842e-6, relative_change = 2.2609636425293032e-10 Iter 125: T = 636.0116176297789 K, F = -3.526238339435217e-6, relative_change = 9.455620156539503e-11 Iter 130: T = 636.0116174460916 K, F = -1.4747149896243705e-6, relative_change = 3.954453289294809e-11 Iter 135: T = 636.0116173692713 K, F = -6.167439731696867e-7, relative_change = 1.6538010747265304e-11 Iter 140: T = 636.0116173371443 K, F = -2.579301871530326e-7, relative_change = 6.9164067972712044e-12 Iter 145: T = 636.0116173237084 K, F = -1.0787008070112236e-7, relative_change = 2.892539906605898e-12 Iter 150: T = 636.0116173180892 K, F = -4.511245965677091e-8, relative_change = 1.2096921500355337e-12 Iter 155: T = 636.0116173157393 K, F = -1.8866016304741606e-8, relative_change = 5.058928730627178e-13 Converged in 160 iterations to T = 636.0116173147564 K Iter 1: T = 976.3773233908798 K, F = -5382.449336354618, relative_change = 0.023622676609120187 Iter 2: T = 954.9174949472688 K, F = -4551.2910039188355, relative_change = 0.021979032008939754 Iter 3: T = 935.5293758242535 K, F = -3846.7391588108926, relative_change = 0.020303449487105565 Iter 5: T = 902.5492006909084 K, F = -2744.130446289982, relative_change = 0.016949518325366425 Iter 10: T = 848.1996263724199 K, F = -1170.248569151373, relative_change = 0.00954854382408498 Iter 15: T = 821.3457404662907 K, F = -494.57044557764084, relative_change = 0.004680418608309064 Iter 20: T = 809.1327127623259 K, F = -207.8704038173357, relative_change = 0.002110328605009671 Iter 25: T = 803.8249340986831 K, F = -87.12691910320532, relative_change = 0.0009124837317591314 Iter 30: T = 801.567639773481 K, F = -36.472245742456394, relative_change = 0.0003871087130406606 Iter 35: T = 800.616849862181 K, F = -15.259276349568708, relative_change = 0.00016287539633977886 Iter 40: T = 800.2180201679492 K, F = -6.382692316283067, relative_change = 6.828970607414182e-5 Iter 45: T = 800.0510141629707 K, F = -2.669507574221342, relative_change = 2.8589989080108028e-5 Iter 50: T = 799.9811333284707 K, F = -1.116453107850987, relative_change = 1.1962003413874454e-5 Iter 55: T = 799.9519018639342 K, F = -0.4669198247313031, relative_change = 5.003585262049065e-6 Iter 60: T = 799.939675785186 K, F = -0.19527246176390078, relative_change = 2.092722265312608e-6 Iter 65: T = 799.9345624951662 K, F = -0.08166545305148964, relative_change = 8.752299825430087e-7 Iter 70: T = 799.9324240216035 K, F = -0.03415349879914986, relative_change = 3.6603662282567257e-7 Iter 75: T = 799.9315296803672 K, F = -0.014283406501119367, relative_change = 1.530817600811948e-7 Iter 80: T = 799.9311556551228 K, F = -0.0059734921267724506, relative_change = 6.402077293416288e-8 Iter 85: T = 799.9309992331137 K, F = -0.002498185910371431, relative_change = 2.6774278500262236e-8 Iter 90: T = 799.9309338155291 K, F = -0.0010447712131261833, relative_change = 1.1197327710894412e-8 Iter 95: T = 799.9309064571082 K, F = -0.0004369358040510196, relative_change = 4.68285699472697e-9 Iter 100: T = 799.9308950154889 K, F = -0.0001827317729298228, relative_change = 1.958426870411041e-9 Iter 105: T = 799.930890230467 K, F = -7.64206101576681e-5, relative_change = 8.190375338065855e-10 Iter 110: T = 799.9308882293136 K, F = -3.196001278926719e-5, relative_change = 3.425312924501726e-10 Iter 115: T = 799.9308873924074 K, F = -1.3366061032527021e-5, relative_change = 1.4325069934837036e-10 Iter 120: T = 799.9308870424031 K, F = -5.58984614051905e-6, relative_change = 5.990915114023805e-11 Iter 125: T = 799.9308868960271 K, F = -2.3377407050162446e-6, relative_change = 2.5054725626583964e-11 Iter 130: T = 799.930886834811 K, F = -9.776697539320978e-7, relative_change = 1.0478171250790429e-11 Iter 135: T = 799.9308868092096 K, F = -4.088731898610476e-7, relative_change = 4.382096599227919e-12 Iter 140: T = 799.9308867985029 K, F = -1.7099624960437154e-7, relative_change = 1.8326515469856278e-12 Iter 145: T = 799.9308867940251 K, F = -7.151184722165027e-8, relative_change = 7.664279055550683e-13 Iter 150: T = 799.9308867921526 K, F = -2.990797998148054e-8, relative_change = 3.2053864286007124e-13 Converged in 153 iterations to T = 799.9308867916043 K Iter 1: T = 965.23435893018 K, F = -7921.3843884207245, relative_change = 0.03476564106982011 Iter 2: T = 932.4460936419757 K, F = -6718.529487275364, relative_change = 0.03396922725020391 Iter 3: T = 901.6057920160001 K, F = -5697.100900045263, relative_change = 0.033074621510310126 Iter 5: T = 845.6558341593152 K, F = -4093.413229470598, relative_change = 0.03097260717962989 Iter 10: T = 737.698049066828 K, F = -1781.011446935409, relative_change = 0.02395120800626269 Iter 15: T = 670.3189975188627 K, F = -766.7375136691245, relative_change = 0.015645409070489513 Iter 20: T = 633.5252483315647 K, F = -326.437006406519, relative_change = 0.008590072348900715 Iter 25: T = 615.6353412272553 K, F = -137.80597939871308, relative_change = 0.004139960242390599 Iter 30: T = 607.5755865186545 K, F = -57.88633433308745, relative_change = 0.0018500425338528628 Iter 35: T = 604.0891858055234 K, F = -24.255801274304034, relative_change = 0.0007966147785168452 Iter 40: T = 602.6096236990093 K, F = -10.152499457198005, relative_change = 0.0003373362294598084 Iter 45: T = 601.9869912237184 K, F = -4.247387177338692, relative_change = 0.00014182310282325811 Iter 50: T = 601.7259158535611 K, F = -1.776569918574629, relative_change = 5.944344029637661e-5 Iter 55: T = 601.6166109905253 K, F = -0.7430286444015537, relative_change = 2.488300025642789e-5 Iter 60: T = 601.5708773575046 K, F = -0.31075148475167425, relative_change = 1.0410403715002823e-5 Iter 65: T = 601.5517473241124 K, F = -0.12996138732743656, relative_change = 4.354461435005725e-6 Iter 70: T = 601.5437462714996 K, F = -0.054351650050703415, relative_change = 1.8212113328225995e-6 Iter 75: T = 601.5404000230593 K, F = -0.02273055213683267, relative_change = 7.616739416126488e-7 Iter 80: T = 601.5390005622893 K, F = -0.009506195881212876, relative_change = 3.185449188211835e-7 Iter 85: T = 601.538415287635 K, F = -0.003975605960150175, relative_change = 1.332199504366136e-7 Iter 90: T = 601.5381705181819 K, F = -0.0016626461204067855, relative_change = 5.571428986483457e-8 Iter 95: T = 601.538068152568 K, F = -0.0006953385037844484, relative_change = 2.3300401610026805e-8 Iter 100: T = 601.5380253420274 K, F = -0.0002907988731874478, relative_change = 9.744509748774946e-9 Iter 105: T = 601.5380074381449 K, F = -0.00012161556329554069, relative_change = 4.075270983947572e-9 Iter 110: T = 601.5379999505268 K, F = -5.0861081357322924e-5, relative_change = 1.7043271085898785e-9 Iter 115: T = 601.5379968191154 K, F = -2.1270711696719236e-5, relative_change = 7.127699705694957e-10 Iter 120: T = 601.5379955095217 K, F = -8.895665093711091e-6, relative_change = 2.9808889816028317e-10 Iter 125: T = 601.5379949618341 K, F = -3.720274153906633e-6, relative_change = 1.2466436365543003e-10 Iter 130: T = 601.5379947327845 K, F = -1.5558631110690335e-6, relative_change = 5.213612680246209e-11 Iter 135: T = 601.5379946369932 K, F = -6.506802378014598e-7, relative_change = 2.1803940957430014e-11 Iter 140: T = 601.5379945969322 K, F = -2.7212190245595735e-7, relative_change = 9.118656986267524e-12 Iter 145: T = 601.5379945801782 K, F = -1.138048211779541e-7, relative_change = 3.813537677331365e-12 Iter 150: T = 601.5379945731713 K, F = -4.759379224061888e-8, relative_change = 1.5948420993776523e-12 Iter 155: T = 601.5379945702412 K, F = -1.9904504711121263e-8, relative_change = 6.669891300277784e-13 Iter 160: T = 601.5379945690156 K, F = -8.323916667052345e-9, relative_change = 2.7892992148318893e-13 Converged in 162 iterations to T = 601.5379945687563 K Iter 1: T = 964.6531730083321 K, F = -8053.8081535642605, relative_change = 0.03534682699166781 Iter 2: T = 931.2512585484416 K, F = -6831.916246383355, relative_change = 0.034625827597419896 Iter 3: T = 899.7640396061178 K, F = -5794.277148414739, relative_change = 0.03381173303475956 Iter 5: T = 842.4214853024889 K, F = -4164.992730526041, relative_change = 0.03188109713661985 Iter 10: T = 730.5377487891036 K, F = -1814.8137441886265, relative_change = 0.02524262306936013 Iter 15: T = 659.2418489885874 K, F = -782.7420515520676, relative_change = 0.016980245385886158 Iter 20: T = 619.4603894558942 K, F = -333.8169211220595, relative_change = 0.009571493330006654 Iter 25: T = 599.7973045036526 K, F = -141.08132595592397, relative_change = 0.0046935243975361795 Iter 30: T = 590.852648990866 K, F = -59.29800176809241, relative_change = 0.0021166858692354424 Iter 35: T = 586.9648744282101 K, F = -24.854360892899816, relative_change = 0.0009153234941999801 Iter 40: T = 585.3113969932307 K, F = -10.404327229461385, relative_change = 0.00038833042281696893 Iter 45: T = 584.6149242770114 K, F = -4.352972991532187, relative_change = 0.00016339248245986237 Iter 50: T = 584.3227708083602 K, F = -1.820774532857743, relative_change = 6.850704814425872e-5 Iter 55: T = 584.2004339453295 K, F = -0.7615238571453667, relative_change = 2.8681075923279947e-5 Iter 60: T = 584.1492440731851 K, F = -0.3184878601889865, relative_change = 1.2000130643014665e-5 Iter 65: T = 584.1278311068654 K, F = -0.13319708685098827, relative_change = 5.01953641112735e-6 Iter 70: T = 584.118875117437 K, F = -0.05570490283341917, relative_change = 2.0993942563714274e-6 Iter 75: T = 584.1151294703016 K, F = -0.023296506412874007, relative_change = 8.780204690746591e-7 Iter 80: T = 584.113562970505 K, F = -0.009742886083099755, relative_change = 3.6720366912069555e-7 Iter 85: T = 584.112907837134 K, F = -0.004074592867745197, relative_change = 1.5356983832758558e-7 Iter 90: T = 584.1126338517564 K, F = -0.0017040436699212735, relative_change = 6.42248940652964e-8 Iter 95: T = 584.1125192676633 K, F = -0.0007126514610392709, relative_change = 2.6859644588325113e-8 Iter 100: T = 584.1124713472033 K, F = -0.0002980393596471731, relative_change = 1.123302881958663e-8 Iter 105: T = 584.1124513062905 K, F = -0.00012464362088743242, relative_change = 4.697787620971131e-9 Iter 110: T = 584.1124429249408 K, F = -5.212745176891298e-5, relative_change = 1.9646710567149463e-9 Iter 115: T = 584.11243941976 K, F = -2.180032251136721e-5, relative_change = 8.216489092667904e-10 Iter 120: T = 584.1124379538516 K, F = -9.11715515322653e-6, relative_change = 3.4362338781288587e-10 Iter 125: T = 584.1124373407912 K, F = -3.812903238864518e-6, relative_change = 1.4370740794342813e-10 Iter 130: T = 584.1124370844019 K, F = -1.5946014359502492e-6, relative_change = 6.010014552858143e-11 Iter 135: T = 584.1124369771769 K, F = -6.668812694288206e-7, relative_change = 2.5134595062057643e-11 Iter 140: T = 584.112436932334 K, F = -2.7889752962639847e-7, relative_change = 1.0511580988822628e-11 Iter 145: T = 584.1124369135803 K, F = -1.1663834753594671e-7, relative_change = 4.3960713397366154e-12 Iter 150: T = 584.1124369057372 K, F = -4.87794112324913e-8, relative_change = 1.838484308396105e-12 Iter 155: T = 584.1124369024571 K, F = -2.0399293365613858e-8, relative_change = 7.688444736920433e-13 Iter 160: T = 584.1124369010854 K, F = -8.530986361776627e-9, relative_change = 3.215308296180342e-13 Converged in 163 iterations to T = 584.1124369006837 K Iter 1: T = 964.331676095804 K, F = -8127.061530906312, relative_change = 0.03566832390419595 Iter 2: T = 930.5893118822248 K, F = -6894.653616443209, relative_change = 0.03499041362012351 Iter 3: T = 898.7419643317778 K, F = -5848.0614681579555, relative_change = 0.03422277383138228 Iter 5: T = 840.619377162851 K, F = -4204.644554145308, relative_change = 0.03239287805779128 Iter 10: T = 726.4932268883982 K, F = -1833.624364364399, relative_change = 0.025996336403311622 Iter 15: T = 652.8790137588013 K, F = -791.7270931230996, relative_change = 0.017795301567415395 Iter 20: T = 611.2609216874216 K, F = -338.0041581587109, relative_change = 0.01019625282552397 Iter 25: T = 590.4749268401298 K, F = -142.9551926345816, relative_change = 0.005055959529554339 Iter 30: T = 580.959724326089 K, F = -60.10952278334354, relative_change = 0.0022939171040550297 Iter 35: T = 576.8108017426031 K, F = -25.199258316499417, relative_change = 0.0009947872771804741 Iter 40: T = 575.0436992169788 K, F = -10.549585218574945, relative_change = 0.00042257266820862154 Iter 45: T = 574.2988971274766 K, F = -4.413903849238048, relative_change = 0.00017789550163980428 Iter 50: T = 573.9863870792412 K, F = -1.84628873536123, relative_change = 7.460475291036695e-5 Iter 55: T = 573.8555113269587 K, F = -0.7721998549312912, relative_change = 3.123690355385116e-5 Iter 60: T = 573.800745908562 K, F = -0.3229536805090943, relative_change = 1.3070006737705278e-5 Iter 65: T = 573.77783682119 K, F = -0.13506491961683076, relative_change = 5.4671461818997e-6 Iter 70: T = 573.7682549986998 K, F = -0.056486083134383136, relative_change = 2.2866205958413126e-6 Iter 75: T = 573.7642475966712 K, F = -0.02362321065059167, relative_change = 9.563261110157667e-7 Iter 80: T = 573.7625716236485 K, F = -0.009879518624643202, relative_change = 3.999529596576446e-7 Iter 85: T = 573.7618707065317 K, F = -0.0041317343906629445, relative_change = 1.6726614643749605e-7 Iter 90: T = 573.7615775737161 K, F = -0.0017279409650108324, relative_change = 6.995288229275137e-8 Iter 95: T = 573.7614549819134 K, F = -0.0007226456001307446, relative_change = 2.925516267689064e-8 Iter 100: T = 573.7614037125297 K, F = -0.0003022190294934002, relative_change = 1.2234863993637098e-8 Iter 105: T = 573.7613822710563 K, F = -0.0001263916086777228, relative_change = 5.11676719968914e-9 Iter 110: T = 573.7613733039751 K, F = -5.285848040437191e-5, relative_change = 2.1398933181740162e-9 Iter 115: T = 573.7613695538346 K, F = -2.210604756025525e-5, relative_change = 8.94928960793902e-10 Iter 120: T = 573.761367985481 K, F = -9.245012244751827e-6, relative_change = 3.7426994969777734e-10 Iter 125: T = 573.7613673295768 K, F = -3.866374729100119e-6, relative_change = 1.5652417162239941e-10 Iter 130: T = 573.7613670552698 K, F = -1.6169640537633256e-6, relative_change = 6.546027671080894e-11 Iter 135: T = 573.7613669405514 K, F = -6.762332224186096e-7, relative_change = 2.737625106734787e-11 Iter 140: T = 573.7613668925748 K, F = -2.8280852237827503e-7, relative_change = 1.1449063516880548e-11 Iter 145: T = 573.7613668725104 K, F = -1.1827378448847625e-7, relative_change = 4.788130356993351e-12 Iter 150: T = 573.7613668641192 K, F = -4.946308618247741e-8, relative_change = 2.0024361741841817e-12 Iter 155: T = 573.76136686061 K, F = -2.0686204083020243e-8, relative_change = 8.374488241754043e-13 Iter 160: T = 573.7613668591424 K, F = -8.65213195533343e-9, relative_change = 3.502681160648572e-13 Converged in 163 iterations to T = 573.7613668587127 K Iter 1: T = 980.0731354018033 K, F = -4540.355054040905, relative_change = 0.0199268645981968 Iter 2: T = 962.1929587474576 K, F = -3835.3222313006, relative_change = 0.018243716727339182 Iter 3: T = 946.2390593395332 K, F = -3238.257939560568, relative_change = 0.01658076923436701 Iter 5: T = 919.588400231694 K, F = -2305.3323318459006, relative_change = 0.013404539140028574 Iter 10: T = 877.2478837657578 K, F = -978.7672866582444, relative_change = 0.0070505626748534654 Iter 15: T = 857.1898242035779 K, F = -412.46564688573244, relative_change = 0.003308583476547802 Iter 20: T = 848.2844853303061 K, F = -173.1030684515334, relative_change = 0.0014585451824414024 Iter 25: T = 844.4594397638294 K, F = -72.50442738334932, relative_change = 0.0006241377093913761 Iter 30: T = 842.8412762590881 K, F = -30.34195010700169, relative_change = 0.0002635830669228358 Iter 35: T = 842.1612407861122 K, F = -12.692845678542486, relative_change = 0.00011068802709852195 Iter 40: T = 841.8762595714246 K, F = -5.30891037662064, relative_change = 4.637101890230281e-5 Iter 45: T = 841.756974812524 K, F = -2.220356693462055, relative_change = 1.940693519494619e-5 Iter 50: T = 841.7070705974096 K, F = -0.9285984066546018, relative_change = 8.118667011660818e-6 Iter 55: T = 841.6861969251587 K, F = -0.3883542185266947, relative_change = 3.395753064702508e-6 Iter 60: T = 841.6774667579389 K, F = -0.16241494496227626, relative_change = 1.4202196303421503e-6 Iter 65: T = 841.6738156018562 K, F = -0.06792396981103122, relative_change = 5.939659542510289e-7 Iter 70: T = 841.6722886280065 K, F = -0.02840663287882128, relative_change = 2.484059544476926e-7 Iter 75: T = 841.6716500263732 K, F = -0.011879996179544161, relative_change = 1.0388673882073787e-7 Iter 80: T = 841.6713829550307 K, F = -0.004968356814743169, relative_change = 4.344674516567151e-8 Iter 85: T = 841.671271262516 K, F = -0.0020778262499423494, relative_change = 1.8169960005922263e-8 Iter 90: T = 841.6712245513568 K, F = -0.0008689717691010568, relative_change = 7.598896425273489e-9 Iter 95: T = 841.6712050161893 K, F = -0.00036341437305154045, relative_change = 3.1779495993396787e-9 Iter 100: T = 841.6711968463486 K, F = -0.00015198423178519604, relative_change = 1.3290565443917885e-9 Iter 105: T = 841.6711934296235 K, F = -6.356162052867376e-5, relative_change = 5.558273274557211e-10 Iter 110: T = 841.6711920007082 K, F = -2.6582225696403228e-5, relative_change = 2.3245360113849448e-10 Iter 115: T = 841.6711914031189 K, F = -1.1117005213279185e-5, relative_change = 9.721488087386807e-11 Iter 120: T = 841.6711911531999 K, F = -4.649266637013483e-6, relative_change = 4.065644427037136e-11 Iter 125: T = 841.6711910486807 K, F = -1.944378744234143e-6, relative_change = 1.7003009780693054e-11 Iter 130: T = 841.6711910049695 K, F = -8.131630628849251e-7, relative_change = 7.1108674459386e-12 Iter 135: T = 841.671190986689 K, F = -3.400747001780502e-7, relative_change = 2.9738514023917458e-12 Iter 140: T = 841.6711909790438 K, F = -1.4222222044502075e-7, relative_change = 1.2436907230045202e-12 Iter 145: T = 841.6711909758466 K, F = -5.947976933207144e-8, relative_change = 5.201327689485801e-13 Converged in 150 iterations to T = 841.6711909745095 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:16 Bin 1 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 1 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:12 Bin 1 ray tracing: 33%|█████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 40%|███████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 1 ray tracing: 54%|████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 1 ray tracing: 68%|████████████████████▎ | ETA: 0:00:05 Bin 1 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 2 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 2 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 2 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 2 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 2 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 2 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 2 ray tracing: 59%|█████████████████▉ | ETA: 0:00:06 Bin 2 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 2 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 3 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 3 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 3 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 3 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 3 ray tracing: 46%|█████████████▋ | ETA: 0:00:09 Bin 3 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 65%|███████████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:04 Bin 3 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:14 Bin 4 ray tracing: 13%|████ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 4 ray tracing: 30%|█████████ | ETA: 0:00:09 Bin 4 ray tracing: 41%|████████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 4 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:08 Bin 5 ray tracing: 32%|█████████▌ | ETA: 0:00:07 Bin 5 ray tracing: 42%|████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 53%|███████████████▊ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▋ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 6 ray tracing: 19%|█████▊ | ETA: 0:00:08 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 6 ray tracing: 45%|█████████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 6 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 65%|███████████████████▋ | ETA: 0:00:05 Bin 6 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 7 ray tracing: 20%|██████▏ | ETA: 0:00:12 Bin 7 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 7 ray tracing: 46%|█████████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 7 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 7 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 7 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 8 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 8 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 8 ray tracing: 26%|███████▋ | ETA: 0:00:12 Bin 8 ray tracing: 32%|█████████▋ | ETA: 0:00:11 Bin 8 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 8 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 8 ray tracing: 51%|███████████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 58%|█████████████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:15 Bin 9 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 9 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 9 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 9 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 9 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 9 ray tracing: 44%|█████████████▍ | ETA: 0:00:09 Bin 9 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:06 Bin 9 ray tracing: 70%|████████████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 10 ray tracing: 26%|███████▍ | ETA: 0:00:12 Bin 10 ray tracing: 32%|█████████▎ | ETA: 0:00:11 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:10 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:09 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 71%|████████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 78%|██████████████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 84%|████████████████████████▍ | ETA: 0:00:02 Bin 10 ray tracing: 91%|██████████████████████████▎ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████▏| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2585383799395 K, F = -7460.173175301243, relative_change = 0.03274146162006045 Iter 2: T = 936.5895447835263 K, F = -6323.890100738132, relative_change = 0.0317071314229809 Iter 3: T = 907.9618237046337 K, F = -5359.174834815292, relative_change = 0.030565919978862526 Iter 5: T = 856.6930042818034 K, F = -3845.107078389011, relative_change = 0.027967596212548098 Iter 10: T = 761.2574858950302 K, F = -1665.1536406269702, relative_change = 0.020063889815210897 Iter 15: T = 705.2978394449884 K, F = -713.0197823942228, relative_change = 0.012045713553470215 Iter 20: T = 676.481474629624 K, F = -302.22634178089874, relative_change = 0.00617737701808976 Iter 25: T = 663.0325143682392 K, F = -127.23753995412686, relative_change = 0.00285601321861347 Iter 30: T = 657.1092261767468 K, F = -53.37289649681968, relative_change = 0.0012498199216354289 Iter 35: T = 654.5746552569508 K, F = -22.350379437561926, relative_change = 0.0005330524031616929 Iter 40: T = 653.5042095453883 K, F = -9.352387463164765, relative_change = 0.0002247945440473561 Iter 45: T = 653.0546747693048 K, F = -3.9121945886084677, relative_change = 9.434209277064465e-5 Iter 50: T = 652.8663459316286 K, F = -1.6362869113287426, relative_change = 3.9513063416391956e-5 Iter 55: T = 652.7875270110569 K, F = -0.6843428187533155, relative_change = 1.6535014096614992e-5 Iter 60: T = 652.7545539181716 K, F = -0.286205255238238, relative_change = 6.91692230949064e-6 Iter 65: T = 652.7407624131514 K, F = -0.11969531567369085, relative_change = 2.8930512970297776e-6 Iter 70: T = 652.7349943324873 K, F = -0.050058160885500635, relative_change = 1.2099631421853266e-6 Iter 75: T = 652.732581998296 K, F = -0.020934947007563875, relative_change = 5.060305756523269e-7 Iter 80: T = 652.7315731218878 K, F = -0.008755249454139413, relative_change = 2.116296985188455e-7 Iter 85: T = 652.7311511960744 K, F = -0.0036615506856854663, relative_change = 8.850635913265504e-8 Iter 90: T = 652.7309747413716 K, F = -0.001531304365331998, relative_change = 3.701446741278162e-8 Iter 95: T = 652.7309009458571 K, F = -0.0006404097978474077, relative_change = 1.5479901245758942e-8 Iter 100: T = 652.7308700836827 K, F = -0.0002678270298095975, relative_change = 6.473881129898694e-9 Iter 105: T = 652.7308571767513 K, F = -0.00011200846228831551, relative_change = 2.707454655263829e-9 Iter 110: T = 652.7308517789182 K, F = -4.684327710025027e-5, relative_change = 1.1322899275218464e-9 Iter 115: T = 652.7308495214799 K, F = -1.9590417800197102e-5, relative_change = 4.735371752253938e-10 Iter 120: T = 652.7308485773922 K, F = -8.192946944873825e-6, relative_change = 1.980389096001909e-10 Iter 125: T = 652.7308481825635 K, F = -3.426388142435677e-6, relative_change = 8.282223455306507e-11 Iter 130: T = 652.7308480174413 K, F = -1.4329554889336293e-6, relative_change = 3.463722462777886e-11 Iter 135: T = 652.7308479483854 K, F = -5.992796014431256e-7, relative_change = 1.4485713157729604e-11 Iter 140: T = 652.7308479195052 K, F = -2.506262454793351e-7, relative_change = 6.0581069234369685e-12 Iter 145: T = 652.7308479074273 K, F = -1.0481495488212644e-7, relative_change = 2.5335742579259902e-12 Iter 150: T = 652.7308479023761 K, F = -4.38353118248358e-8, relative_change = 1.0595817911342061e-12 Iter 155: T = 652.7308479002636 K, F = -1.8330935491750466e-8, relative_change = 4.4309312864997744e-13 Converged in 159 iterations to T = 652.7308478995011 K Iter 1: T = 970.2786558269348 K, F = -6772.036542130021, relative_change = 0.029721344173065205 Iter 2: T = 942.720343769721 K, F = -5735.859858857814, relative_change = 0.028402471693790697 Iter 3: T = 917.2806976193632 K, F = -4856.480794002559, relative_change = 0.026985358190776448 Iter 5: T = 872.5434096608012 K, F = -3477.3850515915, relative_change = 0.02390057541617744 Iter 10: T = 793.0581526407765 K, F = -1496.9322562607676, relative_change = 0.015594889329264113 Iter 15: T = 749.6884934831731 K, F = -637.2760864935685, relative_change = 0.008554009805970502 Iter 20: T = 728.6138569071827 K, F = -269.01626285849255, relative_change = 0.004120001814227621 Iter 25: T = 719.1226019411278 K, F = -112.99967358362125, relative_change = 0.0018405240084385696 Iter 30: T = 715.0176751821541 K, F = -47.34917621099263, relative_change = 0.0007923967142942456 Iter 35: T = 713.2757553581886 K, F = -19.818367430635597, relative_change = 0.0003355279265519142 Iter 40: T = 712.5427411004337 K, F = -8.291172327265711, relative_change = 0.00014105889305388562 Iter 45: T = 712.2353859531046 K, F = -3.4679757541087635, relative_change = 5.912243096626575e-5 Iter 50: T = 712.1067058139556 K, F = -1.4504379732085844, relative_change = 2.4748502918623997e-5 Iter 55: T = 712.0528656131874 K, F = -0.6066060773491263, relative_change = 1.0354111963084079e-5 Iter 60: T = 712.0303446869264 K, F = -0.25369263439260176, relative_change = 4.330911962097059e-6 Iter 65: T = 712.0209254122966 K, F = -0.10609776668594106, relative_change = 1.8113613340343345e-6 Iter 70: T = 712.0169860272084 K, F = -0.04437143657289666, relative_change = 7.575543221998331e-7 Iter 75: T = 712.0153385062393 K, F = -0.018556679277065058, relative_change = 3.168220041441694e-7 Iter 80: T = 712.014649489258 K, F = -0.007760627436895318, relative_change = 1.3249939978671988e-7 Iter 85: T = 712.0143613334218 K, F = -0.0032455875200896322, relative_change = 5.541294572964584e-8 Iter 90: T = 712.0142408230864 K, F = -0.0013573435391281974, relative_change = 2.3174375676203915e-8 Iter 95: T = 712.0141904242034 K, F = -0.0005676572917847622, relative_change = 9.691804166986294e-9 Iter 100: T = 712.0141693467849 K, F = -0.00023740106192260413, relative_change = 4.053228873778685e-9 Iter 105: T = 712.014160531956 K, F = -9.928395914782229e-5, relative_change = 1.6951088187308258e-9 Iter 110: T = 712.0141568454893 K, F = -4.1521738690986076e-5, relative_change = 7.08914791102921e-10 Iter 115: T = 712.0141553037649 K, F = -1.7364888227122677e-5, relative_change = 2.9647665596523347e-10 Iter 120: T = 712.0141546589972 K, F = -7.262202906366255e-6, relative_change = 1.239900662614358e-10 Iter 125: T = 712.0141543893477 K, F = -3.037140964279317e-6, relative_change = 5.185414328690839e-11 Iter 130: T = 712.0141542765772 K, F = -1.2701699416695078e-6, relative_change = 2.168604453278972e-11 Iter 135: T = 712.0141542294151 K, F = -5.312006944313552e-7, relative_change = 9.069370594440853e-12 Iter 140: T = 712.0141542096912 K, F = -2.2215361661359623e-7, relative_change = 3.7929044508998314e-12 Iter 145: T = 712.0141542014426 K, F = -9.290579561227474e-8, relative_change = 1.5862123294825403e-12 Iter 150: T = 712.0141541979929 K, F = -3.885428034866578e-8, relative_change = 6.633723777669665e-13 Iter 155: T = 712.0141541965502 K, F = -1.6249921852562466e-8, relative_change = 2.774404570418432e-13 Converged in 157 iterations to T = 712.0141541962448 K Iter 1: T = 974.462309107798 K, F = -5818.787162403664, relative_change = 0.02553769089220197 Iter 2: T = 951.1135065745955 K, F = -4922.836644107361, relative_change = 0.023960703574651663 Iter 3: T = 929.8784655474188 K, F = -4163.038452939672, relative_change = 0.022326505596218387 Iter 5: T = 893.3946210195655 K, F = -2973.1009800719035, relative_change = 0.018971192290148233 Iter 10: T = 831.9723568785378 K, F = -1271.2346627691736, relative_change = 0.011134083521630459 Iter 15: T = 800.8143450550941 K, F = -538.2503659707812, relative_change = 0.005615382087689304 Iter 20: T = 786.4123375009491 K, F = -226.46242198871255, relative_change = 0.0025717060115781954 Iter 25: T = 780.1013293893775 K, F = -94.96629649957873, relative_change = 0.0011202518063465202 Iter 30: T = 777.407202489532 K, F = -39.762569021262976, relative_change = 0.0004768129797285479 Iter 35: T = 776.2705434975046 K, F = -16.637440960339394, relative_change = 0.0002009004986875886 Iter 40: T = 775.7934124777353 K, F = -6.959430235422358, relative_change = 8.428274716328902e-5 