Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.65 (b05afe0f25*) started at 2025-11-11T16:24:16.674 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.02s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.4 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 5.4s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 23884.3 ms ✓ AbstractAlgebra 1349.1 ms ✓ FLINT_jll 34980.1 ms ✓ Nemo 138191.2 ms ✓ Groebner 10476.0 ms ✓ ParamPunPam 11026.4 ms ✓ RationalFunctionFields 13043.0 ms ✓ StructuralIdentifiability 7 dependencies successfully precompiled in 234 seconds. 28 already precompiled. Precompilation completed after 246.03s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_NIf16L/Project.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_NIf16L/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_NIf16L/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.26.1 Updating `/tmp/jl_NIf16L/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.2 [70df07ce] + BracketingNonlinearSolve v1.6.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.191.0 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.11 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.16 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.15.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.12 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.2.0 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.1 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.2.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.124.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.5.0 [c0aeaf25] + SciMLOperators v1.10.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.8 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 ⌅ [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_NIf16L/Project.toml` ⌅ [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_NIf16L/Manifest.toml` ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("8182515f-4554-5253-aa88-b3c276c4d661"), "StatsBaseExt") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::Nothing)  @ Base ./loading.jl:2720  [3] _require_prelocked(uuidkey::Base.PkgId, env::Nothing)  @ Base ./loading.jl:2579  [4] _require_prelocked  @ ./loading.jl:2573 [inlined]  [5] run_extension_callbacks(extid::Base.ExtensionId)  @ Base ./loading.jl:1625  [6] run_extension_callbacks(pkgid::Base.PkgId)  @ Base ./loading.jl:1662  [7] run_package_callbacks(modkey::Base.PkgId)  @ Base ./loading.jl:1478  [8] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2587  [9] macro expansion  @ ./loading.jl:2507 [inlined]  [10] macro expansion  @ ./lock.jl:376 [inlined]  [11] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2471  [12] require  @ ./loading.jl:2447 [inlined]  [13] eval_import_path  @ ./module.jl:36 [inlined]  [14] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [15] _eval_using  @ ./module.jl:137 [inlined]  [16] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [17] top-level scope  @ ~/.julia/packages/Distributions/psM3H/src/Distributions.jl:3  [18] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [19] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3151  [20] top-level scope  @ stdin:5  [21] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [22] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:2997  [23] include_string  @ ./loading.jl:3007 [inlined]  [24] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [25] _start()  @ Base ./client.jl:577 in expression starting at /home/pkgeval/.julia/packages/Distributions/psM3H/src/Distributions.jl:1 in expression starting at stdin:5 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 [ Info: Assuming ((1//128)*(√((5120//1)*(a^4)) - (80//1)*(a^2))) != 0 1 dependency had output during precompilation: ┌ Symbolics → SymbolicsNemoExt │ [Output was shown above] └ ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("961ee093-0014-501f-94e3-6117800e7a78"), "ModelingToolkit") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2720  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2579  [4] macro expansion  @ ./loading.jl:2507 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2471  [7] require  @ ./loading.jl:2447 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/ModelingToolkit/b28X4/ext/MTKDeepDiffsExt.jl:3  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3151  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:2997  [18] include_string  @ ./loading.jl:3007 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:577 in expression starting at /home/pkgeval/.julia/packages/ModelingToolkit/b28X4/ext/MTKDeepDiffsExt.jl:1 in expression starting at stdin:5 1 dependency had output during precompilation: ┌ ModelingToolkit → MTKDeepDiffsExt │ [Output was shown above] └ ┌ Error: Error during loading of extension MTKDeepDiffsExt of ModelingToolkit, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 1 package failed to precompile: │ │ MTKDeepDiffsExt │ Failed to precompile MTKDeepDiffsExt [5603edb0-65a0-571a-81ca-80a84b570401] to "/home/pkgeval/.julia/compiled/v1.14/MTKDeepDiffsExt/jl_SuM86Y" (ProcessExited(1)). │ └ @ Base loading.jl:1635 ERROR: LoadError: Precompiled image Base.PkgId(Base.UUID("961ee093-0014-501f-94e3-6117800e7a78"), "ModelingToolkit") not available with flags CacheFlags(; use_pkgimages=false, debug_level=1, check_bounds=1, inline=true, opt_level=0) Stacktrace:  [1] error(s::String)  @ Base ./error.jl:44  [2] __require_prelocked(pkg::Base.PkgId, env::String)  @ Base ./loading.jl:2720  [3] _require_prelocked(uuidkey::Base.PkgId, env::String)  @ Base ./loading.jl:2579  [4] macro expansion  @ ./loading.jl:2507 [inlined]  [5] macro expansion  @ ./lock.jl:376 [inlined]  [6] __require(into::Module, mod::Symbol)  @ Base ./loading.jl:2471  [7] require  @ ./loading.jl:2447 [inlined]  [8] eval_import_path  @ ./module.jl:36 [inlined]  [9] eval_import_path_all(at::Module, path::Expr, keyword::String)  @ Base ./module.jl:60  [10] _eval_using  @ ./module.jl:137 [inlined]  [11] _eval_using(to::Module, path::Expr)  @ Base ./module.jl:137  [12] top-level scope  @ ~/.julia/packages/StructuralIdentifiability/erhUr/ext/ModelingToolkitSIExt.jl:13  [13] include(mod::Module, _path::String)  @ Base ./Base.jl:309  [14] include_package_for_output(pkg::Base.PkgId, input::String, depot_path::Vector{String}, dl_load_path::Vector{String}, load_path::Vector{String}, concrete_deps::Vector{Pair{Base.PkgId, UInt128}}, source::Nothing)  @ Base ./loading.jl:3151  [15] top-level scope  @ stdin:5  [16] eval(m::Module, e::Any)  @ Core ./boot.jl:489  [17] include_string(mapexpr::typeof(identity), mod::Module, code::String, filename::String)  @ Base ./loading.jl:2997  [18] include_string  @ ./loading.jl:3007 [inlined]  [19] exec_options(opts::Base.JLOptions)  @ Base ./client.jl:342  [20] _start()  @ Base ./client.jl:577 in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/ext/ModelingToolkitSIExt.jl:1 in expression starting at stdin:5 1 dependency had output during precompilation: ┌ StructuralIdentifiability → ModelingToolkitSIExt │ [Output was shown above] └ ┌ Error: Error during loading of extension ModelingToolkitSIExt of StructuralIdentifiability, use `Base.retry_load_extensions()` to retry. │ exception = │ 1-element ExceptionStack: │ The following 1 package failed to precompile: │ │ ModelingToolkitSIExt │ Failed to precompile ModelingToolkitSIExt [d58724bd-5c5a-52b3-a09d-0e9ddaba7f65] to "/home/pkgeval/.julia/compiled/v1.14/ModelingToolkitSIExt/jl_Myvf0k" (ProcessExited(1)). │ └ @ Base loading.jl:1635 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.107963 seconds (1.22 M allocations: 66.980 MiB, 99.51% compilation time) 0.002483 seconds (7.32 k allocations: 336.961 KiB) 0.002012 seconds (10.80 k allocations: 485.547 KiB) 0.002060 seconds (10.76 k allocations: 480.359 KiB) 0.002530 seconds (14.49 k allocations: 633.891 KiB) 0.001389 seconds (7.95 k allocations: 360.727 KiB) 0.000999 seconds (7.45 k allocations: 300.930 KiB) 15.618092 seconds (8.72 M allocations: 483.247 MiB, 0.89% gc time, 99.81% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.343543 seconds (148.44 k allocations: 8.364 MiB, 98.20% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011425 seconds (10.49 k allocations: 573.445 KiB, 91.03% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003869883 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.52242603 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.069446396 seconds [ Info: Global identifiability assessed in 56.992978168 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002671074 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 1.041027654 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.0559e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.036002495 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.548743517 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.739e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:16 ✓ # Computing specializations.. Time: 0:00:18 [ Info: Search for polynomial generators concluded in 14.15323962 [ Info: Selecting generators in 0.013350462 [ Info: Inclusion checked with probability 0.9955 in 0.064976377 seconds [ Info: Global identifiability assessed in 113.943865877 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.736882126 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.793373203 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.095252576 seconds [ Info: Global identifiability assessed in 38.765855797 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01557404 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032057702 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000248667 seconds [ Info: Global identifiability assessed in 0.079557737 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 7.021872001 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003327838 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 2.358e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.868067631 [ Info: Selecting generators in 0.000372117 [ Info: Inclusion checked with probability 0.9955 in 0.00312871 seconds [ Info: Global identifiability assessed in 9.291799963 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002342328 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001717324 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.999e-5 seconds [ Info: Global identifiability assessed in 0.007154991 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002752544 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00202585 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.8849e-5 seconds [ Info: Global identifiability assessed in 0.008162121 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005792034 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004571766 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.385e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.121037133 [ Info: Selecting generators in 0.017572291 [ Info: Inclusion checked with probability 0.9955 in 0.006772465 seconds [ Info: Global identifiability assessed in 2.297326577 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00938622 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004343848 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.737e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00833943 [ Info: Selecting generators in 0.004372539 [ Info: Inclusion checked with probability 0.9955 in 0.004531547 seconds [ Info: Global identifiability assessed in 0.056021833 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001600854 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001284948 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.858e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122389 [ Info: Selecting generators in 1.21288852 [ Info: Inclusion checked with probability 0.995 in 0.001957441 seconds [ Info: The search for identifiable functions concluded in 2.40918578 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001233818 