Package evaluation to test GaussianMixtures on Julia 1.14.0-DEV.50 (b60d1db399*) started at 2025-11-09T18:58:06.607 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.46s ################################################################################ # Installation # Installing GaussianMixtures... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [cc18c42c] + GaussianMixtures v0.3.13 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [7d9fca2a] + Arpack v0.5.4 [aaaa29a8] + Clustering v0.15.8 [34da2185] + Compat v4.18.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [8bb1440f] + DelimitedFiles v1.9.1 [b4f34e82] + Distances v0.10.12 [31c24e10] + Distributions v0.25.122 [ffbed154] + DocStringExtensions v0.9.5 [5789e2e9] + FileIO v1.17.1 [1a297f60] + FillArrays v1.15.0 [cc18c42c] + GaussianMixtures v0.3.13 [076d061b] + HashArrayMappedTries v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [92d709cd] + IrrationalConstants v0.2.6 ⌅ [033835bb] + JLD2 v0.5.15 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [1914dd2f] + MacroTools v0.5.16 [e1d29d7a] + Missings v1.2.0 [b8a86587] + NearestNeighbors v0.4.22 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.36 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [6e75b9c4] + ScikitLearnBase v0.5.0 [7e506255] + ScopedValues v1.5.0 [a2af1166] + SortingAlgorithms v1.2.2 [276daf66] + SpecialFunctions v2.6.1 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [3bb67fe8] + TranscodingStreams v0.11.3 ⌅ [68821587] + Arpack_jll v3.5.1+1 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 5.49s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1699.5 ms ✓ PDMats → StatsBaseExt 5554.2 ms ✓ Clustering 10926.1 ms ✓ Distributions 10588.6 ms ✓ GaussianMixtures 4 dependencies successfully precompiled in 30 seconds. 83 already precompiled. Precompilation completed after 42.36s ################################################################################ # Testing # Testing GaussianMixtures Status `/tmp/jl_Zor9e4/Project.toml` [7d9fca2a] Arpack v0.5.4 [aaaa29a8] Clustering v0.15.8 [34da2185] Compat v4.18.1 [8bb1440f] DelimitedFiles v1.9.1 [31c24e10] Distributions v0.25.122 [5789e2e9] FileIO v1.17.1 [cc18c42c] GaussianMixtures v0.3.13 ⌅ [033835bb] JLD2 v0.5.15 [90014a1f] PDMats v0.11.36 [ce6b1742] RDatasets v0.7.7 [6e75b9c4] ScikitLearnBase v0.5.0 [276daf66] SpecialFunctions v2.6.1 [10745b16] Statistics v1.11.1 [2913bbd2] StatsBase v0.34.7 [8ba89e20] Distributed v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_Zor9e4/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [7d9fca2a] Arpack v0.5.4 [336ed68f] CSV v0.10.15 ⌅ [324d7699] CategoricalArrays v0.10.8 [aaaa29a8] Clustering v0.15.8 [944b1d66] CodecZlib v0.7.8 [34da2185] Compat v4.18.1 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [a93c6f00] DataFrames v1.8.1 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [8bb1440f] DelimitedFiles v1.9.1 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.122 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [5789e2e9] FileIO v1.17.1 [48062228] FilePathsBase v0.9.24 [1a297f60] FillArrays v1.15.0 [cc18c42c] GaussianMixtures v0.3.13 [076d061b] HashArrayMappedTries v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [842dd82b] InlineStrings v1.4.5 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.6 [82899510] IteratorInterfaceExtensions v1.0.0 ⌅ [033835bb] JLD2 v0.5.15 [692b3bcd] JLLWrappers v1.7.1 [b964fa9f] LaTeXStrings v1.4.0 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [e1d29d7a] Missings v1.2.0 [78c3b35d] Mocking v0.8.1 [b8a86587] NearestNeighbors v0.4.22 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.36 [69de0a69] Parsers v2.8.3 [2dfb63ee] PooledArrays v1.4.3 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [08abe8d2] PrettyTables v3.1.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 ⌅ [df47a6cb] RData v0.8.3 [ce6b1742] RDatasets v0.7.7 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [79098fc4] Rmath v0.9.0 [6e75b9c4] ScikitLearnBase v0.5.0 [7e506255] ScopedValues v1.5.0 [6c6a2e73] Scratch v1.3.0 [91c51154] SentinelArrays v1.4.8 [a2af1166] SortingAlgorithms v1.2.2 [276daf66] SpecialFunctions v2.6.1 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.7 [4c63d2b9] StatsFuns v1.5.2 [892a3eda] StringManipulation v0.4.1 [dc5dba14] TZJData v1.5.0+2025b [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [f269a46b] TimeZones v1.22.1 [3bb67fe8] TranscodingStreams v0.11.3 [ea10d353] WeakRefStrings v1.4.2 [76eceee3] WorkerUtilities v1.6.1 ⌅ [68821587] Arpack_jll v3.5.1+1 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.7.