Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.73 (4c8bca6988*) started at 2025-11-13T16:00:06.886 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.73s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.4 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 5.65s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 24939.5 ms ✓ AbstractAlgebra 1329.3 ms ✓ FLINT_jll 35492.3 ms ✓ Nemo 143607.5 ms ✓ Groebner 10834.7 ms ✓ ParamPunPam 9879.6 ms ✓ RationalFunctionFields 11861.8 ms ✓ StructuralIdentifiability 7 dependencies successfully precompiled in 239 seconds. 28 already precompiled. Precompilation completed after 249.76s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_e1l2JK/Project.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_e1l2JK/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Installed ModelingToolkit ─ v10.27.0 Updating `/tmp/jl_e1l2JK/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.27.0 Updating `/tmp/jl_e1l2JK/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.2 [70df07ce] + BracketingNonlinearSolve v1.6.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.191.0 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.11 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.16 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.15.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.3.0 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.12 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.2.0 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.27.0 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.2.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.126.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.5.0 [c0aeaf25] + SciMLOperators v1.10.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.8 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 ⌅ [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_e1l2JK/Project.toml` ⌅ [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_e1l2JK/Manifest.toml` WARNING: importing deprecated binding DataStructures.IntDisjointSets into Graphs. , use IntDisjointSet instead. 1 dependency had output during precompilation: ┌ Graphs │ WARNING: importing deprecated binding DataStructures.IntDisjointSets into Graphs. │ , use IntDisjointSet instead. └ WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where Union{ChainRulesCore.HasForwardsMode, ChainRulesCore.HasReverseMode}<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:22 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:16 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasForwardsMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:10 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ADTypesChainRulesCoreExt` └ @ Base loading.jl:2629 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ WARNING: Method definition stack_vec_row(Tuple{Vararg{var"#s1", B}} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) where {B} in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:11 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition pick_batchsize(ADTypes.AutoForwardDiff{chunksize, T} where T, StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) where {chunksize} in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:35 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition pick_batchsize(ADTypes.AutoForwardDiff{nothing, T} where T, StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:21 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition pick_batchsize(DifferentiationInterface.AutoSimpleFiniteDiff{chunksize, T} where T<:Real, StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) where {chunksize} in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:29 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition pick_batchsize(DifferentiationInterface.AutoSimpleFiniteDiff{nothing, T} where T<:Real, StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:17 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition pick_batchsize(ADTypes.AutoEnzyme{M, A} where A where M, StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:25 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition ismutable_array(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:15 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition stack_vec_col(Tuple{Vararg{var"#s1", B}} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) where {B} in module DifferentiationInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceStaticArraysExt/DifferentiationInterfaceStaticArraysExt.jl:7 overwritten in module DifferentiationInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `DifferentiationInterfaceStaticArraysExt` └ @ Base loading.jl:2629 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.275973 seconds (1.22 M allocations: 66.114 MiB, 99.50% compilation time) 0.001891 seconds (7.25 k allocations: 321.508 KiB) 0.002436 seconds (10.80 k allocations: 485.000 KiB) 0.001909 seconds (10.76 k allocations: 479.609 KiB) 0.002704 seconds (14.53 k allocations: 636.125 KiB) 0.001357 seconds (7.95 k allocations: 360.898 KiB) 0.000911 seconds (7.45 k allocations: 301.281 KiB) 15.911227 seconds (8.50 M allocations: 469.628 MiB, 0.82% gc time, 99.77% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.329149 seconds (141.76 k allocations: 8.063 MiB, 98.12% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.010603 seconds (10.51 k allocations: 568.820 KiB, 90.49% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003304378 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.52781501 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.064877457 seconds [ Info: Global identifiability assessed in 56.941281048 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002903562 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 1.301585341 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.2519e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.036702908 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.562970228 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 5.1199e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:16 ✓ # Computing specializations.. Time: 0:00:18 [ Info: Search for polynomial generators concluded in 13.56527934 [ Info: Selecting generators in 0.013726569 [ Info: Inclusion checked with probability 0.9955 in 0.067182127 seconds [ Info: Global identifiability assessed in 113.426765457 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.643964192 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.567359915 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.097550386 seconds [ Info: Global identifiability assessed in 38.150465476 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013298743 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.028706365 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000277777 seconds [ Info: Global identifiability assessed in 0.16102108 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 6.563449925 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003442817 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 3.8429e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.948449889 [ Info: Selecting generators in 0.000363287 [ Info: Inclusion checked with probability 0.9955 in 0.003429197 seconds [ Info: Global identifiability assessed in 8.997884659 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002391757 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0021061 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 4.749e-5 seconds [ Info: Global identifiability assessed in 0.008043313 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003867653 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002429587 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.071e-5 seconds [ Info: Global identifiability assessed in 0.109307344 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005145661 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004396228 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 4.8779e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.180891175 [ Info: Selecting generators in 0.017094547 [ Info: Inclusion checked with probability 0.9955 in 0.005977773 seconds [ Info: Global identifiability assessed in 2.423120404 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009202062 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003855233 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 3.3409e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009990964 [ Info: Selecting generators in 0.004623896 [ Info: Inclusion checked with probability 0.9955 in 0.004927423 seconds [ Info: Global identifiability assessed in 0.059436651 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001671044 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001449716 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.889e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000176518 [ Info: Selecting generators in 1.276994209 [ Info: Inclusion checked with probability 0.995 in 0.002446067 seconds [ Info: The search for identifiable functions concluded in 2.633689565 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001568445 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001613575 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.013e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6759e-5 [ Info: Selecting generators in 0.000835422 [ Info: Inclusion checked with probability 0.995 in 0.002179409 seconds [ Info: The search for identifiable functions concluded in 0.01250592 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001359517 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001495346 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.873e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102579 [ Info: Selecting generators in 0.000876232 [ Info: Inclusion checked with probability 0.995 in 0.00209621 seconds [ Info: The search for identifiable functions concluded in 0.011629628 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001358947 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001355687 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.94e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000790972 [ Info: Selecting generators in 0.000901291 [ Info: Inclusion checked with probability 0.995 in 0.00210294 seconds [ Info: The search for identifiable functions concluded in 0.012171464 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001527645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001270138 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.3999e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000675053 [ Info: Selecting generators in 0.00100371 [ Info: Inclusion checked with probability 0.995 in 0.002341007 seconds [ Info: The search for identifiable functions concluded in 0.012283033 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001349957 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001281138 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.8609e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000611835 [ Info: Selecting generators in 0.000971611 [ Info: Inclusion checked with probability 0.995 in 0.002290698 seconds [ Info: The search for identifiable functions concluded in 0.012023155 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001988181 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001465666 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.544e-5 seconds [ Info: The search for identifiable functions concluded in 0.039358044 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001896002 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001447346 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.343e-5 seconds [ Info: The search for identifiable functions concluded