Iter 45: T = 775.5935595362826 K, F = -2.9107717684518266, relative_change = 3.529439611770885e-5 Iter 50: T = 775.5099240942567 K, F = -1.217364152360254, relative_change = 1.4768659357613152e-5 Iter 55: T = 775.474937200667 K, F = -0.5091240374804235, relative_change = 6.177851307214398e-6 Iter 60: T = 775.4603035923044 K, F = -0.21292311900311434, relative_change = 2.583899916986136e-6 Iter 65: T = 775.4541833500958 K, F = -0.08904723017875105, relative_change = 1.0806613111722537e-6 Iter 70: T = 775.4516237405629 K, F = -0.03724065690135436, relative_change = 4.5195307606550684e-7 Iter 75: T = 775.4505532723417 K, F = -0.01557449477098849, relative_change = 1.8901350486030797e-7 Iter 80: T = 775.4501055881827 K, F = -0.006513440988421326, relative_change = 7.904793780475459e-8 Iter 85: T = 775.4499183610474 K, F = -0.0027239990307971196, relative_change = 3.3058832325552155e-8 Iter 90: T = 775.4498400603757 K, F = -0.0011392089647822567, relative_change = 1.3825605600686559e-8 Iter 95: T = 775.4498073140912 K, F = -0.00047643080278836347, relative_change = 5.782034642787751e-9 Iter 100: T = 775.4497936192025 K, F = -0.00019924905150825456, relative_change = 2.4181161429807214e-9 Iter 105: T = 775.4497878918362 K, F = -8.332833224455882e-5, relative_change = 1.0112850772877833e-9 Iter 110: T = 775.4497854965832 K, F = -3.484890452254419e-5, relative_change = 4.2293151287777444e-10 Iter 115: T = 775.4497844948597 K, F = -1.4574227267138973e-5, relative_change = 1.7687500107899714e-10 Iter 120: T = 775.449784075927 K, F = -6.09511647753358e-6, relative_change = 7.397124503088998e-11 Iter 125: T = 775.4497839007245 K, F = -2.5490511423864604e-6, relative_change = 3.0935665880642217e-11 Iter 130: T = 775.4497838274526 K, F = -1.0660438897192037e-6, relative_change = 1.2937668080843186e-11 Iter 135: T = 775.4497837968095 K, F = -4.458333102697054e-7, relative_change = 5.410699732313621e-12 Iter 140: T = 775.4497837839941 K, F = -1.8645374622039412e-7, relative_change = 2.262830550352198e-12 Iter 145: T = 775.4497837786346 K, F = -7.797654111296737e-8, relative_change = 9.46334965232914e-13 Iter 150: T = 775.4497837763931 K, F = -3.2609110300896305e-8, relative_change = 3.9574903968352403e-13 Converged in 154 iterations to T = 775.449783775584 K Iter 1: T = 970.3631547411808 K, F = -6752.783384139847, relative_change = 0.029636845258819183 Iter 2: T = 942.891001153325 K, F = -5719.421022657687, relative_change = 0.02831120849305466 Iter 3: T = 917.538664790228 K, F = -4842.441666713504, relative_change = 0.026887876045148834 Iter 5: T = 872.9768393914273 K, F = -3467.1424027932053, relative_change = 0.023793342141181548 Iter 10: T = 793.8983253571126 K, F = -1492.2955756535164, relative_change = 0.015487634102096037 Iter 15: T = 750.8254832479245 K, F = -635.216446488204, relative_change = 0.008477459307584497 Iter 20: T = 729.9220046835568 K, F = -268.12326476407964, relative_change = 0.004077665288371769 Iter 25: T = 720.5148152971082 K, F = -112.61938383676467, relative_change = 0.0018203428469456575 Iter 30: T = 716.4477255469453 K, F = -47.18881747233107, relative_change = 0.0007834558193649352 Iter 35: T = 714.7221438117992 K, F = -19.75106300463401, relative_change = 0.0003316953610206535 Iter 40: T = 713.9960559581748 K, F = -8.262981969779089, relative_change = 0.00013943928619362876 Iter 45: T = 713.6916141718743 K, F = -3.4561786582512295, relative_change = 5.8442122926839464e-5 Iter 50: T = 713.564155369276 K, F = -1.4455029617188164, relative_change = 2.446346816360473e-5 Iter 55: T = 713.5108264607785 K, F = -0.6045419645279744, relative_change = 1.0234815575288884e-5 Iter 60: T = 713.4885194531932 K, F = -0.252829357145221, relative_change = 4.281004779926077e-6 Iter 65: T = 713.4791896576827 K, F = -0.10573672672683421, relative_change = 1.7904867536233872e-6 Iter 70: T = 713.4752876965904 K, F = -0.04422044410645065, relative_change = 7.488238334217634e-7 Iter 75: T = 713.4736558272659 K, F = -0.018493532207591534, relative_change = 3.13170723787836e-7 Iter 80: T = 713.4729733560737 K, F = -0.007734218540035642, relative_change = 1.3097237574376404e-7 Iter 85: T = 713.4726879377796 K, F = -0.0032345429981709417, relative_change = 5.4774323430400785e-8 Iter 90: T = 713.4725685723195 K, F = -0.0013527245878156569, relative_change = 2.2907295759258165e-8 Iter 95: T = 713.4725186522373 K, F = -0.0005657255902455915, relative_change = 9.580108063477276e-9 Iter 100: T = 713.4724977750593 K, F = -0.0002365932011170191, relative_change = 4.006516213233342e-9 Iter 105: T = 713.4724890439734 K, F = -9.894610354332922e-5, relative_change = 1.6755730482049982e-9 Iter 110: T = 713.4724853925288 K, F = -4.138044195656221e-5, relative_change = 7.007446728244034e-10 Iter 115: T = 713.4724838654511 K, F = -1.7305794022814958e-5, relative_change = 2.930597770510312e-10 Iter 120: T = 713.472483226809 K, F = -7.237489783484818e-6, relative_change = 1.2256109997612667e-10 Iter 125: T = 713.4724829597213 K, F = -3.0268059132421143e-6, relative_change = 5.125653699006193e-11 Iter 130: T = 713.472482848022 K, F = -1.265846942266613e-6, relative_change = 2.143610542867951e-11 Iter 135: T = 713.4724828013079 K, F = -5.293916024440293e-7, relative_change = 8.964823335012031e-12 Iter 140: T = 713.4724827817716 K, F = -2.2139864952475108e-7, relative_change = 3.749209036741836e-12 Iter 145: T = 713.4724827736013 K, F = -9.259155797636254e-8, relative_change = 1.567963972025504e-12 Iter 150: T = 713.4724827701845 K, F = -3.872414844341421e-8, relative_change = 6.557624791617178e-13 Iter 155: T = 713.4724827687554 K, F = -1.6195198071500272e-8, relative_change = 2.742527251051673e-13 Converged in 157 iterations to T = 713.472482768453 K Iter 1: T = 969.3374867887956 K, F = -6986.482802752929, relative_change = 0.030662513211204445 Iter 2: T = 940.816317799116 K, F = -5919.009194029739, relative_change = 0.0294233632541789 Iter 3: T = 914.3973331552254 K, F = -5012.945786860221, relative_change = 0.028080916693381124 Iter 5: T = 867.679637849784 K, F = -3591.6359040620027, relative_change = 0.025118234058939034 Iter 10: T = 783.5282213867808 K, F = -1548.820958457328, relative_change = 0.01684869880831577 Iter 15: T = 736.6725605172411 K, F = -660.4168372715008, relative_change = 0.009472639175958315 Iter 20: T = 713.5508419719839 K, F = -279.08062728504524, relative_change = 0.00463693509189361 Iter 25: T = 703.0431840617018 K, F = -117.29335671047204, relative_change = 0.0020892109415977826 Iter 30: T = 698.4782968934906 K, F = -49.16129557180544, relative_change = 0.0009030462381113065 Iter 35: T = 696.5372754118913 K, F = -20.579231372510762, relative_change = 0.0003830478104532894 Iter 40: T = 695.7197633647501 K, F = -8.609912459323715, relative_change = 0.00016115649813304593 Iter 45: T = 695.3768509123224 K, F = -3.601371530073081, relative_change = 6.756719474785231e-5 Iter 50: T = 695.2332616255621 K, F = -1.5062423271704186, relative_change = 2.8287184687518414e-5 Iter 55: T = 695.1731794578582 K, F = -0.6299470405730153, relative_change = 1.1835254534650272e-5 Iter 60: T = 695.1480468784468 K, F = -0.263454614279503, relative_change = 4.9505576773736535e-6 Iter 65: T = 695.1375351713732 K, F = -0.1101804325353326, relative_change = 2.0705420509616143e-6 Iter 70: T = 695.133138881619 K, F = -0.04607887180629966, relative_change = 8.659533494133626e-7 Iter 75: T = 695.1313002712999 K, F = -0.01927075181494442, relative_change = 3.6215691863539626e-7 Iter 80: T = 695.1305313373575 K, F = -0.008059261581432331, relative_change = 1.5145920307460058e-7 Iter 85: T = 695.1302097590992 K, F = -0.003370479970641438, relative_change = 6.334219699424056e-8 Iter 90: T = 695.1300752710736 K, F = -0.0014095750688053466, relative_change = 2.6490489398725965e-8 Iter 95: T = 695.1300190265475 K, F = -0.0005895011429113417, relative_change = 1.1078643584345605e-8 Iter 100: T = 695.1299955044103 K, F = -0.0002465364207036025, relative_change = 4.633221849376755e-9 Iter 105: T = 695.1299856671708 K, F = -0.0001031044766397482, relative_change = 1.9376688635258043e-9 Iter 110: T = 695.1299815531196 K, F = -4.3119523960410966e-5, relative_change = 8.103562916515474e-10 Iter 115: T = 695.1299798325742 K, F = -1.8033100507075517e-5, relative_change = 3.389006947182082e-10 Iter 120: T = 695.1299791130215 K, F = -7.54165664851314e-6, relative_change = 1.4173229329591901e-10 Iter 125: T = 695.129978812096 K, F = -3.1540119898032515e-6, relative_change = 5.927415873634858e-11 Iter 130: T = 695.1299786862454 K, F = -1.319045601522184e-6, relative_change = 2.478916335298387e-11 Iter 135: T = 695.1299786336132 K, F = -5.516402811212018e-7, relative_change = 1.0367117732660919e-11 Iter 140: T = 695.1299786116017 K, F = -2.3070229737687242e-7, relative_change = 4.335647631824184e-12 Iter 145: T = 695.1299786023962 K, F = -9.648264354122915e-8, relative_change = 1.813223144131452e-12 Iter 150: T = 695.1299785985464 K, F = -4.034938827501833e-8, relative_change = 7.582964353839946e-13 Iter 155: T = 695.1299785969364 K, F = -1.6874923236542827e-8, relative_change = 3.171347741525149e-13 Converged in 158 iterations to T = 695.1299785964651 K Iter 1: T = 963.5116014269712 K, F = -8313.91632429229, relative_change = 0.03648839857302885 Iter 2: T = 928.8975963332335 K, F = -7054.731751695443, relative_change = 0.03592484516270896 Iter 3: T = 896.1242287106733 K, F = -5985.348223519269, relative_change = 0.03528200282994716 Iter 5: T = 835.9799276820638 K, F = -4305.971190827741, relative_change = 0.03372905243254461 Iter 10: T = 715.8896221728314 K, F = -1881.9878238990295, relative_change = 0.028059133971870293 Iter 15: T = 635.7980065191191 K, F = -815.1212930803879, relative_change = 0.020173762440859402 Iter 20: T = 588.7533474151617 K, F = -349.0864128589677, relative_change = 0.012139431919705426 Iter 25: T = 564.490678620881 K, F = -147.98313527289008, relative_change = 0.006236154683388299 Iter 30: T = 553.155630065918 K, F = -62.30508517032618, relative_change = 0.0028860474069451842 Iter 35: T = 548.1607129690063 K, F = -26.13622899173488, relative_change = 0.0012635747675463 Iter 40: T = 546.022860027656 K, F = -10.944938298109316, relative_change = 0.0005390358871667132 Iter 45: T = 545.1198647479667 K, F = -4.579874854430636, relative_change = 0.0002273391173474484 Iter 50: T = 544.740633249452 K, F = -1.9158112250069879, relative_change = 9.541378368598643e-5 Iter 55: T = 544.581754252398 K, F = -0.8012945773972794, relative_change = 3.9962582864730345e-5 Iter 60: T = 544.5152600565449 K, F = -0.3351248738541911, relative_change = 1.6723241087597588e-5 Iter 65: T = 544.4874427903883 K, F = -0.14015565897837143, relative_change = 6.995681820638439e-6 Iter 70: T = 544.4758077726066 K, F = -0.058615196276852466, relative_change = 2.9259965939574363e-6 Iter 75: T = 544.4709416059555 K, F = -0.0245136495857306, relative_change = 1.2237425059181494e-6 Iter 80: T = 544.4689064708987 K, F = -0.01025191403833206, relative_change = 5.117934882343858e-7 Iter 85: T = 544.468055345059 K, F = -0.0042874751625845975, relative_change = 2.1403985554440433e-7 Iter 90: T = 544.4676993926596 K, F = -0.001793073714363047, relative_change = 8.951432224817508e-8 Iter 95: T = 544.4675505288689 K, F = -0.0007498849104592697, relative_change = 3.743601077948549e-8 Iter 100: T = 544.4674882722107 K, F = -0.00031361083746520024, relative_change = 1.5656195929955002e-8 Iter 105: T = 544.4674622357252 K, F = -0.00013115579931871624, relative_change = 6.5476096922131515e-9 Iter 110: T = 544.4674513469547 K, F = -5.4850921383381435e-5, relative_change = 2.7382888178554315e-9 Iter 115: T = 544.4674467931407 K, F = -2.293931069780042e-5, relative_change = 1.1451851471236502e-9 Iter 120: T = 544.4674448886811 K, F = -9.59349380227903e-6, relative_change = 4.789301186542724e-10 Iter 125: T = 544.4674440922134 K, F = -4.012113577311904e-6, relative_change = 2.0029429159188086e-10 Iter 130: T = 544.4674437591212 K, F = -1.6779139947187272e-6, relative_change = 8.376547408917305e-11 Iter 135: T = 544.467443619818 K, F = -7.017242582285643e-7, relative_change = 3.503175098783367e-11 Iter 140: T = 544.4674435615597 K, F = -2.93468897516469e-7, relative_change = 1.465066830048158e-11 Iter 145: T = 544.4674435371954 K, F = -1.2273245689198298e-7, relative_change = 6.127097389970478e-12 Iter 150: T = 544.467443527006 K, F = -5.1328427674857124e-8, relative_change = 2.5624377058035497e-12 Iter 155: T = 544.4674435227447 K, F = -2.1466199429109878e-8, relative_change = 1.0716439468580022e-12 Iter 160: T = 544.4674435209625 K, F = -8.978070287213313e-9, relative_change = 4.482067125893052e-13 Converged in 165 iterations to T = 544.4674435202171 K Iter 1: T = 966.8725716180895 K, F = -7548.116069137949, relative_change = 0.03312742838191049 Iter 2: T = 935.8016241260201 K, F = -6399.106911285037, relative_change = 0.032135514445374366 Iter 3: T = 906.7568060055098 K, F = -5423.547400697191, relative_change = 0.03103736665090352 Iter 5: T = 854.6150561252713 K, F = -3892.336402685082, relative_change = 0.02852225517124958 Iter 10: T = 756.9188984502068 K, F = -1687.0348060541721, relative_change = 0.020740210877912568 Iter 15: T = 699.0083962092598 K, F = -723.0483951833454, relative_change = 0.012630707116689371 Iter 20: T = 668.8997663392507 K, F = -306.69323406174595, relative_change = 0.006547934050452652 Iter 25: T = 654.7582376674331 K, F = -129.17158926904145, relative_change = 0.003046433690944824 Iter 30: T = 648.5088239566245 K, F = -54.1952597419314, relative_change = 0.0013372678709266496 Iter 35: T = 645.8304571892068 K, F = -22.696842601746457, relative_change = 0.0005711400563926703 Iter 40: T = 644.6984906304048 K, F = -9.497740979576518, relative_change = 0.00024100055521435692 Iter 45: T = 644.2229781414528 K, F = -3.9730644213431723, relative_change = 0.00010116907236313414 Iter 50: T = 644.0237410463841 K, F = -1.6617576934224054, relative_change = 4.237690308344772e-5 Iter 55: T = 643.9403524159627 K, F = -0.6949975093790982, relative_change = 1.773423548511938e-5 Iter 60: T = 643.9054668581432 K, F = -0.2906616127205814, relative_change = 7.418718892728427e-6 Iter 65: T = 643.8908752997751 K, F = -0.12155909433852613, relative_change = 3.102955500362992e-6 Iter 70: T = 643.8847725856616 K, F = -0.05083762880645637, relative_change = 1.2977557880925943e-6 Iter 75: T = 643.882220296491 K, F = -0.021260932147836975, relative_change = 5.427479431618412e-7 Iter 80: T = 643.8811528879668 K, F = -0.008891580743194516, relative_change = 2.2698559101398673e-7 Iter 85: T = 643.8807064831009 K, F = -0.0037185661308536955, relative_change = 9.492842065082035e-8 Iter 90: T = 643.880519790927 K, F = -0.0015551489174536748, relative_change = 3.970025789744042e-8 Iter 95: T = 643.880441713973 K, F = -0.0006503818756781743, relative_change = 1.6603132222953748e-8 Iter 100: T = 643.8804090612484 K, F = -0.0002719974715607587, relative_change = 6.943629956294447e-9 Iter 105: T = 643.8803954054873 K, F = -0.00011375259108376001, relative_change = 2.9039092690020045e-9 Iter 110: T = 643.8803896944846 K, F = -4.7572691620423324e-5, relative_change = 1.2144495757459115e-9 Iter 115: T = 643.8803873060751 K, F = -1.9895468172381747e-5, relative_change = 5.07897335318242e-10 Iter 120: T = 643.8803863072136 K, F = -8.320521781179924e-6, relative_change = 2.1240871718703135e-10 Iter 125: T = 643.8803858894778 K, F = -3.4797405973341355e-6, relative_change = 8.883183749103941e-11 Iter 130: T = 643.8803857147758 K, F = -1.4552692020886049e-6, relative_change = 3.7150538615344824e-11 Iter 135: T = 643.8803856417132 K, F = -6.08610727148573e-7, relative_change = 1.553679298676214e-11 Iter 140: T = 643.8803856111577 K, F = -2.545283875887705e-7, relative_change = 6.497675265505438e-12 Iter 145: T = 643.880385598379 K, F = -1.0644650449975757e-7, relative_change = 2.717397560269058e-12 Iter 150: T = 643.8803855930348 K, F = -4.451739432642654e-8, relative_change = 1.1364530879191334e-12 Iter 155: T = 643.8803855907997 K, F = -1.8617769270701245e-8, relative_change = 4.75279869775398e-13 Converged in 160 iterations to T = 643.880385589865 K Iter 1: T = 965.1614489697553 K, F = -7937.996992258761, relative_change = 0.03483855103024477 Iter 2: T = 932.2963280361319 K, F = -6732.75200564176, relative_change = 0.03405142317765041 Iter 3: T = 901.3751589152963 K, F = -5709.287999787665, relative_change = 0.03316667479101904 Iter 5: T = 845.2517218655305 K, F = -4102.385806175214, relative_change = 0.031085416868251167 Iter 10: T = 736.8101623583718 K, F = -1785.2380006192482, relative_change = 0.024108424923636497 Iter 15: T = 668.9578636708253 K, F = -768.7293097823376, relative_change = 0.015803905040323644 Iter 20: T = 631.81051666309 K, F = -327.3504270048297, relative_change = 0.00870398616766603 Iter 25: T = 613.7140879564655 K, F = -138.2096744394196, relative_change = 0.004203246990708495 Iter 30: T = 605.5522518283374 K, F = -58.0599101870432, relative_change = 0.0018802821168031373 Iter 35: T = 602.0197708699851 K, F = -24.32931399385534, relative_change = 0.0008100266642189833 Iter 40: T = 600.5202857601348 K, F = -10.18341202925819, relative_change = 0.0003430880888315799 Iter 45: T = 599.8892024724938 K, F = -4.260345268757375, relative_change = 0.00014425428644297388 Iter 50: T = 599.6245717311645 K, F = -1.7819944526478406, relative_change = 6.0464735964886e-5 Iter 55: T = 599.5137762445968 K, F = -0.7452981804944858, relative_change = 2.5310917256337484e-5 Iter 60: T = 599.4674185615166 K, F = -0.3117007949464603, relative_change = 1.058950374069321e-5 Iter 65: T = 599.4480274284916 K, F = -0.13035842873127454, relative_change = 4.429387716452651e-6 Iter 70: T = 599.4399171608667 K, F = -0.054517702500952614, relative_change = 1.8525506872153221e-6 Iter 75: T = 599.4365252339004 K, F = -0.02279999812773209, relative_change = 7.74781184086123e-7 Iter 80: T = 599.4351066692125 K, F = -0.009535239177417498, relative_change = 3.2402665539963953e-7 Iter 85: T = 599.4345134049643 K, F = -0.003987752239234255, relative_change = 1.3551250105785957e-7 Iter 90: T = 599.434265294149 K, F = -0.001667725844100243, relative_change = 5.667306592897505e-8 Iter 95: T = 599.4341615311342 K, F = -0.0006974629055178094, relative_change = 2.370137390555712e-8 Iter 100: T = 599.4341181361833 K, F = -0.0002916873239526274, relative_change = 9.912201289253704e-9 Iter 105: T = 599.4340999878933 K, F = -0.00012198712344507756, relative_change = 4.145401590267703e-9 Iter 110: T = 599.4340923980611 K, F = -5.101647271016363e-5, relative_change = 1.7336565850437738e-9 Iter 115: T = 599.4340892239024 K, F = -2.1335697972468814e-5, relative_change = 7.250359002497066e-10 Iter 120: T = 599.4340878964314 K, F = -8.922842925473962e-6, relative_change = 3.032186493178864e-10 Iter 125: T = 599.4340873412672 K, F = -3.73164000266879e-6, relative_change = 1.268096789094708e-10 Iter 130: T = 599.4340871090908 K, F = -1.5606162461212492e-6, relative_change = 5.3033316529713874e-11 Iter 135: T = 599.4340870119919 K, F = -6.526682140295392e-7, relative_change = 2.217916165888483e-11 Iter 140: T = 599.434086971384 K, F = -2.729532967427062e-7, relative_change = 9.275578564425957e-12 Iter 145: T = 599.4340869544013 K, F = -1.141531021375819e-7, relative_change = 3.879184021693608e-12 Iter 150: T = 599.434086947299 K, F = -4.7740191688738776e-8, relative_change = 1.6223211225463702e-12 Iter 155: T = 599.4340869443287 K, F = -1.9965500308583017e-8, relative_change = 6.784734565953761e-13 Iter 160: T = 599.4340869430865 K, F = -8.350428737369242e-9, relative_change = 2.837667056666038e-13 Converged in 162 iterations to T = 599.4340869428236 K Iter 1: T = 980.1354298719319 K, F = -4526.161199764729, relative_change = 0.019864570128068047 Iter 2: T = 962.3148543574698 K, F = -3823.26654062248, relative_change = 0.018181748125144892 Iter 3: T = 946.4174184898916 K, F = -3228.0235379228952, relative_change = 0.01651999425717358 Iter 5: T = 919.8688828734859 K, F = -2297.969908227209, relative_change = 0.013348475553772651 Iter 10: T = 877.7146676206393 K, F = -975.5746291569625, relative_change = 0.007013670620845502 Iter 15: T = 857.7574023644802 K, F = -411.10312783094776, relative_change = 0.0032891914983592444 Iter 20: T = 848.8998527053317 K, F = -172.52764118767473, relative_change = 0.001449538959559723 Iter 25: T = 845.0959541345535 K, F = -72.2627219387575, relative_change = 0.0006201950823290226 Iter 30: T = 843.4868529871546 K, F = -30.240675522363198, relative_change = 0.0002619018144355906 Iter 35: T = 842.8106469234366 K, F = -12.650457667015216, relative_change = 0.0001099791177382609 Iter 40: T = 842.5272742009382 K, F = -5.291177263552642, relative_change = 4.607352276288557e-5 Iter 45: T = 842.4086633616581 K, F = -2.2129394523158448, relative_change = 1.9282339367825447e-5 Iter 50: T = 842.3590412032314 K, F = -0.9254962454882631, relative_change = 8.06652812365601e-6 Iter 55: T = 842.3382855281759 K, F = -0.38705682577753286, relative_change = 3.3739424591548833e-6 Iter 60: T = 842.3296047153923 K, F = -0.1618723542375673, relative_change = 1.4110972124009125e-6 Iter 65: T = 842.3259742010789 K, F = -0.06769705091528233, relative_change = 5.901506818245619e-7 Iter 70: T = 842.3244558600654 K, F = -0.02831173251257102, relative_change = 2.468103324868198e-7 Iter 75: T = 842.3238208688226 K, F = -0.011840307680377471, relative_change = 1.0321942548763561e-7 Iter 80: T = 842.3235553073948 K, F = -0.0049517586052145734, relative_change = 4.316766586003114e-8 Iter 85: T = 842.3234442463455 K, F = -0.0020708846762511612, relative_change = 1.805324552082162e-8 Iter 90: T = 842.3233977992728 K, F = -0.0008660687183288385, relative_change = 7.550084992272663e-9 Iter 95: T = 842.3233783745496 K, F = -0.0003622002829510862, relative_change = 3.1575360740958753e-9 Iter 100: T = 842.323370250898 K, F = -0.0001514764841534788, relative_change = 1.3205193578477043e-9 Iter 105: T = 842.3233668534898 K, F = -6.334927432005699e-5, relative_change = 5.522569732142794e-10 Iter 110: T = 842.3233654326531 K, F = -2.649342359961615e-5, relative_change = 2.3096046800466968e-10 Iter 115: T = 842.3233648384422 K, F = -1.1079868228680567e-5, relative_change = 9.65904444361235e-11 Iter 120: T = 842.3233645899361 K, F = -4.6337319867806315e-6, relative_change = 4.0395266747953904e-11 Iter 125: T = 842.3233644860079 K, F = -1.9378826461302623e-6, relative_change = 1.6893788135778087e-11 Iter 130: T = 842.3233644425438 K, F = -8.104451179047345e-7, relative_change = 7.0651791780386976e-12 Iter 135: T = 842.3233644243668 K, F = -3.3893927886552433e-7, relative_change = 2.954754964897803e-12 Iter 140: T = 842.3233644167648 K, F = -1.4174818341317064e-7, relative_change = 1.2357114528749587e-12 Iter 145: T = 842.3233644135856 K, F = -5.9282297071305834e-8, relative_change = 5.168024850910228e-13 Converged in 150 iterations to T = 842.3233644122561 K Iter 1: T = 976.3966645462984 K, F = -5378.042435694302, relative_change = 0.02360333545370159 Iter 2: T = 954.9557944528742 K, F = -4547.54043537906, relative_change = 0.021959179984895924 Iter 3: T = 935.5860888272289 K, F = -3843.548153881073, relative_change = 0.020283353154313198 Iter 5: T = 902.6404856792268 K, F = -2741.8236190787484, relative_change = 0.01692978042094452 Iter 10: T = 848.3591101971488 K, F = -1169.2352082372445, relative_change = 0.009533676687140662 Iter 15: T = 821.5455756398671 K, F = -494.13363989105613, relative_change = 0.00467189718060749 Iter 20: T = 809.3527092009095 K, F = -207.68487342221596, relative_change = 0.0021061888100713825 Iter 25: T = 804.0540864014882 K, F = -87.04877254823835, relative_change = 0.0009106333453004182 Iter 30: T = 801.8007619639768 K, F = -36.439462024285284, relative_change = 0.000386312441419531 Iter 35: T = 800.8516580948299 K, F = -15.245547618027686, relative_change = 0.00016253833958126634 Iter 40: T = 800.4535381233258 K, F = -6.3769475879411734, relative_change = 6.814802769877997e-5 Iter 45: T = 800.2868297440589 K, F = -2.667104496949226, relative_change = 2.853061134679829e-5 Iter 50: T = 800.217073522558 K, F = -1.1154480135718907, relative_change = 1.1937148822107903e-5 Iter 55: T = 800.187894197603 K, F = -0.4664994650306814, relative_change = 4.993186903264634e-6 Iter 60: T = 800.1756899286147 K, F = -0.19509665929495923, relative_change = 2.088372870039935e-6 Iter 65: T = 800.1705857604607 K, F = -0.08159192983156138, relative_change = 8.734108949985634e-7 Iter 70: T = 800.1684511019046 K, F = -0.03412275041686852, relative_change = 3.652758379489442e-7 Iter 75: T = 800.167558356173 K, F = -0.014270547145882051, relative_change = 1.5276358715191058e-7 Iter 80: T = 800.1671849981918 K, F = -0.005968114188066642, relative_change = 6.388770858185107e-8 Iter 85: T = 800.1670288552409 K, F = -0.0024959367933077292, relative_change = 2.6718629305498328e-8 Iter 90: T = 800.1669635543618 K, F = -0.0010438306041137269, relative_change = 1.1174054519611826e-8 Iter 95: T = 800.1669362447486 K, F = -0.0004365424289083375, relative_change = 4.673123851891198e-9 Iter 100: T = 800.1669248235413 K, F = -0.00018256725839971288, relative_change = 1.9543563495448355e-9 Iter 105: T = 800.1669200470559 K, F = -7.635180879450587e-5, relative_change = 8.173351994535464e-10 Iter 110: T = 800.1669180494725 K, F = -3.193123885358862e-5, relative_change = 3.418193517543614e-10 Iter 115: T = 800.1669172140593 K, F = -1.3354024102851803e-5, relative_change = 1.4295292161289832e-10 Iter 120: T = 800.1669168646795 K, F = -5.584811770598108e-6, relative_change = 5.978461284597727e-11 Iter 125: T = 800.1669167185647 K, F = -2.3356342804259356e-6, relative_change = 2.500263161268656e-11 Iter 130: T = 800.1669166574578 K, F = -9.767908739632958e-7, relative_change = 1.045640689464653e-11 Iter 135: T = 800.1669166319022 K, F = -4.0850652971435863e-7, relative_change = 4.373004097726041e-12 Iter 140: T = 800.1669166212145 K, F = -1.7084127446054254e-7, relative_change = 1.828831460409196e-12 Iter 145: T = 800.1669166167447 K, F = -7.144769686995289e-8, relative_change = 7.648373979041189e-13 Iter 150: T = 800.1669166148755 K, F = -2.9880776075685844e-8, relative_change = 3.198694432787036e-13 Converged in 153 iterations to T = 800.1669166143282 K Iter 1: T = 980.8260807290119 K, F = -4368.795745000499, relative_change = 0.01917391927098813 Iter 2: T = 963.6646768262991 K, F = -3689.633959818235, relative_change = 0.017496887817213605 Iter 3: T = 948.3901678770728 K, F = -3114.604125829622, relative_change = 0.015850439801872594 Iter 5: T = 922.9642383653396 K, F = -2216.4164676889613, relative_change = 0.012734562170934017 Iter 10: T = 882.8432880289148 K, F = -940.2498365911789, relative_change = 0.006614638908210493 Iter 15: T = 863.9774779207418 K, F = -396.03975950752175, relative_change = 0.003080985931361895 Iter 20: T = 855.6351658632234 K, F = -166.1687432552721, relative_change = 0.0013531974062342806 Iter 25: T = 852.0587869504486 K, F = -69.59224121749202, relative_change = 0.0005780902427502248 Iter 30: T = 850.5470967806077 K, F = -29.121844268620816, relative_change = 0.00024396003598474425 Iter 35: T = 849.912036487897 K, F = -12.182193913436377, relative_change = 0.00010241618763370873 Iter 40: T = 849.6459435802103 K, F = -5.095281309098368, relative_change = 4.290012385323076e-5 Iter 45: T = 849.5345720551953 K, F = -2.1310024750642214, relative_change = 1.7953344411720988e-5 Iter 50: T = 849.4879796888446 K, F = -0.8912273061230839, relative_change = 7.510403965145643e-6 Iter 55: T = 849.4684914984354 K, F = -0.3727248106649883, relative_change = 3.141308235984173e-6 Iter 60: T = 849.4603408310041 K, F = -0.15587847568657476, relative_change = 1.3137969247577215e-6 Iter 65: T = 849.4569320417274 K, F = -0.06519032905964872, relative_change = 5.494568117727806e-7 Iter 70: T = 849.4555064308572 K, F = -0.027263389704038188, relative_change = 2.2979136787323626e-7 Iter 75: T = 849.4549102208324 K, F = -0.011401877887725398, relative_change = 9.610183841347134e-8 Iter 80: T = 849.4546608782366 K, F = -0.0047684019749707485, relative_change = 4.0190996698494236e-8 Iter 85: T = 849.4545566001078 K, F = -0.001994202733137662, relative_change = 1.6808365303704124e-8 Iter 90: T = 849.4545129897355 K, F = -0.000833999412252151, relative_change = 7.029460935891562e-9 Iter 95: T = 849.4544947513547 K, F = -0.0003487885185036177, relative_change = 2.9398048491802525e-9 Iter 100: T = 849.4544871238455 K, F = -0.0001458675250305408, relative_change = 1.229461559101721e-9 Iter 105: T = 849.45448393393 K, F = -6.1003538733395146e-5, relative_change = 5.141754970285504e-10 Iter 110: T = 849.4544825998692 K, F = -2.551240744330663e-5, relative_change = 2.150343266638395e-10 Iter 115: T = 849.4544820419491 K, F = -1.0669594205481303e-5, relative_change = 8.992992989882959e-11 Iter 120: T = 849.4544818086202 K, F = -4.46215242444481e-6, relative_change = 3.760977667237571e-11 Iter 125: T = 849.4544817110393 K, F = -1.8661251803830936e-6, relative_change = 1.572885563720412e-11 Iter 130: T = 849.4544816702298 K, F = -7.804363155727856e-7, relative_change = 6.577999307615438e-12 Iter 135: T = 849.4544816531629 K, F = -3.263906498407465e-7, relative_change = 2.7510219937602786e-12 Iter 140: T = 849.4544816460252 K, F = -1.3650264785169952e-7, relative_change = 1.1505286277189283e-12 Iter 145: T = 849.4544816430401 K, F = -5.708614936317247e-8, relative_change = 4.811573264206816e-13 Converged in 150 iterations to T = 849.4544816417917 K Iter 1: T = 967.2732621743946 K, F = -7456.818344728711, relative_change = 0.032726737825605375 Iter 2: T = 936.6195823184497 K, F = -6321.021044351652, relative_change = 0.03169081691252027 Iter 3: T = 908.0077284143986 K, F = -5356.719742752226, relative_change = 0.030547998829180124 Iter 5: T = 856.7720309862223 K, F = -3843.3064596384734, relative_change = 0.027946602094621617 Iter 10: T = 761.4216499653537 K, F = -1664.3207759167499, relative_change = 0.020038633294827517 Iter 15: T = 705.534591824658 K, F = -712.6390051642858, relative_change = 0.012024179752887295 Iter 20: T = 676.765790889276 K, F = -302.0571368234754, relative_change = 0.006163886576081347 Iter 25: T = 663.3421362964687 