Package evaluation to test Turing on Julia 1.14.0-DEV.65 (b05afe0f25*) started at 2025-11-12T03:08:57.600 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.49s ################################################################################ # Installation # Installing Turing... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [fce5fe82] + Turing v0.41.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [621f4979] + AbstractFFTs v1.5.0 [80f14c24] + AbstractMCMC v5.10.0 [7a57a42e] + AbstractPPL v0.13.6 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [0bf59076] + AdvancedHMC v0.8.3 [5b7e9947] + AdvancedMH v0.8.9 [576499cb] + AdvancedPS v0.7.0 ⌅ [b5ca4192] + AdvancedVI v0.4.1 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [4fba245c] + ArrayInterface v7.22.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.8 [198e06fe] + BangBang v0.4.6 [9718e550] + Baselet v0.1.1 [76274a88] + Bijectors v0.15.12 [082447d4] + ChainRules v1.72.6 [d360d2e6] + ChainRulesCore v1.26.0 [0ca39b1e] + Chairmarks v1.3.1 [9e997f8a] + ChangesOfVariables v0.1.10 [861a8166] + Combinatorics v1.0.3 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [8bb1440f] + DelimitedFiles v1.9.1 [b429d917] + DensityInterface v0.4.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.11 [31c24e10] + Distributions v0.25.122 [ced4e74d] + DistributionsAD v0.6.58 [ffbed154] + DocStringExtensions v0.9.5 [366bfd00] + DynamicPPL v0.38.9 [cad2338a] + EllipticalSliceSampling v2.0.0 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [7a1cc6ca] + FFTW v1.10.0 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.15.0 [6a86dc24] + FiniteDiff v2.29.0 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [22cec73e] + InitialValues v0.3.1 [a98d9a8b] + Interpolations v0.16.2 [8197267c] + IntervalSets v0.7.12 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [682c06a0] + JSON v1.2.1 [ae98c720] + Jieko v0.2.1 [5ab0869b] + KernelDensity v0.6.10 [b964fa9f] + LaTeXStrings v1.4.0 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.1 [6f1fad26] + Libtask v0.9.10 [d3d80556] + LineSearches v7.4.0 [6fdf6af0] + LogDensityProblems v2.2.0 [996a588d] + LogDensityProblemsAD v1.13.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.2.0 [c7f686f2] + MCMCChains v7.6.0 [be115224] + MCMCDiagnosticTools v0.3.15 [e80e1ace] + MLJModelInterface v1.12.0 [1914dd2f] + MacroTools v0.5.16 [dbb5928d] + MappedArrays v0.4.2 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [dbe65cb8] + MistyClosures v2.1.0 [2e0e35c7] + Moshi v0.3.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [86f7a689] + NamedArrays v0.10.5 [c020b1a1] + NaturalSort v1.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [3bd65402] + Optimisers v0.4.6 [7f7a1694] + Optimization v5.1.0 [bca83a33] + OptimizationBase v4.0.2 [36348300] + OptimizationOptimJL v0.4.8 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [08abe8d2] + PrettyTables v3.1.0 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [f2b01f46] + Roots v2.2.10 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 ⌅ [26aad666] + SSMProblems v0.5.2 [0bca4576] + SciMLBase v2.124.0 [a6db7da4] + SciMLLogging v1.5.0 [c0aeaf25] + SciMLOperators v1.10.0 [431bcebd] + SciMLPublic v1.0.0 [53ae85a6] + SciMLStructures v1.7.0 [30f210dd] + ScientificTypesBase v3.0.0 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.2 [9f842d2f] + SparseConnectivityTracer v1.1.2 [dc90abb0] + SparseInverseSubset v0.1.2 [0a514795] + SparseMatrixColorings v0.4.23 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.8 [4c63d2b9] + StatsFuns v1.5.2 [892a3eda] + StringManipulation v0.4.1 [09ab397b] + StructArrays v0.7.2 [ec057cc2] + StructUtils v2.6.0 [2efcf032] + SymbolicIndexingInterface v0.3.46 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5d786b92] + TerminalLoggers v0.1.7 [28d57a85] + Transducers v0.4.85 [fce5fe82] + Turing v0.41.1 [3a884ed6] + UnPack v1.0.2 [efce3f68] + WoodburyMatrices v1.0.0 [700de1a5] + ZygoteRules v0.2.7 [f5851436] + FFTW_jll v3.3.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [856f044c] + MKL_jll v2025.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+1 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 7.04s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 4860.8 ms ✓ AbstractMCMC 6338.5 ms ✓ OptimizationBase 4628.1 ms ✓ Interpolations → InterpolationsForwardDiffExt 3937.1 ms ✓ Distributions → DistributionsDensityInterfaceExt 5016.8 ms ✓ AdvancedVI 9024.2 ms ✓ Bijectors 9304.6 ms ✓ DistributionsAD 4934.5 ms ✓ KernelDensity 6767.1 ms ✓ AdvancedHMC 5530.2 ms ✓ SSMProblems 8201.6 ms ✓ AdvancedMH 6632.3 ms ✓ EllipticalSliceSampling 5268.5 ms ✓ AbstractPPL 4525.2 ms ✓ Optimization 33360.7 ms ✓ OptimizationOptimJL 4133.5 ms ✓ Bijectors → BijectorsForwardDiffExt 3810.7 ms ✓ AdvancedVI → AdvancedVIBijectorsExt 4094.6 ms ✓ DistributionsAD → DistributionsADForwardDiffExt 4100.6 ms ✓ Bijectors → BijectorsDistributionsADExt 11501.2 ms ✓ MCMCChains 4013.2 ms ✓ AdvancedHMC → AdvancedHMCADTypesExt 5495.9 ms ✓ AdvancedPS 4304.6 ms ✓ AdvancedMH → AdvancedMHStructArraysExt 4778.3 ms ✓ AdvancedMH → AdvancedMHForwardDiffExt 5925.9 ms ✓ AbstractPPL → AbstractPPLDistributionsExt 9405.7 ms ✓ AdvancedHMC → AdvancedHMCMCMCChainsExt 8347.3 ms ✓ AdvancedMH → AdvancedMHMCMCChainsExt 5414.1 ms ✓ AdvancedPS → AdvancedPSLibtaskExt 20329.7 ms ✓ DynamicPPL 6219.6 ms ✓ DynamicPPL → DynamicPPLChainRulesCoreExt 10128.6 ms ✓ DynamicPPL → DynamicPPLMCMCChainsExt 6490.9 ms ✓ DynamicPPL → DynamicPPLForwardDiffExt 18001.2 ms ✓ Turing 16478.8 ms ✓ Turing → TuringOptimExt 34 dependencies successfully precompiled in 278 seconds. 