in 0.004265219 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001647654 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001289478 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.491e-5 seconds [ Info: The search for identifiable functions concluded in 0.003776754 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001732393 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001432686 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.4579e-5 seconds [ Info: The search for identifiable functions concluded in 0.003945822 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001772043 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001399287 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.518e-5 seconds [ Info: The search for identifiable functions concluded in 0.003980552 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001694824 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001407877 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.583e-5 seconds [ Info: The search for identifiable functions concluded in 0.003912853 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001815772 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001358138 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.426e-5 seconds [ Info: The search for identifiable functions concluded in 0.004226429 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001744163 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001443147 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.4769e-5 seconds [ Info: The search for identifiable functions concluded in 0.004060352 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001671683 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001434616 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.398e-5 seconds [ Info: The search for identifiable functions concluded in 0.003984082 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001850452 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001462557 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.554e-5 seconds [ Info: The search for identifiable functions concluded in 0.00425513 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001660584 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001431716 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.226e-5 seconds [ Info: The search for identifiable functions concluded in 0.003899413 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001791443 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001416057 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.264e-5 seconds [ Info: The search for identifiable functions concluded in 0.004059241 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.352758277 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002228038 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.211e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125729 [ Info: Selecting generators in 0.001425067 [ Info: Inclusion checked with probability 0.995 in 0.002951452 seconds [ Info: The search for identifiable functions concluded in 0.366562136 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0041553 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002475036 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.874e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000142588 [ Info: Selecting generators in 0.001294908 [ Info: Inclusion checked with probability 0.995 in 0.002818394 seconds [ Info: The search for identifiable functions concluded in 0.018554593 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002869593 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001714053 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.71e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8729e-5 [ Info: Selecting generators in 0.000732283 [ Info: Inclusion checked with probability 0.995 in 0.00207254 seconds [ Info: The search for identifiable functions concluded in 0.012894826 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002853852 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001819523 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.384e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000579215 [ Info: Selecting generators in 0.000803712 [ Info: Inclusion checked with probability 0.995 in 0.00199197 seconds [ Info: The search for identifiable functions concluded in 0.013229533 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002873373 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001809562 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.721e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000592274 [ Info: Selecting generators in 0.000841002 [ Info: Inclusion checked with probability 0.995 in 0.002063271 seconds [ Info: The search for identifiable functions concluded in 0.013375592 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002967312 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001867182 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000698574 [ Info: Selecting generators in 0.000891502 [ Info: Inclusion checked with probability 0.995 in 0.002311068 seconds [ Info: The search for identifiable functions concluded in 0.014483012 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001669144 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001590685 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.807e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126308 [ Info: Selecting generators in 0.002702454 [ Info: Inclusion checked with probability 0.995 in 0.004235219 seconds [ Info: The search for identifiable functions concluded in 0.021046269 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001598155 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001348357 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.281e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125099 [ Info: Selecting generators in 0.002652295 [ Info: Inclusion checked with probability 0.995 in 0.00423282 seconds [ Info: The search for identifiable functions concluded in 0.019994309 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001532495 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001514966 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.704e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132198 [ Info: Selecting generators in 0.002713054 [ Info: Inclusion checked with probability 0.995 in 0.00413908 seconds [ Info: The search for identifiable functions concluded in 0.020000838 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001471126 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001451786 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 4.083e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.275370117 [ Info: Selecting generators in 0.004672526 [ Info: Inclusion checked with probability 0.995 in 0.004254729 seconds [ Info: The search for identifiable functions concluded in 0.297533876 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001669984 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001592165 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.697e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01992189 [ Info: Selecting generators in 0.003939423 [ Info: Inclusion checked with probability 0.995 in 0.003731485 seconds [ Info: The search for identifiable functions concluded in 0.240331122 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001531236 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001437206 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.729e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020078098 [ Info: Selecting generators in 0.003912052 [ Info: Inclusion checked with probability 0.995 in 0.003474197 seconds [ Info: The search for identifiable functions concluded in 0.040623712 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001291818 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001228258 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.511e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125219 [ Info: Selecting generators in 0.002991642 [ Info: Inclusion checked with probability 0.995 in 0.003327939 seconds [ Info: The search for identifiable functions concluded in 1.162949681 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001493896 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001461136 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.7239e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127859 [ Info: Selecting generators in 0.002970292 [ Info: Inclusion checked with probability 0.995 in 0.003372788 seconds [ Info: The search for identifiable functions concluded in 0.017388923 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001672364 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001581645 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.764e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115178 [ Info: Selecting generators in 0.002702904 [ Info: Inclusion checked with probability 0.995 in 0.003286728 seconds [ Info: The search for identifiable functions concluded in 0.017443753 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001511336 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001401257 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.033e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.262549949 [ Info: Selecting generators in 0.0030711 [ Info: Inclusion checked with probability 0.995 in 0.003197139 seconds [ Info: The search for identifiable functions concluded in 0.279347159 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001436866 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001280788 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.9169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008679237 [ Info: Selecting generators in 0.002992652 [ Info: Inclusion checked with probability 0.995 in 0.003227859 seconds [ Info: The search for identifiable functions concluded in 0.02502724 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001422807 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001285738 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.5769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008105002 [ Info: Selecting generators in 0.002646405 [ Info: Inclusion checked with probability 0.995 in 0.003098611 seconds [ Info: The search for identifiable functions concluded in 0.023975901 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002346868 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001695024 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.351e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112469 [ Info: Selecting generators in 0.000580444 [ Info: Inclusion checked with probability 0.995 in 0.002834232 seconds [ Info: The search for identifiable functions concluded in 0.017680131 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001998611 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001787312 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.354e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114019 [ Info: Selecting generators in 0.000559594 [ Info: Inclusion checked with probability 0.995 in 0.003472177 seconds [ Info: The search for identifiable functions concluded in 0.018587632 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002177309 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001981131 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.577e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126199 [ Info: Selecting generators in 0.000785103 [ Info: Inclusion checked with probability 0.995 in 0.003949152 seconds [ Info: The search for identifiable functions concluded in 0.020141107 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002680994 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001889582 