Package evaluation to test Cbc on Julia 1.14.0-DEV.65 (b05afe0f25*) started at 2025-11-11T18:57:24.404 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.27s ################################################################################ # Installation # Installing Cbc... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [9961bab8] + Cbc v1.3.0 Updating `~/.julia/environments/v1.14/Manifest.toml` [6e4b80f9] + BenchmarkTools v1.6.3 [9961bab8] + Cbc v1.3.0 [523fee87] + CodecBzip2 v0.8.5 [944b1d66] + CodecZlib v0.7.8 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [864edb3b] + DataStructures v0.19.3 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [ffbed154] + DocStringExtensions v0.9.5 [f6369f11] + ForwardDiff v1.2.2 [92d709cd] + IrrationalConstants v0.2.6 [692b3bcd] + JLLWrappers v1.7.1 [682c06a0] + JSON v1.2.1 [0f8b85d8] + JSON3 v1.14.3 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [b8f27783] + MathOptInterface v1.46.0 [d8a4904e] + MutableArithmetics v1.6.7 [77ba4419] + NaNMath v1.1.3 [bac558e1] + OrderedCollections v1.8.1 [69de0a69] + Parsers v2.8.3 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [276daf66] + SpecialFunctions v2.6.1 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [856f2bd8] + StructTypes v1.11.0 [ec057cc2] + StructUtils v2.6.0 [3bb67fe8] + TranscodingStreams v0.11.3 [ae81ac8f] + ASL_jll v0.1.3+0 [6e34b625] + Bzip2_jll v1.0.9+0 [38041ee0] + Cbc_jll v200.1000.1200+0 [3830e938] + Cgl_jll v0.6000.900+0 [06985876] + Clp_jll v100.1700.1000+1 [be027038] + CoinUtils_jll v200.1100.1200+0 ⌅ [d00139f3] + METIS_jll v5.1.2+1 [d7ed1dd3] + MUMPS_seq_jll v500.800.100+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [7da25872] + Osi_jll v0.10800.1100+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9abbd945] + Profile v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.86s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1351.3 ms ✓ METIS_jll 1237.0 ms ✓ CoinUtils_jll 1270.4 ms ✓ MUMPS_seq_jll 1471.3 ms ✓ Osi_jll 1280.6 ms ✓ Clp_jll 1347.1 ms ✓ Cgl_jll 1368.9 ms ✓ Cbc_jll 9660.5 ms ✓ Cbc 8 dependencies successfully precompiled in 20 seconds. 70 already precompiled. Precompilation completed after 33.0s ################################################################################ # Testing # Testing Cbc Status `/tmp/jl_cOcYsy/Project.toml` [9961bab8] Cbc v1.3.0 [b8f27783] MathOptInterface v1.46.0 [38041ee0] Cbc_jll v200.1000.1200+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [37e2e46d] LinearAlgebra v1.13.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_cOcYsy/Manifest.toml` [6e4b80f9] BenchmarkTools v1.6.3 [9961bab8] Cbc v1.3.0 [523fee87] CodecBzip2 v0.8.5 [944b1d66] CodecZlib v0.7.8 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [864edb3b] DataStructures v0.19.3 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [ffbed154] DocStringExtensions v0.9.5 [f6369f11] ForwardDiff v1.2.2 [92d709cd] IrrationalConstants v0.2.6 [692b3bcd] JLLWrappers v1.7.1 [682c06a0] JSON v1.2.1 [0f8b85d8] JSON3 v1.14.3 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [b8f27783] MathOptInterface v1.46.0 [d8a4904e] MutableArithmetics v1.6.7 [77ba4419] NaNMath v1.1.3 [bac558e1] OrderedCollections v1.8.1 [69de0a69] Parsers v2.8.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [276daf66] SpecialFunctions v2.6.1 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [856f2bd8] StructTypes v1.11.0 [ec057cc2] StructUtils v2.6.0 [3bb67fe8] TranscodingStreams v0.11.3 [ae81ac8f] ASL_jll v0.1.3+0 [6e34b625] Bzip2_jll v1.0.9+0 [38041ee0] Cbc_jll v200.1000.1200+0 [3830e938] Cgl_jll v0.6000.900+0 [06985876] Clp_jll v100.1700.1000+1 [be027038] CoinUtils_jll v200.1100.1200+0 ⌅ [d00139f3] METIS_jll v5.1.2+1 [d7ed1dd3] MUMPS_seq_jll v500.800.100+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [7da25872] Osi_jll v0.10800.1100+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9abbd945] Profile v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Primal infeasible - objective value 0 PrimalInfeasible objective 0 - 0 iterations time 0.002 Optimal - objective value 0 Optimal objective 0 - 0 iterations time 0.002 Optimal - objective value 0 Optimal objective 0 - 0 iterations time 0.002 Presolve 0 (-9) rows, 0 (-4) columns and 0 (-15) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-6) rows, 0 (-3) columns and 0 (-10) elements Optimal - objective value 1.5 After Postsolve, objective 1.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-6) rows, 0 (-3) columns and 0 (-10) elements Optimal - objective value 1.5 After Postsolve, objective 1.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-10) rows, 0 (-7) columns and 0 (-19) elements Optimal - objective value 4 After Postsolve, objective 4, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 4 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-7) rows, 0 (-5) columns and 0 (-13) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-7) rows, 0 (-5) columns and 0 (-13) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 0 Primal inf 1.9999998 (2) 0 Obj 0 Primal inf 1.9999998 (2) Primal infeasible - objective value 0 PrimalInfeasible objective 0 - 0 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 0 Primal inf 0.9999999 (1) Primal infeasible - objective value 0 PrimalInfeasible objective 0 - 0 iterations time 0.002 Presolve 0 (-5) rows, 0 (-3) columns and 0 (-8) elements Optimal - objective value -11 After Postsolve, objective -11, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -11 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-6) rows, 0 (-4) columns and 0 (-8) elements Optimal - objective value -82 After Postsolve, objective -82, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -82 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-3) columns and 0 (-5) elements Optimal - objective value -11 After Postsolve, objective -11, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -11 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-3) rows, 0 (-4) columns and 0 (-5) elements Optimal - objective value -82 After Postsolve, objective -82, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -82 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 6 After Postsolve, objective 6, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 6 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 5.5 Primal inf 1.0999999 (1) Dual inf 2.1999999 (1) 1 Obj -0 Primal inf 1.1000003 (1) Dual inf 0.0099999 (1) End of values pass after 2 iterations 2 Obj -0 Primal inf 1.0999999 (1) Primal infeasible - objective value -0 PrimalInfeasible objective -0 - 2 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 5.5 Primal inf 1.0999999 (1) Dual inf 2.1999999 (1) 1 Obj -0 Primal inf 1.1000003 (1) Dual inf 0.0099999 (1) End of values pass after 2 iterations 2 Obj -0 Primal inf 1.0999999 (1) Primal infeasible - objective value -0 PrimalInfeasible objective -0 - 2 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 5.5 Primal inf 1.0999999 (1) Primal infeasible - objective value 5.5 PrimalInfeasible objective 5.5 - 0 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 5.5 Primal inf 1.0999999 (1) Primal infeasible - objective value 5.5 PrimalInfeasible objective 5.5 - 0 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 3.08 Primal inf 1.0999999 (1) Primal infeasible - objective value 3.08 PrimalInfeasible objective 3.08 - 0 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 3.08 Primal inf 1.0999999 (1) Primal infeasible - objective value 3.08 PrimalInfeasible objective 3.08 - 0 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 3.08 Primal inf 1.0999999 (1) Dual inf 2.1999999 (1) 1 Obj 0 Primal inf 1.0999999 (1) Primal infeasible - objective value 0 PrimalInfeasible objective 0 - 1 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 3.08 Primal inf 1.0999999 (1) Dual inf 2.1999999 (1) 1 Obj 0 Primal inf 1.0999999 (1) Primal infeasible - objective value 0 PrimalInfeasible objective 0 - 1 iterations time 0.002 Presolve thinks problem is unbounded Analysis indicates model infeasible or unbounded 0 Obj 0 Dual inf 1.9999998 (2) 1 Obj -1.5e+10 1 Obj -7.5e+10 Dual infeasible - objective value -7.5e+10 DualInfeasible objective -7.5e+10 - 1 iterations time 0.002 Presolve thinks problem is unbounded Analysis indicates model infeasible or unbounded 0 Obj 0 Dual inf 1.9999998 (2) 0 Obj -1e+11 0 Obj -5e+11 0 Obj -2.5e+12 0 Obj -1.25e+13 0 Obj -6.25e+13 Dual infeasible - objective value -6.25e+13 DualInfeasible objective -6.25e+13 - 0 iterations time 0.002 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-4) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value -5 After Postsolve, objective -5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-4) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value 5 After Postsolve, objective 5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-4) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value -5 After Postsolve, objective -5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-4) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value 5 After Postsolve, objective 5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 5 - 0 iterations time 0.002, Presolve 0.00 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 0 Primal inf 0.9999999 (1) Primal infeasible - objective value 0 PrimalInfeasible objective 0 - 0 iterations time 0.002 Presolve determined that the problem was infeasible with tolerance of 1e-08 Analysis indicates model infeasible or unbounded 0 Obj 0 Primal inf 2.3333332 (1) Primal infeasible - objective value 2.3333333e-18 PrimalInfeasible objective 2.333333333e-18 - 1 iterations time 0.002 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 100 After Postsolve, objective 100, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 100 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 200 After Postsolve, objective 200, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 200 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 100 After Postsolve, objective 100, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 100 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 200 After Postsolve, objective 200, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 200 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 3 (0) rows, 2 (0) columns and 6 (0) elements 0 Obj 30000 Dual inf 1350 (2) 2 Obj 71818.182 Optimal - objective value 71818.182 Optimal objective 71818.18182 - 2 iterations time 0.002 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 3 After Postsolve, objective 3, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 3 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value -0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value -1 After Postsolve, objective -1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 3 After Postsolve, objective 3, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 3 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 4 After Postsolve, objective 4, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 4 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-3) columns and 0 (-5) elements Optimal - objective value 3 After Postsolve, objective 3, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 3 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value -1 After Postsolve, objective -1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective -1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 10 After Postsolve, objective 10, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 10 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 5 After Postsolve, objective 5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 12 After Postsolve, objective 12, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 12 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 4 After Postsolve, objective 4, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 4 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 2 (0) rows, 2 (0) columns and 4 (0) elements 0 Obj -0 Dual inf 1.9999998 (2) 2 Obj 2.6666667 Optimal - objective value 2.6666667 Optimal objective 2.666666667 - 2 iterations time 0.002 Presolve 2 (0) rows, 2 (0) columns and 4 (0) elements 0 Obj -0 Dual inf 2.4999998 (2) 1 Obj 2 Optimal - objective value 2 Optimal objective 2 - 1 iterations time 0.002 Presolve 0 (-1) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 4 After Postsolve, objective 4, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 4 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 100 After Postsolve, objective 100, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 100 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 200 After Postsolve, objective 200, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 200 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-3) rows, 0 (-3) columns and 0 (-3) elements Optimal - objective value 3 After Postsolve, objective 3, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 3 - 0 iterations time 0.002, Presolve 0.00 Presolve 1 (-1) rows, 2 (0) columns and 2 (-2) elements 0 Obj 0 Primal inf 1.999999 (1) Dual inf 0.019998 (2) w.o. free dual inf (0) 1 Obj 2 Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 1 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-4) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Optimal - objective value 3 Optimal objective 3 - 0 iterations time 0.002 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value -0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-1) columns and 0 (-2) elements Optimal - objective value -0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-1) columns and 0 (-2) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 3 Optimal objective 3 - 0 iterations time 0.002 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value -0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 2.5 After Postsolve, objective 2.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value -0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 2.5 After Postsolve, objective 2.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2.5 - 0 iterations time 0.002, Presolve 0.00 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 6 Optimal objective 6 - 0 iterations time 0.002 Optimal - objective value 2 Optimal objective 2 - 0 iterations time 0.002 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 0 After Postsolve, objective 0, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-2) columns and 0 (-2) elements Optimal - objective value 2.5 After Postsolve, objective 2.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-1) columns and 0 (-2) elements Optimal - objective value 0.5 After Postsolve, objective 0.5, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.5 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-2) rows, 0 (-1) columns and 0 (-2) elements Optimal - objective value 0.25 After Postsolve, objective 0.25, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 0.25 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 1 After Postsolve, objective 1, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 1 - 0 iterations time 0.002, Presolve 0.00 Presolve 0 (-1) rows, 0 (-1) columns and 0 (-1) elements Optimal - objective value 2 After Postsolve, objective 2, infeasibilities - dual 0 (0), primal 0 (0) Optimal objective 2 - 0 iterations time 0.002, Presolve 0.00 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 2 Optimal objective 2 - 0 iterations time 0.002 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 2 Optimal objective 2 - 0 iterations time 0.002 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 0 Optimal objective 0 - 0 iterations time 0.002 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 0 Optimal objective 0 - 0 iterations time 0.002 Optimal - objective value 2 Optimal objective 2 - 0 iterations time 0.002 Optimal - objective value 3 Optimal objective 3 - 0 iterations time 0.002 Optimal - objective value 3 Optimal objective 3 - 0 iterations time 0.002 Optimal - objective value 3 Optimal objective 3 - 0 iterations time 0.002 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Optimal - objective value 1 Optimal - objective value 1 Optimal objective 1 - 0 iterations time 0.002 Presolve thinks problem is unbounded Analysis indicates model infeasible or unbounded 0 Obj -0 Primal inf 1.0999999 (1) Dual inf 0.0219999 (1) w.o. free dual inf (0) 1 Obj 1.8615385 Dual inf 1.6923076 (1) 1 Obj 8.4615385e+10 Dual infeasible - objective value 8.4615385e+10 DualInfeasible objective 8.461538462e+10 - 1 iterations time 0.002 Presolve thinks problem is unbounded Analysis indicates model infeasible or unbounded 0 Obj -0 Primal inf 1.0999999 (1) Dual inf 0.0219999 (1) w.o. free dual inf (0) 1 Obj 1.8615385 Dual inf 1.6923076 (1) 1 Obj 8.4615385e+10 Dual infeasible - objective value 8.4615385e+10 DualInfeasible objective 8.461538462e+10 - 1 iterations time 0.002 Presolve thinks problem is unbounded Analysis indicates model infeasible or unbounded 0 Obj 0 Dual inf 0.0219999 (1) w.o. free dual inf (0) 0 Obj 0 Dual inf 0.0219999 (1) w.o. free dual inf (0) 0 Obj 0 Dual inf 0.0219999 (1) w.o. free dual inf (0) Dual infeasible - objective value 0 DualInfeasible objective 0 - 0 iterations time 0.002 Presolve thinks problem is unbounded Analysis indicates model infeasible or unbounded 0 Obj 0 Dual inf 0.0219999 (1) w.o. free dual inf (0) 0 Obj 0 Dual inf 0.0219999 (1) w.o. free dual inf (0) 0 Obj 0 Dual inf 0.0219999 (1) w.o. free dual inf (0) Dual infeasible - objective value 0 DualInfeasible objective 0 - 0 iterations time 0.002 Optimal - objective value 2 Optimal objective 2 - 0 iterations time 0.002 Optimal - objective value 2 Optimal objective 2 - 0 iterations time 0.002 Welcome to the CBC MILP Solver Version: 2.10.12 Build Date: Jan 1 1970 command line - Cbc_C_Interface -solve -quit (default strategy 1) Continuous objective value is 6.75 - 0.00 