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... (100000, -1.225843513896764e7, [2818.1151062971335, 97181.88489370285], [-2822.2800917643676 1507.1033714299938 -5019.875885310688; 3010.563655728784 -1423.4724952398471 4948.916918134885], [[5057.192605545786 -1101.0506507605808 4016.666335162084; -1101.0506507605808 4357.428094836637 -2231.087866511234; 4016.666335162084 -2231.0878665112336 9723.867189199285], [94444.17292906245 585.7603622001108 -4065.3989010354903; 585.7603622001109 95264.60747636837 2409.959319713458; -4065.3989010354903 2409.959319713458 90919.0530911844]]) Test Summary: | Pass Total Time data.jl | 8 8 4m55.0s [ Info: Initializing GMM, 2 Gaussians diag covariance 1 dimensions using 272 data points K-means converged with 2 iterations (objv = 8855.79069767458) ┌ Info: K-means with 272 data points using 2 iterations └ 68.0 data points per parameter [ Info: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points K-means converged with 3 iterations (objv = 862.9298482946042) ┌ Info: K-means with 272 data points using 3 iterations └ 11.3 data points per parameter ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:221 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:221 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:698 [inlined] └ @ Core ./broadcast.jl:698 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = lowerbound(vg::VGMM{Float64}, N::Vector{Float64}, mx::Matrix{Float64}, S::Vector{Matrix{Float64}}, Elogπ::Vector{Float64}, ElogdetΛ::Vector{Float64}, ElogpZπqZ::Float64) at bayes.jl:230 └ @ Core ~/.julia/packages/GaussianMixtures/RYvNa/src/bayes.jl:230 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:698 [inlined] └ @ Core ./broadcast.jl:698 ┌ Warning: `lgamma(x::Real)` is deprecated, use `(logabsgamma(x))[1]` instead. │ caller = _broadcast_getindex_evalf at broadcast.jl:698 [inlined] └ @ Core ./broadcast.jl:698 History[Sun Nov 9 19:09:30 2025: Initializing GMM, 8 Gaussians diag covariance 2 dimensions using 272 data points , Sun Nov 9 19:09:32 2025: K-means with 272 data points using 3 iterations 11.3 data points per parameter , Sun Nov 9 19:09:32 2025: EM with 272 data points 0 iterations avll -2.075278 5.8 data points per parameter , Sun Nov 9 19:09:39 2025: GMM converted to Variational GMM , Sun Nov 9 19:09:50 2025: iteration 1, lowerbound -3.781857 , Sun Nov 9 19:09:50 2025: iteration 2, lowerbound -3.647123 , Sun Nov 9 19:09:50 2025: iteration 3, lowerbound -3.508671 , Sun Nov 9 19:09:50 2025: iteration 4, lowerbound -3.363309 , Sun Nov 9 19:09:50 2025: iteration 5, lowerbound -3.222595 , Sun Nov 9 19:09:50 2025: iteration 6, lowerbound -3.092045 , Sun Nov 9 19:09:51 2025: dropping number of Gaussions to 7 , Sun Nov 9 19:09:51 2025: iteration 7, lowerbound -2.973386 , Sun Nov 9 19:09:51 2025: dropping number of Gaussions to 6 , Sun Nov 9 19:09:51 2025: iteration 8, lowerbound -2.874331 , Sun Nov 9 19:09:51 2025: dropping number of Gaussions to 5 , Sun Nov 9 19:09:51 2025: iteration 9, lowerbound -2.803839 , Sun Nov 9 19:09:51 2025: iteration 10, lowerbound -2.771124 , Sun Nov 9 19:09:51 2025: dropping number of Gaussions to 3 , Sun Nov 9 19:09:51 2025: iteration 11, lowerbound -2.747394 , Sun Nov 9 19:09:51 2025: iteration 12, lowerbound -2.714333 , Sun Nov 9 19:09:51 2025: iteration 13, lowerbound -2.675982 , Sun Nov 9 19:09:51 2025: iteration 14, lowerbound -2.623011 , Sun Nov 9 19:09:51 2025: iteration 15, lowerbound -2.557904 , Sun Nov 9 19:09:51 2025: iteration 16, lowerbound -2.489437 , Sun Nov 9 19:09:51 2025: iteration 17, lowerbound -2.428562 , Sun Nov 9 19:09:51 2025: iteration 18, lowerbound -2.380820 , Sun Nov 9 19:09:51 2025: iteration 19, lowerbound -2.345307 , Sun Nov 9 19:09:51 2025: iteration 20, lowerbound -2.320524 , Sun Nov 9 19:09:51 2025: iteration 21, lowerbound -2.308319 , Sun Nov 9 19:09:51 2025: dropping number of Gaussions to 2 , Sun Nov 9 19:09:51 2025: iteration 22, lowerbound -2.303104 , Sun Nov 9 19:09:51 2025: iteration 23, lowerbound -2.299264 , Sun Nov 9 19:09:51 2025: iteration 24, lowerbound -2.299258 , Sun Nov 9 19:09:51 2025: iteration 25, lowerbound -2.299255 , Sun Nov 9 19:09:51 2025: iteration 26, lowerbound -2.299254 , Sun Nov 9 19:09:51 2025: iteration 27, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 28, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 29, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 30, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 31, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 32, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 33, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 34, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 35, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 36, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 37, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 38, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 39, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 40, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 41, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 42, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 43, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 44, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 45, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 46, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 47, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 48, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 49, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: iteration 50, lowerbound -2.299253 , Sun Nov 9 19:09:51 2025: 50 variational Bayes EM-like iterations using 272 data points, final lowerbound -2.299253 ] α = [95.95490777398199, 178.04509222601794] β = [95.95490777398199, 178.04509222601794] m = [2.000229257775336 53.851987172461115; 4.250300733269878 79.28686694436139] ν = [97.95490777398199, 180.04509222601794] W = LinearAlgebra.UpperTriangular{Float64, Matrix{Float64}}[[0.3758763611948954 -0.008953123827346667; 0.0 0.012748664777409595], [0.18404155547483952 -0.007644049042327616; 0.0 0.008581705166333125]] Test Summary: | Pass Total Time bayes.jl | 3 3 2m03.3s Kind: diag, size256 nx: 100000 sum(zeroth order stats): 99999.99999999996 avll from stats: -0.984227902020892 avll from llpg: -0.9842279020208962 avll direct: -0.9842279020208962 sum posterior: 100000.0 Kind: full, size16 nx: 100000 sum(zeroth order stats): 100000.0 avll from stats: -0.987010682263754 avll from llpg: -0.987010682263754 avll direct: -0.987010682263754 sum posterior: 100000.0 kind diag, method split ┌ Info: 0: avll = └ tll[1] = -1.3982961270631418 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.3983729085020788 │ -1.3982814226823763 │ -1.3973594716911775 │ -1.3891493883270192 │ ⋮ │ -1.3606502631209445 │ -1.3606496700010244 └ -1.360649113576055 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.3607607705556577 │ -1.3606458497119551 │ -1.360043033441801 │ -1.3543754544650806 │ ⋮ │ -1.3141640539950692 │ -1.3141574962968086 └ -1.3141514097089944 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 4 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.3142829299447907 │ -1.314116015492832 │ -1.313246848423756 │ -1.3069929337487125 │ ⋮ │ -1.2496649949653529 │ -1.2482352554449927 └ -1.246179197741093 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 7 │ 8 │ 13 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 1 │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 7 │ 8 │ 15 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 1 │ 7 │ 8 │ 13 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 7 │ 8 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.2438809664208386 │ -1.2436079627700347 │ -1.2424858989525238 │ -1.230587886850562 │ ⋮ │ -1.1732035693948393 │ -1.160094173497622 └ -1.155276732522285 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 13 │ 14 │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 13 │ 14 │ 15 │ 16 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 13 │ 14 │ ⋮ │ 26 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 1 │ 2 │ 13 │ 14 │ 15 │ 16 │ 25 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 13 │ ⋮ │ 16 │ 26 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 13 │ 14 │ ⋮ │ 25 │ 27 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 13 │ 14 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 22 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 22 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 17 │ 22 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 12-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 22 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 10 │ 13 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.1513315653055043 │ -1.1496550062656508 │ -1.1463452801253564 │ -1.13287738471666 │ ⋮ │ -1.0589353309998766 │ -1.0551021850846003 └ -1.0506187435596683 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.3982961270631418 │ -1.3983729085020788 │ -1.3982814226823763 │ -1.3973594716911775 │ ⋮ │ -1.0589353309998766 │ -1.0551021850846003 └ -1.0506187435596683 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 17 │ 25 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 14-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 10-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 16 │ 22 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 15-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 9-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 15 │ 16 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 13-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 1 │ 2 │ 3 │ 5 │ ⋮ │ 16 │ 17 │ 26 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 15-element Vector{Int64}: │ 1 │ 2 │ 5 │ 9 │ ⋮ │ 27 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind diag, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 587532.5706323414) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 21 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 12 │ 19 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 20 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 15 │ 26 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 5 │ 19 │ 20 │ 21 │ 28 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 13 │ 17 │ 18 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 5 │ 12 │ 19 │ 20 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 15 │ 28 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 14 │ 27 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 2 │ 5 │ 13 │ 17 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 12 │ 19 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 28 │ 29 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 2 │ 5 │ 20 │ 27 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 15 │ 17 │ 19 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 5 │ 12 │ 13 │ 20 │ 29 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 1-element Vector{Int64}: │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 5 │ 12 │ 14 │ 19 │ 20 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 15 │ 17 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 21 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 5 │ 13 │ 19 │ 20 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 12 │ 15 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 5 │ 14 │ 17 │ 20 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 2 │ 15 │ 19 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 12 │ 21 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 5 │ 20 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 13 │ 15 │ 17 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 5 │ 12 │ 19 │ 20 │ 21 │ 29 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 14 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 5 │ 15 │ 20 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 2 │ 12 │ 17 │ 19 │ 21 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 14 │ 20 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 2 │ 5 │ 13 │ 21 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 4-element Vector{Int64}: │ 12 │ 15 │ 19 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 17 │ 20 │ 28 │ 29 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 5 │ 14 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 2-element Vector{Int64}: │ 2 │ 21 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 12 │ 13 │ 19 │ 20 │ 31 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 3-element Vector{Int64}: │ 5 │ 15 │ 28 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 5 │ 14 │ 15 │ 17 │ 21 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 5 │ 15 │ 17 │ 19 │ 20 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 5 │ 12 │ 14 │ 15 │ 21 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 5-element Vector{Int64}: │ 5 │ 15 │ 17 │ 28 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 11-element Vector{Int64}: │ 2 │ 5 │ 13 │ 14 │ ⋮ │ 28 │ 30 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 6-element Vector{Int64}: │ 5 │ 12 │ 15 │ 17 │ 28 │ 29 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 5 │ 14 │ 15 │ 21 │ 28 │ 30 │ 31 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 7-element Vector{Int64}: │ 5 │ 15 │ 17 │ 19 │ 20 │ 28 │ 32 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 ┌ Warning: Variances had to be floored │ ind = │ 8-element Vector{Int64}: │ 2 │ 5 │ 12 │ 14 │ 15 │ 21 │ 28 │ 30 └ @ GaussianMixtures ~/.julia/packages/GaussianMixtures/RYvNa/src/train.jl:260 kind full, method split ┌ Info: 0: avll = └ tll[1] = -1.4122602173107133 ┌ Info: 1 │ avll = │ 50-element Vector{Float64}: │ -1.4122878815350786 │ -1.4122322101314622 │ -1.41219168344089 │ -1.412124725862745 │ ⋮ │ -1.406655760618883 │ -1.406655618259989 └ -1.4066554911806752 ┌ Info: 2 │ avll = │ 50-element Vector{Float64}: │ -1.406682132356288 │ -1.406624798911005 │ -1.4065868034173459 │ -1.4065318101578228 │ ⋮ │ -1.3922267963340464 │ -1.3919550226974844 └ -1.3917909177877694 ┌ Info: 3 │ avll = │ 50-element Vector{Float64}: │ -1.391683297070672 │ -1.3914240321855638 │ -1.391056366974865 │ -1.3888028596375912 │ ⋮ │ -1.3604102791952137 │ -1.3603365980573554 └ -1.3602366305252993 ┌ Info: 4 │ avll = │ 50-element Vector{Float64}: │ -1.3601451646889624 │ -1.3597351474295039 │ -1.359152277452298 │ -1.3578492847263914 │ ⋮ │ -1.3100302993594486 │ -1.3099422991447616 └ -1.3098237354479518 ┌ Info: 5 │ avll = │ 50-element Vector{Float64}: │ -1.3097043315462562 │ -1.3089903403717782 │ -1.307718290441506 │ -1.3047691096633085 │ ⋮ │ -1.2428932227453624 │ -1.2428897333027935 └ -1.2428862778103396 ┌ Info: Total log likelihood: │ tll = │ 251-element Vector{Float64}: │ -1.4122602173107133 │ -1.4122878815350786 │ -1.4122322101314622 │ -1.41219168344089 │ ⋮ │ -1.2428932227453624 │ -1.2428897333027935 └ -1.2428862778103396 kind full, method kmeans [ Info: Initializing GMM, 32 Gaussians diag covariance 26 dimensions using 100000 data points K-means terminated without convergence after 50 iterations (objv = 670788.809118202) ┌ Info: K-means with 32000 data points using 50 iterations └ 37.0 data points per parameter Test Summary: | Broken Total Time train.jl | 1 1 8m25.0s [ Info: Initializing GMM, 2 Gaussians diag covariance 2 dimensions using 900 data points K-means converged with 2 iterations (objv = 7869.867369234178) ┌ Info: K-means with 900 data points using 2 iterations └ 150.0 data points per parameter Test Summary: | Pass Total Time ScikitLearnBase | 1 1 2.6s Testing GaussianMixtures tests passed Testing completed after 1155.13s PkgEval succeeded after 1228.01s