Package evaluation to test Turing on Julia 1.14.0-DEV.36 (e2f3178d9b*) started at 2025-11-07T00:48:55.954 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.92s ################################################################################ # Installation # Installing Turing... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [fce5fe82] + Turing v0.41.0 Updating `~/.julia/environments/v1.14/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [621f4979] + AbstractFFTs v1.5.0 [80f14c24] + AbstractMCMC v5.10.0 [7a57a42e] + AbstractPPL v0.13.5 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [0bf59076] + AdvancedHMC v0.8.3 [5b7e9947] + AdvancedMH v0.8.9 [576499cb] + AdvancedPS v0.7.0 ⌅ [b5ca4192] + AdvancedVI v0.4.1 [66dad0bd] + AliasTables v1.1.3 [dce04be8] + ArgCheck v2.5.0 [4fba245c] + ArrayInterface v7.22.0 [13072b0f] + AxisAlgorithms v1.1.0 [39de3d68] + AxisArrays v0.4.8 [198e06fe] + BangBang v0.4.6 [9718e550] + Baselet v0.1.1 [76274a88] + Bijectors v0.15.12 [082447d4] + ChainRules v1.72.6 [d360d2e6] + ChainRulesCore v1.26.0 [0ca39b1e] + Chairmarks v1.3.1 [9e997f8a] + ChangesOfVariables v0.1.10 [861a8166] + Combinatorics v1.0.3 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [34da2185] + Compat v4.18.1 [a33af91c] + CompositionsBase v0.1.2 [88cd18e8] + ConsoleProgressMonitor v0.1.2 [187b0558] + ConstructionBase v1.6.0 [a8cc5b0e] + Crayons v4.1.1 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [e2d170a0] + DataValueInterfaces v1.0.0 [244e2a9f] + DefineSingletons v0.1.2 [8bb1440f] + DelimitedFiles v1.9.1 [b429d917] + DensityInterface v0.4.0 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.10 [31c24e10] + Distributions v0.25.122 [ced4e74d] + DistributionsAD v0.6.58 [ffbed154] + DocStringExtensions v0.9.5 [366bfd00] + DynamicPPL v0.38.8 [cad2338a] + EllipticalSliceSampling v2.0.0 [4e289a0a] + EnumX v1.0.5 [e2ba6199] + ExprTools v0.1.10 [55351af7] + ExproniconLite v0.10.14 [7a1cc6ca] + FFTW v1.10.0 [9aa1b823] + FastClosures v0.3.2 [1a297f60] + FillArrays v1.15.0 [6a86dc24] + FiniteDiff v2.29.0 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [d9f16b24] + Functors v0.5.2 [46192b85] + GPUArraysCore v0.2.0 [34004b35] + HypergeometricFunctions v0.3.28 [22cec73e] + InitialValues v0.3.1 [a98d9a8b] + Interpolations v0.16.2 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [41ab1584] + InvertedIndices v1.3.1 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [82899510] + IteratorInterfaceExtensions v1.0.0 [692b3bcd] + JLLWrappers v1.7.1 [682c06a0] + JSON v1.2.0 [ae98c720] + Jieko v0.2.1 [5ab0869b] + KernelDensity v0.6.10 [b964fa9f] + LaTeXStrings v1.4.0 [1d6d02ad] + LeftChildRightSiblingTrees v0.2.1 [6f1fad26] + Libtask v0.9.9 [d3d80556] + LineSearches v7.4.0 [6fdf6af0] + LogDensityProblems v2.2.0 [996a588d] + LogDensityProblemsAD v1.13.1 [2ab3a3ac] + LogExpFunctions v0.3.29 [e6f89c97] + LoggingExtras v1.2.0 [c7f686f2] + MCMCChains v7.6.0 [be115224] + MCMCDiagnosticTools v0.3.15 [e80e1ace] + MLJModelInterface v1.12.0 [1914dd2f] + MacroTools v0.5.16 [dbb5928d] + MappedArrays v0.4.2 [128add7d] + MicroCollections v0.2.0 [e1d29d7a] + Missings v1.2.0 [dbe65cb8] + MistyClosures v2.1.0 [2e0e35c7] + Moshi v0.3.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [86f7a689] + NamedArrays v0.10.5 [c020b1a1] + NaturalSort v1.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [3bd65402] + Optimisers v0.4.6 [7f7a1694] + Optimization v5.1.0 [bca83a33] + OptimizationBase v4.0.2 [36348300] + OptimizationOptimJL v0.4.8 [bac558e1] + OrderedCollections v1.8.1 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [69de0a69] + Parsers v2.8.3 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [08abe8d2] + PrettyTables v3.1.0 [33c8b6b6] + ProgressLogging v0.1.5 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [b3c3ace0] + RangeArrays v0.3.2 [c84ed2f1] + Ratios v0.4.5 [c1ae055f] + RealDot v0.1.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [79098fc4] + Rmath v0.9.0 [f2b01f46] + Roots v2.2.10 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 ⌅ [26aad666] + SSMProblems v0.5.2 [0bca4576] + SciMLBase v2.124.0 [a6db7da4] + SciMLLogging v1.4.0 [c0aeaf25] + SciMLOperators v1.10.0 [431bcebd] + SciMLPublic v1.0.0 [53ae85a6] + SciMLStructures v1.7.0 [30f210dd] + ScientificTypesBase v3.0.0 [efcf1570] + Setfield v1.1.2 [a2af1166] + SortingAlgorithms v1.2.2 [9f842d2f] + SparseConnectivityTracer v1.1.2 [dc90abb0] + SparseInverseSubset v0.1.2 [0a514795] + SparseMatrixColorings v0.4.23 [276daf66] + SpecialFunctions v2.6.1 [171d559e] + SplittablesBase v0.1.15 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [64bff920] + StatisticalTraits v3.5.0 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [892a3eda] + StringManipulation v0.4.1 [09ab397b] + StructArrays v0.7.2 [ec057cc2] + StructUtils v2.5.1 [2efcf032] + SymbolicIndexingInterface v0.3.46 [3783bdb8] + TableTraits v1.0.1 [bd369af6] + Tables v1.12.1 [5d786b92] + TerminalLoggers v0.1.7 [28d57a85] + Transducers v0.4.85 [fce5fe82] + Turing v0.41.0 [3a884ed6] + UnPack v1.0.2 [efce3f68] + WoodburyMatrices v1.0.0 [700de1a5] + ZygoteRules v0.2.7 [f5851436] + FFTW_jll v3.3.11+0 [1d5cc7b8] + IntelOpenMP_jll v2025.2.0+0 [856f044c] + MKL_jll v2025.2.0+0 [efe28fd5] + OpenSpecFun_jll v0.5.6+0 [f50d1b31] + Rmath_jll v0.5.1+0 [1317d2d5] + oneTBB_jll v2022.0.0+1 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [9fa8497b] + Future v1.11.0 [b77e0a4c] + InteractiveUtils v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [4af54fe1] + LazyArtifacts v1.11.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [a63ad114] + Mmap v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [3fa0cd96] + REPL v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [4607b0f0] + SuiteSparse [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [8dfed614] + Test v1.11.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [05823500] + OpenLibm_jll v0.8.7+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 6.66s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 2388.7 ms ✓ LogDensityProblemsAD → LogDensityProblemsADADTypesExt 1798.7 ms ✓ BangBang → BangBangStaticArraysExt 1724.9 ms ✓ ArrayInterface → ArrayInterfaceChainRulesExt 6534.1 ms ✓ Transducers 3771.1 ms ✓ SciMLBase → SciMLBaseForwardDiffExt 1977.1 ms ✓ LogDensityProblemsAD → LogDensityProblemsADForwardDiffExt 2488.8 ms ✓ NLSolversBase 1651.7 ms ✓ Roots → RootsForwardDiffExt 2324.0 ms ✓ OptimizationBase → OptimizationForwardDiffExt 5509.0 ms ✓ Optimization 4045.0 ms ✓ Distributions → DistributionsDensityInterfaceExt 5756.1 ms ✓ MCMCDiagnosticTools 4910.9 ms ✓ AdvancedVI 8038.8 ms ✓ Bijectors 8517.7 ms ✓ DistributionsAD 4856.7 ms ✓ SciMLBase → SciMLBaseDistributionsExt 6395.6 ms ✓ KernelDensity 1496.0 ms ✓ LogDensityProblemsAD → LogDensityProblemsADDifferentiationInterfaceExt 1946.2 ms ✓ Transducers → TransducersAdaptExt 4516.5 ms ✓ AbstractMCMC 4568.8 ms ✓ LineSearches 4422.9 ms ✓ Bijectors → BijectorsForwardDiffExt 3642.4 ms ✓ AdvancedVI → AdvancedVIBijectorsExt 3827.7 ms ✓ DistributionsAD → DistributionsADForwardDiffExt 3813.4 ms ✓ Bijectors → BijectorsDistributionsADExt 10638.5 ms ✓ MCMCChains 6701.6 ms ✓ AdvancedHMC 5443.2 ms ✓ SSMProblems 5942.4 ms ✓ AdvancedMH 5175.4 ms ✓ EllipticalSliceSampling 4817.0 ms ✓ AbstractPPL 7312.7 ms ✓ Optim 3857.0 ms ✓ AdvancedHMC → AdvancedHMCADTypesExt 7986.7 ms ✓ AdvancedHMC → AdvancedHMCMCMCChainsExt 6034.5 ms ✓ AdvancedPS 8337.6 ms ✓ AdvancedMH → AdvancedMHMCMCChainsExt 4711.1 ms ✓ AdvancedMH → AdvancedMHStructArraysExt 4964.6 ms ✓ AdvancedMH → AdvancedMHForwardDiffExt 6165.3 ms ✓ AbstractPPL → AbstractPPLDistributionsExt 28465.9 ms ✓ OptimizationOptimJL 4695.8 ms ✓ AdvancedPS → AdvancedPSLibtaskExt 19119.3 ms ✓ DynamicPPL 8097.8 ms ✓ DynamicPPL → DynamicPPLChainRulesCoreExt 9820.7 ms ✓ DynamicPPL → DynamicPPLMCMCChainsExt 5743.9 ms ✓ DynamicPPL → DynamicPPLForwardDiffExt 17098.0 ms ✓ Turing 12554.9 ms ✓ Turing → TuringOptimExt 47 dependencies successfully precompiled in 298 seconds. 