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.851e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009257462 [ Info: Selecting generators in 0.000647674 [ Info: Inclusion checked with probability 0.995 in 0.003026061 seconds [ Info: The search for identifiable functions concluded in 0.028349129 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002411017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001700844 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.465e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009830706 [ Info: Selecting generators in 0.000772902 [ Info: Inclusion checked with probability 0.995 in 0.003502916 seconds [ Info: The search for identifiable functions concluded in 0.028258209 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002123729 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001671374 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.355e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009251302 [ Info: Selecting generators in 0.000882662 [ Info: Inclusion checked with probability 0.995 in 0.003271259 seconds [ Info: The search for identifiable functions concluded in 0.027459818 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003006101 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002348727 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.642e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000128048 [ Info: Selecting generators in 0.004016391 [ Info: Inclusion checked with probability 0.995 in 0.00419884 seconds [ Info: The search for identifiable functions concluded in 0.025521096 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002858512 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002503886 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.99e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127669 [ Info: Selecting generators in 0.004428728 [ Info: Inclusion checked with probability 0.995 in 0.004687396 seconds [ Info: The search for identifiable functions concluded in 0.027044902 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003456307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002524686 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.688e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114769 [ Info: Selecting generators in 0.003964422 [ Info: Inclusion checked with probability 0.995 in 0.004052791 seconds [ Info: The search for identifiable functions concluded in 0.02620043 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002875322 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002331388 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.7459e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018554873 [ Info: Selecting generators in 0.003643035 [ Info: Inclusion checked with probability 0.995 in 0.003886052 seconds [ Info: The search for identifiable functions concluded in 0.042413905 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002560156 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002033241 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.491e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016447992 [ Info: Selecting generators in 0.003424997 [ Info: Inclusion checked with probability 0.995 in 0.003869213 seconds [ Info: The search for identifiable functions concluded in 0.038899378 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00312937 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002358527 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.896e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018014078 [ Info: Selecting generators in 0.003921453 [ Info: Inclusion checked with probability 0.995 in 0.003974882 seconds [ Info: The search for identifiable functions concluded in 0.043799761 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01463894 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005421678 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.026e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141359 [ Info: Selecting generators in 0.010624669 [ Info: Inclusion checked with probability 0.995 in 0.006912694 seconds [ Info: The search for identifiable functions concluded in 0.325568027 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008099593 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006035812 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.238e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000149438 [ Info: Selecting generators in 0.011746998 [ Info: Inclusion checked with probability 0.995 in 0.007223541 seconds [ Info: The search for identifiable functions concluded in 0.053896774 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007899774 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005574487 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.8719e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148818 [ Info: Selecting generators in 0.011745018 [ Info: Inclusion checked with probability 0.995 in 0.00726076 seconds [ Info: The search for identifiable functions concluded in 0.053830205 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00842275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006076861 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.978e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003008311 [ Info: Selecting generators in 0.011542599 [ Info: Inclusion checked with probability 0.995 in 0.006857784 seconds [ Info: The search for identifiable functions concluded in 0.399213343 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007977093 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005363148 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.855e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002896342 [ Info: Selecting generators in 0.010921955 [ Info: Inclusion checked with probability 0.995 in 0.006418588 seconds [ Info: The search for identifiable functions concluded in 0.054074653 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00732 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005503377 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.8939e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002873862 [ Info: Selecting generators in 0.01143449 [ Info: Inclusion checked with probability 0.995 in 0.006971853 seconds [ Info: The search for identifiable functions concluded in 0.0554043 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005398518 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003326368 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.944e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132249 [ Info: Selecting generators in 0.00208331 [ Info: Inclusion checked with probability 0.995 in 0.004396648 seconds [ Info: The search for identifiable functions concluded in 0.026893223 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005275029 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003412347 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.859e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126709 [ Info: Selecting generators in 0.002011091 [ Info: Inclusion checked with probability 0.995 in 0.004349108 seconds [ Info: The search for identifiable functions concluded in 0.027043552 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00525592 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003303639 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.9039e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000140338 [ Info: Selecting generators in 0.002202079 [ Info: Inclusion checked with probability 0.995 in 0.004384528 seconds [ Info: The search for identifiable functions concluded in 0.027766434 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00519715 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003289389 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.965e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001718654 [ Info: Selecting generators in 0.002255818 [ Info: Inclusion checked with probability 0.995 in 0.004591986 seconds [ Info: The search for identifiable functions concluded in 0.029086922 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005313189 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003399547 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.084e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001520835 [ Info: Selecting generators in 0.00206737 [ Info: Inclusion checked with probability 0.995 in 0.00413938 seconds [ Info: The search for identifiable functions concluded in 0.028127012 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005734066 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003728574 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.9899e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001708564 [ Info: Selecting generators in 0.002348798 [ Info: Inclusion checked with probability 0.995 in 0.004737554 seconds [ Info: The search for identifiable functions concluded in 0.030832345 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005605887 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003539247 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.94e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135269 [ Info: Selecting generators in 0.002941732 [ Info: Inclusion checked with probability 0.995 in 0.004384088 seconds [ Info: The search for identifiable functions concluded in 0.032087303 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005835374 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003640415 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.153e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133959 [ Info: Selecting generators in 0.002769394 [ Info: Inclusion checked with probability 0.995 in 0.00409592 seconds [ Info: The search for identifiable functions concluded in 0.032885955 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005546367 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003461287 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.938e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000140449 [ Info: Selecting generators in 0.002877863 [ Info: Inclusion checked with probability 0.995 in 0.00419266 seconds [ Info: The search for identifiable functions concluded in 0.031664077 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005401069 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003348058 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.9339e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021476105 [ Info: Selecting generators in 0.004623196 [ Info: Inclusion checked with probability 0.995 in 0.004367798 seconds [ Info: The search for identifiable functions concluded in 0.054219202 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005652886 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003528887 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.227e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021654173 [ Info: Selecting generators in 0.004550207 [ Info: Inclusion checked with probability 0.995 in 0.00417126 seconds [ Info: The search for identifiable functions concluded in 0.055626649 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005553487 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003481026 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.969e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022703293 [ Info: Selecting generators in 0.004496367 [ Info: Inclusion checked with probability 0.995 in 0.00423093 seconds [ Info: The search for identifiable functions concluded in 0.05646434 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00314254 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002312728 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.9669e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000155329 [ Info: Selecting generators in 0.002318178 [ Info: Inclusion checked with probability 0.995 in 0.003942322 seconds [ Info: The search for identifiable functions concluded in 0.022829542 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003008032 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002430887 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.997e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124469 [ Info: Selecting generators in 0.002350138 [ Info: Inclusion checked with probability 0.995 in 0.004111421 seconds [ Info: The search for identifiable functions concluded in 0.022740933 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002505357 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00209672 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.6939e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114539 [ Info: Selecting generators in 0.002104769 [ Info: Inclusion checked with probability 0.995 in 0.00415121 seconds [ Info: The search for identifiable functions concluded in 0.020658133 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003009882 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002269799 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.632e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016251075 [ Info: Selecting generators in 0.003507547 [ Info: Inclusion checked with probability 0.995 in 0.003770124 seconds [ Info: The search for identifiable functions concluded in 0.038824609 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003069961 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002386918 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.9069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015976547 [ Info: Selecting generators in 0.003750414 [ Info: Inclusion checked with probability 0.995 in 0.003660405 seconds [ Info: The search for identifiable functions concluded in 0.039595942 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002918012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002306088 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.4629e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01679044 [ Info: Selecting generators in 0.003492177 [ Info: Inclusion checked with probability 0.995 in 0.003928952 seconds [ Info: The search for identifiable functions concluded in 0.039503372 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015115885 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.049023622 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000285167 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 [ Info: Search for polynomial generators concluded in 0.000222568 [ Info: Selecting generators in 0.019412904 [ Info: Inclusion checked with probability 0.995 in 0.033340291 seconds [ Info: The search for identifiable functions concluded in 15.521641381 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017076366 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.035982296 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000340636 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000176798 [ Info: Selecting generators in 0.020494374 [ Info: Inclusion checked with probability 0.995 in 0.031879485 seconds [ Info: The search for identifiable functions concluded in 0.186408339 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015160345 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032737488 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000282407 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141018 [ Info: Selecting generators in 0.017990088 [ Info: Inclusion checked with probability 0.995 in 0.030190171 seconds [ Info: The search for identifiable functions concluded in 0.171146534 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014789419 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031837596 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000291497 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.239342306 [ Info: Selecting generators in 0.021688552 [ Info: Inclusion checked with probability 0.995 in 0.032017664 seconds [ Info: The search for identifiable functions concluded in 1.42521693 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015381723 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.433934973 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000356527 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.057327922 [ Info: Selecting generators in 0.018909759 [ Info: Inclusion checked with probability 0.995 in 0.028957583 seconds [ Info: The search for identifiable functions concluded in 0.629561424 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014722869 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030046523 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000324177 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.059234654 [ Info: Selecting generators in 0.019816341 [ Info: Inclusion checked with probability 0.995 in 0.030664267 seconds [ Info: The search for identifiable functions concluded in 0.229919843 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.666268677 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.08883801 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.181514025 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000217458 [ Info: Selecting generators in 0.965051081 [ Info: Inclusion checked with probability 0.995 in 2.604574718 seconds [ Info: The search for identifiable functions concluded in 17.589606998 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.801814498 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.475923408 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.190252453 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 3   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000252878 [ Info: Selecting generators in 1.167208283 [ Info: Inclusion checked with probability 0.995 in 2.988808607 seconds [ Info: The search for identifiable functions concluded in 18.894813439 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.564860926 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.764744749 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.208702757 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000676173 [ Info: Selecting generators in 1.193700344 [ Info: Inclusion checked with probability 0.995 in 2.532606032 seconds [ Info: The search for identifiable functions concluded in 18.535088388 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.802903609 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.013150098 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.186116364 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.04820495 [ Info: Selecting generators in 1.289246366 [ Info: Inclusion checked with probability 0.995 in 2.725330722 seconds [ Info: The search for identifiable functions concluded in 19.355881767 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.495173672 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.129590578 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.195233868 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.036120325 [ Info: Selecting generators in 1.326221078 [ Info: Inclusion checked with probability 0.995 in 2.847863952 seconds [ Info: The search for identifiable functions concluded in 19.172564453 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.460984303 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.082969244 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.181751737 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.03561634 [ Info: Selecting generators in 0.621617352 [ Info: Inclusion checked with probability 0.995 in 2.799637412 seconds [ Info: The search for identifiable functions concluded in 18.72355002 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012767659 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010861137 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 5.2579e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000545495 [ Info: Selecting generators in 0.009226802 [ Info: Inclusion checked with probability 0.995 in 0.008587378 seconds [ Info: The search for identifiable functions concluded in 0.085183588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012418521 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010850777 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.7339e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000142969 [ Info: Selecting generators in 0.007940304 [ Info: Inclusion checked with probability 0.995 in 0.00947537 seconds [ Info: The search for identifiable functions concluded in 0.081038248 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012729409 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010848046 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.4549e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000143189 [ Info: Selecting generators in 0.009122293 [ Info: Inclusion checked with probability 0.995 in 0.009268602 seconds [ Info: The search for identifiable functions concluded in 0.083247106 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013311583 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010995315 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.96e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.040174177 [ Info: Selecting generators in 0.013836688 [ Info: Inclusion checked with probability 0.995 in 0.009857496 seconds [ Info: The search for identifiable functions concluded in 0.129520025 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013071635 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011471611 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.9699e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.040517343 [ Info: Selecting generators in 0.712428586 [ Info: Inclusion checked with probability 0.995 in 0.035340813 seconds [ Info: The search for identifiable functions concluded in 0.856822179 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016107696 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0126055 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.813e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.04190574 [ Info: Selecting generators in 0.013971277 [ Info: Inclusion checked with probability 0.995 in 0.011073054 seconds [ Info: The search for identifiable functions concluded in 0.149606633 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013362863 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008606098 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.368e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000241078 [ Info: Selecting generators in 0.035099135 [ Info: Inclusion checked with probability 0.995 in 0.012877807 seconds [ Info: The search for identifiable functions concluded in 0.755454467 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012205234 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007194382 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.157e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000246958 [ Info: Selecting generators in 0.035376673 [ Info: Inclusion checked with probability 0.995 in 0.013345463 seconds [ Info: The search for identifiable functions concluded in 0.460220181 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012365272 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007049643 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.3069e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000260817 [ Info: Selecting generators in 0.039950979 [ Info: Inclusion checked with probability 0.995 in 0.014773729 seconds [ Info: The search for identifiable functions concluded in 0.510257774 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013260584 