278 already precompiled. Precompilation completed after 277.72s ################################################################################ # Testing # Testing Turing Test Could not use exact versions of packages in manifest, re-resolving. Note: if you do not check your manifest file into source control, then you can probably ignore this message. However, if you do check your manifest file into source control, then you probably want to pass the `allow_reresolve = false` kwarg when calling the `Pkg.test` function. Updating `/tmp/jl_pfztxq/Project.toml` [4c88cf16] + Aqua v0.8.14 [aaaa29a8] + Clustering v0.15.8 [bbc10e6e] + DynamicHMC v3.5.1 [26cc04aa] + FiniteDifferences v0.12.33 [09f84164] + HypothesisTests v0.11.6 [3e6eede4] + OptimizationBBO v0.4.5 [4e6fcdb7] + OptimizationNLopt v0.3.8 [37e2e3b7] + ReverseDiff v1.16.1 [860ef19b] + StableRNGs v1.0.4 [a759f4b9] + TimerOutputs v0.5.29 [fce5fe82] + Turing v0.41.1 Updating `/tmp/jl_pfztxq/Manifest.toml` [0bf59076] + AdvancedHMC v0.8.3 [4c88cf16] + Aqua v0.8.14 [a134a8b2] + BlackBoxOptim v0.6.3 [fa961155] + CEnum v0.5.0 [a9c8d775] + CPUTime v1.0.0 [aaaa29a8] + Clustering v0.15.8 [b4f34e82] + Distances v0.10.12 [bbc10e6e] + DynamicHMC v3.5.1 [cad2338a] + EllipticalSliceSampling v2.0.0 [26cc04aa] + FiniteDifferences v0.12.33 [09f84164] + HypothesisTests v0.11.6 ⌅ [682c06a0] ↓ JSON v1.2.1 ⇒ v0.21.4 [1fad7336] + LazyStack v0.1.3 [6f1fad26] + Libtask v0.9.10 [dbe65cb8] + MistyClosures v2.1.0 [76087f3c] + NLopt v1.2.1 [b8a86587] + NearestNeighbors v0.4.22 [3e6eede4] + OptimizationBBO v0.4.5 [4e6fcdb7] + OptimizationNLopt v0.3.8 [65ce6f38] + PackageExtensionCompat v1.0.2 [37e2e3b7] + ReverseDiff v1.16.1 [708f8203] + Richardson v1.4.2 [d4ead438] + SpatialIndexing v0.1.6 [860ef19b] + StableRNGs v1.0.4 [5e0ebb24] + Strided v2.3.2 [4db3bf67] + StridedViews v0.4.1 [ec057cc2] - StructUtils v2.6.0 [02d47bb6] + TensorCast v0.4.9 [a759f4b9] + TimerOutputs v0.5.29 [24ddb15e] + TransmuteDims v0.1.17 [9d95972d] + TupleTools v1.6.0 [fce5fe82] + Turing v0.41.1 [079eb43e] + NLopt_jll v2.10.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_pfztxq/Project.toml` [47edcb42] ADTypes v1.18.0 [80f14c24] AbstractMCMC v5.10.0 [7a57a42e] AbstractPPL v0.13.6 [5b7e9947] AdvancedMH v0.8.9 [576499cb] AdvancedPS v0.7.0 ⌅ [b5ca4192] AdvancedVI v0.4.1 [4c88cf16] Aqua v0.8.14 [198e06fe] BangBang v0.4.6 [76274a88] Bijectors v0.15.12 [aaaa29a8] Clustering v0.15.8 [861a8166] Combinatorics v1.0.3 [31c24e10] Distributions v0.25.122 [ced4e74d] DistributionsAD v0.6.58 [bbc10e6e] DynamicHMC v3.5.1 [366bfd00] DynamicPPL v0.38.9 [26cc04aa] FiniteDifferences v0.12.33 [f6369f11] ForwardDiff v1.2.2 [09f84164] HypothesisTests v0.11.6 [6fdf6af0] LogDensityProblems v2.2.0 [996a588d] LogDensityProblemsAD v1.13.1 [c7f686f2] MCMCChains v7.6.0 [86f7a689] NamedArrays v0.10.5 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v5.1.0 [3e6eede4] OptimizationBBO v0.4.5 [4e6fcdb7] OptimizationNLopt v0.3.8 [36348300] OptimizationOptimJL v0.4.8 [90014a1f] PDMats v0.11.36 [37e2e3b7] ReverseDiff v1.16.1 [276daf66] SpecialFunctions v2.6.1 [860ef19b] StableRNGs v1.0.4 [2913bbd2] StatsBase v0.34.8 [4c63d2b9] StatsFuns v1.5.2 [a759f4b9] TimerOutputs v0.5.29 [fce5fe82] Turing v0.41.1 [37e2e46d] LinearAlgebra v1.13.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_pfztxq/Manifest.toml` [47edcb42] ADTypes v1.18.0 [621f4979] AbstractFFTs v1.5.0 [80f14c24] AbstractMCMC v5.10.0 [7a57a42e] AbstractPPL v0.13.6 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.4.0 [0bf59076] AdvancedHMC v0.8.3 [5b7e9947] AdvancedMH v0.8.9 [576499cb] AdvancedPS v0.7.0 ⌅ [b5ca4192] AdvancedVI v0.4.1 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.14 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.22.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [76274a88] Bijectors v0.15.12 [a134a8b2] BlackBoxOptim v0.6.3 [fa961155] CEnum v0.5.0 [a9c8d775] CPUTime v1.0.0 [082447d4] ChainRules v1.72.6 [d360d2e6] ChainRulesCore v1.26.0 [0ca39b1e] Chairmarks v1.3.1 [9e997f8a] ChangesOfVariables v0.1.10 [aaaa29a8] Clustering v0.15.8 [861a8166] Combinatorics v1.0.3 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b429d917] DensityInterface v0.4.