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001128469 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.765e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110259 [ Info: Selecting generators in 0.000765923 [ Info: Inclusion checked with probability 0.995 in 0.002055 seconds [ Info: The search for identifiable functions concluded in 0.009722646 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001282957 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001090409 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.833e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.463e-5 [ Info: Selecting generators in 0.000699863 [ Info: Inclusion checked with probability 0.995 in 0.001999121 seconds [ Info: The search for identifiable functions concluded in 0.009586898 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001245248 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001085629 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.836e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000540604 [ Info: Selecting generators in 0.000784073 [ Info: Inclusion checked with probability 0.995 in 0.001967031 seconds [ Info: The search for identifiable functions concluded in 0.010129192 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001354307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107632 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.847e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000476485 [ Info: Selecting generators in 0.000659923 [ Info: Inclusion checked with probability 0.995 in 0.001769603 seconds [ Info: The search for identifiable functions concluded in 0.00937141 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001174889 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00102807 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.047e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000458135 [ Info: Selecting generators in 0.000719083 [ Info: Inclusion checked with probability 0.995 in 0.001858972 seconds [ Info: The search for identifiable functions concluded in 0.00938258 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001664534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001123379 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.652e-5 seconds [ Info: The search for identifiable functions concluded in 0.035865326 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001730194 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001182299 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.536e-5 seconds [ Info: The search for identifiable functions concluded in 0.003650555 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001370337 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00100418 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6859e-5 seconds [ Info: The search for identifiable functions concluded in 0.003025871 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001441476 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001002121 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.4e-5 seconds [ Info: The search for identifiable functions concluded in 0.003027661 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001327747 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00096617 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.628e-5 seconds [ Info: The search for identifiable functions concluded in 0.002924172 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001469106 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00106699 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.535e-5 seconds [ Info: The search for identifiable functions concluded in 0.003182149 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002020871 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001247908 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.693e-5 seconds [ Info: The search for identifiable functions concluded in 0.00418222 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001597004 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001212898 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.681e-5 seconds [ Info: The search for identifiable functions concluded in 0.003538126 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001563755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001195918 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6579e-5 seconds [ Info: The search for identifiable functions concluded in 0.003509676 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001623014 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001162199 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.552e-5 seconds [ Info: The search for identifiable functions concluded in 0.003505497 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001613714 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001207428 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.479e-5 seconds [ Info: The search for identifiable functions concluded in 0.003508477 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001703083 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001223528 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.728e-5 seconds [ Info: The search for identifiable functions concluded in 0.003707165 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.292826919 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001582775 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.773e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1109e-5 [ Info: Selecting generators in 0.000600074 [ Info: Inclusion checked with probability 0.995 in 0.001785072 seconds [ Info: The search for identifiable functions concluded in 0.301068961 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002274488 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001544145 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.514e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.625e-5 [ Info: Selecting generators in 0.000566575 [ Info: Inclusion checked with probability 0.995 in 0.001722534 seconds [ Info: The search for identifiable functions concluded in 0.010254742 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002249309 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001449586 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.5029e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0159e-5 [ Info: Selecting generators in 0.000609634 [ Info: Inclusion checked with probability 0.995 in 0.001692034 seconds [ Info: The search for identifiable functions concluded in 0.009932285 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002363738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001478616 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.579e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000450105 [ Info: Selecting generators in 0.000614284 [ Info: Inclusion checked with probability 0.995 in 0.001783233 seconds [ Info: The search for identifiable functions concluded in 0.010773537 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002490256 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001540265 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.575e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000457436 [ Info: Selecting generators in 0.000591465 [ Info: Inclusion checked with probability 0.995 in 0.001799213 seconds [ Info: The search for identifiable functions concluded in 0.010915415 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002454836 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001499225 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.5289e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000499875 [ Info: Selecting generators in 0.000599465 [ Info: Inclusion checked with probability 0.995 in 0.001843342 seconds [ Info: The search for identifiable functions concluded in 0.011096514 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001402306 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001295407 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.95e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126379 [ Info: Selecting generators in 0.002251848 [ Info: Inclusion checked with probability 0.995 in 0.003677055 seconds [ Info: The search for identifiable functions concluded in 0.017421943 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001336377 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001259468 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.8989e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120909 [ Info: Selecting generators in 0.00207452 [ Info: Inclusion checked with probability 0.995 in 0.003668485 seconds [ Info: The search for identifiable functions concluded in 0.016954017 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001270967 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001273558 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.462e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000143179 [ Info: Selecting generators in 0.002190329 [ Info: Inclusion checked with probability 0.995 in 0.003679234 seconds [ Info: The search for identifiable functions concluded in 0.017611471 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001385317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001237948 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.863e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.256781255 [ Info: Selecting generators in 0.003693385 [ Info: Inclusion checked with probability 0.995 in 0.003295559 seconds [ Info: The search for identifiable functions concluded in 0.275195219 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001346907 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001296028 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.139e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014684339 [ Info: Selecting generators in 0.003453997 [ Info: Inclusion checked with probability 0.995 in 0.003496726 seconds [ Info: The search for identifiable functions concluded in 0.032744436 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001182528 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001185439 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.843e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014106265 [ Info: Selecting generators in 0.003465536 [ Info: Inclusion checked with probability 0.995 in 0.003569756 seconds [ Info: The search for identifiable functions concluded in 0.031886044 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001263678 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001137739 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.62e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2979e-5 [ Info: Selecting generators in 0.001342237 [ Info: Inclusion checked with probability 0.995 in 0.001917531 seconds [ Info: The search for identifiable functions concluded in 0.848916393 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000941701 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000824652 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.328e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2369e-5 [ Info: Selecting generators in 0.001341077 [ Info: Inclusion checked with probability 0.995 in 0.001839212 seconds [ Info: The search for identifiable functions concluded in 0.009208062 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000882732 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000801012 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.185e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.3859e-5 [ Info: Selecting generators in 0.001301377 [ Info: Inclusion checked with probability 0.995 in 0.001943661 seconds [ Info: The search for identifiable functions concluded in 0.008917495 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000934661 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000804272 