264 already precompiled. Precompilation completed after 300.25s ################################################################################ # Testing # Testing Turing Test Could not use exact versions of packages in manifest, re-resolving. Note: if you do not check your manifest file into source control, then you can probably ignore this message. However, if you do check your manifest file into source control, then you probably want to pass the `allow_reresolve = false` kwarg when calling the `Pkg.test` function. Updating `/tmp/jl_p4UU8y/Project.toml` [4c88cf16] + Aqua v0.8.14 [aaaa29a8] + Clustering v0.15.8 [bbc10e6e] + DynamicHMC v3.5.1 [26cc04aa] + FiniteDifferences v0.12.33 [09f84164] + HypothesisTests v0.11.6 [3e6eede4] + OptimizationBBO v0.4.5 [4e6fcdb7] + OptimizationNLopt v0.3.8 [37e2e3b7] + ReverseDiff v1.16.1 [860ef19b] + StableRNGs v1.0.3 [a759f4b9] + TimerOutputs v0.5.29 [fce5fe82] + Turing v0.41.0 Updating `/tmp/jl_p4UU8y/Manifest.toml` [0bf59076] + AdvancedHMC v0.8.3 [4c88cf16] + Aqua v0.8.14 [a134a8b2] + BlackBoxOptim v0.6.3 [fa961155] + CEnum v0.5.0 [a9c8d775] + CPUTime v1.0.0 [aaaa29a8] + Clustering v0.15.8 [b4f34e82] + Distances v0.10.12 [bbc10e6e] + DynamicHMC v3.5.1 [cad2338a] + EllipticalSliceSampling v2.0.0 [26cc04aa] + FiniteDifferences v0.12.33 [09f84164] + HypothesisTests v0.11.6 ⌅ [682c06a0] ↓ JSON v1.2.0 ⇒ v0.21.4 [1fad7336] + LazyStack v0.1.3 [6f1fad26] + Libtask v0.9.9 [dbe65cb8] + MistyClosures v2.1.0 [76087f3c] + NLopt v1.2.1 [b8a86587] + NearestNeighbors v0.4.22 [3e6eede4] + OptimizationBBO v0.4.5 [4e6fcdb7] + OptimizationNLopt v0.3.8 [65ce6f38] + PackageExtensionCompat v1.0.2 [37e2e3b7] + ReverseDiff v1.16.1 [708f8203] + Richardson v1.4.2 [d4ead438] + SpatialIndexing v0.1.6 [860ef19b] + StableRNGs v1.0.3 [5e0ebb24] + Strided v2.3.2 [4db3bf67] + StridedViews v0.4.1 [ec057cc2] - StructUtils v2.5.1 [02d47bb6] + TensorCast v0.4.9 [a759f4b9] + TimerOutputs v0.5.29 [24ddb15e] + TransmuteDims v0.1.17 [9d95972d] + TupleTools v1.6.0 [fce5fe82] + Turing v0.41.0 [079eb43e] + NLopt_jll v2.10.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Test Successfully re-resolved Status `/tmp/jl_p4UU8y/Project.toml` [47edcb42] ADTypes v1.18.0 [80f14c24] AbstractMCMC v5.10.0 [7a57a42e] AbstractPPL v0.13.5 [5b7e9947] AdvancedMH v0.8.9 [576499cb] AdvancedPS v0.7.0 ⌅ [b5ca4192] AdvancedVI v0.4.1 [4c88cf16] Aqua v0.8.14 [198e06fe] BangBang v0.4.6 [76274a88] Bijectors v0.15.12 [aaaa29a8] Clustering v0.15.8 [861a8166] Combinatorics v1.0.3 [31c24e10] Distributions v0.25.122 [ced4e74d] DistributionsAD v0.6.58 [bbc10e6e] DynamicHMC v3.5.1 [366bfd00] DynamicPPL v0.38.8 [26cc04aa] FiniteDifferences v0.12.33 [f6369f11] ForwardDiff v1.2.2 [09f84164] HypothesisTests v0.11.6 [6fdf6af0] LogDensityProblems v2.2.0 [996a588d] LogDensityProblemsAD v1.13.1 [c7f686f2] MCMCChains v7.6.0 [86f7a689] NamedArrays v0.10.5 [429524aa] Optim v1.13.2 [7f7a1694] Optimization v5.1.0 [3e6eede4] OptimizationBBO v0.4.5 [4e6fcdb7] OptimizationNLopt v0.3.8 [36348300] OptimizationOptimJL v0.4.8 [90014a1f] PDMats v0.11.36 [37e2e3b7] ReverseDiff v1.16.1 [276daf66] SpecialFunctions v2.6.1 [860ef19b] StableRNGs v1.0.3 [2913bbd2] StatsBase v0.34.7 [4c63d2b9] StatsFuns v1.5.2 [a759f4b9] TimerOutputs v0.5.29 [fce5fe82] Turing v0.41.0 [37e2e46d] LinearAlgebra v1.13.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_p4UU8y/Manifest.toml` [47edcb42] ADTypes v1.18.0 [621f4979] AbstractFFTs v1.5.0 [80f14c24] AbstractMCMC v5.10.0 [7a57a42e] AbstractPPL v0.13.5 [1520ce14] AbstractTrees v0.4.5 [7d9f7c33] Accessors v0.1.42 [79e6a3ab] Adapt v4.4.0 [0bf59076] AdvancedHMC v0.8.3 [5b7e9947] AdvancedMH v0.8.9 [576499cb] AdvancedPS v0.7.0 ⌅ [b5ca4192] AdvancedVI v0.4.1 [66dad0bd] AliasTables v1.1.3 [4c88cf16] Aqua v0.8.14 [dce04be8] ArgCheck v2.5.0 [4fba245c] ArrayInterface v7.22.0 [13072b0f] AxisAlgorithms v1.1.0 [39de3d68] AxisArrays v0.4.8 [198e06fe] BangBang v0.4.6 [9718e550] Baselet v0.1.1 [76274a88] Bijectors v0.15.12 [a134a8b2] BlackBoxOptim v0.6.3 [fa961155] CEnum v0.5.0 [a9c8d775] CPUTime v1.0.0 [082447d4] ChainRules v1.72.6 [d360d2e6] ChainRulesCore v1.26.0 [0ca39b1e] Chairmarks v1.3.1 [9e997f8a] ChangesOfVariables v0.1.10 [aaaa29a8] Clustering v0.15.8 [861a8166] Combinatorics v1.0.3 [38540f10] CommonSolve v0.2.4 [bbf7d656] CommonSubexpressions v0.3.1 [34da2185] Compat v4.18.1 [a33af91c] CompositionsBase v0.1.2 [88cd18e8] ConsoleProgressMonitor v0.1.2 [187b0558] ConstructionBase v1.6.0 [a8cc5b0e] Crayons v4.1.1 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [e2d170a0] DataValueInterfaces v1.0.0 [244e2a9f] DefineSingletons v0.1.2 [8bb1440f] DelimitedFiles v1.9.1 [b429d917] DensityInterface v0.4.0 [163ba53b] DiffResults v1.1.0 [b552c78f] DiffRules v1.15.1 [a0c0ee7d] DifferentiationInterface v0.7.10 [b4f34e82] Distances v0.10.12 [31c24e10] Distributions v0.25.122 [ced4e74d] DistributionsAD v0.6.58 [ffbed154] DocStringExtensions v0.9.5 [bbc10e6e] DynamicHMC v3.5.1 [366bfd00] DynamicPPL v0.38.8 [cad2338a] EllipticalSliceSampling v2.0.0 [4e289a0a] EnumX v1.0.5 [e2ba6199] ExprTools v0.1.10 [55351af7] ExproniconLite v0.10.14 [7a1cc6ca] FFTW v1.10.0 [9aa1b823] FastClosures v0.3.2 [1a297f60] FillArrays v1.15.0 [6a86dc24] FiniteDiff v2.29.0 [26cc04aa] FiniteDifferences v0.12.33 [f6369f11] ForwardDiff v1.2.2 [069b7b12] FunctionWrappers v1.1.3 [77dc65aa] FunctionWrappersWrappers v0.1.3 [d9f16b24] Functors v0.5.2 [46192b85] GPUArraysCore v0.2.0 [34004b35] HypergeometricFunctions v0.3.28 [09f84164] HypothesisTests v0.11.6 [22cec73e] InitialValues v0.3.1 [a98d9a8b] Interpolations v0.16.2 [8197267c] IntervalSets v0.7.11 [3587e190] InverseFunctions v0.1.17 [41ab1584] InvertedIndices v1.3.1 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [82899510] IteratorInterfaceExtensions v1.0.0 [692b3bcd] JLLWrappers v1.7.1 ⌅ [682c06a0] JSON v0.21.4 [ae98c720] Jieko v0.2.1 [5ab0869b] KernelDensity v0.6.10 [b964fa9f] LaTeXStrings v1.4.0 [1fad7336] LazyStack v0.1.3 [1d6d02ad] LeftChildRightSiblingTrees v0.2.1 [6f1fad26] Libtask v0.9.9 [d3d80556] LineSearches v7.4.0 [6fdf6af0] LogDensityProblems v2.2.0 [996a588d] LogDensityProblemsAD v1.13.1 [2ab3a3ac] LogExpFunctions v0.3.29 [e6f89c97] LoggingExtras v1.2.0 [c7f686f2] MCMCChains v7.6.0 [be115224] MCMCDiagnosticTools v0.3.15 [e80e1ace] MLJModelInterface v1.12.0 [1914dd2f] MacroTools v0.5.16 [dbb5928d] MappedArrays v0.4.2 [128add7d] MicroCollections v0.2.0 [e1d29d7a] Missings v1.2.0 [dbe65cb8] MistyClosures v2.1.0 [2e0e35c7] Moshi v0.3.7 [d41bc354] NLSolversBase v7.10.0 [76087f3c] NLopt v1.2.1 [77ba4419] NaNMath v1.1.3 [86f7a689] NamedArrays v0.10.5 [c020b1a1] NaturalSort v1.0.0 [b8a86587] NearestNeighbors v0.4.22 [6fe1bfb0] OffsetArrays v1.17.0 [429524aa] Optim v1.13.2 [3bd65402] Optimisers v0.4.6 [7f7a1694] Optimization v5.1.0 [3e6eede4] OptimizationBBO v0.4.5 [bca83a33] OptimizationBase v4.0.2 [4e6fcdb7] OptimizationNLopt v0.3.8 [36348300] OptimizationOptimJL v0.4.8 [bac558e1] OrderedCollections v1.8.1 [90014a1f] PDMats v0.11.36 [65ce6f38] PackageExtensionCompat v1.0.2 [d96e819e] Parameters v0.12.3 [69de0a69] Parsers v2.8.3 [85a6dd25] PositiveFactorizations v0.2.4 [d236fae5] PreallocationTools v0.4.34 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [08abe8d2] PrettyTables v3.1.0 [33c8b6b6] ProgressLogging v0.1.5 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [1fd47b50] QuadGK v2.11.2 [74087812] Random123 v1.7.1 [e6cf234a] RandomNumbers v1.6.0 [b3c3ace0] RangeArrays v0.3.2 [c84ed2f1] Ratios v0.4.5 [c1ae055f] RealDot v0.1.0 [3cdcf5f2] RecipesBase v1.3.4 [731186ca] RecursiveArrayTools v3.39.0 [189a3867] Reexport v1.2.2 [ae029012] Requires v1.3.1 [37e2e3b7] ReverseDiff