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008167492 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.329e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 3.011194959 [ Info: Selecting generators in 0.059524933 [ Info: Inclusion checked with probability 0.995 in 0.012699389 seconds [ Info: The search for identifiable functions concluded in 4.342072249 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011905556 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006836775 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.305e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.298528344 [ Info: Selecting generators in 0.73632459 [ Info: Inclusion checked with probability 0.995 in 0.01469053 seconds [ Info: The search for identifiable functions concluded in 1.448045684 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014505612 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009894125 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.673e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.276182877 [ Info: Selecting generators in 0.05665002 [ Info: Inclusion checked with probability 0.995 in 0.011795267 seconds [ Info: The search for identifiable functions concluded in 0.775417297 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020281266 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015227425 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.8479e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135509 [ Info: Selecting generators in 0.009307791 [ Info: Inclusion checked with probability 0.995 in 0.013978437 seconds [ Info: The search for identifiable functions concluded in 0.098003336 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021953781 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015002477 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.1179e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000145929 [ Info: Selecting generators in 0.009843746 [ Info: Inclusion checked with probability 0.995 in 0.014967318 seconds [ Info: The search for identifiable functions concluded in 0.101836519 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02305187 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015321034 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5149e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000135598 [ Info: Selecting generators in 0.009982205 [ Info: Inclusion checked with probability 0.995 in 0.01464426 seconds [ Info: The search for identifiable functions concluded in 0.103458073 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021963121 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014336544 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.7069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.050807526 [ Info: Selecting generators in 0.017095887 [ Info: Inclusion checked with probability 0.995 in 0.015442343 seconds [ Info: The search for identifiable functions concluded in 0.164047026 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.023355557 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017582643 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.5059e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.049597187 [ Info: Selecting generators in 0.016209486 [ Info: Inclusion checked with probability 0.995 in 0.015177665 seconds [ Info: The search for identifiable functions concluded in 0.16892895 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022916521 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017454163 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.5239e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.051087683 [ Info: Selecting generators in 0.017540073 [ Info: Inclusion checked with probability 0.995 in 0.015648721 seconds [ Info: The search for identifiable functions concluded in 0.170326286 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012631459 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.74048847 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 0.003702005 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000151429 [ Info: Selecting generators in 0.074111694 [ Info: Inclusion checked with probability 0.995 in 0.015960438 seconds [ Info: The search for identifiable functions concluded in 1.290662736 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011692019 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01566703 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.6189e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000175019 [ Info: Selecting generators in 0.081066047 [ Info: Inclusion checked with probability 0.995 in 0.017217136 seconds [ Info: The search for identifiable functions concluded in 0.497480297 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010726778 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015547641 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.214e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000183788 [ Info: Selecting generators in 0.091775475 [ Info: Inclusion checked with probability 0.995 in 0.020345876 seconds [ Info: The search for identifiable functions concluded in 0.561936633 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013354153 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017520753 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.8379e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.09654583 [ Info: Selecting generators in 0.087838412 [ Info: Inclusion checked with probability 0.995 in 0.018237786 seconds [ Info: The search for identifiable functions concluded in 1.453952989 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011710828 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019225527 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.8029e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.092808895 [ Info: Selecting generators in 0.08180679 [ Info: Inclusion checked with probability 0.995 in 0.016108247 seconds [ Info: The search for identifiable functions concluded in 0.606149342 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010614589 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014390963 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.646e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.268539967 [ Info: Selecting generators in 0.092528938 [ Info: Inclusion checked with probability 0.995 in 0.017350165 seconds [ Info: The search for identifiable functions concluded in 1.79685896 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.518876496 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.070560047 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 8.2599e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 41   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 62   ⌟ # Computing specializations.. Time: 0:00:02 Points: 73   ⌞ # Computing specializations.. Time: 0:00:03 Points: 84   ⌜ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 62   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:03 Points: 82   ⌜ # Computing specializations.. Time: 0:00:03 Points: 92   ⌝ # Computing specializations.. Time: 0:00:03 Points: 103   ⌟ # Computing specializations.. Time: 0:00:04 Points: 114   ⌞ # Computing specializations.. Time: 0:00:04 Points: 125   ⌜ # Computing specializations.. Time: 0:00:04 Points: 136   ⌝ # Computing specializations.. Time: 0:00:05 Points: 145   ⌟ # Computing specializations.. Time: 0:00:05 Points: 155   ⌞ # Computing specializations.. Time: 0:00:06 Points: 163   ⌜ # Computing specializations.. Time: 0:00:06 Points: 174   ⌝ # Computing specializations.. Time: 0:00:06 Points: 184   ⌟ # Computing specializations.. Time: 0:00:07 Points: 195   ⌞ # Computing specializations.. Time: 0:00:07 Points: 205   ⌜ # Computing specializations.. Time: 0:00:08 Points: 214   ⌝ # Computing specializations.. Time: 0:00:08 Points: 224   ⌟ # Computing specializations.. Time: 0:00:08 Points: 234   ⌞ # Computing specializations.. Time: 0:00:09 Points: 245   ⌜ # Computing specializations.. Time: 0:00:09 Points: 255   ⌝ # Computing specializations.. Time: 0:00:09 Points: 266   ⌟ # Computing specializations.. Time: 0:00:10 Points: 277   ⌞ # Computing specializations.. Time: 0:00:10 Points: 286   ⌜ # Computing specializations.. Time: 0:00:10 Points: 296   ⌝ # Computing specializations.. Time: 0:00:11 Points: 306   ⌟ # Computing specializations.. Time: 0:00:11 Points: 317   ⌞ # Computing specializations.. Time: 0:00:12 Points: 326   ⌜ # Computing specializations.. Time: 0:00:12 Points: 334   ⌝ # Computing specializations.. Time: 0:00:12 Points: 344   ⌟ # Computing specializations.. Time: 0:00:13 Points: 353   ⌞ # Computing specializations.. Time: 0:00:13 Points: 364   ⌜ # Computing specializations.. Time: 0:00:13 Points: 374   ⌝ # Computing specializations.. Time: 0:00:14 Points: 383   ⌟ # Computing specializations.. Time: 0:00:14 Points: 394   ⌞ # Computing specializations.. Time: 0:00:15 Points: 404   ⌜ # Computing specializations.. Time: 0:00:15 Points: 415   ⌝ # Computing specializations.. Time: 0:00:15 Points: 426   ⌟ # Computing specializations.. Time: 0:00:16 Points: 435   ⌞ # Computing specializations.. Time: 0:00:16 Points: 445   ⌜ # Computing specializations.. Time: 0:00:17 Points: 455   ⌝ # Computing specializations.. Time: 0:00:17 Points: 466   ⌟ # Computing specializations.. Time: 0:00:17 Points: 477   ⌞ # Computing specializations.. Time: 0:00:18 Points: 487   ⌜ # Computing specializations.. Time: 0:00:18 Points: 498   ⌝ # Computing specializations.. Time: 0:00:18 Points: 507   ⌟ # Computing specializations.. Time: 0:00:19 Points: 518   ⌞ # Computing specializations.. Time: 0:00:19 Points: 529   ⌜ # Computing specializations.. Time: 0:00:20 Points: 539   ⌝ # Computing specializations.. Time: 0:00:20 Points: 549   ⌟ # Computing specializations.. Time: 0:00:20 Points: 559   ⌞ # Computing specializations.. Time: 0:00:21 Points: 568   ⌜ # Computing specializations.. Time: 0:00:21 Points: 578   ⌝ # Computing specializations.. Time: 0:00:21 Points: 588   ⌟ # Computing specializations.. Time: 0:00:22 Points: 599   ⌞ # Computing specializations.. Time: 0:00:22 Points: 609   ⌜ # Computing specializations.. Time: 0:00:23 Points: 618   ⌝ # Computing specializations.. Time: 0:00:23 Points: 629   ⌟ # Computing specializations.. Time: 0:00:23 Points: 639   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 0.000293647 [ Info: Selecting generators in 0.04935525 [ Info: Inclusion checked with probability 0.995 in 9.138306552 seconds [ Info: The search for identifiable functions concluded in 57.578820247 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.749849615 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.076097645 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.4529e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 42   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:02 Points: 82   ⌜ # Computing specializations.. Time: 0:00:03 Points: 93   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:02 Points: 77   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 96   ⌟ # Computing specializations.. Time: 0:00:03 Points: 106   ⌞ # Computing specializations.. Time: 0:00:04 Points: 115   ⌜ # Computing specializations.. Time: 0:00:04 Points: 125   ⌝ # Computing specializations.. Time: 0:00:04 Points: 135   ⌟ # Computing specializations.. Time: 0:00:05 Points: 145   ⌞ # Computing specializations.. Time: 0:00:05 Points: 155   ⌜ # Computing specializations.. Time: 0:00:06 Points: 163   ⌝ # Computing specializations.. Time: 0:00:06 Points: 174   ⌟ # Computing specializations.. Time: 0:00:06 Points: 185   ⌞ # Computing specializations.. Time: 0:00:07 Points: 194   ⌜ # Computing specializations.. Time: 0:00:07 Points: 205   ⌝ # Computing specializations.. Time: 0:00:08 Points: 215   ⌟ # Computing specializations.. Time: 