Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.50 (b60d1db399*) started at 2025-11-09T16:11:02.873 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.6s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.18s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1396.3 ms ✓ Measurements 4608.3 ms ✓ StatsBase 8299.0 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 15 seconds. 56 already precompiled. Precompilation completed after 28.15s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_EbJTu0/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_EbJTu0/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:33 Bin 1 progress: 54%|█████████████████▊ | ETA: 0:00:04 Bin 1 progress: 92%|██████████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011931292968144428 Iteration 10: d = 1.3686504508706478e-5 Iteration 20: d = 2.1350267943517274e-7 Iteration 30: d = 3.688494809716936e-9 Iteration 40: d = 6.58672414102063e-11 Iteration 50: d = 1.1903307798505454e-12 Iteration 60: d = 2.1616567324649963e-14 Converged after 66 iterations. d = 1.9770215539937847e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 97%|████████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012520213440899706 Iteration 10: d = 1.6921003877396633e-5 Iteration 20: d = 2.853017820599285e-7 Iteration 30: d = 5.042005526185513e-9 Iteration 40: d = 9.018281691673637e-11 Iteration 50: d = 1.6219498372222716e-12 Iteration 60: d = 2.928226521895621e-14 Converged after 67 iterations. d = 1.7458558941902963e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012715909620954746 Iteration 10: d = 1.8237191109728423e-5 Iteration 20: d = 3.060743313337262e-7 Iteration 30: d = 5.4386174535175165e-9 Iteration 40: d = 9.811517892582379e-11 Iteration 50: d = 1.779801816716859e-12 Iteration 60: d = 3.2384009985488563e-14 Converged after 67 iterations. d = 1.9462277101280145e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013352919763781103 Iteration 10: d = 2.2812779159918935e-5 Iteration 20: d = 3.985598113231576e-7 Iteration 30: d = 7.174654580952322e-9 Iteration 40: d = 1.3019679504189625e-10 Iteration 50: d = 2.370516259044496e-12 Iteration 60: d = 4.319850005168086e-14 Converged after 68 iterations. d = 1.7375116594127432e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00136245772918795 Iteration 10: d = 1.1591876369989068e-5 Iteration 20: d = 1.0715775486448748e-7 Iteration 30: d = 1.3264666528321699e-9 Iteration 40: d = 1.894125731478944e-11 Iteration 50: d = 2.8693264338622186e-13 Iteration 60: d = 4.425470207776477e-15 Converged after 62 iterations. d = 1.9377347079654177e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|████████████ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013390762321132596 Iteration 10: d = 1.03822965261366e-5 Iteration 20: d = 1.124374443833643e-7 Iteration 30: d = 1.5980684131071344e-9 Iteration 40: d = 2.424331858633602e-11 Iteration 50: d = 3.7365918440218496e-13 Iteration 60: d = 5.751991843945622e-15 Converged after 63 iterations. d = 1.6704184564362092e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013238465227621184 Iteration 10: d = 1.1173897582639366e-5 Iteration 20: d = 1.420972686379517e-7 Iteration 30: d = 2.1641098619598097e-9 Iteration 40: d = 3.3978381022646503e-11 Iteration 50: d = 5.367752951157969e-13 Iteration 60: d = 8.496555867530604e-15 Converged after 64 iterations. d = 1.6190962729240262e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00119179710841304 Iteration 10: d = 8.105859412870102e-6 Iteration 20: d = 9.325705079059834e-8 Iteration 30: d = 1.406555909666977e-9 Iteration 40: d = 2.2084740929386803e-11 Iteration 50: d = 3.488831842779489e-13 Iteration 60: d = 5.500483739299224e-15 Converged after 63 iterations. d = 1.5828099928434312e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▉ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013136984799686255 Iteration 10: d = 8.733906613940254e-6 Iteration 20: d = 7.015784710630733e-8 Iteration 30: d = 8.217490964846491e-10 Iteration 40: d = 1.1677075319669058e-11 Iteration 50: d = 1.7821088154957422e-13 Iteration 60: d = 2.794089193054247e-15 Converged after 61 iterations. d = 1.855647270479671e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013242389051691837 Iteration 10: d = 1.460642224655191e-5 Iteration 20: d = 1.835125060716077e-7 Iteration 30: d = 2.6894916454787157e-9 Iteration 40: d = 4.1313790150495936e-11 Iteration 50: d = 6.434366481217665e-13 Iteration 60: d = 1.0063892663226277e-14 Converged after 64 iterations. d = 1.9417771017237604e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0057764956290361335 Iteration 10: d = 6.666189707189858e-5 Iteration 20: d = 8.218697648348765e-7 Iteration 30: d = 1.1276487340584809e-8 Iteration 40: d = 1.590606003952585e-10 Iteration 50: d = 2.2647379906232267e-12 Iteration 60: d = 3.235995010674554e-14 Converged after 67 iterations. d = 1.6886088444161891e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003896927042852557 Iteration 10: d = 3.961179731105526e-5 Iteration 20: d = 4.747880893777405e-7 Iteration 30: d = 6.861910952675399e-9 Iteration 40: d = 1.040263561369473e-10 Iteration 50: d = 1.6033253812834436e-12 Iteration 60: d = 2.4907140715883495e-14 Converged after 66 iterations. d = 2.0983573071350005e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002292262481849496 Iteration 10: d = 2.2688604161778698e-5 Iteration 20: d = 3.4021639316615134e-7 Iteration 30: d = 5.709967056237546e-9 Iteration 40: d = 9.745494721763648e-11 Iteration 50: d = 1.6676935324337417e-12 Iteration 60: d = 2.855907876909398e-14 Converged after 67 iterations. d = 1.6655736950480019e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00202909037174736 Iteration 10: d = 1.812513363086582e-5 Iteration 20: d = 2.269918550079606e-7 Iteration 30: d = 3.302102269803565e-9 Iteration 40: d = 5.103598518957259e-11 Iteration 50: d = 8.178016957428479e-13 Iteration 60: d = 1.3370664072244454e-14 Converged after 65 iterations. d = 1.7312461851666362e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00136245772918795 Iteration 10: d = 1.1591876369989068e-5 Iteration 20: d = 1.0715775486448748e-7 Iteration 30: d = 1.3264666528321699e-9 Iteration 40: d = 1.894125731478944e-11 Iteration 50: d = 2.8693264338622186e-13 Iteration 60: d = 4.425470207776477e-15 Converged after 62 iterations. d = 1.9377347079654177e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016215121363849694 Iteration 10: d = 1.936939295400252e-5 Iteration 20: d = 2.3533857673948622e-7 Iteration 30: d = 3.056521486482742e-9 Iteration 40: d = 4.0162968121379457e-11 Iteration 50: d = 5.29682608941672e-13 Iteration 60: d = 6.9780550281640364e-15 Converged after 63 iterations. d = 1.896480507966295e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001440890634220121 Iteration 10: d = 2.0211356046224056e-5 Iteration 20: d = 2.511791932502409e-7 Iteration 30: d = 3.326094041390159e-9 Iteration 40: d = 4.512904476651807e-11 Iteration 50: d = 6.194168441048956e-13 Iteration 60: d = 8.553964044598652e-15 Converged after 64 iterations. d = 1.4963769635536427e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.832642789272 Iteration 2: convergence error = 4827.220559212935 Iteration 3: convergence error = 1099.3611850499474 Iteration 4: convergence error = 320.10729693500207 Iteration 5: convergence error = 94.96152360608608 Iteration 6: convergence error = 28.32969348079928 Iteration 7: convergence error = 8.522670014567439 Iteration 8: convergence error = 2.556624552259109 Iteration 9: convergence error = 0.765132050339389 Iteration 10: convergence error = 0.22867340596690156 Iteration 11: convergence error = 0.0682901808211227 Iteration 12: convergence error = 0.020384933368404745 Iteration 13: convergence error = 0.006083466128529835 Iteration 14: convergence error = 0.001815224556821704 Iteration 15: convergence error = 0.0005415937741872767 Iteration 16: convergence error = 0.00016158320613612887 Iteration 17: convergence error = 4.820661843041307e-5 Iteration 18: convergence error = 1.438170670553518e-5 Iteration 19: convergence error = 4.290512606530683e-6 Iteration 20: convergence error = 1.2799932846974116e-6 Iteration 21: convergence error = 3.81852942155092e-7 Iteration 22: convergence error = 1.1379438547010068e-7 Iteration 23: convergence error = 3.303239282104187e-8 Iteration 24: convergence error = 9.534232958685607e-9 Iteration 25: convergence error = 2.7430360205471516e-9 Iteration 26: convergence error = 7.846665539545938e-10 Iteration 27: convergence error = 2.2669155441690236e-10 Iteration 28: convergence error = 6.639311322942376e-11 Iteration 29: convergence error = 1.77351466845721e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016215121363849694 Iteration 10: d = 1.936939295400252e-5 Iteration 20: d = 2.3533857673948622e-7 Iteration 30: d = 3.056521486482742e-9 Iteration 40: d = 4.0162968121379457e-11 Iteration 50: d = 5.29682608941672e-13 Iteration 60: d = 6.9780550281640364e-15 Converged after 63 iterations. d = 1.896480507966295e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.788723698715 Iteration 2: convergence error = 4822.111061744252 Iteration 3: convergence error = 1098.2062304419148 Iteration 4: convergence error = 317.97814385227025 Iteration 5: convergence error = 94.21773518327245 Iteration 6: convergence error = 28.1092078197928 Iteration 7: convergence error = 8.456340598846737 Iteration 8: convergence error = 2.5339146774479104 Iteration 9: convergence error = 0.7574822456376751 Iteration 10: convergence error = 0.22612989231856773 Iteration 11: convergence error = 0.06745337876441226 Iteration 12: convergence error = 0.02011202810922441 Iteration 13: convergence error = 0.005995115038558652 Iteration 14: convergence error = 0.001786799593901378 Iteration 15: convergence error = 0.0005324976814335969 Iteration 16: convergence error = 0.00015868596574364346 Iteration 17: convergence error = 4.7287584720834275e-5 Iteration 18: convergence error = 1.4091220464251819e-5 Iteration 19: convergence error = 4.19899879489094e-6 Iteration 20: convergence error = 1.251245066669071e-6 Iteration 21: convergence error = 3.728491719812155e-7 Iteration 22: convergence error = 1.1096199159510434e-7 Iteration 23: convergence error = 3.2154275686480105e-8 Iteration 24: convergence error = 9.265477274311706e-9 Iteration 25: convergence error = 2.66413735516835e-9 Iteration 26: convergence error = 7.637481758138165e-10 Iteration 27: convergence error = 2.1805135475005955e-10 Iteration 28: convergence error = 6.161826604511589e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:35:31 Bin 1 ray tracing: 8%|██▌ | ETA: 0:01:03 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:35 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:24 Bin 1 ray tracing: 32%|█████████▌ | ETA: 0:00:18 Bin 1 ray tracing: 40%|████████████ | ETA: 0:00:14 Bin 1 ray tracing: 48%|██████████████▍ | ETA: 0:00:12 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:09 Bin 1 ray tracing: 64%|███████████████████▎ | ETA: 0:00:07 Bin 1 ray tracing: 73%|██████████████████████ | ETA: 0:00:05 Bin 1 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 1 ray tracing: 93%|████████████████████████████ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 2 ray tracing: 18%|█████▎ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:09 Bin 2 ray tracing: 35%|██████████▌ | ETA: 0:00:08 Bin 2 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 2 ray tracing: 51%|███████████████▍ | ETA: 0:00:06 Bin 2 ray tracing: 60%|██████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:01 Bin 2 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 3 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 3 ray tracing: 24%|███████▎ | ETA: 0:00:09 Bin 3 ray tracing: 32%|█████████▊ | ETA: 0:00:08 Bin 3 ray tracing: 40%|████████████▏ | ETA: 0:00:07 Bin 3 ray tracing: 49%|██████████████▌ | ETA: 0:00:06 Bin 3 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 73%|█████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 3 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 3 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▉ | ETA: 0:00:10 Bin 4 ray tracing: 19%|█████▊ | ETA: 0:00:08 Bin 4 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 4 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 4 ray tracing: 46%|██████████████ | ETA: 0:00:06 Bin 4 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 4 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 4 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 5 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 5 ray tracing: 27%|████████ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 5 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 65%|███████████████████▍ | ETA: 0:00:04 Bin 5 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████▎ | ETA: 0:00:10 Bin 6 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 6 ray tracing: 43%|████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 7 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 7 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 45%|█████████████▋ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▍ | ETA: 0:00:05 Bin 7 ray tracing: 63%|██████████████████▉ | ETA: 0:00:04 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:02 Bin 7 ray tracing: 88%|██████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 96%|████████████████████████████▊ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 16%|████▉ | ETA: 0:00:10 Bin 8 ray tracing: 25%|███████▍ | ETA: 0:00:09 Bin 8 ray tracing: 33%|█████████▉ | ETA: 0:00:08 Bin 8 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 8 ray tracing: 50%|███████████████ | ETA: 0:00:06 Bin 8 ray tracing: 59%|█████████████████▋ | ETA: 0:00:05 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:04 Bin 8 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 11%|███▎ | ETA: 0:00:08 Bin 9 ray tracing: 21%|██████▍ | ETA: 0:00:08 Bin 9 ray tracing: 31%|█████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 50%|██████████████▉ | ETA: 0:00:05 Bin 9 ray tracing: 58%|█████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 9 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▊ | ETA: 0:00:08 Bin 10 ray tracing: 30%|████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 40%|███████████▋ | ETA: 0:00:06 Bin 10 ray tracing: 49%|██████████████▏ | ETA: 0:00:06 Bin 10 ray tracing: 58%|████████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 68%|███████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 78%|██████████████████████▋ | ETA: 0:00:02 Bin 10 ray tracing: 89%|█████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▉| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 24%|████████▏ | ETA: 0:00:03 Bin 1 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 2 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 2 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 4 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 27%|████████▊ | ETA: 0:00:03 Bin 5 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 5 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 6 progress: 53%|█████████████████▋ | ETA: 0:00:02 Bin 6 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 24%|████████▏ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 8 progress: 56%|██████████████████▍ | ETA: 0:00:02 Bin 8 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 9 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 51%|████████████████▍ | ETA: 0:00:02 Bin 10 progress: 78%|████████████████████████▉ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016215121363849694 Iteration 10: d = 1.936939295400252e-5 Iteration 20: d = 2.3533857673948622e-7 Iteration 30: d = 3.056521486482742e-9 Iteration 40: d = 4.0162968121379457e-11 Iteration 50: d = 5.29682608941672e-13 Iteration 60: d = 6.9780550281640364e-15 Converged after 63 iterations. d = 1.896480507966295e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014381505035106366 Iteration 10: d = 1.9911029507209904e-5 Iteration 20: d = 2.472997977122333e-7 Iteration 30: d = 3.2737351164360424e-9 Iteration 40: d = 4.4399103650618454e-11 Iteration 50: d = 6.090571627851089e-13 Iteration 60: d = 8.434213123195796e-15 Converged after 64 iterations. d = 1.5168582527520202e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018395172321296871 Iteration 10: d = 1.922375455145655e-5 Iteration 20: d = 1.8276228055681338e-7 Iteration 30: d = 2.0142259492840205e-9 Iteration 40: d = 2.4430566339368272e-11 Iteration 50: d = 3.1565257597808175e-13 Iteration 60: d = 4.186419380170337e-15 Converged after 62 iterations. d = 1.780820902713846e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014427754959033922 Iteration 10: d = 7.988913022136032e-6 Iteration 20: d = 7.488308989416484e-8 Iteration 30: d = 1.0396985352466492e-9 Iteration 40: d = 1.4999454976672607e-11 Iteration 50: d = 2.1585248184578673e-13 Iteration 60: d = 3.085199032913039e-15 Converged after 61 iterations. d = 2.0416124336733884e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001382767804732815 Iteration 10: d = 1.4644300309541057e-5 Iteration 20: d = 1.8410780163137364e-7 Iteration 30: d = 2.525131261589885e-9 Iteration 40: d = 3.501610832605739e-11 Iteration 50: d = 4.871448565207428e-13 Iteration 60: d = 6.784426145841857e-15 Converged after 63 iterations. d = 1.9262565262302894e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001431468787653292 Iteration 10: d = 1.8976713124010665e-5 Iteration 20: d = 2.3121989932522296e-7 Iteration 30: d = 3.0851616657348524e-9 Iteration 40: d = 4.254744541174839e-11 Iteration 50: d = 5.952123552053855e-13 Iteration 60: d = 8.424624692129943e-15 Converged after 64 iterations. d = 1.5071656822486125e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014589340246904075 Iteration 10: d = 1.3438502931642376e-5 Iteration 20: d = 1.457265060457207e-7 Iteration 30: d = 1.8902817186040376e-9 Iteration 40: d = 2.5727649529183816e-11 Iteration 50: d = 3.5591143077847864e-13 Iteration 60: d = 4.982009543519524e-15 Converged after 62 iterations. d = 2.0970617193143074e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014258454027967157 Iteration 10: d = 1.1621907505428011e-5 Iteration 20: d = 1.184988132368072e-7 Iteration 30: d = 1.5506158646813355e-9 Iteration 40: d = 2.1386559117113195e-11 Iteration 50: d = 2.993409068954739e-13 Iteration 60: d = 4.2182658741145626e-15 Converged after 62 iterations. d = 1.7734334746936698e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015241710490889863 Iteration 10: d = 1.966512259095865e-5 Iteration 20: d = 2.3540207218630291e-7 Iteration 30: d = 3.0229113399492624e-9 Iteration 40: d = 3.9763155931210464e-11 Iteration 50: d = 5.294126123624276e-13 Iteration 60: d = 7.088036713720872e-15 Converged after 63 iterations. d = 1.903491230069699e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014062747004111402 Iteration 10: d = 1.4595238541575593e-5 Iteration 20: d = 1.7384548994528028e-7 Iteration 30: d = 2.2998807693115906e-9 Iteration 40: d = 3.10872545190816e-11 Iteration 50: d = 4.2405610991050497e-13 Iteration 60: d = 5.8353978746299955e-15 Converged after 63 iterations. d = 1.6710674238159159e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8653.19712365579 Iteration 2: convergence error = 4817.594894116905 Iteration 3: convergence error = 1090.589034501542 Iteration 4: convergence error = 319.6056872011741 Iteration 5: convergence error = 94.69244369432204 Iteration 6: convergence error = 28.300216538548057 Iteration 7: convergence error = 8.542832437530706 Iteration 8: convergence error = 2.569029413763701 Iteration 9: convergence error = 0.7708128550566471 Iteration 10: convergence error = 0.23096922128343067 Iteration 11: convergence error = 0.06915582947794974 Iteration 12: convergence error = 0.02069731380424855 Iteration 13: convergence error = 0.00619284696313116 Iteration 14: convergence error = 0.001852695308798502 Iteration 15: convergence error = 0.000554218961724473 Iteration 16: convergence error = 0.00016578211966589151 Iteration 17: convergence error = 4.958858835379942e-5 Iteration 18: convergence error = 1.4832647821094724e-5 Iteration 19: convergence error = 4.436610197444679e-6 Iteration 20: convergence error = 1.3270346244098619e-6 Iteration 21: convergence error = 3.969246336055221e-7 Iteration 22: convergence error = 1.1858605830639135e-7 Iteration 23: convergence error = 3.451191332715098e-8 Iteration 24: convergence error = 9.977838999475352e-9 Iteration 25: convergence error = 2.8760496206814423e-9 Iteration 26: convergence error = 8.226379577536136e-10 Iteration 27: convergence error = 2.4374458007514477e-10 Iteration 28: convergence error = 6.707523425575346e-11 Iteration 29: convergence error = 1.9554136088117957e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.3187585895846 K, F = -7446.451943249411, relative_change = 0.032681241410415396 Iter 2: T = 936.7123888314344 K, F = -6312.155821651439, relative_change = 0.03164041789365937 Iter 3: T = 908.1495439217485 K, F = -5349.133796482098, relative_change = 0.030492652013835848 Iter 5: T = 857.0161108550634 K, F = -3837.7430598665323, relative_change = 0.027881806413689834 Iter 10: T = 761.9283002425204 K, F = -1661.748080971536, relative_change = 0.019960837656067855 Iter 15: T = 706.2647129953352 K, F = -711.4632204607237, relative_change = 0.011957990091805131 Iter 20: T = 677.6421120756644 K, F = -301.5348340011927, relative_change = 0.006122486126837757 Iter 25: T = 664.2961596291968 K, F = -126.9386469741245, relative_change = 0.002828007284534131 Iter 30: T = 658.421165736113 K, F = -53.24591945432223, relative_change = 0.0012370038248883744 Iter 35: T = 655.9078449186343 K, F = -22.296905738448444, relative_change = 0.0005274792413988781 Iter 40: T = 654.8464824519049 K, F = -9.329957379836888, relative_change = 0.00022242482829915196 Iter 45: T = 654.4007816578836 K, F = -3.902802237499976, relative_change = 9.334411078863809e-5 Iter 50: T = 654.2140624756515 K, F = -1.6323568391239465, relative_change = 3.909447250797834e-5 Iter 55: T = 654.135917828583 K, F = -0.6826988512236387, relative_change = 1.6359739798322263e-5 Iter 60: T = 654.1032269170744 K, F = -0.28551766459114614, relative_change = 6.843582923544154e-6 Iter 65: T = 654.0895534573107 K, F = -0.11940774589118863, relative_change = 2.8623733132568902e-6 Iter 70: T = 654.0838347504674 K, F = -0.04993789381531494, relative_change = 1.1971320924488058e-6 Iter 75: T = 654.0814430660271 K, F = -0.020884649539468836, relative_change = 5.006642761301079e-7 Iter 80: T = 654.0804428257715 K, F = -0.008734214393816553, relative_change = 2.093854128012187e-7 Iter 85: T = 654.0800245117316 K, F = -0.0036527535606488137, relative_change = 8.756776585892659e-8 Iter 90: T = 654.0798495675213 K, F = -0.0015276253015598096, relative_change = 3.662193543908255e-8 Iter 95: T = 654.0797764037136 K, F = -0.0006388711684354731, relative_change = 1.531573948176162e-8 Iter 100: T = 654.0797458057268 K, F = -0.0002671835576444348, relative_change = 6.40522671279451e-9 Iter 105: T = 654.0797330092819 K, F = -0.00011173935552327707, relative_change = 2.6787425762405714e-9 Iter 110: T = 654.0797276576556 K, F = -4.673073385064175e-5, relative_change = 1.1202822020474245e-9 Iter 115: T = 654.0797254195414 K, F = -1.9543351362616423e-5, relative_change = 4.685154127165146e-10 Iter 120: T = 654.0797244835354 K, F = -8.17326353153014e-6, relative_change = 1.9593875644738454e-10 Iter 125: T = 654.0797240920865 K, F = -3.4181583069559096e-6, relative_change = 8.194397346052583e-11 Iter 130: T = 654.0797239283778 K, F = -1.4295146759657484e-6, relative_change = 3.4269949571960676e-11 Iter 135: T = 654.0797238599129 K, F = -5.978394864714076e-7, relative_change = 1.4332087251829774e-11 Iter 140: T = 654.07972383128 K, F = -2.5002454068223656e-7, relative_change = 5.993872291797331e-12 Iter 145: T = 654.0797238193055 K, F = -1.045642942787417e-7, relative_change = 2.506734037119457e-12 Iter 150: T = 654.0797238142975 K, F = -4.373050033201764e-8, relative_change = 1.048357227509301e-12 Iter 155: T = 654.0797238122032 K, F = -1.8288372038988143e-8, relative_change = 4.384296283184084e-13 Converged in 159 iterations to T = 654.0797238114471 K Iter 1: T = 970.4744341171065 K, F = -6727.428272481159, relative_change = 0.02952556588289347 Iter 2: T = 943.1156733016371 K, F = -5697.77330480611, relative_change = 0.028191119573756907 Iter 3: T = 917.8781642540633 K, F = -4823.955196243315, relative_change = 0.02675971756383064 Iter 5: T = 873.5468316260212 K, F = -3453.657236387098, relative_change = 0.023652638246383115 Iter 10: T = 795.001013786922 K, F = -1486.1947453309183, relative_change = 0.015347655102136046 Iter 15: T = 752.3152421463637 K, F = -632.508351732447, relative_change = 0.008378022256121668 Iter 20: T = 731.6342444627094 K, F = -266.94975695587954, relative_change = 0.00402283834466883 Iter 25: T = 722.3361212538514 K, F = -112.11979229007574, relative_change = 0.0017942491946359828 Iter 30: T = 718.3180749454078 K, F = -46.9781837082229, relative_change = 0.0007719040142815623 Iter 35: T = 716.6136612761501 K, F = -19.66266346615673, relative_change = 0.0003267452091557217 Iter 40: T = 715.8965458110602 K, F = -8.225957017548385, relative_change = 0.0001373476849762388 Iter 45: T = 715.5958776671812 K, F = -3.440684650580597, relative_change = 5.7563606816870316e-5 Iter 50: T = 715.4700007957033 K, F = -1.4390214753195707, relative_change = 2.4095397342525624e-5 Iter 55: T = 715.4173341273126 K, F = -0.6018310304886855, relative_change = 1.0080767439999448e-5 Iter 60: T = 715.395304191611 K, F = -0.251695559827493, relative_change = 4.216559613194209e-6 Iter 65: T = 715.3860902910234 K, F = -0.10526254999344731, relative_change = 1.7635314465792438e-6 Iter 70: T = 715.3822368020973 K, F = -0.04402213613285311, relative_change = 7.375501778540296e-7 Iter 75: T = 715.3806252050284 K, F = -0.01841059716443727, relative_change = 3.084558372007533e-7 Iter 80: T = 715.3799512120435 K, F = -0.007699534068603131, relative_change = 1.2900053481942445e-7 Iter 85: T = 715.3796693394555 K, F = -0.003220037529181874, relative_change = 5.3949672662886494e-8 Iter 90: T = 715.3795514568554 K, F = -0.0013466582238086389, relative_change = 2.2562416339630282e-8 Iter 95: T = 715.3795021569239 K, F = -0.0005631885661456781, relative_change = 9.435875303556669e-9 Iter 100: T = 715.3794815391001 K, F = -0.0002355321878719785, relative_change = 3.946196342209871e-9 Iter 105: T = 715.3794729164792 K, F = -9.850237411834772e-5, relative_change = 1.6503465376162231e-9 Iter 110: T = 715.3794693103962 K, F = -4.119486875919787e-5, relative_change = 6.901946401237843e-10 Iter 115: T = 715.3794678022891 K, F = -1.722818640526036e-5, relative_change = 2.886476494152648e-10 Iter 120: T = 715.3794671715807 K, F = -7.205032180657156e-6, relative_change = 1.207158758743676e-10 Iter 125: T = 715.379466907811 K, F = -3.013230980508652e-6, relative_change = 5.0484829011444676e-11 Iter 130: T = 715.3794667974992 K, F = -1.2601677994439342e-6, relative_change = 2.1113335266659023e-11 Iter 135: T = 715.3794667513656 K, F = -5.270170587712286e-7, relative_change = 8.829846200967764e-12 Iter 140: T = 715.3794667320719 K, F = -2.204048169529571e-7, relative_change = 3.692746949092129e-12 Iter 145: T = 715.3794667240031 K, F = -9.217546248496689e-8, relative_change = 1.5443430982883044e-12 Iter 150: T = 715.3794667206287 K, F = -3.854921037937942e-8, relative_change = 6.458682754632763e-13 Iter 155: T = 715.3794667192174 K, F = -1.6121182389028377e-8, relative_change = 2.701004810645389e-13 Converged in 157 iterations to T = 715.3794667189187 K Iter 1: T = 974.3773954505257 K, F = -5838.134819986923, relative_change = 0.025622604549474376 Iter 2: T = 950.9442878246624 K, F = -4939.320179227311, relative_change = 0.024049313679971478 Iter 3: T = 929.6262502491614 K, F = -4177.07958941377, relative_change = 0.02241775659041731 Iter 5: T = 892.9832623229491 K, F = -2983.280058153176, relative_change = 0.01906402435996108 Iter 10: T = 831.2319206460744 K, F = -1275.7434984928734, relative_change = 0.011209992264675036 Iter 15: T = 799.8676749137273 K, F = -540.2081037322978, relative_change = 0.0056614811109531905 Iter 20: T = 785.3588115148474 K, F = -227.29772680985587, relative_change = 0.0025948273412902388 Iter 25: T = 778.99835536791 K, F = -95.31893536827025, relative_change = 0.0011307449287741213 Iter 30: T = 776.2826011087319 K, F = -39.91066003982053, relative_change = 0.00048135902125108395 Iter 35: T = 775.1367218419405 K, F = -16.699484426046507, relative_change = 0.0002028303845448246 Iter 40: T = 774.6557033489116 K, F = -6.985397008401729, relative_change = 8.509494757964749e-5 Iter 45: T = 774.4542190632023 K, F = -2.9216348012116753, relative_change = 3.5634966079564604e-5 Iter 50: T = 774.3699003974775 K, F = -1.2219078013823805, relative_change = 1.4911247309985985e-5 Iter 55: T = 774.3346276005562 K, F = -0.5110243506106497, relative_change = 6.237510876963953e-6 Iter 60: T = 774.3198743940715 K, F = -0.2137178709949924, relative_change = 2.6088550887112432e-6 Iter 65: T = 774.3137041292626 K, F = -0.08937960816405943, relative_change = 1.09109870649319e-6 Iter 70: T = 774.3111235987648 K, F = -0.037379661904488826, relative_change = 4.563182671335546e-7 Iter 75: T = 774.3100443809858 K, F = -0.015632628419848915, relative_change = 1.9083910571093407e-7 Iter 80: T = 774.3095930376294 K, F = -0.006537753191824258, relative_change = 7.981143040153466e-8 Iter 85: T = 774.3094042801691 K, F = -0.002734166687573425, relative_change = 3.337813483733293e-8 Iter 90: T = 774.3093253394961 K, F = -0.0011434611993934585, relative_change = 1.395914184543434e-8 Iter 95: T = 774.3092923255556 K, F = -0.0004782091357378171, relative_change = 5.837881089632407e-9 Iter 100: T = 774.3092785187299 K, F = -0.0001999927744937846, relative_change = 2.441471833448815e-9 Iter 105: T = 774.3092727445502 K, F = -8.363936592847843e-5, relative_change = 1.0210527047743822e-9 Iter 110: T = 774.3092703297192 K, F = -3.497898162396762e-5, relative_change = 4.2701644053921097e-10 Iter 115: T = 774.3092693198081 K, F = -1.4628628068003025e-5, relative_change = 1.7858337882775358e-10 Iter 120: T = 774.3092688974511 K, F = -6.117866982346953e-6, relative_change = 7.468570221929523e-11 Iter 125: T = 774.3092687208165 K, F = -2.558565600607743e-6, relative_change = 3.1234459545206096e-11 Iter 130: T = 774.3092686469457 K, F = -1.0700215976600091e-6, relative_change = 1.3062610672108912e-11 Iter 135: T = 774.3092686160521 K, F = -4.474951803556948e-7, relative_change = 5.46293208709548e-12 Iter 140: T = 774.309268603132 K, F = -1.8714676186526447e-7, relative_change = 2.284650417147184e-12 Iter 145: T = 774.3092685977286 K, F = -7.826704973012966e-8, relative_change = 9.55468564021945e-13 Iter 150: T = 774.309268595469 K, F = -3.273137871850906e-8, relative_change = 3.995781562087897e-13 Converged in 154 iterations to T = 774.3092685946534 K Iter 1: T = 970.3591345674783 K, F = -6753.699384542119, relative_change = 0.029640865432521618 Iter 2: T = 942.8828829212516 K, F = -5720.203110453233, relative_change = 0.028315549024510157 Iter 3: T = 917.5263949380678 K, F = -4843.109569696711, relative_change = 0.02689251066327985 Iter 5: T = 872.9562302419489 K, F = -3467.629658352438, relative_change = 0.02379843627468121 Iter 10: T = 793.8584088144187 K, F = -1492.5160934006656, relative_change = 0.015492718004485683 Iter 15: T = 750.771502191175 K, F = -635.3143728920232, relative_change = 0.008481080745094082 Iter 20: T = 729.8599242612368 K, F = -268.16571310866783, relative_change = 0.00407966561168687 Iter 25: T = 720.4487599370207 K, F = -112.6374584420048, relative_change = 0.0018212957408260128 Iter 30: T = 716.3798818076835 K, F = -47.196438609818905, relative_change = 0.0007838778523944701 Iter 35: T = 714.6535279832536 K, F = -19.7542615959103, relative_change = 0.00033187624365183785 Iter 40: T = 713.9271128334109 K, F = -8.26432167896225, relative_change = 0.00013951572116034278 Iter 45: T = 713.622533385319 K, F = -3.456739296690641, relative_change = 5.847422829228431e-5 Iter 50: T = 713.4950168730558 K, F = -1.4457374898856603, relative_change = 2.447691950027458e-5 Iter 55: T = 713.4416638055028 K, F = -0.6046400579477966, relative_change = 1.0240445376718951e-5 Iter 60: T = 713.4193466900771 K, F = -0.25287038290027297, relative_change = 4.283359981404432e-6 Iter 65: T = 713.4100126666058 K, F = -0.10575388452170309, relative_change = 1.7914718584398607e-6 Iter 70: T = 713.4061089372001 K, F = -0.04422761975973699, relative_change = 7.492358390133937e-7 Iter 75: T = 713.4044763283233 K, F = -0.018496533161744932, relative_change = 3.133430334684998e-7 Iter 80: T = 713.4037935478375 K, F = -0.007735473577784591, relative_change = 1.3104443843191207e-7 Iter 85: T = 713.4035080001923 K, F = -0.003235067870999586, relative_change = 5.4804461042758465e-8 Iter 90: T = 713.403388580636 K, F = -0.001352944095667441, relative_change = 2.291989968530287e-8 Iter 95: T = 713.4033386379302 K, F = -0.0005658173916853748, relative_change = 9.585379190220017e-9 Iter 100: T = 713.4033177512906 K, F = -0.00023663159370324038, relative_change = 4.008720664186772e-9 Iter 105: T = 713.4033090162478 K, F = -9.896215924576346e-5, relative_change = 1.676494966962587e-9 Iter 110: T = 713.4033053631484 K, F = -4.138715776758062e-5, relative_change = 7.011302493264133e-10 Iter 115: T = 713.4033038353787 K, F = -1.7308603368570985e-5, relative_change = 2.932210418309905e-10 Iter 120: T = 713.403303196447 K, F = -7.238664559983121e-6, relative_change = 1.2262854070872838e-10 Iter 125: T = 713.4033029292382 K, F = -3.0272956771382198e-6, relative_change = 5.128471540117746e-11 Iter 130: T = 713.4033028174882 K, F = -1.2660505139816536e-6, relative_change = 2.144786874695594e-11 Iter 135: T = 713.403302770753 K, F = -5.294766687313768e-7, relative_change = 8.969741707503949e-12 Iter 140: T = 713.4033027512079 K, F = -2.2143329481139062e-7, relative_change = 3.751250201293579e-12 Iter 145: T = 713.4033027430338 K, F = -9.260574551639422e-8, relative_change = 1.5688125032152877e-12 Iter 150: T = 713.4033027396155 K, F = -3.8729609852516944e-8, relative_change = 6.561093574038377e-13 Iter 155: T = 713.4033027381859 K, F = -1.6198337338124702e-8, relative_change = 2.744122841025291e-13 Converged in 157 iterations to T = 713.4033027378833 K Iter 1: T = 969.3591036414023 K, F = -6981.557382323553, relative_change = 0.030640896358597725 Iter 2: T = 940.8601157342042 K, F = -5914.80158220844, relative_change = 0.02939982489475934 Iter 3: T = 914.4637667669881 K, F = -5009.350149581323, relative_change = 0.028055551006769625 Iter 5: T = 867.7921013747023 K, F = -3589.0083423473716, relative_change = 0.025089779381275698 Iter 10: T = 783.7507426324603 K, F = -1547.6240225853123, relative_change = 0.016818626326604413 Iter 15: T = 736.9790643242392 K, F = -659.8810493477712, relative_change = 0.009450081419830354 Iter 20: T = 713.9074811480671 K, F = -278.8469090374873, relative_change = 0.004624041876735234 Iter 25: T = 703.4249623191844 K, F = -117.19347414748174, relative_change = 0.0020829567436013424 Iter 30: T = 698.8715078008069 K, F = -49.119105082516676, relative_change = 0.0009002527521276978 Iter 35: T = 696.9354462514569 K, F = -20.5615099086819, relative_change = 0.0003818460738950192 Iter 40: T = 696.1200412256339 K, F = -8.60248739335042, relative_change = 0.00016064787874894352 Iter 45: T = 695.7780157902992 K, F = -3.5982638543193555, relative_change = 6.735341385844445e-5 Iter 50: T = 695.6347984937908 K, F = -1.5049422344092722, relative_change = 2.8197590751667685e-5 Iter 55: T = 695.5748720774692 K, F = -0.6294032516877692, relative_change = 1.1797752285341545e-5 Iter 60: T = 695.549804666782 K, F = -0.2632271822238317, relative_change = 4.934868012331744e-6 Iter 65: T = 695.5393202195837 K, F = -0.11008531545081429, relative_change = 2.0639794349451806e-6 Iter 70: T = 695.5349353312034 K, F = -0.04603909230512171, relative_change = 8.632086081924502e-7 Iter 75: T = 695.5331014892445 K, F = -0.019254115481982192, relative_change = 3.6100900413961635e-7 Iter 80: T = 695.5323345495168 K, F = -0.008052304053811965, relative_change = 1.5097912607160223e-7 Iter 85: T = 695.5320138052681 K, F = -0.0033675702459493584, relative_change = 6.314142208569915e-8 Iter 90: T = 695.5318796660364 K, F = -0.0014083581865085293, relative_change = 2.6406522762965936e-8 Iter 95: T = 695.5318235673802 K, F = -0.0005889922283230931, relative_change = 1.1043527709090845e-8 Iter 100: T = 695.5318001062475 K, F = -0.00024632358736564886, relative_change = 4.618535981521218e-9 Iter 105: T = 695.5317902945208 K, F = -0.00010301546638646908, relative_change = 1.9315270421429134e-9 Iter 110: T = 695.5317861911393 K, F = -4.3082298140983966e-5, relative_change = 8.077876958998089e-10 Iter 115: T = 695.5317844750562 K, F = -1.801753051156041e-5, relative_change = 3.378264451232486e-10 Iter 120: T = 695.5317837573698 K, F = -7.535147196646719e-6, relative_change = 1.412830688309958e-10 Iter 125: T = 695.5317834572247 K, F = -3.151289608593899e-6, relative_change = 5.908628670057727e-11 Iter 130: T = 695.5317833317005 K, F = -1.3179065289081748e-6, relative_change = 2.4710582888408807e-11 Iter 135: T = 695.5317832792047 K, F = -5.511648276668168e-7, relative_change = 1.0334271714560686e-11 Iter 140: T = 695.5317832572504 K, F = -2.305034085825497e-7, relative_change = 4.321910136875506e-12 Iter 145: T = 695.5317832480688 K, F = -9.639944831274505e-8, relative_change = 1.8074776223061257e-12 Iter 150: T = 695.5317832442289 K, F = -4.031568412443676e-8, relative_change = 7.559140447400566e-13 Iter 155: T = 695.5317832426231 K, F = -1.6860206675239908e-8, relative_change = 3.1612677051036044e-13 Converged in 158 iterations to T = 695.5317832421529 K Iter 1: T = 963.5022210066281 K, F = -8316.053661990534, relative_change = 0.03649777899337189 Iter 2: T = 928.8782188161805 K, F = -7056.563199877346, relative_change = 0.0359355707081546 Iter 3: T = 896.0941969454763 K, F = -5986.919357292354, relative_change = 0.03529420887108988 Iter 5: T = 835.9265002096355 K, F = -4307.131747094386, relative_change = 0.03374459706407346 Iter 10: T = 715.765847297019 K, F = -1882.5443152136704, relative_change = 0.02808397632339355 Iter 15: T = 635.5949722331758 K, F = -815.3931536234971, relative_change = 0.020203806484689092 Iter 20: T = 588.4810399825992 K, F = -349.2169418175807, relative_change = 0.012165190878023127 Iter 25: T = 564.1723612297131 K, F = -148.04305145023778, relative_change = 0.006252360701319359 Iter 30: T = 552.8126622910236 K, F = -62.33143885708261, relative_change = 0.0028943420650361183 Iter 35: T = 547.8061447126875 K, F = -26.147516732997204, relative_change = 0.0012673764628026382 Iter 40: T = 545.6631788109105 K, F = -10.949709054422819, relative_change = 0.000540690230222905 Iter 45: T = 544.7579964316999 K, F = -4.581879081755646, relative_change = 0.00022804275751076077 Iter 50: T = 544.3778414867106 K, F = -1.9166510191446726, relative_change = 9.571015238885952e-5 Iter 55: T = 544.2185747403657 K, F = -0.8016460711617208, relative_change = 4.008689761851368e-5 Iter 60: T = 544.151918110173 K, F = -0.33527192215228735, relative_change = 1.6775295897306434e-5 Iter 65: T = 544.1240328641965 K, F = -0.14021716498272382, relative_change = 7.0174631295410115e-6 Iter 70: T = 544.1123694080678 K, F = -0.05864092033552212, relative_change = 2.935107786481008e-6 Iter 75: T = 544.1074913466954 K, F = -0.024524407958721628, relative_change = 1.2275532633943649e-6 Iter 80: T = 544.1054512368676 K, F = -0.010256413364776895, relative_change = 5.133872533902616e-7 Iter 85: T = 544.1045980304746 K, F = -0.004289356842865882, relative_change = 2.1470639781852653e-7 Iter 90: T = 544.104241207955 K, F = -0.001793860656687296, relative_change = 8.97930800364609e-8 Iter 95: T = 544.1040919802683 K, F = -0.0007502140195800866, relative_change = 3.755259095099455e-8 Iter 100: T = 544.1040295714242 K, F = -0.0003137484745456276, relative_change = 1.570495119052953e-8 Iter 105: T = 544.1040034712927 K, F = -0.0001312133610602284, relative_change = 6.567999747535451e-9 Iter 110: T = 544.1039925559047 K, F = -5.4874994879355876e-5, relative_change = 2.746816208535851e-9 Iter 115: T = 544.1039879909589 K, F = -2.2949378397335574e-5, relative_change = 1.1487513978655984e-9 Iter 120: T = 544.103986081844 K, F = -9.59770416539274e-6, relative_change = 4.804215639125761e-10 Iter 125: T = 544.1039852834292 K, F = -4.013874319114263e-6, relative_change = 2.0091802768438928e-10 Iter 130: T = 544.1039849495227 K, F = -1.67864972305809e-6, relative_change = 8.402629621686566e-11 Iter 135: T = 544.1039848098791 K, F = -7.020312699501652e-7, relative_change = 3.51407960244071e-11 Iter 140: T = 544.1039847514785 K, F = -2.9359825995389777e-7, relative_change = 1.469632053877783e-11 Iter 145: T = 544.1039847270546 K, F = -1.2278688182876252e-7, relative_change = 6.146205954972341e-12 Iter 150: T = 544.1039847168402 K, F = -5.135073935513823e-8, relative_change = 2.5704066700312576e-12 Iter 155: T = 544.1039847125684 K, F = -2.147539482355576e-8, relative_change = 1.0749698795244768e-12 Iter 160: T = 544.1039847107819 K, F = -8.981481308678596e-9, relative_change = 4.495759896298801e-13 Converged in 165 iterations to T = 544.1039847100349 K Iter 1: T = 966.9467126215404 K, F = -7531.2229709753465, relative_change = 0.03305328737845953 Iter 2: T = 935.9530552747256 K, F = -6384.657205738701, relative_change = 0.03205311827658665 Iter 3: T = 906.9885314683431 K, F = -5411.179685912591, relative_change = 0.030946556179444907 Iter 5: T = 855.0151664786251 K, F = -3883.259810023265, relative_change = 0.028415059806366633 Iter 10: T = 757.7576234562149 K, F = -1682.8242854528903, relative_change = 0.020608129223799808 Iter 15: T = 700.2292017029681 K, F = -721.1148415354868, relative_change = 0.012515181032841107 Iter 20: T = 670.3758076109546 K, F = -305.8303826165612, relative_change = 0.006474127940682425 Iter 25: T = 656.3718452625211 K, F = -128.79753412621014, relative_change = 0.0030083167641051095 Iter 30: T = 650.1874089892591 K, F = -54.03610768993674, relative_change = 0.0013197201569801443 Iter 35: T = 647.5377336608644 K, F = -22.629771539124963, relative_change = 0.0005634887568618865 Iter 40: T = 646.4180501418073 K, F = -9.469598637897786, relative_change = 0.00023774343063634131 Iter 45: T = 645.9477256929667 K, F = -3.9612785718506363, relative_change = 9.979669138958373e-5 Iter 50: T = 645.7506673509159 K, F = -1.6568258280071233, relative_change = 4.180115601967644e-5 Iter 55: T = 645.6681914925555 K, F = -0.692934439014987, relative_change = 1.7493135109999357e-5 Iter 60: T = 645.6336879458765 K, F = -0.28979872358165115, relative_change = 7.317832474335276e-6 Iter 65: T = 645.6192561979648 K, F = -0.12119820831491052, relative_change = 3.0607539065964576e-6 Iter 70: T = 645.6132203270374 K, F = -0.05068669925365116, relative_change = 1.28010488258989e-6 Iter 75: T = 645.6106959939802 K, F = -0.02119781113293917, relative_change = 5.353658272023112e-7 Iter 80: T = 645.6096402772979 K, F = -0.008865182697763707, relative_change = 2.2389825009233587e-7 Iter 85: T = 645.6091987621456 K, F = -0.0037075261383056057, relative_change = 9.36372487315421e-8 Iter 90: T = 645.6090141149164 K, F = -0.0015505318583571848, relative_change = 3.916027279897599e-8 Iter 95: T = 645.608936893184 K, F = -0.0006484509657161963, relative_change = 1.637730372204846e-8 Iter 100: T = 645.6089045981236 K, F = -0.00027118994144015307, relative_change = 6.849185720887446e-9 Iter 105: T = 645.608891091942 K, F = -0.00011341487319049826, relative_change = 2.8644115752868502e-9 Iter 110: T = 645.6088854434953 K, F = -4.7431454293200837e-5, relative_change = 1.1979311755805952e-9 Iter 115: T = 645.6088830812473 K, F = -1.983640040953416e-5, relative_change = 5.009891269397518e-10 Iter 120: T = 645.608882093327 K, F = -8.295819937165216e-6, relative_change = 2.095196473172167e-10 Iter 125: T = 645.608881680167 K, F = -3.4694112421296275e-6, relative_change = 8.762362582239877e-11 Iter 130: T = 645.6088815073784 K, F = -1.4509484367875025e-6, relative_change = 3.664522715866431e-11 Iter 135: T = 645.6088814351162 K, F = -6.068042432971765e-7, relative_change = 1.5325478690027893e-11 Iter 140: T = 645.6088814048953 K, F = -2.537722554318833e-7, relative_change = 6.409284932609987e-12 Iter 145: T = 645.6088813922565 K, F = -1.0613042344953527e-7, relative_change = 2.6804353486648412e-12 Iter 150: T = 645.6088813869709 K, F = -4.438497352987625e-8, relative_change = 1.120989138993131e-12 Iter 155: T = 645.6088813847605 K, F = -1.856267350941465e-8, relative_change = 4.688198221197981e-13 Converged in 160 iterations to T = 645.608881383836 K Iter 1: T = 965.1707067255062 K, F = -7935.887603804507, relative_change = 0.034829293274493814 Iter 2: T = 932.3153465664749 K, F = -6730.946068717903, relative_change = 0.03404098355875124 Iter 3: T = 901.4044501835607 K, F = -5707.740481882345, relative_change = 0.03315497969303269 Iter 5: T = 845.3030599861117 K, F = -4101.24639920734, relative_change = 0.031071074553952777 Iter 10: T = 736.9230640034261 K, F = -1784.7011146942707, relative_change = 0.024088388276902746 Iter 15: T = 669.1311326766794 K, F = -768.4761549189507, relative_change = 0.01578364504729251 Iter 20: T = 632.0290008115066 K, F = -327.2342572518632, relative_change = 0.008689386455198497 Iter 25: T = 613.9590292379588 K, F = -138.1583071405946, relative_change = 0.00419512190458353 Iter 30: T = 605.8102848152499 K, F = -58.03781785675147, relative_change = 0.0018763962920824051 Iter 35: T = 602.2837167327312 K, F = -24.3199562365684, relative_change = 0.0008083024965373925 Iter 40: T = 600.7867887061766 K, F = -10.179476802331921, relative_change = 0.0003423485214688412 Iter 45: T = 600.1567901804948 K, F = -4.258695638710597, relative_change = 0.00014394166318377233 Iter 50: T = 599.892615833688 K, F = -1.7813038749319903, relative_change = 6.033340432307475e-5 Iter 55: T = 599.7820116985233 K, F = -0.7450092528187077, relative_change = 2.525588929173793e-5 Iter 60: T = 599.7357341254087 K, F = -0.311579940953284, relative_change = 1.0566472248262183e-5 Iter 65: T = 599.7163765101307 K, F = -0.1303078824752276, relative_change = 4.419752495735382e-6 Iter 70: T = 599.7082802626181 K, F = -0.054496562810924465, relative_change = 1.848520567252656e-6 Iter 75: T = 599.7048941994834 K, F = -0.022791157145284624, relative_change = 7.730956426238276e-7 Iter 80: T = 599.7034780871992 K, F = -0.009531541752906159, relative_change = 3.2332172481684614e-7 Iter 85: T = 599.7028858485895 K, F = -0.003986205930174236, relative_change = 1.3521768774591904e-7 Iter 90: T = 599.7026381667107 K, F = -0.0016670791589633027, relative_change = 5.6549770974003834e-8 Iter 95: T = 599.7025345830828 K, F = -0.0006971924538146101, relative_change = 2.3649810386888978e-8 Iter 100: T = 599.7024912631537 K, F = -0.0002915742174531277, relative_change = 9.890636782189283e-9 Iter 105: T = 599.7024731462386 K, F = -0.00012193982132163717, relative_change = 4.136383065611621e-9 Iter 110: T = 599.7024655695278 K, F = -5.0996689909932336e-5, relative_change = 1.7298849132926836e-9 Iter 115: T = 599.7024624008567 K, F = -2.1327424207628898e-5, relative_change = 7.23458529748109e-10 Iter 120: T = 599.7024610756807 K, F = -8.91938395658487e-6, relative_change = 3.025590154983367e-10 Iter 125: T = 599.7024605214762 K, F = -3.730192665751808e-6, relative_change = 1.2653378652920723e-10 Iter 130: T = 599.7024602897013 K, F = -1.5600111243352366e-6, relative_change = 5.291794087886588e-11 Iter 135: T = 599.7024601927702 K, F = -6.524157318277268e-7, relative_change = 2.2130930102553454e-11 Iter 140: T = 599.7024601522324 K, F = -2.728479995828259e-7, relative_change = 9.255417542455588e-12 Iter 145: T = 599.7024601352792 K, F = -1.1410874445338948e-7, relative_change = 3.8707415004632585e-12 Iter 150: T = 599.7024601281892 K, F = -4.7722302887187595e-8, relative_change = 1.6188128191084051e-12 Iter 155: T = 599.702460125224 K, F = -1.9958276586962143e-8, relative_change = 6.770149810964006e-13 Iter 160: T = 599.7024601239838 K, F = -8.346641655609943e-9, relative_change = 2.8313073115933496e-13 Converged in 162 iterations to T = 599.7024601237214 K Iter 1: T = 980.0581227381855 K, F = -4543.775703726922, relative_change = 0.019941877261814477 Iter 2: T = 962.1635788815067 K, F = -3838.2276549382764, relative_change = 0.01825865572817573 Iter 3: T = 946.1960651374927 K, F = -3240.724487933133, relative_change = 0.01659542524211519 Iter 5: T = 919.5207730982086 K, F = -2307.1068033173174, relative_change = 0.013418067474727634 Iter 10: T = 877.1352857566474 K, F = -979.5368637754859, relative_change = 0.007059476309797792 Iter 15: T = 857.0528756309301 K, F = -412.7941043065356, relative_change = 0.003313272493273848 Iter 20: T = 848.135986206139 K, F = -173.24179094381557, relative_change = 0.001460723753888793 Iter 25: T = 844.3058283234647 K, F = -72.56269835860105, relative_change = 0.0006250915851216402 Iter 30: T = 842.6854737647633 K, F = -30.366365879385974, relative_change = 0.0002639898589330053 Iter 35: T = 842.0045123960284 K, F = -12.703064829447056, relative_change = 0.000110859558785009 Iter 40: T = 841.7191422642197 K, F = -5.313185587086052, relative_change = 4.644300372619222e-5 Iter 45: T = 841.5996945571511 K, F = -2.2221448899160086, relative_change = 1.9437083688141663e-5 Iter 50: T = 841.5497221428562 K, F = -0.929346295952948, relative_change = 8.131283105933604e-6 Iter 55: T = 841.5288199397354 K, F = -0.3886670024935792, relative_change = 3.4010306021389934e-6 Iter 60: T = 841.5200778389626 K, F = -0.16254575630456025, relative_change = 1.4224269932795566e-6 Iter 65: T = 841.5164216918452 K, F = -0.06797867691169412, relative_change = 5.948891406696041e-7 Iter 70: T = 841.5148926306362 K, F = -0.028429512078967933, relative_change = 2.4879204914946676e-7 Iter 75: T = 841.5142531560357 K, F = -0.01188956454086143, relative_change = 1.040482094811208e-7 Iter 80: T = 841.5139857196064 K, F = -0.004972358420436418, relative_change = 4.3514274355720635e-8 Iter 85: T = 841.5138738744078 K, F = -0.002079499767820847, relative_change = 1.8198201543654912e-8 Iter 90: T = 841.5138270993942 K, F = -0.0008696716519251968, relative_change = 7.610707359519413e-9 Iter 95: T = 841.5138075375223 K, F = -0.0003637070741746573, relative_change = 3.182889089665564e-9 Iter 100: T = 841.5137993565135 K, F = -0.0001521066460172804, relative_change = 1.3311223257964165e-9 Iter 105: T = 841.5137959351176 K, F = -6.361281462075041e-5, relative_change = 5.566912531751156e-10 Iter 110: T = 841.5137945042491 K, F = -2.6603640803868345e-5, relative_change = 2.328149500430252e-10 Iter 115: T = 841.5137939058428 K, F = -1.112596175101288e-5, relative_change = 9.736600554448242e-11 Iter 120: T = 841.513793655582 K, F = -4.6530113719800426e-6, relative_change = 4.071963771069114e-11 Iter 125: T = 841.51379355092 K, F = -1.9459425788515006e-6, relative_change = 1.70294182689361e-11 Iter 130: T = 841.513793507149 K, F = -8.138161069481953e-7, relative_change = 7.121903304479716e-12 Iter 135: T = 841.5137934888435 K, F = -3.403466561913149e-7, relative_change = 2.978456625463297e-12 Iter 140: T = 841.513793481188 K, F = -1.4233757417159154e-7, relative_change = 1.245630838881537e-12 Iter 145: T = 841.5137934779863 K, F = -5.9525922413428134e-8, relative_change = 5.209258700938131e-13 Converged in 150 iterations to T = 841.5137934766473 K Iter 1: T = 976.3883500598356 K, F = -5379.936899343968, relative_change = 0.023611649940164382 Iter 2: T = 954.9393303348747 K, F = -4549.1527464456585, relative_change = 0.021967713690609268 Iter 3: T = 935.5617095910557 K, F = -3844.9199126816816, relative_change = 0.020291991468215875 Iter 5: T = 902.6012463895515 K, F = -2742.8152773141824, relative_change = 0.01693826384664075 Iter 10: T = 848.2905607404896 K, F = -1169.6708220906949, relative_change = 0.009540065239551752 Iter 15: T = 821.4596867783459 K, F = -494.321406321991, relative_change = 0.004675558376005823 Iter 20: T = 809.2581576264719 K, F = -207.7646251348352, relative_change = 0.0021079673130321545 Iter 25: T = 803.9556010008833 K, F = -87.08236428417561, relative_change = 0.0009114282623756601 Iter 30: T = 801.7005709337116 K, F = -36.45355425563193, relative_change = 0.0003866545101721948 Iter 35: T = 800.7507426771441 K, F = -15.251448969949617, relative_change = 0.00016268313409899347 Iter 40: T = 800.3523177831462 K, F = -6.379416982035611, relative_change = 6.820889041685189e-5 Iter 45: T = 800.1854815333473 K, F = -2.6681374689835073, relative_change = 2.855611901993839e-5 Iter 50: T = 800.1156717737323 K, F = -1.115880057188077, relative_change = 1.1947825930026368e-5 Iter 55: T = 800.0864700477913 K, F = -0.46668015824761144, relative_change = 4.99765385952262e-6 Iter 60: T = 800.0742564085693 K, F = -0.1951722286550972, relative_change = 2.090241295350137e-6 Iter 65: T = 800.0691483213437 K, F = -0.08162353406873524, relative_change = 8.741923436682753e-7 Iter 70: T = 800.0670120237279 K, F = -0.03413596772689642, relative_change = 3.656026580239265e-7 Iter 75: T = 800.0661185925118 K, F = -0.01427607478818349, relative_change = 1.5290026875028547e-7 Iter 80: T = 800.0657449478512 K, F = -0.005970425915396205, relative_change = 6.394487073181721e-8 Iter 85: T = 800.065588685007 K, F = -0.0024969035855265664, relative_change = 2.6742535247203678e-8 Iter 90: T = 800.0655233339872 K, F = -0.0010442349284792707, relative_change = 1.118405228122225e-8 Iter 95: T = 800.0654960034046 K, F = -0.0004367115243897324, relative_change = 4.677305060173512e-9 Iter 100: T = 800.0654845734276 K, F = -0.00018263797710227347, relative_change = 1.956104991231949e-9 Iter 105: T = 800.0654797932746 K, F = -7.638138378363024e-5, relative_change = 8.18066497872864e-10 Iter 110: T = 800.0654777941573 K, F = -3.1943606841000616e-5, relative_change = 3.4212518279009677e-10 Iter 115: T = 800.0654769581027 K, F = -1.3359198343443346e-5, relative_change = 1.4308084308292957e-10 Iter 120: T = 800.0654766084547 K, F = -5.586977050442421e-6, relative_change = 5.98381255951616e-11 Iter 125: T = 800.0654764622277 K, F = -2.3365411833120575e-6, relative_change = 2.5025025813537287e-11 Iter 130: T = 800.0654764010739 K, F = -9.771701425798085e-7, relative_change = 1.0465772324420946e-11 Iter 135: T = 800.0654763754985 K, F = -4.086640913447681e-7, relative_change = 4.376909559004821e-12 Iter 140: T = 800.0654763648025 K, F = -1.7090707782330128e-7, relative_change = 1.8304637929220886e-12 Iter 145: T = 800.0654763603295 K, F = -7.147604796919893e-8, relative_change = 7.655289619282577e-13 Iter 150: T = 800.0654763584588 K, F = -2.9894238084970937e-8, relative_change = 3.2017585889668265e-13 Converged in 153 iterations to T = 800.065476357911 K Iter 1: T = 980.8137699375959 K, F = -4371.600770535205, relative_change = 0.019186230062404063 Iter 2: T = 963.6406423120054 K, F = -3692.015509890962, relative_change = 0.01750906048829547 Iter 3: T = 948.3550789491571 K, F = -3116.625045530876, relative_change = 0.01586230664386933 Iter 5: T = 922.9092923315172 K, F = -2217.8689866884083, relative_change = 0.012745383516411624 Iter 10: T = 882.7526082949346 K, F = -940.8783586299187, relative_change = 0.006621594939408129 Iter 15: T = 863.867750998503 K, F = -396.30758817839774, relative_change = 0.003084591414043189 Iter 20: T = 855.5164824614321 K, F = -166.28176245337795, relative_change = 0.001354860232180773 Iter 25: T = 851.9361559163327 K, F = -69.63969629027434, relative_change = 0.0005788158704676102 Iter 30: T = 850.42277699881 K, F = -29.141724611603806, relative_change = 0.0002442690408850442 Iter 35: T = 849.787003644388 K, F = -12.19051414359553, relative_change = 0.00010254640541611222 Iter 40: T = 849.5206113203818 K, F = -5.098761989547062, relative_change = 4.2954756786572105e-5 Iter 45: T = 849.4091143639636 K, F = -2.132458323144272, relative_change = 1.7976223149895286e-5 Iter 50: T = 849.3624695035559 K, F = -0.8918361917298521, relative_change = 7.519977485324282e-6 Iter 55: T = 849.3429593530024 K, F = -0.37297945959255296, relative_change = 3.1453129342606984e-6 Iter 60: T = 849.3347995004386 K, F = -0.15598497390443855, relative_change = 1.3154719014598654e-6 Iter 65: T = 849.3313868696309 K, F = -0.06523486806288958, relative_change = 5.501573357517318e-7 Iter 70: T = 849.3299596521516 K, F = -0.027282016477783166, relative_change = 2.3008434038854947e-7 Iter 75: T = 849.3293627702177 K, F = -0.011409667831666415, relative_change = 9.622436389091634e-8 Iter 80: T = 849.3291131466206 K, F = -0.004771659825075769, relative_change = 4.0242238483343615e-8 Iter 85: T = 849.3290087509732 K, F = -0.0019955652055205775, relative_change = 1.6829795260292414e-8 Iter 90: T = 849.3289650914533 K, F = -0.0008345692159230644, relative_change = 7.038423216336248e-9 Iter 95: T = 849.3289468325182 K, F = -0.00034902681349513465, relative_change = 2.9435529514059712e-9 Iter 100: T = 849.3289391964132 K, F = -0.0001459671843329069, relative_change = 1.2310290729293899e-9 Iter 105: T = 849.3289360029028 K, F = -6.104521951333375e-5, relative_change = 5.14831067496927e-10 Iter 110: T = 849.3289346673384 K, F = -2.55298372839885e-5, relative_change = 2.1530848091184674e-10 Iter 115: T = 849.3289341087896 K, F = -1.0676881573523644e-5, relative_change = 9.004456762091865e-11 Iter 120: T = 849.3289338751979 K, F = -4.46519973129611e-6, relative_change = 3.7657716525502094e-11 Iter 125: T = 849.328933777507 K, F = -1.867403501831788e-6, relative_change = 1.5748937557337676e-11 Iter 130: T = 849.3289337366515 K, F = -7.80969624303296e-7, relative_change = 6.586386840381424e-12 Iter 135: T = 849.3289337195653 K, F = -3.266119708023041e-7, relative_change = 2.7545153097708133e-12 Iter 140: T = 849.3289337124196 K, F = -1.3659350073247367e-7, relative_change = 1.1519751957456643e-12 Iter 145: T = 849.3289337094311 K, F = -5.712363582155433e-8, relative_change = 4.817579987734884e-13 Converged in 150 iterations to T = 849.3289337081814 K Iter 1: T = 967.3297481854299 K, F = -7443.947953382242, relative_change = 0.03267025181457004 Iter 2: T = 936.7348040210351 K, F = -6310.014471189868, relative_change = 0.031628246956931165 Iter 3: T = 908.1837925327147 K, F = -5347.301482853721, relative_change = 0.030479289726144512 Iter 5: T = 857.0750426389914 K, F = -3836.3993413295625, relative_change = 0.02786617230190794 Iter 10: T = 762.0505417661687 K, F = -1661.1268424835612, relative_change = 0.019942101950152245 Iter 15: T = 706.4407472184918 K, F = -711.1793951043085, relative_change = 0.0119420808073937 Iter 20: T = 677.8532869312528 K, F = -301.40879407032554, relative_change = 0.006112549949219223 Iter 25: T = 664.5259926849508 K, F = -126.88418241777907, relative_change = 0.0028229432500525395 Iter 30: T = 658.6597407252877 K, F = -53.2227846897932, relative_change = 0.0012346876519752793 Iter 35: T = 656.1502652682568 K, F = -22.287163623648922, relative_change = 0.0005264722796678043 Iter 40: T = 655.0905462543958 K, F = -9.325871061508371, relative_change = 0.00022199671100229414 Iter 45: T = 654.6455391109099 K, F = -3.901091156197884, relative_change = 9.316382136903099e-5 Iter 50: T = 654.4591111430258 K, F = -1.6316408692378104, relative_change = 3.901885378298064e-5 Iter 55: T = 654.3810884823539 K, F = -0.6823993582895942, relative_change = 1.6328076624108405e-5 Iter 60: T = 654.3484486215517 K, F = -0.2853924015545608, relative_change = 6.8303342596681094e-6 Iter 65: T = 654.334796517849 K, F = -0.11935535737839309, relative_change = 2.8568313832028038e-6 Iter 70: T = 654.3290867434232 K, F = -0.049915983960306554, relative_change = 1.1948141845593051e-6 Iter 75: T = 654.3266987948116 K, F = -0.020875486515660013, relative_change = 4.996948632629532e-7 Iter 80: T = 654.3257001169566 K, F = -0.008730382295353722, relative_change = 2.0897998640351618e-7 Iter 85: T = 654.3252824563369 K, F = -0.0036511509302312173, relative_change = 8.739821061185166e-8 Iter 90: T = 654.3251077853957 K, F = -0.001526955062132962, relative_change = 3.6551025218507725e-8 Iter 95: T = 654.3250347358727 K, F = -0.0006385908670230034, relative_change = 1.528608396550586e-8 Iter 100: T = 654.3250041856811 K, F = -0.0002670663308935173, relative_change = 6.392824383646025e-9 Iter 105: T = 654.3249914092246 K, F = -0.00011169032947677682, relative_change = 2.673555763042533e-9 Iter 110: T = 654.3249860659577 K, F = -4.6710228993496195e-5, relative_change = 1.1181129768254856e-9 Iter 115: T = 654.3249838313395 K, F = -1.953477542049331e-5, relative_change = 4.676082032312678e-10 Iter 120: T = 654.3249828967956 K, F = -8.169677104374884e-6, relative_change = 1.9555935379354533e-10 Iter 125: T = 654.3249825059582 K, F = -3.416656373544935e-6, relative_change = 8.17852536775753e-11 Iter 130: T = 654.3249823425052 K, F = -1.4288858752320444e-6, relative_change = 3.4203554921706786e-11 Iter 135: T = 654.3249822741473 K, F = -5.975768899157963e-7, relative_change = 1.4304329225050743e-11 Iter 140: T = 654.3249822455592 K, F = -2.499142012779565e-7, relative_change = 5.982251111388919e-12 Iter 145: T = 654.3249822336034 K, F = -1.0451786774945404e-7, relative_change = 2.501867150251115e-12 Iter 150: T = 654.3249822286032 K, F = -4.370936357300792e-8, relative_change = 1.0462806335449866e-12 Iter 155: T = 654.3249822265121 K, F = -1.8280624347610797e-8, relative_change = 4.3758731907317273e-13 Converged in 159 iterations to T = 654.3249822257574 K Iter 1: T = 973.4292636939591 K, F = -6054.167542626743, relative_change = 0.0265707363060409 Iter 2: T = 949.051650644357 K, F = -5123.423402210125, relative_change = 0.02504302465398896 Iter 3: T = 926.8004188701702 K, F = -4333.953927389342, relative_change = 0.02344575425276304 Iter 5: T = 888.357820344381 K, F = -3097.0925876050846, relative_change = 0.020119847124130782 Iter 10: T = 822.8356247654636 K, F = -1326.277897480593, relative_change = 0.01209365978168286 Iter 15: T = 789.0681417600035 K, F = -562.199622292606, relative_change = 0.0062075006402399595 Iter 20: T = 773.3002084970364 K, F = -236.69453557961603, relative_change = 0.0028714155580796437 Iter 25: T = 766.3536624190065 K, F = -99.288963951789, relative_change = 0.0012568754359380326 Iter 30: T = 763.3808560671281 K, F = -41.57845639646266, relative_change = 0.0005361218977721462 Iter 35: T = 762.1252555694681 K, F = -17.39832171411262, relative_change = 0.00022609994456908867 Iter 40: T = 761.5979520599935 K, F = -7.277897073467367, relative_change = 9.4891893086081e-5 Iter 45: T = 761.3770404000613 K, F = -3.0440036449243646, relative_change = 3.9743677948833894e-5 Iter 50: T = 761.2845845997972 K, F = -1.2730912430868435, relative_change = 1.6631579427235735e-5 Iter 55: T = 761.2459065875241 K, F = -0.5324311602876313, relative_change = 6.9573280269917164e-6 Iter 60: T = 761.2297288997316 K, F = -0.2226706789471362, relative_change = 2.909953115680949e-6 Iter 65: T = 761.2229628334165 K, F = -0.09312381863462926, relative_change = 1.2170323257335773e-6 Iter 70: T = 761.2201331199964 K, F = -0.03894554230681435, relative_change = 5.089871047564262e-7 Iter 75: T = 761.2189496889117 K, F = -0.016287499507376624, relative_change = 2.1286617391110973e-7 Iter 80: T = 761.2184547619509 K, F = -0.006811628312333062, relative_change = 8.902347133447884e-8 Iter 85: T = 761.2182477772444 K, F = -0.002848704570270977, relative_change = 3.723073050143038e-8 Iter 90: T = 761.2181612137088 K, F = -0.001191362319076461, relative_change = 1.557034516997444e-8 Iter 95: T = 761.2181250117939 K, F = -0.0004982419573690278, relative_change = 6.5117058738548255e-9 Iter 100: T = 761.2181098717189 K, F = -0.00020837073654556004, relative_change = 2.723273416709887e-9 Iter 105: T = 761.2181035399584 K, F = -8.714313056290557e-5, relative_change = 1.138905511606758e-9 Iter 110: T = 761.2181008919405 K, F = -3.644429786542336e-5, relative_change = 4.763038936622155e-10 Iter 115: T = 761.2180997845078 K, F = -1.5241440967983522e-5, relative_change = 1.9919598273411965e-10 Iter 120: T = 761.2180993213661 K, F = -6.374151936272554e-6, relative_change = 8.330613000356601e-11 Iter 125: T = 761.2180991276749 K, F = -2.6657478562341907e-6, relative_change = 3.4839636701078365e-11 Iter 130: T = 761.218099046671 K, F = -1.114848710015437e-6, relative_change = 1.4570366796862752e-11 Iter 135: T = 761.218099012794 K, F = -4.662441425162811e-7, relative_change = 6.09351575129539e-12 Iter 140: T = 761.2180989986264 K, F = -1.9498924852534572e-7, relative_change = 2.5483860256458765e-12 Iter 145: T = 761.2180989927012 K, F = -8.154772568325086e-8, relative_change = 1.0657771448105694e-12 Iter 150: T = 761.2180989902233 K, F = -3.4104810420210185e-8, relative_change = 4.4572827960530466e-13 Converged in 154 iterations to T = 761.2180989893288 K Iter 1: T = 969.8509131184859 K, F = -6869.498125138455, relative_change = 0.030149086881514076 Iter 2: T = 941.8557311822976 K, F = -5819.086314343119, relative_change = 0.02886544886179642 Iter 3: T = 915.9725608462077 K, F = -4927.569669322595, relative_change = 0.02748103502390875 Iter 5: T = 870.3411859284968 K, F = -3529.2719500423127, relative_change = 0.02444863737566397 Iter 10: T = 788.7666332261058 K, F = -1520.4583990984747, relative_change = 0.01615094766379663 Iter 15: T = 743.8547505358102 K, F = -647.7466608172796, relative_change = 0.008955952611111708 Iter 20: T = 721.8829608436765 K, F = -273.56277291360544, relative_change = 0.004344150858407713 Iter 25: T = 711.9487711121792 K, F = -114.93749695782179, relative_change = 0.001947839902095894 Iter 30: T = 707.6439690601917 K, F = -48.166647094788715, relative_change = 0.0008400377171358275 Iter 35: T = 705.8156417773089 K, F = -20.161532913897165, relative_change = 0.00035596769577192245 Iter 40: T = 705.0459772098909 K, F = -8.434918099015707, relative_change = 0.0001496998312340724 Iter 45: T = 704.7232030187407 K, F = -3.5281324825368605, relative_change = 6.275259655760007e-5 Iter 50: T = 704.5880583375942 K, F = -1.47560334826191, relative_change = 2.6269568142021258e-5 Iter 55: T = 704.5315117610286 K, F = -0.6171317835372162, relative_change = 1.0990745535561292e-5 Iter 60: T = 704.5078585009722 K, F = -0.25809482844336273, relative_change = 4.597248290457161e-6 Iter 65: T = 704.4979655841828 K, F = -0.10793885495260902, relative_change = 1.9227618631295747e-6 Iter 70: T = 704.4938281011293 K, F = -0.045141408343790435, relative_change = 8.041460645035737e-7 Iter 75: T = 704.4920977305742 K, F = -0.01887869183495694, relative_change = 3.3630770133972093e-7 Iter 80: T = 704.4913740644427 K, F = -0.007895297139270174, relative_change = 1.4064863400346013e-7 Iter 85: T = 704.4910714178371 K, F = -0.00330190803575936, relative_change = 5.882106734242032e-8 Iter 90: T = 704.4909448472747 K, F = -0.001380897458217345, relative_change = 2.4599695383173393e-8 Iter 95: T = 704.4908919139299 K, F = -0.0005775078238302589, relative_change = 1.0287890346435086e-8 Iter 100: T = 704.4908697765686 K, F = -0.0002415206717707452, relative_change = 4.30251930239799e-9 Iter 105: T = 704.490860518459 K, F = -0.00010100682930591631, relative_change = 1.7993650678750757e-9 Iter 110: T = 704.490856646607 K, F = -4.224226277016463e-5, relative_change = 7.525159885511756e-10 Iter 115: T = 704.4908550273522 K, F = -1.766621965992865e-5, relative_change = 3.1471119265477917e-10 Iter 120: T = 704.4908543501604 K, F = -7.38822380563775e-6, relative_change = 1.316159756231317e-10 Iter 125: T = 704.4908540669506 K, F = -3.0898424397962643e-6, relative_change = 5.504335530599297e-11 Iter 130: T = 704.4908539485091 K, F = -1.292208760994562e-6, relative_change = 2.3019784148788217e-11 Iter 135: T = 704.4908538989754 K, F = -5.404174487910751e-7, relative_change = 9.627154219260267e-12 Iter 140: T = 704.4908538782598 K, F = -2.260093218131587e-7, relative_change = 4.0261960476251985e-12 Iter 145: T = 704.4908538695962 K, F = -9.451868543397524e-8, relative_change = 1.6837834594180243e-12 Iter 150: T = 704.490853865973 K, F = -3.9528570416891284e-8, relative_change = 7.041734947797686e-13 Iter 155: T = 704.4908538644578 K, F = -1.6530927404723172e-8, relative_change = 2.944867674161955e-13 Converged in 157 iterations to T = 704.4908538641371 K Iter 1: T = 973.6157897944755 K, F = -6011.667393191948, relative_change = 0.026384210205524474 Iter 2: T = 949.4244498357409 K, F = -5087.197382151607, relative_change = 0.024846905948229563 Iter 3: T = 927.3577484010696 K, F = -4303.078458457124, relative_change = 0.02324218787338912 Iter 5: T = 889.2725058865767 K, F = -3074.6796763571037, relative_change = 0.019909300995899777 Iter 10: T = 824.5064612683681 K, F = -1316.3083012588602, relative_change = 0.011914409204204734 Iter 15: T = 791.2268886664192 K, F = -557.853611031118, relative_change = 0.006095327647156516 Iter 20: T = 775.7166712926132 K, F = -234.83542958123053, relative_change = 0.00281418027839609 Iter 25: T = 768.890613728347 K, F = -98.50305725961279, relative_change = 0.0012306826129669004 Iter 30: T = 765.9707602301477 K, F = -41.24821062594504, relative_change = 0.0005247316293488486 Iter 35: T = 764.737782683922 K, F = -17.259926429186624, relative_change = 0.0002212567595001326 Iter 40: T = 764.2200261520297 K, F = -7.2199684918237965, relative_change = 9.285222936612154e-5 Iter 45: T = 764.003122328946 K, F = -3.0197684269957787, relative_change = 3.888816594359603e-5 Iter 50: T = 763.9123453211118 K, F = -1.2629542442840165, relative_change = 1.6273355376065586e-5 Iter 55: T = 763.8743698673156 K, F = -0.5281914765215125, relative_change = 6.807437615541385e-6 Iter 60: T = 763.8584860796919 K, F = -0.22089754535630868, relative_change = 2.8472537093929233e-6 Iter 65: T = 763.8518429402534 K, F = -0.09238226473439526, relative_change = 1.1908083329479076e-6 Iter 70: T = 763.8490646388253 K, F = -0.03863541416488847, relative_change = 4.98019506327951e-7 Iter 75: T = 763.8479027092877 K, F = -0.01615779996210398, relative_change = 2.0827932130054768e-7 Iter 80: T = 763.8474167746072 K, F = -0.006757386367875706, relative_change = 8.710518218759216e-8 Iter 85: T = 763.8472135505932 K, F = -0.002826019933583779, relative_change = 3.6428476869634195e-8 Iter 90: T = 763.8471285598264 K, F = -0.0011818753304204677, relative_change = 1.5234832717841196e-8 Iter 95: T = 763.8470930156626 K, F = -0.0004942743843245889, relative_change = 6.371390481228916e-9 Iter 100: T = 763.8470781506671 K, F = -0.00020671145134176783, relative_change = 2.6645918486587415e-9 Iter 105: T = 763.8470719339482 K, F = -8.644919789657646e-5, relative_change = 1.1143641799678999e-9 Iter 110: T = 763.8470693340421 K, F = -3.615408736268311e-5, relative_change = 4.660404208436176e-10 Iter 115: T = 763.8470682467303 K, F = -1.5120072641261473e-5, relative_change = 1.9490369080510517e-10 Iter 120: T = 763.8470677920035 K, F = -6.323394717178132e-6, relative_change = 8.151104836133673e-11 Iter 125: T = 763.8470676018313 K, F = -2.6445197940372367e-6, relative_change = 3.408890172460933e-11 Iter 130: T = 763.847067522299 K, F = -1.1059692472947802e-6, relative_change = 1.4256379205468373e-11 Iter 135: T = 763.8470674890377 K, F = -4.6253045937749704e-7, relative_change = 5.9621997993716736e-12 Iter 140: T = 763.8470674751275 K, F = -1.9343620205614087e-7, relative_change = 2.493468833906704e-12 Iter 145: T = 763.84706746931 K, F = -8.089681524658943e-8, relative_change = 1.0427918116819243e-12 Iter 150: T = 763.8470674668771 K, F = -3.38339634087248e-8, relative_change = 4.3613311466407277e-13 Converged in 154 iterations to T = 763.8470674659987 K Iter 1: T = 964.3454253765913 K, F = -8123.928744199997, relative_change = 0.03565457462340871 Iter 2: T = 930.6176355237982 K, F = -6891.970346812899, relative_change = 0.034974801523657215 Iter 3: T = 898.7857226850722 K, F = -5845.760881158311, relative_change = 0.0342051468010376 Iter 5: T = 840.6966377161825 K, F = -4202.947965878406, relative_change = 0.032370854265768745 Iter 10: T = 726.6674544804538 K, F = -1832.818222212296, relative_change = 0.025963499605707784 Iter 15: T = 653.1547598720449 K, F = -791.3408042477408, relative_change = 0.017759216300053077 Iter 20: T = 611.6182034197245 K, F = -337.82342270235046, relative_change = 0.010168167851859273 Iter 25: T = 590.8826106434341 K, F = -142.87405104854273, relative_change = 0.005039494860965937 Iter 30: T = 581.393191201127 K, F = -60.0743163275152, relative_change = 0.0022858197392383807 Iter 35: T = 577.2561107634656 K, F = -25.184281687799146, relative_change = 0.0009911468956138915 Iter 40: T = 575.4941689129387 K, F = -10.543274999525902, relative_change = 0.00042100209337464685 Iter 45: T = 574.7515633853374 K, F = -4.411256450066956, relative_change = 0.00017722995742203848 Iter 50: T = 574.4399788122729 K, F = -1.8451800787206858, relative_change = 7.432486850842839e-5 Iter 55: T = 574.3094913132752 K, F = -0.7717359410319597, relative_change = 3.1119580526842904e-5 Iter 60: T = 574.2548884792234 K, F = -0.32275962053923435, relative_change = 1.3020893146926757e-5 Iter 65: T = 574.2320474237372 K, F = -0.13498375343192812, relative_change = 5.446597940026362e-6 Iter 70: T = 574.2224940594997 K, F = -0.05645213706859456, relative_change = 2.278025614306413e-6 Iter 75: T = 574.2184985601904 K, F = -0.023609013754917557, relative_change = 9.527313314051163e-7 Iter 80: T = 574.2168275652261 K, F = -0.009873581270699816, relative_change = 3.984495351836442e-7 Iter 85: T = 574.2161287300275 K, F = -0.004129251310101112, relative_change = 1.6663738851623502e-7 Iter 90: T = 574.2158364679012 K, F = -0.0017269025096908752, relative_change = 6.968992685057871e-8 Iter 95: T = 574.2157142402322 K, F = -0.0007222113047310463, relative_change = 2.9145191300914214e-8 Iter 100: T = 574.2156631231338 K, F = -0.000302037401544053, relative_change = 1.2188872593404621e-8 Iter 105: T = 574.2156417453481 K, F = -0.0001263156506504659, relative_change = 5.097533078211054e-9 Iter 110: T = 574.2156328049019 K, F = -5.2826714504516925e-5, relative_change = 2.1318494040485293e-9 Iter 115: T = 574.2156290659003 K, F = -2.2092762753944672e-5, relative_change = 8.91564902580379e-10 Iter 120: T = 574.2156275022052 K, F = -9.239456967846671e-6, relative_change = 3.7286308416821223e-10 Iter 125: T = 574.2156268482491 K, F = -3.8640510589549315e-6, relative_change = 1.5593578800692552e-10 Iter 130: T = 574.215626574757 K, F = -1.615992243908515e-6, relative_change = 6.5214206720786e-11 Iter 135: T = 574.2156264603793 K, F = -6.758277571461413e-7, relative_change = 2.7273380345793662e-11 Iter 140: T = 574.2156264125452 K, F = -2.8263921286741933e-7, relative_change = 1.1406052318385567e-11 Iter 145: T = 574.2156263925403 K, F = -1.182027170587574e-7, relative_change = 4.7701320757766244e-12 Iter 150: T = 574.2156263841742 K, F = -4.9434749072041484e-8, relative_change = 1.994964989727366e-12 Iter 155: T = 574.2156263806753 K, F = -2.067405630024055e-8, relative_change = 8.343122861961688e-13 Iter 160: T = 574.215626379212 K, F = -8.646091398389899e-9, relative_change = 3.48917511715168e-13 Converged in 163 iterations to T = 574.2156263787836 K Iter 1: T = 963.5743194080209 K, F = -8299.625972649912, relative_change = 0.036425680591979155 Iter 2: T = 929.0271398046854 K, F = -7042.486822896095, relative_change = 0.03585315518221766 Iter 3: T = 896.3249708572966 K, F = -5974.843994725581, relative_change = 0.03520044522516732 Iter 5: T = 836.3369359493829 K, F = -4298.212546440004, relative_change = 0.03362527391547446 Iter 10: T = 716.7157022394881 K, F = -1878.269050198023, relative_change = 0.027893794658913843 Iter 15: T = 637.1508134340143 K, F = -813.3062303700275, relative_change = 0.019974686567707144 Iter 20: T = 590.5646729302304 K, F = -348.2160636215666, relative_change = 0.011969545707396792 Iter 25: T = 566.6054665448382 K, F = -147.5840839510539, relative_change = 0.006129650976861026 Iter 30: T = 555.4326189188802 K, F = -62.12969385097002, relative_change = 0.0028316482530588716 Iter 35: T = 550.5139371852422 K, F = -26.061133942713024, relative_change = 0.0012386671499520629 Iter 40: T = 548.4096652776469 K, F = -10.913204857171456, relative_change = 0.0005282020238820511 Iter 45: T = 547.5210307107568 K, F = -4.566544410929168, relative_change = 0.00022273206256537124 Iter 50: T = 547.1478619714268 K, F = -1.9102257936217888, relative_change = 9.347348286001344e-5 Iter 55: T = 546.9915285673777 K, F = -0.7989568400113785, relative_change = 3.914873307939589e-5 Iter 60: T = 546.9261007396115 K, F = -0.3341468810197244, relative_change = 1.6382459523685745e-5 Iter 65: T = 546.898729751653 K, F = -0.13974659412282842, relative_change = 6.853089366323818e-6 Iter 70: T = 546.8872814270669 K, F = -0.05844411057040075, relative_change = 2.8663498580787544e-6 Iter 75: T = 546.8824933472446 K, F = -0.024442097768028803, relative_change = 1.1987952773569788e-6 Iter 80: T = 546.8804908706945 K, F = -0.01022198991075271, relative_change = 5.013598655302468e-7 Iter 85: T = 546.8796534033232 K, F = -0.004274960482035989, relative_change = 2.0967632104720507e-7 Iter 90: T = 546.8793031631094 K, F = -0.001787839916055467, relative_change = 8.76894279545893e-8 Iter 95: T = 546.8791566882317 K, F = -0.0007476960722233583, relative_change = 3.6672816102168864e-8 Iter 100: T = 546.8790954306471 K, F = -0.0003126954388717462, relative_change = 1.5337018431776848e-8 Iter 105: T = 546.8790698119864 K, F = -0.00013077296947117123, relative_change = 6.414125827050819e-9 Iter 110: T = 546.8790590979552 K, F = -5.469081799003295e-5, relative_change = 2.682464291434803e-9 Iter 115: T = 546.8790546172191 K, F = -2.2872352403696672e-5, relative_change = 1.121838605311424e-9 Iter 120: T = 546.8790527433218 K, F = -9.565491086854783e-6, relative_change = 4.691663177294274e-10 Iter 125: T = 546.8790519596356 K, F = -4.000402697129646e-6, relative_change = 1.962109627838179e-10 Iter 130: T = 546.8790516318886 K, F = -1.6730162107903013e-6, relative_change = 8.205776949511573e-11 Iter 135: T = 546.8790514948209 K, F = -6.996754709220898e-7, relative_change = 3.431754469115327e-11 Iter 140: T = 546.8790514374977 K, F = -2.92612964747363e-7, relative_change = 1.4352023069646492e-11 Iter 145: T = 546.8790514135243 K, F = -1.2237401819659155e-7, relative_change = 6.002176746220856e-12 Iter 150: T = 546.8790514034984 K, F = -5.117821177957893e-8, relative_change = 2.510178853405678e-12 Iter 155: T = 546.8790513993054 K, F = -2.1403099403904946e-8, relative_change = 1.0497750049254455e-12 Iter 160: T = 546.8790513975518 