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.11 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.122 [ced4e74d] DistributionsAD v0.6.58 [ffbed154] DocStringExtensions v0.9.5 [bbc10e6e] DynamicHMC v3.5.1 [366bfd00] DynamicPPL v0.38.9 [cad2338a] EllipticalSliceSampling v2.0.0 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7a1cc6ca] FFTW v1.10.0 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.15.0 [6a86dc24] FiniteDiff v2.29.0 [26cc04aa] FiniteDifferences v0.12.33 [f6369f11] ForwardDiff v1.2.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [09f84164] HypothesisTests v0.11.6 [22cec73e] InitialValues v0.3.1 [a98d9a8b] Interpolations v0.16.2 [8197267c] IntervalSets v0.7.12 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 ⌅ [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5ab0869b] KernelDensity v0.6.10 [b964fa9f] LaTeXStrings v1.4.0 [1fad7336] LazyStack v0.1.3 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [6f1fad26] Libtask v0.9.10 [d3d80556] LineSearches v7.4.0 [6fdf6af0] LogDensityProblems v2.2.0 [996a588d] LogDensityProblemsAD v1.13.1 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [c7f686f2] MCMCChains v7.6.0 [be115224] MCMCDiagnosticTools v0.3.15 [e80e1ace] MLJModelInterface v1.12.0 [1914dd2f] MacroTools v0.5.16 [dbb5928d] MappedArrays v0.4.2 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [dbe65cb8] MistyClosures v2.1.0 [2e0e35c7] Moshi v0.3.7 [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.2.1 [77ba4419] NaNMath v1.1.3 [86f7a689] NamedArrays v0.10.5 [c020b1a1] NaturalSort v1.0.0 [b8a86587] NearestNeighbors v0.4.22 [6fe1bfb0] OffsetArrays v1.17.0 [429524aa] Optim v1.13.2 [3bd65402] Optimisers v0.4.6 [7f7a1694] Optimization v5.1.0 [3e6eede4] OptimizationBBO v0.4.5 [bca83a33] OptimizationBase v4.0.2 [4e6fcdb7] OptimizationNLopt v0.3.8 [36348300] OptimizationOptimJL v0.4.8 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.36 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.34 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [08abe8d2] PrettyTables v3.1.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.39.0 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [37e2e3b7] ReverseDiff v1.16.1 [708f8203] Richardson v1.4.2 [79098fc4] Rmath v0.9.0 [f2b01f46] Roots v2.2.10 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 ⌅ [26aad666] SSMProblems v0.5.2 [0bca4576] SciMLBase v2.124.0 [a6db7da4] SciMLLogging v1.5.0 [c0aeaf25] SciMLOperators v1.10.0 [431bcebd] SciMLPublic v1.0.0 [53ae85a6] SciMLStructures v1.7.0 [30f210dd] ScientificTypesBase v3.0.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.2 [9f842d2f] SparseConnectivityTracer v1.1.2 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.23 [d4ead438] SpatialIndexing v0.1.6 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.4 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.8 [4c63d2b9] StatsFuns v1.5.2 [5e0ebb24] Strided v2.3.2 [4db3bf67] StridedViews v0.4.1 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.2 [2efcf032] SymbolicIndexingInterface v0.3.46 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [02d47bb6] TensorCast v0.4.9 [5d786b92] TerminalLoggers v0.1.7 [a759f4b9] TimerOutputs v0.5.29 [28d57a85] Transducers v0.4.85 [24ddb15e] TransmuteDims v0.1.17 [9d95972d] TupleTools v1.6.0 [fce5fe82] Turing v0.41.1 [3a884ed6] UnPack v1.0.2 [efce3f68] WoodburyMatrices v1.0.0 [700de1a5] ZygoteRules v0.2.7 [f5851436] FFTW_jll v3.3.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [856f044c] MKL_jll v2025.2.0+0 [079eb43e] NLopt_jll v2.10.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+1 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... [ Info: [Turing]: progress logging is disabled globally [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[s] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[m] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[s] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[m] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[s] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[m] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[s] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[m] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[s] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[m] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[s] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[m] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[s] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[m] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[s] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[m] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) constructor: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/essential/container.jl:20 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/essential/container.jl:10 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [14] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/essential/container.jl:21 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [16] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/essential/container.jl:25 [inlined] [17] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [18] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [20] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:42 [inlined] [21] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [22] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [23] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [24] top-level scope @ none:6 [25] eval(m::Module, e::Any) @ Core ./boot.jl:489 [26] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [27] _start() @ Base ./client.jl:577 fork: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/essential/container.jl:38 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/essential/container.jl:10 [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [14] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/essential/container.jl:39 [inlined] [15] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [16] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/essential/container.jl:51 [inlined] [17] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [18] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [20] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:42 [inlined] [21] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [22] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [23] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [24] top-level scope @ none:6 [25] eval(m::Module, e::Any) @ Core ./boot.jl:489 [26] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [27] _start() @ Base ./client.jl:577 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 models: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:27 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#71#72"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#71#72"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}}}) @ Base ./array.jl:828 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:147 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:134 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{nparticles::Int64}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{chain_type::UnionAll, initial_params::DynamicPPL.InitFromPrior, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; check_model::Bool, chain_type::Type, initial_params::DynamicPPL.InitFromPrior, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:121 [28] sample @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:108 [inlined] [29] #sample#1 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:71 [inlined] [30] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:68 [31] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:13 [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:28 [inlined] [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:36 [inlined] [36] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [37] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [43] top-level scope @ none:6 [44] eval(m::Module, e::Any) @ Core ./boot.jl:489 [45] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [46] _start() @ Base ./client.jl:577 chain log-density metadata: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:53 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#71#72"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#71#72"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}}}) @ Base ./array.jl:828 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:147 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:134 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{nparticles::Int64}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{chain_type::UnionAll, initial_params::DynamicPPL.InitFromPrior, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; check_model::Bool, chain_type::Type, initial_params::DynamicPPL.InitFromPrior, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:121 [28] sample @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:108 [inlined] [29] #sample#1 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:71 [inlined] [30] sample(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:68 [31] test_chain_logp_metadata(spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Main.SamplerTestUtils ~/.julia/packages/Turing/lmRwJ/test/test_utils/sampler.jl:22 [32] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:13 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:54 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:54 [inlined] [37] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [38] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [43] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [44] top-level scope @ none:6 [45] eval(m::Module, e::Any) @ Core ./boot.jl:489 [46] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [47] _start() @ Base ./client.jl:577 logevidence: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:57 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#71#72"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#71#72"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}}}) @ Base ./array.jl:828 