v1.16.1 [708f8203] Richardson v1.4.2 [79098fc4] Rmath v0.9.0 [f2b01f46] Roots v2.2.10 [7e49a35a] RuntimeGeneratedFunctions v0.5.16 ⌅ [26aad666] SSMProblems v0.5.2 [0bca4576] SciMLBase v2.124.0 [a6db7da4] SciMLLogging v1.4.0 [c0aeaf25] SciMLOperators v1.10.0 [431bcebd] SciMLPublic v1.0.0 [53ae85a6] SciMLStructures v1.7.0 [30f210dd] ScientificTypesBase v3.0.0 [efcf1570] Setfield v1.1.2 [a2af1166] SortingAlgorithms v1.2.2 [9f842d2f] SparseConnectivityTracer v1.1.2 [dc90abb0] SparseInverseSubset v0.1.2 [0a514795] SparseMatrixColorings v0.4.23 [d4ead438] SpatialIndexing v0.1.6 [276daf66] SpecialFunctions v2.6.1 [171d559e] SplittablesBase v0.1.15 [860ef19b] StableRNGs v1.0.3 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [64bff920] StatisticalTraits v3.5.0 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 [2913bbd2] StatsBase v0.34.7 [4c63d2b9] StatsFuns v1.5.2 [5e0ebb24] Strided v2.3.2 [4db3bf67] StridedViews v0.4.1 [892a3eda] StringManipulation v0.4.1 [09ab397b] StructArrays v0.7.2 [2efcf032] SymbolicIndexingInterface v0.3.46 [3783bdb8] TableTraits v1.0.1 [bd369af6] Tables v1.12.1 [02d47bb6] TensorCast v0.4.9 [5d786b92] TerminalLoggers v0.1.7 [a759f4b9] TimerOutputs v0.5.29 [28d57a85] Transducers v0.4.85 [24ddb15e] TransmuteDims v0.1.17 [9d95972d] TupleTools v1.6.0 [fce5fe82] Turing v0.41.0 [3a884ed6] UnPack v1.0.2 [efce3f68] WoodburyMatrices v1.0.0 [700de1a5] ZygoteRules v0.2.7 [f5851436] FFTW_jll v3.3.11+0 [1d5cc7b8] IntelOpenMP_jll v2025.2.0+0 [856f044c] MKL_jll v2025.2.0+0 [079eb43e] NLopt_jll v2.10.0+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [f50d1b31] Rmath_jll v0.5.1+0 [1317d2d5] oneTBB_jll v2022.0.0+1 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [9fa8497b] Future v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [4af54fe1] LazyArtifacts v1.11.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [a63ad114] Mmap v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [3fa0cd96] REPL v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [1a1011a3] SharedArrays v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [4607b0f0] SuiteSparse [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... [ Info: [Turing]: progress logging is disabled globally [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[s] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[m] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[s] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[m] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[s] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[m] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[s] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[m] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoForwardDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[s] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe, varnames=[m] [ Info: Running AD on demo_dot_assume_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[s] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_index_observe, varnames=[m] [ Info: Running AD on demo_assume_index_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528044, 0.11182461275017186]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679435, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[s] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe, varnames=[m] [ Info: Running AD on demo_assume_dot_observe with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_multivariate_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_multivariate_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_index_literal, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_dot_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_dot_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[s] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_observe_literal, varnames=[m] [ Info: Running AD on demo_assume_observe_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 1.8770958195241771] actual : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) expected : (-7.959372701044623, [-2.782720277429388, -0.31582720472901354]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[s] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_assume_submodel_observe_index_literal, varnames=[m] [ Info: Running AD on demo_assume_submodel_observe_index_literal with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.054266798927939, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528041, 0.11182461275017175]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_submodel, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_submodel with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_dot_assume_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_dot_assume_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[s] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) [ Info: Testing Gibbs AD with model=demo_assume_matrix_observe_matrix_index, varnames=[m] [ Info: Running AD on demo_assume_matrix_observe_matrix_index with ADTypes.AutoReverseDiff() params : [1.9092862731989177, 0.07458329596077654, -2.512781377651256, 0.9397581193848665] actual : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679439, 0.9669977815528041, 0.11182461275017175]) expected : (-11.05426679892794, [-0.8945357945653385, 0.7158889078679436, 0.9669977815528044, 0.11182461275017186]) constructor: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/essential/container.jl:20 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Normal{Float64}, _5::AbstractPPL.VarName{:a, typeof(identity)}, _6::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] test @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:10 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Bernoulli}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Bernoulli}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.ContainerTests.var"#test#test##0", _3::DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ContainerTests.var"#test#test##0", DynamicPPL.Model{Main.ContainerTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:10 [11] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [12] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:21 [inlined] [13] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [14] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:30 [inlined] [15] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [16] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [17] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [18] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:42 [inlined] [19] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [20] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [21] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [22] top-level scope @ none:6 [23] eval(m::Module, e::Any) @ Core ./boot.jl:489 [24] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [25] _start() @ Base ./client.jl:577 fork: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/essential/container.jl:55 Test threw exception Expression: AdvancedPS.advance!(trace) ≈ AdvancedPS.advance!