Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.73 (4c8bca6988*) started at 2025-11-13T16:12:00.855 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.31s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 6.2s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/i9lgt/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1455.8 ms ✓ Measurements 4662.7 ms ✓ StatsBase 8325.9 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 15 seconds. 56 already precompiled. Precompilation completed after 27.66s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_co0DIy/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_co0DIy/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:38 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:04 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011246993699114665 Iteration 10: d = 1.0174500979033114e-5 Iteration 20: d = 1.481294122551469e-7 Iteration 30: d = 2.4559706236859036e-9 Iteration 40: d = 4.2176205406605176e-11 Iteration 50: d = 7.380792106472604e-13 Iteration 60: d = 1.3036667845819811e-14 Converged after 65 iterations. d = 1.7329850222980016e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010805667205195533 Iteration 10: d = 9.635446595555711e-6 Iteration 20: d = 1.495148822952729e-7 Iteration 30: d = 2.5470662381605767e-9 Iteration 40: d = 4.403457294773938e-11 Iteration 50: d = 7.66203161310298e-13 Iteration 60: d = 1.3380682799136253e-14 Converged after 65 iterations. d = 1.7786918728831124e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▎ | ETA: 0:00:02 Bin 1 progress: 70%|███████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011925952071176777 Iteration 10: d = 1.1074487679029693e-5 Iteration 20: d = 1.532165276158127e-7 Iteration 30: d = 2.493976641030051e-9 Iteration 40: d = 4.2211383545457254e-11 Iteration 50: d = 7.269642724924e-13 Iteration 60: d = 1.2659993862713894e-14 Converged after 65 iterations. d = 1.6680195827830767e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011351330971672673 Iteration 10: d = 1.2219198784024305e-5 Iteration 20: d = 1.812280715703449e-7 Iteration 30: d = 2.970339648678825e-9 Iteration 40: d = 5.0305436124241146e-11 Iteration 50: d = 8.655270747611196e-13 Iteration 60: d = 1.4996149346555224e-14 Converged after 65 iterations. d = 2.0025389792556724e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 66%|█████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012908717402303775 Iteration 10: d = 1.2080571148756519e-5 Iteration 20: d = 1.692061207758388e-7 Iteration 30: d = 2.582419074629488e-9 Iteration 40: d = 3.989844087861015e-11 Iteration 50: d = 6.178691803674106e-13 Iteration 60: d = 9.580032179087273e-15 Converged after 64 iterations. d = 1.811567140337531e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▏ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012719255765802457 Iteration 10: d = 7.417444918627003e-6 Iteration 20: d = 9.646254292148311e-8 Iteration 30: d = 1.4910503939715588e-9 Iteration 40: d = 2.3267997998663953e-11 Iteration 50: d = 3.632387663339565e-13 Iteration 60: d = 5.6670976607041796e-15 Converged after 63 iterations. d = 1.6622175681507387e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001410604287322306 Iteration 10: d = 1.4244246041305917e-5 Iteration 20: d = 1.966269355020326e-7 Iteration 30: d = 2.9583620285018525e-9 Iteration 40: d = 4.5510705163248275e-11 Iteration 50: d = 7.067172255665988e-13 Iteration 60: d = 1.1057951831022044e-14 Converged after 64 iterations. d = 2.0995989541422647e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013472509565532035 Iteration 10: d = 1.0278643772049079e-5 Iteration 20: d = 1.3047160326123594e-7 Iteration 30: d = 1.9418290179389177e-9 Iteration 40: d = 2.967946356956849e-11 Iteration 50: d = 4.575463832706358e-13 Iteration 60: d = 7.0794918288385655e-15 Converged after 63 iterations. d = 2.0173453944697703e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012857861263386662 Iteration 10: d = 1.3398284796596917e-5 Iteration 20: d = 1.871020725114199e-7 Iteration 30: d = 2.840072027780601e-9 Iteration 40: d = 4.34615497222675e-11 Iteration 50: d = 6.656880611298989e-13 Iteration 60: d = 1.0198505562509498e-14 Converged after 64 iterations. d = 1.9272886601024987e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 74%|████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013927364223743721 Iteration 10: d = 1.6108462417814535e-5 Iteration 20: d = 2.3006084168049096e-7 Iteration 30: d = 3.44691383937242e-9 Iteration 40: d = 5.241540407729064e-11 Iteration 50: d = 8.032850829974527e-13 Iteration 60: d = 1.2348587077683285e-14 Converged after 65 iterations. d = 1.548853011466912e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00659063238968679 Iteration 10: d = 8.292120984058144e-5 Iteration 20: d = 1.0912146504860426e-6 Iteration 30: d = 1.5319445527835155e-8 Iteration 40: d = 2.1738777852316778e-10 Iteration 50: d = 3.0984368278269253e-12 Iteration 60: d = 4.432046796722114e-14 Converged after 68 iterations. d = 1.5323340664443738e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0029404357315452588 Iteration 10: d = 2.145468706009188e-5 Iteration 20: d = 2.857586071888373e-7 Iteration 30: d = 4.373835615326404e-9 Iteration 40: d = 6.780889273886351e-11 Iteration 50: d = 1.0554854425402659e-12 Iteration 60: d = 1.6469139657359564e-14 Converged after 65 iterations. d = 2.0518374864976484e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002678244316589952 Iteration 10: d = 3.0555755942341176e-5 Iteration 20: d = 4.347857082347282e-7 Iteration 30: d = 6.910320189969414e-9 Iteration 40: d = 1.1387194349056561e-10 Iteration 50: d = 1.908899054512324e-12 Iteration 60: d = 3.225759115088279e-14 Converged after 67 iterations. d = 1.913653243293392e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 96%|███████████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00196887423544663 Iteration 10: d = 1.8835897522738837e-5 Iteration 20: d = 2.402910189457235e-7 Iteration 30: d = 3.5365047665127102e-9 Iteration 40: d = 5.489034407042126e-11 Iteration 50: d = 8.847965877198095e-13 Iteration 60: d = 1.464388458042509e-14 Converged after 65 iterations. d = 1.8935150949441527e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 32%|██████████▊ | ETA: 0:00:02 Bin 1 progress: 64%|█████████████████████ | ETA: 0:00:01 Bin 1 progress: 99%|████████████████████████████████▋| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012908717402303775 Iteration 10: d = 1.2080571148756519e-5 Iteration 20: d = 1.692061207758388e-7 Iteration 30: d = 2.582419074629488e-9 Iteration 40: d = 3.989844087861015e-11 Iteration 50: d = 6.178691803674106e-13 Iteration 60: d = 9.580032179087273e-15 Converged after 64 iterations. d = 1.811567140337531e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013200675266693562 Iteration 10: d = 1.532795058790606e-5 Iteration 20: d = 1.8825455028163395e-7 Iteration 30: d = 2.553629001498107e-9 Iteration 40: d = 3.543062569742947e-11 Iteration 50: d = 4.941652564543932e-13 Iteration 60: d = 6.9134939456903735e-15 Converged after 63 iterations. d = 1.9540558282969617e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015370066065615046 Iteration 10: d = 1.3199606813720584e-5 Iteration 20: d = 1.242240230450604e-7 Iteration 30: d = 1.5295372663219117e-9 Iteration 40: d = 2.0648602416574643e-11 Iteration 50: d = 2.8733798903985943e-13 Iteration 60: d = 4.016532914935066e-15 Converged after 62 iterations. d = 1.7413909700086508e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.660116178942 Iteration 2: convergence error = 4842.643557013499 Iteration 3: convergence error = 1095.0892099686216 Iteration 4: convergence error = 321.5707180373756 Iteration 5: convergence error = 95.45291195512141 Iteration 6: convergence error = 28.48666894353687 Iteration 7: convergence error = 8.566180955082928 Iteration 8: convergence error = 2.570242159544705 Iteration 9: convergence error = 0.7693355047319983 Iteration 10: convergence error = 0.2299624177694568 Iteration 11: convergence error = 0.0686841963340612 Iteration 12: convergence error = 0.020505174574054763 Iteration 13: convergence error = 0.006120125657389508 Iteration 14: convergence error = 0.0018263945485159638 Iteration 15: convergence error = 0.0005449956106531317 Iteration 16: convergence error = 0.00016261881410173373 Iteration 17: convergence error = 4.852176334679825e-5 Iteration 18: convergence error = 1.4477569038717775e-5 Iteration 19: convergence error = 4.319665322327637e-6 Iteration 20: convergence error = 1.2888526725873817e-6 Iteration 21: convergence error = 3.845525498036295e-7 Iteration 22: convergence error = 1.1460519999673124e-7 Iteration 23: convergence error = 3.329068931634538e-8 Iteration 24: convergence error = 9.612904250388965e-9 Iteration 25: convergence error = 2.7596342988545075e-9 Iteration 26: convergence error = 8.033111953409389e-10 Iteration 27: convergence error = 2.248725650133565e-10 Iteration 28: convergence error = 6.639311322942376e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013200675266693562 Iteration 10: d = 1.532795058790606e-5 Iteration 20: d = 1.8825455028163395e-7 Iteration 30: d = 2.553629001498107e-9 Iteration 40: d = 3.543062569742947e-11 Iteration 50: d = 4.941652564543932e-13 Iteration 60: d = 6.9134939456903735e-15 Converged after 63 iterations. d = 1.9540558282969617e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.665797798922 Iteration 2: convergence error = 4822.1932362079 Iteration 3: convergence error = 1099.9998797612898 Iteration 4: convergence error = 320.3276070728116 Iteration 5: convergence error = 94.99596251063736 Iteration 6: convergence error = 28.318715030794465 Iteration 7: convergence error = 8.46692818884685 Iteration 8: convergence error = 2.5369471075705405 Iteration 9: convergence error = 0.7583676820195251 Iteration 10: convergence error = 0.22639109729038864 Iteration 11: convergence error = 0.06753086144522058 Iteration 12: convergence error = 0.020135081821990752 Iteration 13: convergence error = 0.0060019858426585415 Iteration 14: convergence error = 0.0017888492814108758 Iteration 15: convergence error = 0.0005331094785105961 Iteration 16: convergence error = 0.00015886864048297866 Iteration 17: convergence error = 4.7342130301331053e-5 Iteration 18: convergence error = 1.4107513834460406e-5 Iteration 19: convergence error = 4.203868911645259e-6 Iteration 20: convergence error = 1.252691617992241e-6 Iteration 21: convergence error = 3.732809545908822e-7 Iteration 22: convergence error = 1.1109568731626496e-7 Iteration 23: convergence error = 3.219452082703356e-8 Iteration 24: convergence error = 9.273662726627663e-9 Iteration 25: convergence error = 2.667093212949112e-9 Iteration 26: convergence error = 7.619291864102706e-10 Iteration 27: convergence error = 2.1873347577638924e-10 Iteration 28: convergence error = 6.434675015043467e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 11:32:06 Bin 1 ray tracing: 11%|███▎ | ETA: 0:00:43 Bin 1 ray tracing: 21%|██████▍ | ETA: 0:00:23 Bin 1 ray tracing: 32%|█████████▌ | ETA: 0:00:16 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 2 ray tracing: 15%|████▍ | ETA: 0:00:12 Bin 2 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 2 ray tracing: 30%|█████████ | ETA: 0:00:10 Bin 2 ray tracing: 37%|███████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 68%|████████████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 3 ray tracing: 14%|████▎ | ETA: 0:00:13 Bin 3 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 3 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 3 ray tracing: 39%|███████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 3 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 3 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 4 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 44%|█████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 68%|████████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 5 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 5 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 5 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 5 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 5 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 6 ray tracing: 27%|████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 6 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 6 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 6 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 6 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 99%|█████████████████████████████▊| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:12 Bin 7 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 7 ray tracing: 24%|███████▏ | ETA: 0:00:10 Bin 7 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 7 ray tracing: 48%|██████████████▍ | ETA: 0:00:07 Bin 7 ray tracing: 56%|████████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 7 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▎ | ETA: 0:00:12 Bin 8 ray tracing: 15%|████▌ | ETA: 0:00:11 Bin 8 ray tracing: 23%|██████▉ | ETA: 0:00:10 Bin 8 ray tracing: 30%|█████████▏ | ETA: 0:00:09 Bin 8 ray tracing: 38%|███████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 54%|████████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 63%|██████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 8 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|██▉ | ETA: 0:00:10 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 9 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 9 ray tracing: 41%|████████████▏ | ETA: 0:00:06 Bin 9 ray tracing: 49%|██████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 75%|██████████████████████▍ | ETA: 0:00:03 Bin 9 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 90%|██████████████████████████▉ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:12 Bin 10 ray tracing: 16%|████▋ | ETA: 0:00:11 Bin 10 ray tracing: 24%|██████▉ | ETA: 0:00:10 Bin 10 ray tracing: 31%|█████████ | ETA: 0:00:09 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:08 Bin 10 ray tracing: 46%|█████████████▍ | ETA: 0:00:07 Bin 10 ray tracing: 54%|███████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 65%|██████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 75%|█████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 84%|████████████████████████▌ | ETA: 0:00:02 Bin 10 ray tracing: 93%|██████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 27%|████████▊ | ETA: 0:00:03 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 22%|███████▍ | ETA: 0:00:04 Bin 2 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 2 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 2 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 33%|███████████ | ETA: 0:00:02 Bin 3 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 3 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 20%|██████▋ | ETA: 0:00:04 Bin 4 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 4 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 4 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 20%|██████▋ | ETA: 0:00:04 Bin 5 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 5 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 5 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 22%|███████▍ | ETA: 0:00:04 Bin 6 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 6 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 6 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 20%|██████▋ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 7 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 22%|███████▍ | ETA: 0:00:04 Bin 8 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 8 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 8 progress: 89%|█████████████████████████████▍ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 20%|██████▋ | ETA: 0:00:04 Bin 9 progress: 40%|█████████████▎ | ETA: 0:00:03 Bin 9 progress: 62%|████████████████████▌ | ETA: 0:00:02 Bin 9 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 20%|██████▍ | ETA: 0:00:04 Bin 10 progress: 42%|█████████████▌ | ETA: 0:00:03 Bin 10 progress: 64%|████████████████████▋ | ETA: 0:00:02 Bin 10 progress: 87%|███████████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013200675266693562 Iteration 10: d = 1.532795058790606e-5 Iteration 20: d = 1.8825455028163395e-7 Iteration 30: d = 2.553629001498107e-9 Iteration 40: d = 3.543062569742947e-11 Iteration 50: d = 4.941652564543932e-13 Iteration 60: d = 6.9134939456903735e-15 Converged after 63 iterations. d = 1.9540558282969617e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015487775582962882 Iteration 10: d = 1.3377091332770754e-5 Iteration 20: d = 1.2784197632460032e-7 Iteration 30: d = 1.5919282747154594e-9 Iteration 40: d = 2.1598188910105888e-11 Iteration 50: d = 3.0108278418872907e-13 Iteration 60: d = 4.219593624092591e-15 Converged after 62 iterations. d = 1.8546557215733685e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012926775693905695 Iteration 10: d = 1.4334115405795157e-5 Iteration 20: d = 1.5850096445905845e-7 Iteration 30: d = 2.008419696177589e-9 Iteration 40: d = 2.6875412729701623e-11 Iteration 50: d = 3.6836676510795706e-13 Iteration 60: d = 5.11740892017481e-15 Converged after 62 iterations. d = 2.2106501749509105e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015775236351370037 Iteration 10: d = 1.5099025258711266e-5 Iteration 20: d = 1.5315301302288375e-7 Iteration 30: d = 1.8895583294901346e-9 Iteration 40: d = 2.5007755360643305e-11 Iteration 50: d = 3.4043543891276264e-13 Iteration 60: d = 4.689107762215626e-15 Converged after 62 iterations. d = 1.968604623807978e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001362099120972022 Iteration 10: d = 1.399839446509311e-5 Iteration 20: d = 1.565235325915345e-7 Iteration 30: d = 2.041143510262507e-9 Iteration 40: d = 2.7834401858937582e-11 Iteration 50: d = 3.857155009686289e-13 Iteration 60: d = 5.3576534868865585e-15 Converged after 63 iterations. d = 1.465686207186878e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014158922123995864 Iteration 10: d = 1.639277102063999e-5 Iteration 20: d = 2.0738248516516791e-7 Iteration 30: d = 2.848267528790054e-9 Iteration 40: d = 3.984804215602565e-11 Iteration 50: d = 5.611175345914222e-13 Iteration 60: d = 7.902238072053707e-15 Converged after 63 iterations. d = 2.1922205585583297e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014774848911867668 Iteration 10: d = 1.554646128881181e-5 Iteration 20: d = 1.8656541822421466e-7 Iteration 30: d = 2.527843893117203e-9 Iteration 40: d = 3.4954197235833825e-11 Iteration 50: d = 4.852222641000198e-13 Iteration 60: d = 6.720606493964074e-15 Converged after 63 iterations. d = 1.8738057988409412e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010610450713121485 Iteration 10: d = 6.955823535811339e-6 Iteration 20: d = 5.266068411064028e-8 Iteration 30: d = 6.076915683919062e-10 Iteration 40: d = 8.005402890228274e-12 Iteration 50: d = 1.0902335426636489e-13 Converged after 60 iterations. d = 1.5087562873989138e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010948772408374994 Iteration 10: d = 1.1062176595462558e-5 Iteration 20: d = 1.2095403361647193e-7 Iteration 30: d = 1.6275438279480528e-9 Iteration 40: d = 2.3004269104430974e-11 Iteration 50: d = 3.2778777178540543e-13 Iteration 60: d = 4.696834566316205e-15 Converged after 62 iterations. d = 2.0144743234009227e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015806735538972895 Iteration 10: d = 1.4435718060878612e-5 Iteration 20: d = 1.2761726388196276e-7 Iteration 30: d = 1.4228116679325627e-9 Iteration 40: d = 1.8208236896589962e-11 Iteration 50: d = 2.4730740002147347e-13 Iteration 60: d = 3.423327257769773e-15 Converged after 61 iterations. d = 2.2155166042531057e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8654.271155977998 Iteration 2: convergence error = 4803.9524027103425 Iteration 3: convergence error = 1099.0753509545111 Iteration 4: convergence error = 318.8809250763227 Iteration 5: convergence error = 94.7643349819914 Iteration 6: convergence error = 28.80177153616887 Iteration 7: convergence error = 8.702792985404585 Iteration 8: convergence error = 2.619613596420095 Iteration 9: convergence error = 0.7867131087878079 Iteration 10: convergence error = 0.23594640487795004 Iteration 11: convergence error = 0.0707091769784256 Iteration 12: convergence error = 0.0211810087187132 Iteration 13: convergence error = 0.006343189577137309 Iteration 14: convergence error = 0.0018993526346093859 Iteration 15: convergence error = 0.000568678850413562 Iteration 16: convergence error = 0.00017025796728376008 Iteration 17: convergence error = 5.0972452299902216e-5 Iteration 18: convergence error = 1.526006894891907e-5 Iteration 19: convergence error = 4.56849511465407e-6 Iteration 20: convergence error = 1.3676924481842434e-6 Iteration 21: convergence error = 4.0944905776996166e-7 Iteration 22: convergence error = 1.224509560415754e-7 Iteration 23: convergence error = 3.5739958548219875e-8 Iteration 24: convergence error = 1.0349367585149594e-8 Iteration 25: convergence error = 2.988599590025842e-9 Iteration 26: convergence error = 8.619736036052927e-10 Iteration 27: convergence error = 2.467004378559068e-10 Iteration 28: convergence error = 7.207745511550456e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3454755390998 K, F = -7440.3644608879895, relative_change = 0.03265452446090018 Iter 2: T = 936.7668812730508 K, F = -6306.94997816759, relative_change = 0.031610830917473035 Iter 3: T = 908.2328016133577 K, F = -5344.679276354073, relative_change = 0.030460171287135827 Iter 5: T = 857.1593635237895 K, F = -3834.4764046506125, relative_change = 0.02784380974534015 Iter 10: T = 762.2253892216104 K, F = -1660.237909978964, relative_change = 0.019915326619061216 Iter 15: T = 706.6924525333311 K, F = -710.7733329161294, relative_change = 0.011919365793711428 Iter 20: T = 678.1551656086566 K, F = -301.22849858895927, relative_change = 0.006098373159683108 Iter 25: T = 664.8544990508389 K, F = -126.80628039798849, relative_change = 0.0028157208832278124 Iter 30: T = 659.0007198975411 K, F = -53.18969610807686, relative_change = 0.001231384961162383 Iter 35: T = 656.4967302834167 K, F = -22.273230248143996, relative_change = 0.0005250365544261838 Iter 40: T = 655.439355721633 K, F = -9.320026782382271, relative_change = 0.00022138632507011824 Iter 45: T = 654.9953380770843 K, F = -3.8986439669752704, relative_change = 9.290677886874966e-5 Iter 50: T = 654.8093255253378 K, F = -1.630616890629552, relative_change = 3.8911043276879165e-5 Iter 55: T = 654.7314768771128 K, F = -0.6819710244530051, relative_change = 1.6282934193049972e-5 Iter 60: T = 654.6989098395445 K, F = -0.28521325081445026, relative_change = 6.8114455602139874e-6 Iter 65: T = 654.6852881999918 K, F = -0.11928043152703832, relative_change = 2.8489302242714456e-6 Iter 70: T = 654.6795911675428 K, F = -0.049884648572861345, relative_change = 1.1915095317851757e-6 Iter 75: T = 654.6772085480412 K, F = -0.020862381593874324, relative_change = 4.983127666059575e-7 Iter 80: T = 654.6762120989297 K, F = -0.008724901645555727, relative_change = 2.0840196809701045e-7 Iter 85: T = 654.6757953704054 K, F = -0.003648858854156778, relative_change = 8.715647487663863e-8 Iter 90: T = 654.6756210892788 K, F = -0.0015259964870999454, relative_change = 3.644992814883596e-8 Iter 95: T = 654.6755482027812 K, F = -0.0006381899788857615, relative_change = 1.5243803902900088e-8 Iter 100: T = 654.6755177207689 K, F = -0.00026689867500601094, relative_change = 6.375142356105054e-9 Iter 105: T = 654.6755049728258 K, F = -0.00011162021386307286, relative_change = 2.666160928488035e-9 Iter 110: T = 654.6754996414835 K, F = -4.668090555087767e-5, relative_change = 1.1150203623898686e-9 Iter 115: T = 654.6754974118525 K, F = -1.952251179326847e-5, relative_change = 4.663148298125202e-10 Iter 120: T = 654.6754964793942 K, F = -8.164547402933486e-6, relative_change = 1.9501842789643356e-10 Iter 125: T = 654.6754960894289 K, F = -3.4145111983963083e-6, relative_change = 8.155903505382467e-11 Iter 130: T = 654.6754959263409 K, F = -1.4279898421509785e-6, relative_change = 3.410897401224799e-11 Iter 135: T = 654.6754958581354 K, F = -5.972016551281101e-7, relative_change = 1.4264762355911981e-11 Iter 140: T = 654.675495829611 K, F = -2.4975613366340355e-7, relative_change = 5.965676524480871e-12 Iter 145: T = 654.6754958176818 K, F = -1.0445058096220095e-7, relative_change = 2.4949072110013732e-12 Iter 150: T = 654.6754958126929 K, F = -4.368320338787868e-8, relative_change = 1.0434172613693015e-12 Iter 155: T = 654.6754958106065 K, F = -1.826899215240374e-8, relative_change = 4.363732574891023e-13 Converged in 159 iterations to T = 654.6754958098535 K Iter 1: T = 970.3981502102114 K, F = -6744.8096332319465, relative_change = 0.029601849789788613 Iter 2: T = 942.9616655544481 K, F = -5712.613046522771, relative_change = 0.028273430498419544 Iter 3: T = 917.6454592584026 K, F = -4836.62772750469, relative_change = 0.02684754557987247 Iter 5: T = 873.156190823753 K, F = -3462.9010931082457, relative_change = 0.02374903017029167 Iter 10: T = 794.2455616715791 K, F = -1490.3763127464847, relative_change = 0.015443458421110659 Iter 15: T = 751.2949114621248 K, F = -634.3642708401737, relative_change = 0.008446020955467471 Iter 20: T = 730.461754479623 K, F = -267.753910735429, relative_change = 0.004060310643153473 Iter 25: T = 721.0890638861397 K, F = -112.46212175754492, relative_change = 0.001812078232194174 Iter 30: T = 717.037492714948 K, F = -47.122510069138436, relative_change = 0.0007797959902589976 Iter 35: T = 715.3186101834004 K, F = -19.723234158569927, relative_change = 0.0003301268652191816 Iter 40: T = 714.5953620840872 K, F = -8.25132610488903, relative_change = 0.00013877651031793313 Iter 45: T = 714.2921146886252 K, F = -3.4513009503081538, relative_change = 5.816373703674535e-5 Iter 50: T = 714.165156587382 K, F = -1.443462504502879, relative_change = 2.4346832076126405e-5 Iter 55: T = 714.1120372874245 K, F = -0.6036885261135493, relative_change = 1.018599985515293e-5 Iter 60: T = 714.0898179772788 K, F = -0.25247242241282103, relative_change = 4.2605829658382715e-6 Iter 65: T = 714.0805248642972 K, F = -0.10558744945586929, relative_change = 1.7819449703640983e-6 Iter 70: T = 714.0766382453983 K, F = -0.04415801406046982, relative_change = 7.452513587981656e-7 Iter 75: T = 714.0750127925587 K, F = -0.018467423127640714, relative_change = 3.116766374506358e-7 Iter 80: T = 714.0743330048514 K, F = -0.007723299397764394, relative_change = 1.3034752495036085e-7 Iter 85: T = 714.0740487088286 K, F = -0.0032299764806030806, relative_change = 5.451300231674072e-8 Iter 90: T = 714.0739298127169 K, F = -0.0013508148132440612, relative_change = 2.279800793027845e-8 Iter 95: T = 714.0738800889221 K, F = -0.0005649269011227531, relative_change = 9.534402580931183e-9 Iter 100: T = 714.0738592938337 K, F = -0.00023625917963976395, relative_change = 3.987401626611742e-9 Iter 105: T = 714.0738505970787 K, F = -9.88064106722808e-5, relative_change = 1.6675790802308316e-9 Iter 110: T = 714.0738469599918 K, F = -4.13220217724275e-5, relative_change = 6.974015173989395e-10 Iter 115: T = 714.0738454389186 K, F = -1.728136281875514e-5, relative_change = 2.916616433030738e-10 Iter 120: T = 714.0738448027876 K, F = -7.2272721045596455e-6, relative_change = 1.219763793898978e-10 Iter 125: T = 714.07384453675 K, F = -3.022531540164408e-6, relative_change = 5.101197923382433e-11 Iter 130: T = 714.0738444254898 K, F = -1.2640579500899918e-6, relative_change = 2.1333804822651677e-11 Iter 135: T = 714.0738443789595 K, F = -5.286428248485464e-7, relative_change = 8.922029918731287e-12 Iter 140: T = 714.0738443595001 K, F = -2.21084317963971e-7, relative_change = 3.7312922959994735e-12 Iter 145: T = 714.0738443513619 K, F = -9.246041554611395e-8, relative_change = 1.5604762898066217e-12 Iter 150: T = 714.0738443479585 K, F = -3.866929421114662e-8, relative_change = 6.526308194161718e-13 Iter 155: T = 714.0738443465351 K, F = -1.6172458816576807e-8, relative_change = 2.7294641044921243e-13 Converged in 157 iterations to T = 714.0738443462338 K Iter 1: T = 974.3698448604562 K, F = -5839.855229116701, relative_change = 0.025630155139543774 Iter 2: T = 950.9292385042409 K, F = -4940.78594454935, relative_change = 0.024057196022494298 Iter 3: T = 929.6038162244147 K, F = -4178.328204894245, relative_change = 0.02242587714872445 Iter 5: T = 892.9466611874708 K, F = -2984.1852994243336, relative_change = 0.019072292594228234 Iter 10: T = 831.1659906736945 K, F = -1276.1445602904641, relative_change = 0.011216766931754826 Iter 15: T = 799.7833377513842 K, F = -540.3822785422454, relative_change = 0.005665601436397314 Iter 20: T = 785.2649280324537 K, F = -227.37205090211393, relative_change = 0.002596895654455289 Iter 25: T = 778.9000520801492 K, F = -95.35031460810681, relative_change = 0.001131683968457915 Iter 30: T = 776.1823642568155 K, F = -39.923838164557985, relative_change = 0.00048176592433601245 Iter 35: T = 775.0356605799482 K, F = -16.705005536659684, relative_change = 0.00020300313647513235 Iter 40: T = 774.5542944821107 K, F = -6.987707746483425, relative_change = 8.516765332887422e-5 Iter 45: T = 774.3526643243913 K, F = -2.922601485849147, relative_change = 3.566545330351891e-5 Iter 50: T = 774.2682845655014 K, F = -1.222312134128623, relative_change = 1.4924011606481902e-5 Iter 55: T = 774.2329862033137 K, F = -0.5111934567929103, relative_change = 6.242851540536785e-6 Iter 60: T = 774.218222302438 K, F = -0.21378859486463075, relative_change = 2.611089052387368e-6 Iter 65: T = 774.2120475646362 K, F = -0.089409186017257, relative_change = 1.092033052755949e-6 Iter 70: T = 774.209465163397 K, F = -0.0373920317653873, relative_change = 4.5670903518066266e-7 Iter 75: T = 774.2083851632373 K, F = -0.015637801652651828, relative_change = 1.9100253190531577e-7 Iter 80: T = 774.2079334926774 K, F = -0.006539916700653792, relative_change = 7.987977758887682e-8 Iter 85: T = 774.2077445983762 K, F = -0.0027350714928997544, relative_change = 3.340671851631602e-8 Iter 90: T = 774.2076656004748 K, F = -0.0011438396019185504, relative_change = 1.3971095919238824e-8 Iter 95: T = 774.2076325626003 K, F = -0.00047836738719309047, relative_change = 5.84288041591871e-9 Iter 100: T = 774.2076187457652 K, F = -0.00020005895402119833, relative_change = 2.443562573658277e-9 Iter 105: T = 774.2076129673995 K, F = -8.36670436250575e-5, relative_change = 1.0219270850246522e-9 Iter 110: T = 774.207610550818 K, F = -3.499055622413483e-5, relative_change = 4.273821101792404e-10 Iter 115: T = 774.2076095401748 K, F = -1.4633469685221279e-5, relative_change = 1.7873631822608064e-10 Iter 120: T = 774.2076091175118 K, F = -6.119893057432435e-6, relative_change = 7.474967860634992e-11 Iter 125: T = 774.207608940749 K, F = -2.559413266878252e-6, relative_change = 3.126121935996919e-11 Iter 130: T = 774.2076088668247 K, F = -1.0703783602794559e-6, relative_change = 1.3073829524563487e-11 Iter 135: T = 774.2076088359087 K, F = -4.476439703360313e-7, relative_change = 5.467618903895608e-12 Iter 140: T = 774.2076088229792 K, F = -1.8721104400043487e-7, relative_change = 2.2866356102324317e-12 Iter 145: T = 774.2076088175719 K, F = -7.829293091621281e-8, relative_change = 9.562865525605287e-13 Iter 150: T = 774.2076088153106 K, F = -3.2744836619968964e-8, relative_change = 3.999524166417301e-13 Converged in 154 iterations to T = 774.2076088144943 K Iter 1: T = 970.4894288040715 K, F = -6724.011718792567, relative_change = 0.029510571195928523 Iter 2: T = 943.1459411860143 K, F = -5694.856412969973, relative_change = 0.02817494637911971 Iter 3: T = 917.9238915545216 K, F = -4821.464362733902, relative_change = 0.026742467448649346 Iter 5: T = 873.6235671583632 K, F = -3451.8404576562816, relative_change = 0.02363372326969499 Iter 10: T = 795.1492738045697 K, F = -1485.373133937594, relative_change = 0.015328902456017693 Iter 15: T = 752.5153310864122 K, F = -632.1438127691654, relative_change = 0.00836474108057826 Iter 20: T = 731.8640620038752 K, F = -266.79184490065063, relative_change = 0.00401552970742818 Iter 25: T = 722.5804949043072 K, F = -112.05257844821777, relative_change = 0.0017907743448389065 Iter 30: T = 718.568990071731 K, F = -46.94984824239853, relative_change = 0.0007703664026192273 Iter 35: T = 716.8673990613141 K, F = -19.650772038385437, relative_change = 0.0003260864510642271 Iter 40: T = 716.151479880607 K, F = -8.220976544135562, relative_change = 0.0001370693625324406 Iter 45: T = 715.8513148497237 K, F = -3.4386004642123793, relative_change = 5.744670991216983e-5 Iter 50: T = 715.7256488815017 K, F = -1.4381496168380927, relative_change = 2.4046421949274037e-5 Iter 55: T = 715.6730705022718 K, F = -0.6014663691299462, relative_change = 1.006026997446787e-5 Iter 60: T = 715.6510775053692 K, F = -0.25154304713973663, relative_change = 4.207984637659332e-6 Iter 65: T = 715.6418790556916 K, F = -0.10519876615022361, relative_change = 1.759944818650102e-6 Iter 70: T = 715.6380320289865 K, F = -0.04399546075590044, relative_change = 7.36050124885155e-7 Iter 75: T = 715.6364231345771 K, F = -0.018399441167684882, relative_change = 3.078284827590957e-7 Iter 80: T = 715.6357502718906 K, F = -0.007694868488485329, relative_change = 1.2873816513802046e-7 Iter 85: T = 715.6354688720097 K, F = -0.0032180863266679793, relative_change = 5.3839946087311455e-8 Iter 90: T = 715.6353511871018 K, F = -0.0013458422080784294, relative_change = 2.2516527309369947e-8 Iter 95: T = 715.6353019698473 K, F = -0.0005628472972448728, relative_change = 9.416683927104091e-9 Iter 100: T = 715.6352813866002 K, F = -0.00023538946304091368, relative_change = 3.9381702419440276e-9 Iter 105: T = 715.6352727784399 K, F = -9.84426865066057e-5, relative_change = 1.6469899532959523e-9 Iter 110: T = 715.6352691784043 K, F = -4.116990747859983e-5, relative_change = 6.887908896601209e-10 Iter 115: T = 715.6352676728264 K, F = -1.7217747927955607e-5, relative_change = 2.8806059470005955e-10 Iter 120: T = 715.6352670431758 K, F = -7.200667943352279e-6, relative_change = 1.2047038366272048e-10 Iter 125: T = 715.6352667798483 K, F = -3.011404527519801e-6, relative_change = 5.038213986307506e-11 Iter 130: T = 715.6352666697215 K, F = -1.2594050042835647e-6, relative_change = 2.10704070265908e-11 Iter 135: T = 715.6352666236652 K, F = -5.266967499917286e-7, relative_change = 8.811871373833302e-12 Iter 140: T = 715.6352666044039 K, F = -2.2027006429947704e-7, relative_change = 3.685216349620904e-12 Iter 145: T = 715.6352665963486 K, F = -9.212013674098074e-8, relative_change = 1.5412109455046585e-12 Iter 150: T = 715.63526659298 K, F = -3.8526283274720186e-8, relative_change = 6.445618903160833e-13 Iter 155: T = 715.635266591571 K, F = -1.6112877254670366e-8, relative_change = 2.6957561796815013e-13 Converged in 157 iterations to T = 715.635266591273 K Iter 1: T = 969.3378486771314 K, F = -6986.400346151363, relative_change = 0.030662151322868602 Iter 2: T = 940.8170510472039 K, F = -5918.938753887035, relative_change = 0.029422969162764295 Iter 3: T = 914.3984454031289 K, F = -5012.885591445504, relative_change = 0.02808049196671025 Iter 5: T = 867.6815208987522 K, F = -3591.591914638335, relative_change = 0.02511775750674537 Iter 10: T = 783.5319480650536 K, F = -1548.800918481247, relative_change = 0.01684819484935497 Iter 15: T = 736.6776947456872 K, F = -660.4078659059657, relative_change = 0.009472260932686973 Iter 20: T = 713.5568168109876 K, F = -279.07671356065015, relative_change = 0.004636718817416999 Iter 25: T = 703.0495805067626 K, F = -117.2916840561638, relative_change = 0.0020891060099906427 Iter 30: T = 698.4848850987114 K, F = -49.160589025925006, relative_change = 0.0009029993649942673 Iter 35: T = 696.543946814926 K, F = -20.578934595968658, relative_change = 0.0003830276451205977 Iter 40: T = 695.7264701117955 K, F = -8.60978811324582, relative_change = 0.00016114796326019114 Iter 45: T = 695.3835725387005 K, F = -3.60131948636409, relative_change = 6.756360737581441e-5 Iter 50: T = 695.2399894919454 K, F = -1.5062205547250351, relative_change = 2.8285681242396385e-5 Iter 55: T = 695.1799099369207 K, F = -0.6299379338244966, relative_change = 1.1834625221392334e-5 Iter 60: T = 695.1547784506946 K, F = -0.263450805510276, relative_change = 4.9502943939834994e-6 Iter 65: T = 695.144267200897 K, F = -0.11017883962341807, relative_change = 2.070431925701047e-6 Iter 70: T = 695.1398711023974 K, F = -0.04607820562270204, relative_change = 8.659072907030167e-7 Iter 75: T = 695.1380325720661 K, F = -0.01927047320758757, relative_change = 3.621376558082446e-7 Iter 80: T = 695.137263671576 K, F = -0.00805914506091887, relative_change = 1.5145114697572547e-7 Iter 85: T = 695.136942107308 K, F = -0.003370431238496896, relative_change = 6.333882778703258e-8 Iter 90: T = 695.1368076251333 K, F = -0.0014095546879442367, relative_change = 2.648908034404499e-8 Iter 95: T = 695.1367513830543 K, F = -0.0005894926199430106, relative_change = 1.1078054310743393e-8 Iter 100: T = 695.1367278619404 K, F = -0.0002465328550809165, relative_change = 4.632975385194448e-9 Iter 105: T = 695.1367180251289 K, F = -0.00010310298534643714, relative_change = 1.9375657872297333e-9 Iter 110: T = 695.1367139112566 K, F = -4.31189004052035e-5, relative_change = 8.103131861933796e-10 Iter 115: T = 695.1367121907859 K, F = -1.8032837842629768e-5, relative_change = 3.388826320532526e-10 Iter 120: T = 695.1367114712648 K, F = -7.541548908363005e-6, relative_change = 1.4172477891291657e-10 Iter 125: T = 695.1367111703523 K, F = -3.153965554503202e-6, relative_change = 5.927099025194851e-11 Iter 130: T = 695.1367110445071 K, F = -1.319025837109855e-6, relative_change = 2.4787831778685034e-11 Iter 135: T = 695.1367109918773 K, F = -5.51633158374365e-7, relative_change = 1.0366582331865768e-11 Iter 140: T = 695.1367109698668 K, F = -2.3070017940440835e-7, relative_change = 4.335439898465099e-12 Iter 145: T = 695.1367109606617 K, F = -9.648130061545857e-8, relative_change = 1.8131276761479779e-12 Iter 150: T = 695.1367109568121 K, F = -4.0349214081025764e-8, relative_change = 7.582637909768684e-13 Iter 155: T = 695.1367109552021 K, F = -1.6875344233113765e-8, relative_change = 3.1713040225977727e-13 Converged in 158 iterations to T = 695.1367109547308 K Iter 1: T = 963.5433559104216 K, F = -8306.681035031783, relative_change = 0.03645664408957836 Iter 2: T = 928.9631883526719 K, F = -7048.532022163797, relative_change = 0.035888543411807354 Iter 3: T = 896.2258769050414 K, F = -5980.029771906588, relative_change = 0.03524069829471216 Iter 5: T = 836.160728843834 K, F = -4302.042748788576, relative_change = 0.0336764753623153 Iter 10: T = 716.3081938288694 K, F = -1880.1045620391499, relative_change = 0.027975257306004225 Iter 15: T = 636.4839575647471 K, F = -814.2017500332455, relative_change = 0.020072579672656066 Iter 20: T = 589.6724531231404 K, F = -348.64523609005624, relative_change = 0.012052912701468273 Iter 25: T = 565.5643269318596 K, F = -147.7807579696058, relative_change = 0.006181832722609357 Iter 30: T = 554.3119644153053 K, F = -62.21610843708578, relative_change = 0.002858276941359067 Iter 35: T = 549.3559311228394 K, F = -26.098126906110107, relative_change = 0.0012508541111046813 Iter 40: T = 547.2352105054636 K, F = -10.928836061523896, relative_change = 0.0005335018209895348 Iter 45: T = 546.3395425717334 K, F = -4.573110484222666, relative_change = 0.0002249855834691481 Iter 50: T = 545.9634046561526 K, F = -1.9129769281935434, relative_change = 9.44225377188752e-5 Iter 55: T = 545.805824599347 K, F = -0.8001082985451416, relative_change = 3.954680338975129e-5 Iter 60: T = 545.7398745439584 K, F = -0.33462859271635725, relative_change = 1.654914156533133e-5 Iter 65: T = 545.7122850030036 K, F = -0.13994807936575002, relative_change = 6.922833564505165e-6 Iter 70: T = 545.7007452504822 K, F = -0.05852837894451168, relative_change = 2.8955239757769116e-6 Iter 75: T = 545.6959189297756 K, F = -0.024477340655675334, relative_change = 1.2109973371547352e-6 Iter 80: T = 545.6939004596212 K, F = -0.01023672905585346, relative_change = 5.064631042798159e-7 Iter 85: T = 545.6930563033919 K, F = -0.004281124594206348, relative_change = 2.118105899373406e-7 Iter 90: T = 545.6927032657929 K, F = -0.001790417826185997, relative_change = 8.858201056765796e-8 Iter 95: T = 545.692555621011 K, F = -0.0007487741854980134, relative_change = 3.7046105819881204e-8 Iter 100: T = 545.6924938741578 K, F = -0.00031314631864493014, relative_change = 1.5493132818623093e-8 Iter 105: T = 545.6924680508789 K, F = -0.0001309615323200064, relative_change = 6.479414735787676e-9 Iter 110: T = 545.692457251274 K, F = -5.476967763459739e-5, relative_change = 2.7097689183211447e-9 Iter 115: T = 545.69245273475 K, F = -2.2905332862893646e-5, relative_change = 1.1332577473890697e-9 Iter 120: T = 545.6924508458857 K, F = -9.579283228727808e-6, relative_change = 4.739419058987701e-10 Iter 125: T = 545.6924500559401 K, F = -4.006170841036605e-6, relative_change = 1.982081760719151e-10 Iter 130: T = 545.6924497255754 K, F = -1.6754283557740557e-6, relative_change = 8.289301996126604e-11 Iter 135: T = 545.692449587413 K, F = -7.006838341483412e-7, relative_change = 3.466683545162514e-11 Iter 140: T = 545.6924495296317 K, F = -2.9303401447022814e-7, relative_change = 1.4498068132022709e-11 Iter 145: T = 545.692449505467 K, F = -1.225504306923142e-7, relative_change = 6.06327049565433e-12 Iter 150: T = 545.6924494953611 K, F = -5.125217159007711e-8, relative_change = 2.5357379660944405e-12 Iter 155: T = 545.6924494911347 K, F = -2.1434617303306425e-8, relative_change = 1.0604930718140777e-12 Iter 160: T = 545.692449489367 K, F = -8.964335107553012e-9, relative_change = 4.435169119469101e-13 Converged in 164 iterations to T = 545.692449488729 K Iter 1: T = 966.8920718654424 K, F = -7543.672919229067, relative_change = 0.03310792813455759 Iter 2: T = 935.8414564987744 K, F = -6395.3063575103515, relative_change = 0.032113838007546726 Iter 3: T = 906.8177650543986 K, F = -5420.29439246412, relative_change = 0.031013470543355685 Iter 5: T = 854.7203355666296 K, F = -3889.9489207940574, relative_change = 0.028494030957095243 Iter 10: T = 757.1397441934718 K, F = -1685.9270318276342, relative_change = 0.02070536962918996 Iter 15: T = 699.3300815522665 K, F = -722.5395050037423, relative_change = 0.012600171918799091 Iter 20: T = 669.2889167101856 K, F = -306.46606373840336, relative_change = 0.006528395731697108 Iter 25: T = 655.18378771339 K, F = -129.07308629344652, relative_change = 0.0030363339550768874 Iter 30: T = 648.9515765006959 K, F = -54.153343976960095, relative_change = 0.0013326161982966187 Iter 35: T = 646.2808076903021 K, F = -22.679177174216747, relative_change = 0.0005691113816678581 Iter 40: T = 645.15209426211 K, F = -9.490328566685186, relative_change = 0.00024013688114927427 Iter 45: T = 644.6779558812083 K, F = -3.9699601141179994, relative_change = 0.0001008051519334919 Iter 50: T = 644.4792958645423 K, F = -1.6604586702743906, relative_change = 4.222422724590641e-5 Iter 55: T = 644.3961489989085 K, F = -0.6944541082982018, relative_change = 1.7670300387986266e-5 Iter 60: T = 644.361364624279 K, F = -0.29043433242171685, relative_change = 7.391965716695441e-6 Iter 65: T = 644.3468153949308 K, F = -0.12146403889567303, relative_change = 3.0917644204444063e-6 Iter 70: T = 644.3407303855938 K, F = -0.05079787476588271, relative_change = 1.2930750930606714e-6 Iter 75: T = 644.3381855011702 K, F = -0.021244306408138736, relative_change = 5.407903415946064e-7 Iter 80: T = 644.3371211894691 K, F = -0.008884627637922915, relative_change = 2.261668848288649e-7 Iter 85: T = 644.3366760797438 K, F = -0.0037156582547506756, relative_change = 9.458602551426927e-8 Iter 90: T = 644.3364899292154 K, F = -0.0015539328084354653, relative_change = 3.955706374380328e-8 Iter 95: T = 644.3364120787845 K, F = -0.0006498732863596812, relative_change = 1.6543246697725712e-8 Iter 100: T = 644.3363795207945 K, F = -0.0002717847737503942, relative_change = 6.9185851101589904e-9 Iter 105: T = 644.3363659046526 K, F = -0.00011366363917880706, relative_change = 2.8934352350072517e-9 Iter 110: T = 644.336360210219 K, F = -4.753549115332767e-5, relative_change = 1.2100692164823147e-9 Iter 115: T = 644.336357828739 K, F = -1.987991108409748e-5, relative_change = 5.060654317210777e-10 Iter 120: T = 644.3363568327754 K, F = -8.314016398058843e-6, relative_change = 2.1164261303707688e-10 Iter 125: T = 644.3363564162516 K, F = -3.477020339592851e-6, relative_change = 8.851145310359863e-11 Iter 130: T = 644.3363562420564 K, F = -1.4541314893867785e-6, relative_change = 3.701654828687557e-11 Iter 135: T = 644.3363561692059 K, F = -6.081351465736518e-7, relative_change = 1.5480762361937745e-11 Iter 140: T = 644.3363561387389 K, F = -2.543291619527821e-7, relative_change = 6.474234125376783e-12 Iter 145: T = 644.3363561259972 K, F = -1.0636328562352304e-7, relative_change = 2.707596754727207e-12 Iter 150: T = 644.3363561206686 K, F = -4.448304469217845e-8, relative_change = 1.1323658041175932e-12 Iter 155: T = 644.3363561184401 K, F = -1.860386489305199e-8, relative_change = 4.735822508428008e-13 Converged in 160 iterations to T = 644.3363561175081 K Iter 1: T = 965.2181285373993 K, F = -7925.082498854877, relative_change = 0.03478187146260072 Iter 2: T = 932.4127576575069 K, F = -6721.695496988282, relative_change = 0.0339875204474273 Iter 3: T = 901.5544613587604 K, F = -5699.81376312876, relative_change = 0.0330951030488596 Iter 5: T = 845.5659156305986 K, F = -4095.4104278927234, relative_change = 0.03099769108202632 Iter 10: T = 737.5006503415168 K, F = -1781.951974025741, relative_change = 0.02398609064446981 Iter 15: T = 670.0166802782026 K, F = -767.1805216119894, relative_change = 0.01568048201744567 Iter 20: T = 633.1447092892352 K, F = -326.64004951902217, relative_change = 0.008615220485507532 Iter 25: T = 615.2091914834579 K, F = -137.8956776146211, relative_change = 0.004153910234276156 Iter 30: T = 607.1269137798915 K, F = -57.9248923208263, relative_change = 0.0018567027156749108 Iter 35: T = 603.6303509366735 K, F = -24.27212942468173, relative_change = 0.0007995675990529307 Iter 40: T = 602.1463961459451 K, F = -10.159365194641767, relative_change = 0.0003386023761805226 Iter 45: T = 601.5219005859446 K, F = -4.25026512873174, relative_change = 0.0001423582374641275 Iter 50: T = 601.260041422254 K, F = -1.7777746792503177, relative_change = 5.966823389713028e-5 Iter 55: T = 601.1504079517915 K, F = -0.7435326945231853, relative_change = 2.4977186310169676e-5 Iter 60: T = 601.104536748131 K, F = -0.31096232040741884, relative_change = 1.0449824062698067e-5 Iter 65: T = 601.0853491559955 K, F = -0.1300495675938535, relative_change = 4.3709528543685775e-6 Iter 70: T = 601.0773240272437 K, F = -0.054388529190034396, relative_change = 1.8281091790321727e-6 Iter 75: T = 601.0739677091073 K, F = -0.022745975625367065, relative_change = 7.645588672955138e-7 Iter 80: T = 601.0725640369359 K, F = -0.009512646201807584, relative_change = 3.1975145788084627e-7 Iter 85: T = 601.0719770009997 K, F = -0.003978303566193331, relative_change = 1.3372454446682477e-7 Iter 90: T = 601.0717314949536 K, F = -0.0016637742929916377, relative_change = 5.592531800854645e-8 Iter 95: T = 601.071628821287 K, F = -0.000695810319072121, relative_change = 2.33886562487035e-8 Iter 100: T = 601.0715858819149 K, F = -0.0002909961917814119, relative_change = 9.781418911898879e-9 Iter 105: T = 601.0715679241534 K, F = -0.00012169808408374339, relative_change = 4.090706834443355e-9 Iter 110: T = 601.0715604140025 K, F = -5.0895592682453916e-5, relative_change = 1.7107825713249428e-9 Iter 115: T = 601.0715572731676 K, F = -2.1285144581717486e-5, relative_change = 7.154697168305929e-10 Iter 120: T = 601.071555959633 K, F = -8.90170175249505e-6, relative_change = 2.9921798623354136e-10 Iter 125: T = 601.0715554102972 K, F = -3.7227984258092484e-6, relative_change = 1.2513655073409948e-10 Iter 130: T = 601.0715551805583 K, F = -1.5569191693654005e-6, relative_change = 5.233361377560039e-11 Iter 135: T = 601.0715550844787 K, F = -6.511220858596012e-7, relative_change = 2.1886538786699615e-11 Iter 140: T = 601.0715550442972 K, F = -2.723073352361993e-7, relative_change = 9.153222085192532e-12 Iter 145: T = 601.0715550274926 K, F = -1.1388165932491034e-7, relative_change = 3.82796929970955e-12 Iter 150: T = 601.0715550204649 K, F = -4.7626547872159364e-8, relative_change = 1.600898372895791e-12 Iter 155: T = 601.0715550175257 K, F = -1.991775150367303e-8, relative_change = 6.695067645949341e-13 Iter 160: T = 601.0715550162967 K, F = -8.329969936049508e-9, relative_change = 2.8000004016936474e-13 Converged in 162 iterations to T = 601.0715550160364 K Iter 1: T = 980.1871153913397 K, F = -4514.384605002056, relative_change = 0.019812884608660316 Iter 2: T = 962.4159723880081 K, F = -3813.2642826833994, relative_change = 0.018130357688120127 Iter 3: T = 946.5653491476895 K, F = -3219.5326335516706, relative_change = 0.016469617810881687 Iter 5: T = 920.1014352368 K, F = -2291.862157380988, relative_change = 0.013302047341680967 Iter 10: T = 878.1014230615679 K, F = -972.9265133273817, relative_change = 0.0069831768145507955 Iter 15: T = 858.2274851668768 K, F = -409.9731409829494, relative_change = 0.0032731810207050384 Iter 20: T = 849.4094164759077 K, F = -172.0504504817284, relative_change = 0.0014421074715843807 Iter 25: T = 845.6229827702999 K, F = -72.06228664916577, relative_change = 0.0006169426695809867 Iter 30: T = 844.0213649509146 K, F = -30.15669430746918, relative_change = 0.00026051504629284614 Iter 35: T = 843.3483208614028 K, F = -12.615307925950756, relative_change = 0.00010939440735836335 Iter 40: T = 843.0662762489096 K, F = -5.27647233313583, relative_change = 4.582815208513178e-5 Iter 45: T = 842.9482218496803 K, F = -2.2067888176801813, relative_change = 1.9179575332355132e-5 Iter 50: T = 842.8988325779425 K, F = -0.9229238265650679, relative_change = 8.023525210313777e-6 Iter 55: T = 842.8781743298368 K, F = -0.38598098320315966, relative_change = 3.3559536176569875e-6 Iter 60: T = 842.8695342675835 K, F = -0.16142241943210434, relative_change = 1.403573275116092e-6 Iter 65: T = 842.8659207965759 K, F = -0.06750888199956928, relative_change = 5.870039433656895e-7 Iter 70: T = 842.8644095834422 K, F = -0.02823303788296183, relative_change = 2.4549430473389984e-7 Iter 75: T = 842.8637775731931 K, F = -0.011807396624074595, relative_change = 1.0266904276196431e-7 Iter 80: T = 842.8635132584574 K, F = -0.0049379948060022105, relative_change = 4.293748850908644e-8 Iter 85: T = 842.8634027187904 K, F = -0.0020651284904167344, relative_change = 1.7956982475713318e-8 Iter 90: T = 842.8633564897663 K, F = -0.0008636614120680619, relative_change = 7.5098266105346e-9 Iter 95: T = 842.8633371562337 K, F = -0.00036119351916097386, relative_change = 3.140699538140378e-9 Iter 100: T = 842.8633290707189 K, F = -0.00015105544274285343, relative_change = 1.3134781100921288e-9 Iter 105: T = 842.86332568926 K, F = -6.317318860094012e-5, relative_change = 5.493122290092322e-10 Iter 110: T = 842.8633242750935 K, F = -2.6419780932540604e-5, relative_change = 2.2972892759301607e-10 Iter 115: T = 842.8633236836721 K, F = -1.1049066103607785e-5, relative_change = 9.607536572114521e-11 Iter 120: T = 842.8633234363326 K, F = -4.620849541669969e-6, relative_change = 4.017984923935424e-11 Iter 125: T = 842.8633233328924 K, F = -1.9324936428866124e-6, relative_change = 1.680368567995066e-11 Iter 130: T = 842.8633232896325 K, F = -8.081919316005326e-7, relative_change = 7.027502129694252e-12 Iter 135: T = 842.8633232715406 K, F = -3.3799296605963036e-7, relative_change = 2.938963130137386e-12 Iter 140: T = 842.8633232639744 K, F = -1.4135412818028215e-7, relative_change = 1.2291219426117472e-12 Iter 145: T = 842.86332326081 K, F = -5.9113352657291784e-8, relative_change = 5.140105902040273e-13 Converged in 150 iterations to T = 842.8633232594867 K Iter 1: T = 976.3023226513471 K, F = -5399.538326201254, relative_change = 0.023697677348652836 Iter 2: T = 954.7689553299655 K, F = -4565.8352512047395, relative_change = 0.022056044343829285 Iter 3: T = 935.3093878316538 K, F = -3859.1138399002457, relative_change = 0.020381441383990687 Iter 5: T = 902.194999566542 K, F = -2753.076882251624, relative_change = 0.017026182572207983 Iter 10: T = 847.5803821051835 K, F = -1174.1793599565256, relative_change = 0.009606397930011033 Iter 15: T = 820.5694755518459 K, F = -496.26506271397125, relative_change = 0.004713621298869313 Iter 20: T = 808.2779315706898 K, F = -208.59024871231617, relative_change = 0.002126469900467939 Iter 25: T = 802.9344818650922 K, F = -87.43013627758897, relative_change = 0.0009197008312168701 Iter 30: T = 800.6617181002571 K, F = -36.59945280611188, relative_change = 0.0003902148707364236 Iter 35: T = 799.7043576716551 K, F = -15.312546919861262, relative_change = 0.00016419029362255152 Iter 40: T = 799.3027620891103 K, F = -6.404983241211385, relative_change = 6.884242400715087e-5 Iter 45: T = 799.1345961786418 K, F = -2.678832105846112, relative_change = 2.8821636946524072e-5 Iter 50: T = 799.0642297000401 K, F = -1.1203531238104076, relative_change = 1.2058968032599064e-5 Iter 55: T = 799.0347950356423 K, F = -0.4685509254440847, relative_change = 5.0441522050160226e-6 Iter 60: T = 799.0224839591875 K, F = -0.1959546193659344, relative_change = 2.1096905016959943e-6 Iter 65: T = 799.0173351191206 K, F = -0.08195074157482851, relative_change = 8.823267663509064e-7 Iter 70: T = 799.0151817775803 K, F = -0.03427281022411355, relative_change = 3.6900466380641376e-7 Iter 75: T = 799.0142812182869 K, F = -0.014333304030131666, relative_change = 1.5432304451397448e-7 Iter 80: T = 799.0139045925607 K, F = -0.0059943598826835975, relative_change = 6.453989541946671e-8 Iter 85: T = 799.0137470829961 K, F = -0.0025069130582798804, relative_change = 2.6991382171407297e-8 Iter 90: T = 799.0136812105824 K, F = -0.001048421010411582, relative_change = 1.1288123129351554e-8 Iter 95: T = 799.0136536619464 K, F = -0.00043846219043175427, relative_change = 4.7208287095579005e-9 Iter 100: T = 799.0136421407769 K, F = -0.00018337012708768974, relative_change = 1.974307109602979e-9 Iter 105: T = 799.013637322486 K, F = -7.668757811796212e-5, relative_change = 8.256788466489188e-10 Iter 110: T = 799.0136353074192 K, F = -3.207165980589899e-5, relative_change = 3.453087455166478e-10 Iter 115: T = 799.0136344646943 K, F = -1.3412753852248827e-5, relative_change = 1.4441227108083974e-10 Iter 120: T = 799.0136341122566 K, F = -5.609372262127543e-6, relative_change = 6.039491951737693e-11 Iter 125: T = 799.013633964863 K, F = -2.3459074850462613e-6, relative_change = 2.5257887560003553e-11 Iter 130: T = 799.0136339032211 K, F = -9.810872447779673e-7, relative_change = 1.0563157960071527e-11 Iter 135: T = 799.0136338774417 K, F = -4.10301488895648e-7, relative_change = 4.417628974581064e-12 Iter 140: T = 799.0136338666606 K, F = -1.71594948139564e-7, relative_change = 1.8475263564899357e-12 Iter 145: T = 799.0136338621518 K, F = -7.176265326425124e-8, relative_change = 7.726532439234771e-13 Iter 150: T = 799.013633860266 K, F = -3.0011250484740515e-8, relative_change = 3.231247590039519e-13 Converged in 153 iterations to T = 799.013633859714 K Iter 1: T = 980.6601208727533 K, F = -4406.609856117601, relative_change = 0.019339879127246738 Iter 2: T = 963.3405921284525 K, F = -3721.740605494985, relative_change = 0.01766109213137675 Iter 3: T = 947.9169105640709 K, F = -3141.8501823431616, relative_change = 0.01601062146701793 Iter 5: T = 922.2228253506366 K, F = -2236.0011922721988, relative_change = 0.012880811480430653 Iter 10: T = 881.6186183749079 K, F = -948.726293829768, relative_change = 0.0067088826568822806 Iter 15: T = 862.494812264925 K, F = -399.6523517978553, relative_change = 0.0031299068848495972 Iter 20: T = 854.031078724379 K, F = -167.69332444289864, relative_change = 0.0013757759759686478 Iter 25: T = 850.4011602852911 K, F = -70.23241522019734, relative_change = 0.0005879463928729103 Iter 30: T = 848.8665623713563 K, F = -29.3900368439929, relative_change = 0.0002481578289738746 Iter 35: T = 848.2218286844914 K, F = -12.29443746896282, relative_change = 0.00010418528744493167 Iter 40: T = 847.9516737601645 K, F = -5.142237361381251, relative_change = 4.364236950720884e-5 Iter 45: T = 847.838600552434 K, F = -2.1506425910909988, relative_change = 1.8264179378719838e-5 Iter 50: T = 847.7912960139246 K, F = -0.899441480846138, relative_change = 7.640472247806862e-6 Iter 55: T = 847.7715098956602 K, F = -0.37616015425650173, relative_change = 3.19571718863559e-6 Iter 60: T = 847.7632346156779 K, F = -0.15731519098180802, relative_change = 1.3365536454607429e-6 Iter 65: T = 847.7597737092216 K, F = -0.06579118292988628, relative_change = 5.589743371810121e-7 Iter 70: T = 847.7583263018481 K, F = -0.027514674382042026, relative_change = 2.3377177939283043e-7 Iter 75: T = 847.7577209761821 K, F = -0.011506968211166813, relative_change = 9.776650604933615e-8 Iter 80: T = 847.7574678213018 K, F = -0.004812352017805832, relative_change = 4.088718270255082e-8 Iter 85: T = 847.7573619488276 K, F = -0.002012583169168858, relative_change = 1.7099518981117518e-8 Iter 90: T = 847.7573176716804 K, F = -0.0008416863301528021, relative_change = 7.151224942219322e-9 Iter 95: T = 847.7572991544464 K, F = -0.00035200327767448414, relative_change = 2.990728007171867e-9 Iter 100: T = 847.7572914103175 K, F = -0.00014721197665790164, relative_change = 1.2507582419107867e-9 Iter 105: T = 847.7572881716302 K, F = -6.156580801675027e-5, relative_change = 5.230820545020322e-10 Iter 110: T = 847.7572868171725 K, F = -2.574755372930504e-5, relative_change = 2.18759143093117e-10 Iter 115: T = 847.7572862507221 K, F = -1.0767935916922156e-5, relative_change = 9.148769884419987e-11 Iter 120: T = 847.7572860138258 K, F = -4.503279725565079e-6, relative_change = 3.826125109496451e-11 Iter 125: T = 847.757285914753 K, F = -1.883327055640649e-6, relative_change = 1.6001326544479853e-11 Iter 130: T = 847.7572858733195 K, F = -7.876286354235873e-7, relative_change = 6.691935400376609e-12 Iter 135: T = 847.7572858559915 K, F = -3.2939674343701597e-7, relative_change = 2.79865615500887e-12 Iter 140: T = 847.7572858487448 K, F = -1.3775981022590145e-7, relative_change = 1.1704497646042584e-12 Iter 145: T = 847.7572858457141 K, F = -5.761421451033755e-8, relative_change = 4.895081061889609e-13 Converged in 150 iterations to T = 847.7572858444466 K Iter 1: T = 967.3495357986094 K, F = -7439.43932689644, relative_change = 0.032650464201390665 Iter 2: T = 936.7751622405631 K, F = -6306.15883602462, relative_change = 0.03160633506977925 Iter 3: T = 908.2454531949411 K, F = -5344.00232111729, relative_change = 0.030455236427687795 Iter 5: T = 857.1811289842097 K, F = -3833.979983423599, relative_change = 0.027838038727069563 Iter 10: T = 762.2705108426276 K, F = -1660.0084431423172, relative_change = 0.019908421328144077 Iter 15: T = 706.7573922362956 K, F = -710.6685253530616, relative_change = 0.011913511663685213 Iter 20: T = 678.2330360602816 K, F = -301.1819681513251, relative_change = 0.006094721396851473 Iter 25: T = 664.9392296920362 K, F = -126.78617697332241, relative_change = 0.002813861048523258 Iter 30: T = 659.0886633684912 K, F = -53.181157570792784, relative_change = 0.0012305346082726349 Iter 35: T = 656.5860867137262 K, F = -22.26963478939884, relative_change = 0.000524666918562453 Iter 40: T = 655.5293159771693 K, F = -9.318518697758618, relative_change = 0.00022122918208768847 Iter 45: T = 655.0855531788459 K, F = -3.8980124850139903, relative_change = 9.284060443920847e-5 Iter 50: T = 654.8996476171204 K, F = -1.630352659668068, relative_change = 3.888328808946584e-5 Iter 55: T = 654.8218437855029 K, F = -0.6818604957790375, relative_change = 1.6271312561449434e-5 Iter 60: T = 654.7892955034112 K, F = -0.2851670221794659, relative_change = 6.80658278907499e-6 Iter 65: T = 654.7756817098345 K, F = -0.11926109742088686, relative_change = 2.84689612375992e-6 Iter 70: T = 654.7699879590535 K, F = -0.04987656268990548, relative_change = 1.1906587711726333e-6 Iter 75: T = 654.7676067120525 K, F = -0.020858999958421776, relative_change = 4.979569551514238e-7 Iter 80: T = 654.7666108369489 K, F = -0.008723487401706032, relative_change = 2.0825316119811e-7 Iter 85: T = 654.7661943484835 K, F = -0.0036482673994868153, relative_change = 8.709424164299711e-8 Iter 90: T = 654.7660201677528 K, F = -0.001525749133228893, relative_change = 3.642390138844854e-8 Iter 95: T = 654.765947323242 K, F = -0.0006380865320377849, relative_change = 1.5232919176975797e-8 Iter 100: T = 654.7659168587893 K, F = -0.0002668554128310019, relative_change = 6.370590244364974e-9 Iter 105: T = 654.7659041181897 K, F = -0.0001116021211322038, relative_change = 2.66425718128839e-9 Iter 110: T = 654.7658987899185 K, F = -4.667334018904068e-5, relative_change = 1.114224221991635e-9 Iter 115: T = 654.7658965615719 K, F = -1.951934893545948e-5, relative_change = 4.659818998534548e-10 Iter 120: T = 654.7658956296507 K, F = -8.163224623269905e-6, relative_change = 1.948791917822673e-10 Iter 125: T = 654.7658952399102 K, F = -3.413957940290313e-6, relative_change = 8.150080351474871e-11 Iter 130: T = 654.765895076916 K, F = -1.4277574813537086e-6, relative_change = 3.408459744601848e-11 Iter 135: T = 654.7658950087498 K, F = -5.971049780173487e-7, relative_change = 1.4254579706019963e-11 Iter 140: T = 654.7658949802419 K, F = -2.497156468828088e-7, relative_change = 5.9614167091499e-12 Iter 145: T = 654.7658949683196 K, F = -1.0443366116330566e-7, relative_change = 2.493126003444924e-12 Iter 150: T = 654.7658949633335 K, F = -4.367477518529839e-8, relative_change = 1.0426400501535348e-12 Iter 155: T = 654.7658949612484 K, F = -1.8265236378933736e-8, relative_change = 4.360427018499437e-13 Converged in 159 iterations to T = 654.7658949604956 K Iter 1: T = 973.5913098050883 K, F = -6017.245182060306, relative_change = 0.026408690194911693 Iter 2: T = 949.3755359394903 K, F = -5091.951538483251, relative_change = 0.024872627376312417 Iter 3: T = 927.2846428952203 K, F = -4307.130226258295, relative_change = 0.023268866963597527 Iter 5: T = 889.15259395973 K, F = -3077.620550190602, relative_change = 0.019936853270370324 Iter 10: T = 824.2877190850292 K, F = -1317.6159341156651, relative_change = 0.011937778730749206 Iter 15: T = 790.9445494062193 K, F = -558.4234272261535, relative_change = 0.006109910750862908 Iter 20: T = 775.4008011594975 K, F = -235.07912047393017, relative_change = 0.002821608998746447 Iter 25: T = 768.5590824809317 K, F = -98.60606011808952, relative_change = 0.0012340795222986036 Iter 30: T = 765.6323493510101 K, F = -41.2914908272302, relative_change = 0.0005262082845359894 Iter 35: T = 764.3964332329068 K, F = -17.278063277637653, relative_change = 0.00022188454127763975 Iter 40: T = 763.8774367201878 K, F = -7.227560008251667, relative_change = 9.311659659219688e-5 Iter 45: T = 763.6600123703474 K, F = -3.0229444271144397, relative_change = 3.8999048473392405e-5 Iter 50: T = 763.5690173289813 K, F = -1.2642826847965376, relative_change = 1.631978409683157e-5 Iter 55: T = 763.5309506308429 K, F = -0.5287470811025146, relative_change = 6.826864525094758e-6 Iter 60: T = 763.5150286732228 K, F = -0.2211299119311424, relative_change = 2.8553800011545153e-6 Iter 65: T = 763.5083695687949 K, F = -0.0924794442800746, relative_change = 1.194207147209386e-6 Iter 70: T = 763.5055845902955 K, F = -0.03867605599931079, relative_change = 4.994409838785145e-7 Iter 75: T = 763.5044198682705 K, F = -0.01617479689369028, relative_change = 2.0887380940649936e-7 Iter 80: T = 763.5039327657287 K, F = -0.006764494695008172, relative_change = 8.735380585029008e-8 Iter 85: T = 763.5037290532994 K, F = -0.0028289927220183086, relative_change = 3.653245453893988e-8 Iter 90: T = 763.5036438582711 K, F = -0.001183118586682852, relative_change = 1.527831747628807e-8 Iter 95: T = 763.5036082286827 K, F = -0.0004947943292520351, relative_change = 6.38957633876608e-9 Iter 100: T = 763.5035933279615 K, F = -0.00020692889792617297, relative_change = 2.67219738523198e-9 Iter 105: T = 763.5035870963018 K, F = -8.654013625464252e-5, relative_change = 1.1175449012751731e-9 Iter 110: T = 763.5035844901472 K, F = -3.61921202962634e-5, relative_change = 4.67370654949596e-10 Iter 115: T = 763.5035834002222 K, F = -1.5135974368196692e-5, relative_change = 1.9545995769073142e-10 Iter 120: T = 763.5035829444025 K, F = -6.330045388858174e-6, relative_change = 8.174369071364695e-11 Iter 125: T = 763.5035827537733 K, F = -2.647300747615766e-6, relative_change = 3.418618990904151e-11 Iter 130: T = 763.5035826740499 K, F = -1.107132413635803e-6, relative_change = 1.4297068060707975e-11 Iter 135: T = 763.5035826407086 K, F = -4.6301508316304307e-7, relative_change = 5.979192802018667e-12 Iter 140: T = 763.5035826267649 K, F = -1.9363801451177665e-7, relative_change = 2.500564376342305e-12 Iter 145: T = 763.5035826209335 K, F = -8.098153803093311e-8, relative_change = 1.045763403738108e-12 Iter 150: T = 763.5035826184946 K, F = -3.386608160571569e-8, relative_change = 4.3733312101674725e-13 Converged in 154 iterations to T = 763.5035826176145 K Iter 1: T = 969.9471160088838 K, F = -6847.578205048728, relative_change = 0.030052883991116212 Iter 2: T = 942.0502955599428 K, F = -5800.366351802291, relative_change = 0.028761176757481497 Iter 3: T = 916.267104066128 K, F = -4911.5780900699365, relative_change = 0.027369230300479417 Iter 5: T = 870.8376767682852 K, F = -3517.5966813380273, relative_change = 0.024324606190778364 Iter 10: T = 789.7374947418895 K, F = -1515.1591240050745, relative_change = 0.016023939891349797 Iter 15: T = 745.1783813637596 K, F = -645.3851630438595, relative_change = 0.008863389605563477 Iter 20: T = 723.4129776345221 K, F = -272.5363510566582, relative_change = 0.004292254169966715 Iter 25: T = 713.5810263388692 K, F = -114.49976325061238, relative_change = 0.0019229231157323963 Iter 30: T = 709.3224369400541 K, F = -47.981937928199244, relative_change = 0.0008289618227298363 Iter 35: T = 707.5141028704874 K, F = -20.083984400101546, relative_change = 0.00035121299001288916 Iter 40: T = 706.7529213478196 K, F = -8.402432710716269, relative_change = 0.00014768928017102532 Iter 45: T = 706.4337165314167 K, F = -3.514537239710353, relative_change = 6.190785164832156e-5 Iter 50: T = 706.3000684234797 K, F = -1.469915994072632, relative_change = 2.5915598640439678e-5 Iter 55: T = 706.2441484016247 K, F = -0.6147529731135202, relative_change = 1.0842590832108025e-5 Iter 60: T = 706.2207572915579 K, F = -0.25709993059293607, relative_change = 4.535267141838429e-6 Iter 65: T = 706.2109740295568 K, F = -0.10752276788286991, relative_change = 1.896836917895724e-6 Iter 70: T = 706.2068824090373 K, F = -0.04496739420425189, relative_change = 7.933032975481457e-7 Iter 75: T = 706.2051712193698 K, F = -0.018805916770540332, relative_change = 3.317730138363328e-7 Iter 80: T = 706.2044555750246 K, F = -0.007864861690582314, relative_change = 1.3875215379460767e-7 Iter 85: T = 706.2041562832449 K, F = -0.003289179558037536, relative_change = 5.8027933195281815e-8 Iter 90: T = 706.2040311157142 K, F = -0.0013755742553911432, relative_change = 2.42679966073523e-8 Iter 95: T = 706.2039787691346 K, F = -0.0005752815967988711, relative_change = 1.0149169855181717e-8 Iter 100: T = 706.2039568771658 K, F = -0.0002405896383552708, relative_change = 4.244504741748268e-9 Iter 105: T = 706.2039477216821 K, F = -0.00010061746021072793, relative_change = 1.7751026862486826e-9 Iter 110: T = 706.2039438927494 K, F = -4.207942360556771e-5, relative_change = 7.423691638587692e-10 Iter 115: T = 706.203942291444 K, F = -1.759811810886358e-5, relative_change = 3.104676644210359e-10 Iter 120: T = 706.2039416217589 K, F = -7.359743033341637e-6, relative_change = 1.298412833964403e-10 Iter 125: T = 706.2039413416886 K, F = -3.0779319499796287e-6, relative_change = 5.430116697503914e-11 Iter 130: T = 706.2039412245599 K, F = -1.2872281630604832e-6, relative_change = 2.2709401185097277e-11 Iter 135: T = 706.2039411755753 K, F = -5.383349471754784e-7, relative_change = 9.497356134857202e-12 Iter 140: T = 706.2039411550893 K, F = -2.2513820585601252e-7, relative_change = 3.971909555735524e-12 Iter 145: T = 706.2039411465219 K, F = -9.415527602030238e-8, relative_change = 1.6610962992604332e-12 Iter 150: T = 706.2039411429388 K, F = -3.937574954981926e-8, relative_change = 6.946707037987653e-13 Iter 155: T = 706.2039411414403 K, F = -1.6467389896135387e-8, relative_change = 2.905192525800468e-13 Converged in 157 iterations to T = 706.2039411411232 K Iter 1: T = 973.507823140761 K, F = -6036.2676979435955, relative_change = 0.026492176859238964 Iter 2: T = 949.2086905155222 K, F = -5108.165601452051, relative_change = 0.024960387628775477 Iter 3: T = 927.0352342190669 K, F = -4320.949254329039, relative_change = 0.023359938144279713 Iter 5: T = 888.7433440631968 K, F = -3087.6515572951776, relative_change = 0.020030999541862264 Iter 10: T = 823.5404924539425 K, F = -1322.0772904442326, relative_change = 0.01201783076779763 Iter 15: T = 789.9794413694194 K, F = -560.3680033597129, relative_change = 0.006159958704851463 Iter 20: T = 774.3206783374067 K, F = -235.91088730914336, relative_change = 0.002847131388475277 Iter 25: T = 767.4252052704097 K, F = -98.95766043178052, relative_change = 0.001245756268114108 Iter 30: T = 764.4748516138869 K, F = -41.43923374079601, relative_change = 0.0005312854398400092 Iter 35: T = 763.2288448393261 K, F = -17.33997698550577, relative_change = 0.00022404325313629542 Iter 40: T = 762.7055901546265 K, F = -7.253475339463577, relative_change = 9.402569833316328e-5 Iter 45: T = 762.4863782395641 K, F = -3.0337864445718425, relative_change = 3.938035650232792e-5 Iter 50: T = 762.3946344313912 K, F = -1.2688176324248546, relative_change = 1.6479446577938172e-5 Iter 55: T = 762.3562543822392 K, F = -0.5306437705272699, relative_change = 6.893671417282708e-6 Iter 60: T = 762.3402013411093 K, F = -0.22192315112736138, relative_change = 2.883325415092636e-6 Iter 65: T = 762.333487409628 K, F = -0.09281119006163574, relative_change = 1.2058952980991302e-6 Iter 70: T = 762.3306795006869 K, F = -0.03881479669108412, relative_change = 5.043292909760578e-7 Iter 75: T = 762.3295051886827 K, F = -0.01623282002278792, relative_change = 2.1091818981708033e-7 Iter 80: T = 762.3290140754629 K, F = -0.006788760680730199, relative_change = 8.820879575186488e-8 Iter 85: T = 762.3288086857142 K, F = -0.002839141051533045, relative_change = 3.689002251811875e-8 Iter 90: T = 762.3287227892098 K, F = -0.0011873627376104423, relative_change = 1.5427856816978085e-8 Iter 95: T = 762.3286868662557 K, F = -0.000496569286247972, relative_change = 6.452115536476865e-9 Iter 100: T = 762.3286718428454 K, F = -0.0002076712064001951, relative_change = 2.698352032891323e-9 Iter 105: T = 762.3286655598755 K, F = -8.685057751189884e-5, relative_change = 1.1284830749798804e-9 Iter 110: T = 762.3286629322624 K, F = -3.6321950024786887e-5, relative_change = 4.719451234540015e-10 Iter 115: T = 762.3286618333632 K, F = -1.5190271047238468e-5, relative_change = 1.973730592382629e-10 Iter 120: T = 762.3286613737905 K, F = -6.352752095817316e-6, relative_change = 8.254376208518486e-11 Iter 125: T = 762.3286611815917 K, F = -2.6567974857893972e-6, relative_change = 3.452079611026484e-11 Iter 130: T = 762.3286611012119 K, F = -1.1111031530397497e-6, relative_change = 1.4436992517484517e-11 Iter 135: T = 762.3286610675962 K, F = -4.646793622109513e-7, relative_change = 6.037758473031213e-12 Iter 140: T = 762.3286610535376 K, F = -1.9433560149995088e-7, relative_change = 2.5250775482865157e-12 Iter 145: T = 762.3286610476581 K, F = -8.127307593586153e-8, relative_change = 1.0560124740366572e-12 Iter 150: T = 762.3286610451993 K, F = -3.3989473791073976e-8, relative_change = 4.4163836420062875e-13 Converged in 154 iterations to T = 762.3286610443117 K Iter 1: T = 964.3057106301039 K, F = -8132.977786965605, relative_change = 0.035694289369896014 Iter 2: T = 930.5358192455981 K, F = -6899.72101360681, relative_change = 0.03501990189650508 Iter 3: T = 898.6593151687343 K, F = -5852.406221242098, relative_change = 0.03425607420755342 Iter 5: T = 840.4734242075205 K, F = -4207.848755311041, relative_change = 0.0324345034446549 Iter 10: T = 726.1638884008645 K, F = -1835.1471743605675, relative_change = 0.026058498539660004 Iter 15: T = 652.3573630689374 K, F = -792.4571042698028, relative_change = 0.01786375938650548 Iter 20: T = 610.5845297917872 K, F = -338.34589553657383, relative_change = 0.010249643073916962 Iter 25: T = 589.7027369285458 K, F = -143.1086832825392, relative_change = 0.005087304431480287 Iter 30: T = 580.138483511822 K, F = -60.17613795430742, relative_change = 0.002309344810687636 Iter 35: T = 575.9670211049544 K, F = -25.227599655119665, relative_change = 0.0010017258173417808 Iter 40: T = 574.1900938111681 K, F = -10.561527180527872, relative_change = 0.0004255666713264701 Iter 45: T = 573.4411095582633 K, F = -4.41891412285827, relative_change = 0.0001791643261665878 Iter 50: T = 573.1268373712556 K, F = -1.8483869197025413, relative_change = 7.513835369726406e-5 Iter 55: T = 572.995222357677 K, F = -0.7730778374783844, relative_change = 3.146058323451475e-5 Iter 60: T = 572.9401473651222 K, F = -0.32332095034494435, relative_change = 1.316364368997469e-5 Iter 65: T = 572.9171087389706 K, F = -0.13521853148464935, relative_change = 5.506322283502456e-6 Iter 70: T = 572.9074727293597 K, F = -0.05655032811737193, relative_change = 2.303007310788348e-6 Iter 75: T = 572.903442663451 K, F = -0.02365007913617012, relative_change = 9.631797209727272e-7 Iter 80: T = 572.9017572117416 K, F = -0.009890755428321352, relative_change = 4.028193069329034e-7 Iter 85: T = 572.9010523304582 K, F = -0.004136433770216441, relative_change = 1.684649020837491e-7 Iter 90: T = 572.9007575397692 K, F = -0.001729906304613671, relative_change = 7.045421886090371e-8 Iter 95: T = 572.9006342546219 K, F = -0.0007234675282892233, relative_change = 2.9464828044187155e-8 Iter 100: T = 572.9005826952729 K, F = -0.0003025627696415234, relative_change = 1.2322548630351e-8 Iter 105: T = 572.9005611325325 K, F = -0.00012653536509843466, relative_change = 5.153437982907936e-9 Iter 110: T = 572.9005521147361 K, F = -5.2918601347817784e-5, relative_change = 2.1552294918735064e-9 Iter 115: T = 572.9005483433858 K, F = -2.213119109867323e-5, relative_change = 9.013427419882229e-10 Iter 120: T = 572.9005467661619 K, F = -9.255528050977624e-6, relative_change = 3.7695228892858815e-10 Iter 125: T = 572.9005461065482 K, F = -3.870771992375843e-6, relative_change = 1.5764593466827248e-10 Iter 130: T = 572.9005458306898 K, F = -1.618802979941325e-6, relative_change = 6.592940888905717e-11 Iter 135: T = 572.9005457153226 K, F = -6.770031072411697e-7, relative_change = 2.7572481192785443e-11 Iter 140: T = 572.9005456670745 K, F = -2.8313069305729854e-7, relative_change = 1.153113719723559e-11 Iter 145: T = 572.9005456468967 K, F = -1.1840879898805667e-7, relative_change = 4.822465879542779e-12 Iter 150: T = 572.9005456384582 K, F = -4.9520455513984984e-8, relative_change = 2.016832440775311e-12 Iter 155: T = 572.900545634929 K, F = -2.0710556658531942e-8, relative_change = 8.43484214818485e-13 Iter 160: T = 572.9005456334531 K, F = -8.66194149740096e-9, relative_change = 3.527771388905975e-13 Converged in 163 iterations to T = 572.900545633021 K Iter 1: T = 963.5854766370614 K, F = -8297.083787399757, relative_change = 0.03641452336293859 Iter 2: T = 929.0501821221374 K, F = -7040.308550435053, relative_change = 0.03584040580961556 Iter 3: T = 896.3606724863291 K, F = -5972.9754253379915, relative_change = 0.03518594610372809 Iter 5: T = 836.4004076622679 K, F = -4296.8324838186245, relative_change = 0.033606840186880635 Iter 10: T = 716.8623880497091 K, F = -1877.6078537726733, relative_change = 0.02786451904933581 Iter 15: T = 637.3906214327933 K, F = -812.9838125398367, relative_change = 0.019939596767580968 Iter 20: T = 590.8852126962543 K, F = -348.06166132966086, relative_change = 0.011939743681864186 Iter 25: T = 566.9792443705397 K, F = -147.51337393787807, relative_change = 0.0061110352772533304 Iter 30: T = 555.8347842863418 K, F = -62.09863830238965, relative_change = 0.0028221598188423644 Iter 35: T = 550.9294276930424 K, F = -26.047842302965066, relative_change = 0.0012343271722940698 Iter 40: T = 548.8310218386811 K, F = -10.907589084750407, relative_change = 0.0005263151718105503 Iter 45: T = 547.9448951808255 K, F = -4.564185538969478, relative_change = 0.00022192984664927583 Iter 50: T = 547.5727851012426 K, F = -1.9092374620985024, relative_change = 9.313565125912171e-5 Iter 55: T = 547.4168961790759 K, F = -0.7985431873531514, relative_change = 3.9007036285106e-5 Iter 60: T = 547.3516545443402 K, F = -0.3339738303339048, relative_change = 1.6323128014549423e-5 Iter 65: T = 547.3243614780533 K, F = -0.1396742124192502, relative_change = 6.828263572726596e-6 Iter 70: T = 547.31294575061 K, F = -0.05841383795532343, relative_change = 2.8559652013154157e-6 Iter 75: T = 547.3081713049412 K, F = -0.02442943709846951, relative_change = 1.1944519027056942e-6 Iter 80: T = 547.3061745306438 K, F = -0.010216695014954758, relative_change = 4.995433466545756e-7 Iter 85: T = 547.3053394480728 K, F = -0.004272746083990364, relative_change = 2.089166193045456e-7 Iter 90: T = 547.3049902052197 K, F = -0.0017869138271455476, relative_change = 8.73717095611653e-8 Iter 95: T = 547.3048441474517 K, F = -0.0007473087703397663, relative_change = 3.653994210547803e-8 Iter 100: T = 547.3047830643076 K, F = -0.0003125334640505517, relative_change = 1.5281448851707722e-8 Iter 105: T = 547.3047575185999 K, F = -0.00013070522906177828, relative_change = 6.390885924716304e-9 Iter 110: T = 547.3047468350787 K, F = -5.4662487727147324e-5, relative_change = 2.6727450645888186e-9 Iter 115: T = 547.3047423671023 K, F = -2.286050506766779e-5, relative_change = 1.117773943500576e-9 Iter 120: T = 547.3047404985413 K, F = -9.560536235631023e-6, relative_change = 4.674664200177967e-10 Iter 125: T = 547.3047397170867 K, F = -3.998330622229096e-6, relative_change = 1.955000502754768e-10 Iter 130: T = 547.3047393902731 K, F = -1.6721502028305135e-6, relative_change = 8.176048469663823e-11 Iter 135: T = 547.3047392535957 K, F = -6.993131575483424e-7, relative_change = 3.419320984866229e-11 Iter 140: T = 547.3047391964355 K, F = -2.9246077343225707e-7, relative_change = 1.4299992064359581e-11 Iter 145: T = 547.3047391725304 K, F = -1.223101290526163e-7, relative_change = 5.980405011860644e-12 Iter 150: T = 547.3047391625331 K, F = -5.1151233193547085e-8, relative_change = 2.5010609812090693e-12 Iter 155: T = 547.3047391583522 K, F = -2.139211260909768e-8, relative_change = 1.0459763101261884e-12 Iter 160: T = 547.3047391566035 