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.198e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.16778739 [ Info: Selecting generators in 0.001738494 [ Info: Inclusion checked with probability 0.995 in 0.001910072 seconds [ Info: The search for identifiable functions concluded in 0.177248598 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000925492 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000844072 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.198e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003582455 [ Info: Selecting generators in 0.001441686 [ Info: Inclusion checked with probability 0.995 in 0.001837282 seconds [ Info: The search for identifiable functions concluded in 0.012593189 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000907901 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000796243 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.233e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003370038 [ Info: Selecting generators in 0.001395947 [ Info: Inclusion checked with probability 0.995 in 0.001810483 seconds [ Info: The search for identifiable functions concluded in 0.012254283 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001485576 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0011081 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.123e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.8529e-5 [ Info: Selecting generators in 0.000352367 [ Info: Inclusion checked with probability 0.995 in 0.001867172 seconds [ Info: The search for identifiable functions concluded in 0.010682667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001454936 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107552 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.098e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.563e-5 [ Info: Selecting generators in 0.000362627 [ Info: Inclusion checked with probability 0.995 in 0.00216066 seconds [ Info: The search for identifiable functions concluded in 0.011381481 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001483405 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001143639 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.248e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.1539e-5 [ Info: Selecting generators in 0.000392086 [ Info: Inclusion checked with probability 0.995 in 0.002164559 seconds [ Info: The search for identifiable functions concluded in 0.011808616 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001497316 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001138509 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.213e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004312228 [ Info: Selecting generators in 0.000472136 [ Info: Inclusion checked with probability 0.995 in 0.001976771 seconds [ Info: The search for identifiable functions concluded in 0.015538701 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001439567 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00112634 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004298879 [ Info: Selecting generators in 0.000465576 [ Info: Inclusion checked with probability 0.995 in 0.002030571 seconds [ Info: The search for identifiable functions concluded in 0.015464521 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001438286 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00109838 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.0769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004326599 [ Info: Selecting generators in 0.000483345 [ Info: Inclusion checked with probability 0.995 in 0.001965491 seconds [ Info: The search for identifiable functions concluded in 0.015200355 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001772963 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001391977 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.277e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115459 [ Info: Selecting generators in 0.002158089 [ Info: Inclusion checked with probability 0.995 in 0.002595945 seconds [ Info: The search for identifiable functions concluded in 0.014903057 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002511896 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001919221 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.381e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103079 [ Info: Selecting generators in 0.255383599 [ Info: Inclusion checked with probability 0.995 in 0.003395268 seconds [ Info: The search for identifiable functions concluded in 0.272769762 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002215068 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001606674 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.375e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.1709e-5 [ Info: Selecting generators in 0.002281408 [ Info: Inclusion checked with probability 0.995 in 0.002615535 seconds [ Info: The search for identifiable functions concluded in 0.016418133 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001974621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001419766 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.3559e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008801395 [ Info: Selecting generators in 0.002247698 [ Info: Inclusion checked with probability 0.995 in 0.002564626 seconds [ Info: The search for identifiable functions concluded in 0.024363206 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001784513 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001336677 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.331e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008479749 [ Info: Selecting generators in 0.002687944 [ Info: Inclusion checked with probability 0.995 in 0.003372048 seconds [ Info: The search for identifiable functions concluded in 0.024453676 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002291078 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001811542 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012421421 [ Info: Selecting generators in 0.002994882 [ Info: Inclusion checked with probability 0.995 in 0.003148409 seconds [ Info: The search for identifiable functions concluded in 0.031571457 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013882536 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004282709 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 1.796e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103739 [ Info: Selecting generators in 0.006314569 [ Info: Inclusion checked with probability 0.995 in 0.005105841 seconds [ Info: The search for identifiable functions concluded in 0.21884554 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005894463 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003686175 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.252e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113179 [ Info: Selecting generators in 0.006785824 [ Info: Inclusion checked with probability 0.995 in 0.004031702 seconds [ Info: The search for identifiable functions concluded in 0.035361301 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004613846 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003247589 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 1.8459e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108419 [ Info: Selecting generators in 0.0072888 [ Info: Inclusion checked with probability 0.995 in 0.004356358 seconds [ Info: The search for identifiable functions concluded in 0.031927804 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006151601 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004304069 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.513e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001612824 [ Info: Selecting generators in 0.008543118 [ Info: Inclusion checked with probability 0.995 in 0.005498707 seconds [ Info: The search for identifiable functions concluded in 0.042323483 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006120512 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004182169 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.258e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001506345 [ Info: Selecting generators in 0.006622517 [ Info: Inclusion checked with probability 0.995 in 0.004700125 seconds [ Info: The search for identifiable functions concluded in 0.038118464 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004768754 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003355968 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.037e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001677573 [ Info: Selecting generators in 0.00729426 [ Info: Inclusion checked with probability 0.995 in 0.005027442 seconds [ Info: The search for identifiable functions concluded in 0.034842856 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004027351 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002533435 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.606e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105038 [ Info: Selecting generators in 0.001572635 [ Info: Inclusion checked with probability 0.995 in 0.0030746 seconds [ Info: The search for identifiable functions concluded in 0.020046607 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004410537 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002776113 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.7449e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116699 [ Info: Selecting generators in 0.001499506 [ Info: Inclusion checked with probability 0.995 in 0.003221569 seconds [ Info: The search for identifiable functions concluded in 0.020489563 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003899442 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002507876 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.274e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102849 [ Info: Selecting generators in 0.001509456 [ Info: Inclusion checked with probability 0.995 in 0.002986631 seconds [ Info: The search for identifiable functions concluded in 0.018886419 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003591815 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002448187 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.318e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000926521 [ Info: Selecting generators in 0.001515045 [ Info: Inclusion checked with probability 0.995 in 0.002868073 seconds [ Info: The search for identifiable functions concluded in 0.019172906 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003984562 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002556855 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 6.495e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000782333 [ Info: Selecting generators in 0.001354187 [ Info: Inclusion checked with probability 0.995 in 0.002543725 seconds [ Info: The search for identifiable functions concluded in 31.668387577 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003797953 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002207939 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.124e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000794263 [ Info: Selecting generators in 0.001335517 [ Info: Inclusion checked with probability 0.995 in 0.002535005 seconds [ Info: The search for identifiable functions concluded in 0.017428592 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003386788 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.232528397 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.281e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0759e-5 [ Info: Selecting generators in 0.001439796 [ Info: Inclusion checked with probability 0.995 in 0.002295338 seconds [ Info: The search for identifiable functions concluded in 0.248273796 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002977401 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001851432 