(newtrace) TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Normal{Float64}, _5::AbstractPPL.VarName{:a, typeof(identity)}, _6::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] normal @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:39 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Tuple{Tuple{Any, Any}, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.ContainerTests.var"#normal#normal##0", _3::DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ContainerTests.var"#normal#normal##0", DynamicPPL.Model{Main.ContainerTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Distribution}, Vector{AbstractPPL.VarName}, Vector{Real}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:35 [11] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:10 [12] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [13] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:39 [inlined] [14] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [15] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/essential/container.jl:55 [inlined] [16] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:750 [inlined] ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. [ Info: Using a NamedTuple for `initial_params` will be deprecated in a future release. Please use `InitFromParams(namedtuple)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. [ Info: Using a Dict for `initial_params` will be deprecated in a future release. Please use `InitFromParams(dict)` instead. ┌ Warning: Only a single thread available: MCMC chains are not sampled in parallel └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:432 ┌ Warning: Number of chains (10) is greater than number of samples per chain (1) └ @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:437 models: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:27 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Normal{Float64}, _5::AbstractPPL.VarName{:a, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] normal @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:28 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Tuple{Tuple{Any, Any}, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.ParticleMCMCTests.var"#normal#normal##0", _3::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#normal#normal##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:154 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:134 [15] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{nparticles::Int64}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{chain_type::UnionAll, initial_params::DynamicPPL.InitFromPrior, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; check_model::Bool, chain_type::Type, initial_params::DynamicPPL.InitFromPrior, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:121 [26] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:108 [inlined] [27] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [28] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#normal#normal##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [29] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:13 [30] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [31] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:28 [inlined] [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:36 [inlined] [34] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [35] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ none:6 [42] eval(m::Module, e::Any) @ Core ./boot.jl:489 [43] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [44] _start() @ Base ./client.jl:577 chain log-density metadata: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:53 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.LogNormal{Float64}, _5::AbstractPPL.VarName{:x, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.LogNormal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.LogNormal{Float64}, ::AbstractPPL.VarName{:x, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.LogNormal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.LogNormal{Float64}, ::AbstractPPL.VarName{:x, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] f @ ~/.julia/packages/Turing/ObWSF/test/test_utils/sampler.jl:15 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.LogNormal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", _3::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:154 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:134 [15] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{nparticles::Int64}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{chain_type::UnionAll, initial_params::DynamicPPL.InitFromPrior, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; check_model::Bool, chain_type::Type, initial_params::DynamicPPL.InitFromPrior, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:121 [26] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:108 [inlined] [27] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [28] sample(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [29] test_chain_logp_metadata(spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Main.SamplerTestUtils ~/.julia/packages/Turing/ObWSF/test/test_utils/sampler.jl:22 [30] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:13 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [32] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:54 [inlined] [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:54 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [36] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [37] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [38] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [41] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [42] top-level scope @ none:6 [43] eval(m::Module, e::Any) @ Core ./boot.jl:489 [44] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [45] _start() @ Base ./client.jl:577 logevidence: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:57 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Normal{Float64}, _5::AbstractPPL.VarName{:a, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] test @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:60 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Bernoulli}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Bernoulli}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.ParticleMCMCTests.var"#test#test##0", _3::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; nparticles::Int64, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:154 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:134 [15] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{nparticles::Int64}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior, nparticles::Int64}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{chain_type::UnionAll, initial_params::DynamicPPL.InitFromPrior, progress::Bool, nparticles::Int64}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; check_model::Bool, chain_type::Type, initial_params::DynamicPPL.InitFromPrior, progress::Bool, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:121 [26] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:108 [inlined] [27] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [28] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.SMC{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [29] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:13 [30] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [31] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:58 [inlined] [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:70 [inlined] [34] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [35] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ none:6 [42] eval(m::Module, e::Any) @ Core ./boot.jl:489 [43] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [44] _start() @ Base ./client.jl:577 chain log-density metadata: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:99 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.LogNormal{Float64}, _5::AbstractPPL.VarName{:x, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.LogNormal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.LogNormal{Float64}, ::AbstractPPL.VarName{:x, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.LogNormal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.LogNormal{Float64}, ::AbstractPPL.VarName{:x, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] f @ ~/.julia/packages/Turing/ObWSF/test/test_utils/sampler.jl:15 