K, F = -8.946523050168409e-9, relative_change = 4.3744399347620563e-13 Converged in 164 iterations to T = 547.3047391559725 K Iter 1: T = 969.3692920151685 K, F = -6979.235951669276, relative_change = 0.030630707984831515 Iter 2: T = 940.8807573328596 K, F = -5912.8184830593245, relative_change = 0.029388732361312616 Iter 3: T = 914.4950745977876 K, F = -5007.655498927687, relative_change = 0.028043599073986996 Iter 5: T = 867.8450948818371 K, F = -3587.769986239795, relative_change = 0.025076376298378805 Iter 10: T = 783.8555597364866 K, F = -1547.0599731021825, relative_change = 0.016804474329367734 Iter 15: T = 737.1233966671682 K, F = -659.628596365518, relative_change = 0.009439474938003319 Iter 20: T = 714.0753887665907 K, F = -278.7367975965235, relative_change = 0.004617983107574396 Iter 25: T = 703.6046868032995 K, F = -117.14641963297582, relative_change = 0.002080018693006063 Iter 30: T = 699.0566053118541 K, F = -49.099229845458154, relative_change = 0.000898940641655564 Iter 35: T = 697.1228745944594 K, F = -20.553161741798682, relative_change = 0.00038128165037154 Iter 40: T = 696.3084596892674 K, F = -8.59898964015266, relative_change = 0.00016040900042857113 Iter 45: T = 695.9668510699018 K, F = -3.5967999138810494, relative_change = 6.725301063839098e-5 Iter 50: T = 695.8238085732404 K, F = -1.5043297971987533, relative_change = 2.8155512736120367e-5 Iter 55: T = 695.763955344972 K, F = -0.6291470881260685, relative_change = 1.1780139296542893e-5 Iter 60: T = 695.738918557233 K, F = -0.2631200454375515, relative_change = 4.927499343474659e-6 Iter 65: T = 695.7284469195125 K, F = -0.11004050849540048, relative_change = 2.06089729604556e-6 Iter 70: T = 695.7240673886629 K, F = -0.04602035331263954, relative_change = 8.619195380309926e-7 Iter 75: T = 695.7222357873667 K, F = -0.01924627857838368, relative_change = 3.6046988510618765e-7 Iter 80: T = 695.721469784725 K, F = -0.008049026562270356, relative_change = 1.50753657535266e-7 Iter 85: T = 695.7211494323793 K, F = -0.0033661995609304274, relative_change = 6.304712804701104e-8 Iter 90: T = 695.7210154570463 K, F = -0.0014077849484637195, relative_change = 2.636708777314758e-8 Iter 95: T = 695.7209594269347 K, F = -0.0005887524933148036, relative_change = 1.1027035512200082e-8 Iter 100: T = 695.720935994468 K, F = -0.0002462233259614699, relative_change = 4.611638720054866e-9 Iter 105: T = 695.7209261947299 K, F = -0.00010297353601851356, relative_change = 1.928642527415216e-9 Iter 110: T = 695.7209220963623 K, F = -4.306476289339667e-5, relative_change = 8.065813673116614e-10 Iter 115: T = 695.720920382376 K, F = -1.801019885883104e-5, relative_change = 3.3732197777244357e-10 Iter 120: T = 695.7209196655664 K, F = -7.5320797462419264e-6, relative_change = 1.4107207083722264e-10 Iter 125: T = 695.7209193657881 K, F = -3.1500059921585333e-6, relative_change = 5.899803033774669e-11 Iter 130: T = 695.7209192404172 K, F = -1.3173708426350572e-6, relative_change = 2.4673694335822508e-11 Iter 135: T = 695.7209191879856 K, F = -5.509400470282699e-7, relative_change = 1.0318830417884524e-11 Iter 140: T = 695.720919166058 K, F = -2.3040902275006658e-7, relative_change = 4.315445293348245e-12 Iter 145: T = 695.7209191568877 K, F = -9.636057118900254e-8, relative_change = 1.804785109822292e-12 Iter 150: T = 695.7209191530526 K, F = -4.029948030837005e-8, relative_change = 7.547890293569841e-13 Iter 155: T = 695.7209191514486 K, F = -1.6853071937994457e-8, relative_change = 3.156495744502168e-13 Converged in 158 iterations to T = 695.720919150979 K Iter 1: T = 966.5197028847087 K, F = -7628.517545703574, relative_change = 0.033480297115291234 Iter 2: T = 935.0803884475959 K, F = -6467.886938117857, relative_change = 0.03252837406550328 Iter 3: T = 905.6522798295751 K, F = -5482.425524136101, relative_change = 0.03147120716206737 Iter 5: T = 852.7044916250267 K, F = -3935.563522498718, relative_change = 0.029036735794931944 Iter 10: T = 752.8915786413788 K, F = -1707.1232261624457, relative_change = 0.02138350542599792 Iter 15: T = 693.1123499833374 K, F = -732.2993311111871, relative_change = 0.013202477440989447 Iter 20: T = 661.739966673645 K, F = -310.8328630836394, relative_change = 0.006917856916538106 Iter 25: T = 646.9115524471 K, F = -130.96947622347258, relative_change = 0.0032389173863338395 Iter 30: T = 640.3362026147987 K, F = -54.9609637910851, relative_change = 0.001426211697865344 Iter 35: T = 637.5135998757179 K, F = -23.019676916144423, relative_change = 0.00060998752255775 Iter 40: T = 636.3198247239604 K, F = -9.633225722563811, relative_change = 0.00025754981750027167 Iter 45: T = 635.8181949998356 K, F = -4.029809416733861, relative_change = 0.00010814421923452757 Iter 50: T = 635.6079878617284 K, F = -1.6855038476948958, relative_change = 4.530352721103623e-5 Iter 55: T = 635.5200030750365 K, F = -0.7049310156027313, relative_change = 1.895985823115344e-5 Iter 60: T = 635.4831938854786 K, F = -0.29481637553388335, relative_change = 7.93158211498723e-6 Iter 65: T = 635.4677975849953 K, F = -0.12329674483365771, relative_change = 3.317492329836035e-6 Iter 70: T = 635.4613582732652 K, F = -0.05156434882611488, relative_change = 1.3874866279301111e-6 Iter 75: T = 635.4586652071054 K, F = -0.02156485755887033, relative_change = 5.802760220327431e-7 Iter 80: T = 635.4575389225905 K, F = -0.009018686402635756, relative_change = 2.426805563804902e-7 Iter 85: T = 635.4570678948422 K, F = -0.0037717233095230784, relative_change = 1.01492290632673e-7 Iter 90: T = 635.4568709050429 K, F = -0.0015773798978619413, relative_change = 4.24453551263944e-8 Iter 95: T = 635.4567885214917 K, F = -0.000659679139979108, relative_change = 1.7751166150090994e-8 Iter 100: T = 635.4567540676953 K, F = -0.0002758856985814462, relative_change = 7.423751701893774e-9 Iter 105: T = 635.4567396587044 K, F = -0.00011537869504207876, relative_change = 3.1047019854739984e-9 Iter 110: T = 635.4567336326918 K, F = -4.825274796049772e-5, relative_change = 1.298423501033707e-9 Iter 115: T = 635.4567311125414 K, F = -2.017987586427905e-5, relative_change = 5.430162358071201e-10 Iter 120: T = 635.4567300585843 K, F = -8.439464387388629e-6, relative_change = 2.2709585781783596e-10 Iter 125: T = 635.4567296178069 K, F = -3.529484388198334e-6, relative_change = 9.49741891958577e-11 Iter 130: T = 635.4567294334685 K, F = -1.4760715724149165e-6, relative_change = 3.971931465330504e-11 Iter 135: T = 635.4567293563761 K, F = -6.173103983542205e-7, relative_change = 1.661108202567452e-11 Iter 140: T = 635.456729324135 K, F = -2.581661083800313e-7, relative_change = 6.946940169838235e-12 Iter 145: T = 635.4567293106516 K, F = -1.0796878630037199e-7, relative_change = 2.9053104740239456e-12 Iter 150: T = 635.4567293050126 K, F = -4.5153866867764236e-8, relative_change = 1.2150363716618785e-12 Iter 155: T = 635.4567293026544 K, F = -1.8885026709103414e-8, relative_change = 5.081734062549014e-13 Converged in 160 iterations to T = 635.456729301668 K Iter 1: T = 966.4787749466658 K, F = -7637.8430153191775, relative_change = 0.03352122505333418 Iter 2: T = 934.9966803756566 K, F = -6475.8653022048675, relative_change = 0.03257401547462482 Iter 3: T = 905.5239935022356 K, F = -5489.256172681107, relative_change = 0.03152170215361581 Iter 5: T = 852.4822182890472 K, F = -3940.580252961944, relative_change = 0.029096871420896033 Iter 10: T = 752.4206146481177 K, F = -1709.4584901139283, relative_change = 0.02145972540077554 Iter 15: T = 692.4190921260172 K, F = -733.3776092443231, relative_change = 0.013271240835226957 Iter 20: T = 660.8946477749229 K, F = -311.316648875479, relative_change = 0.0069628716262725016 Iter 25: T = 645.9829304254803 K, F = -131.17996500781433, relative_change = 0.003262505003388242 Iter 30: T = 639.3678809268893 K, F = -55.050693759770155, relative_change = 0.001437149330693264 Iter 35: T = 636.5276736894727 K, F = -23.057525267260033, relative_change = 0.0006147722482936209 Iter 40: T = 635.3263476786922 K, F = -9.649112696366858, relative_change = 0.00025958953605451557 Iter 45: T = 634.8215260843753 K, F = -4.03646389435936, relative_change = 0.00010900416508178971 Iter 50: T = 634.6099780399342 K, F = -1.6882886521668556, relative_change = 4.5664386403595036e-5 Iter 55: T = 634.5214314099712 K, F = -0.7060959736713239, relative_change = 1.9110987955937693e-5 Iter 60: T = 634.4843870649779 K, F = -0.2953036308667934, relative_change = 7.994823875763815e-6 Iter 65: T = 634.4688923871423 K, F = -0.1235005306243403, relative_change = 3.3439473534160596e-6 Iter 70: T = 634.4624119271349 K, F = -0.051649576191233115, relative_change = 1.398551583111236e-6 Iter 75: T = 634.459701651278 K, F = -0.021600500959190805, relative_change = 5.84903719271624e-7 Iter 80: T = 634.4585681692882 K, F = -0.009033592951122271, relative_change = 2.446159497769438e-7 Iter 85: T = 634.4580941314393 K, F = -0.003777957414913269, relative_change = 1.0230170139950256e-7 Iter 90: T = 634.4578958827748 K, F = -0.001579987076503253, relative_change = 4.2783861442471615e-8 Iter 95: T = 634.4578129727502 K, F = -0.0006607694934606667, relative_change = 1.7892733720870005e-8 Iter 100: T = 634.4577782987762 K, F = -0.00027634169899731775, relative_change = 7.482957024503425e-9 Iter 105: T = 634.4577637977042 K, F = -0.0001155693997275109, relative_change = 3.129462360372296e-9 Iter 110: T = 634.4577577331823 K, F = -4.833250257119115e-5, relative_change = 1.308778576501559e-9 Iter 115: T = 634.4577551969268 K, F = -2.021322974365969e-5, relative_change = 5.47346840046804e-10 Iter 120: T = 634.4577541362345 K, F = -8.4534136032266e-6, relative_change = 2.2890697423622915e-10 Iter 125: T = 634.4577536926403 K, F = -3.535318432390522e-6, relative_change = 9.57316281916004e-11 Iter 130: T = 634.4577535071238 K, F = -1.478511409247485e-6, relative_change = 4.003608371098102e-11 Iter 135: T = 634.4577534295387 K, F = -6.183319398722631e-7, relative_change = 1.6743590320288272e-11 Iter 140: T = 634.4577533970917 K, F = -2.5859430086150326e-7, relative_change = 7.002382951032868e-12 Iter 145: T = 634.4577533835219 K, F = -1.0814668077729905e-7, relative_change = 2.9284654427417136e-12 Iter 150: T = 634.4577533778468 K, F = -4.5226983325097336e-8, relative_change = 1.2246853699133145e-12 Iter 155: T = 634.4577533754734 K, F = -1.8913730914782434e-8, relative_change = 5.121581816704973e-13 Converged in 160 iterations to T = 634.457753374481 K Iter 1: T = 976.3556342848417 K, F = -5387.391219797079, relative_change = 0.02364436571515835 Iter 2: T = 954.8745431730456 K, F = -4555.496925134816, relative_change = 0.022001297844233235 Iter 3: T = 935.4657695726362 K, F = -3850.3176247898036, relative_change = 0.020325993335118264 Iter 5: T = 902.4468066047841 K, F = -2746.7174488042538, relative_change = 0.01697166805276707 Iter 10: T = 848.0206811073296 K, F = -1171.3850994711909, relative_change = 0.009565241216669457 Iter 15: T = 821.1214766832095 K, F = -495.06037606514656, relative_change = 0.004689994387001022 Iter 20: T = 808.8857981389207 K, F = -208.07850705587836, relative_change = 0.0021149820017056582 Iter 25: T = 803.5677312238457 K, F = -87.21457523904357, relative_change = 0.0009145639777017908 Iter 30: T = 801.3059756637335 K, F = -36.5090192131223, relative_change = 0.00038800395486020804 Iter 35: T = 800.3532909655285 K, F = -15.274675917001492, relative_change = 0.00016325435659178395 Iter 40: T = 799.9536636677598 K, F = -6.389136209354409, relative_change = 6.844899993667374e-5 Iter 45: T = 799.7863231817399 K, F = -2.672203120961168, relative_change = 2.8656749817928557e-5 Iter 50: T = 799.7163023029067 K, F = -1.1175805286929337, relative_change = 1.198994847096983e-5 Iter 55: T = 799.687012242068 K, F = -0.46739134501777124, relative_change = 5.015276581339797e-6 Iter 60: T = 799.6747616527307 K, F = -0.19546966057749626, relative_change = 2.097612478015909e-6 Iter 65: T = 799.66963811123 K, F = -0.081747924547375, relative_change = 8.772752614577018e-7 Iter 70: T = 799.667495350225 K, F = -0.03418798946547452, relative_change = 3.668920062273375e-7 Iter 75: T = 799.6665992159028 K, F = -0.014297830928762356, relative_change = 1.5343949572999427e-7 Iter 80: T = 799.6662244407639 K, F = -0.005979524598763053, relative_change = 6.41703829789786e-8 Iter 85: T = 799.6660677051391 K, F = -0.002500708763792381, relative_change = 2.6836847343783203e-8 Iter 90: T = 799.6660021563964 K, F = -0.0010458262987897982, relative_change = 1.1223494750367763e-8 Iter 95: T = 799.6659747431237 K, F = -0.0004373770506392871, relative_change = 4.693800336339744e-9 Iter 100: T = 799.6659632785648 K, F = -0.00018291630751732235, relative_change = 1.963003507153843e-9 Iter 105: T = 799.6659584839491 K, F = -7.649778452756273e-5, relative_change = 8.209515359351804e-10 Iter 110: T = 799.6659564787836 K, F = -3.199228644412688e-5, relative_change = 3.433317339861629e-10 Iter 115: T = 799.6659556401994 K, F = -1.337955803459856e-5, relative_change = 1.435854511663509e-10 Iter 120: T = 799.6659552894935 K, F = -5.595491175180989e-6, relative_change = 6.004915293059347e-11 Iter 125: T = 799.665955142824 K, F = -2.3401005319056978e-6, relative_change = 2.5113265383987873e-11 Iter 130: T = 799.6659550814851 K, F = -9.786573132997134e-7, relative_change = 1.0502660250171976e-11 Iter 135: T = 799.6659550558325 K, F = -4.09287268632319e-7, relative_change = 4.392349670723019e-12 Iter 140: T = 799.6659550451042 K, F = -1.7116732120570077e-7, relative_change = 1.8369169642064406e-12 Iter 145: T = 799.6659550406175 K, F = -7.158478454449835e-8, relative_change = 7.682266929581725e-13 Iter 150: T = 799.6659550387411 K, F = -2.993659187211506e-8, relative_change = 3.212706320058054e-13 Converged in 153 iterations to T = 799.6659550381918 K Iter 1: T = 965.2218829219604 K, F = -7924.227058761274, relative_change = 0.03477811707803955 Iter 2: T = 932.4204690361391 K, F = -6720.963139067331, relative_change = 0.03398328867816733 Iter 3: T = 901.5663355951842 K, F = -5699.186223976013, relative_change = 0.03309036477164576 Iter 5: T = 845.586717474146 K, F = -4094.948430707403, relative_change = 0.030991887269495127 Iter 10: T = 737.5463250859601 K, F = -1781.7343957203577, relative_change = 0.023978015810015508 Iter 15: T = 670.0866463948319 K, F = -767.0780263878179, relative_change = 0.01567235839956877 Iter 20: T = 633.2327944130335 K, F = -326.59306715735255, relative_change = 0.008609392661125438 Iter 25: T = 615.307845501523 K, F = -137.87492029881037, relative_change = 0.004150676383975297 Iter 30: T = 607.2307879201617 K, F = -57.9159690371925, relative_change = 0.0018551584990630806 Iter 35: T = 603.7365805860023 K, F = -24.268350586168197, relative_change = 0.0007988829081427694 Iter 40: T = 602.2536440362968 K, F = -10.157776232976966, relative_change = 0.00033830877551633957 Iter 45: T = 601.6295803553223 K, F = -4.249599071144625, relative_change = 0.00014223414578235305 Iter 50: T = 601.3679028832807 K, F = -1.7774958553518139, relative_change = 5.96161064645678e-5 Iter 55: T = 601.2583455877818 K, F = -0.7434160395365221, relative_change = 2.4955345428733134e-5 Iter 60: T = 601.2125062746195 K, F = -0.3109135255772475, relative_change = 1.044068283551335e-5 Iter 65: T = 601.1933320252888 K, F = -0.1300291595577715, relative_change = 4.367128639456886e-6 Iter 70: T = 601.1853124776753 K, F = -0.05437999405057142, relative_change = 1.8265096289222855e-6 Iter 75: T = 601.1819584938158 K, F = -0.022742406084450606, relative_change = 7.638898782762159e-7 Iter 80: T = 601.180555797898 K, F = -0.009511153369669012, relative_change = 3.194716720309906e-7 Iter 85: T = 601.1799691702482 K, F = -0.0039776792450918474, relative_change = 1.336075335342477e-7 Iter 90: T = 601.1797238349532 K, F = -0.0016635131934043534, relative_change = 5.587638240818054e-8 Iter 95: T = 601.179621232697 K, F = -0.0006957011238054034, relative_change = 2.3368190751861727e-8 Iter 100: T = 601.1795783231896 K, F = -0.00029095052641026076, relative_change = 9.772860037536398e-9 Iter 105: T = 601.1795603779179 K, F = -0.00012167898662013288, relative_change = 4.087127421336771e-9 Iter 110: T = 601.1795528729904 K, F = -5.0887605509586376e-5, relative_change = 1.7092856048763952e-9 Iter 115: T = 601.1795497343398 K, F = -2.1281803857908788e-5, relative_change = 7.14843654364004e-10 Iter 120: T = 601.1795484217188 K, F = -8.900303796521847e-6, relative_change = 2.989561317015934e-10 Iter 125: T = 601.1795478727649 K, F = -3.7222133439374083e-6, relative_change = 1.250270252509899e-10 Iter 130: T = 601.179547643186 K, F = -1.5566746923156849e-6, relative_change = 5.2287815993831366e-11 Iter 135: T = 601.1795475471733 K, F = -6.510199643816605e-7, relative_change = 2.1867389699220848e-11 Iter 140: T = 601.1795475070196 K, F = -2.7226415683090366e-7, relative_change = 9.14519791432082e-12 Iter 145: T = 601.1795474902269 K, F = -1.1386487508424636e-7, relative_change = 3.824656283787173e-12 Iter 150: T = 601.179547483204 K, F = -4.76199242260833e-8, relative_change = 1.5995261251561014e-12 Iter 155: T = 601.1795474802669 K, F = -1.9916050641999306e-8, relative_change = 6.689687946857727e-13 Iter 160: T = 601.1795474790387 K, F = -8.329116341077025e-9, relative_change = 2.7977027271621404e-13 Converged in 162 iterations to T = 601.1795474787787 K Iter 1: T = 964.5592735039781 K, F = -8075.2032449528115, relative_change = 0.03544072649602183 Iter 2: T = 931.0579973658495 K, F = -6850.238843698121, relative_change = 0.03473221092616503 Iter 3: T = 899.4657636921631 K, F = -5809.983783834164, relative_change = 0.033931542141378 Iter 5: T = 841.8961053544932 K, F = -4176.569688318484, relative_change = 0.032029884890629905 Iter 10: T = 729.3627711960717 K, F = -1820.299332965554, relative_change = 0.025459750858324876 Iter 15: T = 657.4015373529304 K, F = -785.3561938142127, relative_change = 0.01721223915262371 Iter 20: T = 617.098345078312 K, F = -335.0316648574824, relative_change = 0.009747297941564722 Iter 25: T = 597.1188927050507 K, F = -141.62369073784888, relative_change = 0.00479470731896802 Iter 30: T = 588.0143065582812 K, F = -59.532566606592425, relative_change = 0.0021659512066880757 Iter 35: T = 584.0535190938162 K, F = -24.953984882187115, relative_change = 0.0009373670407547813 Iter 40: T = 582.3683116998689 K, F = -10.446272622213549, relative_change = 0.00039782075758403105 Iter 45: T = 581.6583499484337 K, F = -4.370565412581006, relative_change = 0.00016741047791226944 Iter 50: T = 581.3605160847814 K, F = -1.8281407858727952, relative_change = 7.019611300696542e-5 Iter 55: T = 581.2357967121217 K, F = -0.7646060737109261, relative_change = 2.9388991781014035e-5 Iter 60: T = 581.183609234749 K, F = -0.3197771535499132, relative_change = 1.2296457528345584e-5 Iter 65: T = 581.1617788458427 K, F = -0.1337363326161743, relative_change = 5.1435107770948435e-6 Iter 70: T = 581.1526482481722 K, F = -0.05593043022907784, relative_change = 2.1512500271712723e-6 Iter 75: T = 581.1488295712885 K, F = -0.023390826128611097, relative_change = 8.997086079742566e-7 Iter 80: T = 581.1472325284428 K, F = -0.009782331971045666, relative_change = 3.7627415904381386e-7 Iter 85: T = 581.1465646214052 K, F = -0.0040910896538532415, relative_change = 1.573632694722281e-7 Iter 90: T = 581.1462852938929 K, F = -0.0017109428310103092, relative_change = 6.581135996934134e-8 Iter 95: T = 581.1461684756492 K, F = -0.000715536773622627, relative_change = 2.7523124906689895e-8 Iter 100: T = 581.1461196208396 K, F = -0.00029924603193948185, relative_change = 1.1510504442127682e-8 Iter 105: T = 581.1460991891705 K, F = -0.00012514826550624747, relative_change = 4.813831273934964e-9 Iter 110: T = 581.1460906444017 K, F = -5.23384993832976e-5, relative_change = 2.0132018752290374e-9 Iter 115: T = 581.1460870708772 K, F = -2.1888585258367232e-5, relative_change = 8.419450824447612e-10 Iter 120: T = 581.1460855763867 K, F = -9.154067768635255e-6, relative_change = 3.5211149307075764e-10 Iter 125: T = 581.1460849513728 K, F = -3.82834057366388e-6, relative_change = 1.4725723649293895e-10 Iter 130: T = 581.1460846899846 K, F = -1.6010581079251018e-6, relative_change = 6.158474890254842e-11 Iter 135: T = 581.1460845806689 K, F = -6.69581219858717e-7, relative_change = 2.575546204580282e-11 Iter 140: T = 581.1460845349518 K, F = -2.800276848180516e-7, relative_change = 1.0771273442120048e-11 Iter 145: T = 581.1460845158323 K, F = -1.1711042524620296e-7, relative_change = 4.50465608165495e-12 Iter 150: T = 581.1460845078363 K, F = -4.8976959599045244e-8, relative_change = 1.8839002460236836e-12 Iter 155: T = 581.1460845044924 K, F = -2.0482514961894793e-8, relative_change = 7.878605632699726e-13 Iter 160: T = 581.1460845030939 K, F = -8.566341247462361e-9, relative_change = 3.295045775883312e-13 Converged in 163 iterations to T = 581.1460845026844 K Iter 1: T = 964.235826397025 K, F = -8148.900975949711, relative_change = 0.03576417360297496 Iter 2: T = 930.39182452873 K, F = -6913.359898860883, relative_change = 0.03509929930186982 Iter 3: T = 898.4367948526617 K, F = -5864.100489681509, relative_change = 0.034345776514378104 Iter 5: T = 840.0802983913644 K, F = -4216.473942044132, relative_change = 0.032546753544818 Iter 10: T = 725.2754732285777 K, F = -1839.2484062010385, relative_change = 0.026226783934821602 Iter 15: T = 650.9474537761847 K, F = -794.4251888276822, relative_change = 0.01805005333536388 Iter 20: T = 608.7531276968756 K, F = -339.26841051040947, relative_change = 0.010395666274632353 Iter 25: T = 587.6094387077675 K, F = -143.5234725248017, relative_change = 0.005173336598294705 Iter 30: T = 577.9107816411993 K, F = -60.35627181374519, relative_change = 0.0023517715643419945 Iter 35: T = 573.6774855464265 K, F = -25.304261495222594, relative_change = 0.0010208247385984108 Iter 40: T = 571.8735912702899 K, F = -10.593834140866896, relative_change = 0.00043381130255506925 Iter 45: T = 571.1131251160682 K, F = -4.432469400632175, relative_change = 0.00018265892214230155 Iter 50: T = 570.7940145855474 K, F = -1.8540636972662257, relative_change = 7.660810605583562e-5 Iter 55: T = 570.6603696795873 K, F = -0.7754533036683798, relative_change = 3.207670677894165e-5 Iter 60: T = 570.6044446311307 K, F = -0.32431463873712957, relative_change = 1.3421569156695409e-5 Iter 65: T = 570.5810503033699 K, F = -0.13563414585740496, relative_change = 5.614234484857414e-6 Iter 70: T = 570.57126550043 K, F = -0.05672415036352338, relative_change = 2.348145302200005e-6 Iter 75: T = 570.5671732013087 K, F = -0.023722774960821813, relative_change = 9.820583360143737e-7 Iter 80: T = 570.5654617218657 K, F = -0.009921157914527745, relative_change = 4.107148084518956e-7 Iter 85: T = 570.5647459552878 K, F = -0.004149148491886523, relative_change = 1.717669369427941e-7 Iter 90: T = 570.5644466122061 K, F = -0.0017352237596897635, relative_change = 7.183517658308885e-8 Iter 95: T = 570.5643214231882 K, F = -0.0007256913522645236, relative_change = 3.004236231715715e-8 Iter 100: T = 570.5642690676169 K, F = -0.00030349280022640146, relative_change = 1.2564080610542232e-8 Iter 105: T = 570.5642471718866 K, F = -0.00012692431564259588, relative_change = 5.2544496058374596e-9 Iter 110: T = 570.5642380148298 K, F = -5.308126527275858e-5, relative_change = 2.1974737723732133e-9 Iter 115: T = 570.5642341852391 K, F = -2.2199219498530987e-5, relative_change = 9.190098224549929e-10 Iter 120: T = 570.5642325836585 K, F = -9.283978265994808e-6, relative_change = 3.8434086984427915e-10 Iter 125: T = 570.5642319138583 K, F = -3.882669902366409e-6, relative_change = 1.607359144085635e-10 Iter 130: T = 570.56423163374 K, F = -1.6237791945483693e-6, relative_change = 6.722169043634348e-11 Iter 135: T = 570.5642315165911 K, F = -6.790839511272573e-7, relative_change = 2.811291790216881e-11 Iter 140: T = 570.5642314675981 K, F = -2.840014384219991e-7, relative_change = 1.1757175401459728e-11 Iter 145: T = 570.5642314471086 K, F = -1.1877239747271062e-7, relative_change = 4.916974779903533e-12 Iter 150: T = 570.5642314385397 K, F = -4.967221284291057e-8, relative_change = 2.056344933882227e-12 Iter 155: T = 570.564231434956 K, F = -2.077362631913715e-8, relative_change = 8.599927161709771e-13 Iter 160: T = 570.5642314334573 K, F = -8.687787100836175e-9, relative_change = 3.596595756405736e-13 Converged in 163 iterations to T = 570.5642314330184 K Iter 1: T = 979.9259468353492 K, F = -4573.892108919914, relative_change = 0.02007405316465077 Iter 2: T = 961.904849229491 K, F = -3863.8088802146967, relative_change = 0.0183902647583289 Iter 3: T = 945.8173550964576 K, F = -3262.4425068551373, relative_change = 0.016724621095236078 Iter 5: T = 918.9248234000544 K, F = -2322.7325121122813, relative_change = 0.013537465542532845 Iter 10: T = 876.1421664942563 K, F = -986.3151755154216, relative_change = 0.007138339819706698 Iter 15: T = 855.8443601839116 K, F = -415.6875732613433, relative_change = 0.0033548205407319966 Iter 20: T = 846.8252085543252 K, F = -174.46394223088598, relative_change = 0.001480041930366864 Iter 25: T = 842.9497697826658 K, F = -73.07608960518454, relative_change = 0.0006335528269418785 Iter 30: T = 841.3100049040029 K, F = -30.581482819089835, relative_change = 0.0002675987926025716 Iter 35: T = 840.6208404517404 K, F = -12.793102108911707, relative_change = 0.0001123814306927016 Iter 40: T = 840.3320245435656 K, F = -5.350853060483614, relative_change = 4.708168791214738e-5 Iter 45: T = 840.2111331070779 K, F = -2.237900122688144, relative_change = 1.9704578669995252e-5 Iter 50: T = 840.1605564407513 K, F = -0.9359357156047584, relative_change = 8.243220957741421e-6 Iter 55: T = 840.1394014504287 K, F = -0.3914228452754449, relative_change = 3.4478562946094204e-6 Iter 60: T = 840.1305536167189 K, F = -0.1636982946985932, relative_change = 1.4420121470251758e-6 Iter 65: T = 840.1268532483213 K, F = -0.06846068433555441, relative_change = 6.03080251427086e-7 Iter 70: T = 840.1253056928068 K, F = -0.02863109371102479, relative_change = 2.5221773345897285e-7 Iter 75: T = 840.1246584835905 K, F = -0.011973868449733027, relative_change = 1.054808827418423e-7 Iter 80: T = 840.1243878124388 K, F = -0.0050076153303304505, relative_change = 4.4113437354053244e-8 Iter 85: T = 840.1242746144385 K, F = -0.0020942446277860682, relative_change = 1.844877898272011e-8 Iter 90: T = 840.1242272736667 K, F = -0.0008758381300300044, relative_change = 7.715501907645504e-9 