seconds Cgl0002I 5 variables fixed Cgl0004I processed model has 0 rows, 0 columns (0 integer (0 of which binary)) and 0 elements Cbc3007W No integer variables - nothing to do Cuts at root node changed objective from 6.75 to -1.79769e+308 Probing was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) Gomory was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) Knapsack was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) Clique was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) MixedIntegerRounding2 was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) FlowCover was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) TwoMirCuts was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) ZeroHalf was tried 0 times and created 0 cuts of which 0 were active after adding rounds of cuts (0.000 seconds) Result - Optimal solution found Objective value: 6.75000000 Enumerated nodes: 0 Total iterations: 0 Time (CPU seconds): 0.00 Time (Wallclock seconds): 0.00 Total time (CPU seconds): 0.01 (Wallclock seconds): 0.01 Welcome to the CBC MILP Solver Version: 2.10.12 Build Date: Jan 1 1970 command line - Cbc_C_Interface -cuts off -presolve off -threads 4 -heur off -logLevel 3 -solve -quit (default strategy 1) Option for cutsOnOff changed from on to off Option for presolve changed from on to off threads was changed from 0 to 4 Option for heuristicsOnOff changed from on to off logLevel was changed from 1 to 3 Continuous objective value is 48.5952 - 0.00 seconds Cgl0004I processed model has 1 rows, 100 columns (100 integer (100 of which binary)) and 100 elements Cbc0046I Root node pass 1, 1 rows, 0 total tight cuts - objective 48.595235 Node 0 depth 0 unsatisfied 1 sum 1.02903e+12 obj 48.5952 guess 48.4788 branching on 43 Cbc0010I After 0 nodes, 1 on tree, -1e+50 best solution, best possible 48.595235 (0.00 seconds) Clp0061I Crunch 1 (0) rows, 100 (0) columns and 100 (0) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.595235 Primal inf 0.11646738 (1) Clp0000I Optimal - objective value -48.561239 **** iterated small 1 Clp0006I 0 Obj -48.561239 Primal inf 0.3833598 (1) Clp0006I 0 Obj -48.561239 Primal inf 0.059267099 (1) Node 1 depth 1 unsatisfied 1 sum 1.32959e+10 obj 48.5612 guess 48.5308 branching on 68 Cbc0015I Node 1 Obj 48.561239 Unsat 1 depth 1 Clp0061I Crunch 1 (0) rows, 99 (-1) columns and 99 (-1) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.561239 Primal inf 0.86610119 (1) Clp0000I Optimal - objective value -48.315246 **** iterated small 1 Clp0006I 0 Obj -48.315246 Primal inf 0.3833598 (1) Clp0006I 0 Obj -48.315246 Primal inf 0.13436197 (1) Node 2 depth 2 unsatisfied 1 sum 5.06762e+10 obj 48.3152 guess 48.2724 branching on 87 Cbc0015I Node 2 Obj 48.315246 Unsat 1 depth 2 Clp0061I Crunch 1 (0) rows, 99 (-1) columns and 99 (-1) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.561239 Primal inf 0.13389861 (1) Clp0000I Optimal - objective value -48.556134 **** iterated small 1 Clp0006I 0 Obj -48.556134 Primal inf 0.37457595 (1) Clp0006I 0 Obj -48.556134 Primal inf 0.059267099 (1) Node 3 depth 2 unsatisfied 1 sum 4.8987e+10 obj 48.5561 guess 48.5239 branching on 24 Cbc0015I Node 3 Obj 48.556134 Unsat 1 depth 2 Clp0061I Crunch 1 (0) rows, 100 (0) columns and 100 (0) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.595235 Primal inf 0.88353242 (1) Clp0000I Optimal - objective value -48.564627 **** iterated small 1 Clp0006I 0 Obj -48.564627 Primal inf 0.44960609 (1) Clp0006I 0 Obj -48.564627 Primal inf 0.068115678 (1) Node 4 depth 1 unsatisfied 1 sum 9.0083 obj 48.5646 guess 48.515 branching on 87 Cbc0015I Node 4 Obj 48.564627 Unsat 1 depth 1 Clp0061I Crunch 1 (0) rows, 98 (-2) columns and 98 (-2) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.556134 Primal inf 0.13660961 (1) Clp0000I Optimal - objective value -48.518858 **** iterated small 1 Clp0006I 0 Obj -48.518858 Primal inf 0.31812334 (1) Clp0006I 0 Obj -48.518858 Primal inf 0.059267099 (1) Node 4 depth 3 unsatisfied 1 sum 6.85031e+10 obj 48.5189 guess 48.4804 branching on 93 Cbc0015I Node 4 Obj 48.518858 Unsat 1 depth 3 Clp0061I Crunch 1 (0) rows, 99 (-1) columns and 99 (-1) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.564627 Primal inf 0.13156816 (1) Clp0000I Optimal - objective value -48.520919 **** iterated small 1 Clp0006I 0 Obj -48.520919 Primal inf 0.37451122 (1) Clp0006I 0 Obj -48.520919 Primal inf 0.068115678 (1) Node 6 depth 2 unsatisfied 1 sum 10.5124 obj 48.5209 guess 48.515 branching on 68 Cbc0015I Node 6 Obj 48.520919 Unsat 1 depth 2 Clp0061I Crunch 1 (0) rows, 98 (-2) columns and 98 (-2) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.556134 Primal inf 0.86339019 (1) Clp0000I Optimal - objective value -48.283511 **** iterated small 1 Clp0006I 0 Obj -48.283511 Primal inf 0.37457595 (1) Clp0006I 0 Obj -48.283511 Primal inf 0.14314582 (1) Node 6 depth 3 unsatisfied 1 sum 14.5063 obj 48.2835 guess 48.1875 branching on 87 Cbc0015I Node 6 Obj 48.283511 Unsat 1 depth 3 Clp0061I Crunch 1 (0) rows, 98 (-2) columns and 98 (-2) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.520919 Primal inf 0.15388966 (1) Clp0000I Optimal - objective value -48.515052 **** iterated small 1 Clp0006I 0 Obj -48.515052 Primal inf 0.36572737 (1) Clp0006I 0 Obj -48.515052 Primal inf 0.068115678 (1) Node 8 depth 3 unsatisfied 1 sum 11.416 obj 48.5151 guess 48.4722 branching on 24 Cbc0015I Node 8 Obj 48.515052 Unsat 1 depth 3 Clp0061I Crunch 1 (0) rows, 98 (-2) columns and 98 (-2) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.315246 Primal inf 0.25952543 (1) Clp0000I Optimal - objective value -48.217455 **** iterated small 1 Clp0006I 0 Obj -48.217455 Primal inf 0.29948108 (1) Clp0006I 0 Obj -48.217455 Primal inf 0.13436197 (1) Node 3 depth 3 unsatisfied 1 sum 8.87667e+10 obj 48.2175 guess 48.1445 branching on 24 Cbc0015I Node 3 Obj 48.217455 Unsat 1 depth 3 Clp0061I Crunch 1 (0) rows, 97 (-3) columns and 97 (-3) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.518858 Primal inf 0.1570446 (1) Clp0000I Optimal - objective value -48.5124 **** iterated small 1 Clp0006I 0 Obj -48.5124 Primal inf 0.30956153 (1) Clp0006I 0 Obj -48.5124 Primal inf 0.059267099 (1) Node 5 depth 4 unsatisfied 1 sum 7.47566e+10 obj 48.5124 guess 48.4796 branching on 49 Cbc0015I Node 5 Obj 48.5124 Unsat 1 depth 4 Clp0061I Crunch 1 (0) rows, 97 (-3) columns and 97 (-3) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.515052 Primal inf 0.15700541 (1) Clp0000I Optimal - objective value -48.472211 **** iterated small 1 Clp0006I 0 Obj -48.472211 Primal inf 0.30927476 (1) Clp0006I 0 Obj -48.472211 Primal inf 0.068115678 (1) Node 9 depth 4 unsatisfied 1 sum 3.13202 obj 48.4722 guess 48.4648 branching on 93 Cbc0015I Node 9 Obj 48.472211 Unsat 1 depth 4 Clp0061I Crunch 1 (0) rows, 97 (-3) columns and 97 (-3) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.283511 Primal inf 0.27649178 (1) Clp0000I Optimal - objective value -48.089297 **** iterated small 1 Clp0006I 0 Obj -48.089297 Primal inf 0.23424462 (1) Clp0006I 0 Obj -48.089297 Primal inf 0.14314582 (1) Node 7 depth 4 unsatisfied 1 sum 9.73615 obj 48.0893 guess 48.0736 branching on 93 Cbc0015I Node 7 Obj 48.089297 Unsat 1 depth 4 Clp0061I Crunch 1 (0) rows, 97 (-3) columns and 97 (-3) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.217455 Primal inf 0.30970178 (1) Clp0000I Optimal - objective value -48.132949 **** iterated small 1 Clp0006I 0 Obj -48.132949 Primal inf 0.24302847 (1) Clp0006I 0 Obj -48.132949 Primal inf 0.13436197 (1) Node 10 depth 4 unsatisfied 1 sum 11.2195 obj 48.1329 guess 48.1182 branching on 93 Cbc0015I Node 10 Obj 48.132949 Unsat 1 depth 4 Clp0061I Crunch 1 (0) rows, 96 (-4) columns and 96 (-4) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.089297 Primal inf 0.37930428 (1) Clp0000I Optimal - objective value -48.0737 **** iterated small 1 Clp0006I 0 Obj -48.0737 Primal inf 0.22568281 (1) Clp0006I 0 Obj -48.0737 Primal inf 0.14314582 (1) Node 13 depth 5 unsatisfied 1 sum 5.36519 obj 48.0737 guess 48.0575 branching on 49 Cbc0015I Node 13 Obj 48.0737 Unsat 1 depth 5 Clp0061I Crunch 1 (0) rows, 96 (-4) columns and 96 (-4) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.5124 Primal inf 0.16069016 (1) Clp0000I Optimal - objective value -48.505722 **** iterated small 1 Clp0006I 0 Obj -48.505722 Primal inf 0.30104083 (1) Clp0006I 0 Obj -48.505722 Primal inf 0.059267099 (1) Node 11 depth 5 unsatisfied 1 sum 8.66233e+10 obj 48.5057 guess 48.4753 branching on 5 Cbc0015I Node 11 Obj 48.505722 Unsat 1 depth 5 Clp0061I Crunch 1 (0) rows, 96 (-4) columns and 96 (-4) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.472211 Primal inf 0.18049133 (1) Clp0000I Optimal - objective value -48.464789 **** iterated small 1 Clp0006I 0 Obj -48.464789 Primal inf 0.30071295 (1) Clp0006I 0 Obj -48.464789 Primal inf 0.068115678 (1) Clp0061I Crunch 1 (0) rows, 96 (-4) columns and 96 (-4) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.132949 Primal inf 