Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.50 (b60d1db399*) started at 2025-11-09T15:58:17.817 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.83s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.4 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 5.59s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 22903.7 ms ✓ AbstractAlgebra 1389.3 ms ✓ FLINT_jll 33799.5 ms ✓ Nemo 127624.6 ms ✓ Groebner 10025.5 ms ✓ ParamPunPam 11036.3 ms ✓ RationalFunctionFields 12545.6 ms ✓ StructuralIdentifiability 7 dependencies successfully precompiled in 225 seconds. 28 already precompiled. Precompilation completed after 230.08s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_Tdd5ar/Project.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Tdd5ar/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.4 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_Tdd5ar/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.26.1 Updating `/tmp/jl_Tdd5ar/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.1 [70df07ce] + BracketingNonlinearSolve v1.6.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.3 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.11 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.15 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.15.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.12 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.2.0 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.1 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.2.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.124.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.5.0 [c0aeaf25] + SciMLOperators v1.10.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 ⌅ [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_Tdd5ar/Project.toml` ⌅ [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_Tdd5ar/Manifest.toml` WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where Union{ChainRulesCore.HasForwardsMode, ChainRulesCore.HasReverseMode}<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:22 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:16 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasForwardsMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:10 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ADTypesChainRulesCoreExt` └ @ Base loading.jl:2629 WARNING: Method definition value_and_pullback(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:36 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(DifferentiationInterface.DifferentiateWith{F, B} where B<:ADTypes.AbstractADType where F, Any) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/differentiate_with.jl:1 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_nokwarg(Base.Val{x} where x, Any, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:9 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_same_point(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition check_available(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:20 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition inplace_support(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/MTpKK/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `DifferentiationInterfaceChainRulesCoreExt` └ @ Base loading.jl:2629 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.132254 seconds (948.72 k allocations: 47.874 MiB, 98.92% compilation time) 0.002084 seconds (7.49 k allocations: 337.102 KiB) 0.001916 seconds (10.77 k allocations: 484.031 KiB) 0.001805 seconds (10.76 k allocations: 479.641 KiB) 0.002392 seconds (14.53 k allocations: 636.031 KiB) 0.001245 seconds (7.95 k allocations: 360.883 KiB) 0.001062 seconds (7.44 k allocations: 300.758 KiB) 14.717355 seconds (6.78 M allocations: 348.286 MiB, 0.93% gc time, 99.76% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.306372 seconds (112.44 k allocations: 6.028 MiB, 97.99% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.011153 seconds (9.76 k allocations: 516.820 KiB, 89.89% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003144999 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.443220427 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.061239832 seconds [ Info: Global identifiability assessed in 52.638896837 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002272388 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.952133453 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.371e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.03220797 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.503932795 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 0.000107669 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:14 ✓ # Computing specializations.. Time: 0:00:16 [ Info: Search for polynomial generators concluded in 13.289177588 [ Info: Selecting generators in 0.012821723 [ Info: Inclusion checked with probability 0.9955 in 0.060936775 seconds [ Info: Global identifiability assessed in 102.483387437 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.606858428 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.643683683 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.102557672 seconds [ Info: Global identifiability assessed in 37.492135535 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014323148 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032213691 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000326606 seconds [ Info: Global identifiability assessed in 0.079104865 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 6.716873842 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0029563 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 1.942e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.87859697 [ Info: Selecting generators in 0.000354767 [ Info: Inclusion checked with probability 0.9955 in 0.002642583 seconds [ Info: Global identifiability assessed in 8.955545363 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00205115 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001513025 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.644e-5 seconds [ Info: Global identifiability assessed in 0.005939741 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002562435 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001827282 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.907e-5 seconds [ Info: Global identifiability assessed in 0.007336227 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0050384 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00411867 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 1.895e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.083956031 [ Info: Selecting generators in 0.015699794 [ Info: Inclusion checked with probability 0.9955 in 0.005228558 seconds [ Info: Global identifiability assessed in 2.224380922 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00810772 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003727573 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.085e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007368637 [ Info: Selecting generators in 0.00397401 [ Info: Inclusion checked with probability 0.9955 in 0.00407302 seconds [ Info: Global identifiability assessed in 0.04938293 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001353576 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001090279 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.6719e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104799 [ Info: Selecting generators in 1.064592544 [ Info: Inclusion checked with probability 0.995 in 0.00206114 seconds [ Info: The search for identifiable functions concluded in 2.224309954 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001583075 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001481595 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.102e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2049e-5 [ Info: Selecting generators in 0.000741682 [ Info: Inclusion checked with probability 0.995 in 0.00205141 seconds [ Info: The search for identifiable functions concluded in 0.010983821 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001310597 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001135909 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.797e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.119e-5 [ Info: Selecting generators in 0.000775262 [ Info: Inclusion checked with probability 0.995 in 0.00202987 seconds [ Info: The search for identifiable functions concluded in 0.009802983 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001285688 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001192168 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.834e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000539885 [ Info: Selecting generators in 0.000825891 [ Info: Inclusion checked with probability 0.995 in 0.00194524 seconds [ Info: The search for identifiable functions concluded in 0.010167129 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001443286 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001179298 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.832e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000447656 [ Info: Selecting generators in 0.000764072 [ Info: Inclusion checked with probability 0.995 in 0.001938501 seconds [ Info: The search for identifiable functions concluded in 0.010169259 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001344466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001133749 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.807e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000412926 [ Info: Selecting generators in 0.000710183 [ Info: Inclusion checked with probability 0.995 in 0.001915131 seconds [ Info: The search for identifiable functions concluded in 0.009694884 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001892702 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001272657 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5519e-5 seconds [ Info: The search for identifiable functions concluded in 0.035966273 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001879312 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001296538 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.58e-5 seconds [ Info: The search for identifiable functions concluded in 0.003869542 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001854202 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001253677 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.599e-5 seconds [ Info: The search for identifiable functions concluded in 0.003741553 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001563475 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001270538 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.599e-5 seconds [ Info: The search for identifiable functions concluded in 0.003494465 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001653513 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001265227 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.6049e-5 seconds [ Info: The search for identifiable functions concluded in 0.003570064 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001645654 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001213958 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.516e-5 seconds [ Info: The search for identifiable functions concluded in 0.003506465 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00200197 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001371026 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.63e-5 seconds [ Info: The search for identifiable functions concluded in 0.004283518 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001771693 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001304947 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.522e-5 seconds [ Info: The search for identifiable functions concluded in 0.003804032 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001688653 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001287527 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.5089e-5 seconds [ Info: The search for identifiable functions concluded in 0.003665094 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001719983 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001291677 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.467e-5 seconds [ Info: The search for identifiable functions concluded in 0.003720163 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001797422 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001346617 