0:00:08 Points: 225   ⌞ # Computing specializations.. Time: 0:00:08 Points: 235   ⌜ # Computing specializations.. Time: 0:00:09 Points: 245   ⌝ # Computing specializations.. Time: 0:00:09 Points: 254   ⌟ # Computing specializations.. Time: 0:00:09 Points: 264   ⌞ # Computing specializations.. Time: 0:00:10 Points: 273   ⌜ # Computing specializations.. Time: 0:00:10 Points: 284   ⌝ # Computing specializations.. Time: 0:00:11 Points: 294   ⌟ # Computing specializations.. Time: 0:00:11 Points: 303   ⌞ # Computing specializations.. Time: 0:00:11 Points: 314   ⌜ # Computing specializations.. Time: 0:00:12 Points: 325   ⌝ # Computing specializations.. Time: 0:00:12 Points: 334   ⌟ # Computing specializations.. Time: 0:00:13 Points: 344   ⌞ # Computing specializations.. Time: 0:00:13 Points: 354   ⌜ # Computing specializations.. Time: 0:00:13 Points: 364   ⌝ # Computing specializations.. Time: 0:00:14 Points: 374   ⌟ # Computing specializations.. Time: 0:00:14 Points: 384   ⌞ # Computing specializations.. Time: 0:00:14 Points: 393   ⌜ # Computing specializations.. Time: 0:00:15 Points: 403   ⌝ # Computing specializations.. Time: 0:00:15 Points: 413   ⌟ # Computing specializations.. Time: 0:00:16 Points: 422   ⌞ # Computing specializations.. Time: 0:00:16 Points: 432   ⌜ # Computing specializations.. Time: 0:00:16 Points: 442   ⌝ # Computing specializations.. Time: 0:00:17 Points: 451   ⌟ # Computing specializations.. Time: 0:00:17 Points: 461   ⌞ # Computing specializations.. Time: 0:00:17 Points: 471   ⌜ # Computing specializations.. Time: 0:00:18 Points: 479   ⌝ # Computing specializations.. Time: 0:00:18 Points: 489   ⌟ # Computing specializations.. Time: 0:00:18 Points: 499   ⌞ # Computing specializations.. Time: 0:00:19 Points: 507   ⌜ # Computing specializations.. Time: 0:00:19 Points: 517   ⌝ # Computing specializations.. Time: 0:00:19 Points: 526   ⌟ # Computing specializations.. Time: 0:00:20 Points: 535   ⌞ # Computing specializations.. Time: 0:00:20 Points: 545   ⌜ # Computing specializations.. Time: 0:00:21 Points: 555   ⌝ # Computing specializations.. Time: 0:00:21 Points: 564   ⌟ # Computing specializations.. Time: 0:00:21 Points: 574   ⌞ # Computing specializations.. Time: 0:00:22 Points: 584   ⌜ # Computing specializations.. Time: 0:00:22 Points: 595   ⌝ # Computing specializations.. Time: 0:00:22 Points: 606   ⌟ # Computing specializations.. Time: 0:00:23 Points: 615   ⌞ # Computing specializations.. Time: 0:00:23 Points: 626   ⌜ # Computing specializations.. Time: 0:00:24 Points: 636   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 0.000301798 [ Info: Selecting generators in 0.041982401 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 41 running 1 of 1 signal (10): User defined signal 1 n_gcdinv at /workspace/srcdir/flint-3.3.1/src/ulong_extras/gcdinv.c:105 n_invmod at /workspace/srcdir/flint-3.3.1/src/ulong_extras.h:262 [inlined] nmod_inv at /workspace/srcdir/flint-3.3.1/src/nmod.h:200 [inlined] fmpz_mpoly_evals at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:98 _set_estimates at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:310 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1616 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:177 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:177 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:185 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:185 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:177 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 fmpq_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpq_mpoly/gcd.c:38 gcd at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/fmpq_mpoly.jl:317 // at /home/pkgeval/.julia/packages/AbstractAlgebra/L8iQ0/src/Fraction.jl:56 [inlined] derivative at /home/pkgeval/.julia/packages/AbstractAlgebra/L8iQ0/src/Fraction.jl:681 derivative at /home/pkgeval/.julia/packages/AbstractAlgebra/L8iQ0/src/Fraction.jl:674 [inlined] jacobian at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/util.jl:352 _check_algebraicity at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:128 check_algebraicity at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:185 issubfield at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:417 fields_equal at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:429 unknown function (ip: 0x74858e553911) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x748585e810a9) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x748585e7a434) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x748594dbd382) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9560.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96199.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_35114.1 at /opt/julia/lib/julia/sys.so (unknown line) include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke97426.1 at /opt/julia/lib/julia/sys.so (unknown line) include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_72480.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9560.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96209.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_35045.1 at /opt/julia/lib/julia/sys.so (unknown line) exec_options at ./client.jl:310 jfptr_exec_options_35026.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke92148.1 at /opt/julia/lib/julia/sys.so (unknown line) j_exec_options_73833.1 at /opt/julia/lib/julia/sys.so (unknown line) _start at ./client.jl:577 jfptr__start_73830.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7485df130249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 jfptr_wait_1599.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke94180.1 at /opt/julia/lib/julia/sys.so (unknown line) j_wait_53123.1 at /opt/julia/lib/julia/sys.so (unknown line) wait_forever at ./task.jl:1168 jfptr_wait_forever_53122.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007c33edd6c790 Total snapshots: 311. Utilization: 0% ╎311 @Base/task.jl:1168 wait_forever() 310╎ 311 @Base/task.jl:1246 wait() ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007485c4bfc010 Total snapshots: 206. Utilization: 100% ╎191 @Base/client.jl:577 _start() ╎ 191 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 191 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 191 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 191 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::St… ╎ 191 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 191 @Base/loading.jl:2994 include_string(mapexpr::typeof(identity), m… ╎ ╎ 191 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 191 @StructuralIdentifiability/…:150 top-level scope ╎ ╎ 191 @Base/timing.jl:689 macro expansion ╎ ╎ 191 @StructuralIdentifiability/…:151 macro expansion ╎ ╎ ╎ 191 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 191 @StructuralIdentifiability/…:153 macro expansion ╎ ╎ ╎ 191 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 191 @Base/Base.jl:310 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 191 @Base/loading.jl:3054 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 191 @Base/loading.jl:2994 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 191 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 191 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 191 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 191 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 191 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 191 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 191 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 191 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 191 @RationalFunctionFields/…:720 kwcall(::@NamedT… ╎ ╎ ╎ ╎ ╎ ╎ 191 @RationalFunctionFields/…:720 simplified_gene… ╎ ╎ ╎ ╎ ╎ ╎ 191 @RationalFunctionFields/…:429 fields_equal(F… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:417 issubfield(F:… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:185 check_algebr… ╎ ╎ ╎ ╎ ╎ ╎ 35 @RationalFunctionFields/…:128 _check_alge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 35 @RationalFunctionFields/…:352 jacobian(r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 33 @AbstractAlgebra/…:674 derivative ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:679 derivative(f::A… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:79 numerator ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:79 numerator ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:29 numerator 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:599 canonical_u… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 32 @AbstractAlgebra/…:681 derivative(f::A… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 27 @AbstractAlgebra/…:56 // 26╎ ╎ ╎ ╎ ╎ ╎ ╎ 27 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:57 // ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:492 divexact ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:494 #divexact#741 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:453 divides(a::QQMPol… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:264 *(a::QQMPolyRingElem… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Nemo/…ly.jl:687 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:629 evaluate(f::Abst… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:530 evaluate(a::QQMPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:138 _check_alge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:674 derivative ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:681 derivative(f::Ab… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:131 literal_pow ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:300 ^(x::QQMPolyRingElem… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:1006 QQMPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1187 QQMPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ 155 @RationalFunctionFields/…:420 issubfield(F:… ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:318 field_contai… ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:984 maximum ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:984 #maximum#742 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:988 _maximum ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:988 #_maximum#744 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:330 mapreduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:338 _mapreduce_dim ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:446 _mapreduce(f::typ… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:275 mapreduce_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:261 mapreduce_impl(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…op.jl:77 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Base/…ce.jl:263 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Nemo/…ly.jl:192 total_degree(a… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Nemo/…ly.jl:186 total_degree_f… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:195 total_degree(a… ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:322 field_contai… ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:848 _collect(c::Vector{Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:324 #field_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:886 collect_to!