K, F = -127.16439166344651, relative_change = 0.0028491254640525643 Iter 30: T = 657.4307174705901 K, F = -53.34181863150668, relative_change = 0.0012466668696253778 Iter 35: T = 654.9013702641057 K, F = -22.33729113091363, relative_change = 0.0005316810688509861 Iter 40: T = 653.8331575979032 K, F = -9.346897345609525, relative_change = 0.00022421141247814082 Iter 45: T = 653.3845654120897 K, F = -3.9098956452155003, relative_change = 9.40965059148673e-5 Iter 50: T = 653.1966323169229 K, F = -1.6353249539348154, relative_change = 3.941005390995112e-5 Iter 55: T = 653.1179791712507 K, F = -0.6839404269652603, relative_change = 1.6491881273118044e-5 Iter 60: T = 653.0850754548424 K, F = -0.28603695447921695, relative_change = 6.898874362133999e-6 Iter 65: T = 653.0713129721969 K, F = -0.11962492753866832, relative_change = 2.8855018049672734e-6 Iter 70: T = 653.0655570304892 K, F = -0.050028723245473083, relative_change = 1.2068055701569483e-6 Iter 75: T = 653.0631497732086 K, F = -0.020922635750055596, relative_change = 5.047099915768372e-7 Iter 80: T = 653.0621430200695 K, F = -0.0087501007239153, relative_change = 2.110774057757384e-7 Iter 85: T = 653.0617219822403 K, F = -0.0036593974230824666, relative_change = 8.827538220112277e-8 Iter 90: T = 653.0615458989045 K, F = -0.0015304038433144318, relative_change = 3.6917869800987516e-8 Iter 95: T = 653.0614722587003 K, F = -0.0006400331876789123, relative_change = 1.543950289956503e-8 Iter 100: T = 653.0614414614788 K, F = -0.0002676695278577279, relative_change = 6.456986073409895e-9 Iter 105: T = 653.0614285817113 K, F = -0.00011194259345659319, relative_change = 2.70038894836474e-9 Iter 110: T = 653.0614231952386 K, F = -4.681573013604057e-5, relative_change = 1.129334968306284e-9 Iter 115: T = 653.0614209425512 K, F = -1.957889728071427e-5, relative_change = 4.723013747486754e-10 Iter 120: T = 653.0614200004504 K, F = -8.188128458597177e-6, relative_change = 1.9752207178617768e-10 Iter 125: T = 653.0614196064527 K, F = -3.4243733293970458e-6, relative_change = 8.260609490371388e-11 Iter 130: T = 653.061419441678 K, F = -1.432113606814056e-6, relative_change = 3.4546850264227147e-11 Iter 135: T = 653.0614193727674 K, F = -5.989267724548775e-7, relative_change = 1.4447899551531029e-11 Iter 140: T = 653.0614193439482 K, F = -2.5047850421566764e-7, relative_change = 6.0422883663272645e-12 Iter 145: T = 653.0614193318955 K, F = -1.0475299572210162e-7, relative_change = 2.5269545960727137e-12 Iter 150: T = 653.061419326855 K, F = -4.3808757566043965e-8, relative_change = 1.0567978559534516e-12 Iter 155: T = 653.061419324747 K, F = -1.8321422490252814e-8, relative_change = 4.419673389920908e-13 Converged in 159 iterations to T = 653.0614193239861 K Iter 1: T = 973.4834881299079 K, F = -6041.812453315058, relative_change = 0.026516511870092116 Iter 2: T = 949.1600492576231 K, F = -5112.891874241369, relative_change = 0.024985979905022142 Iter 3: T = 926.9625096075449 K, F = -4324.9775279991845, relative_change = 0.023386508595088635 Iter 5: T = 888.6239663961222 K, F = -3090.5758523932036, relative_change = 0.020058494710762185 Iter 10: T = 823.3223296264289 K, F = -1323.3782288033003, relative_change = 0.012041267782974985 Iter 15: T = 789.6974798466048 K, F = -560.9351877836392, relative_change = 0.006174638867144636 Iter 20: T = 774.0049980234564 K, F = -236.15353351659545, relative_change = 0.0028546258010695483 Iter 25: T = 767.0937555492528 K, F = -99.06023958136929, relative_change = 0.0012491868604176917 Iter 30: T = 764.1364704362495 K, F = -41.48233937477512, relative_change = 0.000532777448852348 Iter 35: T = 762.8875021514824 K, F = -17.358041315167352, relative_change = 0.00022467769290736422 Iter 40: T = 762.3629976619162 K, F = -7.2610366149740075, relative_change = 9.42928926155728e-5 Iter 45: T = 762.1432610704268 K, F = -3.0369498129999917, relative_change = 3.949242888081839e-5 Iter 50: T = 762.0512974860294 K, F = -1.2701407929231336, relative_change = 1.6526374232942707e-5 Iter 55: T = 762.0128254624483 K, F = -0.5311971674172695, relative_change = 6.9133072193617385e-6 Iter 60: T = 761.9967339457679 K, F = -0.22215459450309571, relative_change = 2.8915391088711185e-6 Iter 65: T = 761.990003921472 K, F = -0.09290798353122476, relative_change = 1.2093306720716212e-6 Iter 70: T = 761.9871892819946 K, F = -0.03885527706366931, relative_change = 5.057660594432309e-7 Iter 75: T = 761.9860121551422 K, F = -0.01624974943149904, relative_change = 2.1151907300985907e-7 Iter 80: T = 761.9855198647092 K, F = -0.006795840765951078, relative_change = 8.846009391397123e-8 Iter 85: T = 761.9853139826341 K, F = -0.002842102026334503, relative_change = 3.699511866862947e-8 Iter 90: T = 761.9852278802327 K, F = -0.001188601054863514, relative_change = 1.5471809359498527e-8 Iter 95: T = 761.98519187117 K, F = -0.0004970871643527053, relative_change = 6.470497010655418e-9 Iter 100: T = 761.985176811748 K, F = -0.00020788779007685498, relative_change = 2.7060393976776823e-9 Iter 105: T = 761.9851705137177 K, F = -8.694115535101687e-5, relative_change = 1.131698022432509e-9 Iter 110: T = 761.9851678798061 K, F = -3.635983048122515e-5, relative_change = 4.73289649334221e-10 Iter 115: T = 761.9851667782727 K, F = -1.520611360916746e-5, relative_change = 1.9793536251689988e-10 Iter 120: T = 761.9851663175984 K, F = -6.359379289389011e-6, relative_change = 8.277894542969164e-11 Iter 125: T = 761.9851661249389 K, F = -2.659567564178289e-6, relative_change = 3.461913317453227e-11 Iter 130: T = 761.9851660443663 K, F = -1.1122636240923356e-6, relative_change = 1.4478144141046855e-11 Iter 135: T = 761.98516601067 K, F = -4.6516223251025224e-7, relative_change = 6.0549367135587255e-12 Iter 140: T = 761.9851659965778 K, F = -1.9453745814246304e-7, relative_change = 2.5322606076944396e-12 Iter 145: T = 761.9851659906842 K, F = -8.135779294704548e-8, relative_change = 1.0590203870427839e-12 Iter 150: T = 761.9851659882195 K, F = -3.4026479411863875e-8, relative_change = 4.429168256870587e-13 Converged in 154 iterations to T = 761.9851659873298 K Iter 1: T = 970.0051312487509 K, F = -6834.359377458269, relative_change = 0.029994868751249112 Iter 2: T = 942.1675980826284 K, F = -5789.077721721116, relative_change = 0.02869833598744513 Iter 3: T = 916.4446352600943 K, F = -4901.935223840544, relative_change = 0.027301897109263718 Iter 5: T = 871.1367505503767 K, F = -3510.55743848825, relative_change = 0.02425002536364277 Iter 10: T = 790.3213733977625 K, F = -1511.9656641700217, relative_change = 0.015947900197932848 Iter 15: T = 745.973315299474 K, F = -643.9629252710013, relative_change = 0.008808187665121057 Iter 20: T = 724.331054419776 K, F = -271.91846838461083, relative_change = 0.004261383862726889 Iter 25: T = 714.5600068089508 K, F = -114.23632921540975, relative_change = 0.0019081216816369262 Iter 30: T = 710.3289242539175 K, F = -47.870792174797685, relative_change = 0.0008223865211369627 Iter 35: T = 708.5324862631157 K, F = -20.0373235948632, relative_change = 0.0003483911010413649 Iter 40: T = 707.7763514026458 K, F = -8.382886806442219, relative_change = 0.00014649617175717004 Iter 45: T = 707.4592699061408 K, F = -3.5063573019388787, relative_change = 6.140658516141502e-5 Iter 50: T = 707.3265120420102 K, F = -1.466494062335812, relative_change = 2.5705559700805385e-5 Iter 55: T = 707.2709647248305 K, F = -0.6133217080311447, relative_change = 1.0754679350568526e-5 Iter 60: T = 707.2477295533271 K, F = -0.25650132827945127, relative_change = 4.49848913593002e-6 Iter 65: T = 707.2380115187733 K, F = -0.10727241996946923, relative_change = 1.881453751493732e-6 Iter 70: T = 707.2339471792641 K, F = -0.04486269479372329, relative_change = 7.86869494901776e-7 Iter 75: T = 707.2322473992106 K, F = -0.01876213006532923, relative_change = 3.2908225448982433e-7 Iter 80: T = 707.2315365265667 K, F = -0.007846549540324377, relative_change = 1.376268345328589e-7 Iter 85: T = 707.2312392303809 K, F = -0.003281521193444825, relative_change = 5.755730921928471e-8 Iter 90: T = 707.2311148974333 K, F = -0.001372371433117081, relative_change = 2.4071175652749785e-8 Iter 95: T = 707.2310628998866 K, F = -0.0005739421383549326, relative_change = 1.0066856923413376e-8 Iter 100: T = 707.2310411538876 K, F = -0.00024002945974477274, relative_change = 4.21008046093667e-9 Iter 105: T = 707.2310320594504 K, F = -0.00010038318672900282, relative_change = 1.760706037410639e-9 Iter 110: T = 707.2310282560479 K, F = -4.198144741740517e-5, relative_change = 7.363483091968031e-10 Iter 115: T = 707.2310266654196 K, F = -1.7557141815616184e-5, relative_change = 3.079496449980696e-10 Iter 120: T = 707.2310260001998 K, F = -7.342605950921843e-6, relative_change = 1.287882122169816e-10 Iter 125: T = 707.231025721997 K, F = -3.0707652645123318e-6, relative_change = 5.386076441233809e-11 Iter 130: T = 707.2310256056493 K, F = -1.2842306005289572e-6, relative_change = 2.2525213073024746e-11 Iter 135: T = 707.2310255569912 K, F = -5.37080276252766e-7, relative_change = 9.420307893996982e-12 Iter 140: T = 707.2310255366418 K, F = -2.2461239923554643e-7, relative_change = 3.9396679629737014e-12 Iter 145: T = 707.2310255281315 K, F = -9.393541766655744e-8, relative_change = 1.6476132076867365e-12 Iter 150: T = 707.2310255245724 K, F = -3.9284184460974814e-8, relative_change = 6.890387329985569e-13 Iter 155: T = 707.2310255230839 K, F = -1.642882618835273e-8, relative_change = 2.8815915964438484e-13 Converged in 157 iterations to T = 707.2310255227688 K Iter 1: T = 973.5176835341497 K, F = -6034.020997930339, relative_change = 0.02648231646585033 Iter 2: T = 949.2283985525594 K, F = -5106.250562906714, relative_change = 0.02495001928820972 Iter 3: T = 927.0646984294056 K, F = -4319.317055391895, relative_change = 0.023349175137354086 Iter 5: T = 888.7917038329181 K, F = -3086.4667051722176, relative_change = 0.020019865498349707 Iter 10: T = 823.6288445290832 K, F = -1321.55022599795, relative_change = 0.012008347529299242 Iter 15: T = 790.0936069114226 K, F = -560.1382317098238, relative_change = 0.006154022266566383 Iter 20: T = 774.4484815074117 K, F = -235.8125943202101, relative_change = 0.0028441018086459474 Iter 25: T = 767.55938508189 K, F = -98.91610803888514, relative_change = 0.001244369703020178 Iter 30: T = 764.6118340090092 K, F = -41.42177289042997, relative_change = 0.0005306824506491047 Iter 35: T = 763.367024604911 K, F = -17.33265968717152, relative_change = 0.00022378685538210511 Iter 40: T = 762.8442752204262 K, F = -7.250412509164967, relative_change = 9.391771793257121e-5 Iter 45: T = 762.62527543211 K, F = -3.032505066727601, relative_change = 3.933506530293213e-5 Iter 50: T = 762.5336204792011 K, F = -1.2682816632931582, relative_change = 1.6460482007045203e-5 Iter 55: T = 762.4952776151493 K, F = -0.5304196075479202, relative_change = 6.8857361352229495e-6 Iter 60: T = 762.479240129608 K, F = -0.22182940099097048, relative_change = 2.880006072743704e-6 Iter 65: T = 762.4725327044182 K, F = -0.09277198219790739, relative_change = 1.2045069848255797e-6 Iter 70: T = 762.4697275166186 K, F = -0.0387983994175104, relative_change = 5.037486599759514e-7 Iter 75: T = 762.4685543426515 K, F = -0.016225962471359434, relative_change = 2.1067535915319864e-7 Iter 80: T = 762.4680637053764 K, F = -0.006785892767082746, relative_change = 8.810724038290116e-8 Iter 85: T = 762.4678585146743 K, F = -0.0028379416550540215, relative_change = 3.684755072900083e-8 Iter 90: T = 762.4677727014138 K, F = -0.0011868611370499105, relative_change = 1.5410094605889758e-8 Iter 95: T = 762.4677368132732 K, F = -0.0004963595108229413, relative_change = 6.444687163213142e-9 Iter 100: T = 762.4677218044224 K, F = -0.00020758347623284212, relative_change = 2.69524540335216e-9 Iter 105: T = 762.4677155275414 K, F = -8.681388958142744e-5, relative_change = 1.1271838696362596e-9 Iter 110: T = 762.4677129024747 K, F = -3.630660447462297e-5, relative_change = 4.714017514157054e-10 Iter 115: T = 762.4677118046404 K, F = -1.5183853611655529e-5, relative_change = 1.9714581791436562e-10 Iter 120: T = 762.4677113455132 K, F = -6.35007032590007e-6, relative_change = 8.244875403971912e-11 Iter 125: T = 762.4677111535007 K, F = -2.65567516066767e-6, relative_change = 3.448105251697005e-11 Iter 130: T = 762.4677110731986 K, F = -1.1106352288958732e-6, relative_change = 1.4420390054155118e-11 Iter 135: T = 762.4677110396153 K, F = -4.644791632424372e-7, relative_change = 6.030756573467314e-12 Iter 140: T = 762.4677110255706 K, F = -1.942519922693009e-7, relative_change = 2.522150770364025e-12 Iter 145: T = 762.4677110196967 K, F = -8.123713823859902e-8, relative_change = 1.0547758527702227e-12 Iter 150: T = 762.4677110172403 K, F = -3.397355774481525e-8, relative_change = 4.411096835689516e-13 Converged in 154 iterations to T = 762.4677110163536 K Iter 1: T = 964.3381990780478 K, F = -8125.575263197126, relative_change = 0.035661800921952244 Iter 2: T = 930.6027494460919 K, F = -6893.380607812551, relative_change = 0.03498300665078749 Iter 3: T = 898.762724857552 K, F = -5846.970010854724, relative_change = 0.034214410614509326 Iter 5: T = 840.656033520107 K, F = -4203.839643597124, relative_change = 0.03238242792067467 Iter 10: T = 726.5758987253017 K, F = -1833.2418926799317, relative_change = 0.02598075101200485 Iter 15: T = 653.0098754880705 K, F = -791.5438055111747, relative_change = 0.01777816770647556 Iter 20: T = 611.4305004937385 K, F = -337.9183939097632, relative_change = 0.010182912653743497 Iter 25: T = 590.6684454823856 K, F = -142.91668554581594, relative_change = 0.005048136884451466 Iter 30: T = 581.1654914017697 K, F = -60.09281419223757, relative_change = 0.002290069357494375 Iter 35: T = 577.0221950010992 K, F = -25.19215041155597, relative_change = 0.0009930573046933108 Iter 40: T = 575.2575444008037 K, F = -10.546590358796903, relative_change = 0.0004218262813225961 Iter 45: T = 574.5137859536927 K, F = -4.412647375452369, relative_change = 0.00017757920987497515 Iter 50: T = 574.201715625487 K, F = -1.8457625583245547, relative_change = 7.447174053982437e-5 Iter 55: T = 574.0710243441482 K, F = -0.7719796776228252, relative_change = 3.118114678582042e-5 Iter 60: T = 574.0163361746195 K, F = -0.3228615780396389, relative_change = 1.3046665900177854e-5 Iter 65: T = 573.9934594113254 K, F = -0.1350263974671073, relative_change = 5.4573807918910295e-6 Iter 70: T = 573.9838911102447 K, F = -0.05646997204664117, relative_change = 2.282535897907521e-6 Iter 75: T = 573.9798893635723 K, F = -0.023616472684131085, relative_change = 9.546177199067654e-7 Iter 80: T = 573.9782157557818 K, F = -0.009876700706313857, relative_change = 3.992384688231171e-7 Iter 85: T = 573.97751582785 K, F = -0.004130555899742094, relative_change = 1.6696733410629828e-7 Iter 90: T = 573.9772231087263 K, F = -0.0017274481057270585, relative_change = 6.982791476930733e-8 Iter 95: T = 573.977100689935 K, F = -0.000722439480408843, relative_change = 2.9202899653359097e-8 Iter 100: T = 573.9770494929069 K, F = -0.00030213282830487964, relative_change = 1.2213006975757577e-8 