K, F = -8.951005492363606e-9, relative_change = 4.3902715478968237e-13 Converged in 164 iterations to T = 546.879051396919 K Iter 1: T = 969.3633630878958 K, F = -6980.586863388229, relative_change = 0.030636636912104224 Iter 2: T = 940.8687454374515 K, F = -5913.972507997951, relative_change = 0.029395187331688468 Iter 3: T = 914.4768558762098 K, F = -5008.641665672002, relative_change = 0.02805055401109203 Iter 5: T = 867.8142572986702 K, F = -3588.4906192560356, relative_change = 0.025084175334960507 Iter 10: T = 783.7945681808044 K, F = -1547.388204116106, relative_change = 0.016812708125334887 Iter 15: T = 737.0394152038626 K, F = -659.7755008516639, relative_change = 0.009445645202896433 Iter 20: T = 713.9776923535728 K, F = -278.8008714162257, relative_change = 0.004621507490758198 Iter 25: T = 703.5001162501028 K, F = -117.17380040546061, relative_change = 0.0020817276843435044 Iter 30: T = 698.9489092240962 K, F = -49.11079509118803, relative_change = 0.0008997038488762439 Iter 35: T = 697.0138226577211 K, F = -20.558019465820486, relative_change = 0.0003816099522905348 Iter 40: T = 696.1988318004888 K, F = -8.6010249499331, relative_change = 0.00016054794559641934 Iter 45: T = 695.8569807202589 K, F = -3.5976517667923646, relative_change = 6.731141074968496e-5 Iter 50: T = 695.7138365430295 K, F = -1.5046861684883301, relative_change = 2.8179987640187453e-5 Iter 55: T = 695.6539407414971 K, F = -0.6292961472168358, relative_change = 1.1790383983418562e-5 Iter 60: T = 695.6288861404867 K, F = -0.2631823872914004, relative_change = 4.931785367672598e-6 Iter 65: T = 695.6184070515342 K, F = -0.11006658122696433, relative_change = 2.0626900379329025e-6 Iter 70: T = 695.6140244042261 K, F = -0.04603125734903202, relative_change = 8.626693322627228e-7 Iter 75: T = 695.6121914995438 K, F = -0.0192508387969601, relative_change = 3.6078346645778415e-7 Iter 80: T = 695.6114249518023 K, F = -0.00805093370437504, relative_change = 1.5088480249203023e-7 Iter 85: T = 695.6111043714878 K, F = -0.003366997150142881, relative_change = 6.310197467361315e-8 Iter 90: T = 695.6109703008154 K, F = -0.0014081185104176663, relative_change = 2.6390025342179077e-8 Iter 95: T = 695.6109142308317 K, F = -0.0005888919929407654, relative_change = 1.1036628285666231e-8 Iter 100: T = 695.6108907816902 K, F = -0.0002462816682206048, relative_change = 4.615650568455634e-9 Iter 105: T = 695.6108809749783 K, F = -0.00010299793502765997, relative_change = 1.930320322681499e-9 Iter 110: T = 695.6108768736941 K, F = -4.30749671239683e-5, relative_change = 8.072830464997507e-10 Iter 115: T = 695.610875158488 K, F = -1.80144649581937e-5, relative_change = 3.3761540157159183e-10 Iter 120: T = 695.6108744411684 K, F = -7.533866217990237e-6, relative_change = 1.411948279876364e-10 Iter 125: T = 695.6108741411767 K, F = -3.1507524209661852e-6, relative_change = 5.904935582225832e-11 Iter 130: T = 695.6108740157167 K, F = -1.317682562063105e-6, relative_change = 2.4695150916048178e-11 Iter 135: T = 695.6108739632479 K, F = -5.510713778633658e-7, relative_change = 1.032782191898349e-11 Iter 140: T = 695.6108739413046 K, F = -2.3046396779857758e-7, relative_change = 4.319206030536551e-12 Iter 145: T = 695.6108739321277 K, F = -9.638147580037781e-8, relative_change = 1.8063190333466169e-12 Iter 150: T = 695.6108739282897 K, F = -4.030673761423742e-8, relative_change = 7.554027028742821e-13 Iter 155: T = 695.6108739266848 K, F = -1.685694039910146e-8, relative_change = 3.159218307788297e-13 Converged in 158 iterations to T = 695.6108739262148 K Iter 1: T = 966.4291865710422 K, F = -7649.14177387574, relative_change = 0.033570813428957784 Iter 2: T = 934.8952442759403 K, F = -6485.5321341180115, relative_change = 0.03262933563398122 Iter 3: T = 905.368512279465 K, F = -5497.532644748882, relative_change = 0.03158293100457825 Iter 5: T = 852.2127227925401 K, F = -3946.659365866135, relative_change = 0.029169861810519827 Iter 10: T = 751.8489063659606 K, F = -1712.2893901151517, relative_change = 0.021552531505246577 Iter 15: T = 691.5764599182331 K, F = -734.6855628644128, relative_change = 0.013355263451531141 Iter 20: T = 659.8661833000273 K, F = -311.9038533830649, relative_change = 0.007018030795255073 Iter 25: T = 644.8524689430633 K, F = -131.43556023454457, relative_change = 0.0032914574361166127 Iter 30: T = 638.1887599025946 K, F = -55.159677339183666, relative_change = 0.0014505860685705791 Iter 35: T = 635.3269641493163 K, F = -23.103499771143387, relative_change = 0.0006206524912634438 Iter 40: T = 634.1163764024087 K, F = -9.668411557083019, relative_change = 0.00026209669084324244 Iter 45: T = 633.6076393473244 K, F = -4.044547649838649, relative_change = 0.00011006125726698888 Iter 50: T = 633.3944463491098 K, F = -1.6916716177446767, relative_change = 4.6107987406010624e-5 Iter 55: T = 633.3052104674648 K, F = -0.7075111635245102, relative_change = 1.9296772714861704e-5 Iter 60: T = 633.2678776391087 K, F = -0.2958955490177172, relative_change = 8.07256779394296e-6 Iter 65: T = 633.2522622738052 K, F = -0.12374808991314129, relative_change = 3.3764689290683675e-6 Iter 70: T = 633.2457313338091 K, F = -0.05175311054951759, relative_change = 1.4121539186165406e-6 Iter 75: T = 633.2429999453852 K, F = -0.021643800633008137, relative_change = 5.905926275480252e-7 Iter 80: T = 633.2418576336522 K, F = -0.009051701456101902, relative_change = 2.4699516272589194e-7 Iter 85: T = 633.2413799030617 K, F = -0.0037855306199482963, relative_change = 1.0329672430907743e-7 Iter 90: T = 633.2411801100418 K, F = -0.0015831542838230517, relative_change = 4.319999325442421e-8 Iter 95: T = 633.241096554148 K, F = -0.0006620940581658075, relative_change = 1.8066765259222314e-8 Iter 100: T = 633.2410616100638 K, F = -0.0002768956470077244, relative_change = 7.555739110485576e-9 Iter 105: T = 633.2410469960284 K, F = -0.00011580106846276195, relative_change = 3.1599007337674056e-9 Iter 110: T = 633.2410408842638 K, F = -4.842938930971208e-5, relative_change = 1.321508271720872e-9 Iter 115: T = 633.241038328251 K, F = -2.0253749814791444e-5, relative_change = 5.526705748198378e-10 Iter 120: T = 633.2410372592957 K, F = -8.47035906725857e-6, relative_change = 2.3113340961863337e-10 Iter 125: T = 633.241036812246 K, F = -3.542406150136568e-6, relative_change = 9.666277521243977e-11 Iter 130: T = 633.2410366252844 K, F = -1.4814772789639719e-6, relative_change = 4.042554674161422e-11 Iter 135: T = 633.2410365470947 K, F = -6.195709491008117e-7, relative_change = 1.6906431663171148e-11 Iter 140: T = 633.241036514395 K, F = -2.5911244977416814e-7, relative_change = 7.07048471626782e-12 Iter 145: T = 633.2410365007195 K, F = -1.0836289587867753e-7, relative_change = 2.9569331765697023e-12 Iter 150: T = 633.2410364950002 K, F = -4.53185942661527e-8, relative_change = 1.23662305090924e-12 Iter 155: T = 633.2410364926084 K, F = -1.895279461150423e-8, relative_change = 5.171709995793246e-13 Converged in 160 iterations to T = 633.241036491608 K Iter 1: T = 966.5021712111084 K, F = -7632.512154210354, relative_change = 0.03349782878889165 Iter 2: T = 935.0445330946471 K, F = -6471.304486723925, relative_change = 0.03254792286399335 Iter 3: T = 905.5973322795326 K, F = -5485.351423808942, relative_change = 0.031492832451151115 Iter 5: T = 852.609297028056 K, F = -3937.712386479812, relative_change = 0.029062483312704182 Iter 10: T = 752.6899381449043 K, F = -1708.1234115743591, relative_change = 0.021416112930724433 Iter 15: T = 692.8156336404451 K, F = -732.7610791741306, relative_change = 0.01323186822426823 Iter 20: T = 661.378258950194 K, F = -311.03999968098327, relative_change = 0.006937083091667723 Iter 25: T = 646.5142580639846 K, F = -131.05958863315777, relative_change = 0.003248987459465892 Iter 30: T = 639.9219533114178 K, F = -54.999375850823384, relative_change = 0.0014308801922099743 Iter 35: T = 637.0918330192796 K, F = -23.035878785457523, relative_change = 0.000612029577440402 Iter 40: T = 635.894833650271 K, F = -9.640026430361306, relative_change = 0.00025842030375466295 Iter 45: T = 635.3918410309542 K, F = -4.032657972168486, relative_change = 0.00010851120974948574 Iter 50: T = 635.1810613458293 K, F = -1.6866959251467102, relative_change = 4.545752630637572e-5 Iter 55: T = 635.0928366614854 K, F = -0.7054296929784731, relative_change = 1.9024353653014747e-5 Iter 60: T = 635.0559270646854 K, F = -0.29502495224057124, relative_change = 7.958570839652773e-6 Iter 65: T = 635.0404887588323 K, F = -0.12338397828164371, relative_change = 3.328782131650804e-6 Iter 70: T = 635.0340318775293 K, F = -0.051600831626808286, relative_change = 1.3922086468331115e-6 Iter 75: T = 635.03133146314 K, F = -0.021580115228585384, relative_change = 5.822509122298591e-7 Iter 80: T = 635.0302021054337 K, F = -0.009025067364996753, relative_change = 2.435064940140159e-7 Iter 85: T = 635.0297297924269 K, F = -0.0037743919079138988, relative_change = 1.0183771022630586e-7 Iter 90: T = 635.029532265115 K, F = -0.0015784959380106822, relative_change = 4.258981417644309e-8 Iter 95: T = 635.0294496567691 K, F = -0.0006601458812418581, relative_change = 1.781158072531477e-8 Iter 100: T = 635.029415108961 K, F = -0.0002760808963803707, relative_change = 7.449017839869177e-9 Iter 105: T = 635.0294006606531 K, F = -0.00011546032978981824, relative_change = 3.1152686072914913e-9 Iter 110: T = 635.0293946181978 K, F = -4.828688873781406e-5, relative_change = 1.3028425929248653e-9 Iter 115: T = 635.0293920911706 K, F = -2.0194152663410847e-5, relative_change = 5.44864318329486e-10 Iter 120: T = 635.0293910343379 K, F = -8.445436299464593e-6, relative_change = 2.2786877991176087e-10 Iter 125: T = 635.0293905923578 K, F = -3.5319828392554875e-6, relative_change = 9.529745940637459e-11 Iter 130: T = 635.0293904075163 K, F = -1.4771172294203438e-6, relative_change = 3.985453095629656e-11 Iter 135: T = 635.0293903302135 K, F = -6.17748423858977e-7, relative_change = 1.6667650478778436e-11 Iter 140: T = 635.0293902978844 K, F = -2.583489876473166e-7, relative_change = 6.970589421816871e-12 Iter 145: T = 635.0293902843641 K, F = -1.0804528188801399e-7, relative_change = 2.9152012784749032e-12 Iter 150: T = 635.0293902787098 K, F = -4.518588142543578e-8, relative_change = 1.2191734521324154e-12 Iter 155: T = 635.0293902763451 K, F = -1.889804024379771e-8, relative_change = 5.098935383388825e-13 Converged in 160 iterations to T = 635.0293902753561 K Iter 1: T = 976.4571342535756 K, F = -5364.264355369637, relative_change = 0.023542865746424328 Iter 2: T = 955.0755216438845 K, F = -4535.814614917372, relative_change = 0.021897133893169548 Iter 3: T = 935.7633548326584 K, F = -3833.5720002907806, relative_change = 0.020220565152780656 Iter 5: T = 902.9257377321661 K, F = -2734.612101223236, relative_change = 0.016868155340920843 Iter 10: T = 848.8571882934594 K, F = -1166.067773539941, relative_change = 0.009487332348682213 Iter 15: T = 822.169440530407 K, F = -492.768506689701, relative_change = 0.00464536238907233 Iter 20: T = 810.039380833901 K, F = -207.10508735071065, relative_change = 0.0020933053852426864 Iter 25: T = 804.7692709275684 K, F = -86.80457253203693, relative_change = 0.0009048763367901064 Iter 30: T = 802.5283074756887 K, F = -36.337018039630394, relative_change = 0.00038383534082307686 Iter 35: T = 801.5844530605423 K, F = -15.202647806194378, relative_change = 0.00016148985222661928 Iter 40: T = 801.1885427315173 K, F = -6.358996404668522, relative_change = 6.770731625038479e-5 Iter 45: T = 801.022760965526 K, F = -2.659595347720785, relative_change = 2.8345909841484333e-5 Iter 50: T = 800.9533927060585 K, F = -1.1123072911443692, relative_change = 1.1859835950811382e-5 Iter 55: T = 800.9243757087542 K, F = -0.4651859237563175, relative_change = 4.960841745469657e-6 Iter 60: T = 800.9122393406551 K, F = -0.1945473112633398, relative_change = 2.074843640566173e-6 Iter 65: T = 800.9071635718302 K, F = -0.08136218428265196, relative_change = 8.677524426185718e-7 Iter 70: T = 800.9050407906268 K, F = -0.03402666779577013, relative_change = 3.6290934136908916e-7 Iter 75: T = 800.9041530122184 K, F = -0.01423036419743029, relative_change = 1.5177387880604092e-7 Iter 80: T = 800.9037817316437 K, F = -0.005951309189964449, relative_change = 6.347379876388225e-8 Iter 85: T = 800.9036264574912 K, F = -0.0024889087414816657, relative_change = 2.6545526939502898e-8 Iter 90: T = 800.9035615199543 K, F = -0.0010408913884636384, relative_change = 1.1101660980910136e-8 Iter 95: T = 800.9035343622952 K, F = -0.0004353132122172365, relative_change = 4.642847982354242e-9 Iter 100: T = 800.903523004637 K, F = -0.00018205318531527848, relative_change = 1.9416946177389606e-9 Iter 105: T = 800.9035182547285 K, F = -7.613681591889243e-5, relative_change = 8.120398970221558e-10 Iter 110: T = 800.9035162682601 K, F = -3.184132690614572e-5, relative_change = 3.396047997962696e-10 Iter 115: T = 800.9035154374952 K, F = -1.3316422807885253e-5, relative_change = 1.4202677976765572e-10 Iter 120: T = 800.9035150900595 K, F = -5.569087657364413e-6, relative_change = 5.939730205807182e-11 Iter 125: T = 800.9035149447576 K, F = -2.329058598760092e-6, relative_change = 2.484065716546291e-11 Iter 130: T = 800.9035148839907 K, F = -9.74040816559274e-7, relative_change = 1.0388666910715867e-11 Iter 135: T = 800.9035148585773 K, F = -4.073569744855732e-7, relative_change = 4.3446802745657085e-12 Iter 140: T = 800.903514847949 K, F = -1.7036162514028064e-7, relative_change = 1.8169979617297911e-12 Iter 145: T = 800.9035148435042 K, F = -7.124854140005965e-8, relative_change = 7.599038480464718e-13 Iter 150: T = 800.9035148416453 K, F = -2.9799024026111454e-8, relative_change = 3.178225487954008e-13 Converged in 153 iterations to T = 800.903514841101 K Iter 1: T = 965.2158332283938 K, F = -7925.605487195181, relative_change = 0.03478416677160621 Iter 2: T = 932.4080431231424 K, F = -6722.14323758583, relative_change = 0.03399010767935492 Iter 3: T = 901.5472016804049 K, F = -5700.197421604213, relative_change = 0.03309800003372747 Iter 5: T = 845.5531974484564 K, F = -4095.6928806404167, relative_change = 0.03100123977498532 Iter 10: T = 737.4727224761343 K, F = -1782.0849994827422, relative_change = 0.023991029071585485 Iter 15: T = 669.9738949791915 K, F = -767.2431896395096, relative_change = 0.01568545168490451 Iter 20: T = 633.0908392238325 K, F = -326.66877740732997, relative_change = 0.008618786580277009 Iter 25: T = 615.1488544957764 K, F = -137.90837048636885, relative_change = 0.004155889376500584 Iter 30: T = 607.0633823622468 K, F = -57.930348951470705, relative_change = 0.0018576478692338392 Iter 35: T = 603.5653780025416 K, F = -24.274440230998856, relative_change = 0.0007999866877328802 Iter 40: T = 602.0808000577409 K, F = -10.16033686959817, relative_change = 0.0003387820877097011 Iter 45: T = 601.4560401891408 K, F = -4.25067243433972, relative_change = 0.00014243419393733316 Iter 50: T = 601.1940698302641 K, F = -1.7779451850033219, relative_change = 5.97001411792273e-5 Iter 55: T = 601.0843897406841 K, F = -0.7436040311440486, relative_change = 2.499055516500459e-5 Iter 60: T = 601.0384990200073 K, F = -0.3109921593266405, relative_change = 1.0455419432349032e-5 Iter 65: T = 601.0193032620597 K, F = -0.13006204747797584, relative_change = 4.3732936671280436e-6 Iter 70: T = 601.0112747176443 K, F = -0.05439374858267232, relative_change = 1.829088268268431e-6 Iter 75: T = 601.0079169709276 K, F = -0.022748158465526858, relative_change = 7.649683574573304e-7 Iter 80: T = 601.0065127012878 K, F = -0.009513559096758606, relative_change = 3.1992271564987287e-7 Iter 85: T = 601.0059254154797 K, F = -0.003978685350896294, relative_change = 1.3379616723487081e-7 Iter 90: T = 601.0056798049336 K, F = -0.0016639339604848091, relative_change = 5.595527164463029e-8 Iter 95: T = 601.0055770875638 K, F = -0.0006958770931814184, relative_change = 2.3401183213016327e-8 Iter 100: T = 601.0055341299144 K, F = -0.00029102411780229653, relative_change = 9.78665785142366e-9 Iter 105: T = 601.0055161645092 K, F = -0.00012170976323944149, relative_change = 4.092897827552849e-9 Iter 110: T = 601.0055086511616 K, F = -5.090047647277052e-5, relative_change = 1.7116988516883532e-9 Iter 115: T = 601.0055055089897 K, F = -2.1287186692864335e-5, relative_change = 7.158529045265048e-10 Iter 120: T = 601.0055041948959 K, F = -8.902554916312422e-6, relative_change = 2.9937821060336916e-10 Iter 125: T = 601.0055036453263 K, F = -3.723154270718343e-6, relative_change = 1.2520352625717717e-10 Iter 130: T = 601.0055034154897 K, F = -1.557068000812567e-6, relative_change = 5.23616241776829e-11 Iter 135: T = 601.0055033193693 K, F = -6.511841584844191e-7, relative_change = 2.189824733742561e-11 Iter 140: T = 601.0055032791706 K, F = -2.723330306264593e-7, relative_change = 9.158109863403024e-12 Iter 145: T = 601.0055032623591 K, F = -1.1389395304650662e-7, relative_change = 3.83006546255774e-12 Iter 150: T = 601.0055032553281 K, F = -4.7630930588571374e-8, relative_change = 1.6017494987854275e-12 Iter 155: T = 601.0055032523877 K, F = -1.9918679927677374e-8, relative_change = 6.698322958868036e-13 Iter 160: T = 601.005503251158 K, F = -8.329409328933224e-9, relative_change = 2.8010427370149666e-13 Converged in 162 iterations to T = 601.0055032508977 K Iter 1: T = 964.6200018068793 K, F = -8061.3662433692725, relative_change = 0.03537999819312076 Iter 2: T = 931.1829934749647 K, F = -6838.388835855626, relative_change = 0.034663399337855276 Iter 3: T = 899.6586925348387 K, F = -5799.82551727747, relative_change = 0.033854034234973 Iter 5: T = 842.235978411154 K, F = -4169.082049800065, relative_change = 0.03193359381133518 Iter 10: T = 730.1232611637718 K, F = -1816.7508116594022, relative_change = 0.025319047286570417 Iter 15: T = 658.5934076855998 K, F = -783.6645946422507, relative_change = 0.017061646757675922 Iter 20: T = 618.6289743674274 K, F = -334.24529141449176, relative_change = 0.009632998187572333 Iter 25: T = 598.8551714968011 K, F = -141.2724741030825, relative_change = 0.004728851993794871 Iter 30: T = 589.854617597326 K, F = -59.38064214003238, relative_change = 0.0021338679823562057 Iter 35: T = 585.941340489723 K, F = -24.88945388211951, relative_change = 0.0009230076106672597 Iter 40: T = 584.2767834682035 K, F = -10.419101567861052, relative_change = 0.00039163789183343145 Iter 45: T = 583.5756012127463 K, F = -4.359169332719186, relative_change = 0.00016479265535750213 Iter 50: T = 583.2814646102381 K, F = -1.823369013227441, relative_change = 6.909562178328201e-5 Iter 55: T = 583.1582959872062 K, F = -0.7626094435705928, relative_change = 2.8927752929210803e-5 Iter 60: T = 583.1067578436422 K, F = -0.3189419606584464, relative_change = 1.2103386563355293e-5 Iter 65: T = 583.0851991525835 K, F = -0.1333870137639398, relative_change = 5.062735490873755e-6 Iter 70: T = 583.0761822064705 K, F = -0.055784335451886435, relative_change = 2.117463465554205e-6 Iter 75: T = 583.0724110642722 K, F = -0.023329726593319777, relative_change = 8.855777246549411e-7 Iter 80: T = 583.0708339017424 K, F = -0.009756779249152636, relative_change = 3.703642905224808e-7 Iter 85: T = 583.07017430902 K, F = -0.004080403170676705, relative_change = 1.548916631084464e-7 Iter 90: T = 583.0698984586763 K, F = -0.0017064736101350397, relative_change = 6.477769960875617e-8 Iter 95: T = 583.0697830946302 K, F = -0.0007136676911074225, relative_change = 2.7090834917009563e-8 Iter 100: T = 583.0697348479841 K, F = -0.00029846435919395065, relative_change = 1.1329715453839497e-8 Iter 105: T = 583.0697146706565 K, F = -0.00012482136148195266, relative_change = 4.738223166621459e-9 Iter 110: T = 583.0697062322562 K, F = -5.220178358689154e-5, relative_change = 1.9815816334332807e-9 Iter 115: T = 583.0697027032163 K, F = -2.1831408455352808e-5, relative_change = 8.287210953564141e-10 Iter 120: T = 583.0697012273297 K, F = -9.130156039094395e-6, relative_change = 3.4658107470020683e-10 Iter 125: T = 583.0697006100963 K, F = -3.818340376882112e-6, relative_change = 1.4494434842012213e-10 Iter 130: T = 583.069700351962 K, F = -1.596875839116052e-6, relative_change = 6.061746875624599e-11 Iter 135: T = 583.0697002440071 K, F = -6.678325911724237e-7, relative_change = 2.5350951071994716e-11 Iter 140: T = 583.0697001988592 K, F = -2.792964683417942e-7, relative_change = 1.060210477852503e-11 Iter 145: T = 583.0697001799776 K, F = -1.1680563238858355e-7, relative_change = 4.433946339704758e-12 Iter 150: T = 583.0697001720812 K, F = -4.8849339961964944e-8, relative_change = 1.854322841339996e-12 Iter 155: T = 583.0697001687788 K, F = -2.042953689551652e-8, relative_change = 7.755060136712674e-13 Iter 160: T = 583.0697001673977 K, F = -8.543928176063531e-9, relative_change = 3.243278452602363e-13 Converged in 163 iterations to T = 583.0697001669934 K Iter 1: T = 964.3540055001823 K, F = -8121.973754877985, relative_change = 0.035645994499817715 Iter 2: T = 930.6353099967406 K, F = -6890.295884601444, relative_change = 0.03496505983396923 Iter 3: T = 898.8130275505265 K, F = -5844.325238247303, relative_change = 0.03419414899089266 Iter 5: T = 840.7448428486771 K, F = -4201.889261413176, relative_change = 0.03235711672811023 Iter 10: T = 726.7761221945352 K, F = -1832.3152326657562, relative_change = 0.025943035861214745 Iter 15: T = 653.3266692928385 K, F = -791.099837630799, relative_change = 0.017736755048653408 Iter 20: T = 611.840853867985 K, F = -337.71071375062184, relative_change = 0.010150706523057777 Iter 25: T = 591.1366009514529 K, F = -142.82346242308648, relative_change = 0.0050292664896712 Iter 30: T = 581.663205016002 K, F = -60.0523696379056, relative_change = 0.0022807916227634965 Iter 35: T = 577.5334821987419 K, F = -25.174946353454427, relative_change = 0.00098888684950524 Iter 40: T = 575.7747463230753 K, F = -10.539341796630925, relative_change = 0.0004200271292393748 Iter 45: T = 575.0335052961394 K, F = -4.4096063307567706, relative_change = 0.00017681682468254618 Iter 50: T = 574.7224956136107 K, F = -1.8444890590026881, relative_change = 7.415113480373751e-5 Iter 55: T = 574.5922492890905 K, F = -0.7714467867060466, relative_change = 3.104675467509874e-5 Iter 60: T = 574.537747448482 K, F = -0.32263866442661887, relative_change = 1.299040698771381e-5 Iter 65: T = 574.5149486526783 K, F = -0.13493316318418297, relative_change = 5.433843095872294e-6 Iter 70: T = 574.5054129659733 K, F = -0.056430978755947464, relative_change = 2.2726904818287484e-6 Iter 75: T = 574.501424860324 K, F = -0.023600164944757612, relative_change = 9.504999571113553e-7 Iter 80: T = 574.4997569576 K, F = -0.009869880566299893, relative_change = 3.9751632014326294e-7 Iter 85: T = 574.4990594156347 K, F = -0.004127703626919499, relative_change = 1.6624710201104996e-7 Iter 90: T = 574.4987676943579 K, F = -0.0017262552491127403, relative_change = 6.952670351952527e-8 Iter 95: T = 574.4986456928792 K, F = -0.000721940613148786, relative_change = 2.9076929233282764e-8 Iter 100: T = 574.4985946703763 K, F = -0.000301924195410308, relative_change = 1.2160324569460846e-8 Iter 105: T = 574.4985733321514 K, F = -0.00012626830495887642, relative_change = 5.085593887454178e-9 Iter 110: T = 574.4985644082502 K, F = -5.280691349912603e-5, relative_change = 2.1268562720812013e-9 Iter 115: T = 574.4985606761679 K, F = -2.2084481539286216e-5, relative_change = 8.894767070787495e-10 Iter 120: T = 574.4985591153666 K, F = -9.235993893297323e-6, relative_change = 3.7198978506489e-10 Iter 125: T = 574.4985584626208 K, F = -3.862602772242152e-6, relative_change = 1.555705644037452e-10 Iter 130: T = 574.4985581896348 K, F = -1.6153867751778073e-6, relative_change = 6.506147479602158e-11 Iter 135: T = 574.4985580754687 K, F = -6.755745272091218e-7, relative_change = 2.7209505359233355e-11 Iter 140: T = 574.4985580277231 K, F = -2.8253350242701813e-7, relative_change = 1.1379346825362176e-11 Iter 145: T = 574.4985580077553 K, F = -1.1815850270435746e-7, relative_change = 4.758963348809183e-12 Iter 150: T = 574.4985579994045 K, F = -4.941470826969052e-8, relative_change = 1.990231597231953e-12 Iter 155: T = 574.4985579959122 K, F = -2.066607213135896e-8, relative_change = 8.323487315399919e-13 Iter 160: T = 574.4985579944516 K, F = -8.642895898969272e-9, relative_change = 3.4810211600443514e-13 Converged in 163 iterations to T = 574.4985579940239 K Iter 1: T = 980.0179306419259 K, F = -4552.933511092242, relative_change = 0.01998206935807415 Iter 2: T = 962.0849158073908 K, F = -3846.0062090200954, relative_change = 0.018298659926343146 Iter 3: T = 946.0809403908545 K, F = -3247.3281684808567, relative_change = 0.016634680737204564 Iter 5: T = 919.3396592703265 K, F = -2311.857753544597, relative_change = 0.013454318807318245 Iter 10: T = 876.833635021259 K, F = -981.597496268236, relative_change = 0.007083383816670125 Iter 15: T = 856.6859188034674 K, F = -413.67364062467357, relative_change = 0.003325856045971478 Iter 20: T = 847.7380415828678 K, F = -173.61327134249967, relative_change = 0.0014665718548789843 Iter 25: T = 843.8941662088832 K, F = -72.71874271297659, relative_change = 0.0006276524703037727 Iter 30: T = 842.2679321444084 K, F = -30.431749537849797, relative_change = 0.0002650820400903578 Iter 35: T = 841.5844861380006 K, F = -12.730431050742059, relative_change = 0.00011132010879621207 Iter 40: T = 841.2980723351623 K, F = -5.324634336740969, relative_change = 4.663627961038309e-5 Iter 45: T = 841.1781873493168 K, F = -2.226933572091445, relative_change = 1.951803131652172e-5 Iter 50: T = 841.1280319190222 K, F = -0.9313490987889343, relative_change = 8.165156927488747e-6 Iter 55: T = 841.1070531517755 K, F = -0.389504619338191, relative_change = 3.415200636636049e-6 Iter 60: T = 841.0982790266579 K, F = -0.16289606130661527, relative_change = 1.4283537003580983e-6 Iter 65: T = 841.0946094858226 K, F = -0.06812517928269757, relative_change = 5.97367870448931e-7 Iter 70: T = 841.0930748230687 K, F = -0.02849078123226212, relative_change = 2.498287028112033e-7 Iter 75: T = 841.0924330058124 K, F = -0.011915188051504488, relative_change = 1.0448175378723016e-7 Iter 80: T = 841.0921645896523 K, F = -0.004983074479979921, relative_change = 