0.35602905 (1) Clp0000I Optimal - objective value -48.118309 **** iterated small 1 Clp0006I 0 Obj -48.118309 Primal inf 0.23446666 (1) Clp0006I 0 Obj -48.118309 Primal inf 0.13436197 (1) Node 14 depth 5 unsatisfied 1 sum 5.23197 obj 48.1183 guess 48.1031 branching on 49 Cbc0015I Node 14 Obj 48.118309 Unsat 1 depth 5 Node 12 depth 5 unsatisfied 1 sum 3.40179 obj 48.4648 guess 48.4571 branching on 49 Cbc0015I Node 12 Obj 48.464789 Unsat 1 depth 5 Clp0061I Crunch 1 (0) rows, 95 (-5) columns and 95 (-5) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.505722 Primal inf 0.16449022 (1) Clp0000I Optimal - objective value -48.468072 **** iterated small 1 Clp0006I 0 Obj -48.468072 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.468072 Primal inf 0.059267099 (1) Node 15 depth 6 unsatisfied 1 sum 1.3622e+11 obj 48.4681 guess 48.3788 branching on 22 Cbc0015I Node 15 Obj 48.468072 Unsat 1 depth 6 Clp0061I Crunch 1 (0) rows, 95 (-5) columns and 95 (-5) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.464789 Primal inf 0.18468117 (1) Clp0000I Optimal - objective value -48.457114 **** iterated small 1 Clp0006I 0 Obj -48.457114 Primal inf 0.29219225 (1) Clp0006I 0 Obj -48.457114 Primal inf 0.068115678 (1) Node 18 depth 6 unsatisfied 1 sum 19.9899 obj 48.4571 guess 48.4138 branching on 5 Cbc0015I Node 18 Obj 48.457114 Unsat 1 depth 6 Clp0061I Crunch 1 (0) rows, 95 (-5) columns and 95 (-5) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.0737 Primal inf 0.38810926 (1) Clp0000I Optimal - objective value -48.057571 **** iterated small 1 Clp0006I 0 Obj -48.057571 Primal inf 0.21716211 (1) Clp0006I 0 Obj -48.057571 Primal inf 0.14314582 (1) Node 16 depth 6 unsatisfied 1 sum 31.2218 obj 48.0576 guess 47.9666 branching on 5 Cbc0015I Node 16 Obj 48.057571 Unsat 1 depth 6 Clp0061I Crunch 1 (0) rows, 94 (-6) columns and 94 (-6) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.468072 Primal inf 0.22922681 (1) Clp0000I Optimal - objective value -48.429054 **** iterated small 1 Clp0006I 0 Obj -48.429054 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.429054 Primal inf 0.50009588 (1) Node 19 depth 7 unsatisfied 1 sum 3.23107 obj 48.4291 guess 48.4219 branching on 87 Cbc0015I Node 19 Obj 48.429054 Unsat 1 depth 7 Clp0061I Crunch 1 (0) rows, 95 (-5) columns and 95 (-5) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.118309 Primal inf 0.36429373 (1) Clp0000I Optimal - objective value -48.10317 **** iterated small 1 Clp0006I 0 Obj -48.10317 Primal inf 0.22594596 (1) Clp0006I 0 Obj -48.10317 Primal inf 0.13436197 (1) Node 17 depth 6 unsatisfied 1 sum 30.4913 obj 48.1032 guess 48.0177 branching on 5 Cbc0015I Node 17 Obj 48.10317 Unsat 1 depth 6 Clp0061I Crunch 1 (0) rows, 94 (-6) columns and 94 (-6) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.057571 Primal inf 0.39728742 (1) Clp0000I Optimal - objective value -47.953239 **** iterated small 1 Clp0006I 0 Obj -47.953239 Primal inf 0.23986984 (1) Clp0006I 0 Obj -47.953239 Primal inf 0.066252635 (1) Node 20 depth 7 unsatisfied 1 sum 1.15732e+11 obj 47.9532 guess 47.9149 branching on 74 Cbc0015I Node 20 Obj 47.953239 Unsat 1 depth 7 Clp0061I Crunch 1 (0) rows, 94 (-6) columns and 94 (-6) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.457114 Primal inf 0.18904858 (1) Clp0000I Optimal - objective value -48.413842 **** iterated small 1 Clp0006I 0 Obj -48.413842 Primal inf 0.0087773088 (1) Clp0006I 0 Obj -48.413842 Primal inf 0.068115678 (1) Node 21 depth 7 unsatisfied 1 sum 0.268569 obj 48.4138 guess 48.4 branching on 22 Cbc0015I Node 21 Obj 48.413842 Unsat 1 depth 7 Clp0061I Crunch 1 (0) rows, 94 (-6) columns and 94 (-6) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.10317 Primal inf 0.37290868 (1) Clp0000I Optimal - objective value -48.006194 **** iterated small 1 Clp0006I 0 Obj -48.006194 Primal inf 0.24865369 (1) Clp0006I 0 Obj -48.006194 Primal inf 0.05746878 (1) Node 22 depth 7 unsatisfied 1 sum 1.05222e+11 obj 48.0062 guess 47.9729 branching on 74 Cbc0015I Node 22 Obj 48.006194 Unsat 1 depth 7 Clp0061I Crunch 1 (0) rows, 93 (-7) columns and 93 (-7) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.429054 Primal inf 0.034045177 (1) Clp0000I Optimal - objective value -48.42195 **** iterated small 1 Clp0006I 0 Obj -48.42195 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.42195 Primal inf 0.55733786 (1) Node 23 depth 8 unsatisfied 1 sum 2.17439e+10 obj 48.4219 guess 48.4102 branching on 18 Cbc0015I Node 23 Obj 48.42195 Unsat 1 depth 8 Clp0061I Crunch 1 (0) rows, 93 (-7) columns and 93 (-7) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.953239 Primal inf 0.21642534 (1) Clp0000I Optimal - objective value -47.943452 **** iterated small 1 Clp0006I 0 Obj -47.943452 Primal inf 0.23174147 (1) Clp0006I 0 Obj -47.943452 Primal inf 0.066252635 (1) Node 24 depth 8 unsatisfied 1 sum 1.2428e+11 obj 47.9435 guess 47.9045 branching on 30 Cbc0015I Node 24 Obj 47.943452 Unsat 1 depth 8 Clp0061I Crunch 1 (0) rows, 93 (-7) columns and 93 (-7) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.006194 Primal inf 0.18773144 (1) Clp0000I Optimal - objective value -47.997705 **** iterated small 1 Clp0006I 0 Obj -47.997705 Primal inf 0.24052533 (1) Clp0006I 0 Obj -47.997705 Primal inf 0.05746878 (1) Node 26 depth 8 unsatisfied 1 sum 1.12313e+11 obj 47.9977 guess 47.9639 branching on 30 Cbc0015I Node 26 Obj 47.997705 Unsat 1 depth 8 Clp0061I Crunch 1 (0) rows, 93 (-7) columns and 93 (-7) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.413842 Primal inf 0.88584923 (1) Clp0000I Optimal - objective value -48.40007 **** iterated small 1 Clp0006I 0 Obj -48.40007 Primal inf 0.2380068 (1) Clp0006I 0 Obj -48.40007 Primal inf 0.068115678 (1) Node 25 depth 8 unsatisfied 1 sum 4.76551 obj 48.4001 guess 48.39 branching on 74 Cbc0015I Node 25 Obj 48.40007 Unsat 1 depth 8 Clp0061I Crunch 1 (0) rows, 92 (-8) columns and 92 (-8) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.42195 Primal inf 0.030655714 (1) Clp0000I Optimal - objective value -48.420952 **** iterated small 1 Clp0006I 0 Obj -48.420952 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.420952 Primal inf 0.56607749 (1) Node 27 depth 9 unsatisfied 1 sum 3.50132e+10 obj 48.421 guess 48.4098 branching on 62 Cbc0015I Node 27 Obj 48.420952 Unsat 1 depth 9 Clp0061I Crunch 1 (0) rows, 92 (-8) columns and 92 (-8) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.997705 Primal inf 0.19285217 (1) Clp0000I Optimal - objective value -47.983357 **** iterated small 1 Clp0006I 0 Obj -47.983357 Primal inf 0.014774214 (1) Clp0006I 0 Obj -47.983357 Primal inf 0.05746878 (1) Node 28 depth 9 unsatisfied 1 sum 1.92739e+11 obj 47.9834 guess 47.9029 branching on 66 Cbc0015I Node 28 Obj 47.983357 Unsat 1 depth 9 Clp0061I Crunch 1 (0) rows, 91 (-9) columns and 91 (-9) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.420952 Primal inf 0.030196713 (1) Clp0000I Optimal - objective value -48.420694 **** iterated small 1 Clp0006I 0 Obj -48.420694 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.420694 Primal inf 0.092645737 (1) Node 31 depth 10 unsatisfied 1 sum 2.0688e+11 obj 48.4207 guess 48.3619 branching on 91 Cbc0015I Node 31 Obj 48.420694 Unsat 1 depth 10 Clp0061I Crunch 1 (0) rows, 92 (-8) columns and 92 (-8) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.40007 Primal inf 0.22251128 (1) Clp0000I Optimal - objective value -48.390008 **** iterated small 1 Clp0006I 0 Obj -48.390008 Primal inf 0.22987843 (1) Clp0006I 0 Obj -48.390008 Primal inf 0.068115678 (1) Node 30 depth 9 unsatisfied 1 sum 8.27869 obj 48.39 guess 48.373 branching on 30 Cbc0015I Node 30 Obj 48.390008 Unsat 1 depth 9 Clp0061I Crunch 1 (0) rows, 92 (-8) columns and 92 (-8) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.943452 Primal inf 0.22232876 (1) Clp0000I Optimal - objective value -47.926912 **** iterated small 1 Clp0006I 0 Obj -47.926912 Primal inf 0.0059903589 (1) Clp0006I 0 Obj -47.926912 Primal inf 0.066252635 (1) Node 29 depth 9 unsatisfied 1 sum 8.99893e+10 obj 47.9269 guess 47.8943 branching on 66 Cbc0015I Node 29 Obj 47.926912 Unsat 1 depth 9 Clp0061I Crunch 1 (0) rows, 91 (-9) columns and 91 (-9) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.983357 Primal inf 0.20450794 (1) Clp0000I Optimal - objective value -47.974499 **** iterated small 1 Clp0006I 0 Obj -47.974499 Primal inf 0.014774214 (1) Clp0006I 0 Obj -47.974499 Primal inf 0.062118772 (1) Node 32 depth 10 unsatisfied 1 sum 0.436216 obj 47.9745 guess 47.9619 branching on 22 Cbc0015I Node 32 Obj 47.974499 Unsat 1 depth 10 Clp0061I Crunch 1 (0) rows, 90 (-10) columns and 90 (-10) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.420694 Primal inf 0.15984116 (1) Clp0000I Optimal - objective value -48.415721 **** iterated small 1 Clp0006I 0 Obj -48.415721 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.415721 Primal inf 0.098251688 (1) Node 33 depth 11 unsatisfied 1 sum 1.59702e+11 obj 48.4157 guess 48.367 branching on 47 