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.LogNormal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", _3::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.LogNormal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [15] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [26] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [inlined] [27] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [28] sample(model::DynamicPPL.Model{Main.SamplerTestUtils.var"#f#test_chain_logp_metadata##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [29] test_chain_logp_metadata(spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Main.SamplerTestUtils ~/.julia/packages/Turing/ObWSF/test/test_utils/sampler.jl:22 [30] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:81 [31] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [32] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:100 [inlined] [33] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [34] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:100 [inlined] [35] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [36] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [37] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [38] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [39] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [40] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [41] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [42] top-level scope @ none:6 [43] eval(m::Module, e::Any) @ Core ./boot.jl:489 [44] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [45] _start() @ Base ./client.jl:577 logevidence: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:103 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Normal{Float64}, _5::AbstractPPL.VarName{:a, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:a, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] test @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:106 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Bernoulli}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Bernoulli}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:a, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.ParticleMCMCTests.var"#test#test##1", _3::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#test#test##1", DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{a::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:a, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:a, typeof(identity)}}, Vector{Float64}}, x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Bernoulli{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, BitVector}, b::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:b, typeof(identity)}, Int64}, Vector{Distributions.Gamma{Float64}}, Vector{AbstractPPL.VarName{:b, typeof(identity)}}, Vector{Float64}}, c::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:c, typeof(identity)}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:c, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [15] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [26] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [inlined] [27] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [28] sample(model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#test#test##1", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [29] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:81 [30] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [31] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:104 [inlined] [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:116 [inlined] [34] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [35] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ none:6 [42] eval(m::Module, e::Any) @ Core ./boot.jl:489 [43] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [44] _start() @ Base ./client.jl:577 reference particle: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:124 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.InverseGamma{Float64}, _5::AbstractPPL.VarName{:s, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.InverseGamma{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.InverseGamma{Float64}, ::AbstractPPL.VarName{:s, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.InverseGamma{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.InverseGamma{Float64}, ::AbstractPPL.VarName{:s, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] gdemo_d @ ~/.julia/packages/Turing/ObWSF/test/test_utils/models.jl:23 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Tuple{Tuple{Any, Any}, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.InverseGamma{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(Main.Models.gdemo_d), _3::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo_d), DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [15] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [26] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [inlined] [27] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [28] sample(model::DynamicPPL.Model{typeof(Main.Models.gdemo_d), (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [29] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:81 [30] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [31] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:125 [inlined] [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:125 [inlined] [34] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [35] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [40] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [41] top-level scope @ none:6 [42] eval(m::Module, e::Any) @ Core ./boot.jl:489 [43] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [44] _start() @ Base ./client.jl:577 addlogprob leads to reweighting: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:130 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Normal{Float64}, _5::AbstractPPL.VarName{:x, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:x, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Normal{Float64}, ::AbstractPPL.VarName{:x, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] addlogprob_demo @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:133 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, AbstractPPL.VarName{:x, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", _3::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::StableRNGs.LehmerRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::StableRNGs.LehmerRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{x::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:x, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:x, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [15] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [17] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [18] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [19] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [20] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [21] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [22] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [23] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [24] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [25] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [26] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{Main.ParticleMCMCTests.var"#addlogprob_demo#addlogprob_demo##0", (), (), (), Tuple{}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [27] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:81 [28] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [29] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:133 [inlined] [30] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [31] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/particle_mcmc.jl:143 [inlined] [32] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [33] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [38] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [39] top-level scope @ none:6 [40] eval(m::Module, e::Any) @ Core ./boot.jl:489 [41] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [42] _start() @ Base ./client.jl:577 ┌ Warning: The model does not contain any parameters. └ @ DynamicPPL.DebugUtils ~/.julia/packages/DynamicPPL/FMfR2/src/debug_utils.jl:304 [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 2.062630559118322) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.1614954615219162) [ Info: Testing emcee with large number of iterations [ Info: (symbol = :s, exact = 2.0416666666666665, evaluated = 2.0765449812082557) [ Info: (symbol = :m, exact = 1.1666666666666667, evaluated = 1.1697615669122199) [ Info: Starting ESS tests [ Info: Starting ESS inference tests [ Info: (symbol = :m, exact = 0.8, evaluated = 0.8173726888512937) [ Info: (symbol = "m[1]", exact = 0.0, evaluated = -0.025360856826163417) [ Info: (symbol = "m[2]", exact = 0.8, evaluated = 0.8069838968220362) gdemo with CSMC + ESS: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:61 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.InverseGamma{Float64}, _5::AbstractPPL.VarName{:s, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.InverseGamma{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.InverseGamma{Float64}, ::AbstractPPL.VarName{:s, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.InverseGamma{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.InverseGamma{Float64}, ::AbstractPPL.VarName{:s, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] gdemo @ ~/.julia/packages/Turing/ObWSF/test/test_utils/models.jl:15 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Union{Tuple{Any, DynamicPPL.AbstractVarInfo}, Tuple{Float64, Any}}}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, DynamicPPL.AbstractVarInfo}}, Base.RefValue{Any}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, DynamicPPL.AbstractVarInfo}}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Tuple{Tuple{Any, Any}, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.InverseGamma{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(Main.Models.gdemo), _3::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, _5::Float64, _6::Float64) @ Base.Experimental ./:0 [8] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [9] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [10] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [11] sweep!(rng::StableRNGs.LehmerRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:335 [12] sweep!(rng::StableRNGs.LehmerRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.gdemo), DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Float64, Float64}, Union{Tuple{Tuple{Any, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [13] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [14] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [15] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [16] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(AbstractMCMC.step), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:s, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [17] gibbs_initialstep_recursive(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:396 [18] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:373 [19] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:328 [20] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:317 [inlined] [21] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [22] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [23] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [24] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [25] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [26] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [27] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [28] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [29] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [30] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.gdemo), (:x, :y), (), (), Tuple{Float64, Float64}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{2, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [31] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:14 [32] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [33] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:48 [inlined] [34] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [35] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:62 [inlined] [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:63 [inlined] [38] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [39] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [42] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [43] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [44] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [45] top-level scope @ none:6 [46] eval(m::Module, e::Any) @ Core ./boot.jl:489 [47] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [48] _start() @ Base ./client.jl:577 MoGtest_default with CSMC + ESS: Error During Test at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:67 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Categorical{Float64, Vector{Float64}}, _5::AbstractPPL.VarName{:z1, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Categorical{Float64, Vector{Float64}}, AbstractPPL.VarName{:z1, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Categorical{Float64, Vector{Float64}}, ::AbstractPPL.VarName{:z1, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Categorical{Float64, Vector{Float64}}, AbstractPPL.VarName{:z1, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Categorical{Float64, Vector{Float64}}, ::AbstractPPL.VarName{:z1, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:145 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Categorical{Float64, Vector{Float64}}, AbstractPPL.VarName{:z1, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::Distributions.Categorical{Float64, Vector{Float64}}, _5::AbstractPPL.VarName{:z1, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Distributions.Categorical{Float64, Vector{Float64}}, AbstractPPL.VarName{:z1, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, ::Distributions.Categorical{Float64, Vector{Float64}}, ::AbstractPPL.VarName{:z1, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [9] (::Libtask.DynamicCallable{Dict{Any, Any}})(::Function, ::Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, ::Distributions.Categorical{Float64, Vector{Float64}}, ::AbstractPPL.VarName{:z1, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1292 [10] MoGtest @ ~/.julia/packages/Turing/ObWSF/test/test_utils/models.jl:33 [inlined] [11] (::Tuple{Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}}, Base.RefValue{@NamedTuple{mu1::Bool, mu2::Bool, z1::Bool, z2::Bool, z3::Bool, z4::Bool}}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{Bool}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Bool}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Tuple{Float64, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Distributions.Categorical{Float64, Vector{Float64}}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Distributions.Categorical{Float64, Vector{Float64}}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Distributions.Categorical{Float64, Vector{Float64}}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Distributions.Categorical{Float64, Vector{Float64}}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64, Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Tuple{Any, Any, Any, Any, Float64, Float64}}, Base.RefValue{Tuple{Tuple{Any, Any, Any, Any, Float64, Float64}, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_observe!