Iter 95: T = 840.1242074751879 K, F = -0.00036628596913579337, relative_change = 3.226715432697272e-9 Iter 100: T = 840.1241991952271 K, F = -0.0001531851689366981, relative_change = 1.3494510123585455e-9 Iter 105: T = 840.1241957324485 K, F = -6.406386703372569e-5, relative_change = 5.643565400027715e-10 Iter 110: T = 840.124194284273 K, F = -2.6792273200237915e-5, relative_change = 2.3602063731547376e-10 Iter 115: T = 840.1241936786288 K, F = -1.1204849589496746e-5, relative_change = 9.870665808942408e-11 Iter 120: T = 840.1241934253411 K, F = -4.686000550924163e-6, relative_change = 4.128029128427268e-11 Iter 125: T = 840.1241933194133 K, F = -1.9597426874629065e-6, relative_change = 1.7263922218981313e-11 Iter 130: T = 840.124193275113 K, F = -8.195879270811446e-7, relative_change = 7.219979601819658e-12 Iter 135: T = 840.1241932565861 K, F = -3.4276216531736736e-7, relative_change = 3.0194879162510655e-12 Iter 140: T = 840.124193248838 K, F = -1.4335149467470387e-7, relative_change = 1.2628234670096254e-12 Iter 145: T = 840.1241932455974 K, F = -5.995051099993987e-8, relative_change = 5.281208425704158e-13 Converged in 150 iterations to T = 840.1241932442423 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 5%|█▋ | ETA: 0:00:18 Bin 1 ray tracing: 11%|███▎ | ETA: 0:00:17 Bin 1 ray tracing: 16%|████▉ | ETA: 0:00:15 Bin 1 ray tracing: 22%|██████▋ | ETA: 0:00:14 Bin 1 ray tracing: 28%|████████▍ | ETA: 0:00:13 Bin 1 ray tracing: 34%|██████████▏ | ETA: 0:00:12 Bin 1 ray tracing: 40%|███████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 45%|█████████████▋ | ETA: 0:00:10 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:09 Bin 1 ray tracing: 57%|█████████████████ | ETA: 0:00:08 Bin 1 ray tracing: 62%|██████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:05 Bin 1 ray tracing: 80%|████████████████████████ | ETA: 0:00:04 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:03 Bin 1 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:02 Bin 1 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 2 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 2 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 2 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 2 ray tracing: 29%|████████▊ | ETA: 0:00:12 Bin 2 ray tracing: 35%|██████████▌ | ETA: 0:00:11 Bin 2 ray tracing: 41%|████████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 47%|██████████████ | ETA: 0:00:09 Bin 2 ray tracing: 52%|███████████████▊ | ETA: 0:00:08 Bin 2 ray tracing: 58%|█████████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 2 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 90%|███████████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██ | ETA: 0:00:15 Bin 3 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 3 ray tracing: 19%|█████▋ | ETA: 0:00:14 Bin 3 ray tracing: 25%|███████▍ | ETA: 0:00:13 Bin 3 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 3 ray tracing: 36%|██████████▊ | ETA: 0:00:11 Bin 3 ray tracing: 42%|████████████▌ | ETA: 0:00:10 Bin 3 ray tracing: 47%|██████████████▎ | ETA: 0:00:09 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:08 Bin 3 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 3 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 77%|███████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 3 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:14 Bin 4 ray tracing: 15%|████▌ | ETA: 0:00:13 Bin 4 ray tracing: 22%|██████▊ | ETA: 0:00:11 Bin 4 ray tracing: 30%|████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 38%|███████████▍ | ETA: 0:00:09 Bin 4 ray tracing: 47%|██████████████ | ETA: 0:00:07 Bin 4 ray tracing: 55%|████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 64%|███████████████████▏ | ETA: 0:00:05 Bin 4 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 4 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 5 ray tracing: 21%|██████▍ | ETA: 0:00:11 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:10 Bin 5 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 5 ray tracing: 41%|████████████▏ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 5 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 5 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 5 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▊ | ETA: 0:00:03 Bin 5 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 6 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 6 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 6 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 6 ray tracing: 37%|███████████▏ | ETA: 0:00:10 Bin 6 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 6 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 6 ray tracing: 57%|█████████████████ | ETA: 0:00:07 Bin 6 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 6 ray tracing: 69%|████████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 7 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 7 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:12 Bin 7 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 7 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 7 ray tracing: 48%|██████████████▌ | ETA: 0:00:09 Bin 7 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 60%|█████████████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 66%|███████████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 7 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 7 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 8 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 8 ray tracing: 18%|█████▌ | ETA: 0:00:14 Bin 8 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 8 ray tracing: 30%|█████████ | ETA: 0:00:12 Bin 8 ray tracing: 36%|██████████▉ | ETA: 0:00:11 Bin 8 ray tracing: 42%|████████████▋ | ETA: 0:00:10 Bin 8 ray tracing: 48%|██████████████▎ | ETA: 0:00:09 Bin 8 ray tracing: 53%|████████████████ | ETA: 0:00:08 Bin 8 ray tracing: 59%|█████████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 65%|███████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:05 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 83%|████████████████████████▉ | ETA: 0:00:03 Bin 8 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▋ | ETA: 0:00:17 Bin 9 ray tracing: 11%|███▌ | ETA: 0:00:15 Bin 9 ray tracing: 17%|█████▎ | ETA: 0:00:14 Bin 9 ray tracing: 23%|███████ | ETA: 0:00:13 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:12 Bin 9 ray tracing: 35%|██████████▌ | ETA: 0:00:11 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:10 Bin 9 ray tracing: 47%|██████████████▏ | ETA: 0:00:09 Bin 9 ray tracing: 53%|███████████████▉ | ETA: 0:00:08 Bin 9 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 9 ray tracing: 65%|███████████████████▍ | ETA: 0:00:06 Bin 9 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:02 Bin 9 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██ | ETA: 0:00:13 Bin 10 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 10 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 10 ray tracing: 27%|███████▉ | ETA: 0:00:11 Bin 10 ray tracing: 33%|█████████▋ | ETA: 0:00:10 Bin 10 ray tracing: 39%|███████████▍ | ETA: 0:00:10 Bin 10 ray tracing: 45%|█████████████▏ | ETA: 0:00:09 Bin 10 ray tracing: 52%|███████████████ | ETA: 0:00:08 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 90%|██████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2756844826989 K, F = -7456.266419477364, relative_change = 0.03272431551730107 Iter 2: T = 936.6245238507817 K, F = -6320.5490391326, relative_change = 0.03168813309755596 Iter 3: T = 908.015280049862 K, F = -5356.315843495107, relative_change = 0.0305450509488021 Iter 5: T = 856.7850304897987 K, F = -3843.0102355633258, relative_change = 0.027943149366919832 Iter 10: T = 761.4486483343296 K, F = -1664.1837687756538, relative_change = 0.020034481928191496 Iter 15: T = 705.5735196107917 K, F = -712.5763733641262, relative_change = 0.012020642405077903 Iter 20: T = 676.8125319727817 K, F = -302.0293080007523, relative_change = 0.006161671514566111 Iter 25: T = 663.3930330856023 K, F = -127.15236186114107, relative_change = 0.0028479948281349542 Iter 30: T = 657.4835631377059 K, F = -53.33670780338923, relative_change = 0.0012461493579682228 Iter 35: T = 654.9550735683555 K, F = -22.335138760499497, relative_change = 0.0005314560042752433 Iter 40: T = 653.8872275146601 K, F = -9.34599450238251, relative_change = 0.00022411571081453862 Iter 45: T = 653.4387900773565 K, F = -3.9095175877963806, relative_change = 9.405620142323593e-5 Iter 50: T = 653.2509219522999 K, F = -1.635166761826559, relative_change = 3.939314857816269e-5 Iter 55: T = 653.1722960222693 K, F = -0.683874254415674, relative_change = 1.6484802573751296e-5 Iter 60: T = 653.1394036955423 K, F = -0.28600927775144963, relative_change = 6.895912443968349e-6 Iter 65: T = 653.1256459775587 K, F = -0.11961335234865483, relative_change = 2.8842628291218853e-6 Iter 70: T = 653.1198920287277 K, F = -0.05002388228376581, relative_change = 1.2062873690767005e-6 Iter 75: T = 653.1174856049336 K, F = -0.020920611188233462, relative_change = 5.044932655477751e-7 Iter 80: T = 653.1164792003758 K, F = -0.00874925402603316, relative_change = 2.1098676694815548e-7 Iter 85: T = 653.1160583083288 K, F = -0.0036590433232068786, relative_change = 8.823747570477155e-8 Iter 90: T = 653.115882285961 K, F = -0.0015302557559869756, relative_change = 3.6902016845144494e-8 Iter 95: T = 653.1158086712544 K, F = -0.000639971256445937, relative_change = 1.5432873012618497e-8 Iter 100: T = 653.1157778846963 K, F = -0.00026764362654785323, relative_change = 6.45421335183126e-9 Iter 105: T = 653.1157650093884 K, F = -0.00011193176149121298, relative_change = 2.6992293694203973e-9 Iter 110: T = 653.1157596247806 K, F = -4.6811198927410036e-5, relative_change = 1.128849990735269e-9 Iter 115: T = 653.1157573728733 K, F = -1.957700209409552e-5, relative_change = 4.720985469651027e-10 Iter 120: T = 653.1157564310988 K, F = -8.187337003418005e-6, relative_change = 1.9743727414366944e-10 Iter 125: T = 653.1157560372375 K, F = -3.424042344379874e-6, relative_change = 8.257063177998201e-11 Iter 130: T = 653.1157558725199 K, F = -1.4319755912151066e-6, relative_change = 3.453202896167276e-11 Iter 135: T = 653.115755803633 K, F = -5.988687009073068e-7, relative_change = 1.4441692624667676e-11 Iter 140: T = 653.1157557748238 K, F = -2.5045440787963e-7, relative_change = 6.039697132894929e-12 Iter 145: T = 653.1157557627754 K, F = -1.04743754725245e-7, relative_change = 2.5258910813912115e-12 Iter 150: T = 653.1157557577366 K, F = -4.380387641500505e-8, relative_change = 1.0563285712004486e-12 Iter 155: T = 653.1157557556293 K, F = -1.8319752159712266e-8, relative_change = 4.4178002514141716e-13 Converged in 159 iterations to T = 653.1157557548686 K Iter 1: T = 970.2794523460626 K, F = -6771.855054489056, relative_change = 0.029720547653937356 Iter 2: T = 942.7219526723896 K, F = -5735.704896659813, relative_change = 0.02840161111011983 Iter 3: T = 917.283130008714 K, F = -4856.348449340162, relative_change = 0.026984438615821716 Iter 5: T = 872.5474978056121 K, F = -3477.288489086485, relative_change = 0.023899563012732057 Iter 10: T = 793.0660840040109 K, F = -1496.8885326386383, relative_change = 0.0155938743837343 Iter 15: T = 749.6992345619161 K, F = -637.256658240393, relative_change = 0.008553283948165973 Iter 20: T = 728.6262204544246 K, F = -269.00783735881555, relative_change = 0.00411959984906459 Iter 25: T = 719.1357630287499 K, F = -112.99608503903464, relative_change = 0.001840332266421681 Iter 30: T = 715.0311953797167 K, F = -47.34766291230678, relative_change = 0.0007923117394627695 Iter 35: T = 713.2894306485089 K, F = -19.817732263161627, relative_change = 0.00033549149653408115 Iter 40: T = 712.5564821463242 K, F = -8.290906285010697, relative_change = 0.00014104349715015845 Iter 45: T = 712.249154657815 K, F = -3.46786442020675, relative_change = 5.911596382938695e-5 Iter 50: T = 712.1204861139355 K, F = -1.4503913994323447, relative_change = 2.474579329587308e-5 Iter 55: T = 712.0666507673632 K, F = -0.6065865974327281, relative_change = 1.0352977892180628e-5 Iter 60: T = 712.0441318720457 K, F = -0.25368448727283, relative_change = 4.33043752705614e-6 Iter 65: T = 712.0347134469314 K, F = -0.10609435939634793, relative_change = 1.811162892869538e-6 Iter 70: T = 712.0307744171471 K, F = -0.04437001159121623, relative_change = 7.574713270393833e-7 Iter 75: T = 712.0291270447749 K, F = -0.01855608333066583, relative_change = 3.167872937580102e-7 Iter 80: T = 712.0284380899395 K, F = -0.0077603782078368155, relative_change = 1.3248488340010492e-7 Iter 85: T = 712.0281499600936 K, F = -0.0032454832911529286, relative_change = 5.54068748072808e-8 Iter 90: T = 712.0280294606276 K, F = -0.001357299949588664, relative_change = 2.3171836743983496e-8 Iter 95: T = 712.0279790662903 K, F = -0.0005676390619796523, relative_change = 9.690742352101974e-9 Iter 100: T = 712.0279579907728 K, F = -0.00023739343766360221, relative_change = 4.052784804234097e-9 Iter 105: T = 712.0279491767392 K, F = -9.928077264775848e-5, relative_change = 1.694923138624067e-9 Iter 110: T = 712.0279454906049 K, F = -4.152040587956929e-5, relative_change = 7.088371344027791e-10 Iter 115: T = 712.0279439490193 K, F = -1.7364329896629727e-5, relative_change = 2.9644416307803417e-10 Iter 120: T = 712.0279433043099 K, F = -7.261970408234397e-6, relative_change = 1.2397649446091776e-10 Iter 125: T = 712.0279430346848 K, F = -3.0370431163273537e-6, relative_change = 5.184845690651951e-11 Iter 130: T = 712.0279429219243 K, F = -1.2701273861548401e-6, relative_change = 2.168363851749649e-11 Iter 135: T = 712.0279428747664 K, F = -5.311817415920572e-7, relative_change = 9.068344640829769e-12 Iter 140: T = 712.0279428550444 K, F = -2.221464154850139e-7, relative_change = 3.792487766185024e-12 Iter 145: T = 712.0279428467965 K, F = -9.290358604641114e-8, relative_change = 1.5860517612490243e-12 Iter 150: T = 712.0279428433472 K, F = -3.885389487923163e-8, relative_change = 6.633144212024921e-13 Iter 155: T = 712.0279428419046 K, F = -1.6250784273807994e-8, relative_change = 2.7743369354029237e-13 Converged in 157 iterations to T = 712.0279428415994 K Iter 1: T = 974.4099769398383 K, F = -5830.711096654034, relative_change = 0.02559002306016171 Iter 2: T = 951.0092228013161 K, F = -4932.995335179689, relative_change = 0.024015306382651102 Iter 3: T = 929.7230423129308 K, F = -4171.691823426577, relative_change = 0.022382727714968065 Iter 5: T = 893.141156873148 K, F = -2979.3740641842674, relative_change = 0.019028371536177646 Iter 10: T = 831.5162461615296 K, F = -1274.0131284912388, relative_change = 0.011180805495927676 Iter 15: T = 800.2313001758688 K, F = -539.456694529809, relative_change = 0.005643741277273954 Iter 20: T = 785.7635462344726 K, F = -226.97710182691756, relative_change = 0.00258592557935679 Iter 25: T = 779.4221190312498 K, F = -95.18357293905665, relative_change = 0.0011267041312128603 Iter 30: T = 776.7146886584231 K, F = -39.85381352768148, relative_change = 0.0004796082073468014 Iter 35: T = 775.5723582734305 K, F = -16.675668127829592, relative_change = 0.00020208709635645796 Iter 40: T = 775.0928361048515 K, F = -6.975429249777658, relative_change = 8.478212588561197e-5 Iter 45: T = 774.891979745169 K, F = -2.917464848044627, relative_change = 3.5503793403469926e-5 Iter 50: T = 774.8079240624476 K, F = -1.2201636462965286, relative_change = 1.4856328478495255e-5 Iter 55: T = 774.7727613141885 K, F = -0.5102948837126449, relative_change = 6.214532509718395e-6 Iter 60: T = 774.7580541429261 K, F = -0.21341279215485076, relative_change = 2.599243396386548e-6 Iter 65: T = 774.751903132619 K, F = -0.08925201931048676, relative_change = 1.0870786557368572e-6 Iter 70: T = 774.7493306549375 K, F = -0.037326302508599696, relative_change = 4.546369768718309e-7 Iter 75: T = 774.7482548050044 K, F = -0.015610312847424757, relative_change = 1.9013596008923475e-7 Iter 80: T = 774.7478048701322 K, F = -0.006528420547668445, relative_change = 7.951736477619552e-8 Iter 85: T = 774.7476167017185 K, F = -0.002730263661965604, relative_change = 3.3255152760932403e-8 Iter 90: T = 774.7475380073923 K, F = -0.0011418289070166399, relative_change = 1.3907709215935823e-8 Iter 95: T = 774.747505096477 K, F = -0.00047752649225962784, relative_change = 5.816371349222721e-9 Iter 100: T = 774.7474913327376 K, F = -0.00019970728426799145, relative_change = 2.4324761945725862e-9 Iter 105: T = 774.7474855765772 K, F = -8.351997159983249e-5, relative_change = 1.0172906342367412e-9 Iter 110: T = 774.7474831692822 K, F = -3.492905206170516e-5, relative_change = 4.254431289927441e-10 Iter 115: T = 774.7474821625226 K, F = -1.4607746216421802e-5, relative_change = 1.7792539245893669e-10 Iter 120: T = 774.7474817414836 K, F = -6.10913305321148e-6, relative_change = 7.441051362646868e-11 Iter 125: T = 774.7474815654001 K, F = -2.5549117843581826e-6, relative_change = 3.111935796687156e-11 Iter 130: T = 774.7474814917599 K, F = -1.0684953213324633e-6, relative_change = 1.3014495689867123e-11 Iter 135: T = 774.7474814609628 K, F = -4.4685812772282674e-7, relative_change = 5.442825122602455e-12 Iter 140: T = 774.747481448083 K, F = -1.8688173386571805e-7, relative_change = 2.276258465530845e-12 Iter 145: T = 774.7474814426965 K, F = -7.81580679065641e-8, relative_change = 9.519815556483134e-13 Iter 150: T = 774.7474814404438 K, F = -3.268590809124561e-8, relative_change = 3.9812117246950617e-13 Converged in 154 iterations to T = 774.7474814396307 K Iter 1: T = 970.3235058175832 K, F = -6761.817429097428, relative_change = 0.02967649418241681 Iter 2: T = 942.8109304919307 K, F = -5727.134428575079, relative_change = 0.028354023334177286 Iter 3: T = 917.4176388403181 K, F = -4849.028990413772, relative_change = 0.026933599124018583 Iter 5: T = 872.7735295877186 K, F = -3471.9481967531465, relative_change = 0.023843616422331026 Iter 10: T = 793.5044044332108 K, F = -1494.4707782492405, relative_change = 0.015537856571896245 Iter 15: T = 750.2926027326282 K, F = -636.1825250670521, relative_change = 0.008513265269037349 Iter 20: T = 729.3090538107589 K, F = -268.5420744972962, relative_change = 0.00409745394470191 Iter 25: T = 719.8625545359487 K, F = -112.79772415501776, relative_change = 0.0018297723112046223 Iter 30: T = 715.7777756856613 K, F = -47.26401653643531, relative_change = 0.0007876326562830927 Iter 35: T = 714.0445565176994 K, F = -19.782624436382633, relative_change = 0.0003334856518370525 Iter 40: T = 713.3152309725978 K, F = -8.276201339906574, relative_change = 0.00014019582242158702 Iter 45: T = 713.0094273839302 K, F = -3.4617106823601076, relative_change = 5.875989803553612e-5 Iter 50: T = 712.8813976921323 K, F = -1.4478171389157337, relative_change = 2.4596608495719134e-5 Iter 55: T = 712.8278297911118 K, F = -0.6055098894168451, relative_change = 1.029053903640295e-5 Iter 60: T = 712.805422791998 K, F = -0.2532341738542224, relative_change = 4.3043164511395725e-6 Iter 65: T = 712.7960511714862 K, F = -0.10590602922632031, relative_change = 1.800237277151314e-6 Iter 70: T = 712.792131717393 K, F = -0.04429124901512316, relative_change = 7.529018469719141e-7 Iter 75: T = 712.7904925320618 K, F = -0.018523143768195083, relative_change = 3.148762376733599e-7 Iter 80: T = 712.7898070011887 K, F = -0.007746602466588648, relative_change = 1.3168564900704975e-7 Iter 85: T = 712.7895203032926 K, F = -0.0032397221077686833, relative_change = 5.5072624056787966e-8 Iter 90: T = 712.7894004026866 K, F = -0.0013548905536233669, relative_change = 2.3032048853464385e-8 Iter 95: T = 712.7893502587999 K, F = -0.0005666314248859994, relative_change = 9.632281364850952e-9 Iter 100: T = 712.789329288024 K, F = -0.0002369720317406676, relative_change = 4.02833571314986e-9 Iter 105: T = 712.7893205177943 K, F = -9.910453397010688e-5, relative_change = 1.6846982067107679e-9 Iter 110: T = 712.7893168499793 K, F = -4.144669836558812e-5, relative_change = 7.045609047748424e-10 Iter 115: T = 712.7893153160553 K, F = -1.7333503300132058e-5, relative_change = 2.946557717448342e-10 Iter 120: T = 712.7893146745499 K, F = -7.249077775495216e-6, relative_change = 1.2322855792880886e-10 Iter 125: T = 712.7893144062649 K, F = -3.0316519946671505e-6, relative_change = 5.153567332070548e-11 Iter 130: T = 712.7893142940649 K, F = -1.2678741831972928e-6, relative_change = 2.155285299266528e-11 Iter 135: T = 712.7893142471414 K, F = -5.302399606055275e-7, relative_change = 9.013657724720118e-12 Iter 140: T = 712.7893142275174 K, F = -2.2175244795974436e-7, relative_change = 3.769615295511379e-12 Iter 145: T = 712.7893142193104 K, F = -9.273877710214151e-8, relative_change = 1.576485472367276e-12 Iter 150: T = 712.7893142158782 K, F = -3.878525223210971e-8, relative_change = 6.593184490677443e-13 Iter 155: T = 712.7893142144428 K, F = -1.6220940923794558e-8, relative_change = 2.757430981341986e-13 Converged in 157 iterations to T = 712.789314214139 K Iter 1: T = 969.3455190299259 K, F = -6984.652648970747, relative_change = 0.030654480970074102 Iter 2: T = 940.8325922975699 K, F = -5917.445753017807, relative_change = 0.0294146165351755 Iter 3: T = 914.4220192471122 K, F = -5011.609734096022, relative_change = 0.02807149036574243 Iter 5: T = 867.721430440814 K, F = -3590.659553788709, relative_change = 0.02510765834775959 Iter 10: T = 783.6109247755525 K, F = -1548.3761803538991, relative_change = 0.01683751738400277 Iter 15: T = 736.786492194471 K, F = -660.2177284263286, relative_change = 0.009464248767780232 Iter 20: T = 713.6834209345976 K, F = -278.99376911293433, relative_change = 0.004632138241313499 Iter 25: T = 703.185114691184 K, F = -117.25623569811064, relative_change = 0.00208688379101654 Iter 30: T = 698.6244807742465 K, F = -49.1456154067758, relative_change = 0.0009020067331022349 Iter 35: T = 696.6853045869865 K, F = -20.572645120799134, relative_change = 0.0003826006109052123 Iter 40: T = 695.868576448914 K, F = -8.607152897059425, relative_change = 0.0001609672244998955 Iter 45: T = 695.5259940099528 K, F = -3.6002165458086823, relative_change = 6.748763960581757e-5 Iter 50: T = 695.3825431220356 K, F = -1.5057591405356625, relative_change = 2.8253843666113867e-5 Iter 55: T = 695.3225189016476 K, F = -0.6297449383990731, relative_change = 1.182129863036719e-5 Iter 60: T = 695.2974105682781 K, F = -0.26337008787963306, relative_change = 4.9447189997465895e-6 Iter 65: T = 695.2869090032507 K, F = -0.1101450817363615, relative_change = 2.0680998697592236e-6 Iter 70: T = 695.282516955382 K, F = -0.046064087528976394, relative_change = 8.649319341622347e-7 Iter 75: T = 695.2806801191332 K, F = -0.01926456882784011, relative_change = 3.61729739063379e-7 Iter 80: T = 695.2799119271393 K, F = -0.00805667577696667, relative_change = 1.512805494446854e-7 Iter 85: T = 695.2795906591746 K, F = -0.003369398555044034, relative_change = 6.32674815509603e-8 Iter 90: T = 695.2794563009179 K, F = -0.001409122807874974, relative_change = 2.6459242448784244e-8 Iter 95: T = 695.2794001106629 K, F = -0.0005893120031841281, relative_change = 1.1065575748842901e-8 Iter 100: T = 695.2793766112222 K, F = -0.0002464573192653141, relative_change = 4.627756704949703e-9 Iter 105: T = 695.2793667834748 K, F = -0.00010307139494736273, relative_change = 1.935383264650123e-9 Iter 110: T = 695.2793626733933 K, F = -4.3105687940525605e-5, relative_change = 8.094004106759289e-10 Iter 115: T = 695.2793609545081 K, F = -1.802731338529373e-5, relative_change = 3.385009200948088e-10 Iter 120: T = 695.2793602356497 K, F = -7.5392376799321426e-6, relative_change = 1.4156512673235937e-10 Iter 125: T = 695.2793599350146 K, F = -3.1529985410339023e-6, relative_change = 5.920421373044256e-11 Iter 130: T = 695.2793598092854 K, F = -1.3186222220795685e-6, relative_change = 2.4759920094134956e-11 Iter 135: T = 695.279359756704 K, F = -5.514647285487229e-7, relative_change = 1.035491620714752e-11 Iter 140: T = 695.2793597347138 K, F = -2.306300521670579e-7, relative_change = 4.330566837310547e-12 Iter 145: T = 695.2793597255172 K, F = -9.645158738358361e-8, relative_change = 1.811082475292754e-12 Iter 150: T = 695.2793597216712 K, F = -4.033847778028843e-8, relative_change = 7.574402057194658e-13 Iter 155: T = 695.2793597200626 K, F = -1.686935313660598e-8, relative_change = 3.1675777107607387e-13 Converged in 158 iterations to T = 695.2793597195918 K Iter 1: T = 963.5386997448503 K, F = -8307.741946786378, relative_change = 0.03646130025514974 Iter 2: T = 928.9535710190366 K, F = -7049.44108320583, relative_change = 0.03589386574194888 Iter 3: T = 896.2109736576916 K, F = -5980.809604752985, relative_change = 0.035246753317743594 Iter 5: T = 836.1342238134716 K, F = -4302.618751958802, relative_change = 0.03368418045916123 Iter 10: T = 716.2468600261589 K, F = -1880.3806504834465, relative_change = 0.027987535014489827 Iter 15: T = 636.3835072788238 K, F = -814.3365099653757, relative_change = 0.020087365923916273 Iter 20: T = 589.5379448372603 K, F = -348.70985971353076, relative_change = 0.012065533819221548 Iter 25: T = 565.4072740539034 K, F = -147.810389338374, relative_change = 0.006189746394935418 Iter 30: T = 554.1428600771947 K, F = -62.22913250930867, relative_change = 0.002862319415649904 Iter 35: T = 549.1811621931221 K, F = -26.103703358319205, relative_change = 0.0012527051158651627 Iter 40: T = 547.0579463017145 K, F = -10.931192561728857, relative_change = 0.000534306954172345 Iter 45: T = 546.1612112671019 K, F = -4.574100396002296, relative_change = 0.00022532796602959786 Iter 50: T = 545.784622843982 K, F = -1.913391700054415, relative_change = 9.456673563067304e-5 Iter 55: T = 545.6268536305029 K, F = -0.8002818980858754, relative_change = 3.960728660183973e-5 Iter 60: T = 545.5608243358853 K, F = -0.3347012181329963, relative_change = 1.657446758702738e-5 Iter 65: T = 545.5332016330659 K, F = -0.13997845638721523, relative_change = 6.933430677108127e-6 Iter 70: T = 545.521648007818 K, F = -0.058541083713759684, relative_change = 2.8999567717218387e-6 Iter 75: T = 545.5168158846648 K, F = -0.024482654070510035, relative_change = 1.21285135275205e-6 Iter 80: T = 545.5147949877343 K, F = -0.010238951211690078, relative_change = 5.072385050147109e-7 Iter 85: T = 545.5139498165765 K, F = -0.004282053929652668, relative_change = 2.1213487687664743e-7 Iter 90: T = 545.5135963545188 K, F = -0.0017908064864815554, relative_change = 8.871763215526996e-8 Iter 95: T = 545.5134485322225 K, F = -0.000748936728615951, relative_change = 3.710282457486226e-8 Iter 100: T = 545.5133867111304 K, F = -0.0003132142966562057, relative_change = 1.5516853332339828e-8 Iter 105: T = 545.5133608568038 K, F = -0.0001309899612438603, relative_change = 6.489334928036631e-9 Iter 110: T = 545.5133500442145 K, F = -5.478156626192998e-5, relative_change = 2.713917627935873e-9 Iter 115: T = 545.5133455222602 K, F = -2.2910305291723443e-5, relative_change = 1.134992810338417e-9 Iter 120: T = 545.513343631125 K, F = -9.581363656779862e-6, relative_change = 4.746675744689576e-10 Iter 125: T = 545.5133428402296 K, F = -4.007040872222589e-6, relative_change = 1.9851165793069546e-10 Iter 130: T = 545.5133425094676 K, F = -1.6757920419663286e-6, relative_change = 8.301993120763202e-11 Iter 135: T = 545.5133423711391 K, F = -7.008361825322496e-7, relative_change = 3.471992363898384e-11 Iter 140: T = 545.5133423132884 K, F = -2.93097679376908e-7, relative_change = 1.4520267796531995e-11 Iter 145: T = 545.5133422890946 K, F = -1.2257647655222748e-7, relative_change = 6.072525955351198e-12 Iter 150: T = 545.5133422789766 K, F = -5.1263717271154974e-8, relative_change = 2.539641067197127e-12 Iter 155: T = 545.513342274745 K, F = -2.1439237413156675e-8, relative_change = 1.0621150920026883e-12 Iter 160: T = 545.5133422729754 K, F = -8.966472037075235e-9, relative_change = 4.442054112848488e-13 Converged in 164 iterations to T = 545.5133422723367 K Iter 1: T = 966.9578429080589 K, F = -7528.686924604487, relative_change = 0.033042157091941096 Iter 2: T = 935.9757853969854 K, F = -6382.488017864301, relative_change = 0.03204075310863302 Iter 3: T = 907.0233084986307 K, F = -5409.323098353471, relative_change = 0.030932933682760618 Iter 5: T = 855.0751930469733 K, F = -3881.897376798547, relative_change = 0.028398994118143523 Iter 10: T = 757.883315189644 K, F = -1682.1924919309565, relative_change = 0.020588390985269316 Iter 15: T = 700.41194535612 K, F = -720.824867830752, relative_change = 0.012497970751040274 Iter 20: T = 670.5965724192494 K, F = -305.70104971008965, relative_change = 0.006463159445984796 Iter 25: T = 656.6130696266695 K, F = -128.741486609043, relative_change = 0.003002660210483235 Iter 30: T = 650.4382886688379 K, F = -54.01226510979453, relative_change = 0.0013171179154292116 Iter 35: T = 647.7928749714077 K, F = -22.61972447230948, relative_change = 0.0005623544676663711 Iter 40: T = 646.6750155561348 K, F = -9.465383146482134, relative_change = 0.0002372606352363384 Iter 45: T = 646.2054615011434 K, F = -3.959513176422575, relative_change = 9.959327868832202e-5 Iter 50: T = 646.0087266805047 K, F = -1.6560870917278883, relative_change = 4.171582156134147e-5 Iter 55: T = 645.9263863570926 K, F = -0.6926254158502432, relative_change = 1.745740074120814e-5 Iter 60: T = 645.8919395338381 K, F = -0.289669473302672, relative_change = 7.3028797936216865e-6 Iter 65: T = 645.8775315155332 K, F = -0.1211441520124853, relative_change = 3.0544990922418315e-6 Iter 70: T = 645.8715055698692 K, F = -0.05066409186151505, relative_change = 1.2774887952853173e-6 Iter 75: T = 645.8689853878959 K, F = -0.021188356381080686, relative_change = 5.342717046425211e-7 Iter 80: T = 645.8679314072849 K, F = -0.008861228596064863, relative_change = 2.2344066736357625e-7 Iter 85: T = 645.8674906181851 K, F = -0.0037058724828055167, relative_change = 9.344588081572301e-8 Iter 90: T = 645.867306274601 K, F = -0.001549840280606285, relative_change = 3.9080240245735065e-8 Iter 95: T = 645.867229179857 K, F = -0.0006481617407654849, relative_change = 1.634383314173034e-8 Iter 100: T = 645.8671969379044 K, F = -0.0002710689846155967, relative_change = 6.835187930382395e-9 Iter 105: T = 645.8671834539331 K, F = -0.0001133642868878515, relative_change = 2.8585575129176935e-9 Iter 110: T = 645.8671778147751 K, F = -4.7410298981032106e-5, relative_change = 1.1954829487847203e-9 Iter 115: T = 645.8671754564118 K, F = -1.982755320262264e-5, relative_change = 4.999652542039271e-10 Iter 120: T = 645.867174470116 K, F = -8.29211878550229e-6, relative_change = 2.090914226409064e-10 Iter 125: T = 645.8671740576352 K, F = -3.4678618966998975e-6, relative_change = 8.744449982743434e-11 Iter 130: T = 645.867173885131 K, F = -1.450300959437989e-6, relative_change = 3.657032659785459e-11 Iter 135: T = 645.8671738129876 K, F = -6.065330096505228e-7, relative_change = 1.5294143000285155e-11 Iter 140: T = 645.8671737828164 K, F = -2.536582298651169e-7, relative_change = 6.396165055970229e-12 Iter 145: T = 645.8671737701985 K, F = -1.0608382239318814e-7, relative_change = 2.6749758453292964e-12 Iter 150: T = 645.8671737649215 K, F = -4.436559580822674e-8, relative_change = 1.11870871993472e-12 Iter 155: T = 645.8671737627146 K, F = -1.8554010272620047e-8, relative_change = 4.678520079342018e-13 Converged in 160 iterations to T = 645.8671737617917 K Iter 1: T = 965.2299980624617 K, F = -7922.378016278567, relative_change = 0.034770001937538285 Iter 2: T = 932.4371369304025 K, F = -6719.380144862238, relative_change = 0.033974142119376105 Iter 3: T = 901.5920008020156 K, F = -5697.8298012862215, relative_change = 0.033080124017721535 Iter 5: T = 845.6316766446005 K, F = -4093.9498374364384, relative_change = 0.030979345252503575 Iter 10: T = 737.645025113602 K, F = -1781.2641335994865, relative_change = 0.023960573999579553 Iter 15: T = 670.2378075960897 K, F = -766.8565219092716, relative_change = 0.015654820941856287 Iter 20: T = 633.4230688347483 K, F = -326.49154475646094, relative_change = 0.008596817578809219 Iter 25: T = 615.5209270171174 K, F = -137.8300706157675, relative_change = 0.004143700714940431 Iter 30: T = 607.4551319068182 K, F = -57.89668974739477, relative_change = 0.0018518280592070674 Iter 35: T = 603.9660061021559 K, F = -24.26018637577957, relative_change = 0.0007974063374981885 Iter 40: T = 602.4852661002409 K, F = -10.154343305561465, relative_change = 0.0003376756323240031 Iter 45: T = 601.8621340497606 K, F = -4.24816007051382, relative_change = 0.00014196654875588417 Iter 50: T = 601.6008485117266 K, F = -1.7768934645174497, relative_change = 5.950369715165355e-5 Iter 55: T = 601.4914555355828 K, F = -0.7431640100732386, relative_change = 2.4908247153257075e-5 Iter 60: T = 601.4456850142938 K, F = -0.3108081059066312, relative_change = 1.0420970463902212e-5 Iter 65: T = 601.4265395470775 K, F = -0.12998506865312492, relative_change = 4.3588820101488055e-6 Iter 70: T = 601.4185320386808 K, F = -0.054361554158002534, relative_change = 1.8230603211271527e-6 Iter 75: T = 601.4151830901494 K, F = -0.022734694204612993, relative_change = 7.624472545205494e-7 Iter 80: T = 601.413782500133 K, F = -0.009507928153456802, relative_change = 3.1886833522861323e-7 Iter 85: T = 601.413196753208 K, F = -0.0039763304176371195, relative_change = 1.3335520834933108e-7 Iter 90: T = 601.4129517862447 K, F = -0.0016629490979535588, relative_change = 5.5770856590876496e-8 Iter 95: T = 601.4128493380294 K, F = -0.0006954652122196925, relative_change = 2.3324058516691447e-8 Iter 100: T = 601.4128064929439 K, F = -0.0002908518640983848, relative_change = 9.754403354218751e-9 Iter 105: T = 601.4127885746143 K, F = -0.00012163772397949524, relative_change = 4.079408584037472e-9 Iter 110: T = 601.4127810809543 K, F = -5.0870349648124424e-5, relative_change = 1.7060575169348724e-9 Iter 115: T = 601.4127779470161 K, F = -2.1274587979236426e-5, relative_change = 7.134936538316006e-10 Iter 120: T = 601.4127766363657 K, F = -8.897287419984412e-6, relative_change = 2.983915920033492e-10 Iter 125: T = 601.412776088236 K, F = -3.720951356811497e-6, relative_change = 1.247909111545485e-10 Iter 130: T = 601.4127758590016 K, F = -1.5561460733892751e-6, relative_change = 5.218904202677446e-11 Iter 135: T = 601.412775763133 K, F = -6.50799042434258e-7, relative_change = 2.1826086370148968e-11 Iter 140: T = 601.4127757230397 K, F = -2.7217111653321524e-7, relative_change = 9.127902641927072e-12 Iter 145: T = 601.4127757062722 K, F = -1.1382568954054761e-7, relative_change = 3.817413933000675e-12 Iter 150: T = 601.4127756992599 K, F = -4.7604410857715607e-8, relative_change = 1.5965266015444132e-12 Iter 155: T = 601.4127756963272 K, F = -1.990927772643758e-8, relative_change = 6.677047554172065e-13 Iter 160: T = 601.4127756951007 K, F = -8.325927114416487e-9, relative_change = 2.7922967392356835e-13 Converged in 162 iterations to T = 601.4127756948411 K Iter 1: T = 980.1669641406407 K, F = -4518.9760866425995, relative_change = 0.019833035859359263 Iter 2: T = 962.3765502740036 K, F = -3817.1639490568573, relative_change = 0.01815039122669764 Iter 3: T = 946.5076794077049 K, F = -3222.8430250180477, relative_change = 0.01648925346506066 Iter 5: T = 920.0107848554741 K, F = -2294.2433698713653, relative_change = 0.013320139431251545 Iter 10: T = 877.9506915573022 K, F = -973.9588773688281, relative_change = 0.006995053386928696 Iter 15: T = 858.0442982311678 K, F = -410.41364962345034, relative_change = 0.00327941473053679 Iter 20: T = 849.2108548474412 K, F = -172.23647275808707, relative_change = 0.0014450004772905618 Iter 25: T = 845.4176205787809 K, F = -72.14042124456549, relative_change = 0.0006182087110472419 Iter 30: T = 843.8130889775114 K, F = -30.18943212019588, relative_change = 0.0002610548459365 Iter 35: T = 843.1388137319256 K, F = -12.629010082402601, relative_change = 0.00010962200292183716 Iter 40: T = 842.8562520061676 K, F = -5.28220464043149, relative_change = 4.5923660850587436e-5 Iter 45: T = 842.7379809519545 K, F = -2.2091864704742177, relative_change = 1.921957539805131e-5 Iter 50: T = 842.6885010037869 K, F = -0.9239266119726571, relative_change = 8.040263728490277e-6 Iter 55: T = 842.6678048216831 K, F = -0.3864003702521942, relative_change = 3.3629556183126902e-6 Iter 60: T = 842.6591488928734 K, F = -0.1615978138926859, relative_change = 1.4065019020117891e-6 Iter 65: T = 842.6555287859143 K, F = -0.06758223437208422, relative_change = 5.882287837540286e-7 Iter 70: T = 842.654014797482 K, F = -0.028263714778823168, relative_change = 2.4600655701821303e-7 Iter 75: T = 842.6533816265585 K, F = -0.011820226079157559, relative_change = 1.028832744368954e-7 Iter 80: T = 842.6531168264128 K, F = -0.004943360236848049, relative_change = 4.302708302218733e-8 Iter 85: T = 842.6530060837413 K, F = -0.002067372377842158, relative_change = 1.79944520201752e-8 Iter 90: T = 842.6529597698183 K, F = -0.0008645998353438156, relative_change = 7.525496853823498e-9 Iter 95: T = 842.6529404007798 K, F = -0.00036158597824620387, relative_change = 3.1472530160745946e-9 Iter 100: T = 842.6529323004162 K, F = -0.00015121957730857005, relative_change = 1.3162188834464218e-9 Iter 105: T = 842.6529289127473 K, F = -6.324183304506903e-5, relative_change = 5.504584654484154e-10 Iter 110: T = 842.6529274959837 K, F = -2.6448490098918143e-5, relative_change = 2.302083081533944e-10 Iter 115: T = 842.6529269034761 K, F = -1.10610727872551e-5, relative_change = 9.62758498393298e-11 Iter 120: T = 842.6529266556824 K, F = -4.625873616603826e-6, relative_change = 4.026371789403508e-11 Iter 125: T = 842.6529265520521 K, F = -1.934595003749706e-6, relative_change = 1.683876257150883e-11 Iter 130: T = 842.6529265087128 K, F = -8.090711935970774e-7, relative_change = 7.0421756023139696e-12 Iter 135: T = 842.6529264905878 K, F = -3.3836447443924556e-7, relative_change = 2.945132722172452e-12 Iter 140: T = 842.6529264830077 K, F = -1.4150925720102236e-7, relative_change = 1.2317000612478007e-12 Iter 145: T = 842.6529264798376 K, F = -5.918172285568346e-8, relative_change = 5.151191738915774e-13 Converged in 150 iterations to T = 842.6529264785117 K Iter 1: T = 976.4610013649607 K, F = -5363.383230361981, relative_change = 0.02353899863503928 Iter 2: T = 955.0831775501712 K, F = -4535.064747395992, relative_change = 0.021893167043953814 Iter 3: T = 935.7746888399661 K, F = -3832.934036569901, relative_change = 0.02021655198632243 Iter 5: T = 902.9439722986847 K, F = -2734.150953383232, relative_change = 0.016864218721058637 Iter 10: T = 848.889012964837 K, F = -1165.865254260452, relative_change = 0.009484375636452668 Iter 15: T = 822.2092903659496 K, F = -492.6812320410615, relative_change = 0.004643670964152206 Iter 20: T = 810.0832355807609 K, F = -207.0680232448458, relative_change = 0.00209248453027942 Iter 25: T = 804.814943323263 K, F = -86.7889619926817, relative_change = 0.0009045096148241525 Iter 30: T = 802.5747677654629 K, F = -36.33046937745952, relative_change = 0.0003836775645041996 Iter 35: T = 801.6312479344912 K, F = -15.199905481465093, relative_change = 0.00016142307268043104 Iter 40: T = 801.2354784380956 K, F = -6.357848897367844, relative_change = 6.767924724409929e-5 Iter 45: T = 801.0697557296767 K, F = -2.6591153351150307, relative_change = 2.8334146249141558e-5 Iter 50: T = 801.0004121968167 K, F = -1.1121065246357553, relative_change = 1.1854911928593517e-5 Iter 55: T = 800.9714055453836 K, F = -0.4651019573924453, relative_change = 4.958781699477823e-6 Iter 60: T = 800.9592735049106 K, F = -0.19451219492838945, relative_change = 2.073981971540136e-6 Iter 65: T = 800.954199546101 K, F = -0.08134749810780129, relative_change = 8.673920590481761e-7 Iter 70: T = 800.9520775218938 K, F = -0.03402052584617676, relative_change = 3.6275862060677245e-7 Iter 75: T = 800.9511900600747 K, F = -0.014227795554442646, relative_change = 1.5171084483726726e-7 Iter 80: T = 800.9508189119024 K, F = -0.005950234951877742, relative_change = 6.34474370769289e-8 Iter 85: T = 800.9506636931222 K, F = -0.0024884594821992234, relative_change = 2.6534502145521295e-8 Iter 90: T = 800.9505987787428 K, F = -0.0010407035033555, relative_change = 1.1097050281986583e-8 Iter 95: T = 800.9505716307685 K, F = -0.00043523463879457935, relative_change = 4.640919757679312e-9 Iter 100: T = 800.9505602771605 K, F = -0.00018202032555758585, relative_change = 1.940888217288918e-9 Iter 105: T = 800.9505555289459 K, F = -7.612307287685471e-5, relative_change = 8.117026432524953e-10 Iter 110: T = 800.9505535431857 K, F = -3.183557771202494e-5, relative_change = 3.39463738217204e-10 Iter 115: T = 800.9505527127171 K, F = -1.3314019530308308e-5, relative_change = 1.4196779790367447e-10 Iter 120: T = 800.9505523654053 K, F = -5.568082422247045e-6, relative_change = 5.937263347594825e-11 Iter 125: T = 800.9505522201553 K, F = -2.3286383026288604e-6, relative_change = 2.4830341592468666e-11 Iter 130: T = 800.95055215941 K, F = -9.738636875811224e-7, relative_change = 1.0384338352836245e-11 Iter 135: T = 800.9505521340056 K, F = -4.0728348404961423e-7, relative_change = 4.3428762756693055e-12 Iter 140: T = 800.9505521233812 K, F = -1.7033002530641994e-7, relative_change = 1.8162342814127258e-12 Iter 145: T = 800.9505521189379 K, F = -7.123407230746892e-8, relative_change = 7.595710967583521e-13 Iter 150: T = 800.9505521170797 K, F = -2.979171964678784e-8, relative_change = 3.1767001988885717e-13 Converged in 153 iterations to T = 800.9505521165357 K Iter 1: T = 980.7402052034628 K, F = -4388.3625651855755, relative_change = 0.019259794796537232 Iter 2: T = 963.4970013386285 K, F = -3706.247104154198, relative_change = 0.017581826230175884 Iter 3: T = 948.1453437973363 K, F = -3128.701896900812, relative_change = 0.015933269662451937 Iter 5: T = 922.5807833264095 K, F = -2226.5495800419562, relative_change = 0.012810139044242965 Iter 10: T = 882.2101880112738 K, F = -944.6350273477128, relative_change = 0.00666327790114476 Iter 15: T = 863.2112093708694 K, F = -397.9085366831397, relative_change = 0.003106214476963902 Iter 20: T = 854.8062521447575 K, F = -166.95736739947256, relative_change = 0.001364836719931695 Iter 25: T = 851.2022564774089 K, F = -69.92337891655882, relative_change = 0.0005831702348280001 Iter 30: T = 849.678751171175 K, F = -29.260568851345162, relative_change = 0.000246123472735748 Iter 35: T = 849.03870183363 K, F = -12.240252494751891, relative_change = 0.00010332790812457468 Iter 40: T = 848.7705139807991 K, F = -5.119569539619613, relative_change = 4.328264128762765e-5 Iter 45: T = 848.6582648360779 K, F = -2.1411614070250478, relative_change = 1.8113532789661125e-5 Iter 50: T = 848.6113051777529 K, F = -0.8954761210568798, relative_change = 7.577434320527485e-6 Iter 55: T = 848.5916633357747 K, F = -0.37450175575270983, relative_change = 3.169347722452442e-6 Iter 60: T = 848.5834484014299 K, F = -0.15662162232729226, relative_change = 1.325524525965739e-6 Iter 65: T = 848.5800127335643 K, F = -0.06550112308342948, relative_change = 5.543616363731166e-7 Iter 70: T = 848.5785758815026 K, F = -0.027393367688573145, relative_change = 2.318426593633312e-7 Iter 75: T = 848.5779749702347 K, F = -0.011456236269731468, relative_change = 9.695971917625856e-8 Iter 80: T = 848.5777236615154 K, F = -0.004791135306872807, relative_change = 4.054977376503094e-8 Iter 85: T = 848.5776185611289 K, F = -0.0020037100886725057, relative_change = 1.6958410375893033e-8 Iter 90: T = 848.5775746068784 K, F = -0.0008379755040954784, relative_change = 7.092211627043379e-9 Iter 95: T = 848.5775562246835 K, F = -0.0003504513670840037, relative_change = 2.9660479388167264e-9 Iter 100: T = 848.5775485370297 K, F = -0.00014656294887416266, relative_change = 1.2404367395781684e-9 Iter 105: T = 848.5775453219609 K, F = -6.129437577517827e-5, relative_change = 5.187654696951995e-10 Iter 110: T = 848.5775439773807 K, F = -2.5634040378585965e-5, relative_change = 2.1695391998580612e-10 Iter 115: T = 848.5775434150613 K, F = -1.0720462596314206e-5, relative_change = 9.073272715965962e-11 Iter 120: T = 848.5775431798925 K, F = -4.483425144474751e-6, relative_change = 3.794550722568768e-11 Iter 125: T = 848.5775430815421 K, F = -1.8750217514185152e-6, relative_change = 1.586926270949721e-11 Iter 130: T = 848.5775430404108 K, F = -7.841562903454502e-7, relative_change = 6.636713504925644e-12 Iter 135: T = 848.5775430232093 K, F = -3.2794421533921536e-7, relative_change = 2.775558686209434e-12 Iter 140: T = 848.5775430160154 K, F = -1.371510445213886e-7, relative_change = 1.1607790445873496e-12 Iter 145: T = 848.5775430130068 K, F = -5.7359736294060326e-8, relative_change = 4.854646213353644e-13 Converged in 150 iterations to T = 848.5775430117485 K Iter 1: T = 967.3350295616934 K, F = -7442.744586776716, relative_change = 0.03266497043830653 Iter 2: T = 936.7455760153669 K, F = -6308.985386104093, relative_change = 0.03162239825036304 Iter 3: T = 908.2002507875643 K, F = -5346.4209186524395, relative_change = 0.03047286900379689 Iter 5: T = 857.1033605463427 K, F = -3835.7535931565576, relative_change = 0.027858661243487837 Iter 10: T = 762.10926933018 K, F = -1660.8283144909672, relative_change = 0.019933105640816184 Iter 15: T = 706.5253007613646 K, F = -711.0430197774436, relative_change = 0.011934445971494586 Iter 20: T = 677.9547044266064 K, F = -301.3482386050247, relative_change = 0.006107783629261401 Iter 25: T = 664.6363617183322 K, F = -126.85801664358198, relative_change = 0.002820514664599992 Iter 30: T = 658.7743031958432 K, F = -53.211670661882, relative_change = 0.00123357700689336 Iter 35: T = 656.2666721977105 K, F = -22.28248354056942, relative_change = 0.000525989450206559 Iter 40: T = 655.2077414550108 K, F = -9.323908018268657, relative_change = 0.00022179143724637452 Iter 45: T = 654.76306701192 K, F = -3.900269164958653, relative_change = 9.307737702199188e-5 Iter 50: T = 654.5767787203973 K, F = -1.6312969227926764, relative_change = 3.8982596613097745e-5 Iter 55: T = 654.4988145684351 K, F = -0.6822554842452836, relative_change = 1.6312894999641645e-5 Iter 60: T = 654.4661991932155 K, F = -0.2853322261893989, relative_change = 6.823981892952628e-6 Iter 65: T = 654.4525573325716 K, F = -0.11933019035646908, relative_change = 2.8541741823351644e-6 Iter 70: T = 654.446851842422 K, F = -0.049905458643086875, relative_change = 1.1937028125573614e-6 Iter 75: T = 654.4444656856344 K, F = -0.020871084673126927, relative_change = 4.992300569313063e-7 Iter 80: T = 654.443467757157 K, F = -0.008728541386762878, relative_change = 2.0878559581200391e-7 Iter 85: T = 654.4430504099389 K, F = -0.003650381040279038, relative_change = 8.731691363758883e-8 Iter 90: T = 654.4428758700664 K, F = -0.0015266330843783926, relative_change = 3.6517025750277744e-8 Iter 95: T = 654.4428028753579 K, F = -0.0006384562115834269, relative_change = 1.52718649544277e-8 Iter 100: T = 654.4427723480904 K, F = -0.0002670100172337819, relative_change = 6.386877841101385e-9 Iter 105: T = 654.4427595812211 K, F = -0.00011166677864682395, relative_change = 2.6710688526083147e-9 Iter 110: T = 654.4427542419636 K, F = -4.670038011134192e-5, relative_change = 1.1170729296324336e-9 Iter 115: T = 654.4427520090223 K, F = -1.9530656771293842e-5, relative_change = 4.671732495441872e-10 Iter 120: T = 654.4427510751796 K, F = -8.167953266413619e-6, relative_change = 1.9537741818941854e-10 Iter 125: T = 654.4427506846354 K, F = -3.415935187489616e-6, relative_change = 8.170915990357376e-11 Iter 130: T = 654.4427505213051 K, F = -1.4285847180217637e-6, relative_change = 3.4171742405079194e-11 Iter 135: T = 654.4427504529986 K, F = -5.974518751394875e-7, relative_change = 1.4291047166677249e-11 Iter 140: T = 654.4427504244319 K, F = -2.498616067381221e-7, relative_change = 5.976688929036628e-12 Iter 145: T = 654.442750412485 K, F = -1.044961014384782e-7, relative_change = 2.4995464521433968e-12 Iter 150: T = 654.4427504074886 K, F = -4.370153400268251e-8, relative_change = 1.045340570316978e-12 Iter 155: T = 654.442750405399 K, F = -1.8276356927859894e-8, relative_change = 4.3717040627002745e-13 Converged in 159 iterations to T = 654.4427504046448 K Iter 1: T = 973.5520771947063 K, F = -6026.184369655689, relative_change = 0.026447922805293674 Iter 2: T = 949.297136460356 K, F = -5099.570869170162, relative_change = 0.024913860596179907 Iter 3: T = 927.1674563183965 K, F = -4313.6239902411235, relative_change = 0.023311647419978956 Iter 5: T = 888.9603346730789 K, F = -3082.334110892532, relative_change = 0.019981060046718405 Iter 10: T = 823.9368141124228 K, F = -1319.7120973965525, relative_change = 0.011975329251592257 Iter 15: T = 790.4914473172049 K, F = -559.336989825028, relative_change = 0.0061333689829718464 Iter 20: T = 774.8937783237186 K, F = -235.4698581422646, relative_change = 0.002833566391053469 Iter 25: T = 768.0268654837163 K, F = -98.77122489166204, relative_change = 0.001239548952035359 Iter 30: T = 765.0890630385983 K, F = -41.3608921364632, relative_change = 0.0005285862089906622 Iter 35: T = 763.8484183875249 K, F = -17.307146644892146, relative_change = 0.00022289554767857052 Iter 40: T = 763.3274265212818 K, F = -7.239733447820881, relative_change = 9.354235568455343e-5 Iter 45: T = 763.109164537664 K, F = -3.0280373380433225, relative_change = 3.917762489570911e-5 Iter 50: T = 763.0178186337328 K, F = -1.2664129222616018, relative_change = 1.6394557934213813e-5 Iter 55: T = 762.9796051035704 K, F = -0.52963802809745, relative_change = 6.8581517821471055e-6 Iter 60: T = 762.9636217220456 K, F = -0.2215025264478332, relative_change = 2.8684674961401687e-6 Iter 65: T = 762.9569369264328 K, F = -0.09263527784225722, relative_change = 1.1996809820683562e-6 Iter 70: T = 762.9541412030529 K, F = -0.038741227755608176, relative_change = 5.017302923556169e-7 Iter 75: T = 762.9529719872997 K, F = -0.016202052555575497, relative_change = 2.0983124051801077e-7 Iter 80: T = 762.952483005411 K, F = -0.006775893346676387, relative_change = 8.775421757649016e-8 Iter 85: T = 762.9522785070137 K, F = -0.0028337597768300915, relative_change = 3.669991197383036e-8 Iter 90: T = 762.9521929832837 K, F = -0.0011851122250661206, relative_change = 1.5348350240425546e-8 Iter 95: T = 762.9521572162282 K, F = -0.0004956280932011392, relative_change = 6.4188648977560784e-9 Iter 100: T = 762.9521422580168 K, F = -0.0002072775884667255, relative_change = 2.6844462191479166e-9 Iter 105: T = 762.9521360023139 K, F = -8.668596334671097e-5, relative_change = 1.1226675173379638e-9 Iter 110: T = 762.9521333861042 K, F = -3.62531076553152e-5, relative_change = 4.695130037245334e-10 Iter 115: T = 762.952132291974 K, F = -1.5161482356140787e-5, relative_change = 1.963559438333886e-10 Iter 120: T = 762.9521318343957 K, F = -6.3407158120698526e-6, relative_change = 8.211843750945782e-11 Iter 125: T = 762.952131643031 K, F = -2.6517630484779176e-6, relative_change = 3.434291094261937e-11 Iter 130: T = 762.9521315629999 K, F = -1.1089994501611855e-6, relative_change = 1.4362621650219514e-11 Iter 135: T = 762.95213152953 K, F = -4.637970153487103e-7, relative_change = 6.0066225049775706e-12 Iter 140: T = 762.9521315155325 K, F = -1.9396684203254466e-7, relative_change = 2.5120592848099785e-12 Iter 145: T = 762.9521315096786 K, F = -8.112137572791056e-8, relative_change = 1.05060072621644e-12 Iter 150: T = 762.9521315072303 K, F = -3.392609049246431e-8, relative_change = 4.39375873372288e-13 Converged in 154 iterations to T = 762.9521315063465 K Iter 1: T = 969.9518887040466 K, F = -6846.490741915874, relative_change = 0.030048111295953393 Iter 2: T = 942.0599464398276 K, F = -5799.437665672884, relative_change = 0.02875600593085647 Iter 3: T = 916.2817115387844 K, F = -4910.784783095396, relative_change = 0.027363688477004742 Iter 5: T = 870.8622899588806 K, F = -3517.017545690638, relative_change = 0.02431846457466019 Iter 10: T = 789.7855735651111 K, F = -1514.8963457022828, relative_change = 0.0160176687726057 Iter 15: T = 745.2438704346622 K, F = -645.2681081309584, relative_change = 0.008858830914436285 Iter 20: T = 723.4886343736505 K, F = -272.4854890433565, relative_change = 0.004289702591960443 Iter 25: T = 713.6617145527003 K, F = -114.47807623065728, relative_change = 0.0019216991385277563 Iter 30: T = 709.4053982198412 K, F = -47.97278751882631, relative_change = 0.0008284179726871237 Iter 35: T = 707.5980473219081 K, F = -20.080142830927656, relative_change = 0.00035097956649176286 Iter 40: T = 706.837282911779 K, F = -8.400823488675766, relative_change = 0.00014759058357199792 Iter 45: T = 706.5182535942837 K, F = -3.5138637797154093, relative_change = 6.18663850540844e-5 Iter 50: T = 706.3846790684415 K, F = -1.469634263604687, relative_change = 2.5898223327805235e-5 Iter 55: T = 706.3287898521947 K, F = -0.6146351357988099, relative_change = 1.0835318399341212e-5 