Cbc0015I Node 33 Obj 48.415721 Unsat 1 depth 11 Clp0061I Crunch 1 (0) rows, 91 (-9) columns and 91 (-9) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.420952 Primal inf 0.96980309 (1) Clp0000I Optimal - objective value -46.754807 **** iterated small 1 Clp0006I 0 Obj -46.754807 Primal inf 0.038039297 (1) Clp0006I 0 Obj -46.754807 Primal inf 0.25995481 (1) Node 34 depth 10 unsatisfied 1 sum 5.22478 obj 46.7548 guess 46.6899 branching on 30 Cbc0015I Node 34 Obj 46.754807 Unsat 1 depth 10 Clp0061I Crunch 1 (0) rows, 91 (-9) columns and 91 (-9) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.926912 Primal inf 0.082920637 (1) Clp0000I Optimal - objective value -47.92332 **** iterated small 1 Clp0006I 0 Obj -47.92332 Primal inf 0.0059903589 (1) Clp0006I 0 Obj -47.92332 Primal inf 0.070902628 (1) Node 35 depth 10 unsatisfied 1 sum 0.20188 obj 47.9233 guess 47.9093 branching on 22 Cbc0015I Node 35 Obj 47.92332 Unsat 1 depth 10 Clp0061I Crunch 1 (0) rows, 89 (-11) columns and 89 (-11) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.415721 Primal inf 0.15210834 (1) Clp0000I Optimal - objective value -48.414146 **** iterated small 1 Clp0006I 0 Obj -48.414146 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.414146 Primal inf 0.63058677 (1) Node 37 depth 12 unsatisfied 1 sum 3.12653e+10 obj 48.4141 guess 48.4058 branching on 37 Cbc0015I Node 37 Obj 48.414146 Unsat 1 depth 12 Clp0061I Crunch 1 (0) rows, 90 (-10) columns and 90 (-10) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.974499 Primal inf 0.80785916 (1) Clp0000I Optimal - objective value -47.883217 **** iterated small 1 Clp0006I 0 Obj -47.883217 Primal inf 0.18470908 (1) Clp0006I 0 Obj -47.883217 Primal inf 0.062118772 (1) Node 36 depth 11 unsatisfied 1 sum 2.39452e+11 obj 47.8832 guess 47.7852 branching on 99 Cbc0015I Node 36 Obj 47.883217 Unsat 1 depth 11 Clp0061I Crunch 1 (0) rows, 90 (-10) columns and 90 (-10) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -46.754807 Primal inf 0.87234848 (1) Clp0000I Optimal - objective value -46.526614 **** iterated small 1 Clp0006I 0 Obj -46.526614 Primal inf 0.059116238 (1) Clp0006I 0 Obj -46.526614 Primal inf 0.18771162 (1) Node 39 depth 11 unsatisfied 1 sum 2.0871e+11 obj 46.5266 guess 46.4562 branching on 99 Cbc0015I Node 39 Obj 46.526614 Unsat 1 depth 11 Clp0061I Crunch 1 (0) rows, 90 (-10) columns and 90 (-10) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.420694 Primal inf 0.84015864 (1) Clp0000I Optimal - objective value -48.152936 **** iterated small 1 Clp0006I 0 Obj -48.152936 Primal inf 0.21347674 (1) Clp0006I 0 Obj -48.152936 Primal inf 0.092645737 (1) Node 38 depth 11 unsatisfied 1 sum 6.63661 obj 48.1529 guess 48.1392 branching on 74 Cbc0015I Node 38 Obj 48.152936 Unsat 1 depth 11 Clp0061I Crunch 1 (0) rows, 88 (-12) columns and 88 (-12) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.414146 Primal inf 0.027191566 (1) Clp0000I Optimal - objective value -48.413319 **** iterated small 1 Clp0006I 0 Obj -48.413319 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.413319 Primal inf 0.63901724 (1) Node 40 depth 13 unsatisfied 1 sum 3.61391e+10 obj 48.4133 guess 48.4059 branching on 81 Cbc0015I Node 40 Obj 48.413319 Unsat 1 depth 13 Clp0061I Crunch 1 (0) rows, 89 (-11) columns and 89 (-11) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.415721 Primal inf 0.84789146 (1) Clp0000I Optimal - objective value -48.104043 **** iterated small 1 Clp0006I 0 Obj -48.104043 Primal inf 0.20787078 (1) Clp0006I 0 Obj -48.104043 Primal inf 0.098251688 (1) Node 41 depth 12 unsatisfied 1 sum 6.85336 obj 48.104 guess 48.0895 branching on 74 Cbc0015I Node 41 Obj 48.104043 Unsat 1 depth 12 Clp0061I Crunch 1 (0) rows, 89 (-11) columns and 89 (-11) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.883217 Primal inf 0.2516685 (1) Clp0000I Optimal - objective value -47.870704 **** iterated small 1 Clp0006I 0 Obj -47.870704 Primal inf 0.17711607 (1) Clp0006I 0 Obj -47.870704 Primal inf 0.062118772 (1) Node 42 depth 12 unsatisfied 1 sum 2.95452e+11 obj 47.8707 guess 47.7473 branching on 55 Cbc0015I Node 42 Obj 47.870704 Unsat 1 depth 12 Clp0061I Crunch 1 (0) rows, 89 (-11) columns and 89 (-11) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.152936 Primal inf 0.30264275 (1) Clp0000I Optimal - objective value -48.13925 **** iterated small 1 Clp0006I 0 Obj -48.13925 Primal inf 0.20534837 (1) Clp0006I 0 Obj -48.13925 Primal inf 0.092645737 (1) Node 43 depth 12 unsatisfied 1 sum 14.9931 obj 48.1393 guess 48.0995 branching on 30 Cbc0015I Node 43 Obj 48.13925 Unsat 1 depth 12 Clp0061I Crunch 1 (0) rows, 88 (-12) columns and 88 (-12) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.104043 Primal inf 0.32095551 (1) Clp0000I Optimal - objective value -48.08953 **** iterated small 1 Clp0006I 0 Obj -48.08953 Primal inf 0.19974242 (1) Clp0006I 0 Obj -48.08953 Primal inf 0.098251688 (1) Node 44 depth 13 unsatisfied 1 sum 15.4663 obj 48.0895 guess 48.0474 branching on 30 Cbc0015I Node 44 Obj 48.08953 Unsat 1 depth 13 Clp0061I Crunch 1 (0) rows, 88 (-12) columns and 88 (-12) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.414146 Primal inf 0.97280823 (1) Clp0000I Optimal - objective value -46.302875 **** iterated small 1 Clp0006I 0 Obj -46.302875 Primal inf 0.045773209 (1) Clp0006I 0 Obj -46.302875 Primal inf 0.026469785 (1) Node 46 depth 13 unsatisfied 1 sum 0.578604 obj 46.3029 guess 46.2798 branching on 66 Cbc0015I Node 46 Obj 46.302875 Unsat 1 depth 13 Clp0061I Crunch 1 (0) rows, 88 (-12) columns and 88 (-12) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.870704 Primal inf 0.25965614 (1) Clp0000I Optimal - objective value -47.857617 **** iterated small 1 Clp0006I 0 Obj -47.857617 Primal inf 0.16960478 (1) Clp0006I 0 Obj -47.857617 Primal inf 0.062118772 (1) Node 47 depth 13 unsatisfied 1 sum 3.54757e+11 obj 47.8576 guess 47.7111 branching on 11 Cbc0015I Node 47 Obj 47.857617 Unsat 1 depth 13 Clp0061I Crunch 1 (0) rows, 87 (-13) columns and 87 (-13) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.413319 Primal inf 0.026842459 (1) Clp0000I Optimal - objective value -48.411187 **** iterated small 1 Clp0006I 0 Obj -48.411187 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.411187 Primal inf 0.10397802 (1) Node 45 depth 14 unsatisfied 1 sum 2.04286e+11 obj 48.4112 guess 48.3696 branching on 3 Cbc0015I Node 45 Obj 48.411187 Unsat 1 depth 14 Clp0061I Crunch 1 (0) rows, 87 (-13) columns and 87 (-13) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.08953 Primal inf 0.32971018 (1) Clp0000I Optimal - objective value -48.042375 **** iterated small 1 Clp0006I 0 Obj -48.042375 Primal inf 0.22081936 (1) Clp0006I 0 Obj -48.042375 Primal inf 0.026008494 (1) Node 48 depth 14 unsatisfied 1 sum 4.64688 obj 48.0424 guess 48.0371 branching on 99 Cbc0015I Node 48 Obj 48.042375 Unsat 1 depth 14 Clp0061I Crunch 1 (0) rows, 86 (-14) columns and 86 (-14) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.411187 Primal inf 0.14494555 (1) Clp0000I Optimal - objective value -48.40833 **** iterated small 1 Clp0006I 0 Obj -48.40833 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.40833 Primal inf 0.69248873 (1) Node 50 depth 15 unsatisfied 1 sum 4.16007e+10 obj 48.4083 guess 48.4004 branching on 12 Cbc0015I Node 50 Obj 48.40833 Unsat 1 depth 15 Clp0061I Crunch 1 (0) rows, 87 (-13) columns and 87 (-13) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -46.302875 Primal inf 0.36639961 (1) Clp0000I Optimal - objective value -46.279849 **** iterated small 1 Clp0006I 0 Obj -46.279849 Primal inf 0.22035807 (1) Clp0006I 0 Obj -46.279849 Primal inf 0.026469785 (1) Node 49 depth 14 unsatisfied 1 sum 5.34594 obj 46.2798 guess 46.2745 branching on 99 Cbc0015I Node 49 Obj 46.279849 Unsat 1 depth 14 Clp0061I Crunch 1 (0) rows, 86 (-14) columns and 86 (-14) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.042375 Primal inf 0.1053712 (1) Clp0000I Optimal - objective value -48.037136 **** iterated small 1 Clp0006I 0 Obj -48.037136 Primal inf 0.21322635 (1) Clp0006I 0 Obj -48.037136 Primal inf 0.026008494 (1) Node 52 depth 15 unsatisfied 1 sum 5.02085 obj 48.0371 guess 48.0316 branching on 55 Cbc0015I Node 52 Obj 48.037136 Unsat 1 depth 15 Clp0061I Crunch 1 (0) rows, 87 (-13) columns and 87 (-13) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.413319 Primal inf 0.97315734 (1) Clp0000I Optimal - objective value -46.241205 **** iterated small 1 Clp0006I 0 Obj -46.241205 Primal inf 0.037342735 (1) Clp0006I 0 Obj -46.241205 Primal inf 0.034900259 (1) Node 51 depth 14 unsatisfied 1 sum 0.554464 obj 46.2412 guess 46.2229 branching on 66 Cbc0015I Node 51 Obj 46.241205 Unsat 1 depth 14 Clp0061I Crunch 1 (0) rows, 85 (-15) columns and 85 (-15) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.40833 Primal inf 0.024821221 (1) Clp0000I Optimal - objective value -48.407616 **** iterated small 1 Clp0006I 0 Obj -48.407616 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.407616 