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.136e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5539e-5 [ Info: Selecting generators in 0.001390976 [ Info: Inclusion checked with probability 0.995 in 0.002351287 seconds [ Info: The search for identifiable functions concluded in 0.016945197 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002968501 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001888682 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.3239e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.1719e-5 [ Info: Selecting generators in 0.001422676 [ Info: Inclusion checked with probability 0.995 in 0.002374387 seconds [ Info: The search for identifiable functions concluded in 0.017155725 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003017151 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001867262 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.245e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010476629 [ Info: Selecting generators in 0.002340418 [ Info: Inclusion checked with probability 0.995 in 0.002352927 seconds [ Info: The search for identifiable functions concluded in 0.028604255 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002984691 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001899781 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.29e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010122803 [ Info: Selecting generators in 0.002268008 [ Info: Inclusion checked with probability 0.995 in 0.002277268 seconds [ Info: The search for identifiable functions concluded in 0.027848993 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002937342 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001864362 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.191e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010086173 [ Info: Selecting generators in 0.002312588 [ Info: Inclusion checked with probability 0.995 in 0.002255018 seconds [ Info: The search for identifiable functions concluded in 0.027605435 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001591254 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001209419 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.115e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2839e-5 [ Info: Selecting generators in 0.000999801 [ Info: Inclusion checked with probability 0.995 in 0.002043871 seconds [ Info: The search for identifiable functions concluded in 0.011015364 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001561915 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001199829 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.178e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.586e-5 [ Info: Selecting generators in 0.000996631 [ Info: Inclusion checked with probability 0.995 in 0.00213083 seconds [ Info: The search for identifiable functions concluded in 0.011333401 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001561705 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001252428 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.114e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.659e-5 [ Info: Selecting generators in 0.000979201 [ Info: Inclusion checked with probability 0.995 in 0.001983381 seconds [ Info: The search for identifiable functions concluded in 0.010986874 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001532726 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001166128 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006913293 [ Info: Selecting generators in 0.001798083 [ Info: Inclusion checked with probability 0.995 in 0.002030601 seconds [ Info: The search for identifiable functions concluded in 0.018526812 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001532125 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001164989 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.086e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006668085 [ Info: Selecting generators in 0.001742484 [ Info: Inclusion checked with probability 0.995 in 0.001993061 seconds [ Info: The search for identifiable functions concluded in 0.018028357 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001534135 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001239248 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006785665 [ Info: Selecting generators in 0.001787312 [ Info: Inclusion checked with probability 0.995 in 0.0020351 seconds [ Info: The search for identifiable functions concluded in 0.018461863 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008425079 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01768712 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000190238 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 [ Info: Search for polynomial generators concluded in 0.000142168 [ Info: Selecting generators in 0.012648978 [ Info: Inclusion checked with probability 0.995 in 0.020485683 seconds [ Info: The search for identifiable functions concluded in 9.704176587 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01049459 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019443033 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000311687 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000228748 [ Info: Selecting generators in 0.011522089 [ Info: Inclusion checked with probability 0.995 in 0.019703181 seconds [ Info: The search for identifiable functions concluded in 0.110946135 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009107793 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018886269 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000235818 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106279 [ Info: Selecting generators in 0.013334242 [ Info: Inclusion checked with probability 0.995 in 0.020080237 seconds [ Info: The search for identifiable functions concluded in 0.10837011 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008837255 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019314674 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000214598 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.768322671 [ Info: Selecting generators in 0.215791768 [ Info: Inclusion checked with probability 0.995 in 0.02075192 seconds [ Info: The search for identifiable functions concluded in 1.084615705 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010213262 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.022599693 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000284038 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032018093 [ Info: Selecting generators in 0.013432111 [ Info: Inclusion checked with probability 0.995 in 0.022214307 seconds [ Info: The search for identifiable functions concluded in 0.149786152 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010696677 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.021960519 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000241948 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.033523538 [ Info: Selecting generators in 0.013771368 [ Info: Inclusion checked with probability 0.995 in 0.0219127 seconds [ Info: The search for identifiable functions concluded in 0.15519935 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.311214448 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.656897283 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.129738624 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000124528 [ Info: Selecting generators in 0.797694758 [ Info: Inclusion checked with probability 0.995 in 1.845051539 seconds [ Info: The search for identifiable functions concluded in 12.617176913 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.654658177 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.606222711 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.161191301 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 4   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000179438 [ Info: Selecting generators in 1.310036565 [ Info: Inclusion checked with probability 0.995 in 2.357036296 seconds [ Info: The search for identifiable functions concluded in 18.443698367 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.719641298 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.93412488 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.207135039 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000264917 [ Info: Selecting generators in 0.63474341 [ Info: Inclusion checked with probability 0.995 in 3.329407316 seconds [ Info: The search for identifiable functions concluded in 19.120202503 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.513856042 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.188032868 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.200203196 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.027349977 [ Info: Selecting generators in 0.655897495 [ Info: Inclusion checked with probability 0.995 in 2.04323422 seconds [ Info: The search for identifiable functions concluded in 19.026252858 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 4.598771534 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.930940373 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.187560817 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.039166847 [ Info: Selecting generators in 0.589376295 [ Info: Inclusion checked with probability 0.995 in 3.12998348 seconds [ Info: The search for identifiable functions concluded in 22.275818754 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.264616564 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.360642427 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.179875866 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.036326514 [ Info: Selecting generators in 1.307273202 [ Info: Inclusion checked with probability 0.995 in 3.027322128 seconds [ Info: The search for identifiable functions concluded in 20.586872898 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014978417 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012269423 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.997e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000145689 [ Info: Selecting generators in 0.009001515 [ Info: Inclusion checked with probability 0.995 in 0.010022795 seconds [ Info: The search for identifiable functions concluded in 0.087555256 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012962237 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011254903 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 5.4039e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148029 [ Info: Selecting generators in 0.009338191 [ Info: Inclusion checked with probability 0.995 in 0.010234492 seconds [ Info: The search for identifiable functions concluded in 0.08393422 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013413452 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01149638 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.397e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000145329 [ Info: Selecting generators in 0.009385321 [ Info: Inclusion checked with probability 0.995 in 0.009599189 seconds [ Info: The search for identifiable functions concluded in 0.084695623 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013470441 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011288122 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.449e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.037141286 [ Info: Selecting generators in 0.012972057 [ Info: Inclusion checked with probability 0.995 in 0.009607699 seconds [ Info: The search for identifiable functions concluded in 0.125323636 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012883048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010873226 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.805e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.037951148 [ Info: Selecting