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:147 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:134 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{nparticles::Int64}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{chain_type::UnionAll, initial_params::DynamicPPL.InitFromPrior, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; check_model::Bool, chain_type::Type, initial_params::DynamicPPL.InitFromPrior, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:121 [28] sample @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:108 [inlined] [29] #sample#1 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:71 [inlined] [30] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:68 [31] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:13 [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:58 [inlined] [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:70 [inlined] [36] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [37] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [43] top-level scope @ none:6 [44] eval(m::Module, e::Any) @ Core ./boot.jl:489 [45] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [46] _start() @ Base ./client.jl:577 chain log-density metadata: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:99 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#77#78"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#77#78"{DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:828 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:264 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:257 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:85 [28] sample @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:74 [inlined] [29] #sample#1 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:71 [inlined] [30] sample(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:68 [31] test_chain_logp_metadata(spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Main.SamplerTestUtils ~/.julia/packages/Turing/lmRwJ/test/test_utils/sampler.jl:22 [32] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:81 [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:100 [inlined] [35] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [36] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:100 [inlined] [37] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [38] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [41] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [42] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [43] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [44] top-level scope @ none:6 [45] eval(m::Module, e::Any) @ Core ./boot.jl:489 [46] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [47] _start() @ Base ./client.jl:577 logevidence: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:103 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#77#78"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#77#78"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:828 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:264 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:257 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:85 [28] sample @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:74 [inlined] [29] #sample#1 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:71 [inlined] [30] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:68 [31] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:81 [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:104 [inlined] [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:116 [inlined] [36] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [37] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [43] top-level scope @ none:6 [44] eval(m::Module, e::Any) @ Core ./boot.jl:489 [45] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [46] _start() @ Base ./client.jl:577 reference particle: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:124 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#77#78"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#77#78"{DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:828 [15] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:264 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:257 [17] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:85 [28] sample @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:74 [inlined] [29] #sample#1 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:71 [inlined] [30] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:68 [31] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:81 [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:125 [inlined] [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:125 [inlined] [36] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [37] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [43] top-level scope @ none:6 [44] eval(m::Module, e::Any) @ Core ./boot.jl:489 [45] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [46] _start() @ Base ./client.jl:577 addlogprob leads to reweighting: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:130 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, varinfo::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#77#78"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#77#78"{DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:828 [15] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:264 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:257 [17] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [inlined] [19] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [20] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [21] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [22] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [23] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [24] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [25] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [26] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [27] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:85 [28] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:74 [29] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:81 [30] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [31] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:133 [inlined] [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/particle_mcmc.jl:143 [inlined] [34] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [35] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ none:6 [42] eval(m::Module, e::Any) @ Core ./boot.jl:489 [43] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [44] _start() @ Base ./client.jl:577 ┌ Warning: The model does not contain any parameters. └ @ DynamicPPL.DebugUtils ~/.julia/packages/DynamicPPL/Ut5Ls/src/debug_utils.jl:304 [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 2.062630559118322) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.1614954615219162) [ Info: Testing emcee with large number of iterations [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 2.0765449812082557) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.1697615669122199) [ Info: Starting ESS tests [ Info: Starting ESS inference tests [ Info: (symbol = :m, exact = 0.8, evaluated = 0.8173726888512937) [ Info: (symbol = "m[1]", exact = 0.0, evaluated = -0.025360856826163417) [ Info: (symbol = "m[2]", exact = 0.8, evaluated = 0.8069838968220362) gdemo with CSMC + ESS: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:61 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#77#78"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#77#78"{DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:828 [15] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:264 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:257 [17] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(AbstractMCMC.step), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [19] gibbs_initialstep_recursive(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:396 [20] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:373 [21] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:328 [22] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:317 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [24] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [29] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [30] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [31] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:85 [32] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:74 [33] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:14 [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:48 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:62 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:63 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [46] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [47] top-level scope @ none:6 [48] eval(m::Module, e::Any) @ Core ./boot.jl:489 [49] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [50] _start() @ Base ./client.jl:577 MoGtest_default with CSMC + ESS: Error During Test at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:67 Got exception outside of a @test MethodError: no method matching Compiler.IRInterpretationState(::Compiler.NativeInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64, ::UInt64) The type `Compiler.IRInterpretationState` exists, but no method is defined for this combination of argument types when trying to construct it. Closest candidates are: Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, ::Compiler.SpecInfo, ::Compiler.IRCode, ::Core.MethodInstance, ::Vector{Any}, ::UInt64, ::UInt64) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:833 Compiler.IRInterpretationState(::Compiler.AbstractInterpreter, !Matched::Core.CodeInstance, !Matched::Core.MethodInstance, !Matched::Vector{Any}, ::Any) @ Base /opt/julia/share/julia/Compiler/src/inferencestate.jl:866 Stacktrace: [1] __infer_ir!