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.484e-5 seconds [ Info: The search for identifiable functions concluded in 0.003877752 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001782523 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001362357 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.697e-5 seconds [ Info: The search for identifiable functions concluded in 0.003928771 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.29526372 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001833162 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.6599e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.512e-5 [ Info: Selecting generators in 0.000667174 [ Info: Inclusion checked with probability 0.995 in 0.001885801 seconds [ Info: The search for identifiable functions concluded in 0.304042752 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002758303 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001747973 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.655e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.1279e-5 [ Info: Selecting generators in 0.000686393 [ Info: Inclusion checked with probability 0.995 in 0.001944471 seconds [ Info: The search for identifiable functions concluded in 0.011410937 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002702244 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001797052 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.691e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.5349e-5 [ Info: Selecting generators in 0.000662793 [ Info: Inclusion checked with probability 0.995 in 0.001879421 seconds [ Info: The search for identifiable functions concluded in 0.011351667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002635974 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001662463 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.623e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000445596 [ Info: Selecting generators in 0.000771232 [ Info: Inclusion checked with probability 0.995 in 0.001755403 seconds [ Info: The search for identifiable functions concluded in 0.218410303 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002736763 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001697213 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.5509e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000381466 [ Info: Selecting generators in 0.000600564 [ Info: Inclusion checked with probability 0.995 in 0.001622934 seconds [ Info: The search for identifiable functions concluded in 0.010845083 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002449896 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001543655 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.541e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000390757 [ Info: Selecting generators in 0.000591574 [ Info: Inclusion checked with probability 0.995 in 0.001689933 seconds [ Info: The search for identifiable functions concluded in 0.010449986 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001318557 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001327697 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.881e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108949 [ Info: Selecting generators in 0.002116039 [ Info: Inclusion checked with probability 0.995 in 0.003424376 seconds [ Info: The search for identifiable functions concluded in 0.016742624 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001363877 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001255338 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.894e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109469 [ Info: Selecting generators in 0.002097939 [ Info: Inclusion checked with probability 0.995 in 0.003421066 seconds [ Info: The search for identifiable functions concluded in 0.016565406 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001369976 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001237467 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.07e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101629 [ Info: Selecting generators in 0.00206037 [ Info: Inclusion checked with probability 0.995 in 0.003315797 seconds [ Info: The search for identifiable functions concluded in 0.016309208 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001312897 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001237678 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 3.521e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.249152507 [ Info: Selecting generators in 0.003426636 [ Info: Inclusion checked with probability 0.995 in 0.003303577 seconds [ Info: The search for identifiable functions concluded in 0.266755833 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001289117 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001238728 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.898e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014774814 [ Info: Selecting generators in 0.003351397 [ Info: Inclusion checked with probability 0.995 in 0.003200298 seconds [ Info: The search for identifiable functions concluded in 0.032154671 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001375597 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001333806 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.8329e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015488196 [ Info: Selecting generators in 0.003335767 [ Info: Inclusion checked with probability 0.995 in 0.003297487 seconds [ Info: The search for identifiable functions concluded in 0.033506937 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001296117 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001096459 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.832e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100129 [ Info: Selecting generators in 0.002048349 [ Info: Inclusion checked with probability 0.995 in 0.002558514 seconds [ Info: The search for identifiable functions concluded in 1.002805458 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001253628 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001092399 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.755e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7979e-5 [ Info: Selecting generators in 0.001919311 [ Info: Inclusion checked with probability 0.995 in 0.002554625 seconds [ Info: The search for identifiable functions concluded in 0.012664614 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001240328 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105495 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.742e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.788e-5 [ Info: Selecting generators in 0.001921661 [ Info: Inclusion checked with probability 0.995 in 0.002492435 seconds [ Info: The search for identifiable functions concluded in 0.012377977 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001236857 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101342 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.695e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.227542902 [ Info: Selecting generators in 0.002478916 [ Info: Inclusion checked with probability 0.995 in 0.002486975 seconds [ Info: The search for identifiable functions concluded in 0.240264276 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001223837 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00103036 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.747e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005817792 [ Info: Selecting generators in 0.002170018 [ Info: Inclusion checked with probability 0.995 in 0.002663064 seconds [ Info: The search for identifiable functions concluded in 0.018561286 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001237307 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00105416 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.808e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005467126 [ Info: Selecting generators in 0.002259007 [ Info: Inclusion checked with probability 0.995 in 0.002551705 seconds [ Info: The search for identifiable functions concluded in 0.018270769 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001962331 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001466285 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.5159e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.4019e-5 [ Info: Selecting generators in 0.000501625 [ Info: Inclusion checked with probability 0.995 in 0.002432216 seconds [ Info: The search for identifiable functions concluded in 0.014578656 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002188359 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001619914 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6449e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6819e-5 [ Info: Selecting generators in 0.000581774 [ Info: Inclusion checked with probability 0.995 in 0.002623594 seconds [ Info: The search for identifiable functions concluded in 0.016400047 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002312027 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001730283 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.739e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2389e-5 [ Info: Selecting generators in 0.000556045 [ Info: Inclusion checked with probability 0.995 in 0.002596685 seconds [ Info: The search for identifiable functions concluded in 0.016437737 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002121159 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001605314 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.633e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006727793 [ Info: Selecting generators in 0.000618904 [ Info: Inclusion checked with probability 0.995 in 0.002501845 seconds [ Info: The search for identifiable functions concluded in 0.022492137 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002169228 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001702003 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.6489e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006578675 [ Info: Selecting generators in 0.000658654 [ Info: Inclusion checked with probability 0.995 in 0.002573885 seconds [ Info: The search for identifiable functions concluded in 0.022498816 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002112439 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001510145 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.616e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006522645 [ Info: Selecting generators in 0.000643854 [ Info: Inclusion checked with probability 0.995 in 0.002553225 seconds [ Info: The search for identifiable functions concluded in 0.021845563 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002595154 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00199419 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.836e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114839 [ Info: Selecting generators in 0.00293442 [ Info: Inclusion checked with probability 0.995 in 0.003409936 seconds [ Info: The search for identifiable functions concluded in 0.020434628 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002576564 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001892381 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.707e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105829 [ Info: Selecting generators in 0.003089649 [ Info: Inclusion checked with probability 0.995 in 0.003265568 seconds [ Info: The search for identifiable functions concluded in 0.020612436 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002593405 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001907911 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.825e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9679e-5 [ Info: Selecting generators in 0.0030496 [ Info: Inclusion checked with probability 0.995 in 0.003435925 seconds [ Info: The search for identifiable functions concluded in 0.020854393 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002702453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00200525 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.78e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013526535 [ Info: Selecting generators in 0.0030608 [ Info: Inclusion checked with probability 0.995 in 0.003185158 seconds [ Info: The search for identifiable functions concluded in 0.03425428 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002616244 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001897671 