generators in 0.013287774 [ Info: Inclusion checked with probability 0.995 in 0.009857126 seconds [ Info: The search for identifiable functions concluded in 0.124420704 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012889077 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012010055 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.549e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.03776691 [ Info: Selecting generators in 0.013553451 [ Info: Inclusion checked with probability 0.995 in 0.009806866 seconds [ Info: The search for identifiable functions concluded in 0.126291476 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014815129 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008807156 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.485e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000308177 [ Info: Selecting generators in 0.056123015 [ Info: Inclusion checked with probability 0.995 in 0.017044868 seconds [ Info: The search for identifiable functions concluded in 1.679296745 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015862369 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010760428 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.648e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000269208 [ Info: Selecting generators in 0.041425485 [ Info: Inclusion checked with probability 0.995 in 0.015082106 seconds [ Info: The search for identifiable functions concluded in 0.532765312 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01364913 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007860255 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.7959e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000237948 [ Info: Selecting generators in 0.040999019 [ Info: Inclusion checked with probability 0.995 in 0.015208705 seconds [ Info: The search for identifiable functions concluded in 0.505309864 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01257246 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00733833 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.505e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 3.728454922 [ Info: Selecting generators in 0.092601717 [ Info: Inclusion checked with probability 0.995 in 0.015495743 seconds [ Info: The search for identifiable functions concluded in 4.257735738 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015024137 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008809346 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.258e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.292557241 [ Info: Selecting generators in 0.056894278 [ Info: Inclusion checked with probability 0.995 in 0.012964547 seconds [ Info: The search for identifiable functions concluded in 0.80046524 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011616069 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007083032 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.2029e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.333200254 [ Info: Selecting generators in 0.06400419 [ Info: Inclusion checked with probability 0.995 in 0.01361266 seconds [ Info: The search for identifiable functions concluded in 1.548236712 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024292888 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015392903 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.7809e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000157069 [ Info: Selecting generators in 0.010023355 [ Info: Inclusion checked with probability 0.995 in 0.014864808 seconds [ Info: The search for identifiable functions concluded in 0.108573045 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022386487 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015381624 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.4959e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000157958 [ Info: Selecting generators in 0.010236413 [ Info: Inclusion checked with probability 0.995 in 0.014891688 seconds [ Info: The search for identifiable functions concluded in 0.1048355 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021603754 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015457053 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.7949e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000170628 [ Info: Selecting generators in 0.010803387 [ Info: Inclusion checked with probability 0.995 in 0.014822798 seconds [ Info: The search for identifiable functions concluded in 0.105640143 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02305724 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015913388 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.487e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.048136761 [ Info: Selecting generators in 0.01677978 [ Info: Inclusion checked with probability 0.995 in 0.013898797 seconds [ Info: The search for identifiable functions concluded in 0.163043935 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02205182 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014926328 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.4799e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.047702135 [ Info: Selecting generators in 0.016231025 [ Info: Inclusion checked with probability 0.995 in 0.014458082 seconds [ Info: The search for identifiable functions concluded in 0.158953815 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022313338 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017543603 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.6639e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.050981404 [ Info: Selecting generators in 0.019075468 [ Info: Inclusion checked with probability 0.995 in 0.016168986 seconds [ Info: The search for identifiable functions concluded in 0.173040511 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012203264 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015961808 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.3989e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000193638 [ Info: Selecting generators in 0.084297636 [ Info: Inclusion checked with probability 0.995 in 0.017798851 seconds [ Info: The search for identifiable functions concluded in 1.319073406 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011913996 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01579769 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.6309e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000191398 [ Info: Selecting generators in 0.08188474 [ Info: Inclusion checked with probability 0.995 in 0.019201917 seconds [ Info: The search for identifiable functions concluded in 0.548592351 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012340512 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016166496 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.0259e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000195338 [ Info: Selecting generators in 0.085694973 [ Info: Inclusion checked with probability 0.995 in 0.019333006 seconds [ Info: The search for identifiable functions concluded in 0.562593237 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012268983 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017048157 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.3709e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 41 running 1 of 1 signal (10): User defined signal 1 unknown function (ip: 0x729c0e9261c3) at /lib/x86_64-linux-gnu/libc.so.6 unknown function (ip: 0x729c0e9278cf) at /lib/x86_64-linux-gnu/libc.so.6 __libc_free at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) arraylist_free at /source/src/support/arraylist.c:34 run_finalizers at /source/src/gc-common.c:318 ijl_gc_collect at /source/src/gc-stock.c:3487 maybe_collect at /source/src/gc-stock.c:349 [inlined] jl_gc_small_alloc_inner at /source/src/gc-stock.c:725 ijl_gc_small_alloc at /source/src/gc-stock.c:774 Array at ./boot.jl:649 [inlined] Array at ./boot.jl:661 [inlined] Array at ./boot.jl:669 [inlined] similar at ./abstractarray.jl:877 [inlined] similar at ./array.jl:409 [inlined] similar at ./abstractarray.jl:876 [inlined] _array_for at ./array.jl:701 [inlined] collect at ./array.jl:833 [inlined] evaluate at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/nmod_mpoly.jl:544 #fractions_to_mqs_specialized##2 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/IdealMQS.jl:268 [inlined] iterate at ./generator.jl:48 [inlined] collect_to! at ./array.jl:886 [inlined] collect_to_with_first! at ./array.jl:864 [inlined] _collect at ./array.jl:858 collect_similar at ./array.jl:763 [inlined] map at ./abstractarray.jl:3390 [inlined] fractions_to_mqs_specialized at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/IdealMQS.jl:268 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 specialize_mod_p at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/IdealMQS.jl:302 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:431 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x729bc03ee914) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x729bbef88349) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x729bbef87504) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x729bc4306552) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96539.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33389.1 at /opt/julia/lib/julia/sys.so (unknown line) include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93601.1 at /opt/julia/lib/julia/sys.so (unknown line) include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_61358.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96549.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33316.1 at /opt/julia/lib/julia/sys.so (unknown line) exec_options at ./client.jl:310 jfptr_exec_options_33296.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93802.1 at /opt/julia/lib/julia/sys.so (unknown line) j_exec_options_58747.1 at /opt/julia/lib/julia/sys.so (unknown line) _start at ./client.jl:577 jfptr__start_58743.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x729c0e8b8249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ⌜ # Computing specializations.. Time: 0:00:00 Points: 101   ⌝ # Computing specializations.. Time: 0:00:01 Points: 338   ✓ # Computing specializations.. Time: 0:00:01 ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== [ Info: Search for polynomial generators concluded in 0.136659547 [ Info: Selecting generators in 0.093765726 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 jfptr_wait_6702.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke95955.1 at /opt/julia/lib/julia/sys.so (unknown line) j_wait_37459.1 at /opt/julia/lib/julia/sys.so (unknown line) wait_forever at ./task.jl:1168 jfptr_wait_forever_37458.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x0000729bf45fc010 Total snapshots: 125. Utilization: 100% ╎120 @Base/client.jl:577 _start() ╎ 120 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 120 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 120 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 120 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::St… ╎ 120 @Base/loading.jl:3057 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 120 @Base/loading.jl:2997 include_string(mapexpr::typeof(identity), m… ╎ ╎ 120 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 120 @StructuralIdentifiability/…:150 top-level scope ╎ ╎ 120 @Base/timing.jl:689 macro expansion ╎ ╎ 120 @StructuralIdentifiability/…:151 macro expansion ╎ ╎ ╎ 120 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 120 @StructuralIdentifiability/…:153 macro expansion ╎ ╎ ╎ 120 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 120 @Base/Base.jl:310 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 120 @Base/loading.jl:3057 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 120 @Base/loading.jl:2997 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 120 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 120 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 120 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 120 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 120 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 120 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 120 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 120 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 120 @RationalFunctionFields/…:720 kwcall(::@NamedT… ╎ ╎ ╎ ╎ ╎ ╎ 120 @RationalFunctionFields/…:720 simplified_gene… ╎ ╎ ╎ ╎ ╎ ╎ 8 @RationalFunctionFields/…:444 beautiful_gene… ╎ ╎ ╎ ╎ ╎ ╎ 8 @RationalFunctionFields/…:444 beautiful_gen… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:2993 filter(f::RationalFuncti… ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #118 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:43 vars ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3153 union!