(ir::Compiler.IRCode, interp::Compiler.NativeInterpreter, mi::Core.MethodInstance) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:115 [2] optimise_ir!(ir::Compiler.IRCode; show_ir::Bool, do_inline::Bool) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:52 [3] optimise_ir!(ir::Compiler.IRCode) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/utils.jl:40 [4] build_callable(sig::Type{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:98 [5] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}; kwargs::@Kwargs{}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:313 [6] Libtask.TapedTask(::AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Function, ::Vararg{Any}) @ Libtask ~/.julia/packages/Libtask/AGx8L/src/copyable_task.jl:303 [7] #TapedTask#67 @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:54 [inlined] [8] TapedTask @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:53 [inlined] [9] AdvancedPS.LibtaskModel(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:38 [10] AdvancedPS.Trace(::Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, ::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}) @ AdvancedPSLibtaskExt ~/.julia/packages/AdvancedPS/mkUwY/ext/AdvancedPSLibtaskExt.jl:84 [11] AdvancedPS.Trace(model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, varinfo::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, rng::AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}, resample::Bool) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:454 [12] (::Turing.Inference.var"#77#78"{DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}})(::Int64) @ Turing.Inference ./none:-1 [13] iterate @ ./generator.jl:48 [inlined] [14] collect(itr::Base.Generator{UnitRange{Int64}, Turing.Inference.var"#77#78"{DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}) @ Base ./array.jl:828 [15] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:264 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/particle_mcmc.jl:257 [17] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:179 [18] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(AbstractMCMC.step), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:161 [19] gibbs_initialstep_recursive(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:396 [20] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:373 [21] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:328 [22] step @ ~/.julia/packages/Turing/lmRwJ/src/mcmc/gibbs.jl:317 [inlined] [23] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [24] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [25] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [26] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [27] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [28] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [29] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [30] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [31] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:85 [32] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/lmRwJ/src/mcmc/abstractmcmc.jl:74 [33] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:14 [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:48 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:68 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/mcmc/ess.jl:73 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:33 [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:46 [inlined] [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/lmRwJ/test/runtests.jl:25 [inlined] [46] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [47] top-level scope @ none:6 [48] eval(m::Module, e::Any) @ Core ./boot.jl:489 [49] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [50] _start() @ Base ./client.jl:577 ┌ Info: Found initial step size └ ϵ = 3.2 ┌ Info: Found initial step size └ ϵ = 3.2 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 149 running 1 of 1 signal (10): User defined signal 1 jl_specializations_get_linfo_ at /source/src/gf.c:236 cache_method at /source/src/gf.c:1667 jl_mt_assoc_by_type at /source/src/gf.c:1950 jl_lookup_generic_ at /source/src/gf.c:4283 [inlined] ijl_apply_generic at /source/src/gf.c:4309 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_eval_module_expr at /source/src/toplevel.c:248 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:650 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x71dd655ca5c2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96539.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33389.1 at /opt/julia/lib/julia/sys.so (unknown line) include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93601.1 at /opt/julia/lib/julia/sys.so (unknown line) include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_61358.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96549.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33316.1 at /opt/julia/lib/julia/sys.so (unknown line) exec_options at ./client.jl:310 jfptr_exec_options_33296.