4.369558833357943e-8 Iter 85: T = 841.0920523347179 K, F = -0.002083981353639297, relative_change = 1.827402932762366e-8 Iter 90: T = 841.092005388348 K, F = -0.0008715459076600318, relative_change = 7.642419487943923e-9 Iter 95: T = 841.0919857548124 K, F = -0.0003644909076629954, relative_change = 3.196151460316073e-9 Iter 100: T = 841.0919775438331 K, F = -0.00015243445453183568, relative_change = 1.3366688080753742e-9 Iter 105: T = 841.0919741099033 K, F = -6.374990860580354e-5, relative_change = 5.590108631882939e-10 Iter 110: T = 841.0919726737928 K, F = -2.6660972949787975e-5, relative_change = 2.337850194487321e-10 Iter 115: T = 841.0919720731943 K, F = -1.114993763007277e-5, relative_change = 9.777169045820315e-11 Iter 120: T = 841.0919718220168 K, F = -4.6630375987177786e-6, relative_change = 4.088929323832242e-11 Iter 125: T = 841.0919717169714 K, F = -1.9501384997955284e-6, relative_change = 1.710039503923902e-11 Iter 130: T = 841.0919716730401 K, F = -8.15571798762349e-7, relative_change = 7.151594590142995e-12 Iter 135: T = 841.0919716546675 K, F = -3.4108303625934866e-7, relative_change = 2.9908925257804205e-12 Iter 140: T = 841.0919716469839 K, F = -1.4264394487817356e-7, relative_change = 1.2508177283789698e-12 Iter 145: T = 841.0919716437705 K, F = -5.96556302134843e-8, relative_change = 5.231089194408647e-13 Converged in 150 iterations to T = 841.0919716424266 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▋ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:13 Bin 1 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 1 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 1 ray tracing: 37%|███████████▎ | ETA: 0:00:10 Bin 1 ray tracing: 43%|█████████████ | ETA: 0:00:09 Bin 1 ray tracing: 50%|██████████████▉ | ETA: 0:00:08 Bin 1 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 69%|████████████████████▋ | ETA: 0:00:05 Bin 1 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:04 Bin 1 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 2 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:13 Bin 2 ray tracing: 31%|█████████▎ | ETA: 0:00:11 Bin 2 ray tracing: 37%|███████████▎ | ETA: 0:00:10 Bin 2 ray tracing: 44%|█████████████▏ | ETA: 0:00:09 Bin 2 ray tracing: 50%|███████████████ | ETA: 0:00:08 Bin 2 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 63%|██████████████████▊ | ETA: 0:00:06 Bin 2 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 82%|████████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 3 ray tracing: 14%|████▏ | ETA: 0:00:14 Bin 3 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 3 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 3 ray tracing: 31%|█████████▍ | ETA: 0:00:11 Bin 3 ray tracing: 37%|███████████▎ | ETA: 0:00:11 Bin 3 ray tracing: 43%|█████████████ | ETA: 0:00:10 Bin 3 ray tracing: 49%|██████████████▊ | ETA: 0:00:09 Bin 3 ray tracing: 55%|████████████████▌ | ETA: 0:00:08 Bin 3 ray tracing: 61%|██████████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 3 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:04 Bin 3 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 3 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 4 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 4 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 4 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 4 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 4 ray tracing: 49%|██████████████▋ | ETA: 0:00:08 Bin 4 ray tracing: 56%|████████████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 62%|██████████████████▊ | ETA: 0:00:06 Bin 4 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 4 ray tracing: 83%|████████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 96%|████████████████████████████▋ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██ | ETA: 0:00:14 Bin 5 ray tracing: 13%|████ | ETA: 0:00:13 Bin 5 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 5 ray tracing: 26%|████████ | ETA: 0:00:11 Bin 5 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 5 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 5 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 5 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:13 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 6 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:11 Bin 6 ray tracing: 35%|██████████▌ | ETA: 0:00:10 Bin 6 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 49%|██████████████▊ | ETA: 0:00:08 Bin 6 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 6 ray tracing: 62%|██████████████████▌ | ETA: 0:00:06 Bin 6 ray tracing: 68%|████████████████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██ | ETA: 0:00:15 Bin 7 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 7 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 7 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 7 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 7 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 7 ray tracing: 46%|██████████████ | ETA: 0:00:08 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 13%|████ | ETA: 0:00:13 Bin 8 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 8 ray tracing: 33%|██████████ | ETA: 0:00:10 Bin 8 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 8 ray tracing: 46%|██████████████ | ETA: 0:00:08 Bin 8 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 8 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██ | ETA: 0:00:14 Bin 9 ray tracing: 13%|████ | ETA: 0:00:13 Bin 9 ray tracing: 20%|█████▉ | ETA: 0:00:13 Bin 9 ray tracing: 26%|███████▉ | ETA: 0:00:12 Bin 9 ray tracing: 32%|█████████▊ | ETA: 0:00:11 Bin 9 ray tracing: 39%|███████████▋ | ETA: 0:00:10 Bin 9 ray tracing: 45%|█████████████▋ | ETA: 0:00:09 Bin 9 ray tracing: 52%|███████████████▌ | ETA: 0:00:08 Bin 9 ray tracing: 58%|█████████████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 64%|███████████████████▎ | ETA: 0:00:06 Bin 9 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 9 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 98%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▊ | ETA: 0:00:08 Bin 10 ray tracing: 30%|████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 40%|███████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 50%|██████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 60%|█████████████████▍ | ETA: 0:00:04 Bin 10 ray tracing: 70%|████████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 79%|███████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 86%|█████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 94%|███████████████████████████▏ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.3334386007373 K, F = -7443.107088743987, relative_change = 0.03266656139926276 Iter 2: T = 936.7423310812943 K, F = -6309.295387233332, relative_change = 0.031624160086612445 Iter 3: T = 908.195292969067 K, F = -5346.68617909587, relative_change = 0.03047480311824386 Iter 5: T = 857.0948303041226 K, F = -3835.9481171671223, relative_change = 0.0278609237111313 Iter 10: T = 762.0915795610453 K, F = -1660.9182412005264, relative_change = 0.019935815162609703 Iter 15: T = 706.4998329325749 K, F = -711.0840997275541, relative_change = 0.011936745148369288 Iter 20: T = 677.9241581355957 K, F = -301.36647917975046, relative_change = 0.0061092188341277 Iter 25: T = 664.6031199051943 K, F = -126.86589821782441, relative_change = 0.0028212459044115496 Iter 30: T = 658.7397986814984 K, F = -53.21501837220326, relative_change = 0.0012339114096608294 Iter 35: T = 656.2316123004988 K, F = -22.283893246653193, relative_change = 0.0005261348229540824 Iter 40: T = 655.1724442040661 K, F = -9.324499313365584, relative_change = 0.00022185324178491839 Iter 45: T = 654.7276695829578 K, F = -3.9005167596596797, relative_change = 9.310340392924303e-5 Iter 50: T = 654.5413392341266 K, F = -1.631400524012327, relative_change = 3.899351301350716e-5 Iter 55: T = 654.4633574648847 K, F = -0.6822988210067543, relative_change = 1.6317465919737056e-5 Iter 60: T = 654.4307347169292 K, F = -0.28535035180242324, relative_change = 6.825894478508277e-6 Iter 65: T = 654.4170897720475 K, F = -0.1193377709952177, relative_change = 2.854974218590354e-6 Iter 70: T = 654.4113829918804 K, F = -0.0499086290080582, relative_change = 1.1940374270475942e-6 Iter 75: T = 654.4089962955653 K, F = -0.020872410566010857, relative_change = 4.993700019012499e-7 Iter 80: T = 654.4079981414465 K, F = -0.00872909589335602, relative_change = 2.0884412339941292e-7 Iter 85: T = 654.4075806998615 K, F = -0.0036506129400460385, relative_change = 8.734139069017943e-8 Iter 90: T = 654.4074061205234 K, F = -0.0015267300668821426, relative_change = 3.652726235480409e-8 Iter 95: T = 654.4073331093101 K, F = -0.0006384967712468326, relative_change = 1.5276146039461787e-8 Iter 100: T = 654.4073025751401 K, F = -0.0002670269793812463, relative_change = 6.388668233522961e-9 Iter 105: T = 654.407289805384 K, F = -0.00011167387279409358, relative_change = 2.671817625206451e-9 Iter 110: T = 654.4072844649193 K, F = -4.670334651651897e-5, relative_change = 1.1173860644853902e-9 Iter 115: T = 654.407282231473 K, F = -1.9531896151170347e-5, relative_change = 4.673041774255946e-10 Iter 120: T = 654.4072812974191 K, F = -8.168471170466596e-6, relative_change = 1.9543216375592906e-10 Iter 125: T = 654.4072809067867 K, F = -3.4161520158781933e-6, relative_change = 8.173206076719262e-11 Iter 130: T = 654.4072807434195 K, F = -1.4286758907577912e-6, relative_change = 3.41813316023662e-11 Iter 135: T = 654.4072806750974 K, F = -5.974875596503892e-7, relative_change = 1.4294998989601102e-11 Iter 140: T = 654.4072806465243 K, F = -2.4987738783677216e-7, relative_change = 5.978362142775762e-12 Iter 145: T = 654.4072806345747 K, F = -1.0450172921450118e-7, relative_change = 2.5002229583614733e-12 Iter 150: T = 654.4072806295773 K, F = -4.370401196496232e-8, relative_change = 1.0456264686968775e-12 Iter 155: T = 654.4072806274872 K, F = -1.8277344748796054e-8, relative_change = 4.37288811435692e-13 Converged in 159 iterations to T = 654.4072806267329 K Iter 1: T = 970.3163015012619 K, F = -6763.458939424311, relative_change = 0.02968369849873811 Iter 2: T = 942.7963803191124 K, F = -5728.5359926047895, relative_change = 0.028361804433843944 Iter 3: T = 917.3956445967484 K, F = -4850.225957652542, relative_change = 0.02694191052554364 Iter 5: T = 872.7365751528706 K, F = -3472.8214800287815, relative_change = 0.023852759390819902 Iter 10: T = 793.4327694710564 K, F = -1494.8661017781062, relative_change = 0.015547001888251573 Iter 15: T = 750.195658933947 K, F = -636.3581312588312, relative_change = 0.008519792773855003 Iter 20: T = 729.1975153686852 K, F = -268.6182124709144, relative_change = 0.004101064102292689 Iter 25: T = 719.7438477004507 K, F = -112.8301481615929, relative_change = 0.0018314932407851405 Iter 30: T = 715.6558424070886 K, F = -47.27768895381746, relative_change = 0.0007883950875166003 Iter 35: T = 713.9212300500108 K, F = -19.788362912433737, relative_change = 0.00033381247322637476 Iter 40: T = 713.191313872408 K, F = -8.278604892607346, relative_change = 0.0001403339342892339 Iter 45: T = 712.8852618536976 K, F = -3.4627165207887636, relative_change = 5.881791128710596e-5 Iter 50: T = 712.7571280152544 K, F = -1.4482379055600254, relative_change = 2.46209148325615e-5 Iter 55: T = 712.7035165149645 K, F = -0.605685878843306, relative_change = 1.0300712035957366e-5 Iter 60: T = 712.681091274428 K, F = -0.2533077781983183, relative_change = 4.308572286300644e-6 Iter 65: T = 712.6717120237901 K, F = -0.10593681204689043, relative_change = 1.802017357089989e-6 Iter 70: T = 712.6677893784516 K, F = -0.04430412286401486, relative_change = 7.536463394403652e-7 Iter 75: T = 712.6661488584625 K, F = -0.018528527783541304, relative_change = 3.1518760061405805e-7 Iter 80: T = 712.6654627694124 K, F = -0.007748854131039207, relative_change = 1.318158660143542e-7 Iter 85: T = 712.6651758380787 K, F = -0.0032406637810514782, relative_change = 5.512708258371325e-8 Iter 90: T = 712.665055839846 K, F = -0.0013552843718984686, relative_change = 2.3054824084667253e-8 Iter 95: T = 712.6650056551306 K, F = -0.0005667961235654717, relative_change = 9.64180623103264e-9 Iter 100: T = 712.6649846672796 K, F = -0.00023704091084308931, relative_change = 4.0323191296015765e-9 Iter 105: T = 712.664975889909 K, F = -9.913334092903625e-5, relative_change = 1.686364134478109e-9 Iter 110: T = 712.6649722191077 K, F = -4.145874613403766e-5, relative_change = 7.052576217065463e-10 Iter 115: T = 712.6649706839346 K, F = -1.733854269969637e-5, relative_change = 2.9494716203245097e-10 Iter 120: T = 712.6649700419068 K, F = -7.251184217627049e-6, relative_change = 1.2335040219813176e-10 Iter 125: T = 712.6649697734033 K, F = -3.032531324831389e-6, relative_change = 5.158660269009068e-11 Iter 130: T = 712.664969661112 K, F = -1.268242169616407e-6, relative_change = 2.1574156359799004e-11 Iter 135: T = 712.6649696141503 K, F = -5.303930072919627e-7, relative_change = 9.022552592232328e-12 Iter 140: T = 712.6649695945105 K, F = -2.2181826841993768e-7, relative_change = 3.77336609925875e-12 Iter 145: T = 712.6649695862968 K, F = -9.276745582820212e-8, relative_change = 1.5780736882010863e-12 Iter 150: T = 712.6649695828618 K, F = -3.8797024037862116e-8, relative_change = 6.599788931308334e-13 Iter 155: T = 712.6649695814252 K, F = -1.622655454447397e-8, relative_change = 2.760310558160513e-13 Converged in 157 iterations to T = 712.6649695811211 K Iter 1: T = 974.4340036533173 K, F = -5825.236587132543, relative_change = 0.025565996346682728 Iter 2: T = 951.0571037001226 K, F = -4928.331247736267, relative_change = 0.023990234192927114 Iter 3: T = 929.7944067942736 K, F = -4167.718828466663, relative_change = 0.022356908773538117 Iter 5: T = 893.2575493605655 K, F = -2976.493862946624, relative_change = 0.019002106273189327 Iter 10: T = 831.7257427175837 K, F = -1272.7373521264024, relative_change = 0.011159330460617668 Iter 15: T = 800.4991413181267 K, F = -538.9027571004461, relative_change = 0.005630700515197626 Iter 20: T = 786.0616160511887 K, F = -226.74075561811108, relative_change = 0.0025793851469092743 Iter 25: T = 779.7341769703589 K, F = -95.08379546072405, relative_change = 0.001123735953797342 Iter 30: T = 777.0328645907467 K, F = -39.81191194141768, relative_change = 0.0004783222851420924 Iter 35: T = 775.8931424437018 K, F = -16.658113261289206, relative_change = 0.00020154119864055722 Iter 40: T = 775.4147199640254 K, F = -6.968082092225347, relative_change = 8.45523829502419e-5 Iter 45: T = 775.2143250787905 K, F = -2.914391212185785, relative_change = 3.5407458202879097e-5 Iter 50: T = 775.1304626662262 K, F = -1.2188780456521817, relative_change = 1.4815995399692511e-5 Iter 55: T = 775.0953807942208 K, F = -0.5097572005145046, relative_change = 6.197656933603495e-6 Iter 60: T = 775.0807074548391 K, F = -0.21318792143172105, relative_change = 2.592184463842176e-6 Iter 65: T = 775.0745705949097 K, F = -0.08915797478170018, relative_change = 1.0841262870501847e-6 Iter 70: T = 775.0720040353441 K, F = -0.03728697180248397, relative_change = 4.5340221922958804e-7 Iter 75: T = 775.0709306604831 K, F = -0.015593864246316924, relative_change = 1.8961956236272667e-7 Iter 80: T = 775.0704817607235 K, F = -0.006521541539247333, relative_change = 7.930139977597167e-8 Iter 85: T = 775.0702940252078 K, F = -0.002727386779308727, relative_change = 3.316483341548931e-8 Iter 90: T = 775.070215511925 K, F = -0.0011406257609727355, relative_change = 1.3869936557576643e-8 Iter 95: T = 775.070182676724 K, F = -0.000477023322116632, relative_change = 5.8005743646705686e-9 Iter 100: T = 775.0701689446495 K, F = -0.00019949685095144165, relative_change = 2.4258696869216127e-9 Iter 105: T = 775.0701632017316 K, F = -8.343196561544364e-5, relative_change = 1.0145277104962947e-9 Iter 110: T = 775.0701607999747 K, F = -3.4892245169837466e-5, relative_change = 4.242876200672094e-10 Iter 115: T = 775.0701597955311 K, F = -1.4592351654352242e-5, relative_change = 1.7744212683004e-10 Iter 120: T = 775.070159375461 K, F = -6.1026939464081664e-6, relative_change = 7.420839503376641e-11 Iter 125: T = 775.0701591997827 K, F = -2.552220942475536e-6, relative_change = 3.1034854734693295e-11 Iter 130: T = 775.0701591263119 K, F = -1.06736864802226e-6, relative_change = 1.2979139228658248e-11 Iter 135: T = 775.0701590955855 K, F = -4.4638596696788824e-7, relative_change = 5.428026789829601e-12 Iter 140: T = 775.0701590827354 K, F = -1.8668312917746732e-7, relative_change = 2.2700557397616343e-12 Iter 145: T = 775.0701590773614 K, F = -7.807435520312822e-8, relative_change = 9.493795124594086e-13 Iter 150: T = 775.0701590751138 K, F = -3.26517152204886e-8, relative_change = 3.9704291372971673e-13 Converged in 154 iterations to T = 775.0701590743025 K Iter 1: T = 970.3293762182426 K, F = -6760.479852722988, relative_change = 0.029670623781757388 Iter 2: T = 942.8227863723636 K, F = -5725.992375176667, relative_change = 0.028347683291917933 Iter 3: T = 917.4355599417983 K, F = -4848.053655172697, relative_change = 0.02692682739271289 Iter 5: T = 872.803638879443 K, F = -3471.2366193903185, relative_change = 0.02383616814001663 Iter 10: T = 793.5627625123795 K, F = -1494.1486698426388, relative_change = 0.015530409056670575 Iter 15: T = 750.3715700341711 K, F = -636.039448531261, relative_change = 0.008507951256979132 Iter 20: T = 729.3999030800159 K, F = -268.4800427646569, relative_change = 0.004094515533803335 Iter 25: T = 719.9592390788457 K, F = -112.7713079664853, relative_change = 0.0018283717472702206 Iter 30: T = 715.8770864775778 K, F = -47.252877583179355, relative_change = 0.0007870121889244709 Iter 35: T = 714.1450013004373 K, F = -19.77794930644126, relative_change = 0.00033321969002173376 Iter 40: T = 713.4161564966319 K, F = -8.27424317204186, relative_change = 0.0001400834303209689 Iter 45: T = 713.1105551148411 K, F = -3.460891229194509, relative_change = 5.871268843778615e-5 Iter 50: T = 712.9826101918621 K, F = -1.4474743418716183, relative_change = 2.4576828695897046e-5 Iter 55: T = 712.9290777778716 K, F = -0.6053665114945084, relative_change = 1.0282260546781337e-5 Iter 60: T = 712.906685626109 K, F = -0.25317420867670476, relative_change = 4.300853177913057e-6 Iter 65: T = 712.8973202160308 K, F = -0.10588095058014857, relative_change = 1.7987887007224735e-6 Iter 70: T = 712.8934033594065 K, F = -0.04428076073961251, relative_change = 7.522960010383693e-7 Iter 75: T = 712.8917652604013 K, F = -0.018518757429671795, relative_change = 3.1462285970329483e-7 Iter 80: T = 712.8910801838487 K, F = -0.007744768045356287, relative_change = 1.3157968228422868e-7 Iter 85: T = 712.8907936759557 K, F = -0.003238954929473903, relative_change = 5.502830730960366e-8 Iter 90: T = 712.8906738548116 K, F = -0.0013545697111423394, relative_change = 2.301351504105298e-8 Iter 95: T = 712.8906237441568 K, F = -0.0005664972442394056, relative_change = 9.624530289515459e-9 Iter 100: T = 712.8906027872787 K, F = -0.00023691591580277116, relative_change = 4.025094120128222e-9 Iter 105: T = 712.8905940228614 K, F = -9.908106595335475e-5, relative_change = 1.6833425393884923e-9 Iter 110: T = 712.8905903574773 K, F = -4.1436885566126236e-5, relative_change = 7.039939791684725e-10 Iter 115: T = 712.8905888245698 K, F = -1.7329400464616285e-5, relative_change = 2.9441869358445143e-10 Iter 120: T = 712.8905881834895 K, F = -7.247361379469908e-6, relative_change = 1.2312939981798465e-10 Iter 125: T = 712.8905879153822 K, F = -3.0309328028499394e-6, relative_change = 5.149418085166527e-11 Iter 130: T = 712.8905878032565 K, F = -1.2675716675181192e-6, relative_change = 2.1535470755778314e-11 Iter 135: T = 712.8905877563642 K, F = -5.301139914815067e-7, relative_change = 9.00639755281609e-12 Iter 140: T = 712.8905877367532 K, F = -2.2169929814186418e-7, relative_change = 3.766571055646444e-12 Iter 145: T = 712.8905877285517 K, F = -9.271759504603239e-8, relative_change = 1.5752301103145295e-12 Iter 150: T = 712.8905877251217 K, F = -3.877405041485815e-8, relative_change = 6.587536236613267e-13 Iter 155: T = 712.8905877236872 K, F = -1.6215671805319687e-8, relative_change = 2.754969482854469e-13 Converged in 157 iterations to T = 712.8905877233836 K Iter 1: T = 969.2876648307266 K, F = -6997.834783291849, relative_change = 0.03071233516927336 Iter 2: T = 940.7153616007893 K, F = -5928.706970863734, relative_change = 0.029477630085106975 Iter 3: T = 914.2441812353601 K, F = -5021.233265028092, relative_change = 0.02813941543421163 Iter 5: T = 867.4202987632433 K, F = -3597.692459714408, relative_change = 0.025183904408543206 Iter 10: T = 783.0146911898398 K, F = -1551.580569718762, relative_change = 0.016918247794323552 Iter 15: T = 735.9647290092355 K, F = -661.6525071283971, relative_change = 0.009524909864703977 Iter 20: T = 712.7268592032635 K, F = -279.6197778653432, relative_change = 0.004666850368065363 Iter 25: T = 702.1609118798897 K, F = -117.52380364702526, relative_change = 0.002103732379434168 Iter 30: T = 697.5695049441863 K, F = -49.25864360974518, relative_change = 0.00090953450289051 Iter 35: T = 695.6169759367355 K, F = -20.620122240443184, relative_change = 0.00038583942086599534 Iter 40: T = 694.7945749867451 K, F = -8.627045448128987, relative_change = 0.0001623380848081648 Iter 45: T = 694.449604323363 K, F = -3.608542387511865, relative_change = 6.806384769208822e-5 Iter 50: T = 694.3051518673742 K, F = -1.5092422550383402, relative_change = 2.8495330443959424e-5 Iter 55: T = 694.2447082906193 K, F = -0.6312018195986286, relative_change = 1.1922380635182208e-5 Iter 60: T = 694.2194244918211 K, F = -0.2639794081955806, relative_change = 4.987008344048099e-6 Iter 65: T = 694.2088495300773 K, F = -0.11039991292698526, relative_change = 2.0857885156211097e-6 Iter 70: T = 694.2044267842049 K, F = -0.046170662053977796, relative_change = 8.723300159120665e-7 Iter 75: T = 694.2025771092259 K, F = -0.019309139755693816, relative_change = 3.6482378895599747e-7 Iter 80: T = 694.2018035478415 K, F = -0.008075315902164593, relative_change = 1.525745326691963e-7 Iter 85: T = 694.2014800343195 K, F = -0.0033771940836787584, relative_change = 6.380864334887183e-8 Iter 90: T = 694.2013447369415 K, F = -0.0014123829904753027, relative_change = 2.668556319378301e-8 Iter 95: T = 694.2012881539343 K, F = -0.0005906754516230572, relative_change = 1.1160225883865008e-8 Iter 100: T = 694.2012644902401 K, F = -0.00024702753027805446, relative_change = 4.667340545961279e-9 Iter 105: T = 694.2012545937997 K, F = -0.00010330986367190764, relative_change = 1.9519376957635195e-9 Iter 110: T = 694.20125045499 K, F = -4.3205419335112794e-5, relative_change = 8.163236893156983e-10 Iter 115: T = 694.2012487240904 K, F = -1.8069022786115774e-5, relative_change = 3.413963281732596e-10 Iter 120: T = 694.2012480002074 K, F = -7.556680544640315e-6, relative_change = 1.4277601143481982e-10 Iter 125: T = 694.2012476974709 K, F = -3.1602938701524863e-6, relative_change = 5.971062982133887e-11 Iter 130: T = 694.2012475708628 K, F = -1.3216723231401772e-6, relative_change = 2.497169255239254e-11 Iter 135: T = 694.201247517914 K, F = -5.527393488469201e-7, relative_change = 1.044346381804609e-11 Iter 140: T = 694.2012474957701 K, F = -2.3116242509058083e-7, relative_change = 4.36758560418773e-12 Iter 145: T = 694.2012474865093 K, F = -9.667575906480153e-8, relative_change = 1.826592939690404e-12 Iter 150: T = 694.2012474826362 K, F = -4.0430608638786225e-8, relative_change = 7.638963997112537e-13 Iter 155: T = 694.2012474810165 K, F = -1.6908507372015436e-8, relative_change = 3.194695390691261e-13 Converged in 158 iterations to T = 694.2012474805423 K Iter 1: T = 963.58010726285 K, F = -8298.307204421422, relative_change = 0.03641989273715002 Iter 2: T = 929.0390932014736 K, F = -7041.356834227791, relative_change = 0.03584654124864996 Iter 3: T = 896.3434915683755 K, F = -5973.874664159541, relative_change = 0.03519292338972399 Iter 5: T = 836.3698635856945 K, F = -4297.496627580006, relative_change = 0.033615710295566065 Iter 10: T = 716.7918062089047 K, F = -1877.926038668344, relative_change = 0.027878602664070225 Iter 15: T = 637.2752466262303 K, F = -813.1389571459757, relative_change = 0.019956471454089526 Iter 20: T = 590.7310172578642 K, F = -348.13595081061135, relative_change = 0.01195407016082566 Iter 25: T = 566.7994560860545 K, F = -147.54739243916907, relative_change = 0.0061199817383819485 Iter 30: T = 555.6413519459735 K, F = -62.1135782360693, relative_change = 0.0028267190962424638 Iter 35: T = 550.7295914558831 K, F = -26.054236343548098, relative_change = 0.0012364124047462661 Iter 40: T = 548.6283665811414 K, F = -10.910290557252292, relative_change = 0.0005272217167886363 Iter 45: T = 547.7410347346171 K, F = -4.565320269944509, relative_change = 0.000222315268297232 Iter 50: T = 547.3684159151006 K, F = -1.9097128959750695, relative_change = 9.329796013641961e-5 Iter 55: T = 547.2123133975446 K, F = -0.7987421735022746, relative_change = 3.9075113352452026e-5 Iter 60: T = 547.1469822880466 K, F = -0.33405707571863047, relative_change = 1.6351633320751284e-5 Iter 65: T = 547.1196517766501 K, F = -0.1397090313608458, relative_change = 6.840190903069249e-6 Iter 70: T = 547.1082203847166 K, F = -0.058428400480074055, relative_change = 2.8609544157211098e-6 Iter 75: T = 547.103439387184 K, F = -0.02443552746420724, relative_change = 1.196538637576076e-6 Iter 80: T = 547.1014398726813 K, F = -0.010219242104453685, relative_change = 5.004160766326585e-7 Iter 85: T = 547.1006036440996 K, F = -0.004273811311286846, relative_change = 2.0928161107167762e-7 Iter 90: T = 547.1002539219669 K, F = -0.001787359318348558, relative_change = 8.752435445458719e-8 Iter 95: T = 547.1001076637577 K, F = -0.0007474950803772751, relative_change = 3.66037802046732e-8 Iter 100: T = 547.1000464967866 K, F = -0.00031261138108365505, relative_change = 1.5308146733991498e-8 Iter 105: T = 547.1000209160215 K, F = -0.00013073781517361494, relative_change = 6.4020513166538215e-9 Iter 110: T = 547.1000102178389 K, F = -5.467611588685917e-5, relative_change = 2.677414578369836e-9 Iter 115: T = 547.1000057437308 K, F = -2.2866204492349995e-5, relative_change = 1.1197267883859551e-9 Iter 120: T = 547.1000038726054 K, F = -9.562919772804213e-6, relative_change = 4.682831216141625e-10 Iter 125: T = 547.1000030900784 K, F = -3.999327475606718e-6, relative_change = 1.9584160610794805e-10 Iter 130: T = 547.1000027628162 K, F = -1.6725663488648124e-6, relative_change = 8.190329074438439e-11 Iter 135: T = 547.1000026259513 K, F = -6.994874096610815e-7, relative_change = 3.425294356341915e-11 Iter 140: T = 547.1000025687127 K, F = -2.9253383471150585e-7, relative_change = 1.43249825477341e-11 Iter 145: T = 547.1000025447748 K, F = -1.223402926187056e-7, relative_change = 5.9908371239895265e-12 Iter 150: T = 547.1000025347637 K, F = -5.1163628778105874e-8, relative_change = 2.505413058508025e-12 Iter 155: T = 547.1000025305771 K, F = -2.1397244143184224e-8, relative_change = 1.0477938366504555e-12 Iter 160: T = 547.100002528826 K, F = -8.948425944677041e-9, relative_change = 4.381922031620653e-13 Converged in 164 iterations to T = 547.1000025281941 K Iter 1: T = 966.954148652405 K, F = -7529.528664269358, relative_change = 0.03304585134759494 Iter 2: T = 935.9682411303975 K, F = -6383.2079920468905, relative_change = 0.03204485710640059 Iter 3: T = 907.0117659467224 K, F = -5409.939315995734, relative_change = 0.030937454831483763 Iter 5: T = 855.0552707526227 K, F = -3882.3495772491087, relative_change = 0.02840432570865487 Iter 10: T = 757.8416031831573 K, F = -1682.4021818845142, relative_change = 0.020594939705684923 Iter 15: T = 700.3513060797613 K, F = -720.9211044836987, relative_change = 0.012503679200866896 Iter 20: T = 670.5233220249968 K, F = -305.743970832951, relative_change = 0.006466796803986905 Iter 25: T = 656.5330340123548 K, F = -128.76008627991493, relative_change = 0.0030045357977551866 Iter 30: T = 650.3550512018373 K, F = -54.02017727319963, relative_change = 0.0013179807081396381 Iter 35: T = 647.7082243320232 K, F = -22.623058568327234, relative_change = 0.0005627305394095969 Iter 40: T = 646.5897600468746 K, F = -9.46678204313229, relative_change = 0.0002374207033649417 Iter 45: T = 646.1199505322612 K, F = -3.960099016159434, relative_change = 9.966071869762603e-5 Iter 50: T = 645.923108433481 K, F = -1.656332238401991, relative_change = 4.1744113523547264e-5 Iter 55: T = 645.8407231673875 K, F = -0.692727963925325, relative_change = 1.746924817698046e-5 Iter 60: T = 645.8062575349509 K, F = -0.2897123644738002, relative_change = 7.307837229918448e-6 Iter 65: T = 645.7918416480378 K, F = -0.12116209037254022, relative_change = 3.0565728233365697e-6 Iter 70: T = 645.7858124112108 K, F = -0.050671594029524536, relative_change = 1.2783561369399917e-6 Iter 75: T = 645.7832908527611 K, F = -0.02119149390149766, relative_change = 5.346344517482645e-7 Iter 80: T = 645.7822362964783 K, F = -0.008862540748138581, relative_change = 2.2359237504913473e-7 Iter 85: T = 645.7817952666236 K, F = -0.00370642124125925, relative_change = 9.35093272253585e-8 Iter 90: T = 645.7816108223524 K, F = -0.001550069777452645, relative_change = 3.910677435368376e-8 Iter 95: T = 645.7815336854997 K, F = -0.0006482577179557358, relative_change = 1.635493000697812e-8 Iter 100: T = 645.781501425937 K, F = -0.00027110912417027677, relative_change = 6.839828793071935e-9 Iter 105: T = 645.7814879346008 K, F = -0.00011338107402314446, relative_change = 2.8604983849290283e-9 Iter 110: T = 645.7814822923626 K, F = -4.741731854152054e-5, relative_change = 1.1962946189780085e-9 Iter 115: T = 645.7814799327111 K, F = -1.9830488333261176e-5, relative_change = 5.003046909266517e-10 Iter 120: T = 645.7814789458768 K, F = -8.29334674645743e-6, relative_change = 2.0923339058483062e-10 Iter 125: T = 645.7814785331709 K, F = -3.4683766318988063e-6, relative_change = 8.750390245475253e-11 Iter 130: T = 645.7814783605722 K, F = -1.4505162983513564e-6, relative_change = 3.659517126085282e-11 Iter 135: T = 645.7814782883896 K, F = -6.066237080992742e-7, relative_change = 1.5304549508221394e-11 Iter 140: T = 645.7814782582019 K, F = -2.5369712081113605e-7, relative_change = 6.4005413810433865e-12 Iter 145: T = 645.7814782455771 K, F = -1.0609994288701685e-7, relative_change = 2.676802451942096e-12 Iter 150: T = 645.7814782402972 K, F = -4.437314965466399e-8, relative_change = 1.1194931172310384e-12 Iter 155: T = 645.7814782380891 K, F = -1.8557374081851208e-8, relative_change = 4.6818521381812e-13 Converged in 160 iterations to T = 645.7814782371656 K Iter 1: T = 965.1988946126598 K, F = -7929.464966902936, relative_change = 0.034801105387340124 Iter 2: T = 932.373250316516 K, F = -6725.447430618009, relative_change = 0.03400920212337892 Iter 3: T = 901.4936240319585 K, F = -5703.028725754907, relative_change = 0.03311938247271106 Iter 5: T = 845.4593272002189 K, F = -4097.777349912853, relative_change = 0.031027438042858742 Iter 10: T = 737.2665347344443 K, F = -1783.0668035934757, relative_change = 0.024027513780144998 Iter 15: T = 669.6579121135221 K, F = -767.7057943737096, relative_change = 0.015722200274683573 Iter 20: T = 632.692880561158 K, F = -326.88088298901545, relative_change = 0.008645177365830606 Iter 25: T = 614.7030439690147 K, F = -138.0020989636353, relative_change = 0.004170543567624566 Iter 30: T = 606.5939269669128 K, F = -57.970645870335616, relative_change = 0.0018646479892956095 Iter 35: T = 603.0852509029774 K, F = -24.291506080628476, relative_change = 0.0008030909899120432 Iter 40: T = 601.5960593409602 K, F = -10.167513043695687, relative_change = 0.00034011333293238426 Iter 45: T = 600.969342560586 K, F = -4.253680557422013, relative_change = 0.00014299686836471363 Iter 50: T = 600.7065489136667 K, F = -1.7792044456310767, relative_change = 5.9936508006724235e-5 Iter 55: T = 600.5965236546452 K, F = -0.7441308844358023, relative_change = 2.5089591084428385e-5 Iter 60: T = 600.5504884290099 K, F = -0.3112125334041955, relative_change = 1.0496869770330719e-5 Iter 65: T = 600.5312322109229 K, F = -0.13015421715460995, relative_change = 4.390634353596125e-6 Iter 70: T = 600.5231783767281 K, F = -0.05443229619696516, relative_change = 1.8363413407267046e-6 Iter 75: T = 600.5198100527142 K, F = -0.022764279740090154, relative_change = 7.6800185220435e-7 Iter 80: T = 600.5184013593808 K, F = -0.009520301240731721, relative_change = 3.2119138964950046e-7 Iter 85: T = 600.5178122235066 K, F = -0.003981505001827812, relative_change = 1.343267471394729e-7 Iter 90: T = 600.5175658392363 K, F = -0.0016651131728734891, relative_change = 5.617716741110906e-8 Iter 95: T = 600.5174627982851 K, F = -0.0006963702552789663, relative_change = 2.3493982875199085e-8 Iter 100: T = 600.5174197053101 K, F = -0.000291230364410755, relative_change = 9.825467816753945e-9 Iter 105: T = 600.5174016833099 K, F = -0.00012179601772971393, relative_change = 4.109128613075366e-9 Iter 110: T = 600.5173941462937 K, F = -5.0936549318814084e-5, relative_change = 1.7184867671826896e-9 Iter 115: T = 600.5173909942234 K, F = -2.1302273278567263e-5, relative_change = 7.186917084983093e-10 Iter 120: T = 600.51738967599 K, F = -8.908865473999938e-6, relative_change = 3.0056547165075354e-10 Iter 125: T = 600.517389124689 K, F = -3.725794054887377e-6, relative_change = 1.2570007432973068e-10 Iter 130: T = 600.5173888941283 K, F = -1.5581718106894016e-6, relative_change = 5.256928050632317e-11 Iter 135: T = 600.517388797705 K, F = -6.516456810268245e-7, relative_change = 2.1985088157681412e-11 Iter 140: T = 600.5173887573796 K, F = -2.725254212854189e-7, relative_change = 9.194406697583958e-12 Iter 145: T = 600.5173887405151 K, F = -1.1397253607547952e-7, relative_change = 3.845182017260841e-12 Iter 150: T = 600.5173887334623 K, F = -4.76655187542363e-8, relative_change = 1.6081294834578941e-12 Iter 155: T = 600.5173887305126 K, F = -1.9934349559935782e-8, relative_change = 6.725409918839744e-13 Iter 160: T = 600.517388729279 K, F = -8.336603574132795e-9, relative_change = 2.8125861944419786e-13 Converged in 162 iterations to T = 600.517388729018 K Iter 1: T = 980.0695514885739 K, F = -4541.171652079379, relative_change = 0.019930448511426085 Iter 2: T = 962.1859451371043 K, F = -3836.015829331062, relative_change = 0.018247282883451604 Iter 3: T = 946.2287958766398 K, F = -3238.8467650096204, relative_change = 0.016584267667920292 Iter 5: T = 919.5722570127369 K, F = -2305.755938569027, relative_change = 0.013407768094762506 Iter 10: T = 877.2210074162174 K, F = -978.9509989986273, relative_change = 0.007052689783927885 Iter 15: T = 857.157136850333 K, F = -412.54405478659606, relative_change = 0.003309702313128525 Iter 20: T = 848.2490417484297 K, F = -173.1361834449566, relative_change = 0.001459064976794747 Iter 25: T = 844.4227763051825 K, F = -72.51833743306628, relative_change = 0.0006243652925554439 Iter 30: T = 842.8040899891349 K, F = -30.347778465384547, relative_change = 0.0002636801214494942 Iter 35: T = 842.1238335879051 K, F = -12.695285119609446, relative_change = 0.00011072895181100008 Iter 40: T = 841.838759573838 K, F = -5.309930923376118, relative_change = 4.63881932930861e-5 Iter 45: T = 841.7194359339752 K, F = -2.2207835585037596, relative_change = 1.9414128121639326e-5 Iter 50: T = 841.6695154459037 K, F = -0.9287769372504604, relative_change = 8.121676999843374e-6 Iter 55: T = 841.6486349659241 K, F = -0.38842888399991216, relative_change = 3.397012196317116e-6 Iter 60: T = 841.6399019512487 K, F = -0.16244617127920868, relative_change = 1.420746269973806e-6 Iter 65: T = 841.6362496042592 K, F = -0.06793702908533672, relative_change = 5.941862109773007e-7 Iter 70: T = 841.6347221323463 K, F = -0.028412094431342183, relative_change = 2.484980701304141e-7 Iter 75: T = 841.634083322415 K, F = -0.011882280268304513, relative_change = 1.0392526300238094e-7 Iter 80: T = 841.6338161639594 K, F = -0.004969312047000907, relative_change = 4.3462856479818916e-8 Iter 85: T = 841.6337044350129 K, F = -0.0020782257361122713, relative_change = 1.8176697929114662e-8 Iter 90: T = 841.6336577086174 K, F = -0.0008691388376731446, relative_change = 7.601714295234453e-9 Iter 95: T = 841.6336381670782 K, F = -0.0003634842442459263, relative_change = 3.1791280762887695e-9 Iter 100: T = 841.6336299945726 K, F = -0.0001520134561203701, relative_change = 1.329549427023631e-9 Iter 105: T = 841.633626576733 K, F = -6.357384179134229e-5, relative_change = 5.560334507147899e-10 Iter 110: T = 841.6336251473516 K, F = -2.6587339233330454e-5, relative_change = 2.3253982585004582e-10 Iter 115: T = 841.6336245495673 K, F = -1.1119142941717897e-5, relative_change = 9.725093396226505e-11 Iter 120: T = 841.6336242995668 K, F = -4.650159866947945e-6, relative_change = 4.0671515164841964e-11 Iter 125: T = 841.6336241950136 K, F = -1.9447537442651708e-6, relative_change = 1.700932520852476e-11 Iter 130: T = 841.6336241512881 K, F = -8.133176563340783e-7, relative_change = 7.113489077287136e-12 Iter 135: T = 841.6336241330016 K, F = -3.401392252300184e-7, relative_change = 2.9749466826859184e-12 Iter 140: T = 841.633624125354 K, F = -1.4225032329839848e-7, relative_change = 1.244158556366733e-12 Iter 145: T = 841.6336241221557 K, F = -5.9489076331686874e-8, relative_change = 5.203070306877425e-13 Converged in 150 iterations to T = 841.633624120818 K Iter 1: T = 976.4260744409029 K, F = -5371.341363232629, relative_change = 0.023573925559097066 Iter 2: T = 955.0140275809639 K, F = -4541.837447239497, relative_change = 0.021928999460813697 Iter 3: T = 935.6723121764825 K, F = -3838.696090853683, relative_change = 0.02025280765087162 Iter 5: T = 902.7792482443202 K, F = -2738.316105678016, relative_change = 0.01689979251574607 Iter 10: T = 848.6014571910454 K, F = -1167.6945482771632, relative_change = 0.009511110801290294 Iter 15: T = 821.8491700370499 K, F = -493.46959688515767, relative_change = 0.004658971531394242 Iter 20: T = 809.6868929955501 K, F = -207.40283896644848, relative_change = 0.0020999116187058525 Iter 25: T = 804.402158935266 K, F = -86.92998070489986, relative_change = 0.0009078280619875877 Iter 30: T = 802.1548559418841 K, F = -36.38962749697531, relative_change = 0.00038510534020801666 Iter 35: T = 801.2083093217212 K, F = -15.224678670796976, relative_change = 0.00016202739726686375 Iter 40: T = 800.8112657800002 K, F = -6.368215084329212, relative_change = 6.793326114400028e-5 Iter 45: T = 800.6450088035253 K, F = -2.6634516064398395, relative_change = 2.8440602689536768e-5 Iter 50: T = 800.5754415794117 K, F = -1.1139201816807265, relative_change = 1.189947269167065e-5 Iter 55: T = 800.5463413331406 K, F = -0.46586048132948277, relative_change = 4.977424442002877e-6 Iter 60: T = 800.5341701424036 K, F = -0.19482942410515935, relative_change = 2.0817797962981417e-6 Iter 65: T = 800.5290798091239 K, F = -0.08148016808330938, relative_change = 8.706534136560118e-7 Iter 70: T = 800.5269509366797 K, F = -0.03407601017768258, relative_change = 3.6412259496731855e-7 Iter 75: T = 800.5260606108045 K, F = -0.014250999794040986, relative_change = 1.5228128167104271e-7 Iter 80: T = 800.5256882648424 K, F = -0.005959939249224999, relative_change = 6.368600172637184e-8 Iter 85: T = 800.5255325451309 K, F = -0.002492517934236882, relative_change = 2.663427290841298e-8 Iter 90: T = 800.5254674212558 K, F = -0.001042400795584708, relative_change = 1.113877563005646e-8 Iter 95: T = 800.5254401856679 K, F = -0.0004359444652001221, relative_change = 4.6583697865478105e-9 Iter 100: T = 800.5254287954189 K, F = -0.00018231718293293397, relative_change = 1.9481860233954694e-9 Iter 105: T = 800.5254240318806 K, F = -7.624722533450257e-5, relative_change = 8.14754706815189e-10 Iter 110: T = 800.5254220397118 K, F = -3.188750122806727e-5, relative_change = 3.4074016343546693e-10 Iter 115: T = 800.525421206563 K, F = -1.3335734194153126e-5, relative_change = 1.4250161023482705e-10 Iter 120: T = 800.5254208581302 K, F = -5.5771629706713455e-6, relative_change = 5.959587180870676e-11 Iter 125: T = 800.5254207124115 K, F = -2.332433947538348e-6, relative_change = 2.4923681698243662e-11 Iter 130: T = 800.5254206514702 K, F = -9.754513858872826e-7, relative_change = 1.0423377643099402e-11 Iter 135: T = 800.5254206259839 K, F = -4.079461901618231e-7, relative_change = 4.359189253595714e-12 Iter 140: T = 800.5254206153252 K, F = -1.7060872370411317e-7, relative_change = 1.8230730741541735e-12 Iter 145: T = 800.5254206108675 K, F = -7.135058022189611e-8, relative_change = 7.624306589202199e-13 Iter 150: T = 800.5254206090033 K, F = -2.9838976511875615e-8, relative_change = 3.1885025255512864e-13 Converged in 153 iterations to T = 800.5254206084575 K Iter 1: T = 980.8809382337353 K, F = -4356.296410366326, relative_change = 0.019119061766264784 Iter 2: T = 963.7717643947746 K, F = -3679.021846927748, relative_change = 0.017442661154950235 Iter 3: T = 948.5464928503982 K, F = -3105.5991461482354, relative_change = 0.015797590370306706 Iter 5: T = 923.2089805527571 K, F = -2209.9444813380833, relative_change = 0.012686394778057695 Iter 10: T = 883.2470404868529 K, F = -937.4496075784213, relative_change = 0.006583710017136928 Iter 15: T = 864.4659300494827 K, F = -394.8465942484804, relative_change = 0.0030649649723702246 Iter 20: T = 856.1634310176928 K, F = -165.6652658685464, relative_change = 0.0013458109834731786 Iter 25: T = 852.6045968385448 K, F = -69.38084217711955, relative_change = 0.0005748674006841091 Iter 30: T = 851.1004114899594 K, F = -29.033283576634872, relative_change = 0.00024258768995957052 Iter 35: T = 850.4685199467372 K, F = -12.14513001593156, relative_change = 0.0001018378823665449 Iter 40: T = 850.203757585382 K, F = -5.079776039700095, relative_change = 4.265749828149881e-5 Iter 45: T = 850.0929434491017 K, F = -2.124517161527057, relative_change = 1.7851740106812403e-5 Iter 50: T = 850.0465843538543 K, F = -0.8885149261766916, relative_change = 7.467888116192771e-6 Iter 55: T = 850.0271937489999 K, F = -0.3715904357161991, relative_change = 3.1235234498225157e-6 Iter 60: T = 850.0190838980511 K, F = -0.15540406211805347, relative_change = 1.3063583887094586e-6 Iter 65: T = 850.015692179596 K, F = -0.06499192286724376, relative_change = 5.463458001597229e-7 Iter 70: T = 850.0142737081012 K, F = -0.027180413727549313, relative_change = 2.2849028343040311e-7 Iter 75: T = 850.0136804838756 K, F = -0.011367176317956362, relative_change = 9.555770546055884e-8 Iter 80: T = 850.0134323899814 K, F = -0.004753889359723207, relative_change = 3.996343311793717e-8 Iter 85: T = 850.0133286340753 K, F = -0.00198813338211723, relative_change = 1.6713195367045523e-8 Iter 90: T = 850.0132852421029 K, F = -0.0008314611378708037, relative_change = 6.989659717985414e-9 Iter 95: T = 850.0132670950595 K, F = -0.0003477269797718119, relative_change = 2.9231594836181408e-9 Iter 100: T = 850.0132595057488 K, F = -0.0001454235750066868, relative_change = 1.222500252274795e-9 Iter 105: T = 850.0132563318084 K, F = -6.0817874647733916e-5, relative_change = 5.112642047074926e-10 Iter 110: T = 850.0132550044286 K, F = -2.543476297156566e-5, relative_change = 2.1381681018267599e-10 Iter 115: T = 850.0132544493025 K, F = -1.0637119933099015e-5, relative_change = 8.942072954407602e-11 Iter 120: T = 850.0132542171423 K, F = -4.448571998105777e-6, relative_change = 3.739682888969545e-11 Iter 125: T = 850.01325412005 K, F = -1.8604458884574626e-6, relative_change = 1.563980005643276e-11 Iter 130: T = 850.0132540794448 K, F = -7.78058752093358e-7, relative_change = 6.540734881440048e-12 Iter 135: T = 850.0132540624633 K, F = -3.253920766166374e-7, relative_change = 2.7354017934338828e-12 Iter 140: T = 850.0132540553615 K, F = -1.3608337812165416e-7, relative_change = 1.1439821167615028e-12 Iter 145: T = 850.0132540523913 K, F = -5.691178328603996e-8, relative_change = 4.784277346136745e-13 Converged in 150 iterations to T = 850.0132540511491 K Iter 1: T = 967.2862222171145 K, F = -7453.865386666802, relative_change = 0.03271377778288549 Iter 2: T = 936.6460204698437 K, F = -6318.495688323064, relative_change = 0.031676458367245655 Iter 3: T = 908.0481303447476 K, F = -5354.5587795808815, relative_change = 0.030532228291271345 Iter 5: T = 856.8415764642502 K, F = -3841.7216009177246, relative_change = 0.027928132801918235 Iter 10: T = 761.5660682728752 K, F = -1663.5877909260166, relative_change = 0.02001643460781397 Iter 15: T = 705.7427946920982 K, F = -712.303947718282, relative_change = 0.0120052713798225 Iter 20: T = 677.0157585973833 K, F = -301.9082715637862, relative_change = 0.006152049589301284 Iter 25: T = 663.614313644347 K, F = -127.10004290073546, relative_change = 0.00284308447547325 Iter 30: T = 657.7133093231796 K, F = -53.314480786313176, relative_change = 0.0012439020231941919 Iter 35: T = 655.1885449852587 K, F = -22.325778197007814, relative_change = 0.0005304786864996906 Iter 40: T = 654.1222913090468 K, F = -9.342068096647626, relative_change = 0.000223700144865334 Iter 45: T = 653.6745260129928 K, F = -3.9078734444433807, relative_change = 9.388118836782603e-5 Iter 50: T = 653.4869400805895 K, F = -1.6344787968287353, relative_change = 3.931974128009972e-5 Iter 55: T = 653.4084323593679 K, F = -0.6835864753226519, relative_change = 1.6454065083917363e-5 Iter 60: T = 653.3755895027085 K, F = -0.285888913908661, relative_change = 6.8830510592573005e-6 Iter 65: T = 653.3618524796027 K, F = -0.11956301279521031, relative_change = 2.8788828895673733e-6 Iter 70: T = 653.3561071866498 K, F = -0.05000282933849376, relative_change = 1.2040372120568136e-6 Iter 75: T = 653.3537043830279 K, F = -0.02091180653565694, relative_change = 5.035521876804006e-7 Iter 80: T = 653.352699492501 K, F = -0.00874557180411989, relative_change = 2.1059319074997116e-7 Iter 85: T = 653.3522792336454 K, F = -0.0036575033718850847, relative_change = 8.807287634980307e-8 Iter 90: T = 653.3521034760868 K, F = -0.0015296117293395195, relative_change = 3.68331792330164e-8 Iter 95: T = 653.3520299721267 K, F = -0.0006397019171818785, relative_change = 1.540408427835965e-8 Iter 100: T = 653.3519992318841 K, F = -0.0002675309856313146, relative_change = 6.442173553332899e-9 Iter 105: T = 653.351986375946 K, F = -0.00011188465421196891, relative_change = 2.6941941929144018e-9 Iter 110: T = 653.3519809994389 K, F = -4.679149945080452e-5, relative_change = 1.1267442521510318e-9 Iter 115: T = 653.3519787509193 K, F = -1.9568764078048417e-5, relative_change = 4.7121791493557e-10 Iter 120: T = 653.3519778105616 K, F = -8.183890885082867e-6, relative_change = 1.9706896204450548e-10 Iter 125: T = 653.3519774172927 K, F = -3.422601052627261e-6, relative_change = 8.241659723201398e-11 Iter 130: T = 653.351977252823 K, F = -1.4313718241787399e-6, relative_change = 3.446758574839545e-11 Iter 135: T = 653.3519771840397 K, F = -5.986165373950136e-7, relative_change = 1.4414749888800043e-11 Iter 140: T = 653.3519771552739 K, F = -2.5034924866496056e-7, relative_change = 6.028436536041701e-12 Iter 145: T = 653.3519771432435 K, F = -1.0469843914062693e-7, relative_change = 2.5211495508896462e-12 Iter 150: T = 653.3519771382123 K, F = -4.378533130511286e-8, relative_change = 1.0543554351485238e-12 Iter 155: T = 653.3519771361082 K, F = -1.8311369087697926e-8, relative_change = 4.409397153668797e-13 Converged in 159 iterations to T = 653.3519771353486 K Iter 1: T = 973.5423407205901 K, F = -6028.402834544834, relative_change = 0.02645765927940984 Iter 2: T = 949.2776782798567 K, F = -5101.461805936592, relative_change = 0.024924095671867177 Iter 3: T = 927.1383690495202 K, F = -4315.235612602808, relative_change = 0.0233222688544138 Iter 5: T = 888.9126051468055 K, F = -3083.5039654079637, relative_change = 0.01999204059919724 Iter 10: T = 823.8496640137963 K, F = -1320.2324037383503, relative_change = 0.011984666943340596 Iter 15: T = 790.3788822387431 K, F = -559.5637787535285, relative_change = 0.006139207301589044 Iter 20: T = 774.7677965539541 K, F = -235.5668648095417, relative_change = 0.002836543827205617 Iter 25: T = 767.8946129926595 K, F = -98.81223121632475, relative_change = 0.0012409111885442478 Iter 30: T = 764.9540550584305 K, F = -41.37812307737064, relative_change = 0.0005291785276583002 Iter 35: T = 763.712233259577 K, F = -17.314367513975398, relative_change = 0.00022314739161200892 Iter 40: T = 763.1907446456963 K, F = -7.242755900839597, relative_change = 9.364841530947794e-5 Iter 45: T = 762.9722741290022 K, F = -3.0293018209275377, relative_change = 3.922210992447309e-5 Iter 50: T = 762.8808408756919 K, F = -1.2669418241940689, relative_change = 1.6413184849408875e-5 Iter 55: T = 762.8425907907288 K, F = -0.5298592352210094, relative_change = 6.865945763984743e-6 Iter 60: T = 762.8265921173053 K, F = -0.22159504036036815, relative_change = 2.8717277295118083e-6 Iter 65: T = 762.8199009256954 K, F = -0.09267396869429034, relative_change = 1.2010445725509582e-6 Iter 70: T = 762.8171025273032 K, F = -0.03875740880816725, relative_change = 5.023005835263785e-7 Iter 75: T = 762.8159321928051 K, F = -0.01620881967844212, relative_change = 2.1006974683152825e-7 Iter 80: T = 762.8154427430401 K, F = -0.0067787234418623665, relative_change = 8.785396443446467e-8 Iter 85: T = 762.8152380489704 K, F = -0.002834943355845554, relative_change = 3.6741627402352604e-8 Iter 90: T = 762.8151524434078 K, F = -0.001185607211506845, relative_change = 1.5365796144181807e-8 Iter 95: T = 762.815116642129 K, F = -0.0004958351012498419, relative_change = 6.426160970932038e-9 Iter 100: T = 762.8151016696049 K, F = -0.00020736416125910484, relative_change = 2.6874975188838995e-9 Iter 105: T = 762.8150954079163 K, F = -8.672217006244765e-5, relative_change = 1.1239436196150036e-9 Iter 110: T = 762.8150927892033 K, F = -3.626824679947571e-5, relative_change = 4.700466469164657e-10 Iter 115: T = 762.8150916940263 K, F = -1.5167814963135129e-5, relative_change = 1.9657913581060392e-10 Iter 120: T = 762.8150912360101 K, F = -6.343361781735446e-6, relative_change = 8.221174795335348e-11 Iter 125: T = 762.8150910444622 K, F = -2.6528678414017293e-6, relative_change = 3.438191137380758e-11 Iter 130: T = 762.8150909643546 K, F = -1.1094612555329064e-6, relative_change = 1.4378929091063598e-11 Iter 135: T = 762.8150909308526 K, F = -4.639900850200718e-7, relative_change = 6.013441658808242e-12 Iter 140: T = 762.8150909168418 K, F = -1.9404578599502287e-7, relative_change = 2.514887819790861e-12 Iter 145: T = 762.8150909109822 K, F = -8.115220007098856e-8, relative_change = 1.051755277594428e-12 Iter 150: T = 762.8150909085317 K, F = -3.3938966415014704e-8, relative_change = 4.3985852524531445e-13 Converged in 154 iterations to T = 762.8150909076472 K Iter 1: T = 970.0385570274128 K, F = -6826.743281994034, relative_change = 0.029961442972587224 Iter 2: T = 942.2351723915378 K, F = -5782.57387671543, relative_change = 0.028662143823515382 Iter 3: T = 916.5468889046123 K, F = -4896.379734039466, relative_change = 0.02726313370548963 Iter 5: T = 871.308949074333 K, F = -3506.5022674201027, relative_change = 0.024207128891464598 Iter 10: T = 790.6572341606416 K, F = -1510.126508848141, relative_change = 0.01590427668675423 Iter 15: T = 746.4302076908718 K, F = -643.1441282024817, relative_change = 0.00877659123459717 Iter 20: T = 724.8584519044439 K, F = -271.56284493037435, relative_change = 0.004243740967171534 Iter 25: T = 715.1222416011077 K, F = -114.0847333924084, relative_change = 0.0018996691403032678 Iter 30: T = 710.9068857277441 K, F = -47.80683714434161, relative_change = 0.0008186330051255479 Iter 35: T = 709.117247712265 K, F = -20.01047515217826, relative_change = 0.00034678048523839193 Iter 40: T = 708.3639973317077 K, F = -8.371640337147486, relative_change = 0.0001458152427600639 Iter 45: T = 708.0481293962692 K, F = -3.5016506973873116, relative_change = 6.112051149065565e-5 Iter 50: T = 707.9158803331651 K, F = -1.4645251430756283, relative_change = 2.5585691577881706e-5 Iter 55: T = 707.8605460264033 K, F = -0.6124981842187871, relative_change = 1.0704508986398596e-5 Iter 60: T = 707.8373999775865 K, F = -0.2561569035882856, relative_change = 4.477500273606462e-6 Iter 65: T = 707.8277192220621 K, F = -0.10712837444268108, relative_change = 1.8726747309187257e-6 Iter 70: T = 707.8236704742878 K, F = -0.0448024527078833, relative_change = 7.831977888932939e-7 Iter 75: T = 707.8219772150939 K, F = -0.018736936013723393, relative_change = 3.2754666562678423e-7 Iter 80: T = 707.8212690695881 K, F = -0.007836013069878689, relative_change = 1.369846263424755e-7 Iter 85: T = 707.8209729139304 K, F = -0.003277114712197493, relative_change = 5.728872892386334e-8 Iter 90: T = 707.8208490579664 K, F = -0.0013705285897662733, relative_change = 2.3958851968698935e-8 Iter 95: T = 707.8207972599002 K, F = -0.0005731714386125741, relative_change = 1.0019881772330517e-8 Iter 100: T = 707.8207755973264 K, F = -0.00023970714424037531, relative_change = 4.190434891631682e-9 Iter 105: T = 707.8207665377785 K, F = -0.00010024839027622523, relative_change = 1.7524900201619375e-9 Iter 110: T = 707.8207627489671 K, F = -4.192507313494076e-5, relative_change = 7.32912258576725e-10 Iter 115: T = 707.8207611644411 K, F = -1.7533566093130837e-5, relative_change = 3.0651265942516585e-10 Iter 120: T = 707.8207605017734 K, F = -7.332746635779763e-6, relative_change = 1.2818725354009443e-10 Iter 125: T = 707.8207602246379 K, F = -3.0666424950531734e-6, relative_change = 5.360944531273963e-11 Iter 130: T = 707.8207601087365 K, F = -1.2825083893774902e-6, relative_change = 2.242014304829217e-11 Iter 135: T = 707.8207600602651 K, F = -5.363607071817711e-7, relative_change = 9.376378263113014e-12 Iter 140: T = 707.8207600399938 K, F = -2.243128496282054e-7, relative_change = 3.9213202971724154e-12 Iter 145: T = 707.8207600315161 K, F = -9.381015519949187e-8, relative_change = 1.639940227656865e-12 Iter 150: T = 707.8207600279706 K, F = -3.9231612292134344e-8, relative_change = 6.858265937032741e-13 Iter 155: T = 707.8207600264877 K, F = -1.640723046314463e-8, relative_change = 2.868226494737091e-13 Converged in 157 iterations to T = 707.820760026174 K Iter 1: T = 973.5208698606441 K, F = -6033.294990407604, relative_change = 0.026479130139355895 Iter 2: T = 949.2347669505756 K, F = -5105.631731935845, relative_change = 0.024946669005200674 Iter 3: T = 927.0742191984635 K, F = -4318.789624148708, relative_change = 0.023345697527812834 Iter 5: T = 888.8073296061209 K, F = -3086.0838340131263, relative_change = 0.020016268440597465 Iter 10: T = 823.6573892853224 K, F = -1321.3799166371389, relative_change = 0.012005284714590114 Iter 15: T = 790.1304885345598 K, F = -560.0639882907681, relative_change = 0.006152105402935327 Iter 20: T = 774.4897669700978 K, F = -235.7808347027411, relative_change = 0.0028431236925288692 Iter 25: T = 767.6027295158663 K, F = -98.90268211567648, relative_change = 0.0012439220719404668 Iter 30: T = 764.6560833431606 K, F = -41.416131172315616, relative_change = 0.0005304877905661578 Iter 35: T = 763.4116605405151 K, F = -17.330295423957708, relative_change = 0.00022370408477073188 Iter 40: T = 762.889074303884 K, F = -7.24942289113193, relative_change = 9.388285976292654e-5 Iter 45: T = 762.670143005387 K, F = -3.032091046358884, relative_change = 3.932044445707836e-5 Iter 50: T = 762.5785167413327 K, F = -1.2681084886910505, relative_change = 1.6454359894782977e-5 Iter 55: T = 762.540185883293 K, F = -0.5303471792512304, relative_change = 6.883174481258042e-6 Iter 60: T = 762.524153420208 K, F = -0.22179910980419193, relative_change = 2.878934528579981e-6 Iter 65: T = 762.5174480957141 K, F = -0.09275931392246517, relative_change = 1.2040588120688849e-6 Iter 70: T = 762.5146437864936 K, F = -0.03879310136976777, relative_change = 5.035612217560614e-7 Iter 75: T = 762.513470979966 K, F = -0.01622374676143934, relative_change = 2.105969690368971e-7 Iter 80: T = 762.5129804963599 K, F = -0.006784966128618675, relative_change = 8.8074456467265e-8 Iter 85: T = 762.5127753699242 K, F = -0.002837554121143282, relative_change = 3.6833840033786436e-8 Iter 90: T = 762.5126895835407 K, F = -0.001186699066679897, relative_change = 1.5404360635326752e-8 Iter 95: T = 762.5126537066404 K, F = -0.0004962917301825076, relative_change = 6.442289135769552e-9 Iter 100: T = 762.5126387024904 K, F = -0.00020755513049786067, relative_change = 2.69424253162587e-9 Iter 105: T = 762.5126324275755 K, F = -8.680203492927863e-5, relative_change = 1.1267644550163962e-9 Iter 110: T = 762.512629803331 K, F = -3.63016477443745e-5, relative_change = 4.712263605393394e-10 Iter 115: T = 762.5126287058406 K, F = -1.5181782112683173e-5, relative_change = 1.970724863748142e-10 Iter 120: T = 762.5126282468569 K, F = -6.349201866373555e-6, relative_change = 8.241805820955247e-11 Iter 125: T = 762.5126280549044 K, F = -2.6553102820958685e-6, relative_change = 3.446819336703486e-11 Iter 130: T = 762.5126279746278 K, F = -1.1104819651608366e-6, relative_change = 1.4415003543293198e-11 Iter 135: T = 762.512627941055 K, F = -4.6441614576231416e-7, relative_change = 6.028517885168999e-12 Iter 140: T = 762.5126279270146 K, F = -1.9422495811660667e-7, relative_change = 2.5212056999716584e-12 Iter 145: T = 762.5126279211427 K, F = -8.122795591702925e-8, relative_change = 1.0544081844497983e-12 Iter 150: T = 762.5126279186869 K, F = -3.397024073148458e-8, relative_change = 4.4096271352862163e-13 Converged in 154 iterations to T = 762.5126279178005 K Iter 1: T = 964.3278170851278 K, F = -8127.940810159758, relative_change = 0.03567218291487218 Iter 2: T = 930.5813620521026 K, F = -6895.406733192754, relative_change = 0.03499479578949675 Iter 3: T = 898.7296819053868 K, F = -5848.707180709548, relative_change = 0.034227721987121026 Iter 5: T = 840.5976893675248 K, F = -4205.120748789988, relative_change = 0.032399061684575056 Iter 10: T = 726.4443059971343 K, F = -1833.8506515152526, relative_change = 0.026005562576549186 Iter 15: T = 652.8015605385368 K, F = -791.8355461198086, relative_change = 0.017805450057260284 Iter 20: T = 611.1605338311563 K, F = -338.0549127374335, relative_change = 0.010204158538449604 Iter 25: T = 590.3603523334468 K, F = -142.97798340427974, relative_change = 0.0050605971633033075 Iter 30: T = 580.837889685775 K, F = -60.1194125818079, relative_change = 0.002296198700624519 Iter 35: T = 576.685631824208 K, F = -25.203465618388286, relative_change = 0.0009958131988388652 Iter 40: T = 574.9170756802839 K, F = -10.551357958637778, relative_change = 0.00042301531555629204 Iter 45: T = 574.1716548542876 K, F = -4.414647595515667, relative_change = 0.000178083083066749 Iter 50: T = 573.8588841097309 K, F = -1.846600196921173, relative_change = 7.468363845000332e-5 Iter 55: T = 573.7278989898748 K, F = -0.7723301853003091, relative_change = 3.126997128472313e-5 Iter 60: T = 573.6730877727359 K, F = -0.3230081990914956, relative_change = 1.3083849534383255e-5 Iter 65: T = 573.6501595212866 K, F = -0.13508772219091636, relative_change = 5.472937764407138e-6 Iter 70: T = 573.6405696823134 K, F = -0.05649561983778076, relative_change = 2.2890431177222405e-6 Iter 75: T = 573.6365589273743 K, F = -0.023627199081851347, relative_change = 9.573393107880869e-7 Iter 80: T = 573.6348815520681 K, F = -0.009881186646304996, relative_change = 4.003767045371243e-7 Iter 85: T = 573.6341800484898 K, F = -0.004132431978328632, relative_change = 1.6744336377496132e-7 Iter 90: T = 573.6338866704074 K, F = -0.001728232704883259, relative_change = 7.002699708660836e-8 Iter 95: T = 573.6337639760309 K, F = -0.0007227676097157909, relative_change = 2.928615845349085e-8 Iter 100: T = 573.6337126637495 K, F = -0.0003022700550605051, relative_change = 1.2247826796855854e-8 Iter 105: T = 573.6336912043358 K, F = -0.00012641294864157437, relative_change = 5.122188419512904e-9 Iter 110: T = 573.6336822297519 K, F = -5.286740519455657e-5, relative_change = 2.14216054397522e-9 Iter 115: T = 573.6336784764735 K, F = -2.2109780448531513e-5, relative_change = 8.958771593550357e-10 Iter 120: T = 573.6336769068078 K, F = -9.246574555532572e-6, relative_change = 3.746665451416779e-10 Iter 125: T = 573.6336762503548 K, F = -3.867028416315588e-6, relative_change = 1.5669004515109322e-10 Iter 130: T = 573.6336759758183 K, F = -1.6172378160539402e-6, relative_change = 6.552966249893148e-11 Iter 135: T = 573.6336758610038 K, F = -6.763481547600314e-7, relative_change = 2.7405286912951692e-11 Iter 140: T = 573.633675812987 K, F = -2.828566755264106e-7, relative_change = 1.146121017197794e-11 Iter 145: T = 573.6336757929059 K, F = -1.1829499596549553e-7, relative_change = 4.793253716768646e-12 Iter 150: T = 573.6336757845077 K, F = -4.947270537680737e-8, relative_change = 2.004609129972654e-12 Iter 155: T = 573.6336757809954 K, F = -2.0690042679127885e-8, relative_change = 8.383501193115709e-13 Iter 160: T = 573.6336757795266 K, F = -8.65302457464523e-9, relative_change = 3.506162020615994e-13 Converged in 163 iterations to T = 573.6336757790965 K Iter 1: T = 963.5608290424138 K, F = -8302.699765286108, relative_change = 0.03643917095758611 Iter 2: T = 928.9992778599249 K, F = -7045.12062024119, relative_change = 0.035868572217528004 Iter 3: T = 896.2817996987828 K, F = -5977.103342125086, relative_change = 0.035217980186713536 Iter 5: T = 836.2601759291251 K, F = -4299.881265725702, relative_change = 0.03364757367543739 Iter 10: T = 716.5382336498265 K, F = -1879.0686555158209, relative_change = 0.02792924750699419 Iter 15: T = 636.8605165234873 K, F = -813.6962605987599, relative_change = 0.020017244414329706 Iter 20: T = 590.1764270534636 K, F = -348.40292560930163, relative_change = 0.012005747621628851 Iter 25: T = 566.1525515425254 K, F = -147.66969229678153, relative_change = 0.006152291399022724 Iter 30: T = 554.9451937756661 K, F = -62.16730186101688, relative_change = 0.002843196081601925 Iter 35: T = 550.0103060733011 K, F = -26.077232009933052, relative_change = 0.001243950877857212 Iter 40: T = 547.8988984764122 K, F = -10.920006743445526, relative_change = 0.0005304995310125434 Iter 45: T = 547.0072129254132 K, F = -4.5694015735790705, relative_change = 0.00022370893707033204 Iter 50: T = 546.6327562303901 K, F = -1.911422913946833, relative_change = 9.388487864794692e-5 Iter 55: T = 546.4758820651788 K, F = -0.7994578805863497, relative_change = 3.932128693570271e-5 Iter 60: T = 546.410227711572 K, F = -0.33435649063865863, relative_change = 1.6454711905270532e-5 Iter 65: T = 546.3827619224202 K, F = -0.1398342673552975, relative_change = 6.883321639440568e-6 Iter 70: T = 546.3712739393976 K, F = -0.05848077865976617, relative_change = 2.8789960619470073e-6 Iter 75: T = 546.3664692719412 K, F = -0.024457433169020742, relative_change = 1.2040845443380878e-6 Iter 80: T = 546.3644598578943 K, F = -0.010228403423406557, relative_change = 5.035719829928193e-7 Iter 85: T = 546.3636194891176 K, F = -0.004277642700745071, relative_change = 2.1060146946784422e-7 Iter 90: T = 546.3632680354906 K, F = -0.0017889616537394848, relative_change = 8.807633859735753e-8 Iter 95: T = 546.3631210531472 K, F = -0.0007481651970266123, relative_change = 3.68346272146747e-8 Iter 100: T = 546.363059583334 K, F = -0.00031289163222339433, relative_change = 1.540468983404249e-8 Iter 105: T = 546.3630338759167 K, F = -0.00013085501961787593, relative_change = 6.4424268161685515e-9 Iter 110: T = 546.3630231247665 K, F = -5.472513252005595e-5, relative_change = 2.6943001141577923e-9 Iter 115: T = 546.3630186285068 K, F = -2.2886703737540204e-5, relative_change = 1.126788516886315e-9 Iter 120: T = 546.3630167481174 K, F = -9.571493224613814e-6, relative_change = 4.712364417063192e-10 Iter 125: T = 546.363015961716 K, F = -4.002912820350035e-6, relative_change = 1.9707671129072302e-10 Iter 130: T = 546.3630156328336 K, F = -1.6740661797076672e-6, relative_change = 8.241984598016851e-11 Iter 135: T = 546.3630154952909 K, F = -7.001143252916009e-7, relative_change = 3.446895685944606e-11 Iter 140: T = 546.3630154377689 K, F = -2.927956459786163e-7, relative_change = 1.4415303515930277e-11 Iter 145: T = 546.3630154137126 K, F = -1.224503156649348e-7, relative_change = 6.0286363221071785e-12 Iter 150: T = 546.363015403652 K, F = -5.121043553102389e-8, relative_change = 2.521260072412634e-12 Iter 155: T = 546.3630153994444 K, F = -2.141599905747249e-8, relative_change = 1.054380865472247e-12 Iter 160: T = 546.3630153976849 K, F = -8.95657137345296e-9, relative_change = 4.4096179922341705e-13 Converged in 164 iterations to T = 546.3630153970498 K Iter 1: T = 969.3837054285382 K, F = -6975.951841722307, relative_change = 0.03061629457146187 Iter 2: T = 940.9099576611726 K, F = -5910.013026288128, relative_change = 0.029373041457075193 Iter 3: T = 914.5393618130926 K, F = -5005.258124366226, relative_change = 0.02802669440722007 Iter 5: T = 867.9200508461468 K, F = -3586.018155163741, relative_change = 0.025057423883610687 Iter 10: T = 784.0037772622076 K, F = -1546.2621104946757, relative_change = 0.01678447725163207 Iter 15: T = 737.3274428529112 K, F = -659.2715323465014, relative_change = 0.009424497682670611 Iter 20: T = 714.3127274593471 K, F = -278.5810715661954, relative_change = 0.004609431441701967 Iter 25: T = 703.8587082944919 K, F = -117.07987572013685, relative_change = 0.0020758727710874906 Iter 30: T = 699.3182112403648 K, F = -49.07112322186671, relative_change = 0.0008970893146652301 Iter 35: T = 697.38777045466 K, F = -20.54135628793684, relative_change = 0.00038048531463308934 Iter 40: T = 696.5747530489916 K, F = -8.59404336056583, relative_change = 0.0001600719781661111 Iter 45: T = 696.2337327347808 K, F = -3.594729715184792, relative_change = 6.711135769911718e-5 Iter 50: T = 696.0909369540194 K, F = -1.5034637335179344, relative_change = 2.809614758739165e-5 Iter 55: T = 696.0311870245705 K, F = -0.6287848405776754, relative_change = 1.175529030990237e-5 Iter 60: T = 696.0061934585243 K, F = -0.26296854054376184, relative_change = 4.9171033887635315e-6 Iter 65: T = 695.9957399002884 K, F = -0.10997714582742257, relative_change = 2.056548916685502e-6 Iter 70: T = 695.9913679311348 K, F = -0.045993854023410385, relative_change = 8.601008771775918e-7 Iter 75: T = 695.9895394923421 K, F = -0.01923519621383829, relative_change = 3.5970927902858055e-7 Iter 80: T = 695.9887748123167 K, F = -0.008044391776425908, relative_change = 1.504355594105199e-7 Iter 85: T = 695.9884550131083 K, F = -0.0033642612366553415, relative_change = 6.291409498678094e-8 Iter 90: T = 695.9883212691045 K, F = -0.0014069743179068173, relative_change = 2.6311451650401754e-8 Iter 95: T = 695.9882653357377 K, F = -0.0005884134772529137, relative_change = 1.1003767790211923e-8 Iter 100: T = 695.9882419437309 K, F = -0.0002460815459788268, relative_change = 4.6019078885724775e-9 Iter 105: T = 695.9882321609135 K, F = -0.00010291424091790624, relative_change = 1.9245729578672455e-9 Iter 110: T = 695.9882280696224 K, F = -4.3039964597757496e-5, relative_change = 8.048794175803047e-10 Iter 115: T = 695.9882263585956 K, F = -1.799982870931416e-5, relative_change = 3.36610216878011e-10 Iter 120: T = 695.9882256430236 K, F = -7.5277429841813515e-6, relative_change = 1.4077440690309e-10 Iter 125: T = 695.988225343763 K, F = -3.148192212365508e-6, relative_change = 5.887354195689987e-11 Iter 130: T = 695.9882252186086 K, F = -1.3166121040075751e-6, relative_change = 2.4621628154773035e-11 Iter 135: T = 695.9882251662675 K, F = -5.506224807216853e-7, relative_change = 1.0297050997462378e-11 Iter 140: T = 695.9882251443779 K, F = -2.302777090124053e-7, relative_change = 4.306364880937597e-12 Iter 145: T = 695.9882251352233 K, F = -9.630486874634414e-8, relative_change = 1.8009728620158859e-12 Iter 150: T = 695.9882251313948 K, F = -4.027533628825353e-8, relative_change = 7.531788227307195e-13 Iter 155: T = 695.9882251297937 K, F = -1.6843876848859907e-8, relative_change = 3.1499305789991725e-13 Converged in 158 iterations to T = 695.9882251293249 K Iter 1: T = 966.4370659325557 K, F = -7647.346453859674, relative_change = 0.033562934067444254 Iter 2: T = 934.911363113756 K, F = -6483.9961028476755, relative_change = 0.03262054398584064 Iter 3: T = 905.3932211269347 K, F = -5496.217519444585, relative_change = 0.03157319843510091 Iter 5: T = 852.2555581953486 K, F = -3945.6933622545753, relative_change = 0.029158254450384582 Iter 10: T = 751.9398279644986 K, F = -1711.8394640197332, relative_change = 0.02153775138273093 Iter 15: T = 691.7105473083838 K, F = -734.4776241254692, relative_change = 0.013341860366345687 Iter 20: T = 660.0299163033991 K, F = -311.8104720764593, relative_change = 0.007009220461093408 Iter 25: T = 645.0324876889855 K, F = -131.39490556133848, relative_change = 0.0032868293532610907 Iter 30: T = 638.3765518309871 K, F = -55.14234068726538, relative_change = 0.0014484373427800675 Iter 35: T = 635.5182055655652 K, F = -23.096185974548856, relative_change = 0.0006197119884529474 Iter 40: T = 634.309097843973 K, F = -9.665341354734553, relative_change = 0.0002616956582807213 Iter 45: T = 633.8009865072553 K, F = -4.043261615541787, relative_change = 0.00010989216426077025 Iter 50: T = 633.5880563892434 K, F = -1.6911334239683142, relative_change = 4.6037027780011005e-5 Iter 55: T = 633.498930657838 K, F = -0.7072860215265621, relative_change = 1.9267053905590746e-5 Iter 60: T = 633.461643932549 K, F = -0.29580138092728125, relative_change = 8.060131562337754e-6 Iter 65: T = 633.4460478545626 K, F = -0.12370870576467696, relative_change = 3.3712666409884183e-6 Iter 70: T = 633.4395249818841 K, F = -0.05173663929113198, relative_change = 1.4099780308716824e-6 Iter 75: T = 633.4367969675066 K, F = -0.021636912097387606, relative_change = 5.896826053045695e-7 Iter 80: T = 633.4356560668746 K, F = -0.009048820578038241, relative_change = 2.46614573560454e-7 Iter 85: T = 633.4351789264293 K, F = -0.003784325799874977, relative_change = 1.0313755613290709e-7 Iter 90: T = 633.4349793802163 K, F = -0.0015826504135640906, relative_change = 4.3133427013636834e-8 Iter 95: T = 633.4348959275404 K, F = -0.0006618833334428031, relative_change = 1.803892642196307e-8 Iter 100: T = 633.4348610266231 K, F = -0.000276807520106781, relative_change = 7.544096588940659e-9 Iter 105: T = 633.4348464306406 K, F = -0.00011576421187009522, relative_change = 3.1550316673613243e-9 Iter 110: T = 633.4348403264261 K, F = -4.84139752854329e-5, relative_change = 1.3194719655492342e-9 Iter 115: T = 633.4348377735706 K, F = -2.0247302820075586e-5, relative_change = 5.518189490572015e-10 Iter 120: T = 633.4348367059359 K, F = -8.46766436191082e-6, relative_change = 2.3077729059404671e-10 Iter 125: T = 633.4348362594384 K, F = -3.5412783532806635e-6, relative_change = 9.651381909139299e-11 Iter 130: T = 633.4348360727078 K, F = -1.4810046281010791e-6, relative_change = 4.036322443228941e-11 Iter 135: T = 633.4348359946148 K, F = -6.193732957071596e-7, relative_change = 1.6880368151666922e-11 Iter 140: T = 633.4348359619554 K, F = -2.590297887850035e-7, relative_change = 7.059584629040982e-12 Iter 145: T = 633.4348359482968 K, F = -1.0832907199054276e-7, relative_change = 2.952394993519353e-12 Iter 150: T = 633.4348359425846 K, F = -4.530503727728785e-8, relative_change = 1.2347411713828057e-12 Iter 155: T = 633.4348359401957 K, F = -1.8946748836512484e-8, relative_change = 5.163737248360956e-13 Converged in 160 iterations to T = 633.4348359391968 K Iter 1: T = 966.4718443016194 K, F = -7639.422169385763, relative_change = 0.03352815569838065 Iter 2: T = 934.9825043139659 K, F = -6477.216357389533, relative_change = 0.03258174583493209 Iter 3: T = 905.5022661459919 K, F = -5490.412892159192, relative_change = 0.03153025648282569 Iter 5: T = 852.4445650874829 K, F = -3941.429836268218, relative_change = 0.029107064247462663 Iter 10: T = 752.3407824232228 K, F = -1709.854048386904, relative_change = 0.021472666076381 Iter 15: T = 692.3014998442296 K, F = -733.5603137408838, relative_change = 0.013282937244730923 Iter 20: T = 660.7511884697817 K, F = -311.3986493191712, relative_change = 0.006970539838508087 Iter 25: T = 645.8252863344453 K, F = -131.21565041723812, relative_change = 0.003266526721182071 Iter 30: T = 639.2034730855964 K, F = -55.06590804978626, relative_change = 0.0014390150444216685 Iter 35: T = 636.3602657262852 K, F = -23.063943058634823, relative_change = 0.0006155885802684054 Iter 40: T = 635.1576527629977 K, F = -9.651806652583481, relative_change = 0.00025993756725025546 Iter 45: T = 634.6522871256649 K, F = -4.037592306884055, relative_change = 0.00010915090059490922 Iter 50: T = 634.4405105236034 K, F = -1.6887608788956046, relative_change = 4.572596201378593e-5 Iter 55: T = 634.3518681265415 K, F = -0.706293519088649, relative_change = 1.9136776314621268e-5 Iter 60: T = 634.3147836987716 K, F = -0.29538625627188186, relative_change = 8.005615304822507e-6 Iter 65: T = 634.2992722522673 K, F = -0.12353508722782969, relative_change = 3.3484615832093246e-6 Iter 70: T = 634.2927847784272 K, F = -0.05166402846708534, relative_change = 1.4004396847631866e-6 Iter 75: T = 634.2900715691312 K, F = -0.021606545126040544, relative_change = 5.85693380403122e-7 Iter 80: T = 634.2889368603123 K, F = -0.009036120703197759, relative_change = 2.4494620152578836e-7 Iter 85: T = 634.2884623093837 K, F = -0.00377901455309404, relative_change = 1.0243981769219012e-7 Iter 90: T = 634.2882638461421 K, F = -0.0015804291845333274, relative_change = 4.2841623508258205e-8 Iter 95: T = 634.2881808463785 K, F = -0.0006609543888014269, relative_change = 1.79168905506112e-8 Iter 100: T = 634.2881461348748 K, F = -0.00027641902466229995, relative_change = 7.493059710726002e-9 Iter 105: T = 634.2881316181073 K, F = -0.00011560173843422339, relative_change = 3.1336874305055328e-9 Iter 110: T = 634.2881255470214 K, F = -4.834602782438635e-5, relative_change = 1.3105455736572237e-9 Iter 115: T = 634.2881230080208 K, F = -2.0218886958689453e-5, relative_change = 5.48085840872572e-10 Iter 120: T = 634.2881219461802 K, F = -8.455778788774015e-6, relative_change = 2.2921601342767735e-10 Iter 125: T = 634.2881215021059 K, F = -3.536308367191321e-6, relative_change = 9.586089337584417e-11 Iter 130: T = 634.2881213163888 K, F = -1.4789267397952166e-6, relative_change = 4.009017992523772e-11 Iter 135: T = 634.2881212387196 K, F = -6.185042003559182e-7, relative_change = 1.676617510795244e-11 Iter 140: T = 634.2881212062374 K, F = -2.5866599884238894e-7, relative_change = 7.011818884377275e-12 Iter 145: T = 634.288121192653 K, F = -1.0817668377738343e-7, relative_change = 2.9324121362355357e-12 Iter 150: T = 634.2881211869718 K, F = -4.524036029129874e-8, relative_change = 1.2263583698363094e-12 Iter 155: T = 634.2881211845959 K, F = -1.8920542410594265e-8, relative_change = 5.128908213392751e-13 Converged in 160 iterations to T = 634.2881211836021 K Iter 1: T = 976.3651738604091 K, F = -5385.217618429563, relative_change = 0.023634826139590927 Iter 2: T = 954.8934351326435 K, F = -4553.647017894446, relative_change = 0.02199150410380716 Iter 3: T = 935.493746779611 K, F = -3848.743687923985, relative_change = 0.020316076788545273 Iter 5: T = 902.4918464312979 K, F = -2745.5795833059583, relative_change = 0.01696192383405857 Iter 10: T = 848.0994001824399 K, F = -1170.8851967476194, relative_change = 0.009557893842894604 Iter 15: T = 821.2201372715505 K, F = -494.8448758885706, relative_change = 0.004685780054521198 Iter 20: T = 808.9944267919093 K, F = -207.98696994118154, relative_change = 0.0021129338451902385 Iter 25: T = 803.6808877111148 K, F = -87.17601823448388, relative_change = 0.0009136483354615418 Iter 30: T = 801.421095575984 K, F = -36.49284374900102, relative_change = 0.00038760989748379385 Iter 35: T = 800.4692447971503 K, F = -15.267902135941966, relative_change = 0.00016308754886368263 Iter 40: T = 800.0699685361915 K, F = -6.3863017438787795, relative_change = 6.83788829912871e-5 Iter 45: T = 799.9027752603688 K, F = -2.6710174346583004, relative_change = 2.8627363465919575e-5 Iter 50: T = 799.8328160172258 K, F = -1.1170846116509126, relative_change = 1.1977647771637622e-5 Iter 55: T = 799.8035517455398 K, F = -0.46718393803489355, relative_change = 5.010130360373314e-6 Iter 60: T = 799.7913119436992 K, F = -0.19538291900241556, relative_change = 2.095459930704024e-6 Iter 65: T = 799.7861929140372 K, F = -0.0817116479246156, relative_change = 8.763749816653359e-7 Iter 70: T = 799.7840520400032 K, F = -0.03417281810384054, relative_change = 3.6651548818966277e-7 Iter 75: T = 799.7831566948465 K, F = -0.01429148607834907, relative_change = 1.5328202961442064e-7 Iter 80: T = 799.782782249748 K, F = -0.005976871105857762, relative_change = 6.410452846181553e-8 Iter 85: T = 799.7826256521504 K, F = -0.0024995990403959834, relative_change = 2.680930613537551e-8 Iter 90: T = 799.7825601611324 K, F = -0.0010453621981182382, relative_change = 1.1211976667196233e-8 Iter 95: T = 799.7825327720009 K, F = -0.0004371829598828203, relative_change = 4.6889833529069305e-9 Iter 100: T = 799.782521317538 K, F = -0.0001828351354974389, relative_change = 1.960988976707315e-9 Iter 105: T = 799.7825165271447 K, F = -7.646383764237097e-5, relative_change = 8.20109037585219e-10 Iter 110: T = 799.7825145237449 K, F = -3.197808960997417e-5, relative_change = 3.429793928116825e-10 Iter 115: T = 799.7825136858993 K, F = -1.3373619196510589e-5, relative_change = 1.434380812155159e-10 Iter 120: T = 799.7825133355021 K, F = -5.5930061094722205e-6, relative_change = 5.998750633277725e-11 Iter 125: T = 799.7825131889618 K, F = -2.3390615803142722e-6, relative_change = 2.508748761182862e-11 Iter 130: T = 799.782513127677 K, F = -9.782239180911034e-7, relative_change = 1.0491891552663317e-11 Iter 135: T = 799.782513102047 K, F = -4.09104984111508e-7, relative_change = 4.387834981568262e-12 Iter 140: T = 799.7825130913282 K, F = -1.7109334515819086e-7, relative_change = 1.835053089555918e-12 Iter 145: T = 799.7825130868455 K, F = -7.15534796968953e-8, relative_change = 7.6744325659403e-13 Iter 150: T = 799.7825130849708 K, F = -2.992544567703703e-8, relative_change = 3.2096386622921776e-13 Converged in 153 iterations to T = 799.7825130844219 K Iter 1: T = 965.1596259051041 K, F = -7938.412379273707, relative_change = 0.03484037409489591 Iter 2: T = 932.2925827817925 K, F = -6733.107637112512, relative_change = 0.03405347907346388 Iter 3: T = 901.3693905661826 K, F = -5709.592743602839, relative_change = 0.0331689780512258 Iter 5: T = 845.2416113227373 K, F = -4102.610185420759, relative_change = 0.03108824182682965 Iter 10: T = 736.7879238624868 