Iter 105: T = 573.9770280816933 K, F = -0.00012635555865192494, relative_change = 5.107626344228235e-9 Iter 110: T = 573.9770191272673 K, F = -5.284340390787623e-5, relative_change = 2.136070504889632e-9 Iter 115: T = 573.9770153824193 K, F = -2.209974257894043e-5, relative_change = 8.933302222005691e-10 Iter 120: T = 573.977013816279 K, F = -9.242376234785965e-6, relative_change = 3.736013708415907e-10 Iter 125: T = 573.9770131613005 K, F = -3.865272602654457e-6, relative_change = 1.5624457544136112e-10 Iter 130: T = 573.9770128873806 K, F = -1.6165028909886914e-6, relative_change = 6.534333653534849e-11 Iter 135: T = 573.9770127728241 K, F = -6.76040321556659e-7, relative_change = 2.7327343818048153e-11 Iter 140: T = 573.9770127249152 K, F = -2.827280325967685e-7, relative_change = 1.1428617362721839e-11 Iter 145: T = 573.9770127048793 K, F = -1.1824132029047973e-7, relative_change = 4.77962794801747e-12 Iter 150: T = 573.9770126964999 K, F = -4.945005432910321e-8, relative_change = 1.998902423773269e-12 Iter 155: T = 573.9770126929955 K, F = -2.068068194471806e-8, relative_change = 8.359680454679146e-13 Iter 160: T = 573.9770126915299 K, F = -8.648717519932347e-9, relative_change = 3.4960411365334276e-13 Converged in 163 iterations to T = 573.9770126911009 K Iter 1: T = 963.5185767106282 K, F = -8312.326999275827, relative_change = 0.03648142328937182 Iter 2: T = 928.9120050671348 K, F = -7053.369892015044, relative_change = 0.03591687018805313 Iter 3: T = 896.1465590337444 K, F = -5984.179939378137, relative_change = 0.03527292774197951 Iter 5: T = 836.0196510510425 K, F = -4305.108223408822, relative_change = 0.03371749732130665 Iter 10: T = 715.9816236611389 K, F = -1881.5740662211522, relative_change = 0.028040680378583732 Iter 15: T = 635.9488640472177 K, F = -814.9192036293049, relative_change = 0.020151467405182748 Iter 20: T = 588.9555983201269 K, F = -348.98941176555275, relative_change = 0.012120337188081615 Iter 25: T = 564.7270363700535 K, F = -147.93862105007457, relative_change = 0.006224151186541724 Iter 30: T = 553.4102510769756 K, F = -62.28550921052854, relative_change = 0.0028799066186178473 Iter 35: T = 548.4239261793375 K, F = -26.127844989555104, relative_change = 0.0012607609114767102 Iter 40: T = 546.2898597659256 K, F = -10.941394944674846, relative_change = 0.0005378115395955933 Iter 45: T = 545.3884840982147 K, F = -4.578386292923818, relative_change = 0.0002268183902572509 Iter 50: T = 545.0099364214431 K, F = -1.9151875052753267, relative_change = 9.519446098555328e-5 Iter 55: T = 544.8513445536388 K, F = -0.8010335218425183, relative_change = 3.98705865508633e-5 Iter 60: T = 544.7849706402385 K, F = -0.3350156607494717, relative_change = 1.6684719236297488e-5 Iter 65: T = 544.7572037129677 K, F = -0.14010997835326816, relative_change = 6.979563134106724e-6 Iter 70: T = 544.7455897536935 K, F = -0.058596090973622894, relative_change = 2.919254098774981e-6 Iter 75: T = 544.740732395044 K, F = -0.02450565932410867, relative_change = 1.2209224571144702e-6 Iter 80: T = 544.7387009437878 K, F = -0.010248572381980181, relative_change = 5.106140652630034e-7 Iter 85: T = 544.7378513585905 K, F = -0.004286077635784313, relative_change = 2.1354659890495015e-7 Iter 90: T = 544.7374960505119 K, F = -0.0017924892501298417, relative_change = 8.930803501743322e-8 Iter 95: T = 544.737347456185 K, F = -0.0007496404811504487, relative_change = 3.7349738795386095e-8 Iter 100: T = 544.73728531222 K, F = -0.0003135086145227284, relative_change = 1.562011593106239e-8 Iter 105: T = 544.7372593228641 K, F = -0.00013111304892732267, relative_change = 6.5325206218666476e-9 Iter 110: T = 544.7372484538038 K, F = -5.483304302461578e-5, relative_change = 2.731978405465377e-9 Iter 115: T = 544.7372439082327 K, F = -2.2931833199818508e-5, relative_change = 1.1425460294148634e-9 Iter 120: T = 544.7372420072205 K, F = -9.590366590178645e-6, relative_change = 4.778264064112728e-10 Iter 125: T = 544.7372412121946 K, F = -4.010805654569571e-6, relative_change = 1.9983270170462933e-10 Iter 130: T = 544.7372408797053 K, F = -1.6773670754866021e-6, relative_change = 8.357243513831585e-11 Iter 135: T = 544.7372407406541 K, F = -7.014943824712461e-7, relative_change = 3.495096255732203e-11 Iter 140: T = 544.7372406825014 K, F = -2.9337323467770737e-7, relative_change = 1.4616905283874625e-11 Iter 145: T = 544.7372406581811 K, F = -1.2269147994792284e-7, relative_change = 6.112928958527958e-12 Iter 150: T = 544.7372406480101 K, F = -5.131111757705753e-8, relative_change = 2.5565036520241267e-12 Iter 155: T = 544.7372406437565 K, F = -2.1458784277283982e-8, relative_change = 1.0691534888618922e-12 Iter 160: T = 544.7372406419777 K, F = -8.97430399438015e-9, relative_change = 4.471319671173072e-13 Converged in 165 iterations to T = 544.7372406412336 K Iter 1: T = 969.2736428503013 K, F = -7001.029704870127, relative_change = 0.030726357149698773 Iter 2: T = 940.6869453253695 K, F = -5931.436376399949, relative_change = 0.029492907122562462 Iter 3: T = 914.2010684599521 K, F = -5023.565794940346, relative_change = 0.02815588862696114 Iter 5: T = 867.3472756493159 K, F = -3599.3971835251796, relative_change = 0.0252024091437594 Iter 10: T = 782.8699936636104 K, F = -1552.3574777211102, relative_change = 0.016937882062983144 Iter 15: T = 735.7651598233439 K, F = -662.0004781468086, relative_change = 0.00953969192842733 Iter 20: T = 712.494448154522 K, F = -279.771639381408, relative_change = 0.004675320306468156 Iter 25: T = 701.9120071766401 K, F = -117.58872177991037, relative_change = 0.0021078464473083115 Iter 30: T = 697.3130933398272 K, F = -49.28606885638971, relative_change = 0.000911373239979135 Iter 35: T = 695.3573063570341 K, F = -20.631642502668505, relative_change = 0.00038663065100571256 Iter 40: T = 694.5335211721639 K, F = -8.631872418601045, relative_change = 0.00016267300239095297 Iter 45: T = 694.1879677321801 K, F = -3.6105626831185442, relative_change = 6.820462597314685e-5 Iter 50: T = 694.043270868989 K, F = -1.5100874475057502, relative_change = 2.855433078485947e-5 Iter 55: T = 693.9827249583357 K, F = -0.6315553383588269, relative_change = 1.1947077228206837e-5 Iter 60: T = 693.9573983412796 K, F = -0.2641272625686933, relative_change = 4.997340596283133e-6 Iter 65: T = 693.9468054687541 K, F = -0.11046174889687294, relative_change = 2.0901102591552516e-6 Iter 70: T = 693.9423752317359 K, F = -0.04619652285757181, relative_change = 8.741375382538113e-7 Iter 75: T = 693.9405224237579 K, F = -0.019319955097880648, relative_change = 3.6557973694053116e-7 Iter 80: T = 693.9397475520963 K, F = -0.008079839017736568, relative_change = 1.5289068278452406e-7 Iter 85: T = 693.9394234905972 K, F = -0.003379085705618623, relative_change = 6.394086172402975e-8 Iter 90: T = 693.939287964048 K, F = -0.0014131740910763302, relative_change = 2.674085863511148e-8 Iter 95: T = 693.9392312851986 K, F = -0.0005910062981000497, relative_change = 1.1183351092760812e-8 Iter 100: T = 693.9392075814221 K, F = -0.0002471658958304035, relative_change = 4.67701181806337e-9 Iter 105: T = 693.9391976682188 K, F = -0.00010336772970642727, relative_change = 1.9559823360772847e-9 Iter 110: T = 693.9391935223985 K, F = -4.322961788383317e-5, relative_change = 8.18015173801818e-10 Iter 115: T = 693.9391917885671 K, F = -1.8079143050186985e-5, relative_change = 3.4210372990236943e-10 Iter 120: T = 693.9391910634579 K, F = -7.56091223086397e-6, relative_change = 1.4307184147672127e-10 Iter 125: T = 693.9391907602087 K, F = -3.1620642919616415e-6, relative_change = 5.983436234232068e-11 Iter 130: T = 693.9391906333861 K, F = -1.3224118785570838e-6, relative_change = 2.5023422761317703e-11 Iter 135: T = 693.9391905803475 K, F = -5.530470568171353e-7, relative_change = 1.046506806167978e-11 Iter 140: T = 693.939190558166 K, F = -2.312904601176058e-7, relative_change = 4.376608423605925e-12 Iter 145: T = 693.9391905488897 K, F = -9.672879919264687e-8, relative_change = 1.8303568472452673e-12 Iter 150: T = 693.9391905450101 K, F = -4.0453843608290185e-8, relative_change = 7.654904254556562e-13 Iter 155: T = 693.9391905433877 K, F = -1.6918577205871088e-8, relative_change = 3.2014285191226554e-13 Converged in 158 iterations to T = 693.9391905429126 K Iter 1: T = 966.4127755480513 K, F = -7652.8810410751385, relative_change = 0.03358722445194873 Iter 2: T = 934.8616708354848 K, F = -6488.731378733056, relative_change = 0.03264764861440693 Iter 3: T = 905.3170446644431 K, F = -5500.271808615103, relative_change = 0.03160320622048583 Iter 5: T = 852.123489037088 K, F = -3948.6714185077017, relative_change = 0.0291940490269181 Iter 10: T = 751.6594391206723 K, F = -1713.2266226529837, relative_change = 0.021583356312252527 Iter 15: T = 691.2969447078152 K, F = -735.1187898619423, relative_change = 0.013383243008989871 Iter 20: T = 659.5247788715916 K, F = -312.0984408148182, relative_change = 0.007036436839313188 Iter 25: T = 644.4770483305442 K, F = -131.52028619221656, relative_change = 0.003301130627443241 Iter 30: T = 637.7970987414361 K, F = -55.195809881568145, relative_change = 0.001455078177348209 Iter 35: T = 634.9280949706696 K, F = -23.118743418884694, relative_change = 0.0006226189057614806 Iter 40: T = 633.7144143886421 K, F = -9.674810652888803, relative_change = 0.0002629352127597834 Iter 45: T = 633.2043697246442 K, F = -4.04722809266192, relative_change = 0.00011041482191841822 Iter 50: T = 632.9906273605923 K, F = -1.6927933615355155, relative_change = 4.625636149050065e-5 Iter 55: T = 632.9011612864153 K, F = -0.7079804218016787, relative_change = 1.935891391323354e-5 Iter 60: T = 632.8637321114471 K, F = -0.29609182148109786, relative_change = 8.098571643451519e-6 Iter 65: T = 632.8480764392983 K, F = -0.12383017743435021, relative_change = 3.3873467899453243e-6 Iter 70: T = 632.8415286401288 K, F = -0.05178744123571499, relative_change = 1.4167036493587317e-6 Iter 75: T = 632.8387902005829 K, F = -0.02165815826040507, relative_change = 5.924954631722592e-7 Iter 80: T = 632.8376449399138 K, F = -0.009057706009835576, relative_change = 2.4779096600198373e-7 Iter 85: T = 632.8371659760302 K, F = -0.003788041798837849, relative_change = 1.0362954128221699e-7 Iter 90: T = 632.8369656672303 K, F = -0.0015842044890242435, relative_change = 4.333918172339917e-8 Iter 95: T = 632.8368818956309 K, F = -0.0006625332671994499, relative_change = 1.8124975633046716e-8 Iter 100: T = 632.8368468613357 K, F = -0.00027707932925219447, relative_change = 7.580083391163282e-9 Iter 105: T = 632.836832209573 K, F = -0.00011587788475458938, relative_change = 3.170081755370443e-9 Iter 110: T = 632.8368260820305 K, F = -4.846151452675418e-5, relative_change = 1.3257660894165314e-9 Iter 115: T = 632.8368235194191 K, F = -2.026718438291608e-5, relative_change = 5.544512292535144e-10 Iter 120: T = 632.8368224477044 K, F = -8.47597968051117e-6, relative_change = 2.318781584105906e-10 Iter 125: T = 632.8368219995006 K, F = -3.544756130624549e-6, relative_change = 9.6974220955882e-11 Iter 130: T = 632.8368218120563 K, F = -1.4824601656804326e-6, relative_change = 4.055579977017726e-11 Iter 135: T = 632.8368217336648 K, F = -6.199820112851029e-7, relative_change = 1.6960905195100817e-11 Iter 140: T = 632.8368217008806 K, F = -2.592833013292939e-7, relative_change = 7.09323724488076e-12 Iter 145: T = 632.8368216871698 K, F = -1.0843598918786057e-7, relative_change = 2.96649338128918e-12 Iter 150: T = 632.8368216814359 K, F = -4.5349687227691504e-8, relative_change = 1.2406355861910211e-12 Iter 155: T = 632.8368216790379 K, F = -1.896627677133722e-8, relative_change = 5.188621871271814e-13 Converged in 160 iterations to T = 632.836821678035 K Iter 1: T = 966.4212264198254 K, F = -7650.955501902555, relative_change = 0.03357877358017462 Iter 2: T = 934.8789597385681 K, F = -6487.083921264565, relative_change = 0.03263821801401012 Iter 3: T = 905.3435486999056 K, F = -5498.861266942224, relative_change = 0.031592764743493575 Iter 5: T = 852.1694428763285 K, F = -3947.6352976208573, relative_change = 0.029181591843902625 Iter 10: T = 751.7570218385848 K, F = -1712.743971450491, relative_change = 0.021567476128160918 Iter 15: T = 691.4409218454801 K, F = -734.8956763886171, relative_change = 0.013368824127303912 Iter 20: T = 659.7006502178732 K, F = -311.99822192394635, relative_change = 0.007026949160232065 Iter 25: T = 644.6704526539943 K, F = -131.47664786564985, relative_change = 0.0032961436772546756 Iter 30: T = 637.9988747203676 K, F = -55.17719933717441, relative_change = 0.0014527621243882569 Iter 35: T = 635.1335866949585 K, F = -23.110891900686067, relative_change = 0.0006216050217728298 Iter 40: T = 633.9215005065131 K, F = -9.671514668214016, relative_change = 0.0002625028641099551 Iter 45: T = 633.4121299363577 K, F = -4.045847473483534, relative_change = 0.00011023251998100222 Iter 50: T = 633.1986707804314 K, F = -1.6922155830598684, relative_change = 4.6179857928223593e-5 Iter 55: T = 633.1093233748907 K, F = -0.7077387200682824, relative_change = 1.932687308627742e-5 Iter 60: T = 633.0719438684686 K, F = -0.2959907270457014, relative_change = 8.085163707113113e-6 Iter 65: T = 633.0563089752851 K, F = -0.12378789645406896, relative_change = 3.381738016713412e-6 Iter 70: T = 633.0497698673496 K, F = -0.05176975846213672, relative_change = 1.4143577460413964e-6 Iter 75: T = 633.0470350627953 K, F = -0.021650763049324284, relative_change = 5.915143351037776e-7 Iter 80: T = 633.0458913223606 K, F = -0.00905461323175022, relative_change = 2.473806389200841e-7 Iter 85: T = 633.0454129942638 K, F = -0.0037867483606809915, relative_change = 1.0345793628658704e-7 Iter 90: T = 633.0452129513585 K, F = -0.001583663557885584, relative_change = 4.3267414246570304e-8 Iter 95: T = 633.0451292909596 K, F = -0.0006623070427177469, relative_change = 1.8094961561332045e-8 Iter 100: T = 633.0450943031701 K, F = -0.00027698472076198577, relative_change = 7.567531176388978e-9 Iter 105: T = 633.0450796708566 K, F = -0.00011583831974582015, relative_change = 3.1648323061047505e-9 Iter 110: T = 633.0450735514479 K, F = -4.844496885558769e-5, relative_change = 1.3235707311281e-9 Iter 115: T = 633.045070992238 K, F = -2.0260263974836157e-5, relative_change = 5.535330820026371e-10 Iter 120: T = 633.0450699219459 K, F = -8.47308417173398e-6, relative_change = 2.3149414238757715e-10 Iter 125: T = 633.045069474337 K, F = -3.543544739026405e-6, relative_change = 9.681360842264889e-11 Iter 130: T = 633.0450692871416 K, F = -1.4819530079202003e-6, relative_change = 4.048861492601396e-11 Iter 135: T = 633.0450692088542 K, F = -6.197709221389403e-7, relative_change = 1.6932835312244986e-11 Iter 140: T = 633.0450691761135 K, F = -2.591953674468961e-7, relative_change = 7.081507561872869e-12 Iter 145: T = 633.045069162421 K, F = -1.0839876446455676e-7, relative_change = 2.961575578659812e-12 Iter 150: T = 633.0450691566946 K, F = -4.533368103132318e-8, relative_change = 1.2385669089687941e-12 Iter 155: T = 633.0450691542998 K, F = -1.8959018854847187e-8, relative_change = 5.179816164570284e-13 Converged