(v::Vector{QQMP… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3150 _grow! ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:37 RationalFunct… ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:50 RationalFunc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:85 update_trba… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:70 generators ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:18 dennums_t… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:825 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:901 grow_to!(dest::Vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #dennums_to_fractions##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 // 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:108 update_trb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:53 IdealMQS ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:109 Rational… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:300 polynomial_ring ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:300 #polynomial_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:302 polynomial_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:303 polynomial_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1506 polynomia… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1508 #polynom… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:37 gens(R::QQMPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:133 Rational… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingEl… ╎ ╎ ╎ ╎ ╎ ╎ 4 @RationalFunctionFields/…:250 field_contai… ╎ ╎ ╎ ╎ ╎ ╎ 4 @RationalFunctionFields/…:250 field_conta… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:229 field_cont… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:327 specializ… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:848 _collect(c::Vector{… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:328 #spe… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…le.jl:355 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:329 (:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:197 k… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:821 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:231 field_cont… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:107 groebner(polynomials::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:109 #groebner#194 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:9 groebner0(polynomials:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:16 io_convert_polynomia… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:159 io_extract_monoms_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:49 gens(R::fpMPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:10 groebner0(polynomials… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:34 _groebner1(ring::Gro… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:57 __groebner1(ring::G… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:80 groebner2(ring::Gr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:103 _groebner2(ring:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:415 f4!(ring::Groeb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:66 f4_update!(pair… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:483 pairset_update… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:118 sort_pairset_b… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…er.jl:57 getproperty ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:232 field_cont… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map(f::Function, A::V… ╎ ╎ ╎ ╎ ╎ ╎ 101 @RationalFunctionFields/…:548 kwcall(::@Name… ╎ ╎ ╎ ╎ ╎ ╎ 101 @RationalFunctionFields/…:548 groebner_basi… ╎ ╎ ╎ ╎ ╎ ╎ 92 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 92 @ParamPunPam/…:103 paramgb(blackbox::Rati… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 90 @ParamPunPam/…:138 _paramgb(blackbox::Ra… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @ParamPunPam/…:426 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:1540 resize! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:1205 _growend! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:1181 _growend_internal!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:1101 array_new_memory 6╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ 29 @ParamPunPam/…:431 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 29 @RationalFunctionFields/…:302 speciali… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:265 fractio… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:49 gens(R::fpMPolyRing) ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @RationalFunctionFields/…:267 fractio… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @RationalFunctionFields/…:267 #… 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Nemo/…ly.jl:545 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @RationalFunctionFields/…:268 fractio… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:848 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:268 #f… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:545 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 9 @RationalFunctionFields/…:268 #… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:0 evaluate(a::fpMP… 8╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 8 @Nemo/…ly.jl:545 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:890 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 13 @RationalFunctionFields/…:273 fractio… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Nemo/…ly.jl:310 * 12╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 12 @Nemo/…ly.jl:304 *(a::fpMPolyRingEl… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:248 -(a::fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 33 @ParamPunPam/…:432 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 33 @Groebner/…l:401 groebner_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 33 @Groebner/…l:403 #groebner_apply!#199 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Groebner/…l:128 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Groebner/…l:16 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Groebner/…l:100 io_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Groebner/…l:120 io_extract_coeff… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Base/…ay.jl:3420 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Base/…ay.jl:828 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 4 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 4 @Groebner/…l:108 io_lift_coeff_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…pz.jl:2976 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…rs.jl:424 > ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…pz.jl:889 < 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Nemo/…pz.jl:876 cmp 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…pz.jl:2977 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @Nemo/…em.jl:46 lift ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Nemo/…em.jl:45 lift 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…es.jl:72 ZZRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Base/…ay.jl:886 collect_to!(de… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Groebner/…l:108 io_lift_coeff_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…pz.jl:2976 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…rs.jl:424 > ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…pz.jl:889 < 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Nemo/…pz.jl:876 cmp ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Nemo/…em.jl:46 lift ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Nemo/…em.jl:45 lift 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:72 ZZRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…es.jl:73 ZZRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:160 io_extract_monoms… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ct.jl:94 Dict{fpMPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ct.jl:358 setindex!(h::Di… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ct.jl:276 ht_keyindex2_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ct.jl:129 hashindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ng.jl:40 hash ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:136 hash ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:127 _hash_mpoly_ex… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ng.jl:147 hash_integer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ng.jl:154 _hash_integer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ng.jl:158 _hash_integer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ng.jl:99 codeunits ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ng.jl:87 IntegerCodeUnits ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/div.jl:337 cld ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/div.jl:377 div ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/int.jl:1058 + 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/int.jl:87 + ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @Groebner/…l:129 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:209 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:219 AlgorithmParamete… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:364 Groebner.Algorit… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:221 __groebner_apply1!… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:27 wrapped_trace_crea… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Groebner/…l:234 __groebner_apply1!… 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Groebner/…l:213 ir_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:1020 setindex! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:1025 _setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @Groebner/…l:237 __groebner_apply1!… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @Groebner/…l:253 groebner_apply2!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @Groebner/…l:266 _groebner_apply2… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 14 @Groebner/…l:479 f4_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:397 basis_make_mon… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:122 mod_p ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:106 _mul_high 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/int.jl:1043 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:149 hashtable_init… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:365 f4_autoreduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:189 matrix_convert… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:239 matrix_convert… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:0 matrix_insert_in… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:484 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Groebner/…l:247 f4_reduction_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 7 @Groebner/…l:23 linalg_main! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 7 @Groebner/…l:40 #linalg_main!