K, F = -1785.3437332905592, relative_change = 0.024112373146725492 Iter 15: T = 668.9237279150387 K, F = -768.7791702640872, relative_change = 0.01580789935929723 Iter 20: T = 631.7674660463448 K, F = -327.3733099836887, relative_change = 0.008706865880847476 Iter 25: T = 613.6658192126716 K, F = -138.21979357356804, relative_change = 0.004204850105207214 Iter 30: T = 605.5014005193362 K, F = -58.06426248983724, relative_change = 0.0018810489289381928 Iter 35: T = 601.9677530329288 K, F = -24.331157562930432, relative_change = 0.000810366929354263 Iter 40: T = 600.4677634244042 K, F = -10.184187315167087, relative_change = 0.0003432340474653465 Iter 45: T = 599.836466115113 K, F = -4.260670266680083, relative_change = 0.00014431598561749897 Iter 50: T = 599.5717453272238 K, F = -1.7821305054219299, relative_change = 6.049065566533883e-5 Iter 55: T = 599.4609120869318 K, F = -0.7453551030419701, relative_change = 2.5321777638779e-5 Iter 60: T = 599.4145385980945 K, F = -0.31172460477919317, relative_change = 1.0594049267244593e-5 Iter 65: T = 599.3951408519887 K, F = -0.13036838701233291, relative_change = 4.431289337474972e-6 Iter 70: T = 599.3870278181826 K, F = -0.05452186729922742, relative_change = 1.8533460776138821e-6 Iter 75: T = 599.3836347342768 K, F = -0.02280173991925133, relative_change = 7.751138450889811e-7 Iter 80: T = 599.3822156857273 K, F = -0.009535967618578167, relative_change = 3.241657815383519e-7 Iter 85: T = 599.3816222191197 K, F = -0.003988056882777369, relative_change = 1.3557068586059682e-7 Iter 90: T = 599.3813740236748 K, F = -0.0016678532502540366, relative_change = 5.669739962699495e-8 Iter 95: T = 599.3812702252668 K, F = -0.0006975161884439363, relative_change = 2.3711550571074553e-8 Iter 100: T = 599.381226815514 K, F = -0.0002917096074053216, relative_change = 9.916457291818083e-9 Iter 105: T = 599.3812086610335 K, F = -0.0001219964421709796, relative_change = 4.147181485571915e-9 Iter 110: T = 599.3812010686124 K, F = -5.1020369007670485e-5, relative_change = 1.7344009278531304e-9 Iter 115: T = 599.3811978933711 K, F = -2.133732701981028e-5, relative_change = 7.25347178670453e-10 Iter 120: T = 599.3811965654473 K, F = -8.923524916160108e-6, relative_change = 3.033488535839195e-10 Iter 125: T = 599.3811960100937 K, F = -3.731924530292474e-6, relative_change = 1.2686410847238517e-10 Iter 130: T = 599.3811957778382 K, F = -1.5607351270263692e-6, relative_change = 5.3056075815524576e-11 Iter 135: T = 599.3811956807062 K, F = -6.527184741589309e-7, relative_change = 2.2188698311589422e-11 Iter 140: T = 599.3811956400845 K, F = -2.7297434568307466e-7, relative_change = 9.27956790701286e-12 Iter 145: T = 599.381195623096 K, F = -1.1416075851311547e-7, relative_change = 3.8808134457859694e-12 Iter 150: T = 599.3811956159911 K, F = -4.774355794046059e-8, relative_change = 1.6230081512131051e-12 Iter 155: T = 599.3811956130198 K, F = -1.9966064357390678e-8, relative_change = 6.787320970269255e-13 Iter 160: T = 599.3811956117772 K, F = -8.349777758098753e-9, relative_change = 2.838447310434156e-13 Converged in 162 iterations to T = 599.3811956115143 K Iter 1: T = 964.5107662917183 K, F = -8086.255659408494, relative_change = 0.03548923370828169 Iter 2: T = 930.958137547876 K, F = -6859.704400736271, relative_change = 0.03478719980788078 Iter 3: T = 899.3116004699509 K, F = -5818.098308634988, relative_change = 0.0339935124916373 Iter 5: T = 841.6243911484593 K, F = -4182.551523665845, relative_change = 0.03210696826172374 Iter 10: T = 728.75376874314 K, F = -1823.1358214684972, relative_change = 0.025572878712151883 Iter 15: T = 656.4450818375662 K, F = -786.7098566897944, relative_change = 0.017334004286500365 Iter 20: T = 615.8677283817989 K, F = -335.6617961049569, relative_change = 0.009840210601525767 Iter 25: T = 595.7212048710376 K, F = -141.9054295168073, relative_change = 0.0048484355480867426 Iter 30: T = 586.531904450811 K, F = -59.65451430379575, relative_change = 0.002192178077881418 Iter 35: T = 582.532382925576 K, F = -25.00579904506224, relative_change = 0.0009491162967466651 Iter 40: T = 580.8303306079201 K, F = -10.468092219389863, relative_change = 0.0004028818185610758 Iter 45: T = 580.113205547978 K, F = -4.379717531021593, relative_change = 0.00016955370597459708 Iter 50: T = 579.8123547352516 K, F = -1.8319730626160085, relative_change = 7.109715916939256e-5 Iter 55: T = 579.6863699038772 K, F = -0.7662096120795587, relative_change = 2.9766650828739815e-5 Iter 60: T = 579.6336525409903 K, F = -0.3204479186475835, relative_change = 1.2454544709879608e-5 Iter 65: T = 579.6116004327992 K, F = -0.13401688018000585, relative_change = 5.209650225924687e-6 Iter 70: T = 579.6023770893781 K, F = -0.056047763047341714, relative_change = 2.1789147966739844e-6 Iter 75: T = 579.598519621598 K, F = -0.023439896897203993, relative_change = 9.11279125523941e-7 Iter 80: T = 579.5969063553212 K, F = -0.009802854088861224, relative_change = 3.8111322417278064e-7 Iter 85: T = 579.5962316633434 K, F = -0.004099672272494359, relative_change = 1.5938704817718011e-7 Iter 90: T = 579.5959494982692 K, F = -0.0017145321887535592, relative_change = 6.665773256729524e-8 Iter 95: T = 579.59583149332 K, F = -0.0007170378869899019, relative_change = 2.787708877943516e-8 Iter 100: T = 579.5957821422155 K, F = -0.0002998738166413717, relative_change = 1.1658536528725302e-8 Iter 105: T = 579.5957615029897 K, F = -0.00012541081221606465, relative_change = 4.875740068177281e-9 Iter 110: T = 579.5957528714183 K, F = -5.244829998396483e-5, relative_change = 2.03909289280593e-9 Iter 115: T = 579.5957492615919 K, F = -2.193450552451237e-5, relative_change = 8.527730290999087e-10 Iter 120: T = 579.5957477519194 K, F = -9.173271557083584e-6, relative_change = 3.5663984587004144e-10 Iter 125: T = 579.5957471205562 K, F = -3.836371691434692e-6, relative_change = 1.4915104249504316e-10 Iter 130: T = 579.5957468565126 K, F = -1.6044161160744252e-6, relative_change = 6.237673407966283e-11 Iter 135: T = 579.5957467460865 K, F = -6.709867013676707e-7, relative_change = 2.6086723176634987e-11 Iter 140: T = 579.595746699905 K, F = -2.80614893932718e-7, relative_change = 1.090978859211297e-11 Iter 145: T = 579.5957466805912 K, F = -1.1735584881655825e-7, relative_change = 4.562578567717511e-12 Iter 150: T = 579.595746672514 K, F = -4.907921363761503e-8, relative_change = 1.908109144421897e-12 Iter 155: T = 579.5957466691361 K, F = -2.0525596056142348e-8, relative_change = 7.979972503166849e-13 Iter 160: T = 579.5957466677235 K, F = -8.58426968397552e-9, relative_change = 3.3374054449536366e-13 Converged in 163 iterations to T = 579.5957466673098 K Iter 1: T = 964.3197594204686 K, F = -8129.776756717189, relative_change = 0.035680240579531446 Iter 2: T = 930.5647623729812 K, F = -6896.979255677617, relative_change = 0.035003946271694446 Iter 3: T = 898.7040349516107 K, F = -5850.055446543309, relative_change = 0.03423805489918221 Iter 5: T = 840.5524006203786 K, F = -4206.1150680955725, relative_change = 0.03241197630102519 Iter 10: T = 726.3421296381238 K, F = -1834.3231805500623, relative_change = 0.026024840913539977 Iter 15: T = 652.6397528987492 K, F = -792.062044522873, relative_change = 0.017826669199472987 Iter 20: T = 610.9507674339144 K, F = -338.1609280018926, relative_change = 0.010220698553955989 Iter 25: T = 590.1209068291394 K, F = -143.02559458944413, relative_change = 0.005070304031698174 Iter 30: T = 580.5832514149611 K, F = -60.14007452615514, relative_change = 0.0023009753645082736 Iter 35: T = 576.4240130517063 K, F = -25.21225592593287, relative_change = 0.0009979612721093612 Iter 40: T = 574.6524143861075 K, F = -10.555061804842692, relative_change = 0.0004239421762933959 Iter 45: T = 573.9056984653071 K, F = -4.416201541514953, relative_change = 0.00017847586885522823 Iter 50: T = 573.5923820432238 K, F = -1.8472509510616923, relative_change = 7.484882217906922e-5 Iter 55: T = 573.4611679990173 K, F = -0.772602492224467, relative_change = 3.1339214290554566e-5 Iter 60: T = 573.4062609173573 K, F = -0.32312210804339664, relative_change = 1.311283605248313e-5 Iter 65: T = 573.383292552213 K, F = -0.1351353649908264, relative_change = 5.485065221527968e-6 Iter 70: T = 573.3736859333617 K, F = -0.05651554544989379, relative_change = 2.2941158310762034e-6 Iter 75: T = 573.3696681602034 K, F = -0.023635532355745892, relative_change = 9.594609316094969e-7 Iter 80: T = 573.3679878496763 K, F = -0.009884671745813534, relative_change = 4.0126401818379694e-7 Iter 85: T = 573.3672851185329 K, F = -0.00413388949346899, relative_change = 1.6781445359319665e-7 Iter 90: T = 573.3669912270644 K, F = -0.0017288422554125882, relative_change = 7.018219207139017e-8 Iter 95: T = 573.3668683179831 K, F = -0.0007230225299375559, relative_change = 2.9351062941666786e-8 Iter 100: T = 573.3668169159096 K, F = -0.00030237666607851876, relative_change = 1.2274970666434592e-8 Iter 105: T = 573.3667954189436 K, F = -0.00012645753400952753, relative_change = 5.133540288420998e-9 Iter 110: T = 573.366786428655 K, F = -5.288605128134227e-5, relative_change = 2.146908029969599e-9 Iter 115: T = 573.3667826688088 K, F = -2.2117578517777403e-5, relative_change = 8.978626169901395e-10 Iter 120: T = 573.3667810963962 K, F = -9.249835374425253e-6, relative_change = 3.7549686995655524e-10 Iter 125: T = 573.3667804387943 K, F = -3.868391223404988e-6, relative_change = 1.5703726015531955e-10 Iter 130: T = 573.3667801637774 K, F = -1.6178074334627368e-6, relative_change = 6.567485880252624e-11 Iter 135: T = 573.366780048762 K, F = -6.765864764002316e-7, relative_change = 2.7466013833681324e-11 Iter 140: T = 573.3667800006613 K, F = -2.8295686321788693e-7, relative_change = 1.148662793842817e-11 Iter 145: T = 573.366779980545 K, F = -1.1833570218167111e-7, relative_change = 4.803835353425768e-12 Iter 150: T = 573.3667799721321 K, F = -4.948915643954166e-8, relative_change = 2.0090112700486355e-12 Iter 155: T = 573.3667799686137 K, F = -2.0696722891067054e-8, relative_change = 8.401830326859199e-13 Iter 160: T = 573.3667799671423 K, F = -8.655740124652311e-9, relative_change = 3.513795892440192e-13 Converged in 163 iterations to T = 573.3667799667115 K Iter 1: T = 980.0956413842598 K, F = -4535.227044529459, relative_change = 0.01990435861574023 Iter 2: T = 962.2370004472812 K, F = -3830.966658611306, relative_change = 0.01822132471863213 Iter 3: T = 946.3035057226489 K, F = -3234.560333200512, relative_change = 0.016558804865356345 Iter 5: T = 919.6897588883519 K, F = -2302.6722815680237, relative_change = 0.013384270946714138 Iter 10: T = 877.416606455959 K, F = -977.6137061547691, relative_change = 0.007037216579716234 Iter 15: T = 857.39500819126 K, F = -411.97331607698, relative_change = 0.003301565417175605 Iter 20: T = 848.5069606597975 K, F = -172.89513942650146, relative_change = 0.0014552851293089502 Iter 25: T = 844.689567480059 K, F = -72.41708682824127, relative_change = 0.0006227104357836989 Iter 30: T = 843.0746835040171 K, F = -30.305354233830176, relative_change = 0.00026297441132515397 Iter 35: T = 842.3960338659577 K, F = -12.677528612074893, relative_change = 0.0001104313798152554 Iter 40: T = 842.1116347580755 K, F = -5.30250244423648, relative_change = 4.6263315267747334e-5 Iter 45: T = 841.9925938888997 K, F = -2.217676442271947, relative_change = 1.9361827170473314e-5 Iter 50: T = 841.9427917495187 K, F = -0.9274774275317221, relative_change = 8.099790896727905e-6 Iter 55: T = 841.9219607802386 K, F = -0.38788540011019057, relative_change = 3.3878568527393945e-6 Iter 60: T = 841.9132484743046 K, F = -0.16221887747829178, relative_change = 1.4169169911167813e-6 Iter 65: T = 841.9096047884437 K, F = -0.06784197169268724, relative_change = 5.925846900137859e-7 Iter 70: T = 841.9080809388033 K, F = -0.02837234022194779, relative_change = 2.478282825447593e-7 Iter 75: T = 841.9074436437644 K, F = -0.011865654569338302, relative_change = 1.0364514765764423e-7 Iter 80: T = 841.9071771188574 K, F = -0.004962358977623316, relative_change = 4.334570850695115e-8 Iter 85: T = 841.9070656548691 K, F = -0.0020753178811214745, relative_change = 1.8127705199426222e-8 Iter 90: T = 841.9070190392823 K, F = -0.0008679227383783239, relative_change = 7.581224942989375e-9 Iter 95: T = 841.9069995440846 K, F = -0.0003629756539860196, relative_change = 3.170559156258209e-9 Iter 100: T = 841.9069913909595 K, F = -0.00015180075354326306, relative_change = 1.325965766519363e-9 Iter 105: T = 841.9069879812251 K, F = -6.348488744900571e-5, relative_change = 5.545347246775903e-10 Iter 110: T = 841.9069865552335 K, F = -2.655013538910289e-5, relative_change = 2.319130225868146e-10 Iter 115: T = 841.9069859588668 K, F = -1.1103583474447731e-5, relative_change = 9.698879407017804e-11 Iter 120: T = 841.9069857094591 K, F = -4.643652214308958e-6, relative_change = 4.056188076748802e-11 Iter 125: T = 841.9069856051537 K, F = -1.942027777035449e-6, relative_change = 1.6963436439748715e-11 Iter 130: T = 841.9069855615321 K, F = -8.121783059422683e-7, relative_change = 7.094303818364903e-12 Iter 135: T = 841.906985543289 K, F = -3.396628986962469e-7, relative_change = 2.966924604850957e-12 Iter 140: T = 841.9069855356595 K, F = -1.4204937248685212e-7, relative_change = 1.2407883815711007e-12 Iter 145: T = 841.9069855324688 K, F = -5.940501313084212e-8, relative_change = 5.18897400324525e-13 Converged in 150 iterations to T = 841.9069855311344 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016215121363849694 Iteration 10: d = 1.936939295400252e-5 Iteration 20: d = 2.3533857673948622e-7 Iteration 30: d = 3.056521486482742e-9 Iteration 40: d = 4.0162968121379457e-11 Iteration 50: d = 5.29682608941672e-13 Iteration 60: d = 6.9780550281640364e-15 Converged after 63 iterations. d = 1.896480507966295e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.788723698715 Iteration 2: convergence error = 4822.111061744252 Iteration 3: convergence error = 1098.2062304419148 Iteration 4: convergence error = 317.97814385227025 Iteration 5: convergence error = 94.21773518327245 Iteration 6: convergence error = 28.1092078197928 Iteration 7: convergence error = 8.456340598846737 Iteration 8: convergence error = 2.5339146774479104 Iteration 9: convergence error = 0.7574822456376751 Iteration 10: convergence error = 0.22612989231856773 Iteration 11: convergence error = 0.06745337876441226 Iteration 12: convergence error = 0.02011202810922441 Iteration 13: convergence error = 0.005995115038558652 Iteration 14: convergence error = 0.001786799593901378 Iteration 15: convergence error = 0.0005324976814335969 Iteration 16: convergence error = 0.00015868596574364346 Iteration 17: convergence error = 4.7287584720834275e-5 Iteration 18: convergence error = 1.4091220464251819e-5 Iteration 19: convergence error = 4.19899879489094e-6 Iteration 20: convergence error = 1.251245066669071e-6 Iteration 21: convergence error = 3.728491719812155e-7 Iteration 22: convergence error = 1.1096199159510434e-7 Iteration 23: convergence error = 3.2154275686480105e-8 Iteration 24: convergence error = 9.265477274311706e-9 Iteration 25: convergence error = 2.66413735516835e-9 Iteration 26: convergence error = 7.637481758138165e-10 Iteration 27: convergence error = 2.1805135475005955e-10 Iteration 28: convergence error = 6.161826604511589e-11 Iteration 29: convergence error = 1.9326762412674725e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018486865448348066 Iteration 10: d = 1.3335653691716087e-5 Iteration 20: d = 8.584333129083811e-8 Iteration 30: d = 7.376985501370473e-10 Iteration 40: d = 7.696002455956684e-12 Iteration 50: d = 9.017608754639291e-14 Converged after 59 iterations. d = 1.7342436908242203e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12285.10373504537 Iteration 2: convergence error = 8311.881519318333 Iteration 3: convergence error = 1946.583250448818 Iteration 4: convergence error = 478.0380379449298 Iteration 5: convergence error = 121.77917364605787 Iteration 6: convergence error = 32.51769352900965 Iteration 7: convergence error = 8.863144337307176 Iteration 8: convergence error = 2.4300851066686846 Iteration 9: convergence error = 0.6671546484858482 Iteration 10: convergence error = 0.1831942330632046 Iteration 11: convergence error = 0.050301849002153176 Iteration 12: convergence error = 0.01381138287979411 Iteration 13: convergence error = 0.0037920904567272373 Iteration 14: convergence error = 0.0010411524920073134 Iteration 15: convergence error = 0.0002858560214917816 Iteration 16: convergence error = 7.848366317375621e-5 Iteration 17: convergence error = 2.1548188215092523e-5 Iteration 18: convergence error = 5.916190048083081e-6 Iteration 19: convergence error = 1.624326841920265e-6 Iteration 20: convergence error = 4.4596913539862726e-7 Iteration 21: convergence error = 1.2330247045611031e-7 Iteration 22: convergence error = 3.320269570394885e-8 Iteration 23: convergence error = 8.884171620593406e-9 Iteration 24: convergence error = 2.3756001610308886e-9 Iteration 25: convergence error = 6.332356861094013e-10 Iteration 26: convergence error = 1.6939338820520788e-10 Iteration 27: convergence error = 4.638422979041934e-11 Iteration 28: convergence error = 1.2278178473934531e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018486865448348066 Iteration 10: d = 1.3335653691716087e-5 Iteration 20: d = 8.584333129083811e-8 Iteration 30: d = 7.376985501370473e-10 Iteration 40: d = 7.696002455956684e-12 Iteration 50: d = 9.017608754639291e-14 Converged after 59 iterations. d = 1.7342436908242203e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.966300888736 Iteration 2: convergence error = 5720.181331758734 Iteration 3: convergence error = 2016.0478689273496 Iteration 4: convergence error = 897.3988982298765 Iteration 5: convergence error = 409.3533209697548 Iteration 6: convergence error = 193.10709616868326 Iteration 7: convergence error = 91.20059037907231 Iteration 8: convergence error = 43.09968018273503 Iteration 9: convergence error = 20.370135912352453 Iteration 10: convergence error = 9.62598728986859 Iteration 11: convergence error = 4.547776623630398 Iteration 12: convergence error = 2.1481444693035883 Iteration 13: convergence error = 1.014512783090595 Iteration 14: convergence error = 0.4790715678914239 Iteration 15: convergence error = 0.22620784074524636 Iteration 16: convergence error = 0.10671837164727549 Iteration 17: convergence error = 0.04991424776289932 Iteration 18: convergence error = 0.02280592381794122 Iteration 19: convergence error = 0.01038201193750865 Iteration 20: convergence error = 0.004716305218607886 Iteration 21: convergence error = 0.002139906561751559 Iteration 22: convergence error = 0.0009702436386760382 Iteration 23: convergence error = 0.0004397305256134132 Iteration 24: convergence error = 0.00019924417438232922 Iteration 25: convergence error = 9.026529050970566e-5 Iteration 26: convergence error = 4.0890031414164696e-5 Iteration 27: convergence error = 1.8522117443353636e-5 Iteration 28: convergence error = 8.389756658289116e-6 Iteration 29: convergence error = 3.8001408029231243e-6 Iteration 30: convergence error = 1.7212510101671796e-6 Iteration 31: convergence error = 7.79623405833263e-7 Iteration 32: convergence error = 3.5312223189976066e-7 Iteration 33: convergence error = 1.5994010027498007e-7 Iteration 34: convergence error = 7.244170774356462e-8 Iteration 35: convergence error = 3.281593308201991e-8 Iteration 36: convergence error = 1.4858869690215215e-8 Iteration 37: convergence error = 6.732534529874101e-9 Iteration 38: convergence error = 3.0486262403428555e-9 Iteration 39: convergence error = 1.3851604308001697e-9 Iteration 40: convergence error = 6.320988177321851e-10 Iteration 41: convergence error = 2.823981049004942e-10 Iteration 42: convergence error = 1.291482476517558e-10 Iteration 43: convergence error = 5.95719029661268e-11 Iteration 44: convergence error = 2.637534635141492e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018486865448348066 Iteration 10: d = 1.3335653691716087e-5 Iteration 20: d = 8.584333129083811e-8 Iteration 30: d = 7.376985501370473e-10 Iteration 40: d = 7.696002455956684e-12 Iteration 50: d = 9.017608754639291e-14 Converged after 59 iterations. d = 1.7342436908242203e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.77513500249 Iteration 2: convergence error = 7340.360566985541 Iteration 3: convergence error = 1734.7653530174134 Iteration 4: convergence error = 504.15371798755086 Iteration 5: convergence error = 156.64449393648147 Iteration 6: convergence error = 48.684923492903636 Iteration 7: convergence error = 15.108386777905707 Iteration 8: convergence error = 4.681217945607386 Iteration 9: convergence error = 1.4488256880758854 Iteration 10: convergence error = 0.4480986981257047 Iteration 11: convergence error = 0.1385336813682443 Iteration 12: convergence error = 0.04281897604369078 Iteration 13: convergence error = 0.013233049048722023 Iteration 14: convergence error = 0.004089320133516594 Iteration 15: convergence error = 0.001263641502646351 Iteration 16: convergence error = 0.000390468663226784 Iteration 17: convergence error = 0.00012065421424267697 Iteration 18: convergence error = 3.7281683944456745e-5 Iteration 19: convergence error = 1.1519836334628053e-5 Iteration 20: convergence error = 3.5595562621892896e-6 Iteration 21: convergence error = 1.0998942343576346e-6 Iteration 22: convergence error = 3.396858119231183e-7 Iteration 23: convergence error = 1.037637957779225e-7 Iteration 24: convergence error = 3.0904175218893215e-8 Iteration 25: convergence error = 9.166342351818457e-9 Iteration 26: convergence error = 2.7157511794939637e-9 Iteration 27: convergence error = 8.030838216654956e-10 Iteration 28: convergence error = 2.3783286451362073e-10 Iteration 29: convergence error = 6.912159733474255e-11 Iteration 30: convergence error = 2.1373125491663814e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018486865448348066 Iteration 10: d = 1.3335653691716087e-5 Iteration 20: d = 8.584333129083811e-8 Iteration 30: d = 7.376985501370473e-10 Iteration 40: d = 7.696002455956684e-12 Iteration 50: d = 9.017608754639291e-14 Converged after 59 iterations. d = 1.7342436908242203e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.738901728851 Iteration 2: convergence error = 5514.4205138710295 Iteration 3: convergence error = 937.9128490036262 Iteration 4: convergence error = 171.12627510918287 Iteration 5: convergence error = 31.097538717960788 Iteration 6: convergence error = 5.664342920757463 Iteration 7: convergence error = 1.032968898154195 Iteration 8: convergence error = 0.18851725175613865 Iteration 9: convergence error = 0.03442589283849884 Iteration 10: convergence error = 0.006294291091307969 Iteration 11: convergence error = 0.0011504914004945022 Iteration 12: convergence error = 0.00021025965816079406 Iteration 13: convergence error = 3.8423358546424424e-5 Iteration 14: convergence error = 7.021303645160515e-6 Iteration 15: convergence error = 1.2830050764023326e-6 Iteration 16: convergence error = 2.3445500119123608e-7 Iteration 17: convergence error = 4.2836745706154034e-8 Iteration 18: convergence error = 7.824837666703388e-9 Iteration 19: convergence error = 1.4338183973450214e-9 Iteration 20: convergence error = 2.632987161632627e-10 Iteration 21: convergence error = 4.6838977141305804e-11 Iteration 22: convergence error = 9.549694368615746e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018486865448348066 Iteration 10: d = 1.3335653691716087e-5 Iteration 20: d = 8.584333129083811e-8 Iteration 30: d = 7.376985501370473e-10 Iteration 40: d = 7.696002455956684e-12 Iteration 50: d = 9.017608754639291e-14 Converged after 59 iterations. d = 1.7342436908242203e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.488538778226 Iteration 2: convergence error = 2713.262199976756 Iteration 3: convergence error = 205.17983241138734 Iteration 4: convergence error = 19.303820134324553 Iteration 5: convergence error = 1.5970038094016377 Iteration 6: convergence error = 0.13029171072035572 Iteration 7: convergence error = 0.01066442004487232 Iteration 8: convergence error = 0.0008739011104542521 Iteration 9: convergence error = 7.167162000345625e-5 Iteration 10: convergence error = 5.8807406886733316e-6 Iteration 11: convergence error = 4.826370822120494e-7 Iteration 12: convergence error = 3.961523847061458e-8 Iteration 13: convergence error = 3.2528254841130108e-9 Iteration 14: convergence error = 2.660120506902143e-10 Iteration 15: convergence error = 2.1600499167107046e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016215121363849694 Iteration 10: d = 1.936939295400252e-5 Iteration 20: d = 2.3533857673948622e-7 Iteration 30: d = 3.056521486482742e-9 Iteration 40: d = 4.0162968121379457e-11 Iteration 50: d = 5.29682608941672e-13 Iteration 60: d = 6.9780550281640364e-15 Converged after 63 iterations. d = 1.896480507966295e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.365978793384 Iteration 2: convergence error = 3610.6263378032804 Iteration 3: convergence error = 593.409597058111 Iteration 4: convergence error = 104.12789333936644 Iteration 5: convergence error = 18.506698599370793 Iteration 6: convergence error = 3.2606381519894967 Iteration 7: convergence error = 0.5723820390862784 Iteration 8: convergence error = 0.10032195873282035 Iteration 9: convergence error = 0.01757213037785732 Iteration 10: convergence error = 0.0030770585653954186 Iteration 11: convergence error = 0.0005387638839238207 Iteration 12: convergence error = 9.432805882170214e-5 Iteration 13: convergence error = 1.6514851495230687e-5 Iteration 14: convergence error = 2.89138688458479e-6 Iteration 15: convergence error = 5.062165655544959e-7 Iteration 16: convergence error = 8.861979949870147e-8 Iteration 17: convergence error = 1.553166839585174e-8 Iteration 18: convergence error = 2.6980160328093916e-9 Iteration 19: convergence error = 4.756657290272415e-10 Iteration 20: convergence error = 8.230927051045e-11 Iteration 21: convergence error = 1.432454155292362e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m11.2s Testing RayTraceHeatTransfer tests passed Testing completed after 616.96s PkgEval succeeded after 699.92s