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.779e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01317076 [ Info: Selecting generators in 0.00310632 [ Info: Inclusion checked with probability 0.995 in 0.003166638 seconds [ Info: The search for identifiable functions concluded in 0.033413368 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002639433 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001914761 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.816e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013594525 [ Info: Selecting generators in 0.003155249 [ Info: Inclusion checked with probability 0.995 in 0.003217278 seconds [ Info: The search for identifiable functions concluded in 0.033955253 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014911862 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005132079 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.5849e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000163969 [ Info: Selecting generators in 0.010852542 [ Info: Inclusion checked with probability 0.995 in 0.007018621 seconds [ Info: The search for identifiable functions concluded in 0.292811414 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00709566 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005614994 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.697e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132009 [ Info: Selecting generators in 0.010596495 [ Info: Inclusion checked with probability 0.995 in 0.006309658 seconds [ Info: The search for identifiable functions concluded in 0.04936545 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007961681 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005180709 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.743e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000127279 [ Info: Selecting generators in 0.009710754 [ Info: Inclusion checked with probability 0.995 in 0.006005651 seconds [ Info: The search for identifiable functions concluded in 0.047760206 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007358258 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005211158 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.989e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002248998 [ Info: Selecting generators in 0.009960762 [ Info: Inclusion checked with probability 0.995 in 0.006182188 seconds [ Info: The search for identifiable functions concluded in 0.050797276 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006421076 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004442996 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.3599e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.0020584 [ Info: Selecting generators in 0.009452346 [ Info: Inclusion checked with probability 0.995 in 0.005829292 seconds [ Info: The search for identifiable functions concluded in 0.045983794 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007216188 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004958841 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.625e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002106459 [ Info: Selecting generators in 0.009752633 [ Info: Inclusion checked with probability 0.995 in 0.005808632 seconds [ Info: The search for identifiable functions concluded in 0.048742027 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005113389 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003455576 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.7359e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106079 [ Info: Selecting generators in 0.00204355 [ Info: Inclusion checked with probability 0.995 in 0.003670074 seconds [ Info: The search for identifiable functions concluded in 0.024591716 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005370267 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003318847 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.753e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102619 [ Info: Selecting generators in 0.001968931 [ Info: Inclusion checked with probability 0.995 in 0.003700313 seconds [ Info: The search for identifiable functions concluded in 0.024355938 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00505068 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003295927 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.825e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108289 [ Info: Selecting generators in 0.0020388 [ Info: Inclusion checked with probability 0.995 in 0.003674034 seconds [ Info: The search for identifiable functions concluded in 0.02422478 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005178699 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003352357 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.066e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001182528 [ Info: Selecting generators in 0.00205644 [ Info: Inclusion checked with probability 0.995 in 0.003920651 seconds [ Info: The search for identifiable functions concluded in 0.027109081 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005139799 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003293178 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.774e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001136129 [ Info: Selecting generators in 0.002076279 [ Info: Inclusion checked with probability 0.995 in 0.003731033 seconds [ Info: The search for identifiable functions concluded in 0.026294349 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004925641 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003227208 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.831e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001104819 [ Info: Selecting generators in 0.00202107 [ Info: Inclusion checked with probability 0.995 in 0.003828772 seconds [ Info: The search for identifiable functions concluded in 0.025913973 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00507374 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004945121 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.822e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104729 [ Info: Selecting generators in 0.002383277 [ Info: Inclusion checked with probability 0.995 in 0.003553945 seconds [ Info: The search for identifiable functions concluded in 0.034773184 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005132399 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003235418 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.811e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113999 [ Info: Selecting generators in 0.002414666 [ Info: Inclusion checked with probability 0.995 in 0.003231858 seconds [ Info: The search for identifiable functions concluded in 0.027237159 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004820112 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0030468 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.985e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124809 [ Info: Selecting generators in 0.002532305 [ Info: Inclusion checked with probability 0.995 in 0.003612774 seconds [ Info: The search for identifiable functions concluded in 0.027957433 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005243048 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003335567 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.79e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018509836 [ Info: Selecting generators in 0.003797222 [ Info: Inclusion checked with probability 0.995 in 0.003587985 seconds [ Info: The search for identifiable functions concluded in 0.048976014 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005251038 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003313487 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.755e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018279168 [ Info: Selecting generators in 0.003823152 [ Info: Inclusion checked with probability 0.995 in 0.003538245 seconds [ Info: The search for identifiable functions concluded in 0.048454199 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005192838 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003371867 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.8659e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018574866 [ Info: Selecting generators in 0.003850061 [ Info: Inclusion checked with probability 0.995 in 0.003585495 seconds [ Info: The search for identifiable functions concluded in 0.049048983 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002561084 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00202892 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.679e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100369 [ Info: Selecting generators in 0.001675033 [ Info: Inclusion checked with probability 0.995 in 0.003157848 seconds [ Info: The search for identifiable functions concluded in 0.018112941 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002544905 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00204342 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.611e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108239 [ Info: Selecting generators in 0.001755373 [ Info: Inclusion checked with probability 0.995 in 0.003089769 seconds [ Info: The search for identifiable functions concluded in 0.018510726 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002511275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00199002 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.688e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103399 [ Info: Selecting generators in 0.001796102 [ Info: Inclusion checked with probability 0.995 in 0.003161989 seconds [ Info: The search for identifiable functions concluded in 0.018041581 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002552645 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00206091 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.652e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012308428 [ Info: Selecting generators in 0.002841702 [ Info: Inclusion checked with probability 0.995 in 0.345918487 seconds [ Info: The search for identifiable functions concluded in 0.374568923 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002743432 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00202726 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.729e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011871442 [ Info: Selecting generators in 0.002701893 [ Info: Inclusion checked with probability 0.995 in 0.00302549 seconds [ Info: The search for identifiable functions concluded in 0.030778404 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002416266 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001837441 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.607e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011757243 [ Info: Selecting generators in 0.002690983 [ Info: Inclusion checked with probability 0.995 in 0.002877192 seconds [ Info: The search for identifiable functions concluded in 0.029568777 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013583795 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.028019362 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000278257 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:06 ✓ # Computing specializations.. Time: 0:00:06 [ Info: Search for polynomial generators concluded in 0.000192148 [ Info: Selecting generators in 0.0171379 [ Info: Inclusion checked with probability 0.995 in 0.029761615 seconds [ Info: The search for identifiable functions concluded in 13.200428621 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015188829 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032110171 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000312037 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133029 [ Info: Selecting generators in 0.017437127 [ Info: Inclusion checked with probability 0.995 in 0.029890693 seconds [ Info: The search for identifiable functions concluded in 0.166677936 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015367107 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034856654 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000290417 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141589 [ Info: Selecting generators in 0.018311138 [ Info: Inclusion checked with probability 0.995 in 0.031843884 seconds [ Info: The search for identifiable functions concluded in 0.177759986 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01615208 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.036551888 