Primal inf 0.70048794 (1) Node 53 depth 16 unsatisfied 1 sum 5.12054e+10 obj 48.4076 guess 48.3993 branching on 56 Cbc0015I Node 53 Obj 48.407616 Unsat 1 depth 16 Clp0061I Crunch 1 (0) rows, 86 (-14) columns and 86 (-14) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.411187 Primal inf 0.85505425 (1) Clp0000I Optimal - objective value -48.054596 **** iterated small 1 Clp0006I 0 Obj -48.054596 Primal inf 0.20214445 (1) Clp0006I 0 Obj -48.054596 Primal inf 0.10397802 (1) Node 54 depth 15 unsatisfied 1 sum 8.25284 obj 48.0546 guess 48.0392 branching on 74 Cbc0015I Node 54 Obj 48.054596 Unsat 1 depth 15 Clp0061I Crunch 1 (0) rows, 86 (-14) columns and 86 (-14) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -46.279849 Primal inf 0.10724008 (1) Clp0000I Optimal - objective value -46.274517 **** iterated small 1 Clp0006I 0 Obj -46.274517 Primal inf 0.21276506 (1) Clp0006I 0 Obj -46.274517 Primal inf 0.026469785 (1) Node 56 depth 15 unsatisfied 1 sum 4.62126 obj 46.2745 guess 46.2689 branching on 55 Cbc0015I Node 56 Obj 46.274517 Unsat 1 depth 15 Clp0061I Crunch 1 (0) rows, 85 (-15) columns and 85 (-15) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.037136 Primal inf 0.10871555 (1) Clp0000I Optimal - objective value -48.031656 **** iterated small 1 Clp0006I 0 Obj -48.031656 Primal inf 0.20571506 (1) Clp0006I 0 Obj -48.031656 Primal inf 0.026008494 (1) Node 55 depth 16 unsatisfied 1 sum 39.5845 obj 48.0317 guess 47.9889 branching on 11 Cbc0015I Node 55 Obj 48.031656 Unsat 1 depth 16 Clp0061I Crunch 1 (0) rows, 84 (-16) columns and 84 (-16) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.407616 Primal inf 0.024544731 (1) Clp0000I Optimal - objective value -48.40266 **** iterated small 1 Clp0006I 0 Obj -48.40266 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.40266 Primal inf 0.75812144 (1) Node 57 depth 17 unsatisfied 1 sum 5.09343e+10 obj 48.4027 guess 48.3954 branching on 31 Cbc0015I Node 57 Obj 48.40266 Unsat 1 depth 17 Clp0061I Crunch 1 (0) rows, 85 (-15) columns and 85 (-15) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.40833 Primal inf 0.97517858 (1) Clp0000I Optimal - objective value -45.828017 **** iterated small 1 Clp0006I 0 Obj -45.828017 Primal inf 0.23069931 (1) Clp0006I 0 Obj -45.828017 Primal inf 0.016128548 (1) Node 58 depth 16 unsatisfied 1 sum 5.31097 obj 45.828 guess 45.8248 branching on 99 Cbc0015I Node 58 Obj 45.828017 Unsat 1 depth 16 Clp0061I Crunch 1 (0) rows, 84 (-16) columns and 84 (-16) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.031656 Primal inf 0.11223956 (1) Clp0000I Optimal - objective value -47.988918 **** iterated small 1 Clp0006I 0 Obj -47.988918 Primal inf 0.15905546 (1) Clp0006I 0 Obj -47.988918 Primal inf 0.026008494 (1) Node 59 depth 17 unsatisfied 1 sum 2.75177e+11 obj 47.9889 guess 47.8878 branching on 80 Cbc0015I Node 59 Obj 47.988918 Unsat 1 depth 17 Clp0061I Crunch 1 (0) rows, 85 (-15) columns and 85 (-15) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.054596 Primal inf 0.33966152 (1) Clp0000I Optimal - objective value -48.039236 **** iterated small 1 Clp0006I 0 Obj -48.039236 Primal inf 0.19401609 (1) Clp0006I 0 Obj -48.039236 Primal inf 0.10397802 (1) Node 60 depth 16 unsatisfied 1 sum 20.9049 obj 48.0392 guess 47.9934 branching on 30 Cbc0015I Node 60 Obj 48.039236 Unsat 1 depth 16 Clp0061I Crunch 1 (0) rows, 84 (-16) columns and 84 (-16) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.407616 Primal inf 0.97545507 (1) Clp0000I Optimal - objective value -45.760083 **** iterated small 1 Clp0006I 0 Obj -45.760083 Primal inf 0.2227001 (1) Clp0006I 0 Obj -45.760083 Primal inf 0.02412776 (1) Node 62 depth 17 unsatisfied 1 sum 4.55539 obj 45.7601 guess 45.7554 branching on 99 Cbc0015I Node 62 Obj 45.760083 Unsat 1 depth 17 Clp0061I Crunch 1 (0) rows, 83 (-17) columns and 83 (-17) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.988918 Primal inf 0.14053816 (1) Clp0000I Optimal - objective value -47.981001 **** iterated small 1 Clp0006I 0 Obj -47.981001 Primal inf 0.15223009 (1) Clp0006I 0 Obj -47.981001 Primal inf 0.026008494 (1) Node 63 depth 18 unsatisfied 1 sum 3.13426e+11 obj 47.981 guess 47.8653 branching on 36 Cbc0015I Node 63 Obj 47.981001 Unsat 1 depth 18 Clp0061I Crunch 1 (0) rows, 83 (-17) columns and 83 (-17) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.40266 Primal inf 0.022721194 (1) Clp0000I Optimal - objective value -48.402047 **** iterated small 1 Clp0006I 0 Obj -48.402047 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.402047 Primal inf 0.76546224 (1) Node 61 depth 18 unsatisfied 1 sum 5.34823e+10 obj 48.402 guess 48.3954 branching on 75 Cbc0015I Node 61 Obj 48.402047 Unsat 1 depth 18 Clp0061I Crunch 1 (0) rows, 84 (-16) columns and 84 (-16) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.828017 Primal inf 0.065343558 (1) Clp0000I Optimal - objective value -45.824768 **** iterated small 1 Clp0006I 0 Obj -45.824768 Primal inf 0.22310629 (1) Clp0006I 0 Obj -45.824768 Primal inf 0.016128548 (1) Node 64 depth 17 unsatisfied 1 sum 2.30157 obj 45.8248 guess 45.8214 branching on 55 Cbc0015I Node 64 Obj 45.824768 Unsat 1 depth 17 Clp0061I Crunch 1 (0) rows, 83 (-17) columns and 83 (-17) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.760083 Primal inf 0.097751591 (1) Clp0000I Optimal - objective value -45.755222 **** iterated small 1 Clp0006I 0 Obj -45.755222 Primal inf 0.21510708 (1) Clp0006I 0 Obj -45.755222 Primal inf 0.02412776 (1) Node 65 depth 18 unsatisfied 1 sum 3.31961 obj 45.7552 guess 45.7501 branching on 55 Cbc0015I Node 65 Obj 45.755222 Unsat 1 depth 18 Clp0061I Crunch 1 (0) rows, 82 (-18) columns and 82 (-18) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.402047 Primal inf 0.022508201 (1) Clp0000I Optimal - objective value -48.398297 **** iterated small 1 Clp0006I 0 Obj -48.398297 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.398297 Primal inf 0.81090373 (1) Node 67 depth 19 unsatisfied 1 sum 6.00732e+10 obj 48.3983 guess 48.3913 branching on 6 Cbc0015I Node 67 Obj 48.398297 Unsat 1 depth 19 Clp0061I Crunch 1 (0) rows, 82 (-18) columns and 82 (-18) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.755222 Primal inf 0.10085411 (1) Clp0000I Optimal - objective value -45.750139 **** iterated small 1 Clp0006I 0 Obj -45.750139 Primal inf 0.20759579 (1) Clp0006I 0 Obj -45.750139 Primal inf 0.02412776 (1) Node 69 depth 19 unsatisfied 1 sum 33.5715 obj 45.7501 guess 45.7105 branching on 11 Cbc0015I Node 69 Obj 45.750139 Unsat 1 depth 19 Clp0061I Crunch 1 (0) rows, 46 (-54) columns and 46 (-54) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.4121185 Clp1003I Final range of elements is 0.69352886 to 1 Clp0006I 0 Obj -47.981001 Primal inf 0.14591985 (1) Clp0000I Optimal - objective value -47.904864 **** iterated small 1 Clp0006I 0 Obj -47.904864 Primal inf 0.14786597 (1) Clp0006I 0 Obj -47.904864 Primal inf 0.036834554 (1) Node 66 depth 19 unsatisfied 1 sum 4.25938e+11 obj 47.9049 guess 47.7488 branching on 61 Cbc0015I Node 66 Obj 47.904864 Unsat 1 depth 19 Clp0061I Crunch 1 (0) rows, 83 (-17) columns and 83 (-17) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -47.988918 Primal inf 0.85946164 (1) Clp0000I Optimal - objective value -47.205989 **** iterated small 1 Clp0006I 0 Obj -47.205989 Primal inf 0.08681227 (1) Clp0006I 0 Obj -47.205989 Primal inf 0.56140039 (1) Node 68 depth 18 unsatisfied 1 sum 6.10698 obj 47.206 guess 47.2049 branching on 37 Cbc0015I Node 68 Obj 47.205989 Unsat 1 depth 18 Clp0061I Crunch 1 (0) rows, 81 (-19) columns and 81 (-19) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.750139 Primal inf 0.10412328 (1) Clp0000I Optimal - objective value -45.710491 **** iterated small 1 Clp0006I 0 Obj -45.710491 Primal inf 0.1609362 (1) Clp0006I 0 Obj -45.710491 Primal inf 0.02412776 (1) Node 71 depth 20 unsatisfied 1 sum 5.82988 obj 45.7105 guess 45.7031 branching on 80 Cbc0015I Node 71 Obj 45.710491 Unsat 1 depth 20 Clp0061I Crunch 1 (0) rows, 38 (-62) columns and 38 (-62) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.14112 Clp1003I Final range of elements is 0.85823132 to 1 Clp0006I 0 Obj -47.904864 Primal inf 0.19942876 (1) Clp0000I Optimal - objective value -47.891795 **** iterated small 1 Clp0006I 0 Obj -47.891795 Primal inf 0.17263543 (1) Clp0006I 0 Obj -47.891795 Primal inf 0.045582219 (1) Node 72 depth 20 unsatisfied 1 sum 5.10301e+11 obj 47.8918 guess 47.6946 branching on 17 Cbc0015I Node 72 Obj 47.891795 Unsat 1 depth 20 Clp0061I Crunch 1 (0) rows, 81 (-19) columns and 81 (-19) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.398297 Primal inf 0.021273712 (1) Clp0000I Optimal - objective value -48.397753 **** iterated small 1 Clp0006I 0 Obj -48.397753 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.397753 Primal inf 0.81752531 (1) Node 70 depth 20 unsatisfied 1 sum 6.28936e+10 obj 48.3978 guess 48.3912 branching on 50 Cbc0015I Node 70 Obj 48.397753 Unsat 1 depth 20 Clp0061I Crunch 1 (0) rows, 