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, Float64, AbstractPPL.VarName{:mu1, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), DynamicPPL.InitContext{Random.TaskLocalRNG, DynamicPPL.InitFromPrior}, Distributions.Normal{Float64}, AbstractPPL.VarName{:mu1, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(Main.Models.MoGtest), _3::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, _5::Matrix{Float64}) @ Base.Experimental ./:0 [12] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [13] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, Union{Tuple{Tuple{Any, Any, Any, Any, Float64, Float64}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [14] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, Union{Tuple{Tuple{Any, Any, Any, Any, Float64, Float64}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [15] sweep!(rng::StableRNGs.LehmerRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, Union{Tuple{Tuple{Any, Any, Any, Any, Float64, Float64}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:353 [16] sweep!(rng::StableRNGs.LehmerRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(Main.Models.MoGtest), DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Matrix{Float64}}, Union{Tuple{Tuple{Any, Any, Any, Any, Float64, Float64}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [17] initialstep(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [18] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [19] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [20] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(AbstractMCMC.step), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:z1, typeof(identity)}, AbstractPPL.VarName{:z2, typeof(identity)}, AbstractPPL.VarName{:z3, typeof(identity)}, AbstractPPL.VarName{:z4, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [21] gibbs_initialstep_recursive(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:396 [22] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, samplers::Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}, vi::DynamicPPL.VarInfo{@NamedTuple{mu1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu1, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{Float64}}, mu2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:mu2, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}, Vector{Float64}}, z1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z1, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z1, typeof(identity)}}, Vector{Int64}}, z2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z2, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z2, typeof(identity)}}, Vector{Int64}}, z3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z3, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z3, typeof(identity)}}, Vector{Int64}}, z4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:z4, typeof(identity)}, Int64}, Vector{Distributions.Categorical{Float64, Vector{Float64}}}, Vector{AbstractPPL.VarName{:z4, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:373 [23] step(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:328 [24] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:317 [inlined] [25] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [26] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [27] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, StableRNGs.LehmerRNG, DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [28] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [29] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [30] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [31] mcmcsample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [32] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [33] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [34] sample(rng::StableRNGs.LehmerRNG, model::DynamicPPL.Model{typeof(Main.Models.MoGtest), (:D,), (), (), Tuple{Matrix{Float64}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{3, Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:mu1, typeof(identity)}}, Vector{AbstractPPL.VarName{:mu2, typeof(identity)}}}, Tuple{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, Turing.Inference.ESS, Turing.Inference.ESS}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [35] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:14 [36] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [37] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:48 [inlined] [38] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [39] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:68 [inlined] [40] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [41] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/ess.jl:73 [inlined] [42] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [43] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:46 [inlined] [46] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [47] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [48] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [49] top-level scope @ none:6 [50] eval(m::Module, e::Any) @ Core ./boot.jl:489 [51] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [52] _start() @ Base ./client.jl:577 ┌ Info: Found initial step size └ ϵ = 3.2 ┌ Info: Found initial step size └ ϵ = 3.2 WARNING: Method definition (::Type{GibbsTests.Wrapper{T} where T})(T) where {T<:Real} in module GibbsTests at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:38 overwritten at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:196. WARNING: Method definition (::Type{GibbsTests.Wrapper{T<:Real}})(Any) in module GibbsTests at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:38 overwritten at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:196. ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 201 running 1 of 1 signal (10): User defined signal 1 jl_get_binding_partition at /source/src/module.c:420 ijl_module_names at /source/src/module.c:2123 #unsorted_names#4 at ./runtime_internals.jl:119 [inlined] unsorted_names at ./runtime_internals.jl:119 [inlined] make_typealias at ./show.jl:637 show_typealias at ./show.jl:818 _show_type at ./show.jl:983 show at ./show.jl:978 jfptr_show_47750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_at_namedtuple at ./show.jl:1242 unknown function (ip: 0x79e728af724d) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_datatype at ./show.jl:1215 show_datatype at ./show.jl:1137 [inlined] _show_type at ./show.jl:986 show at ./show.jl:978 jfptr_show_47750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_typeparams at ./show.jl:735 show_datatype at ./show.jl:1229 show_datatype at ./show.jl:1137 [inlined] _show_type at ./show.jl:986 show at ./show.jl:978 jfptr_show_47750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_typeparams at ./show.jl:735 show_datatype at ./show.jl:1229 show_datatype at ./show.jl:1137 [inlined] _show_type at ./show.jl:986 show at ./show.jl:978 jfptr_show_47750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_typeparams at ./show.jl:735 show_datatype at ./show.jl:1229 show_datatype at ./show.jl:1137 [inlined] _show_type at ./show.jl:986 show at ./show.jl:978 jfptr_show_47750.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_datatype at ./show.jl:1200 show_datatype at ./show.jl:1137 [inlined] _show_type at ./show.jl:986 show at ./show.jl:978 [inlined] print at ./strings/io.jl:35 jfptr_print_39418.