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000310697 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.134104635 [ Info: Selecting generators in 0.016815164 [ Info: Inclusion checked with probability 0.995 in 0.026662796 seconds [ Info: The search for identifiable functions concluded in 1.694211688 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014012921 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031777295 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000362036 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.052472449 [ Info: Selecting generators in 0.01611471 [ Info: Inclusion checked with probability 0.995 in 0.027790604 seconds [ Info: The search for identifiable functions concluded in 0.213039806 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014200659 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030664106 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000312767 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.045850415 [ Info: Selecting generators in 0.014531496 [ Info: Inclusion checked with probability 0.995 in 0.026756964 seconds [ Info: The search for identifiable functions concluded in 0.200215183 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.879447559 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.202243277 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.221499422 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000170038 [ Info: Selecting generators in 1.012474873 [ Info: Inclusion checked with probability 0.995 in 2.653958635 seconds [ Info: The search for identifiable functions concluded in 18.387248763 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.700280869 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.405496928 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.219617612 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000145659 [ Info: Selecting generators in 0.6348995 [ Info: Inclusion checked with probability 0.995 in 2.942828712 seconds [ Info: The search for identifiable functions concluded in 18.41020424 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.691706286 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.834038673 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.202778879 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000163258 [ Info: Selecting generators in 1.162883453 [ Info: Inclusion checked with probability 0.995 in 2.68525684 seconds [ Info: The search for identifiable functions concluded in 18.813378886 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.97154559 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.086870273 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.196253283 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.025104321 [ Info: Selecting generators in 1.129175339 [ Info: Inclusion checked with probability 0.995 in 2.679320231 seconds [ Info: The search for identifiable functions concluded in 19.239159698 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.879804943 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.225866392 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.184715398 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.027701135 [ Info: Selecting generators in 0.571103725 [ Info: Inclusion checked with probability 0.995 in 2.763309571 seconds [ Info: The search for identifiable functions concluded in 18.001236605 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.994237619 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.35279968 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.188274443 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.030114561 [ Info: Selecting generators in 0.606597633 [ Info: Inclusion checked with probability 0.995 in 5.340061806 seconds [ Info: The search for identifiable functions concluded in 21.97375688 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016540596 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01410706 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.559e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000168168 [ Info: Selecting generators in 0.008473875 [ Info: Inclusion checked with probability 0.995 in 0.009490536 seconds [ Info: The search for identifiable functions concluded in 0.094849869 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014708784 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012699394 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.227e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000136398 [ Info: Selecting generators in 0.008887551 [ Info: Inclusion checked with probability 0.995 in 0.009509336 seconds [ Info: The search for identifiable functions concluded in 0.085430682 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013934581 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011733754 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.307e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111239 [ Info: Selecting generators in 0.007397107 [ Info: Inclusion checked with probability 0.995 in 0.00903957 seconds [ Info: The search for identifiable functions concluded in 0.077991607 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013412817 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011602755 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.24e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.038905684 [ Info: Selecting generators in 0.012285518 [ Info: Inclusion checked with probability 0.995 in 0.009139089 seconds [ Info: The search for identifiable functions concluded in 0.124944741 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012994931 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011192039 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.14e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032983362 [ Info: Selecting generators in 0.013013351 [ Info: Inclusion checked with probability 0.995 in 0.009200719 seconds [ Info: The search for identifiable functions concluded in 0.114031649 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012283958 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01008484 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.072e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031885534 [ Info: Selecting generators in 0.011456557 [ Info: Inclusion checked with probability 0.995 in 0.008245758 seconds [ Info: The search for identifiable functions concluded in 0.106662572 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011935271 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007427516 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.088e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000218268 [ Info: Selecting generators in 0.035182451 [ Info: Inclusion checked with probability 0.995 in 0.01309141 seconds [ Info: The search for identifiable functions concluded in 0.723858811 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012245748 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007318288 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.138e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000210228 [ Info: Selecting generators in 0.032495727 [ Info: Inclusion checked with probability 0.995 in 0.012348648 seconds [ Info: The search for identifiable functions concluded in 0.438161295 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011068601 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006618865 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.2349e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000221698 [ Info: Selecting generators in 0.033544997 [ Info: Inclusion checked with probability 0.995 in 0.011626935 seconds [ Info: The search for identifiable functions concluded in 0.459332354 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011966051 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007242448 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.232e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.824688965 [ Info: Selecting generators in 0.057399931 [ Info: Inclusion checked with probability 0.995 in 0.013013131 seconds [ Info: The search for identifiable functions concluded in 3.303700215 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011968481 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00698281 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.7829e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.811307126 [ Info: Selecting generators in 0.065479491 [ Info: Inclusion checked with probability 0.995 in 0.013446986 seconds [ Info: The search for identifiable functions concluded in 2.29289548 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012275818 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007486186 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.167e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.281056292 [ Info: Selecting generators in 0.058706798 [ Info: Inclusion checked with probability 0.995 in 0.012443056 seconds [ Info: The search for identifiable functions concluded in 0.768645557 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021850313 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014176699 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.7799e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000128628 [ Info: Selecting generators in 0.008964141 [ Info: Inclusion checked with probability 0.995 in 0.013787963 seconds [ Info: The search for identifiable functions concluded in 0.097129877 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019843983 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014587886 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.1169e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000128279 [ Info: Selecting generators in 0.008989131 [ Info: Inclusion checked with probability 0.995 in 0.014035311 seconds [ Info: The search for identifiable functions concluded in 0.096722411 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021646525 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015342948 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000109089 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000152899 [ Info: Selecting generators in 0.009204808 [ Info: Inclusion checked with probability 0.995 in 0.013837213 seconds [ Info: The search for identifiable functions concluded in 0.099779421 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.020836023 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014761314 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.7629e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.039624257 [ Info: Selecting generators in 0.014896552 [ Info: Inclusion checked with probability 0.995 in 0.013088131 seconds [ Info: The search for identifiable functions concluded in 0.141891063 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02024139 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014277418 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.8419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.046194092 [ Info: Selecting generators in 0.015799654 [ Info: Inclusion checked with probability 0.995 in 0.01419541 seconds [ Info: The search for identifiable functions concluded in 0.148630626 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021695055 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016009031 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.5669e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.068424123 [ Info: Selecting generators in 0.029022613 [ Info: Inclusion checked with probability 0.995 in 0.019382078 seconds [ Info: The search for identifiable functions concluded in 1.199035458 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013400227 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018492956 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.5479e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148359 [ Info: Selecting generators in 0.077810158 [ Info: Inclusion checked with probability 0.995 in 0.017349968 seconds [ Info: The search for identifiable functions concluded in 0.530080763 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011816083 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016039681 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.2269e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000169378 [ Info: Selecting generators in 0.075540391 [ Info: Inclusion checked with probability 0.995 in 0.016835013 seconds [ Info: The search for identifiable functions concluded in 0.496815673 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009745544 