82 (-18) columns and 82 (-18) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.402047 Primal inf 0.9774916 (1) Clp0000I Optimal - objective value -45.194316 **** iterated small 1 Clp0006I 0 Obj -45.194316 Primal inf 0.15772579 (1) Clp0006I 0 Obj -45.194316 Primal inf 0.089102064 (1) Node 73 depth 19 unsatisfied 1 sum 5.05896 obj 45.1943 guess 45.1776 branching on 99 Cbc0015I Node 73 Obj 45.194316 Unsat 1 depth 19 Clp0061I Crunch 1 (0) rows, 80 (-20) columns and 80 (-20) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.710491 Primal inf 0.13037555 (1) Clp0000I Optimal - objective value -45.703147 **** iterated small 1 Clp0006I 0 Obj -45.703147 Primal inf 0.15411083 (1) Clp0006I 0 Obj -45.703147 Primal inf 0.02412776 (1) Node 74 depth 21 unsatisfied 1 sum 56.1167 obj 45.7031 guess 45.6325 branching on 36 Cbc0015I Node 74 Obj 45.703147 Unsat 1 depth 21 Clp0061I Crunch 1 (0) rows, 37 (-63) columns and 37 (-63) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.14112 Clp1003I Final range of elements is 0.85823132 to 1 Clp0006I 0 Obj -47.891795 Primal inf 0.20888437 (1) Clp0000I Optimal - objective value -47.864745 **** iterated small 1 Clp0006I 0 Obj -47.864745 Primal inf 0.027572422 (1) Clp0006I 0 Obj -47.864745 Primal inf 0.045582219 (1) Node 75 depth 21 unsatisfied 1 sum 7.71274e+11 obj 47.8647 guess 47.7349 branching on 41 Cbc0015I Node 75 Obj 47.864745 Unsat 1 depth 21 Clp0061I Crunch 1 (0) rows, 81 (-19) columns and 81 (-19) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.750139 Primal inf 0.89587652 (1) Clp0000I Optimal - objective value -45.450203 **** iterated small 1 Clp0006I 0 Obj -45.450203 Primal inf 0.1353526 (1) Clp0006I 0 Obj -45.450203 Primal inf 0.16264151 (1) Node 77 depth 20 unsatisfied 1 sum 25.1149 obj 45.4502 guess 45.3774 branching on 30 Cbc0015I Node 77 Obj 45.450203 Unsat 1 depth 20 Clp0061I Crunch 1 (0) rows, 80 (-20) columns and 80 (-20) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.397753 Primal inf 0.021105041 (1) Clp0000I Optimal - objective value -48.397217 **** iterated small 1 Clp0006I 0 Obj -48.397217 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.397217 Primal inf 0.82404186 (1) Node 76 depth 21 unsatisfied 1 sum 7.13838e+10 obj 48.3972 guess 48.3902 branching on 94 Cbc0015I Node 76 Obj 48.397217 Unsat 1 depth 21 Clp0061I Crunch 1 (0) rows, 36 (-64) columns and 36 (-64) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.14112 Clp1003I Final range of elements is 0.85823132 to 1 Clp0006I 0 Obj -47.864745 Primal inf 0.37690622 (1) Clp0000I Optimal - objective value -47.743611 **** iterated small 1 Clp0006I 0 Obj -47.743611 Primal inf 0.027572422 (1) Clp0006I 0 Obj -47.743611 Primal inf 0.099039847 (1) Node 78 depth 22 unsatisfied 1 sum 0.347351 obj 47.7436 guess 47.7365 branching on 66 Cbc0015I Node 78 Obj 47.743611 Unsat 1 depth 22 Clp0061I Crunch 1 (0) rows, 79 (-21) columns and 79 (-21) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.397217 Primal inf 0.020941635 (1) Clp0000I Optimal - objective value -48.393922 **** iterated small 1 Clp0006I 0 Obj -48.393922 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.393922 Primal inf 0.86369198 (1) Node 81 depth 22 unsatisfied 1 sum 6.73398e+10 obj 48.3939 guess 48.3877 branching on 25 Cbc0015I Node 81 Obj 48.393922 Unsat 1 depth 22 Clp0061I Crunch 1 (0) rows, 79 (-21) columns and 79 (-21) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -45.703147 Primal inf 0.13536808 (1) Clp0000I Optimal - objective value -45.632516 **** iterated small 1 Clp0006I 0 Obj -45.632516 Primal inf 0.10628744 (1) Clp0006I 0 Obj -45.632516 Primal inf 0.02412776 (1) Node 79 depth 22 unsatisfied 1 sum 9.4023 obj 45.6325 guess 45.6204 branching on 61 Cbc0015I Node 79 Obj 45.632516 Unsat 1 depth 22 Clp0061I Crunch 1 (0) rows, 37 (-63) columns and 37 (-63) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.14112 Clp1003I Final range of elements is 0.85823132 to 1 Clp0006I 0 Obj -47.891795 Primal inf 0.79111543 (1) Clp0000I Optimal - objective value -47.135318 **** iterated small 1 Clp0006I 0 Obj -47.135318 Primal inf 0.046022961 (1) Clp0006I 0 Obj -47.135318 Primal inf 0.1670986 (1) Node 80 depth 21 unsatisfied 1 sum 1.39495 obj 47.1353 guess 47.1311 branching on 3 Cbc0015I Node 80 Obj 47.135318 Unsat 1 depth 21 Clp0061I Crunch 1 (0) rows, 30 (-70) columns and 30 (-70) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.743611 Primal inf 0.21777088 (1) Clp0000I Optimal - objective value -47.683405 **** iterated small 1 Clp0006I 0 Obj -47.683405 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.683405 Primal inf 0.2516515 (1) Node 82 depth 23 unsatisfied 1 sum 1.90231 obj 47.6834 guess 47.6808 branching on 3 Cbc0015I Node 82 Obj 47.683405 Unsat 1 depth 23 Clp0061I Crunch 1 (0) rows, 39 (-61) columns and 39 (-61) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.14112 Clp1003I Final range of elements is 0.85823132 to 1 Clp0006I 0 Obj -45.632516 Primal inf 0.18500765 (1) Clp0000I Optimal - objective value -45.620392 **** iterated small 1 Clp0006I 0 Obj -45.620392 Primal inf 0.17593158 (1) Clp0006I 0 Obj -45.620392 Primal inf 0.042286069 (1) Node 84 depth 23 unsatisfied 1 sum 19.3664 obj 45.6204 guess 45.5953 branching on 17 Cbc0015I Node 84 Obj 45.620392 Unsat 1 depth 23 Clp0061I Crunch 1 (0) rows, 78 (-22) columns and 78 (-22) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.393922 Primal inf 0.019999476 (1) Clp0000I Optimal - objective value -48.393441 **** iterated small 1 Clp0006I 0 Obj -48.393441 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.393441 Primal inf 0.86935834 (1) Node 83 depth 23 unsatisfied 1 sum 7.08019e+10 obj 48.3934 guess 48.3874 branching on 69 Cbc0015I Node 83 Obj 48.393441 Unsat 1 depth 23 Clp0061I Crunch 1 (0) rows, 29 (-71) columns and 29 (-71) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.683405 Primal inf 0.1293744 (1) Clp0000I Optimal - objective value -47.664275 **** iterated small 1 Clp0006I 0 Obj -47.664275 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.664275 Primal inf 0.34676998 (1) Node 85 depth 24 unsatisfied 1 sum 3.23534e+11 obj 47.6643 guess 47.6346 branching on 72 Cbc0015I Node 85 Obj 47.664275 Unsat 1 depth 24 Clp0061I Crunch 1 (0) rows, 28 (-72) columns and 28 (-72) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.71209668 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.743611 Primal inf 0.78222892 (1) Clp0000I Optimal - objective value -47.183187 **** iterated small 1 Clp0006I 0 Obj -47.183187 Primal inf 0.19899992 (1) Clp0006I 0 Obj -47.183187 Primal inf 0.051221754 (1) Node 86 depth 23 unsatisfied 1 sum 5.98849e+11 obj 47.1832 guess 46.9406 branching on 86 Cbc0015I Node 86 Obj 47.183187 Unsat 1 depth 23 Clp0061I Crunch 1 (0) rows, 33 (-67) columns and 33 (-67) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -45.620392 Primal inf 0.19377951 (1) Clp0000I Optimal - objective value -45.595297 **** iterated small 1 Clp0006I 0 Obj -45.595297 Primal inf 0.041865609 (1) Clp0006I 0 Obj -45.595297 Primal inf 0.057350617 (1) Node 87 depth 24 unsatisfied 1 sum 5.66114 obj 45.5953 guess 45.5536 branching on 41 Cbc0015I Node 87 Obj 45.595297 Unsat 1 depth 24 Clp0061I Crunch 1 (0) rows, 77 (-23) columns and 77 (-23) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.393441 Primal inf 0.019871712 (1) Clp0000I Optimal - objective value -48.39047 **** iterated small 1 Clp0006I 0 Obj -48.39047 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.39047 Primal inf 0.90314998 (1) Node 88 depth 24 unsatisfied 1 sum 7.18788e+10 obj 48.3905 guess 48.3848 branching on 0 Cbc0015I Node 88 Obj 48.39047 Unsat 1 depth 24 Clp0061I Crunch 1 (0) rows, 28 (-72) columns and 28 (-72) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.664275 Primal inf 0.097341565 (1) Clp0000I Optimal - objective value -47.662162 **** iterated small 1 Clp0006I 0 Obj -47.662162 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.662162 Primal inf 0.36238494 (1) Node 89 depth 25 unsatisfied 1 sum 3.25611e+11 obj 47.6622 guess 47.6351 branching on 28 Cbc0015I Node 89 Obj 47.662162 Unsat 1 depth 25 Clp0061I Crunch 1 (0) rows, 25 (-75) columns and 25 (-75) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.57181733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.683405 Primal inf 0.8706254 (1) Clp0000I Optimal - objective value -46.177631 **** iterated small 1 Clp0006I 0 Obj -46.177631 Primal inf 0.075180846 (1) Clp0006I 0 Obj -46.177631 Primal inf 0.23642575 (1) Node 91 depth 24 unsatisfied 1 sum 9.63361 obj 46.1776 guess 46.1188 branching on 86 Cbc0015I Node 91 Obj 46.177631 Unsat 1 depth 24 Clp0061I Crunch 1 (0) rows, 27 (-73) columns and 27 (-73) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.662162 Primal inf 0.093539512 (1) Clp0000I Optimal - objective value -47.651923 **** iterated small 1 Clp0006I 0 Obj -47.651923 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.651923 Primal inf 0.46965193 (1) Node 92 depth 26 unsatisfied 1 sum 