Iter 60: T = 706.3054116311278 K, F = -0.2570506471225065, relative_change = 4.5322246960867415e-6 Iter 65: T = 706.2956337604625 K, F = -0.10750215651029538, relative_change = 1.8955643509735974e-6 Iter 70: T = 706.2915443948393 K, F = -0.04495877420583905, relative_change = 7.927710634184148e-7 Iter 75: T = 706.2898341482271 K, F = -0.01880231177257785, relative_change = 3.315504216961071e-7 Iter 80: T = 706.2891188982842 K, F = -0.007863354035961168, relative_change = 1.3865906215735073e-7 Iter 85: T = 706.2888197714492 K, F = -0.0032885490387927208, relative_change = 5.7989000998418835e-8 Iter 90: T = 706.2886946729004 K, F = -0.0013753105652500874, relative_change = 2.4251714678974466e-8 Iter 95: T = 706.2886423551698 K, F = -0.0005751713169847017, relative_change = 1.0142360527817937e-8 Iter 100: T = 706.288620475266 K, F = -0.00024054351681901398, relative_change = 4.2416569776707034e-9 Iter 105: T = 706.2886113248283 K, F = -0.0001005981717295823, relative_change = 1.7739117188482887e-9 Iter 110: T = 706.2886074980057 K, F = -4.207135730582845e-5, relative_change = 7.418710936269675e-10 Iter 115: T = 706.2886058975829 K, F = -1.7594744326165923e-5, relative_change = 3.102593591472783e-10 Iter 120: T = 706.2886052282669 K, F = -7.358331720497269e-6, relative_change = 1.2975416135487895e-10 Iter 125: T = 706.2886049483509 K, F = -3.0773411969775566e-6, relative_change = 5.4264722241022265e-11 Iter 130: T = 706.2886048312868 K, F = -1.286980617187794e-6, relative_change = 2.2694150991439663e-11 Iter 135: T = 706.2886047823291 K, F = -5.382302256107252e-7, relative_change = 9.490957244475147e-12 Iter 140: T = 706.2886047618545 K, F = -2.2509398911463308e-7, relative_change = 3.9692260399276e-12 Iter 145: T = 706.2886047532916 K, F = -9.413561663507153e-8, relative_change = 1.659953436890089e-12 Iter 150: T = 706.2886047497107 K, F = -3.936980730312456e-8, relative_change = 6.942329511415966e-13 Iter 155: T = 706.2886047482131 K, F = -1.646589409265431e-8, relative_change = 2.9035362457404156e-13 Converged in 157 iterations to T = 706.2886047478961 K Iter 1: T = 973.5422047411195 K, F = -6028.433817596583, relative_change = 0.026457795258880538 Iter 2: T = 949.2774065228034 K, F = -5101.488214804416, relative_change = 0.024924238620726714 Iter 3: T = 927.137962803792 K, F = -4315.258120627997, relative_change = 0.02332241720584928 Iter 5: T = 888.91193851189 K, F = -3083.5203037951596, relative_change = 0.019992193980571324 Iter 10: T = 823.8484466935328 K, F = -1320.2396705983676, relative_change = 0.01198479740608167 Iter 15: T = 790.3773098252932 K, F = -559.5669462747312, relative_change = 0.006139288886394002 Iter 20: T = 774.766036664295 K, F = -235.56821970532238, relative_change = 0.002836585438103401 Iter 25: T = 767.8927654747544 K, F = -98.81280395777233, relative_change = 0.001240930227287093 Iter 30: T = 764.9521690337175 K, F = -41.37836374537982, relative_change = 0.000529186806139317 Iter 35: T = 763.7103307845119 K, F = -17.314468369465157, relative_change = 0.00022315091151601724 Iter 40: T = 763.1888352286678 K, F = -7.242798116143298, relative_change = 9.364989766078882e-5 Iter 45: T = 762.9703617977531 K, F = -3.0293194822584746, relative_change = 3.922273167427397e-5 Iter 50: T = 762.8789273237462 K, F = -1.2669492114935652, relative_change = 1.641344519068643e-5 Iter 55: T = 762.8406767279341 K, F = -0.5298623248726668, relative_change = 6.866054697508116e-6 Iter 60: T = 762.8246778408082 K, F = -0.22159633252509403, relative_change = 2.871773296576747e-6 Iter 65: T = 762.817986559815 K, F = -0.09267450909857922, relative_change = 1.2010636309416097e-6 Iter 70: T = 762.8151881240398 K, F = -0.038757634812359165, relative_change = 5.023085542662869e-7 Iter 75: T = 762.8140177739074 K, F = -0.01620891419602999, relative_change = 2.1007308033911578e-7 Iter 80: T = 762.8135283176036 K, F = -0.006778762967193042, relative_change = 8.785535851628595e-8 Iter 85: T = 762.8133236207997 K, F = -0.0028349598862211778, relative_change = 3.674221043086004e-8 Iter 90: T = 762.8132380140936 K, F = -0.0011856141263566489, relative_change = 1.5366039995308334e-8 Iter 95: T = 762.8132022123365 K, F = -0.0004958379945270153, relative_change = 6.426262970633396e-9 Iter 100: T = 762.8131872396124 K, F = -0.00020736537152354906, relative_change = 2.68754017977272e-9 Iter 105: T = 762.8131809778401 K, F = -8.67226763501261e-5, relative_change = 1.1239614627324381e-9 Iter 110: T = 762.813178359092 K, F = -3.626845905679854e-5, relative_change = 4.70054115883805e-10 Iter 115: T = 762.8131772639003 K, F = -1.516790345701402e-5, relative_change = 1.9658225586230342e-10 Iter 120: T = 762.813176805878 K, F = -6.3433970418635965e-6, relative_change = 8.221303012764763e-11 Iter 125: T = 762.8131766143276 K, F = -2.65288419198928e-6, relative_change = 3.4382468387610125e-11 Iter 130: T = 762.813176534219 K, F = -1.1094674446932018e-6, relative_change = 1.4379153631548428e-11 Iter 135: T = 762.8131765007166 K, F = -4.639913925297279e-7, relative_change = 6.013518963723291e-12 Iter 140: T = 762.8131764867054 K, F = -1.9404578355253221e-7, relative_change = 2.5149130309588294e-12 Iter 145: T = 762.8131764808459 K, F = -8.115218730342377e-8, relative_change = 1.051765668963401e-12 Iter 150: T = 762.8131764783953 K, F = -3.393894243419737e-8, relative_change = 4.398626294605611e-13 Converged in 154 iterations to T = 762.8131764775109 K Iter 1: T = 964.3492083003649 K, F = -8123.066801419697, relative_change = 0.03565079169963513 Iter 2: T = 930.6254281526956 K, F = -6891.232085789278, relative_change = 0.03497050638648464 Iter 3: T = 898.7977614378839 K, F = -5845.12791320585, relative_change = 0.03420029772664828 Iter 5: T = 840.7178918838953 K, F = -4202.481186057426, relative_change = 0.03236479688033541 Iter 10: T = 726.7153708562937 K, F = -1832.596449949044, relative_change = 0.025954474637431616 Iter 15: T = 653.2305695392379 K, F = -791.2345546795294, relative_change = 0.017749307840474085 Iter 20: T = 611.7163977809984 K, F = -337.7737226902992, relative_change = 0.010160463132800515 Iter 25: T = 590.9946332405916 K, F = -142.85174238264042, relative_change = 0.005034980867677742 Iter 30: T = 581.5122847137028 K, F = -60.064637936541, relative_change = 0.0022836005168636216 Iter 35: T = 577.3784512609266 K, F = -25.180164784816903, relative_change = 0.0009901493510305602 Iter 40: T = 575.6179242735168 K, F = -10.541540436514818, relative_change = 0.00042057175279887457 Iter 45: T = 574.875920935235 K, F = -4.410528736685725, relative_change = 0.00017704760271745204 Iter 50: T = 574.5645900774239 K, F = -1.8448753341350788, relative_change = 7.424818305238043e-5 Iter 55: T = 574.4342090156798 K, F = -0.7716084218613155, relative_change = 3.108743539926957e-5 Iter 60: T = 574.3796507529862 K, F = -0.32270627799889673, relative_change = 1.3007436632898285e-5 Iter 65: T = 574.3568283479397 K, F = -0.13496144275668676, relative_change = 5.440967982402138e-6 Iter 70: T = 574.3472827853178 K, F = -0.056442806095074516, relative_change = 2.2756706993613415e-6 Iter 75: T = 574.3432905490486 K, F = -0.023605111363330628, relative_change = 9.517464079742626e-7 Iter 80: T = 574.3416209187811 K, F = -0.009871949232019284, relative_change = 3.9803761621218505e-7 Iter 85: T = 574.3409226543247 K, F = -0.0041285687704984975, relative_change = 1.6646511696601093e-7 Iter 90: T = 574.3406306308912 K, F = -0.0017266170630939603, relative_change = 6.961788045601531e-8 Iter 95: T = 574.3405085030466 K, F = -0.0007220919285540472, relative_change = 2.9115060615717933e-8 Iter 100: T = 574.340457427696 K, F = -0.00030198747687915084, relative_change = 1.2176271565112236e-8 Iter 105: T = 574.3404360673695 K, F = -0.0001262947706632267, relative_change = 5.092263139612382e-9 Iter 110: T = 574.3404271342251 K, F = -5.281798141815175e-5, relative_change = 2.1296454191144745e-9 Iter 115: T = 574.3404233982774 K, F = -2.208911079210063e-5, relative_change = 8.906431825765099e-10 Iter 120: T = 574.3404218358593 K, F = -9.237929581629167e-6, relative_change = 3.724776061380661e-10 Iter 125: T = 574.3404211824374 K, F = -3.863412514792941e-6, relative_change = 1.5577458564850544e-10 Iter 130: T = 574.3404209091685 K, F = -1.6157244356329592e-6, relative_change = 6.514675926769592e-11 Iter 135: T = 574.3404207948843 K, F = -6.75715202791416e-7, relative_change = 2.724515067090149e-11 Iter 140: T = 574.3404207470892 K, F = -2.8259152257126274e-7, relative_change = 1.1394221385012304e-11 Iter 145: T = 574.3404207271008 K, F = -1.1818279904707296e-7, relative_change = 4.765185325495067e-12 Iter 150: T = 574.3404207187414 K, F = -4.942589104661721e-8, relative_change = 1.9928748737569505e-12 Iter 155: T = 574.3404207152454 K, F = -2.0670037070846803e-8, relative_change = 8.334254911147096e-13 Iter 160: T = 574.3404207137833 K, F = -8.644537141666575e-9, relative_change = 3.4855175093040963e-13 Converged in 163 iterations to T = 574.3404207133552 K Iter 1: T = 963.5415778769471 K, F = -8307.08616165029, relative_change = 0.03645842212305284 Iter 2: T = 928.9595158331773 K, F = -7048.879161828131, relative_change = 0.035890575806772615 Iter 3: T = 896.2201859133188 K, F = -5980.327563403278, relative_change = 0.03524301044539583 Iter 5: T = 836.1506076999021 K, F = -4302.262704068269, relative_change = 0.03367941750655823 Iter 10: T = 716.284774185215 K, F = -1880.2099887451989, relative_change = 0.02797994489518092 Iter 15: T = 636.4456042643969 K, F = -814.2532073842445, relative_change = 0.02007822401763109 Iter 20: T = 589.6210994445142 K, F = -348.6699110085663, relative_change = 0.012057729652916137 Iter 25: T = 565.5043689073777 K, F = -147.7920714491846, relative_change = 0.0061848526119214035 Iter 30: T = 554.2474072749766 K, F = -62.22108098141931, relative_change = 0.0028598194391238905 Iter 35: T = 549.2892123523193 K, F = -26.100255944092535, relative_change = 0.0012515603755051466 Iter 40: T = 547.1675395512792 K, F = -10.929735745446228, relative_change = 0.000533809019882884 Iter 45: T = 546.2714644216371 K, F = -4.573488419723837, relative_change = 0.00022511621865462154 Iter 50: T = 545.8951545972809 K, F = -1.9131352825217687, relative_change = 9.447755587934614e-5 Iter 55: T = 545.7375023604834 K, F = -0.8001745764853032, relative_change = 3.956988049541875e-5 Iter 60: T = 545.6715220683483 K, F = -0.33465632010483415, relative_change = 1.6558804592757894e-5 Iter 65: T = 545.643919873225 K, F = -0.13995967689537375, relative_change = 6.926876843247348e-6 Iter 70: T = 545.6323748270387 K, F = -0.058533229450248275, relative_change = 2.8972152881364942e-6 Iter 75: T = 545.6275462921888 K, F = -0.02447936924402469, relative_change = 1.2117047280132e-6 Iter 80: T = 545.625526896006 K, F = -0.010237577444342505, relative_change = 5.067589547529238e-7 Iter 85: T = 545.6246823524924 K, F = -0.004281479401671562, relative_change = 2.1193432007990598e-7 Iter 90: T = 545.624329152925 K, F = -0.0017905662112019383, relative_change = 8.863375633421788e-8 Iter 95: T = 545.6241814404058 K, F = -0.0007488362422070904, relative_change = 3.706774659090109e-8 Iter 100: T = 545.6241196652238 K, F = -0.00031317227097465983, relative_change = 1.5502183231468052e-8 Iter 105: T = 545.6240938300975 K, F = -0.00013097238599812933, relative_change = 6.483199733425143e-9 Iter 110: T = 545.624083025538 K, F = -5.4774216149633403e-5, relative_change = 2.7113518190262496e-9 Iter 115: T = 545.6240785069419 K, F = -2.2907231561342112e-5, relative_change = 1.1339197669543917e-9 Iter 120: T = 545.624076617211 K, F = -9.580077850124269e-6, relative_change = 4.742187982536326e-10 Iter 125: T = 545.624075826903 K, F = -4.006502834191794e-6, relative_change = 1.9832395958112143e-10 Iter 130: T = 545.6240754963867 K, F = -1.6755673002966098e-6, relative_change = 8.294144700507906e-11 Iter 135: T = 545.6240753581609 K, F = -7.007424732419221e-7, relative_change = 3.46871144885754e-11 Iter 140: T = 545.6240753003532 K, F = -2.9305868390339107e-7, relative_change = 1.450655627955085e-11 Iter 145: T = 545.6240752761773 K, F = -1.225608487753771e-7, relative_change = 6.066825344068927e-12 Iter 150: T = 545.6240752660667 K, F = -5.12565567212242e-8, relative_change = 2.5372260432316534e-12 Iter 155: T = 545.6240752618382 K, F = -2.143604152515799e-8, relative_change = 1.0610951320674996e-12 Iter 160: T = 545.62407526007 K, F = -8.965135550598191e-9, relative_change = 4.4377884228518687e-13 Converged in 164 iterations to T = 545.6240752594317 K Iter 1: T = 969.3628622962888 K, F = -6980.700969232266, relative_change = 0.030637137703711254 Iter 2: T = 940.8677308323254 K, F = -5914.069983807289, relative_change = 0.02939573257063134 Iter 3: T = 914.4753169833749 K, F = -5008.724963352627, relative_change = 0.028051141498500277 Iter 5: T = 867.8116524544571 K, F = -3588.5514886633196, relative_change = 0.02508483416699143 Iter 10: T = 783.7894158766375 K, F = -1547.4159292648048, relative_change = 0.016813403814385505 Iter 15: T = 737.0323203729658 K, F = -659.7879099773579, relative_change = 0.009446166630682817 Iter 20: T = 713.9694385396971 K, F = -278.80628389708727, relative_change = 0.004621805359119288 Iter 25: T = 703.4912814933521 K, F = -117.17611336024348, relative_change = 0.002081872131317501 Iter 30: T = 698.939810314289 K, F = -49.111772056414665, relative_change = 0.0008997683584108553 Iter 35: T = 697.0046091570239 K, F = -20.558429819502127, relative_change = 0.00038163770213281244 Iter 40: T = 696.1895696222846 K, F = -8.601196881870145, relative_change = 0.0001605596900540407 Iter 45: T = 695.8476980500226 K, F = -3.5977237267489457, relative_change = 6.731634708005495e-5 Iter 50: T = 695.7045452790586 K, F = -1.504716272826998, relative_change = 2.818205640905273e-5 Iter 55: T = 695.6446458793605 K, F = -0.6293087389317042, relative_change = 1.1791249927481979e-5 Iter 60: T = 695.619589772825 K, F = -0.26318765359858665, relative_change = 4.9321476489217385e-6 Iter 65: T = 695.6091100541163 K, F = -0.11006878371175383, relative_change = 2.0628415715564804e-6 Iter 70: T = 695.6047271434144 K, F = -0.046032178462569684, relative_change = 8.627327094864306e-7 Iter 75: T = 695.6028941285737 K, F = -0.019251224018729363, relative_change = 3.608099722723222e-7 Iter 80: T = 695.602127534762 K, F = -0.008051094807480341, relative_change = 1.5089588763633418e-7 Iter 85: T = 695.6018069351803 K, F = -0.0033670645263342847, relative_change = 6.310661065200043e-8 Iter 90: T = 695.60167285645 K, F = -0.0014081466873112625, relative_change = 2.639196415546814e-8 Iter 95: T = 695.6016167830965 K, F = -0.0005889037774580164, relative_change = 1.1037439132493311e-8 Iter 100: T = 695.6015933325456 K, F = -0.00024628659432934796, relative_change = 4.6159896309670065e-9 Iter 105: T = 695.6015835252443 K, F = -0.00010299999634033608, relative_change = 1.9304621443427983e-9 Iter 110: T = 695.6015794237137 K, F = -4.307582903895213e-5, relative_change = 8.073423551936892e-10 Iter 115: T = 695.6015777084045 K, F = -1.8014825719725458e-5, relative_change = 3.3764021076812637e-10 Iter 120: T = 695.6015769910417 K, F = -7.534015212029566e-6, relative_change = 1.412051682423282e-10 Iter 125: T = 695.601576691032 K, F = -3.150815656716155e-6, relative_change = 5.905369757023796e-11 Iter 130: T = 695.6015765655645 K, F = -1.3177092691440961e-6, relative_change = 2.46969715814672e-11 Iter 135: T = 695.6015765130925 K, F = -5.510824006016435e-7, relative_change = 1.0328580598384823e-11 Iter 140: T = 695.601576491148 K, F = -2.3046832031692333e-7, relative_change = 4.319518495830105e-12 Iter 145: T = 695.6015764819705 K, F = -9.63842432533113e-8, relative_change = 1.806467461093597e-12 Iter 150: T = 695.6015764781324 K, F = -4.031000266913054e-8, relative_change = 7.555042787327338e-13 Iter 155: T = 695.6015764765273 K, F = -1.6857434670392024e-8, relative_change = 3.1594798260412367e-13 Converged in 158 iterations to T = 695.6015764760573 K Iter 1: T = 966.5122415776934 K, F = -7630.217611604562, relative_change = 0.03348775842230661 Iter 2: T = 935.0651290185401 K, F = -6469.341409190521, relative_change = 0.032536693490628044 Iter 3: T = 905.6288955191701 K, F = -5483.670750689128, relative_change = 0.031480409851522055 Iter 5: T = 852.6639808996678 K, F = -3936.4780438589733, relative_change = 0.02904769151297426 Iter 10: T = 752.8057805791321 K, F = -1707.5488703318406, relative_change = 0.021397375236306918 Iter 15: T = 692.9861150390884 K, F = -732.4958213950503, relative_change = 0.013214974117830186 Iter 20: T = 661.5860984547417 K, F = -310.92100095641894, relative_change = 0.006926029154287983 Iter 25: T = 646.7425565257264 K, F = -131.00781777792284, relative_change = 0.0032431969486366673 Iter 30: T = 640.1600000780239 K, F = -54.97730716640644, relative_change = 0.001428195520543201 Iter 35: T = 637.334202212222 K, F = -23.026570327216398, relative_change = 0.000610855233256923 Iter 40: T = 636.1390567303155 K, F = -9.636119205526615, relative_change = 0.0002579196980186675 Iter 45: T = 635.6368477658585 K, F = -4.031021383009435, relative_change = 0.00010830015688362415 Iter 50: T = 635.4263972922057 K, F = -1.6860110368184653, relative_change = 4.536896262930185e-5 Iter 55: T = 635.3383105479193 K, F = -0.7051431860812367, relative_change = 1.8987262801761926e-5 Iter 60: T = 635.3014586848598 K, F = -0.2949051179044131, relative_change = 7.943049812413055e-6 Iter 65: T = 635.2860445319229 K, F = -0.1233338597289173, relative_change = 3.322289444266394e-6 Iter 70: T = 635.2795977530537 K, F = -0.05157987102990946, relative_change = 1.3894930460535145e-6 Iter 75: T = 635.276901563867 K, F = -0.021571349184427935, relative_change = 5.811151663660903e-7 Iter 80: T = 635.2757739732335 K, F = -0.00902140128870993, relative_change = 2.43031502945789e-7 Iter 85: T = 635.2753023992452 K, F = -0.003772858708622928, relative_change = 1.0163906177897022e-7 Iter 90: T = 635.2751051810009 K, F = -0.0015778547354070582, relative_change = 4.250673676122724e-8 Iter 95: T = 635.275022701911 K, F = -0.0006598777231326403, relative_change = 1.7776836726781144e-8 Iter 100: T = 635.2749882081592 K, F = -0.00027596874939106453, relative_change = 7.434487475255943e-9 Iter 105: T = 635.2749737824583 K, F = -0.00011541342687865219, relative_change = 3.1091917880678012e-9 Iter 110: T = 635.2749677494577 K, F = -4.826727379514395e-5, relative_change = 1.3003012055035074e-9 Iter 115: T = 635.2749652263847 K, F = -2.0185950721507417e-5, relative_change = 5.438015137363914e-10 Iter 120: T = 635.2749641712054 K, F = -8.442006277864511e-6, relative_change = 2.274243057715918e-10 Iter 125: T = 635.2749637299167 K, F = -3.5305463310653096e-6, relative_change = 9.511152024344729e-11 Iter 130: T = 635.2749635453647 K, F = -1.476517747789341e-6, relative_change = 3.977680355508476e-11 Iter 135: T = 635.2749634681828 K, F = -6.174978676720677e-7, relative_change = 1.663514809019918e-11 Iter 140: T = 635.2749634359044 K, F = -2.5824490079706663e-7, relative_change = 6.957015391053383e-12 Iter 145: T = 635.2749634224051 K, F = -1.0800070754379831e-7, relative_change = 2.9094963051886483e-12 Iter 150: T = 635.2749634167596 K, F = -4.5167316164995697e-8, relative_change = 1.2167896163977375e-12 Iter 155: T = 635.2749634143985 K, F = -1.888918249592919e-8, relative_change = 5.088670984951676e-13 Converged in 160 iterations to T = 635.2749634134111 K Iter 1: T = 966.4914211814572 K, F = -7634.961558692276, relative_change = 0.03350857881854275 Iter 2: T = 935.0225463641469 K, F = -6473.400066525745, relative_change = 0.03255991116697359 Iter 3: T = 905.5636363385296 K, F = -5487.145550033147, relative_change = 0.03150609591198509 Iter 5: T = 852.5509130668594 K, F = -3939.030078054022, relative_change = 0.029078279901943775 Iter 10: T = 752.5662232592807 K, F = -1708.73680350701, relative_change = 0.021436137994322927 Iter 15: T = 692.633513162785 K, F = -733.0443145333122, relative_change = 0.013249937628154936 Iter 20: T = 661.1561801111209 K, F = -311.16708178187804, relative_change = 0.006948913659707453 Iter 25: T = 646.2702867737165 K, F = -131.11488163472725, relative_change = 0.003255187206113748 Iter 30: T = 639.6675481885273 K, F = -55.02294717573859, relative_change = 0.0014337551571581672 Iter 35: T = 636.8328009753349 K, F = -23.045821292294693, relative_change = 0.0006132872715522102 Iter 40: T = 635.633817020558 K, F = -9.644199841686193, relative_change = 0.0002589564608047955 Iter 45: T = 635.1299854805422 K, F = -4.034406064787853, relative_change = 0.0001087372545330547 Iter 50: T = 634.9188533636465 K, F = -1.6874274774335287, relative_change = 4.555238165769365e-5 Iter 55: T = 634.8304810093344 K, F = -0.7057357208907135, relative_change = 1.906407959825382e-5 Iter 60: T = 634.7935096063147 K, F = -0.2951529514772179, relative_change = 7.975194567486536e-6 Iter 65: T = 634.7780454438056 K, F = -0.12343751166461997, relative_change = 3.3357360993503822e-6 Iter 70: T = 634.7715777474431 K, F = -0.05162322037759359, relative_change = 1.3951171811812495e-6 Iter 75: T = 634.7688728098049 K, F = -0.02158947855056348, relative_change = 5.834673488619994e-7 Iter 80: T = 634.767741560376 K, F = -0.009028983232134302, relative_change = 2.4401523158832637e-7 Iter 85: T = 634.7672684562202 K, F = -0.0037760295721326886, relative_change = 1.0205047195550633e-7 Iter 90: T = 634.767070598039 K, F = -0.0015791808292232035, relative_change = 4.26787939566747e-8 Iter 95: T = 634.7669878513193 K, F = -0.0006604323112646138, relative_change = 1.784879318861938e-8 Iter 100: T = 634.7669532456415 K, F = -0.00027620068430145306, relative_change = 7.464580530266533e-9 Iter 105: T = 634.7669387731319 K, F = -0.00011551042573793024, relative_change = 3.1217770903872504e-9 Iter 110: T = 634.7669327205551 K, F = -4.830783962034291e-5, relative_change = 1.305564522817598e-9 Iter 115: T = 634.7669301892952 K, F = -2.0202915216427364e-5, relative_change = 5.460026793190776e-10 Iter 120: T = 634.7669291306921 K, F = -8.449100643126428e-6, relative_change = 2.2834484905729108e-10 Iter 125: T = 634.7669286879717 K, F = -3.5335162759664307e-6, relative_change = 9.549658329761764e-11 Iter 130: T = 634.7669285028206 K, F = -1.4777592765025105e-6, relative_change = 3.993782708690863e-11 Iter 135: T = 634.7669284253882 K, F = -6.180161819524521e-7, relative_change = 1.67024655629163e-11 Iter 140: T = 634.7669283930051 K, F = -2.584622559864691e-7, relative_change = 6.985184299443339e-12 Iter 145: T = 634.7669283794621 K, F = -1.0809254274990465e-7, relative_change = 2.921302105402058e-12 Iter 150: T = 634.7669283737982 K, F = -4.520510277217227e-8, relative_change = 1.2217101989581034e-12 Iter 155: T = 634.7669283714296 K, F = -1.890602757681492e-8, relative_change = 5.109530848585295e-13 Converged in 160 iterations to T = 634.766928370439 K Iter 1: T = 976.384294857536 K, F = -5380.8608810454325, relative_change = 0.023615705142464017 Iter 2: T = 954.9313001745364 K, F = -4549.939117235265, relative_change = 0.02197187602872061 Iter 3: T = 935.5498186931895 K, F = -3845.588961669542, relative_change = 0.020296205054546313 Iter 5: T = 902.5821067710568 K, F = -2743.298943708322, relative_change = 0.016942402330108457 Iter 10: T = 848.2571216285174 K, F = -1169.8832913688695, relative_change = 0.009543182542888233 Iter 15: T = 821.4177869010092 K, F = -494.41299066452115, relative_change = 0.00467734515938257 Iter 20: T = 809.2120303406654 K, F = -207.80352504429854, relative_change = 0.0021088353586979263 Iter 25: T = 803.9075539051355 K, F = -87.09874917839566, relative_change = 0.0009118162591933547 Iter 30: T = 801.6516914261454 K, F = -36.46042798042876, relative_change = 0.00038682147609090187 Iter 35: T = 800.7015096374114 K, F = -15.25432745779894, relative_change = 0.00016275380978068326 Iter 40: T = 800.3029359274819 K, F = -6.38062147289168, relative_change = 6.823859823053715e-5 Iter 45: T = 800.1360372709787 K, F = -2.6686413195549976, relative_change = 2.8568569634930827e-5 Iter 50: T = 800.0662013822797 K, F = -1.1160907942068938, relative_change = 1.1953037563371346e-5 Iter 55: T = 800.0369887236143 K, F = -0.4667682946056253, relative_change = 4.9998342387053174e-6 Iter 60: T = 800.0247705112813 K, F = -0.1952090889646937, relative_change = 2.091153298007194e-6 Iter 65: T = 800.019660511366 K, F = -0.08163894960331886, relative_change = 8.745737789439329e-7 Iter 70: T = 800.0175234138123 K, F = -0.03414241470568735, relative_change = 3.6576218314474135e-7 Iter 75: T = 800.0166296480479 K, F = -0.014278770993948142, relative_change = 1.529669848088831e-7 Iter 80: T = 800.0162558634743 K, F = -0.00597155350239198, relative_change = 6.39727723274544e-8 Iter 85: T = 800.0160995421166 K, F = -0.0024973751543728717, relative_change = 2.6754204033774553e-8 Iter 90: T = 800.0160341666258 K, F = -0.001044432144609475, relative_change = 1.1188932315355869e-8 Iter 95: T = 800.016006825809 K, F = -0.0004367939991960501, relative_change = 4.679345913686091e-9 Iter 100: T = 800.015995391552 K, F = -0.0001826724658436918, relative_change = 1.956958466303543e-9 Iter 105: T = 800.0159906096089 K, F = -7.639580632501364e-5, relative_change = 8.184234199834991e-10 Iter 110: T = 800.0159886097433 K, F = -3.194963810904117e-5, relative_change = 3.4227444747965405e-10 Iter 115: T = 800.0159877733756 K, F = -1.336172062671448e-5, relative_change = 1.431432666636825e-10 Iter 120: T = 800.0159874235966 K, F = -5.588032478853755e-6, relative_change = 5.986423809159449e-11 Iter 125: T = 800.0159872773148 K, F = -2.336980571060465e-6, relative_change = 2.503592489353036e-11 Iter 130: T = 800.0159872161381 K, F = -9.773544615843122e-7, relative_change = 1.0470336470271606e-11 Iter 135: T = 800.0159871905532 K, F = -4.0874155826653435e-7, relative_change = 4.378822436793271e-12 Iter 140: T = 800.0159871798534 K, F = -1.7094139093121186e-7, relative_change = 1.8312842990773292e-12 Iter 145: T = 800.0159871753785 K, F = -7.148957847924464e-8, relative_change = 7.658633284016402e-13 Iter 150: T = 800.0159871735071 K, F = -2.98987359315106e-8, relative_change = 3.2030326521524336e-13 Converged in 153 iterations to T = 800.0159871729593 K Iter 1: T = 965.1967390659195 K, F = -7929.956110278184, relative_change = 0.03480326093408049 Iter 2: T = 932.368822569556 K, F = -6725.867912323498, relative_change = 0.034011632206852584 Iter 3: T = 901.4868054749307 K, F = -5703.389031338157, relative_change = 0.03312210398618447 