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013903662 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.464e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000167528 [ Info: Selecting generators in 0.073836908 [ Info: Inclusion checked with probability 0.995 in 0.018056151 seconds [ Info: The search for identifiable functions concluded in 0.472544953 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011713074 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016366528 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.54e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.083248675 [ Info: Selecting generators in 1.157695308 [ Info: Inclusion checked with probability 0.995 in 0.019126631 seconds [ Info: The search for identifiable functions concluded in 1.677996938 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014794363 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019968862 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.4569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.097426554 [ Info: Selecting generators in 0.08470324 [ Info: Inclusion checked with probability 0.995 in 0.016697425 seconds [ Info: The search for identifiable functions concluded in 0.653653507 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011378717 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014789354 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.2959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.241011262 [ Info: Selecting generators in 0.079515082 [ Info: Inclusion checked with probability 0.995 in 0.015898002 seconds [ Info: The search for identifiable functions concluded in 1.750674868 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.47477589 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.082070906 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000114949 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 90   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 61   ⌞ # Computing specializations.. Time: 0:00:02 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 90   ⌟ # Computing specializations.. Time: 0:00:03 Points: 98   ⌞ # Computing specializations.. Time: 0:00:04 Points: 108   ⌜ # Computing specializations.. Time: 0:00:04 Points: 116   ⌝ # Computing specializations.. Time: 0:00:04 Points: 126   ⌟ # Computing specializations.. Time: 0:00:05 Points: 135   ⌞ # Computing specializations.. Time: 0:00:05 Points: 145   ⌜ # Computing specializations.. Time: 0:00:06 Points: 153   ⌝ # Computing specializations.. Time: 0:00:06 Points: 162   ⌟ # Computing specializations.. Time: 0:00:06 Points: 171   ⌞ # Computing specializations.. Time: 0:00:07 Points: 181   ⌜ # Computing specializations.. Time: 0:00:07 Points: 189   ⌝ # Computing specializations.. Time: 0:00:07 Points: 199   ⌟ # Computing specializations.. Time: 0:00:08 Points: 208   ⌞ # Computing specializations.. Time: 0:00:08 Points: 218   ⌜ # Computing specializations.. Time: 0:00:08 Points: 227   ⌝ # Computing specializations.. Time: 0:00:09 Points: 237   ⌟ # Computing specializations.. Time: 0:00:09 Points: 246   ⌞ # Computing specializations.. Time: 0:00:10 Points: 256   ⌜ # Computing specializations.. Time: 0:00:10 Points: 266   ⌝ # Computing specializations.. Time: 0:00:10 Points: 276   ⌟ # Computing specializations.. Time: 0:00:11 Points: 284   ⌞ # Computing specializations.. Time: 0:00:11 Points: 294   ⌜ # Computing specializations.. Time: 0:00:11 Points: 304   ⌝ # Computing specializations.. Time: 0:00:12 Points: 314   ⌟ # Computing specializations.. Time: 0:00:12 Points: 323   ⌞ # Computing specializations.. Time: 0:00:13 Points: 333   ⌜ # Computing specializations.. Time: 0:00:13 Points: 343   ⌝ # Computing specializations.. Time: 0:00:13 Points: 353   ⌟ # Computing specializations.. Time: 0:00:14 Points: 363   ⌞ # Computing specializations.. Time: 0:00:14 Points: 373   ⌜ # Computing specializations.. Time: 0:00:15 Points: 382   ⌝ # Computing specializations.. Time: 0:00:15 Points: 393   ⌟ # Computing specializations.. Time: 0:00:15 Points: 403   ⌞ # Computing specializations.. Time: 0:00:16 Points: 413   ⌜ # Computing specializations.. Time: 0:00:16 Points: 422   ⌝ # Computing specializations.. Time: 0:00:16 Points: 431   ⌟ # Computing specializations.. Time: 0:00:17 Points: 441   ⌞ # Computing specializations.. Time: 0:00:17 Points: 449   ⌜ # Computing specializations.. Time: 0:00:18 Points: 459   ⌝ # Computing specializations.. Time: 0:00:18 Points: 468   ⌟ # Computing specializations.. Time: 0:00:18 Points: 478   ⌞ # Computing specializations.. Time: 0:00:19 Points: 488   ⌜ # Computing specializations.. Time: 0:00:19 Points: 498   ⌝ # Computing specializations.. Time: 0:00:19 Points: 508   ⌟ # Computing specializations.. Time: 0:00:20 Points: 519   ⌞ # Computing specializations.. Time: 0:00:20 Points: 529   ⌜ # Computing specializations.. Time: 0:00:21 Points: 539   ⌝ # Computing specializations.. Time: 0:00:21 Points: 548   ⌟ # Computing specializations.. Time: 0:00:21 Points: 557   ⌞ # Computing specializations.. Time: 0:00:22 Points: 566   ⌜ # Computing specializations.. Time: 0:00:22 Points: 575   ⌝ # Computing specializations.. Time: 0:00:22 Points: 585   ⌟ # Computing specializations.. Time: 0:00:23 Points: 594   ⌞ # Computing specializations.. Time: 0:00:23 Points: 604   ⌜ # Computing specializations.. Time: 0:00:24 Points: 614   ⌝ # Computing specializations.. Time: 0:00:24 Points: 625   ⌟ # Computing specializations.. Time: 0:00:24 Points: 635   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000383277 [ Info: Selecting generators in 0.046184372 [ Info: Inclusion checked with probability 0.995 in 9.275004049 seconds [ Info: The search for identifiable functions concluded in 59.132539788 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.759081685 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.085316744 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000143228 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:03 Points: 79   ⌜ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 56   ⌟ # Computing specializations.. Time: 0:00:02 Points: 66   ⌞ # Computing specializations.. Time: 0:00:03 Points: 76   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 96   ⌟ # Computing specializations.. Time: 0:00:04 Points: 105   ⌞ # Computing specializations.. Time: 0:00:04 Points: 115   ⌜ # Computing specializations.. Time: 0:00:04 Points: 123   ⌝ # Computing specializations.. Time: 0:00:05 Points: 133   ⌟ # Computing specializations.. Time: 0:00:05 Points: 143   ⌞ # Computing specializations.. Time: 0:00:05 Points: 153   ⌜ # Computing specializations.. Time: 0:00:06 Points: 163   ⌝ # Computing specializations.. Time: 0:00:06 Points: 174   ⌟ # Computing specializations.. Time: 0:00:07 Points: 183   ⌞ # Computing specializations.. Time: 0:00:07 Points: 194   ⌜ # Computing specializations.. Time: 0:00:07 Points: 204   ⌝ # Computing specializations.. Time: 0:00:08 Points: 212   ⌟ # Computing specializations.. Time: 0:00:08 Points: 222   ⌞ # Computing specializations.. Time: 0:00:09 Points: 231   ⌜ # Computing specializations.. Time: 0:00:09 Points: 241   ⌝ # Computing specializations.. Time: 0:00:09 Points: 251   ⌟ # Computing specializations.. Time: 0:00:10 Points: 260   ⌞ # Computing specializations.. Time: 0:00:10 Points: 270   ⌜ # Computing specializations.. Time: 0:00:10 Points: 278   ⌝ # Computing specializations.. Time: 0:00:11 Points: 288   ⌟ # Computing specializations.. Time: 0:00:11 Points: 298   ⌞ # Computing specializations.. Time: 0:00:12 Points: 309   ⌜ # Computing specializations.. Time: 0:00:12 Points: 319   ⌝ # Computing specializations.. Time: 0:00:12 Points: 327   ⌟ # Computing specializations.. Time: 0:00:13 Points: 337   ⌞ # Computing specializations.. Time: 0:00:13 Points: 345   ⌜ # Computing specializations.. Time: 0:00:13 Points: 355   ⌝ # Computing specializations.. Time: 0:00:14 Points: 365   ⌟ # Computing specializations.. Time: 0:00:14 Points: 374   ⌞ # Computing specializations.. Time: 0:00:14 Points: 384   ⌜ # Computing specializations.. Time: 0:00:15 Points: 392   ⌝ # Computing specializations.. Time: 0:00:15 Points: 402   ⌟ # Computing specializations.. Time: 0:00:16 Points: 412   ⌞ # Computing specializations.. Time: 0:00:16 Points: 423   ⌜ # Computing specializations.. Time: 0:00:16 Points: 433   ⌝ # Computing specializations.. Time: 0:00:17 Points: 442   ⌟ # Computing specializations.. Time: 0:00:17 Points: 452   ⌞ # Computing specializations.. Time: 0:00:17 Points: 460   ⌜ # Computing specializations.. Time: 0:00:18 Points: 471   ⌝ # Computing specializations.. Time: 0:00:18 Points: 481   ⌟ # Computing specializations.. Time: 0:00:19 Points: 492   ⌞ # Computing specializations.. Time: 0:00:19 Points: 502   ⌜ # Computing specializations.. Time: 0:00:19 Points: 510   ⌝ # Computing specializations.. Time: 0:00:20 Points: 520   ⌟ # Computing specializations.. Time: 0:00:20 Points: 530   ⌞ # Computing specializations.. Time: 0:00:20 Points: 541   ⌜ # Computing specializations.. Time: 0:00:21 Points: 551   ⌝ # Computing specializations.. Time: 0:00:21 Points: 562   ⌟ # Computing specializations.. Time: 0:00:21 Points: 572   ⌞ # Computing specializations.. Time: 0:00:22 Points: 581   ⌜ # Computing specializations.. Time: 0:00:22 Points: 591   ⌝ # Computing specializations.. Time: 0:00:23 Points: 599   ⌟ # Computing specializations.. Time: 0:00:23 Points: 610   ⌞ # Computing specializations.. Time: 0:00:23 Points: 620   ⌜ # Computing specializations.. Time: 0:00:24 Points: 629   ⌝ # Computing specializations.. Time: 0:00:24 Points: 639   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000326357 [ Info: Selecting generators in 0.037495618 [ Info: Inclusion checked with probability 0.995 in 9.645290232 seconds [ Info: The search for identifiable functions concluded in 57.499255433 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.933538466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.093507723 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000146749 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 63   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 79   ⌝ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 33   ⌜ # Computing specializations.. Time: 0:00:01 Points: 41   ⌝ # Computing specializations.. Time: 0:00:02 Points: 50   ⌟ # Computing specializations.. Time: 0:00:02 Points: 57   ⌞ # Computing specializations.. Time: 0:00:02 Points: 66   ⌜ # Computing specializations.. Time: 0:00:03 Points: 73   ⌝ # Computing specializations.. Time: 0:00:03 Points: 82   ⌟ # Computing specializations.. Time: 0:00:03 Points: 89   ⌞ # Computing specializations.. Time: 0:00:04 Points: 98   ⌜ # Computing specializations.. Time: 0:00:04 Points: 105   ⌝ # Computing specializations.. Time: 0:00:04 Points: 114   ⌟ # Computing specializations.. Time: 0:00:05 Points: 121   ⌞ # Computing specializations.. Time: 0:00:05 Points: 130   ⌜ # Computing specializations.. Time: 0:00:05 Points: 138   ⌝ # Computing specializations.. Time: 0:00:06 Points: 147   ⌟ # Computing specializations.. Time: 0:00:06 Points: 154   ⌞ # Computing specializations.. Time: 0:00:06 Points: 163   ⌜ # Computing specializations.. Time: 0:00:07 Points: 171   ⌝ # Computing specializations.. Time: 0:00:07 Points: 180   ⌟ # Computing specializations.. Time: 0:00:07 Points: 187   ⌞ # Computing specializations.. Time: 0:00:08 Points: 196   ⌜ # Computing specializations.. Time: 0:00:08 Points: 205   ⌝ # Computing specializations.. Time: 0:00:09 Points: 214   ⌟ # Computing specializations.. Time: 0:00:09 Points: 223   ⌞ # Computing specializations.. Time: 0:00:09 Points: 232   ⌜ # Computing specializations.. Time: 0:00:10 Points: 241   ⌝ # Computing specializations.. Time: 0:00:10 Points: 250   ⌟ # Computing specializations.. Time: 0:00:10 Points: 259   ⌞ # Computing specializations.. Time: 0:00:11 Points: 268   ⌜ # Computing specializations.. Time: 0:00:11 Points: 277   ⌝ # Computing specializations.. Time: 0:00:12 Points: 286   ⌟ # Computing specializations.. Time: 0:00:12 Points: 295   ⌞ # Computing specializations.. Time: 0:00:12 Points: 304   ⌜ # Computing specializations.. Time: 0:00:13 Points: 313   ⌝ # Computing specializations.. Time: 0:00:13 Points: 322   ⌟ # Computing specializations.. Time: 0:00:14 Points: 330   ⌞ # Computing specializations.. Time: 0:00:14 Points: 339   ⌜ # Computing specializations.. Time: 0:00:14 Points: 348   ⌝ # Computing specializations.. Time: 0:00:15 Points: 357   ⌟ # Computing specializations.. Time: 0:00:15 Points: 366   ⌞ # Computing specializations.. Time: 0:00:15 Points: 375   ⌜ # Computing