in 160 iterations to T = 633.0450691532982 K Iter 1: T = 976.4875867496628 K, F = -5357.325725168393, relative_change = 0.023512413250337247 Iter 2: T = 955.1358073331605 K, F = -4529.909645479695, relative_change = 0.021865899481194415 Iter 3: T = 935.8525994843421 K, F = -3828.548278239087, relative_change = 0.020188969674018557 Iter 5: T = 903.069305329945 K, F = -2730.9808039253403, relative_change = 0.01683716971284748 Iter 10: T = 849.1077082670386 K, F = -1164.4731234222832, relative_change = 0.009464071923496388 Iter 15: T = 822.4830948013318 K, F = -492.08133009189754, relative_change = 0.004632060699005882 Iter 20: T = 810.384534975133 K, F = -206.81326232108344, relative_change = 0.0020868512585652246 Iter 25: T = 805.1287198446076 K, F = -86.68166419094406, relative_change = 0.0009019931756517916 Iter 30: T = 802.8939524157457 K, F = -36.28545796588495, relative_change = 0.0003825949555458501 Iter 35: T = 801.9527291222823 K, F = -15.181056508708407, relative_change = 0.00016096486239875385 Iter 40: T = 801.557926270276 K, F = -6.349961681280009, relative_change = 6.748665231617313e-5 Iter 45: T = 801.3926089182785 K, F = -2.6558160434972398, relative_change = 2.825343087217752e-5 Iter 50: T = 801.3234351023502 K, F = -1.1107265877148451, relative_change = 1.182112601312646e-5 Iter 55: T = 801.2944994622005 K, F = -0.4645248278793789, relative_change = 4.944646812343399e-6 Iter 60: T = 801.2823971253807 K, F = -0.19427082837909604, relative_change = 2.0680696806804697e-6 Iter 65: T = 801.2773355900234 K, F = -0.08124655501888367, relative_change = 8.649193088297277e-7 Iter 70: T = 801.2752187616325 K, F = -0.03397831011583452, relative_change = 3.617244590241567e-7 Iter 75: T = 801.2743334727975 K, F = -0.01421014041227564, relative_change = 1.5127834125572817e-7 Iter 80: T = 801.2739632333983 K, F = -0.005942851355508094, relative_change = 6.326655804691998e-8 Iter 85: T = 801.2738083946789 K, F = -0.0024853715700021706, relative_change = 2.645885619003738e-8 Iter 90: T = 801.2737436392456 K, F = -0.0010394121008420187, relative_change = 1.1065414207073655e-8 Iter 95: T = 801.2737165577446 K, F = -0.0004346945586236606, relative_change = 4.627689166672883e-9 Iter 100: T = 801.2737052319364 K, F = -0.00018179445549493245, relative_change = 1.935355003147102e-9 Iter 105: T = 801.2737004953481 K, F = -7.602861235511682e-5, relative_change = 8.093885979337739e-10 Iter 110: T = 801.2736985144502 K, F = -3.1796073397760694e-5, relative_change = 3.38495978986583e-10 Iter 115: T = 801.273697686015 K, F = -1.3297497661213242e-5, relative_change = 1.4156306204082338e-10 Iter 120: T = 801.2736973395535 K, F = -5.561169480694517e-6, relative_change = 5.920333297986819e-11 Iter 125: T = 801.2736971946592 K, F = -2.3257470425086524e-6, relative_change = 2.475953613374451e-11 Iter 130: T = 801.2736971340628 K, F = -9.726568075407727e-7, relative_change = 1.0354750942618975e-11 Iter 135: T = 801.2736971087205 K, F = -4.0677673851519103e-7, relative_change = 4.330480992426881e-12 Iter 140: T = 801.2736970981222 K, F = -1.701179799251662e-7, relative_change = 1.811049179634624e-12 Iter 145: T = 801.2736970936897 K, F = -7.114470679248086e-8, relative_change = 7.573953260668894e-13 Iter 150: T = 801.2736970918361 K, F = -2.9752815544625832e-8, relative_change = 3.1674378104907395e-13 Converged in 153 iterations to T = 801.2736970912935 K Iter 1: T = 965.2087562766976 K, F = -7927.217977371062, relative_change = 0.034791243723302334 Iter 2: T = 932.3935069311426 K, F = -6723.52372549779, relative_change = 0.033998085007164766 Iter 3: T = 901.524817725045 K, F = -5701.3803332051075, relative_change = 0.0331069328310727 Iter 5: T = 845.5139815334892 K, F = -4096.563758358043, relative_change = 0.031012183245157438 Iter 10: T = 737.3865964184097 K, F = -1782.4951712941718, relative_change = 0.02400626364226277 Iter 15: T = 669.8419291612713 K, F = -767.4364367865816, relative_change = 0.015700789353023315 Iter 20: T = 632.9246612228319 K, F = -326.7573729402374, relative_change = 0.008629796732542687 Iter 25: T = 614.9627114768057 K, F = -137.94751751494937, relative_change = 0.00416200142955615 Iter 30: T = 606.8673757610056 K, F = -57.947178822772734, relative_change = 0.001860567110653752 Iter 35: T = 603.36492001513 K, F = -24.281567581141292, relative_change = 0.0008012811824779121 Iter 40: T = 601.8784177089223 K, F = -10.163333886895222, relative_change = 0.00033933720148427945 Iter 45: T = 601.2528416165824 K, F = -4.251928725237192, relative_change = 0.00014266881978101012 Iter 50: T = 600.9905278683975 K, F = -1.7784710927024718, relative_change = 5.9798701696137026e-5 Iter 55: T = 600.8807038107975 K, F = -0.7438240618571204, relative_change = 2.5031851190124107e-5 Iter 60: T = 600.8347528180778 K, F = -0.31108419453239844, relative_change = 1.0472703390185199e-5 Iter 65: T = 600.8155318426271 K, F = -0.13010054045357913, relative_change = 4.3805243821132826e-6 Iter 70: T = 600.8074927500231 K, F = -0.05440984728632592, relative_change = 1.8321126520838422e-6 Iter 75: T = 600.8041305915908 K, F = -0.0227548912195224, relative_change = 7.66233263025088e-7 Iter 80: T = 600.8027244768599 K, F = -0.009516374829265095, relative_change = 3.2045172687235087e-7 Iter 85: T = 600.8021364194025 K, F = -0.003979862926391187, relative_change = 1.3401740825162186e-7 Iter 90: T = 600.8018904861415 K, F = -0.0016644264357399963, relative_change = 5.604779762126307e-8 Iter 95: T = 600.8017876338082 K, F = -0.0006960830530363671, relative_change = 2.3439878773930332e-8 Iter 100: T = 600.8017446197155 K, F = -0.0002911102530429588, relative_change = 9.802840820905833e-9 Iter 105: T = 600.8017266307049 K, F = -0.00012174578591006568, relative_change = 4.0996657367614305e-9 Iter 110: T = 600.8017191074854 K, F = -5.091554229280648e-5, relative_change = 1.7145292963550219e-9 Iter 115: T = 600.801715961185 K, F = -2.129348802032416e-5, relative_change = 7.17036651258923e-10 Iter 120: T = 600.8017146453645 K, F = -8.905191622665676e-6, relative_change = 2.998733152793211e-10 Iter 125: T = 600.8017140950727 K, F = -3.7242572230589133e-6, relative_change = 1.2541059335086715e-10 Iter 130: T = 600.8017138649341 K, F = -1.5575291728020524e-6, relative_change = 5.244821890099709e-11 Iter 135: T = 600.8017137686873 K, F = -6.513759046034018e-7, relative_change = 2.1934424506520804e-11 Iter 140: T = 600.8017137284357 K, F = -2.7241292371860126e-7, relative_change = 9.173229573866795e-12 Iter 145: T = 600.8017137116021 K, F = -1.139264265148654e-7, relative_change = 3.836357140566792e-12 Iter 150: T = 600.8017137045621 K, F = -4.7645267231555266e-8, relative_change = 1.6044061659771008e-12 Iter 155: T = 600.8017137016179 K, F = -1.99264109101982e-8, relative_change = 6.710017256380842e-13 Iter 160: T = 600.8017137003866 K, F = -8.333293444184875e-9, relative_change = 2.806152250172345e-13 Converged in 162 iterations to T = 600.801713700126 K Iter 1: T = 964.5431091057279 K, F = -8078.886318470452, relative_change = 0.03545689089427211 Iter 2: T = 931.0247221736917 K, F = -6853.393091004922, relative_change = 0.034750532781383556 Iter 3: T = 899.4143967021417 K, F = -5812.687791589969, relative_change = 0.033952187002884646 Iter 5: T = 841.8055836207279 K, F = -4178.56295605087, relative_change = 0.032055555114887536 Iter 10: T = 729.159982890111 K, F = -1821.244350291164, relative_change = 0.025497375934086467 Iter 15: T = 657.0832512142207 K, F = -785.807038029918, relative_change = 0.01725266872700276 Iter 20: T = 616.6890544166131 K, F = -335.24144819215, relative_change = 0.00977809861940071 Iter 25: T = 596.6542081648197 K, F = -141.71745686065915, relative_change = 0.004812498844426911 Iter 30: T = 587.5215539650358 K, F = -59.573144601592695, relative_change = 0.002174630802454053 Iter 35: T = 583.5479374782835 K, F = -24.97122440104474, relative_change = 0.0009412542826484404 Iter 40: T = 581.8571518282654 K, F = -10.45353209869358, relative_change = 0.00039949500248694336 Iter 45: T = 581.1448180910533 K, F = -4.373610308241678, relative_change = 0.00016811943962223477 Iter 50: T = 580.8459852556084 K, F = -1.8294157687368888, relative_change = 7.049416478099184e-5 Iter 55: T = 580.720846869777 K, F = -0.765139562690325, relative_change = 2.95139142272906e-5 Iter 60: T = 580.6684839399643 K, F = -0.3200003133538116, relative_change = 1.234874956204832e-5 Iter 65: T = 580.6465801368938 K, F = -0.13382966917234787, relative_change = 5.165388329418705e-6 Iter 70: T = 580.6374188299172 K, F = -0.055969466170973675, relative_change = 2.1604009504658973e-6 Iter 75: T = 580.633587308876 K, F = -0.023407151685454042, relative_change = 9.035358905052097e-7 Iter 80: T = 580.6319848942474 K, F = -0.009789159558500071, relative_change = 3.7787481924848505e-7 Iter 85: T = 580.6313147406304 K, F = -0.004093945039885805, relative_change = 1.5803269253169197e-7 Iter 90: T = 580.6310344735657 K, F = -0.0017121369886115012, relative_change = 6.609132205063379e-8 Iter 95: T = 580.630917262389 K, F = -0.0007160361849191665, relative_change = 2.7640208636373274e-8 Iter 100: T = 580.63086824325 K, F = -0.0002994548921564366, relative_change = 1.155947031382695e-8 Iter 105: T = 580.6308477428563 K, F = -0.0001252356141034916, relative_change = 4.834309422633827e-9 Iter 110: T = 580.630839169346 K, F = -5.2375029380991034e-5, relative_change = 2.0217660739659268e-9 Iter 115: T = 580.6308355838016 K, F = -2.1903863495709164e-5, relative_change = 8.45526769717385e-10 Iter 120: T = 580.6308340842841 K, F = -9.160458020796014e-6, relative_change = 3.536094249402771e-10 Iter 125: T = 580.6308334571678 K, F = -3.8310129638063906e-6, relative_change = 1.4788368605159302e-10 Iter 130: T = 580.6308331949003 K, F = -1.6021756100159656e-6, relative_change = 6.184673287694434e-11 Iter 135: T = 580.6308330852169 K, F = -6.700481865462571e-7, relative_change = 2.586501191643025e-11 Iter 140: T = 580.6308330393459 K, F = -2.8022194903387643e-7, relative_change = 1.0817048981345556e-11 Iter 145: T = 580.6308330201623 K, F = -1.1719287984490734e-7, relative_change = 4.5238466369865176e-12 Iter 150: T = 580.6308330121393 K, F = -4.901098349385791e-8, relative_change = 1.8919082214047273e-12 Iter 155: T = 580.6308330087841 K, F = -2.0496676356174248e-8, relative_change = 7.912069447789073e-13 Iter 160: T = 580.6308330073809 K, F = -8.57251419850158e-9, relative_change = 3.3091378574190795e-13 Converged in 163 iterations to T = 580.6308330069701 K Iter 1: T = 964.2875059838693 K, F = -8137.125732927252, relative_change = 0.03571249401613063 Iter 2: T = 930.4983122616928 K, F = -6903.273857038127, relative_change = 0.03504058023410884 Iter 3: T = 898.601359911932 K, F = -5855.452451224581, relative_change = 0.03427943063349707 Iter 5: T = 840.3710587091524 K, F = -4210.095409045662, relative_change = 0.032463713596411474 Iter 10: T = 725.9327434290682 K, F = -1836.2151546342475, relative_change = 0.026102198363860633 Iter 15: T = 651.9909200232652 K, F = -792.9693184284624, relative_change = 0.017911999860908065 Iter 20: T = 610.1089978721317 K, F = -338.5858197429334, relative_change = 0.010287352495491986 Iter 25: T = 589.1595566705774 K, F = -143.21649744671626, relative_change = 0.00510947899510489 Iter 30: T = 579.5606295637359 K, F = -60.22294306628344, relative_change = 0.0023202686278264483 Iter 35: T = 575.3732253958837 K, F = -25.24751568745446, relative_change = 0.0010066408267975064 Iter 40: T = 573.5893476136007 K, F = -10.569919580941445, relative_change = 0.0004276879105185617 Iter 45: T = 572.837404388942 K, F = -4.422435269104585, relative_change = 0.0001800633552487377 Iter 50: T = 572.5218853931178 K, F = -1.8498615100668634, relative_change = 7.551645078761939e-5 Iter 55: T = 572.3897473019314 K, F = -0.7736948809906592, relative_change = 3.1619079700029444e-5 Iter 60: T = 572.3344532628428 K, F = -0.32357906702639505, relative_change = 1.3229993992021057e-5 Iter 65: T = 572.3113229781453 K, F = -0.13532648976561532, relative_change = 5.534082185883888e-6 Iter 70: T = 572.3016486269677 K, F = -0.056595479448761615, relative_change = 2.314618830617551e-6 Iter 75: T = 572.2976025246064 K, F = -0.023668962291689466, relative_change = 9.68036146564573e-7 Iter 80: T = 572.2959103659898 K, F = -0.009898652647057915, relative_change = 4.048503832139331e-7 Iter 85: T = 572.2952026797501 K, F = -0.004139736490751333, relative_change = 1.6931433309778457e-7 Iter 90: T = 572.2949067159867 K, F = -0.0017312875430006702, relative_change = 7.080946290218067e-8 Iter 95: T = 572.2947829402442 K, F = -0.000724045179410937, relative_change = 2.961339568893666e-8 Iter 100: T = 572.2947311757223 K, F = -0.0003028043503434108, relative_change = 1.2384681452898535e-8 Iter 105: T = 572.294709527176 K, F = -0.00012663639748994315, relative_change = 5.1794226995968085e-9 Iter 110: T = 572.2947004734946 K, F = -5.296085397477057e-5, relative_change = 2.166096599113663e-9 Iter 115: T = 572.2946966871368 K, F = -2.2148862661219848e-5, relative_change = 9.058875375905381e-10 Iter 120: T = 572.2946951036366 K, F = -9.262919026642447e-6, relative_change = 3.7885299786408743e-10 Iter 125: T = 572.294694441398 K, F = -3.873863899883645e-6, relative_change = 1.5844087113926807e-10 Iter 130: T = 572.2946941644418 K, F = -1.620095583909631e-6, relative_change = 6.626184163120502e-11 Iter 135: T = 572.2946940486154 K, F = -6.775426639182847e-7, relative_change = 2.771146664683548e-11 Iter 140: T = 572.2946940001755 K, F = -2.83356734742668e-7, relative_change = 1.1589278617130569e-11 Iter 145: T = 572.2946939799173 K, F = -1.1850358333509448e-7, relative_change = 4.846791610149817e-12 Iter 150: T = 572.2946939714451 K, F = -4.9559661874365446e-8, relative_change = 2.026988101382836e-12 Iter 155: T = 572.2946939679019 K, F = -2.0726331872999992e-8, relative_change = 8.47706108238235e-13 Iter 160: T = 572.29469396642 K, F = -8.667636497428077e-9, relative_change = 3.545059708573268e-13 Converged in 163 iterations to T = 572.2946939659862 K Iter 1: T = 980.1139953744096 K, F = -4531.045070414663, relative_change = 0.019886004625590377 Iter 2: T = 962.2729148229148 K, F = -3827.414658519004, relative_change = 0.018203066822527512 Iter 3: T = 946.356055988224 K, F = -3231.544945271596, relative_change = 0.01654089872998227 Iter 5: T = 919.7723977071463 K, F = -2300.5030733361336, relative_change = 0.013367753075201685 Iter 10: T = 877.5541344486765 K, F = -976.6730475247975, relative_change = 0.007026347369315387 Iter 15: T = 857.5622324490547 K, F = -411.571875032721, relative_change = 0.0032958521793305705 Iter 20: T = 848.688264597547 K, F = -172.7256005358068, relative_change = 0.001452631743774469 Iter 25: T = 844.8771017348323 K, F = -72.34587285782132, relative_change = 0.0006215488742749692 Iter 30: T = 843.264887701943 K, F = -30.275515583346383, relative_change = 0.0002624790878032582 Iter 35: T = 842.5873662801062 K, F = -12.665039782908774, relative_change = 0.00011022252402977811 Iter 40: T = 842.303441064246 K, F = -5.297277716624753, relative_change = 4.6175668270078486e-5 Iter 45: T = 842.1845987444308 