Iter 5: T = 845.4473798060778 K, F = -4098.042619750854, relative_change = 0.03103077321526979 Iter 10: T = 737.2402847287814 K, F = -1783.1917596600074, relative_change = 0.024032161847316262 Iter 15: T = 669.6176707180929 K, F = -767.7646809212685, relative_change = 0.015726886148356573 Iter 20: T = 632.6421851981714 K, F = -326.907887854536, relative_change = 0.008648545163237138 Iter 25: T = 614.6462429139228 K, F = -138.01403401955722, relative_change = 0.004172414591857517 Iter 30: T = 606.534107945722 K, F = -57.97577755773759, relative_change = 0.0018655419955346134 Iter 35: T = 603.0240695545915 K, F = -24.293679448682294, relative_change = 0.0008034874994527341 Iter 40: T = 601.5342889848861 K, F = -10.168426958866611, relative_change = 0.0003402833809694074 Iter 45: T = 600.9073223631166 K, F = -4.254063657080609, relative_change = 0.00014306874387422024 Iter 50: T = 600.6444236045621 K, F = -1.7793648193345453, relative_change = 5.996670158503668e-5 Iter 55: T = 600.5343542764816 K, F = -0.7441979821625575, relative_change = 2.51022420187688e-5 Iter 60: T = 600.4883006013199 K, F = -0.3112405992956706, relative_change = 1.050216468167694e-5 Iter 65: T = 600.4690366640374 K, F = -0.13016595548884677, relative_change = 4.392849473371691e-6 Iter 70: T = 600.4609796009909 K, F = -0.05443720545706254, relative_change = 1.8372678570868782e-6 Iter 75: T = 600.457609926529 K, F = -0.022766332876668294, relative_change = 7.683893545742442e-7 Iter 80: T = 600.456200668404 K, F = -0.009521159891999309, relative_change = 3.213534516649089e-7 Iter 85: T = 600.4556112963242 K, F = -0.003981864101192889, relative_change = 1.34394524100395e-7 Iter 90: T = 600.4553648132692 K, F = -0.0016652633519934068, relative_change = 5.620551264194199e-8 Iter 95: T = 600.455261731005 K, F = -0.0006964330614933067, relative_change = 2.3505837192747416e-8 Iter 100: T = 600.4552186207522 K, F = -0.0002912566305011133, relative_change = 9.830425430036292e-9 Iter 105: T = 600.4552005915265 K, F = -0.00012180700236824604, relative_change = 4.11120194156488e-9 Iter 110: T = 600.4551930514884 K, F = -5.09411435357654e-5, relative_change = 1.7193538684843412e-9 Iter 115: T = 600.4551898981543 K, F = -2.1304195850668783e-5, relative_change = 7.190543816689902e-10 Iter 120: T = 600.4551885793923 K, F = -8.909668896994738e-6, relative_change = 3.0071712499731196e-10 Iter 125: T = 600.4551880278702 K, F = -3.726129638892406e-6, relative_change = 1.2576348349520557e-10 Iter 130: T = 600.455187797217 K, F = -1.5583108879391183e-6, relative_change = 5.259575618318947e-11 Iter 135: T = 600.4551877007552 K, F = -6.517036879594151e-7, relative_change = 2.199615530322477e-11 Iter 140: T = 600.4551876604138 K, F = -2.7255021212146957e-7, relative_change = 9.199053045778736e-12 Iter 145: T = 600.4551876435426 K, F = -1.1398409371921048e-7, relative_change = 3.847165322223205e-12 Iter 150: T = 600.4551876364867 K, F = -4.7669493130619855e-8, relative_change = 1.6089299386115093e-12 Iter 155: T = 600.4551876335358 K, F = -1.9935646855540057e-8, relative_change = 6.728634387683948e-13 Iter 160: T = 600.4551876323019 K, F = -8.337546264503004e-9, relative_change = 2.8140697370549357e-13 Converged in 162 iterations to T = 600.4551876320406 K Iter 1: T = 964.5570749051119 K, F = -8075.704197795908, relative_change = 0.03544292509488814 Iter 2: T = 931.0534715496133 K, F = -6850.667866739826, relative_change = 0.034734702825952 Iter 3: T = 899.4587773631 K, F = -5810.3515660884905, relative_change = 0.03393434980047719 Iter 5: T = 841.8837944299071 K, F = -4176.840796471595, relative_change = 0.032033375437074206 Iter 10: T = 729.335197987838 K, F = -1820.4278573351091, relative_change = 0.025464864134604828 Iter 15: T = 657.3582714764262 K, F = -785.4175009150632, relative_change = 0.017217729582244268 Iter 20: T = 617.0427220257428 K, F = -335.06018683760595, relative_change = 0.009751477890303568 Iter 25: T = 597.0557516055276 K, F = -141.63643733779995, relative_change = 0.004797120670237782 Iter 30: T = 587.9473572118709 K, F = -59.53808234572966, relative_change = 0.002167128261369625 Iter 35: T = 583.9848293838346 K, F = -24.956328145090875, relative_change = 0.0009378941330054571 Iter 40: T = 582.2988653060555 K, F = -10.447259341105086, relative_change = 0.00039804776553295615 Iter 45: T = 581.5885818073684 K, F = -4.370979276172377, relative_change = 0.0001675066026176557 Iter 50: T = 581.2906124402647 K, F = -1.8283140815549994, relative_change = 7.023652402561294e-5 Iter 55: T = 581.1658362317453 K, F = -0.7646785854388398, relative_change = 2.9405929184070314e-5 Iter 60: T = 581.113624955676 K, F = -0.31980748537391873, relative_change = 1.2303547445236926e-5 Iter 65: T = 581.0917846087448 K, F = -0.13374901889410057, relative_change = 5.146477001724692e-6 Iter 70: T = 581.0826498456123 K, F = -0.05593573598301774, relative_change = 2.1524907366457385e-6 Iter 75: T = 581.0788294265257 K, F = -0.023393045093162368, relative_change = 9.002275222789334e-7 Iter 80: T = 581.0772316550425 K, F = -0.009783259974494862, relative_change = 3.764911812826295e-7 Iter 85: T = 581.0765634432752 K, F = -0.004091477757156403, relative_change = 1.5745403183274494e-7 Iter 90: T = 581.0762839883204 K, F = -0.0017111051394995136, relative_change = 6.584931801494675e-8 Iter 95: T = 581.0761671167786 K, F = -0.0007156046537838967, relative_change = 2.7538999477248113e-8 Iter 100: T = 581.0761182396793 K, F = -0.00029927442090887935, relative_change = 1.1517143408567273e-8 Iter 105: T = 581.0760977986882 K, F = -0.0001251601386130785, relative_change = 4.816607789210203e-9 Iter 110: T = 581.0760892500209 K, F = -5.234346484411789e-5, relative_change = 2.0143630466929226e-9 Iter 115: T = 581.076085674866 K, F = -2.189066211749635e-5, relative_change = 8.424307076366892e-10 Iter 120: T = 581.0760841796936 K, F = -9.154936921162982e-6, relative_change = 3.523146098527521e-10 Iter 125: T = 581.0760835543946 K, F = -3.828704217334611e-6, relative_change = 1.473421882748764e-10 Iter 130: T = 581.076083292887 K, F = -1.601209611457044e-6, relative_change = 6.162025456972548e-11 Iter 135: T = 581.0760831835215 K, F = -6.696455335242213e-7, relative_change = 2.577034761030969e-11 Iter 140: T = 581.0760831377835 K, F = -2.80054183121603e-7, relative_change = 1.0777483444841867e-11 Iter 145: T = 581.0760831186552 K, F = -1.1712110004058474e-7, relative_change = 4.507237502604285e-12 Iter 150: T = 581.0760831106556 K, F = -4.8982202127678676e-8, relative_change = 1.8850097747372944e-12 Iter 155: T = 581.0760831073102 K, F = -2.0484988705327112e-8, relative_change = 7.8833540079169e-13 Iter 160: T = 581.076083105911 K, F = -8.567507869816637e-9, relative_change = 3.2970824868743463e-13 Converged in 163 iterations to T = 581.0760831055013 K Iter 1: T = 964.2630829757221 K, F = -8142.690538565892, relative_change = 0.03573691702427792 Iter 2: T = 930.4479900237569 K, F = -6908.040337338567, relative_change = 0.03506832683836824 Iter 3: T = 898.5235964438631 K, F = -5859.5393196886325, relative_change = 0.03431077709037635 Iter 5: T = 840.2336798929059 K, F = -4213.109679730955, relative_change = 0.03250293531958726 Iter 10: T = 725.6223289970885 K, F = -1837.6483558594794, relative_change = 0.02616097774021215 Iter 15: T = 651.4983853702564 K, F = -793.6570103536496, relative_change = 0.01797703672885884 Iter 20: T = 609.4693300841656 K, F = -338.9081260725694, relative_change = 0.01033830541161377 Iter 25: T = 588.4284999668572 K, F = -143.36140053431964, relative_change = 0.005139488321645492 Iter 30: T = 578.7826831673592 K, F = -60.285867370457154, relative_change = 0.0023350648558139375 Iter 35: T = 574.5737094694526 K, F = -25.27429435026105, relative_change = 0.0010133009121570166 Iter 40: T = 572.7804252662835 K, F = -10.581204532404966, relative_change = 0.0004305628209828756 Iter 45: T = 572.0244771054056 K, F = -4.4271701537758155, relative_change = 0.00018128190255656314 Iter 50: T = 571.7072704916952 K, F = -1.8518444143602069, relative_change = 7.602894190994834e-5 Iter 55: T = 571.5744243755129 K, F = -0.7745246329052173, relative_change = 3.183391647502226e-5 Iter 60: T = 571.5188338380681 K, F = -0.3239261628845741, relative_change = 1.3319930179610341e-5 Iter 65: T = 571.4955794852201 K, F = -0.13547166404884642, relative_change = 5.571710136197162e-6 Iter 70: T = 571.4858532351844 K, F = -0.05665619563278895, relative_change = 2.3303580120433714e-6 Iter 75: T = 571.4817854259879 K, F = -0.023694354973633258, relative_change = 9.746189365884321e-7 Iter 80: T = 571.4800841889441 K, F = -0.009909272248509349, relative_change = 4.0760346794921297e-7 Iter 85: T = 571.4793727059331 K, F = -0.004144177749065947, relative_change = 1.7046572060493696e-7 Iter 90: T = 571.4790751543032 K, F = -0.0017331449332850801, relative_change = 7.129098948246856e-8 Iter 95: T = 571.4789507144941 K, F = -0.0007248219629325536, relative_change = 2.981477631370224e-8 Iter 100: T = 571.4788986722511 K, F = -0.00030312921082475963, relative_change = 1.2468901323959737e-8 Iter 105: T = 571.4788769075586 K, F = -0.00012677225835205919, relative_change = 5.214644482192635e-9 Iter 110: T = 571.4788678053034 K, F = -5.3017672589639186e-5, relative_change = 2.180826770671687e-9 Iter 115: T = 571.4788639986314 K, F = -2.21726241821929e-5, relative_change = 9.120478429956088e-10 Iter 120: T = 571.4788624066356 K, F = -9.272855992614737e-6, relative_change = 3.814292953845038e-10 Iter 125: T = 571.478861740844 K, F = -3.878019391001519e-6, relative_change = 1.5951829869672435e-10 Iter 130: T = 571.4788614624019 K, F = -1.6218339040086072e-6, relative_change = 6.671245284037338e-11 Iter 135: T = 571.4788613459541 K, F = -6.782695274876183e-7, relative_change = 2.7899912437171716e-11 Iter 140: T = 571.4788612972543 K, F = -2.8366029436455165e-7, relative_change = 1.1668071551435936e-11 Iter 145: T = 571.4788612768874 K, F = -1.1862935611617331e-7, relative_change = 4.879695336282214e-12 Iter 150: T = 571.4788612683699 K, F = -4.961232924483028e-8, relative_change = 2.0407516282748233e-12 Iter 155: T = 571.4788612648077 K, F = -2.0748823381655512e-8, relative_change = 8.534812968203668e-13 Iter 160: T = 571.478861263318 K, F = -8.677830509729034e-9, relative_change = 3.569535438655732e-13 Converged in 163 iterations to T = 571.4788612628818 K Iter 1: T = 980.1492574836125 K, F = -4523.010565289865, relative_change = 0.019850742516387514 Iter 2: T = 962.341908456773 K, F = -3820.5905733199274, relative_change = 0.018167997262536456 Iter 3: T = 946.4569996463518 K, F = -3225.7518874794036, relative_change = 0.016506512571913712 Iter 5: T = 919.9311129275872 K, F = -2296.3358062695265, relative_change = 0.013336046676268224 Iter 10: T = 877.8181850349852 K, F = -974.8660963390723, relative_change = 0.007005502273179716 Iter 15: T = 857.8832393542431 K, F = -410.80077487626664, relative_change = 0.0032849011619250413 Iter 20: T = 849.0362672029487 K, F = -172.39995541994404, relative_change = 0.001447547161578163 Iter 25: T = 845.2370482197998 K, F = -72.20908928750247, relative_change = 0.0006193232908914028 Iter 30: T = 843.6299522736415 K, F = -30.21820365097284, relative_change = 0.0002615300849367777 Iter 35: T = 842.95459349676 K, F = -12.64105220623475, relative_change = 0.00010982238097907 Iter 40: T = 842.6715766594986 K, F = -5.287242476049833, relative_change = 4.600774855578437e-5 Iter 45: T = 842.5531149264856 K, F = -2.211293647259809, relative_change = 1.925479230334081e-5 Iter 50: T = 842.5035551735564 K, F = -0.9248079099021504, relative_change = 8.05500069179897e-6 Iter 55: T = 842.4828256055368 K, F = -0.3867689485657587, relative_change = 3.3691203382337438e-6 Iter 60: T = 842.474155712482 K, F = -0.16175195931957642, relative_change = 1.4090803319623814e-6 Iter 65: T = 842.4705297651839 K, F = -0.06764670010531337, relative_change = 5.893071612560708e-7 Iter 70: T = 842.4690133341953 K, F = -0.02829067516618422, relative_change = 2.464575556399956e-7 Iter 75: T = 842.4683791417556 K, F = -0.0118315012410386, relative_change = 1.030718888719776e-7 Iter 80: T = 842.4681139143979 K, F = -0.00494807564541766, relative_change = 4.310596408236543e-8 Iter 85: T = 842.4680029930611 K, F = -0.0020693444174213482, relative_change = 1.8027441058381787e-8 Iter 90: T = 842.4679566044179 K, F = -0.0008654245625814294, relative_change = 7.539293242485147e-9 Iter 95: T = 842.4679372041306 K, F = -0.00036193088815617003, relative_change = 3.1530228242726353e-9 Iter 100: T = 842.4679290906984 K, F = -0.00015136382009250937, relative_change = 1.318631863215893e-9 Iter 105: T = 842.467925697564 K, F = -6.330215856187316e-5, relative_change = 5.514676151786823e-10 Iter 110: T = 842.4679242785147 K, F = -2.6473718940378532e-5, relative_change = 2.3063034654303928e-10 Iter 115: T = 842.4679236850513 K, F = -1.1071625386049888e-5, relative_change = 9.645236522659976e-11 Iter 120: T = 842.4679234368579 K, F = -4.630285273421464e-6, relative_change = 4.0337525101287496e-11 Iter 125: T = 842.4679233330604 K, F = -1.936440993111077e-6, relative_change = 1.6869638175637315e-11 Iter 130: T = 842.467923289651 K, F = -8.098421575564174e-7, relative_change = 7.055078997660038e-12 Iter 135: T = 842.4679232714967 K, F = -3.386862248433431e-7, relative_change = 2.95052319719196e-12 Iter 140: T = 842.4679232639044 K, F = -1.4164251704862352e-7, relative_change = 1.2339431061061298e-12 Iter 145: T = 842.4679232607292 K, F = -5.923763923831871e-8, relative_change = 5.16058864841723e-13 Converged in 150 iterations to T = 842.4679232594013 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013200675266693562 Iteration 10: d = 1.532795058790606e-5 Iteration 20: d = 1.8825455028163395e-7 Iteration 30: d = 2.553629001498107e-9 Iteration 40: d = 3.543062569742947e-11 Iteration 50: d = 4.941652564543932e-13 Iteration 60: d = 6.9134939456903735e-15 Converged after 63 iterations. d = 1.9540558282969617e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.665797798922 Iteration 2: convergence error = 4822.1932362079 Iteration 3: convergence error = 1099.9998797612898 Iteration 4: convergence error = 320.3276070728116 Iteration 5: convergence error = 94.99596251063736 Iteration 6: convergence error = 28.318715030794465 Iteration 7: convergence error = 8.46692818884685 Iteration 8: convergence error = 2.5369471075705405 Iteration 9: convergence error = 0.7583676820195251 Iteration 10: convergence error = 0.22639109729038864 Iteration 11: convergence error = 0.06753086144522058 Iteration 12: convergence error = 0.020135081821990752 Iteration 13: convergence error = 0.0060019858426585415 Iteration 14: convergence error = 0.0017888492814108758 Iteration 15: convergence error = 0.0005331094785105961 Iteration 16: convergence error = 0.00015886864048297866 Iteration 17: convergence error = 4.7342130301331053e-5 Iteration 18: convergence error = 1.4107513834460406e-5 Iteration 19: convergence error = 4.203868911645259e-6 Iteration 20: convergence error = 1.252691617992241e-6 Iteration 21: convergence error = 3.732809545908822e-7 Iteration 22: convergence error = 1.1109568731626496e-7 Iteration 23: convergence error = 3.219452082703356e-8 Iteration 24: convergence error = 9.273662726627663e-9 Iteration 25: convergence error = 2.667093212949112e-9 Iteration 26: convergence error = 7.619291864102706e-10 Iteration 27: convergence error = 2.1873347577638924e-10 Iteration 28: convergence error = 6.434675015043467e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00117997683347277 Iteration 10: d = 9.597655337257023e-6 Iteration 20: d = 9.869911563625797e-8 Iteration 30: d = 1.1646054713207527e-9 Iteration 40: d = 1.4155648621053436e-11 Iteration 50: d = 1.746727092469875e-13 Converged after 60 iterations. d = 2.190894848783478e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12289.055216986815 Iteration 2: convergence error = 8322.603887790472 Iteration 3: convergence error = 1946.2768966387457 Iteration 4: convergence error = 476.8484416488893 Iteration 5: convergence error = 121.18441054625623 Iteration 6: convergence error = 32.27373601446402 Iteration 7: convergence error = 8.77152891666924 Iteration 8: convergence error = 2.3978483937860346 Iteration 9: convergence error = 0.6563316263416255 Iteration 10: convergence error = 0.1796800468246147 Iteration 11: convergence error = 0.04918826213679495 Iteration 12: convergence error = 0.013464912762401582 Iteration 13: convergence error = 0.003685816076995252 Iteration 14: convergence error = 0.00100892243835915 Iteration 15: convergence error = 0.00027617170690064086 Iteration 16: convergence error = 7.559610821772367e-5 Iteration 17: convergence error = 2.0692802308985847e-5 Iteration 18: convergence error = 5.664204081767821e-6 Iteration 19: convergence error = 1.5504533621424343e-6 Iteration 20: convergence error = 4.2440410652488936e-7 Iteration 21: convergence error = 1.170390078186756e-7 Iteration 22: convergence error = 3.13532382278936e-8 Iteration 23: convergence error = 8.362803782802075e-9 Iteration 24: convergence error = 2.2287167666945606e-9 Iteration 25: convergence error = 5.936726665822789e-10 Iteration 26: convergence error = 1.596163201611489e-10 Iteration 27: convergence error = 4.297362465877086e-11 Iteration 28: convergence error = 1.0913936421275139e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00117997683347277 Iteration 10: d = 9.597655337257023e-6 Iteration 20: d = 9.869911563625797e-8 Iteration 30: d = 1.1646054713207527e-9 Iteration 40: d = 1.4155648621053436e-11 Iteration 50: d = 1.746727092469875e-13 Converged after 60 iterations. d = 2.190894848783478e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.029715369927 Iteration 2: convergence error = 5729.891296720221 Iteration 3: convergence error = 2014.0348219016246 Iteration 4: convergence error = 893.9082759848498 Iteration 5: convergence error = 408.46890872042695 Iteration 6: convergence error = 192.44851207446527 Iteration 7: convergence error = 90.76141130221504 Iteration 8: convergence error = 42.82806784200602 Iteration 9: convergence error = 20.21063919193284 Iteration 10: convergence error = 9.535713493516141 Iteration 11: convergence error = 4.498043907537522 Iteration 12: convergence error = 2.121299424166409 Iteration 13: convergence error = 1.0002496567726666 Iteration 14: convergence error = 0.47158804032642365 Iteration 15: convergence error = 0.22232124910487983 Iteration 16: convergence error = 0.10470855294533976 Iteration 17: convergence error = 0.048868269667309505 Iteration 18: convergence error = 0.02229023240670358 Iteration 19: convergence error = 0.01012894697032607 Iteration 20: convergence error = 0.004592811370002892 Iteration 21: convergence error = 0.002079964297990955 Iteration 22: convergence error = 0.0009412873523615417 Iteration 23: convergence error = 0.00042580108856782317 Iteration 24: convergence error = 0.0001925679111991485 Iteration 25: convergence error = 8.707570759725058e-5 Iteration 26: convergence error = 3.9370543163386174e-5 Iteration 27: convergence error = 1.7800099158193916e-5 Iteration 28: convergence error = 8.047463325056015e-6 Iteration 29: convergence error = 3.6382043617777526e-6 Iteration 30: convergence error = 1.6447861526103225e-6 Iteration 31: convergence error = 7.435769475705456e-7 Iteration 32: convergence error = 3.3616379369050264e-7 Iteration 33: convergence error = 1.51969743455993e-7 Iteration 34: convergence error = 6.870186552987434e-8 Iteration 35: convergence error = 3.1059698812896386e-8 Iteration 36: convergence error = 1.4042143448023126e-8 Iteration 37: convergence error = 6.350092007778585e-9 Iteration 38: convergence error = 2.8676367946900427e-9 Iteration 39: convergence error = 1.2964846973773092e-9 Iteration 40: convergence error = 5.893525667488575e-10 Iteration 41: convergence error = 2.6193447411060333e-10 Iteration 42: convergence error = 1.191438059322536e-10 Iteration 43: convergence error = 5.547917680814862e-11 Iteration 44: convergence error = 2.546585164964199e-11 Iteration 45: convergence error = 1.1823431123048067e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 34%|███████████▍ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00117997683347277 Iteration 10: d = 9.597655337257023e-6 Iteration 20: d = 9.869911563625797e-8 Iteration 30: d = 1.1646054713207527e-9 Iteration 40: d = 1.4155648621053436e-11 Iteration 50: d = 1.746727092469875e-13 Converged after 60 iterations. d = 2.190894848783478e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.74148685701 Iteration 2: convergence error = 7347.976471615899 Iteration 3: convergence error = 1730.606508739087 Iteration 4: convergence error = 503.10776245828765 Iteration 5: convergence error = 156.07201796264053 Iteration 6: convergence error = 48.41499086802787 Iteration 7: convergence error = 14.994401722002749 Iteration 8: convergence error = 4.636372607022622 Iteration 9: convergence error = 1.4319833352433307 Iteration 10: convergence error = 0.44197274573116374 Iteration 11: convergence error = 0.13635655447433237 Iteration 12: convergence error = 0.04205862518529102 Iteration 13: convergence error = 0.01297108791413848 Iteration 14: convergence error = 0.004000045634711569 Iteration 15: convergence error = 0.0012334877660578059 Iteration 16: convergence error = 0.0003803593590419041 Iteration 17: convergence error = 0.0001172862980638456 Iteration 18: convergence error = 3.616570575104561e-5 Iteration 19: convergence error = 1.1151787475682795e-5 Iteration 20: convergence error = 3.4386844163236674e-6 Iteration 21: convergence error = 1.0603234841255471e-6 Iteration 22: convergence error = 3.2678099159966223e-7 Iteration 23: convergence error = 9.950508683687076e-8 Iteration 24: convergence error = 2.957358447019942e-8 Iteration 25: convergence error = 8.750703273108229e-9 Iteration 26: convergence error = 2.5870576791930944e-9 Iteration 27: convergence error = 7.707967597525567e-10 Iteration 28: convergence error = 2.2600943339057267e-10 Iteration 29: convergence error = 6.684786058031023e-11 Iteration 30: convergence error = 1.864464138634503e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00117997683347277 Iteration 10: d = 9.597655337257023e-6 Iteration 20: d = 9.869911563625797e-8 Iteration 30: d = 1.1646054713207527e-9 Iteration 40: d = 1.4155648621053436e-11 Iteration 50: d = 1.746727092469875e-13 Converged after 60 iterations. d = 2.190894848783478e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.716140554962 Iteration 2: convergence error = 5518.047804226306 Iteration 3: convergence error = 935.4304840020661 Iteration 4: convergence error = 170.0806857721641 Iteration 5: convergence error = 30.820834241637158 Iteration 6: convergence error = 5.599423811920133 Iteration 7: convergence error = 1.0185669615505049 Iteration 8: convergence error = 0.1855971248246533 Iteration 9: convergence error = 0.033870062229198084 Iteration 10: convergence error = 0.006177486016895273 Iteration 11: convergence error = 0.001126371660575387 Iteration 12: convergence error = 0.00020534638770186575 Iteration 13: convergence error = 3.7433395846164785e-5 Iteration 14: convergence error = 6.823581770731835e-6 Iteration 15: convergence error = 1.2438349585863762e-6 Iteration 16: convergence error = 2.2671474653179757e-7 Iteration 17: convergence error = 4.132516551180743e-8 Iteration 18: convergence error = 7.515609468100592e-9 Iteration 19: convergence error = 1.3847056834492832e-9 Iteration 20: convergence error = 2.4942892196122557e-10 Iteration 21: convergence error = 4.501998773775995e-11 Iteration 22: convergence error = 8.640199666842818e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:02 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00117997683347277 Iteration 10: d = 9.597655337257023e-6 Iteration 20: d = 9.869911563625797e-8 Iteration 30: d = 1.1646054713207527e-9 Iteration 40: d = 1.4155648621053436e-11 Iteration 50: d = 1.746727092469875e-13 Converged after 60 iterations. d = 2.190894848783478e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.482603571679 Iteration 2: convergence error = 2713.761096162648 Iteration 3: convergence error = 204.3880815647708 Iteration 4: convergence error = 19.280983512205957 Iteration 5: convergence error = 1.591295549835686 Iteration 6: convergence error = 0.1293942674469427 Iteration 7: convergence error = 0.01053417948639895 Iteration 8: convergence error = 0.0008603928691658556 Iteration 9: convergence error = 7.037049242219246e-5 Iteration 10: convergence error = 5.758118405710368e-6 Iteration 11: convergence error = 4.7127302978311027e-7 Iteration 12: convergence error = 3.857595968024559e-8 Iteration 13: convergence error = 3.15873027956187e-9 Iteration 14: convergence error = 2.5771481234960814e-10 Iteration 15: convergence error = 2.1827872842550278e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013200675266693562 Iteration 10: d = 1.532795058790606e-5 Iteration 20: d = 1.8825455028163395e-7 Iteration 30: d = 2.553629001498107e-9 Iteration 40: d = 3.543062569742947e-11 Iteration 50: d = 4.941652564543932e-13 Iteration 60: d = 6.9134939456903735e-15 Converged after 63 iterations. d = 1.9540558282969617e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.327630298469 Iteration 2: convergence error = 3611.0253227641633 Iteration 3: convergence error = 594.7085008777391 Iteration 4: convergence error = 104.78440302843342 Iteration 5: convergence error = 18.635182123380673 Iteration 6: convergence error = 3.2838093484042474 Iteration 7: convergence error = 0.5764712305749526 Iteration 8: convergence error = 0.1010392485520697 Iteration 9: convergence error = 0.017697754808750688 Iteration 10: convergence error = 0.003099054203403284 Iteration 11: convergence error = 0.0005426153368262021 Iteration 12: convergence error = 9.500250826022238e-5 Iteration 13: convergence error = 1.6632970755381393e-5 Iteration 14: convergence error = 2.9120697035978083e-6 Iteration 15: convergence error = 5.098543169879122e-7 Iteration 16: convergence error = 8.926303962653037e-8 Iteration 17: convergence error = 1.5627620086888783e-8 Iteration 18: convergence error = 2.7196165319764987e-9 Iteration 19: convergence error = 4.815774445887655e-10 Iteration 20: convergence error = 8.36735125631094e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 11m00.8s Testing RayTraceHeatTransfer tests passed Testing completed after 670.73s PkgEval succeeded after 730.26s