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93802.1 at /opt/julia/lib/julia/sys.so (unknown line) j_exec_options_58747.1 at /opt/julia/lib/julia/sys.so (unknown line) _start at ./client.jl:577 jfptr__start_58743.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x71dd7b335249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) #= 175.7 ms =# precompile(Tuple{typeof(Base.keys), DynamicPPL.VarInfo{NamedTuple{(:y, :q, :r), Tuple{DynamicPPL.Metadata{Base.Dict{AbstractPPL.VarName{:y, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Array{Distributions.Poisson{Float64}, 1}, Array{AbstractPPL.VarName{:y, Accessors.IndexLens{Tuple{Int64}}}, 1}, Array{Int64, 1}}, DynamicPPL.Metadata{Base.Dict{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}, Int64}, Array{Distributions.Normal{Float64}, 1}, Array{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}, 1}, Array{Float64, 1}}, DynamicPPL.Metadata{Base.Dict{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Array{Distributions.Normal{Float64}, 1}, Array{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}, 1}, Array{Float64, 1}}}}, DynamicPPL.AccumulatorTuple{3, NamedTuple{(:LogPrior, :LogJacobian, :LogLikelihood), Tuple{DynamicPPL.LogPriorAccumulator{Float64}, DynamicPPL.LogJacobianAccumulator{Float64}, DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 jfptr_wait_6702.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke95955.1 at /opt/julia/lib/julia/sys.so (unknown line) j_wait_37459.1 at /opt/julia/lib/julia/sys.so (unknown line) wait_forever at ./task.jl:1168 jfptr_wait_forever_37458.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007e4509c20790 Total snapshots: 299. Utilization: 0% ╎299 @Base/task.jl:1168 wait_forever() 298╎ 299 @Base/task.jl:1246 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 jfptr_wait_6702.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke95955.1 at /opt/julia/lib/julia/sys.so (unknown line) j_wait_37459.1 at /opt/julia/lib/julia/sys.so (unknown line) wait_forever at ./task.jl:1168 jfptr_wait_forever_37458.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) Allocations: 41752754 (Pool: 41752068; Big: 686); GC: 24 [149] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/Turing/lmRwJ/test/mcmc/gibbs.jl:35 _ZNK4llvm9MemorySSA9dominatesEPKNS_12MemoryAccessES3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_18DSEState15getDomMemoryDefEPN4llvm9MemoryDefEPNS1_12MemoryAccessERKNS1_14MemoryLocationEPKNS1_5ValueERjSC_bSC_b at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_1L19eliminateDeadStoresERN4llvm8FunctionERNS0_9AAResultsERNS0_9MemorySSAERNS0_13DominatorTreeERNS0_17PostDominatorTreeERKNS0_17TargetLibraryInfoERKNS0_8LoopInfoE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm7DSEPass3runERNS_8FunctionERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_8FunctionENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm27ModuleToFunctionPassAdaptor3runERNS_6ModuleERNS_15AnalysisManagerIS1_JEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/usr/include/llvm/IR/PassManagerInternal.h:91 _ZN4llvm11PassManagerINS_6ModuleENS_15AnalysisManagerIS1_JEEEJEE3runERS1_RS3_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) run at /source/src/pipeline.cpp:787 operator() at /source/src/jitlayers.cpp:1513 withModuleDo<(anonymous namespace)::sizedOptimizerT::operator()(llvm::orc::ThreadSafeModule) [with long unsigned int N = 4]:: > at /source/usr/include/llvm/ExecutionEngine/Orc/ThreadSafeModule.h:136 [inlined] operator() at /source/src/jitlayers.cpp:1474 [inlined] operator() at /source/src/jitlayers.cpp:1649 [inlined] addModule at /source/src/jitlayers.cpp:2106 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_eval_module_expr at /source/src/toplevel.c:248 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:650 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x71dd655ca5c2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96539.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33389.1 at /opt/julia/lib/julia/sys.so (unknown line) include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93601.1 at /opt/julia/lib/julia/sys.so (unknown line) include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_61358.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96549.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33316.1 at /opt/julia/lib/julia/sys.so (unknown line) exec_options at ./client.jl:310 jfptr_exec_options_33296.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93802.1 at /opt/julia/lib/julia/sys.so (unknown line) j_exec_options_58747.1 at /opt/julia/lib/julia/sys.so (unknown line) _start at ./client.jl:577 jfptr__start_58743.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x71dd7b335249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1406943427 (Pool: 1406936870; Big: 6557); GC: 214 PkgEval terminated after 2741.4s: test duration exceeded the time limit