K, F = -2.215491091957125, relative_change = 1.9325119301772836e-5 Iter 50: T = 842.1348797042366 K, F = -0.9265634342125637, relative_change = 8.084429969879799e-6 Iter 55: T = 842.1140834991411 K, F = -0.3875031477878643, relative_change = 3.381431109400474e-6 Iter 60: T = 842.1053857339488 K, F = -0.16205901334828354, relative_change = 1.4142293850515453e-6 Iter 65: T = 842.1017481295398 K, F = -0.06777511431744809, relative_change = 5.914606514825966e-7 Iter 70: T = 842.1002268232946 K, F = -0.02834437962088332, relative_change = 2.473581875519889e-7 Iter 75: T = 842.0995905919445 K, F = -0.011853961103292177, relative_change = 1.0344854680099038e-7 Iter 80: T = 842.0993245118867 K, F = -0.00495746863093216, relative_change = 4.3263487432936805e-8 Iter 85: T = 842.0992132339398 K, F = -0.0020732726789196576, relative_change = 1.809331931319982e-8 Iter 90: T = 842.099166696158 K, F = -0.0008670674102173592, relative_change = 7.566844345483311e-9 Iter 95: T = 842.099147233499 K, F = -0.00036261794845460216, relative_change = 3.1645450428038524e-9 Iter 100: T = 842.0991390939822 K, F = -0.0001516511558461442, relative_change = 1.3234505837333826e-9 Iter 105: T = 842.099135689939 K, F = -6.34223226456676e-5, relative_change = 5.534828341683996e-10 Iter 110: T = 842.0991342663275 K, F = -2.6523975247272347e-5, relative_change = 2.3147315486155186e-10 Iter 115: T = 842.0991336709561 K, F = -1.1092642699939148e-5, relative_change = 9.680483359726993e-11 Iter 120: T = 842.0991334219648 K, F = -4.639076701451472e-6, relative_change = 4.048494672632661e-11 Iter 125: T = 842.0991333178335 K, F = -1.9401173727562337e-6, relative_change = 1.6931289043038803e-11 Iter 130: T = 842.0991332742846 K, F = -8.113783351859638e-7, relative_change = 7.080850526151065e-12 Iter 135: T = 842.0991332560719 K, F = -3.3932824528015715e-7, relative_change = 2.9612974369430845e-12 Iter 140: T = 842.0991332484552 K, F = -1.4191215291781134e-7, relative_change = 1.2384589275134603e-12 Iter 145: T = 842.0991332452697 K, F = -5.935018698721706e-8, relative_change = 5.179455558524663e-13 Converged in 150 iterations to T = 842.0991332439376 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014309445169278818 Iteration 10: d = 1.6753960785158037e-5 Iteration 20: d = 2.1554520923615703e-7 Iteration 30: d = 2.9918370090256917e-9 Iteration 40: d = 4.19485028384063e-11 Iteration 50: d = 5.888744595049798e-13 Iteration 60: d = 8.260052754172393e-15 Converged after 64 iterations. d = 1.5126328333334292e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.705735594995 Iteration 2: convergence error = 4818.776216117177 Iteration 3: convergence error = 1098.5604376278925 Iteration 4: convergence error = 319.8783391949121 Iteration 5: convergence error = 94.82894336151412 Iteration 6: convergence error = 28.416228148742903 Iteration 7: convergence error = 8.548818630828919 Iteration 8: convergence error = 2.561225314197827 Iteration 9: convergence error = 0.7654570400547982 Iteration 10: convergence error = 0.22844260456213306 Iteration 11: convergence error = 0.0681210684024336 Iteration 12: convergence error = 0.02030417741821111 Iteration 13: convergence error = 0.006050273155324248 Iteration 14: convergence error = 0.0018025986360044044 Iteration 15: convergence error = 0.0005370137230329419 Iteration 16: convergence error = 0.00015997419222912868 Iteration 17: convergence error = 4.765428184327902e-5 Iteration 18: convergence error = 1.4195362155078328e-5 Iteration 19: convergence error = 4.228501666148077e-6 Iteration 20: convergence error = 1.2595769476320129e-6 Iteration 21: convergence error = 3.751906660909299e-7 Iteration 22: convergence error = 1.1162410373799503e-7 Iteration 23: convergence error = 3.233776624256279e-8 Iteration 24: convergence error = 9.323002814198844e-9 Iteration 25: convergence error = 2.6693669497035444e-9 Iteration 26: convergence error = 7.751168595859781e-10 Iteration 27: convergence error = 2.191882231272757e-10 Iteration 28: convergence error = 6.048139766789973e-11 Iteration 29: convergence error = 1.7962520360015333e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021996742945933037 Iteration 10: d = 2.544032571643619e-5 Iteration 20: d = 2.596206908972318e-7 Iteration 30: d = 2.9903781178057864e-9 Iteration 40: d = 3.663848264035581e-11 Iteration 50: d = 4.632983643228495e-13 Iteration 60: d = 5.984389593028019e-15 Converged after 63 iterations. d = 1.624359669639977e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12284.890299982035 Iteration 2: convergence error = 8325.204124610784 Iteration 3: convergence error = 1946.5808485284363 Iteration 4: convergence error = 477.4037088944501 Iteration 5: convergence error = 121.42637006153427 Iteration 6: convergence error = 32.35871197243341 Iteration 7: convergence error = 8.799372685889239 Iteration 8: convergence error = 2.4066595817942016 Iteration 9: convergence error = 0.6590594491160573 Iteration 10: convergence error = 0.1805117884723586 Iteration 11: convergence error = 0.04943902268792044 Iteration 12: convergence error = 0.013539849598373621 Iteration 13: convergence error = 0.0037080495658301516 Iteration 14: convergence error = 0.0010154793735637213 Iteration 15: convergence error = 0.00027809547827928327 Iteration 16: convergence error = 7.615801291649404e-5 Iteration 17: convergence error = 2.08562805710244e-5 Iteration 18: convergence error = 5.711604671887471e-6 Iteration 19: convergence error = 1.5641519439668627e-6 Iteration 20: convergence error = 4.283526777726365e-7 Iteration 21: convergence error = 1.1817337508546188e-7 Iteration 22: convergence error = 3.168202056258451e-8 Iteration 23: convergence error = 8.455572242382914e-9 Iteration 24: convergence error = 2.2548647393705323e-9 Iteration 25: convergence error = 6.002665031701326e-10 Iteration 26: convergence error = 1.602984411874786e-10 Iteration 27: convergence error = 4.229150363244116e-11 Iteration 28: convergence error = 1.2050804798491299e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021996742945933037 Iteration 10: d = 2.544032571643619e-5 Iteration 20: d = 2.596206908972318e-7 Iteration 30: d = 2.9903781178057864e-9 Iteration 40: d = 3.663848264035581e-11 Iteration 50: d = 4.632983643228495e-13 Iteration 60: d = 5.984389593028019e-15 Converged after 63 iterations. d = 1.624359669639977e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.946663427572 Iteration 2: convergence error = 5725.585255366928 Iteration 3: convergence error = 2016.1181207317632 Iteration 4: convergence error = 894.5793938579477 Iteration 5: convergence error = 408.63042106603734 Iteration 6: convergence error = 192.6098350690918 Iteration 7: convergence error = 90.87203572083536 Iteration 8: convergence error = 42.894723603405055 Iteration 9: convergence error = 20.248372754155753 Iteration 10: convergence error = 9.556325926495447 Iteration 11: convergence error = 4.5090497593732835 Iteration 12: convergence error = 2.1270834552115048 Iteration 13: convergence error = 1.003253883907746 Iteration 14: convergence error = 0.47313422282923057 Iteration 15: convergence error = 0.22311115842785512 Iteration 16: convergence error = 0.10511065875653003 Iteration 17: convergence error = 0.04907349691984564 Iteration 18: convergence error = 0.022391029469872592 Iteration 19: convergence error = 0.010178512585753197 Iteration 20: convergence error = 0.004617048308318772 Iteration 21: convergence error = 0.0020917368983646156 Iteration 22: convergence error = 0.0009469713299949944 Iteration 23: convergence error = 0.00042853161539824214 Iteration 24: convergence error = 0.00019387418524274835 Iteration 25: convergence error = 8.769845317146974e-5 Iteration 26: convergence error = 3.966657732235035e-5 Iteration 27: convergence error = 1.7940447378350655e-5 Iteration 28: convergence error = 8.113855983538087e-6 Iteration 29: convergence error = 3.6695510061690584e-6 Iteration 30: convergence error = 1.6595586203038692e-6 Iteration 31: convergence error = 7.505336725444067e-7 Iteration 32: convergence error = 3.3941978472284973e-7 Iteration 33: convergence error = 1.535017872811295e-7 Iteration 34: convergence error = 6.942082109162584e-8 Iteration 35: convergence error = 3.139621185255237e-8 Iteration 36: convergence error = 1.4198121789377183e-8 Iteration 37: convergence error = 6.417394615709782e-9 Iteration 38: convergence error = 2.9067450668662786e-9 Iteration 39: convergence error = 1.3137650967109948e-9 Iteration 40: convergence error = 5.943547876086086e-10 Iteration 41: convergence error = 2.687556843739003e-10 Iteration 42: convergence error = 1.2596501619555056e-10 Iteration 43: convergence error = 5.638867150992155e-11 Iteration 44: convergence error = 2.4101609596982598e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021996742945933037 Iteration 10: d = 2.544032571643619e-5 Iteration 20: d = 2.596206908972318e-7 Iteration 30: d = 2.9903781178057864e-9 Iteration 40: d = 3.663848264035581e-11 Iteration 50: d = 4.632983643228495e-13 Iteration 60: d = 5.984389593028019e-15 Converged after 63 iterations. d = 1.624359669639977e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.742834177872 Iteration 2: convergence error = 7344.12996636807 Iteration 3: convergence error = 1731.4049583148785 Iteration 4: convergence error = 503.2548734009556 Iteration 5: convergence error = 156.20575846479778 Iteration 6: convergence error = 48.48006004098215 Iteration 7: convergence error = 15.020998490766942 Iteration 8: convergence error = 4.646430652910567 Iteration 9: convergence error = 1.435629445401446 Iteration 10: convergence error = 0.44326030731554056 Iteration 11: convergence error = 0.13680316730369668 Iteration 12: convergence error = 0.04221151259707767 Iteration 13: convergence error = 0.013022892180742929 Iteration 14: convergence error = 0.004017454394215747 Iteration 15: convergence error = 0.0012392979188007303 Iteration 16: convergence error = 0.0003822872472483141 Iteration 17: convergence error = 0.00011792280065492378 Iteration 18: convergence error = 3.6374947740114294e-5 Iteration 19: convergence error = 1.1220318356208736e-5 Iteration 20: convergence error = 3.4610334296303336e-6 Iteration 21: convergence error = 1.0675908015400637e-6 Iteration 22: convergence error = 3.291506800451316e-7 Iteration 23: convergence error = 1.0027133612311445e-7 Iteration 24: convergence error = 2.9818693292327225e-8 Iteration 25: convergence error = 8.834831533022225e-9 Iteration 26: convergence error = 2.6143425202462822e-9 Iteration 27: convergence error = 7.771632226649672e-10 Iteration 28: convergence error = 2.3101165425032377e-10 Iteration 29: convergence error = 7.003109203651547e-11 Iteration 30: convergence error = 1.9554136088117957e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021996742945933037 Iteration 10: d = 2.544032571643619e-5 Iteration 20: d = 2.596206908972318e-7 Iteration 30: d = 2.9903781178057864e-9 Iteration 40: d = 3.663848264035581e-11 Iteration 50: d = 4.632983643228495e-13 Iteration 60: d = 5.984389593028019e-15 Converged after 63 iterations. d = 1.624359669639977e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.7227862053105 Iteration 2: convergence error = 5515.613133725536 Iteration 3: convergence error = 936.5937411741486 Iteration 4: convergence error = 170.19341918211285 Iteration 5: convergence error = 30.84966368149253 Iteration 6: convergence error = 5.606227609157486 Iteration 7: convergence error = 1.0201378035371818 Iteration 8: convergence error = 0.18618432383755135 Iteration 9: convergence error = 0.0339922495677456 Iteration 10: convergence error = 0.006202451806530007 Iteration 11: convergence error = 0.0011314068497085827 Iteration 12: convergence error = 0.00020635190139728365 Iteration 13: convergence error = 3.763259110201034e-5 Iteration 14: convergence error = 6.862816917418968e-6 Iteration 15: convergence error = 1.2514833542809356e-6 Iteration 16: convergence error = 2.2823405743110925e-7 Iteration 17: convergence error = 4.1616203816374764e-8 Iteration 18: convergence error = 7.58018359192647e-9 Iteration 19: convergence error = 1.3887984096072614e-9 Iteration 20: convergence error = 2.5147528504021466e-10 Iteration 21: convergence error = 4.4565240386873484e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021996742945933037 Iteration 10: d = 2.544032571643619e-5 Iteration 20: d = 2.596206908972318e-7 Iteration 30: d = 2.9903781178057864e-9 Iteration 40: d = 3.663848264035581e-11 Iteration 50: d = 4.632983643228495e-13 Iteration 60: d = 5.984389593028019e-15 Converged after 63 iterations. d = 1.624359669639977e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4846504416055 Iteration 2: convergence error = 2713.0140429383828 Iteration 3: convergence error = 204.5082558173342 Iteration 4: convergence error = 19.316962981655998 Iteration 5: convergence error = 1.5957388958742862 Iteration 6: convergence error = 0.129840606182946 Iteration 7: convergence error = 0.01057617750796172 Iteration 8: convergence error = 0.0008634053001439884 Iteration 9: convergence error = 7.059049374327554e-5 Iteration 10: convergence error = 5.776199862209654e-6 Iteration 11: convergence error = 4.7286063425594925e-7 Iteration 12: convergence error = 3.871911651869552e-8 Iteration 13: convergence error = 3.1718229593133725e-9 Iteration 14: convergence error = 2.5887357574249284e-10 Iteration 15: convergence error = 2.1032064978498966e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014309445169278818 Iteration 10: d = 1.6753960785158037e-5 Iteration 20: d = 2.1554520923615703e-7 Iteration 30: d = 2.9918370090256917e-9 Iteration 40: d = 4.19485028384063e-11 Iteration 50: d = 5.888744595049798e-13 Iteration 60: d = 8.260052754172393e-15 Converged after 64 iterations. d = 1.5126328333334292e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.341189111476 Iteration 2: convergence error = 3605.772396513383 Iteration 3: convergence error = 594.7192360795194 Iteration 4: convergence error = 104.6067131773782 Iteration 5: convergence error = 18.595042684955615 Iteration 6: convergence error = 3.275284729366831 Iteration 7: convergence error = 0.574722808951492 Iteration 8: convergence error = 0.10068893468428541 Iteration 9: convergence error = 0.01762875097097094 Iteration 10: convergence error = 0.0030856378359658265 Iteration 11: convergence error = 0.0005400335271588119 Iteration 12: convergence error = 9.450985498915543e-5 Iteration 13: convergence error = 1.653961317060748e-5 Iteration 14: convergence error = 2.894481212933897e-6 Iteration 15: convergence error = 5.065278401161777e-7 Iteration 16: convergence error = 8.865072231856175e-8 Iteration 17: convergence error = 1.5527120922342874e-8 Iteration 18: convergence error = 2.699380274862051e-9 Iteration 19: convergence error = 4.765752237290144e-10 Iteration 20: convergence error = 8.253664418589324e-11 Iteration 21: convergence error = 1.3983481039758772e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m21.2s Testing RayTraceHeatTransfer tests passed Testing completed after 615.29s PkgEval succeeded after 689.89s