specializations.. Time: 0:00:16 Points: 384   ⌝ # Computing specializations.. Time: 0:00:16 Points: 394   ⌟ # Computing specializations.. Time: 0:00:17 Points: 402   ⌞ # Computing specializations.. Time: 0:00:17 Points: 412   ⌜ # Computing specializations.. Time: 0:00:17 Points: 421   ⌝ # Computing specializations.. Time: 0:00:18 Points: 429   ⌟ # Computing specializations.. Time: 0:00:18 Points: 438   ⌞ # Computing specializations.. Time: 0:00:18 Points: 445   ⌜ # Computing specializations.. Time: 0:00:19 Points: 454   ⌝ # Computing specializations.. Time: 0:00:19 Points: 462   ⌟ # Computing specializations.. Time: 0:00:19 Points: 471   ⌞ # Computing specializations.. Time: 0:00:20 Points: 480   ⌜ # Computing specializations.. Time: 0:00:20 Points: 490   ⌝ # Computing specializations.. Time: 0:00:21 Points: 499   ⌟ # Computing specializations.. Time: 0:00:21 Points: 509   ⌞ # Computing specializations.. Time: 0:00:22 Points: 518   ⌜ # Computing specializations.. Time: 0:00:22 Points: 528   ⌝ # Computing specializations.. Time: 0:00:22 Points: 537   ⌟ # Computing specializations.. Time: 0:00:23 Points: 545   ⌞ # Computing specializations.. Time: 0:00:23 Points: 554   ⌜ # Computing specializations.. Time: 0:00:23 Points: 561   ⌝ # Computing specializations.. Time: 0:00:24 Points: 570   ⌟ # Computing specializations.. Time: 0:00:24 Points: 579   ⌞ # Computing specializations.. Time: 0:00:24 Points: 588   ⌜ # Computing specializations.. Time: 0:00:25 Points: 597   ⌝ # Computing specializations.. Time: 0:00:25 Points: 606   ⌟ # Computing specializations.. Time: 0:00:26 Points: 615   ⌞ # Computing specializations.. Time: 0:00:26 Points: 625   ⌜ # Computing specializations.. Time: 0:00:26 Points: 634   ✓ # Computing specializations.. Time: 0:00:27 [ Info: Search for polynomial generators concluded in 0.000321207 [ Info: Selecting generators in 0.041922844 [ Info: Inclusion checked with probability 0.995 in 9.038415106 seconds [ Info: The search for identifiable functions concluded in 66.362862055 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.485726302 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.081413694 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000132748 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:01 Points: 53   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 90   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 62   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 82   ⌝ # Computing specializations.. Time: 0:00:03 Points: 92   ⌟ # Computing specializations.. Time: 0:00:04 Points: 101   ⌞ # Computing specializations.. Time: 0:00:04 Points: 111   ⌜ # Computing specializations.. Time: 0:00:04 Points: 120   ⌝ # Computing specializations.. Time: 0:00:05 Points: 130   ⌟ # Computing specializations.. Time: 0:00:05 Points: 140   ⌞ # Computing specializations.. Time: 0:00:05 Points: 150   ⌜ # Computing specializations.. Time: 0:00:06 Points: 159   ⌝ # Computing specializations.. Time: 0:00:06 Points: 168   ⌟ # Computing specializations.. Time: 0:00:07 Points: 177   ⌞ # Computing specializations.. Time: 0:00:07 Points: 186   ⌜ # Computing specializations.. Time: 0:00:07 Points: 195   ⌝ # Computing specializations.. Time: 0:00:08 Points: 204   ⌟ # Computing specializations.. Time: 0:00:08 Points: 213   ⌞ # Computing specializations.. Time: 0:00:08 Points: 222   ⌜ # Computing specializations.. Time: 0:00:09 Points: 232   ⌝ # Computing specializations.. Time: 0:00:09 Points: 240   ⌟ # Computing specializations.. Time: 0:00:09 Points: 250   ⌞ # Computing specializations.. Time: 0:00:10 Points: 260   ⌜ # Computing specializations.. Time: 0:00:10 Points: 270   ⌝ # Computing specializations.. Time: 0:00:11 Points: 280   ⌟ # Computing specializations.. Time: 0:00:11 Points: 290   ⌞ # Computing specializations.. Time: 0:00:12 Points: 300   ⌜ # Computing specializations.. Time: 0:00:12 Points: 310   ⌝ # Computing specializations.. Time: 0:00:12 Points: 320   ⌟ # Computing specializations.. Time: 0:00:13 Points: 329   ⌞ # Computing specializations.. Time: 0:00:13 Points: 338   ⌜ # Computing specializations.. Time: 0:00:13 Points: 347   ⌝ # Computing specializations.. Time: 0:00:14 Points: 357   ⌟ # Computing specializations.. Time: 0:00:14 Points: 365   ⌞ # Computing specializations.. Time: 0:00:15 Points: 375   ⌜ # Computing specializations.. Time: 0:00:15 Points: 385   ⌝ # Computing specializations.. Time: 0:00:15 Points: 395   ⌟ # Computing specializations.. Time: 0:00:16 Points: 405   ⌞ # Computing specializations.. Time: 0:00:16 Points: 415   ⌜ # Computing specializations.. Time: 0:00:16 Points: 425   ⌝ # Computing specializations.. Time: 0:00:17 Points: 434   ⌟ # Computing specializations.. Time: 0:00:17 Points: 443   ⌞ # Computing specializations.. Time: 0:00:18 Points: 452   ⌜ # Computing specializations.. Time: 0:00:18 Points: 461   ⌝ # Computing specializations.. Time: 0:00:18 Points: 470   ⌟ # Computing specializations.. Time: 0:00:19 Points: 480   ⌞ # Computing specializations.. Time: 0:00:19 Points: 489   ⌜ # Computing specializations.. Time: 0:00:19 Points: 499   ⌝ # Computing specializations.. Time: 0:00:20 Points: 509   ⌟ # Computing specializations.. Time: 0:00:20 Points: 518   ⌞ # Computing specializations.. Time: 0:00:21 Points: 527   ⌜ # Computing specializations.. Time: 0:00:21 Points: 536   ⌝ # Computing specializations.. Time: 0:00:21 Points: 545   ⌟ # Computing specializations.. Time: 0:00:22 Points: 554   ⌞ # Computing specializations.. Time: 0:00:22 Points: 564   ⌜ # Computing specializations.. Time: 0:00:22 Points: 573   ⌝ # Computing specializations.. Time: 0:00:23 Points: 583   ⌟ # Computing specializations.. Time: 0:00:23 Points: 592   ⌞ # Computing specializations.. Time: 0:00:23 Points: 601   ⌜ # Computing specializations.. Time: 0:00:24 Points: 610   ⌝ # Computing specializations.. Time: 0:00:24 Points: 619   ⌟ # Computing specializations.. Time: 0:00:25 Points: 629   ⌞ # Computing specializations.. Time: 0:00:25 Points: 637  ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 41 running 1 of 1 signal (10): User defined signal 1 malloc at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) ijl_gc_counted_malloc at /source/src/gc-stock.c:3749 flint_realloc at /workspace/srcdir/flint-3.3.1/src/generic_files/memory_manager.c:108 nmod_poly_realloc at /workspace/srcdir/flint-3.3.1/src/nmod_poly/realloc.c:28 nmod_poly_set_coeff_ui at /workspace/srcdir/flint-3.3.1/src/nmod_poly/set_coeff_ui.c:22 setcoeff! at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/nmod_poly.jl:847 [inlined] fpPolyRingElem at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/FlintTypes.jl:658 [inlined] fpPolyRing at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/gfp_poly.jl:525 [inlined] #divexact#272 at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/gfp_poly.jl:164 divexact at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/gfp_poly.jl:161 [inlined] interpolate! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/interpolation/cauchy.jl:32 interpolate! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/interpolation/van-der-hoeven-lecerf.jl:186 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:455 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x77ee1cf17e44) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x77ee18790b49) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x77ee18789ed4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x77ee21980162) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_56223.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_52263.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x77ee6c6c2249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file)  ✓ # Computing specializations.. Time: 0:00:26 ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== [ Info: Search for polynomial generators concluded in 2.320003098 [ Info: Selecting generators in 0.035880354 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_65246.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000075088fc90010 Total snapshots: 434. Utilization: 0% ╎434 @Base/task.jl:1168 wait_forever() 433╎ 434 @Base/task.jl:1246 wait() ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1361 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000077ee525fc010 Total snapshots: 150. Utilization: 100% ╎134 @Base/client.jl:577 _start() ╎ 134 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 134 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 134 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 134 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::St… ╎ 134 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Module, _pa… ╎ ╎ 134 @Base/loading.jl:2994 include_string(mapexpr::typeof(identity), m… ╎ ╎ 134 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 134 @StructuralIdentifiability/…:150 top-level scope ╎ ╎ 134 @Base/timing.jl:689 macro expansion ╎ ╎ 134 @StructuralIdentifiability/…:151 macro expansion ╎ ╎ ╎ 134 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 134 @StructuralIdentifiability/…:153 macro expansion ╎ ╎ ╎ 134 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 134 @Base/Base.jl:310 include(mapexpr::Function, mod::Module,… ╎ ╎ ╎ 134 @Base/loading.jl:3054 _include(mapexpr::Function, mod::M… ╎ ╎ ╎ ╎ 134 @Base/loading.jl:2994 include_string(mapexpr::typeof(id… ╎ ╎ ╎ ╎ 134 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 134 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ 134 @StructuralIdentifiability/…:61 #find_identifiable_f… ╎ ╎ ╎ ╎ 134 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 134 @Base/…gging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 134 @StructuralIdentifiability/…:63 (::StructuralIden… ╎ ╎ ╎ ╎ ╎ 134 @StructuralIdentifiability/…:86 _find_identifiab… ╎ ╎ ╎ ╎ ╎ 134 @StructuralIdentifiability/…:120 _find_identifi… ╎ ╎ ╎ ╎ ╎ 134 @RationalFunctionFields/…:720 kwcall(::@NamedT… ╎ ╎ ╎ ╎ ╎ ╎ 134 @RationalFunctionFields/…:720 simplified_gene… ╎ ╎ ╎ ╎ ╎ ╎ 134 @RationalFunctionFields/…:548 kwcall(::@Name… ╎ ╎ ╎ ╎ ╎ ╎ 134 @RationalFunctionFields/…:548 groebner_basi… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:330 mapreduce(f::Type, op::Fu… ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:338 _mapreduce_dim(f::Type,… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ce.jl:446 _mapreduce(f::Type{Set… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ce.jl:275 mapreduce_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ce.jl:261 mapreduce_impl(f::Ty… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…op.jl:77 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ce.jl:263 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…et.jl:106 union!(s::Set{Abs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/set.jl:137 push! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ct.jl:358 setindex!