2.68633e+11 obj 47.6519 guess 47.6302 branching on 97 Cbc0015I Node 92 Obj 47.651923 Unsat 1 depth 26 Clp0061I Crunch 1 (0) rows, 32 (-68) columns and 32 (-68) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -45.595297 Primal inf 0.57803641 (1) Clp0000I Optimal - objective value -45.553596 **** iterated small 1 Clp0006I 0 Obj -45.553596 Primal inf 0.033620915 (1) Clp0006I 0 Obj -45.553596 Primal inf 0.057350617 (1) Node 90 depth 25 unsatisfied 1 sum 8.93274e+11 obj 45.5536 guess 45.4469 branching on 85 Cbc0015I Node 90 Obj 45.553596 Unsat 1 depth 25 Clp0061I Crunch 1 (0) rows, 76 (-24) columns and 76 (-24) elements Clp1001I Initial range of elements is 9.7934493e-06 to 1.9999119 Clp1003I Final range of elements is 0.48969405 to 1 Clp0006I 0 Obj -48.39047 Primal inf 0.019142434 (1) Clp0000I Optimal - objective value -48.390034 **** iterated small 1 Clp0006I 0 Obj -48.390034 Primal inf 0.017625888 (1) Clp0006I 0 Obj -48.390034 Primal inf 0.90786646 (1) Node 94 depth 25 unsatisfied 1 sum 7.42552e+10 obj 48.39 guess 48.3847 branching on 44 Cbc0015I Node 94 Obj 48.390034 Unsat 1 depth 25 Clp0061I Crunch 1 (0) rows, 26 (-74) columns and 26 (-74) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.651923 Primal inf 0.073751 (1) Clp0000I Optimal - objective value -47.650767 **** iterated small 1 Clp0006I 0 Obj -47.650767 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.650767 Primal inf 0.4869959 (1) Node 95 depth 27 unsatisfied 1 sum 2.66683e+11 obj 47.6508 guess 47.6313 branching on 53 Cbc0015I Node 95 Obj 47.650767 Unsat 1 depth 27 Clp0061I Crunch 1 (0) rows, 28 (-72) columns and 28 (-72) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.664275 Primal inf 0.90265823 (1) Clp0000I Optimal - objective value -45.373937 **** iterated small 1 Clp0006I 0 Obj -45.373937 Primal inf 0.15591625 (1) Clp0006I 0 Obj -45.373937 Primal inf 0.04402387 (1) Node 93 depth 25 unsatisfied 1 sum 6.97134e+11 obj 45.3739 guess 45.1503 branching on 42 Cbc0015I Node 93 Obj 45.373937 Unsat 1 depth 25 Clp0061I Crunch 1 (0) rows, 27 (-73) columns and 27 (-73) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.662162 Primal inf 0.90646029 (1) Clp0000I Optimal - objective value -45.240621 **** iterated small 1 Clp0006I 0 Obj -45.240621 Primal inf 0.1403013 (1) Clp0006I 0 Obj -45.240621 Primal inf 0.05963883 (1) Node 96 depth 26 unsatisfied 1 sum 8.29577e+11 obj 45.2406 guess 45.0475 branching on 42 Cbc0015I Node 96 Obj 45.240621 Unsat 1 depth 26 Clp0061I Crunch 1 (0) rows, 21 (-79) columns and 21 (-79) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.55588733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -45.240621 Primal inf 0.70171625 (1) Clp0000I Optimal - objective value -45.189338 **** iterated small 1 Clp0006I 0 Obj -45.189338 Primal inf 0.21235663 (1) Clp0006I 0 Obj -45.189338 Primal inf 0.10817964 (1) Node 100 depth 27 unsatisfied 1 sum 7.04734 obj 45.1893 guess 45.1632 branching on 86 Cbc0015I Node 100 Obj 45.189338 Unsat 1 depth 27 Cbc0010I After 100 nodes, 79 on tree, -1e+50 best solution, best possible 48.564627 (0.02 seconds) Clp0061I Crunch 1 (0) rows, 20 (-80) columns and 20 (-80) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.45597889 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.651923 Primal inf 0.9262488 (1) Clp0000I Optimal - objective value -44.33508 **** iterated small 1 Clp0006I 0 Obj -44.33508 Primal inf 0.060955357 (1) Clp0006I 0 Obj -44.33508 Primal inf 0.30797656 (1) Node 98 depth 27 unsatisfied 1 sum 8.29154 obj 44.3351 guess 44.3229 branching on 42 Cbc0015I Node 98 Obj 44.33508 Unsat 1 depth 27 Clp0061I Crunch 1 (0) rows, 25 (-75) columns and 25 (-75) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.650767 Primal inf 0.07131172 (1) Clp0000I Optimal - objective value -47.6497 **** iterated small 1 Clp0006I 0 Obj -47.6497 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.6497 Primal inf 0.504548 (1) Node 97 depth 28 unsatisfied 1 sum 2.58187e+11 obj 47.6497 guess 47.6311 branching on 9 Cbc0015I Node 97 Obj 47.6497 Unsat 1 depth 28 Clp0061I Crunch 1 (0) rows, 31 (-69) columns and 31 (-69) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -45.553596 Primal inf 0.3695764 (1) Clp0000I Optimal - objective value -45.420242 **** iterated small 1 Clp0006I 0 Obj -45.420242 Primal inf 0.033620915 (1) Clp0006I 0 Obj -45.420242 Primal inf 0.13809735 (1) Node 99 depth 26 unsatisfied 1 sum 3.67252 obj 45.4202 guess 45.4019 branching on 66 Cbc0015I Node 99 Obj 45.420242 Unsat 1 depth 26 Clp0061I Crunch 1 (0) rows, 16 (-84) columns and 16 (-84) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.17818216 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -45.189338 Primal inf 0.3374958 (1) Clp0000I Optimal - objective value -44.870665 **** iterated small 1 Clp0006I 0 Obj -44.870665 Primal inf 0.23535774 (1) Clp0006I 0 Obj -44.870665 Primal inf 0.3374958 (1) Node 101 depth 28 unsatisfied 1 sum 9.8228e+11 obj 44.8707 guess 44.7639 branching on 67 Cbc0015I Node 101 Obj 44.870665 Unsat 1 depth 28 Clp0061I Crunch 1 (0) rows, 24 (-76) columns and 24 (-76) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.6497 Primal inf 0.069002121 (1) Clp0000I Optimal - objective value -47.644483 **** iterated small 1 Clp0006I 0 Obj -47.644483 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.644483 Primal inf 0.62329192 (1) Node 102 depth 29 unsatisfied 1 sum 2.19437e+11 obj 47.6445 guess 47.63 branching on 78 Cbc0015I Node 102 Obj 47.644483 Unsat 1 depth 29 Clp0061I Crunch 1 (0) rows, 19 (-81) columns and 19 (-81) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.45597889 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.650767 Primal inf 0.92868808 (1) Clp0000I Optimal - objective value -44.190159 **** iterated small 1 Clp0006I 0 Obj -44.190159 Primal inf 0.028952071 (1) Clp0006I 0 Obj -44.190159 Primal inf 0.33997985 (1) Node 103 depth 28 unsatisfied 1 sum 4.40979 obj 44.1902 guess 44.1844 branching on 42 Cbc0015I Node 103 Obj 44.190159 Unsat 1 depth 28 Clp0061I Crunch 1 (0) rows, 15 (-85) columns and 15 (-85) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.10207232 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -44.870665 Primal inf 0.41085144 (1) Clp0000I Optimal - objective value -44.616647 **** iterated small 1 Clp0006I 0 Obj -44.616647 Primal inf 0.41085144 (1) Clp0000I Optimal - objective value -44.27898 BFeasible (0) - obj -44.279 -44.279 Cbc0016I Integer solution of 44.27898 found by strong branching after 105 iterations and 105 nodes (0.02 seconds) Clp0006I 0 Obj -44.616647 Primal inf 0.33902407 (1) Clp0061I Crunch 1 (0) rows, 14 (-86) columns and 14 (-86) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.094421638 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -44.616647 Primal inf 0.45210705 (1) Clp0000I Optimal - objective value -44.373328 **** iterated small 1 Clp0000I Optimal - objective value -44.373328 Clp0061I Crunch 1 (0) rows, 13 (-87) columns and 13 (-87) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.094421638 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -44.373328 Clp0000I Optimal - objective value -44.373328 Clp0006I 0 Obj -44.373328 Primal inf 0.6335057 (1) Clp0006I 0 Obj -44.373328 Primal inf 0.3664941 (1) Node 105 depth 29 unsatisfied 1 sum 9.65909e+11 obj 44.3733 guess 44.2067 branching on -1 Cbc0012I Integer solution of 44.27898 found by heuristic after 106 iterations and 106 nodes (0.02 seconds) Clp0061I Crunch 1 (0) rows, 19 (-81) columns and 19 (-81) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.45597889 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -44.33508 Primal inf 0.16522124 (1) Clp0000I Optimal - objective value -44.323005 **** iterated small 1 Clp0006I 0 Obj -44.323005 Primal inf 0.060955357 (1) Clp0006I 0 Obj -44.323005 Primal inf 0.32981289 (1) Node 104 depth 28 unsatisfied 1 sum 22.9374 obj 44.323 guess 44.2488 branching on 86 Cbc0015I Node 104 Obj 44.323005 Unsat 1 depth 28 Clp0061I Crunch 1 (0) rows, 23 (-77) columns and 23 (-77) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.644483 Primal inf 0.056600499 (1) Clp0000I Optimal - objective value -47.643894 **** iterated small 1 Clp0006I 0 Obj -47.643894 Primal inf 0.037395198 (1) Clp0006I 0 Obj -47.643894 Primal inf 0.64222516 (1) Node 106 depth 30 unsatisfied 1 sum 2.22643e+11 obj 47.6439 guess 47.6297 branching on 34 Cbc0015I Node 106 Obj 47.643894 Unsat 1 depth 30 Clp0061I Crunch 1 (0) rows, 24 (-76) columns and 24 (-76) elements Clp1001I Initial range of elements is 9.7934493e-06 to 0.84137733 Clp1003I Final range of elements is 1 to 1 Clp0006I 0 Obj -47.6497 Primal inf 0.93099768 (1) Clp0000I Optimal - objective value -44.036259 **** iterated small 1 Clp0006I 0 Obj -44.036259 Primal inf 0.11945399 (1) Clp0006I 0 Obj -44.036259 Primal inf 0.001861561 (1) Node 1Test Summary: | Pass Broken Total Time MOI | 2714 1 2715 29m49.5s Testing Cbc tests passed Testing completed after 1799.6s PkgEval succeeded after 1899.05s