#87 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 7 @Groebner/…l:193 _linalg_main_w… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:36 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:221 sort_matrix_lo… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…em.jl:0 setindex! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 4 @Groebner/…l:39 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:104 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:315 linalg_prepare… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Groebner/…l:125 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Groebner/…l:369 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:415 linalg_reduce_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:752 linalg_vector_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Groebner/…l:124 mod_p 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/int.jl:576 >>> ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Groebner/…l:143 linalg_apply_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Groebner/…l:701 linalg_row_mak… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 2 @Groebner/…l:706 linalg_row_mak… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Groebner/…l:127 inv_mod_p ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 2 @Base/…cs.jl:315 invmod(n::UInt… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 2 @Base/…cs.jl:335 _bezout_coef ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…cs.jl:246 gcdx(a::Int128… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/div.jl:196 divrem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/div.jl:218 divrem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/int.jl:1045 div ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 2 @Groebner/…l:44 linalg_apply_sp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 2 @Groebner/…l:183 linalg_apply_i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Groebner/…l:190 #linalg_apply_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 2 @Groebner/…l:127 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:144 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ay.jl:833 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ay.jl:701 _array_for ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ay.jl:876 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…ay.jl:409 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ay.jl:877 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/…ot.jl:669 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Base/…ot.jl:661 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Groebner/…l:168 linalg_interre… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Groebner/…l:679 linalg_new_emp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ot.jl:671 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:294 f4_symbolic_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Groebner/…l:306 matrix_polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Groebner/…l:488 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Groebner/…l:525 hashtable_inse… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:666 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:1363 getindex 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Groebner/…l:670 monom_create_d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ge.jl:925 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…on.jl:637 == ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:131 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:36 io_convert_ir_to_po… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:242 _io_convert_ir_to… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:954 fpMPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1488 fpMPolyRingEle… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1489 fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @ParamPunPam/…:455 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 18 @ParamPunPam/…:186 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @ParamPunPam/…:23 interpolate!(c::Par… 7╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Nemo/…ly.jl:274 interpolate(R::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:26 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:12 producttree ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:5 _producttree(z::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:5 _producttree(z::f… 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Nemo/…ly.jl:158 *(x::fpPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @ParamPunPam/…:5 _producttree(z::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:158 *(x::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:5 _producttree(z:… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:158 *(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:3 _producttree(z… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Nemo/…ly.jl:116 - 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Nemo/…ly.jl:231 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:29 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:160 Padé(f::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:143 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:89 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:195 one ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:49 one ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:507 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:658 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:847 setcoeff! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:92 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:66 _direct_eea(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:47 zero ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:507 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:658 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…ly.jl:847 setcoeff! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:144 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:10 matvec2by1(A::Tu… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:651 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:194 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:115 interpolate!(bot::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:442 roots(a::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:117 interpolate!(bot::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:848 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…em.jl:257 inv ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:204 interpolate!(vdhl::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:640 evaluate(a::fpMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:469 interpolate_exponent… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:545 evaluate(a::fpMPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:143 _paramgb(blackbox::Ra… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:531 recover_coefficients… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:58 reconstruct_crt!(sta… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:853 _collect(c::Vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:695 _similar_for ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:836 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:407 similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:661 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:532 recover_coefficients… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:169 reconstruct_rationa… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 // 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ 4 @RationalFunctionFields/…:37 RationalFunct… ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:42 RationalFunc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:53 IdealMQS ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:133 RationalF… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:50 RationalFunc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:98 update_trba… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:352 jacobian(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:674 derivative ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:681 derivative(f::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:56 // 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:317 gcd(a::QQMPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:108 update_trb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:53 IdealMQS ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:81 RationalF… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:78 cancel_g… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:838 collect(itr::Base.G… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:864 collect_to_with_fi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #cancel_gcds##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:71 sq… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…im.jl:379 reduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…im.jl:379 #reduce#728 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…im.jl:330 mapreduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…im.jl:335 _mapreduce_dim ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ce.jl:42 mapfoldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ce.jl:46 foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ce.jl:56 _foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ce.jl:84 BottomRF 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Nemo/…ly.jl:317 gcd(a::QQMPoly… ╎ ╎ ╎ ╎ ╎ ╎ 5 @RationalFunctionFields/…:284 issubfield_m… ╎ ╎ ╎ ╎ ╎ ╎ 5 @RationalFunctionFields/…:284 issubfield_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:211 check_alge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:828 collect(itr::Base.Gene… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #check_algebraicity_modp##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:428 _reduc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:161 vect 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:649 Array ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:212 check_alge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:838 collect(itr::Base.Gene… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:864 collect_to_with_first! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #check_algebraicity_modp##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:428 _red… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:848 _collect(c::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @RationalFunctionFields/…:428 #… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @RationalFunctionFields/…:420 _… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:1101 change_base_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @AbstractAlgebra/…:1308 _change… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @AbstractAlgebra/…:300 polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @AbstractAlgebra/…:300 #polynom… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @AbstractAlgebra/…:302 polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @AbstractAlgebra/…:303 polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @AbstractAlgebra/…:71 variable_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @AbstractAlgebra/…:73 variable_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @AbstractAlgebra/…:73 variable_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ay.jl:672 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/…ay.jl:678 _collect(::Typ… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Base/…rs.jl:1286 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 none:? #variable_names##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @AbstractAlgebra/…:76 _variable… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 1 @Base/…st.jl:893 materialize ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 1 @Base/…st.jl:918 copy ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 1 @Base/…st.jl:946 copyto! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 1 @Base/…st.jl:993 copyto! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 1 @Base/…op.jl:77 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 1 @Base/…st.jl:994 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 1 @Base/…st.jl:615 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 1 @Base/…st.jl:619 _getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +27 1 @Base/…st.jl:671 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +28 1 @Base/…st.jl:698 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +29 1 @Base/…ot.jl:691 Symbol(s::Stri… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +30 1 @Base/…ot.jl:684 _Symbol ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:214 check_alge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:128 _check_al… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:352 jacobian… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:674 derivative ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:681 derivative(f:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 //(x::fpMPoly… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:346 gcd(a::fpMPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:136 _check_al… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:247 parent_r… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:253 #parent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 //(x::fpMPolyR… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:346 gcd(a::fpMPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:138 _check_al… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:674 derivative ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:680 derivative(f::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:83 denominator ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:83 denominator ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:39 denominator ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:981 divexact ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:983 #divexact#351 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:312 * 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…ly.jl:304 *(a::fpMPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ 11 @RationalFunctionFields/…:98 kwcall(::@Named… ╎ ╎ ╎ ╎ ╎ ╎ 11 @RationalFunctionFields/…:98 polynomial_gen… ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:107 groebner(polynomials::Vec… ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:109 #groebner#194 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:10 groebner0(polynomials::V… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:34 _groebner1(ring::Groebn… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:56 __groebner1(ring::Groe… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:266 ir_convert_ir_to_int… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:57 __groebner1(ring::Groe… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:80 groebner2(ring::Groeb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:103 _groebner2(ring::Gr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Groebner/…l:415 f4!(ring::Groebner… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:297 f4_select_critica… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:297 f4_select_critic… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:397 f4_add_critical… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:304 matrix_polynom… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Groebner/…l:0 hashtable_resize… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:149 hashtable_initial… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:245 reduce_mod_p… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:858 _collect(c::Vector{QQM… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:864 collect_to_with_first! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:245 #86 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1356 map_coeffi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1357 #map_coef… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1363 _map(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…rs.jl:415 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…rs.jl:425 _zip_iterate_a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…rs.jl:433 _zip_iterate_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @AbstractAlgebra/…:809 iterate 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:113 coeff(a::QQMPo… ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:302 specialize_m… ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:265 fractions_t… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:49 gens(R::fpMPolyRing) ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:273 fractions_t… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:310 * 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:304 *(a::fpMPolyRingElem, … ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:69 refine_relati… 1╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:505 divrem(a::fpMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:70 refine_relati… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:294 - 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:283 -(a::fpMPolyRingElem, b… ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:75 refine_relati… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ng.jl:461 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:20 abstract_rr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:7 abstract_re… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:55 elementar… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:901 materialize! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:904 materialize! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:946 copyto! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:993 copyto! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…op.jl:77 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:994 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…st.jl:615 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…st.jl:619 _getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…st.jl:670 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…st.jl:694 _getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…st.jl:695 _getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…st.jl:671 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…st.jl:698 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…ly.jl:312 * ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Nemo/…ly.jl:303 *(a::fpMPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Nemo/…ly.jl:906 fpMPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Nemo/…es.jl:1465 fpMPolyRingEl… [ Info: Inclusion checked with probability 0.995 in 5.421811737 seconds [ Info: The search for identifiable functions concluded in 12.699584247 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.030007734 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.041129098 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 9.6569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 Points: 295   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.247855607 [ Info: Selecting generators in 0.223264211 [ Info: Inclusion checked with probability 0.995 in 0.042339996 seconds [ Info: The search for identifiable functions concluded in 1.613485006 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.029840716 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.037070047 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.5799e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000070d54efc06a0 Total snapshots: 293. Utilization: 0% ╎293 @Base/task.jl:1168 wait_forever() 292╎ 293 @Base/task.jl:1246 wait() ⌜ # Computing specializations.. Time: 0:00:01 Points: 101   ✓ # Computing specializations.. Time: 0:00:01 [ Info: Search for polynomial generators concluded in 1.346345873 [ Info: Selecting generators in 0.095059874 [ Info: Inclusion checked with probability 0.995 in 0.01789601 seconds [ Info: The search for identifiable functions concluded in 3.289419245 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.977566017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.070400469 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000101439 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 62   ⌟ # Computing specializations.. Time: 0:00:02 Points: 73   ⌞ # Computing specializations.. Time: 0:00:02 Points: 85   ⌜ # Computing specializations.. Time: 0:00:03 Points: 96   ✓ # Computing specializations.. Time: 0:00:03 [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 jfptr_wait_6702.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke95955.1 at /opt/julia/lib/julia/sys.so (unknown line) j_wait_37459.1 at /opt/julia/lib/julia/sys.so (unknown line) wait_forever at ./task.jl:1168 jfptr_wait_forever_37458.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) Allocations: 35815911 (Pool: 35815258; Big: 653); GC: 21 [41] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 _ZN4llvm13LexicalScopes20extractLexicalScopesERNS_15SmallVectorImplISt4pairIPKNS_12MachineInstrES5_EEERNS_8DenseMapIS5_PNS_12LexicalScopeENS_12DenseMapInfoIS5_vEENS_6detail12DenseMapPairIS5_SB_EEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13LexicalScopes10initializeERKNS_15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm16DebugHandlerBase13beginFunctionEPKNS_15MachineFunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm10AsmPrinter18emitFunctionHeaderEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm10AsmPrinter16emitFunctionBodyEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13X86AsmPrinter20runOnMachineFunctionERNS_15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1628 addModule at /source/src/jitlayers.cpp:2119 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 sort_terms! at /home/pkgeval/.julia/packages/AbstractAlgebra/L8iQ0/src/generic/MPoly.jl:0 MPolyRing at /home/pkgeval/.julia/packages/AbstractAlgebra/L8iQ0/src/generic/MPoly.jl:4105 reconstruct_rational! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/state.jl:172 recover_coefficients! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:532 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:143 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x729bc03ee914) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x729bbef88349) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x729bbef87504) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x729bc4306552) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96539.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33389.1 at /opt/julia/lib/julia/sys.so (unknown line) include_string at ./loading.jl:2997 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3057 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93601.1 at /opt/julia/lib/julia/sys.so (unknown line) include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_61358.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 jfptr_eval_9567.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke96549.1 at /opt/julia/lib/julia/sys.so (unknown line) j_eval_33316.1 at /opt/julia/lib/julia/sys.so (unknown line) exec_options at ./client.jl:310 jfptr_exec_options_33296.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 tojlinvoke93802.1 at /opt/julia/lib/julia/sys.so (unknown line) j_exec_options_58747.1 at /opt/julia/lib/julia/sys.so (unknown line) _start at ./client.jl:577 jfptr__start_58743.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x729c0e8b8249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 858663244 (Pool: 858659271; Big: 3973); GC: 274 PkgEval terminated after 2733.49s: test duration exceeded the time limit