(h::Di… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ct.jl:276 ht_keyindex2_s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ct.jl:129 hashindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ng.jl:40 hash ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @AbstractAlgebra/…:77 hash(a::A… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @AbstractAlgebra/…:79 numerator ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @AbstractAlgebra/…:29 numerator ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @AbstractAlgebra/…:602 canonica… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…ly.jl:113 coeff(a::QQMPo… ╎ ╎ ╎ ╎ ╎ ╎ 54 @ParamPunPam/…:60 paramgb ╎ ╎ ╎ ╎ ╎ ╎ 54 @ParamPunPam/…:103 paramgb(blackbox::Rati… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 51 @ParamPunPam/…:138 _paramgb(blackbox::Ra… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 38 @ParamPunPam/…:455 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 24 @ParamPunPam/…:186 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:23 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:267 interpolate(R::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ot.jl:588 GenericMemory 7╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @Nemo/…ly.jl:274 interpolate(R::fpPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @ParamPunPam/…:26 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @ParamPunPam/…:12 producttree ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @ParamPunPam/…:5 _producttree(z::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @ParamPunPam/…:5 _producttree(z::f… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:158 *(x::fpPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @ParamPunPam/…:5 _producttree(z::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:157 *(x::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:494 fpPolyRing 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:650 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:652 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:3 _producttree(z:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:116 - 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Nemo/…ly.jl:231 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:5 _producttree(z:… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:158 *(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:29 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @ParamPunPam/…:160 Padé(f::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @ParamPunPam/…:143 fastconstrainedE… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ol.jl:0 _fastgcd(r0::fpPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @ParamPunPam/…:92 _fastgcd(r0::fpP… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:66 _direct_eea(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:47 zero ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:507 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…es.jl:657 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Nemo/…es.jl:650 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:76 _direct_eea(g::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…st.jl:893 materialize ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…st.jl:1123 copy ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Base/…le.jl:65 ntuple ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Base/…le.jl:68 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 3 @Base/…st.jl:1123 #copy##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 3 @Base/…st.jl:671 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 3 @Base/…st.jl:698 _broadcast_get… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 3 @Nemo/…ly.jl:150 -(x::fpPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 3 @Nemo/…ly.jl:494 fpPolyRing 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 2 @Nemo/…es.jl:650 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Nemo/…es.jl:652 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ls.jl:86 finalizer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:144 fastconstrainedE… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:12 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:17 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:877 mul! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:18 matvec2by1(A::Tu… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:867 add! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:32 interpolate!(c::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:161 divexact ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:164 divexact(x::fpPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:525 fpPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:657 fpPolyRingElem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:650 fpPolyRingElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @ParamPunPam/…:193 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @ParamPunPam/…:115 interpolate!(bot::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:441 roots(a::fpPolyRing… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:612 nmod_poly_factor 4╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Nemo/…ly.jl:442 roots(a::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:122 interpolate!(bot::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:86 factor_exponents(m… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:74 factor_with_known… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/div.jl:196 divrem ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/div.jl:218 divrem 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/int.jl:343 div ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:131 interpolate!(bot::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:94 solve_transposed_v… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:66 remindertree ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:55 _remindertree!(f… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:52 _remindertree!(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:442 mod ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:205 rem(x::fpPolyR… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Nemo/…ly.jl:197 rem! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:194 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:112 interpolate!(bot::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:268 ^(x::fpPolyRingElem… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @ParamPunPam/…:115 interpolate!(bot::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:442 roots(a::fpPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:204 interpolate!(vdhl::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:640 evaluate(a::fpMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:207 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:2330 vcat(::Vector{fpMPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:276 unsafe_copyto! 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ry.jl:143 unsafe_copyto! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:209 interpolate!(vdhl::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:640 evaluate(a::fpMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:214 interpolate!(vdhl::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1356 map_coefficie… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1357 #map_coeffic… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1364 _map(g::Par… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:214 #interpolate!##4 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:21 div ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…em.jl:267 divexact 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…em.jl:271 #divexact#283 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:481 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:302 speciali… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:267 fractio… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:858 _collect(c::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:864 collect_to_with_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @RationalFunctionFields/…:267 #… 3╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Nemo/…ly.jl:545 evaluate(a::fp… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @ParamPunPam/…:482 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Groebner/…l:401 groebner_apply!(trace… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Groebner/…l:403 #groebner_apply!#199 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:128 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 4 @Groebner/…l:16 io_convert_polynomi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:100 io_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Groebner/…l:120 io_extract_coeff… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3420 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:838 collect(itr::B… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:886 collect_to!(de… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Groebner/…l:108 io_lift_coeff_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…pz.jl:2977 UInt64(a::ZZR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Groebner/…l:173 io_extract_monoms… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:759 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:765 _collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ay.jl:953 copyto!(dest::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @AbstractAlgebra/…:835 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Nemo/…ly.jl:39 exponent_vector ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:19 exponent_vector… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:723 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:23 exponent_vector… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ot.jl:648 Array 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ot.jl:588 GenericMemory ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Nemo/…ly.jl:24 exponent_vector… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:733 exponent_vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:129 groebner_apply0!(wr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:234 __groebner_apply1!… 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Groebner/…l:213 ir_extract_coeffs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:517 interpolate_exponent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:984 maximum ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:984 #maximum#742 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:988 _maximum ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:988 #_maximum#744 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:330 mapreduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:338 _mapreduce_dim ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ce.jl:446 _mapreduce(f::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ce.jl:275 mapreduce_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ce.jl:261 mapreduce_impl… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…op.jl:77 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ce.jl:263 macro expansion ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @ParamPunPam/…:517 #interpolate… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…im.jl:984 maximum ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…im.jl:984 #maximum#742 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…im.jl:988 _maximum ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…im.jl:988 #_maximum#744 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…im.jl:330 mapreduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 1 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 1 @Base/…im.jl:338 _mapreduce_dim ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 1 @Base/…ce.jl:439 _mapreduce(f::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 1 @Base/…rs.jl:1104 ComposedFunct… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 1 @Base/…rs.jl:1104 #_#55 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 1 @Base/…rs.jl:1107 call_composed ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 1 @Nemo/…ly.jl:192 total_degree(a… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 1 @Nemo/…ly.jl:187 total_degree_f… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:143 _paramgb(blackbox::Ra… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @ParamPunPam/…:532 recover_coefficients… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:159 reconstruct_rationa… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:1400 MPolyRing ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:1042 (::QQMPolyRing)(a:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1217 QQMPolyRingElem(c… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:772 combine_like_term… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:163 reconstruct_rationa… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…pq.jl:744 reconstruct(a::ZZRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @ParamPunPam/…:169 reconstruct_rationa… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 // 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingE… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:37 RationalFunct… ╎ ╎ ╎ ╎ ╎ ╎ 7 @RationalFunctionFields/…:42 RationalFunc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 7 @RationalFunctionFields/…:53 IdealMQS ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:81 RationalFu… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:78 cancel_gc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:838 collect(itr::Base.Ge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:864 collect_to_with_fir… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 none:? #cancel_gcds##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @RationalFunctionFields/…:71 squ… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ay.jl:858 _collect(c::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ay.jl:864 collect_to_wit… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @RationalFunctionFields/…:71 #s… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @AbstractAlgebra/…:1106 derivat… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @AbstractAlgebra/…:114 var_index ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @AbstractAlgebra/…:125 _is_gen_… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Nemo/…ly.jl:54 is_gen(a::QQMPo… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…im.jl:379 reduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…im.jl:379 #reduce#728 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…im.jl:330 mapreduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…im.jl:335 _mapreduce_dim ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…ce.jl:42 mapfoldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ce.jl:46 foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ce.jl:56 _foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ce.jl:84 BottomRF 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Nemo/…ly.jl:317 gcd(a::QQMPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @RationalFunctionFields/…:133 RationalF… 5╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingEle… ╎ ╎ ╎ ╎ ╎ ╎ 29 @RationalFunctionFields/…:50 RationalFunc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:85 update_trba… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:70 generators ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:18 dennums_t… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:825 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:901 grow_to!