(des… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @RationalFunctionFields/…:324 #… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @AbstractAlgebra/…:103 vars(p::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @AbstractAlgebra/…:835 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Nemo/…ly.jl:39 exponent_vector ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…ly.jl:23 exponent_vector… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:326 field_contai… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ng.jl:402 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ng.jl:340 current_logger_for_env(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ng.jl:536 current_logstate ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…es.jl:215 get ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…rs.jl:1633 only 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…le.jl:33 getindex ╎ ╎ ╎ ╎ ╎ ╎ 16 @RationalFunctionFields/…:338 field_contai… ╎ ╎ ╎ ╎ ╎ ╎ 16 @RationalFunctionFields/…:313 specialize(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @RationalFunctionFields/…:267 fractions_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:858 _collect(c::Vector{Q… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:864 collect_to_with_fir… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @RationalFunctionFields/…:267 #fr… 12╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Nemo/…ly.jl:530 evaluate(a::QQM… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @RationalFunctionFields/…:273 fractions_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Nemo/…ly.jl:258 -(a::QQMPolyRingElem, … 4╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Nemo/…ly.jl:692 sub! ╎ ╎ ╎ ╎ ╎ ╎ 133 @RationalFunctionFields/…:343 field_contai… ╎ ╎ ╎ ╎ ╎ ╎ 133 @Groebner/…l:107 groebner ╎ ╎ ╎ ╎ ╎ ╎ ╎ 133 @Groebner/…l:109 #groebner#194 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 20 @Groebner/…l:9 groebner0(polynomials::V… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 20 @Groebner/…l:16 io_convert_polynomials… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 19 @Groebner/…l:102 io_extract_coeffs_ir… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 19 @Groebner/…l:135 io_extract_coeffs_i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:858 _collect(c::Vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:864 collect_to_with… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 10 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 6 @Nemo/…pq.jl:1300 Rational{BigI… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 6 @Base/…al.jl:151 Rational ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 6 @Base/gmp.jl:315 BigInt 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 6 @Base/gmp.jl:218 set_si(a::Int6… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 5 @Base/gmp.jl:69 BigInt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 5 @Base/gmp.jl:70 _ 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 5 @Base/gmp.jl:157 init2! 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Nemo/…pq.jl:1301 Rational{BigI… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:890 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Base/…ay.jl:765 _collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Base/…ay.jl:953 copyto!(dest::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @AbstractAlgebra/…:818 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:110 coeff(a::QQMPo… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:178 QQFieldElem 7╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Nemo/…ly.jl:113 coeff(a::QQMPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:173 io_extract_monoms_ir… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:765 _collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:953 copyto!(dest::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:835 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:39 exponent_vector ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:23 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ 113 @Groebner/…l:10 groebner0(polynomials::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 113 @Groebner/…l:34 _groebner1(ring::Groeb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Groebner/…l:56 __groebner1(ring::Gro… 13╎ ╎ ╎ ╎ ╎ ╎ ╎ 17 @Groebner/…l:266 ir_convert_ir_to_in… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ls.jl:964 getindex 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:106 monom_construct_fr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:32 monom_overflow_che… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…rs.jl:479 >= ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/int.jl:568 <= 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ol.jl:40 & ╎ ╎ ╎ ╎ ╎ ╎ ╎ 96 @Groebner/…l:57 __groebner1(ring::Gro… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 96 @Groebner/…l:80 groebner2(ring::Groe… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 96 @Groebner/…l:134 _groebner2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Groebner/…l:234 _groebner_learn_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Groebner/…l:11 f4_initialize_str… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Groebner/…l:11 f4_initialize_st… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:602 basis_fill_dat… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:252 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:606 basis_fill_dat… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:609 basis_fill_dat… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:317 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:705 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/int.jl:669 mod 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/int.jl:590 rem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…rs.jl:479 >= ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…on.jl:489 <= 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/int.jl:561 <= 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:720 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:364 hashtable_fill… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:408 hashtable_fill… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Base/…ay.jl:1363 getindex 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Groebner/…l:236 _groebner_learn_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Groebner/…l:139 clear_denominato… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Groebner/…l:140 #clear_denomina… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:125 _clear_denomin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 none:? #_clear_denominators!##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:833 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ay.jl:701 _array_for ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ay.jl:876 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ay.jl:409 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ay.jl:877 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ot.jl:669 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…ot.jl:661 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 none:? #_clear_denominators!##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/gmp.jl:315 BigInt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/gmp.jl:218 set_si(a::Int6… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/gmp.jl:69 BigInt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/gmp.jl:70 _ 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Base/gmp.jl:157 init2! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:129 _clear_denomin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:119 common_denomin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/gmp.jl:173 lcm! 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/gmp.jl:171 lcm! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:132 _clear_denomin… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/gmp.jl:171 tdiv_q! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Groebner/…l:133 _clear_denomin… 7╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 7 @Base/gmp.jl:171 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 74 @Groebner/…l:238 _groebner_learn_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 74 @Groebner/…l:157 _groebner_guess_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 69 @Groebner/…l:415 f4!(ring::Groeb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @Groebner/…l:46 f4_reduction!(r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 11 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 11 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 11 @Groebner/…l:42 #linalg_main!#87 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 11 @Groebner/…l:165 _linalg_main!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 9 @Groebner/…l:18 linalg_randomiz… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:190 sort_matrix_up… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ge.jl:1408 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:675 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ge.jl:1400 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 7 @Groebner/…l:197 sort_matrix_up… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 7 @Base/…rt.jl:1734 sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 7 @Base/…rt.jl:1741 #sort!#24 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 7 @Base/…rt.jl:1594 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 7 @Base/…rt.jl:561 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 7 @Base/…rt.jl:686 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 7 @Base/…rt.jl:747 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 7 @Base/…rt.jl:802 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 7 @Base/…rt.jl:731 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 7 @Base/…rt.jl:780 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 7 @Base/…rt.jl:1380 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 7 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Base/…rt.jl:1135 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1100 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Groebner/…l:193 #sort_matrix_u… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 2 @Base/…rt.jl:1154 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 2 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Groebner/…l:193 #sort_matrix_u… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Groebner/…l:158 matrix_row_dec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…rt.jl:1165 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…rt.jl:845 _sort!(v::Vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Groebner/…l:193 #sort_matrix_u… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 1 @Groebner/…l:158 matrix_row_dec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +27 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 3 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 3 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 2 @Base/…rt.jl:1135 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Groebner/…l:193 #sort_matrix_u… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Groebner/…l:157 matrix_row_dec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1107 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Base/…rt.jl:1135 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Base/…rt.jl:1097 partition!(t:… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 1 @Base/int.jl:83 < ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:202 sort_matrix_up… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ay.jl:1360 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…al.jl:984 _getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…al.jl:998 _unsafe_getind… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…al.jl:1007 _unsafe_getin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…an.jl:65 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…al.jl:1009 macro expansi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ls.jl:964 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Groebner/…l:22 linalg_randomiz… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:53 linalg_randomiz… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Groebner/…l:317 linalg_prepare… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ls.jl:385 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:106 linalg_randomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:415 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:752 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Groebner/…l:124 mod_p 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/int.jl:86 - ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 10 @Groebner/…l:331 matrix_fill_co… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 10 @Groebner/…l:21 sort_part! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 10 @Groebner/…l:32 #sort_part!#120 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 10 @Base/…rt.jl:2552 sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 10 @Base/…rt.jl:2549 sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 10 @Base/…rt.jl:1594 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 10 @Base/…rt.jl:561 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 10 @Base/…rt.jl:686 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 10 @Base/…rt.jl:747 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 10 @Base/…rt.jl:802 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 10 @Base/…rt.jl:731 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 10 @Base/…rt.jl:780 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 10 @Base/…rt.jl:1380 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 10 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Base/…rt.jl:1135 _sort!(v::Vec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Base/…rt.jl:1100 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 2 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Base/…rt.jl:1099 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Groebner/…l:329 #matrix_fill_c… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Groebner/…l:327 _cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Groebner/…l:329 #matrix_fill_c… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Groebner/…l:327 _cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 4 @Base/…rt.jl:1154 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 4 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…rt.jl:1135 _sort!(v::Vec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Base/…rt.jl:0 partition!(t::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 2 @Base/…rt.jl:1154 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 2 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1154 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Groebner/…l:329 #matrix_fill_c… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Groebner/…l:327 _cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +27 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1163 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…ay.jl:291 copyto! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…ay.jl:298 _copyto_impl! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Base/…ot.jl:596 memoryref ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Groebner/…l:329 #matrix_fill_c… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Groebner/…l:327 _cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +27 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 3 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 3 @Base/…rt.jl:1123 _sort! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Base/…rt.jl:1106 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…ng.jl:121 lt ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Groebner/…l:329 #matrix_fill_c… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Groebner/…l:327 _cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 2 @Base/…rt.jl:1154 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 2 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1135 _sort!(v::Vec… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1104 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…rt.jl:1158 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…rt.jl:1154 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…rt.jl:1123 kwcall(::@Nam… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…rt.jl:1137 _sort!(v::Vec… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Base/…rt.jl:1100 partition!(t:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 1 @Base/…ay.jl:1024 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:341 matrix_fill_co… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1020 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1024 _setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:345 matrix_fill_co… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:297 f4_select_crit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:297 f4_select_crit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Groebner/…l:397 f4_add_critica… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:304 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:241 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:491 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:269 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:525 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:705 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/int.jl:669 mod 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/int.jl:590 rem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:456 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 42 @Groebner/…l:84 f4_symbolic_pre… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Base/…ay.jl:0 f4_find_multipli… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:244 f4_find_multip… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…es.jl:365 to_indices ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…es.jl:368 to_indices ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…es.jl:292 to_index ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…es.jl:307 to_index ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…er.jl:7 convert ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:1008 Int64 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ot.jl:927 toInt64 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:263 f4_find_multip… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:264 f4_find_multip… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…ls.jl:964 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ls.jl:385 checkbounds 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:266 f4_find_multip… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:607 monom_is_divis… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:573 monom_is_divis… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 none:0 _packed_vec_ge ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 none:0 macro expansion 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:24 macro expansion 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Groebner/…l:277 f4_find_multip… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:220 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:241 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 22 @Groebner/…l:278 f4_find_multip… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:303 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:402 similar 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ot.jl:649 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:304 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:231 hashtable_resi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1540 resize!(a::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1205 _growend! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ay.jl:1181 _growend_inte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ay.jl:1101 array_new_mem… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 18 @Groebner/…l:306 matrix_polynom… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…er.jl:0 hashtable_insert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:481 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:964 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:381 checkbounds ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Groebner/…l:488 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:964 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:381 checkbounds 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:491 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:270 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Groebner/…l:507 hashtable_inse… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Groebner/…l:269 hashtable_is_h… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 10 @Groebner/…l:525 hashtable_inse… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Base/int.jl:0 monom_create_div… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:689 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:671 monom_create_d… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ge.jl:925 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Groebner/…l:708 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 3 @Base/…ay.jl:1363 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/…ls.jl:964 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:0 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ls.jl:385 checkbounds 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:712 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ge.jl:925 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 8 @Groebner/…l:287 f4_find_multip… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:0 hashtable_insert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:279 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:211 monom_hash(x::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Groebner/…l:284 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…ay.jl:1363 getindex 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:287 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:269 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:301 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:269 hashtable_is_h… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:302 hashtable_inse… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Groebner/…l:290 f4_find_multip… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…al.jl:774 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/…ay.jl:1020 setindex! 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:181 modular_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:187 #modular_reduc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:164 modular_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 none:? #modular_reduce_mod_p!##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Groebner/…l:173 modular_reduce… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:150 bigint_mod_p!(… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Base/gmp.jl:171 fdiv_q! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:153 bigint_mod_p!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/gmp.jl:173 add! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/gmp.jl:171 add! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:155 bigint_mod_p!(… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/gmp.jl:171 tdiv_r! [ Info: Inclusion checked with probability 0.995 in 28.035233835 seconds [ Info: The search for identifiable functions concluded in 78.400712535 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [41] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 _ZNK4llvm9Attribute17isStringAttributeEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) PkgEval terminated after 2736.04s: test duration exceeded the time limit