(dest::Vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #dennums_to_fractions##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 // 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 24 @RationalFunctionFields/…:98 update_trba… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 24 @RationalFunctionFields/…:352 jacobian(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @AbstractAlgebra/…:674 derivative ╎ ╎ ╎ ╎ ╎ ╎ ╎ 23 @AbstractAlgebra/…:681 derivative(f::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @AbstractAlgebra/…:56 // 21╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Nemo/…ly.jl:317 gcd(a::QQMPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:131 literal_pow ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:300 ^(x::QQMPolyRingEl… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:779 pow!(z::QQMPolyRi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:258 -(a::QQMPolyRingEle… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:692 sub! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:629 evaluate(f::Abs… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:529 evaluate(a::QQMPolyR… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:178 QQFieldElem ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:99 update_trba… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…at.jl:494 rref(x::QQMatrix) ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:108 update_trb… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:53 IdealMQS ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:81 RationalF… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:78 cancel_g… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:838 collect(itr::Base.G… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:864 collect_to_with_fi… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #cancel_gcds##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:71 sq… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…im.jl:379 reduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…im.jl:379 #reduce#728 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…im.jl:330 mapreduce ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…im.jl:330 #mapreduce#726 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/…im.jl:335 _mapreduce_dim ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/…ce.jl:42 mapfoldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/…ce.jl:46 foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ce.jl:60 _foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ce.jl:84 BottomRF 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Nemo/…ly.jl:317 gcd(a::QQMPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:129 Rational… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:111 #64 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:197 parent… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:244 paren… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:1042 (::QQMPolyRing)(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…es.jl:1216 QQMPolyRingElem… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:907 sort_terms! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:133 Rational… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingEl… ╎ ╎ ╎ ╎ ╎ ╎ 43 @RationalFunctionFields/…:284 issubfield_m… ╎ ╎ ╎ ╎ ╎ ╎ 43 @RationalFunctionFields/…:284 issubfield_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 11 @RationalFunctionFields/…:212 check_alge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:828 collect(itr::Base.Gene… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #check_algebraicity_modp##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:432 _reduc… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:56 //(x::fpMPoly… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:346 gcd(a::fpMPolyRin… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ay.jl:838 collect(itr::Base.Gene… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ay.jl:864 collect_to_with_first! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ay.jl:886 collect_to! ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 none:? #check_algebraicity_modp##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @RationalFunctionFields/…:428 _red… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:848 _collect(c::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @RationalFunctionFields/…:428 #… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @RationalFunctionFields/…:424 _… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @AbstractAlgebra/…:1322 change_… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @AbstractAlgebra/…:1324 #change… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @AbstractAlgebra/…:1367 _map(g:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Nemo/…ly.jl:894 finish(M::MPol… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Nemo/…ly.jl:828 sort_terms! ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @RationalFunctionFields/…:432 _red… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @AbstractAlgebra/…:56 //(x::fpMPo… 9╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 9 @Nemo/…ly.jl:346 gcd(a::fpMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 32 @RationalFunctionFields/…:70 generators ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @RationalFunctionFields/…:16 dennums_to… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:1126 findmin ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…im.jl:1126 #findmin#787 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:909 _findmin ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:173 mapfoldl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:173 #mapfoldl#263 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:42 mapfoldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ce.jl:46 foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ce.jl:56 _foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @Base/…ce.jl:98 MappingRF ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 1 @Base/…ce.jl:909 #_findmin##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @RationalFunctionFields/…:16 #d… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:195 total_degree(a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Base/…ce.jl:60 _foldl_impl ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Base/…ce.jl:98 MappingRF ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 2 @Base/…ce.jl:909 #_findmin##0 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 2 @RationalFunctionFields/…:16 #d… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:192 total_degree(a… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Nemo/…ly.jl:186 total_degree_f… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Nemo/…ly.jl:195 total_degree(a… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 29 @RationalFunctionFields/…:18 dennums_to… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 29 @Base/…ay.jl:825 collect ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ay.jl:901 grow_to!(dest::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 none:? #dennums_to_fractions##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:58 // ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:586 get ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @AbstractAlgebra/…:512 lock ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Base/…ck.jl:335 lock(f::Abstra… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 1 @AbstractAlgebra/…:591 #72 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 @Base/…ay.jl:905 grow_to!(dest::Vecto… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 @Base/…ay.jl:932 grow_to!(dest::Vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 28 none:? #dennums_to_fractions##2 ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @AbstractAlgebra/…:56 // 26╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 26 @Nemo/…ly.jl:317 gcd(a::QQMPolyR… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @AbstractAlgebra/…:57 // ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:492 divexact ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 2 @Nemo/…ly.jl:494 #divexact#741 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 2 @Nemo/…ly.jl:453 divides(a::QQM… [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_65246.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1272 unknown function (ip: (nil)) at (unknown file) Allocations: 22943879 (Pool: 22943220; Big: 659); GC: 19 [41] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 __gmpn_rshift_zen at /opt/julia/bin/../lib/julia/libgmp.so.10 (unknown line) __gmpq_aors at /opt/julia/bin/../lib/julia/libgmp.so.10 (unknown line) add! at ./gmp.jl:1040 + at ./gmp.jl:1097 linalg_vector_addmul_sparsedense! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:844 #linalg_reduce_dense_row_by_pivots_sparse!#99 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:651 linalg_reduce_dense_row_by_pivots_sparse! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:603 [inlined] linalg_reduce_dense_row_by_pivots_sparse! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:603 [inlined] linalg_reduce_matrix_lower_part_do_not_modify_pivots! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:235 _linalg_normalform! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/linalg.jl:236 [inlined] linalg_normalform! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/linalg.jl:96 [inlined] f4_normalform! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/f4.jl:490 _normalform2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/normalform.jl:140 normalform2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/normalform.jl:119 unknown function (ip: 0x77ee1d7baed7) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __normalform1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/normalform.jl:79 unknown function (ip: 0x77ee1d79e4ad) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _normalform1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/normalform.jl:49 unknown function (ip: 0x77ee1d79dbcf) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 normalform0 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/normalform.jl:16 #normalform#205 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:580 [inlined] normalform at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:578 unknown function (ip: 0x77ee1d79d256) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 field_contains_algebraic at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:346 issubfield at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:420 fields_equal at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:429 unknown function (ip: 0x77ee1c313341) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x77ee18790b49) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x77ee18789ed4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x77ee21980162) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_56223.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_52263.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x77ee6c6c2249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1123432377 (Pool: 1123428286; Big: 4091); GC: 522 PkgEval terminated after 2739.67s: test duration exceeded the time limit