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 print at ./strings/io.jl:46 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 #with_output_color#861 at ./util.jl:78 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 with_output_color at ./util.jl:73 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 #printstyled#862 at ./util.jl:141 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 printstyled at ./util.jl:141 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f__apply_iterate at /source/src/builtins.c:876 #print_within_stacktrace#492 at ./show.jl:0 print_within_stacktrace at ./show.jl:2483 [inlined] show_signature_function at ./show.jl:2477 #show_tuple_as_call#493 at ./show.jl:2511 show_tuple_as_call at ./show.jl:2491 [inlined] show_spec_sig at ./stacktraces.jl:326 show_spec_linfo at ./stacktraces.jl:286 #print_stackframe#841 at ./errorshow.jl:851 print_stackframe at ./errorshow.jl:826 [inlined] #print_stackframe#837 at ./errorshow.jl:811 print_stackframe at ./errorshow.jl:803 [inlined] #show_processed_backtrace#836 at ./errorshow.jl:788 show_processed_backtrace at ./errorshow.jl:761 [inlined] #show_backtrace#843 at ./errorshow.jl:946 show_backtrace at ./errorshow.jl:905 [inlined] #showerror#822 at ./errorshow.jl:111 showerror at ./errorshow.jl:107 unknown function (ip: 0x79e728aeb642) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 show_exception_stack at ./errorshow.jl:1114 #sprint#423 at ./strings/io.jl:107 unknown function (ip: 0x79e728ae7ded) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 sprint at ./strings/io.jl:102 unknown function (ip: 0x79e728ae7c7d) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_f_invokelatest at /source/src/builtins.c:889 invokelatest at ./Base_compiler.jl:253 [inlined] Error at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:238 unknown function (ip: 0x79e73cd942e8) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_eval_module_expr at /source/src/toplevel.c:248 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:650 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x79e728b797c2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_57780.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_68679.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x79e73e5ad249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== Sampler call order: Error During Test┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 at Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000079e7245fc010 Total snapshots: 22. Utilization: 100% ╎21 @Base/client.jl:577 _start() ╎ 21 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 21 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 21 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 21 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::Stri… ╎ 21 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Module, _path… ╎ ╎ 21 @Base/loading.jl:2994 include_string(mapexpr::typeof(identity), mod… ╎ ╎ 21 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 21 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ 21 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path:… ╎ ╎ 21 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Module, … ╎ ╎ ╎ 21 @Base/loading.jl:2994 include_string(mapexpr::typeof(identity)… ╎ ╎ ╎ 21 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ 21 @Test/src/Test.jl:238 Test.Error(test_type::Symbol, orig_exp… ╎ ╎ ╎ 21 @Base/…_compiler.jl:253 invokelatest ╎ ╎ ╎ 21 @Base/…rings/io.jl:102 kwcall(::@NamedTuple{context::Base.… ╎ ╎ ╎ ╎ 21 @Base/…rings/io.jl:107 sprint(f::typeof(Base.show_excepti… ╎ ╎ ╎ ╎ 21 @Base/…rorshow.jl:1114 show_exception_stack(io::IOContex… ╎ ╎ ╎ ╎ 21 @Base/…rorshow.jl:107 kwcall(::@NamedTuple{backtrace::B… ╎ ╎ ╎ ╎ 21 @Base/…rorshow.jl:111 showerror(io::IOContext{IOBuffer… ╎ ╎ ╎ ╎ 21 @Base/…orshow.jl:905 show_backtrace ╎ ╎ ╎ ╎ ╎ 21 @Base/…orshow.jl:946 show_backtrace(io::IOContext{IO… ╎ ╎ ╎ ╎ ╎ 21 @Base/…orshow.jl:761 show_processed_backtrace ╎ ╎ ╎ ╎ ╎ 21 @Base/…rshow.jl:788 show_processed_backtrace(io::I… ╎ ╎ ╎ ╎ ╎ 21 @Base/…rshow.jl:803 print_stackframe ╎ ╎ ╎ ╎ ╎ 21 @Base/…show.jl:811 print_stackframe(io::IOContex… ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…show.jl:826 print_stackframe ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…show.jl:851 print_stackframe(io::IOCont… ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ces.jl:286 show_spec_linfo(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ces.jl:326 show_spec_sig(io::IOContex… ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ow.jl:2491 show_tuple_as_call ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ow.jl:2511 show_tuple_as_call(out::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ow.jl:2477 show_signature_function… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ow.jl:2483 print_within_stacktrace ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…ow.jl:0 print_within_stacktrace(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…il.jl:141 kwcall(::@NamedTuple{… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…il.jl:141 printstyled(::IOCont… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…il.jl:73 kwcall(::@NamedTuple… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…il.jl:78 with_output_color(:… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…io.jl:46 print(::IOContext{… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 21 @Base/…io.jl:35 print(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 21 @Base/…ow.jl:978 show ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 21 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 21 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 21 @Base/…ow.jl:1200 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 21 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 2 @Base/…ow.jl:983 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 2 @Base/…ow.jl:818 show_typealias(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ow.jl:637 make_typealias(x… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 1 @Base/…ls.jl:119 unsorted_names 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 1 @Base/…ls.jl:119 #unsorted_names#4 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/…ow.jl:638 make_typealias(x… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 19 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 19 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 19 @Base/…ow.jl:1229 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +9 19 @Base/…ow.jl:735 show_typeparams(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +10 19 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +11 19 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +12 19 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +13 19 @Base/…ow.jl:1229 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +14 19 @Base/…ow.jl:735 show_typeparams(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +15 19 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +16 19 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +17 19 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +18 19 @Base/…ow.jl:1229 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +19 19 @Base/…ow.jl:735 show_typeparams(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +20 19 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +21 19 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +22 19 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +23 19 @Base/…ow.jl:1229 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +24 19 @Base/…ow.jl:735 show_typeparams(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +25 19 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +26 19 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +27 19 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +28 19 @Base/…ow.jl:1215 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +29 19 @Base/…ow.jl:1242 show_at_namedtu… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +30 19 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +31 19 @Base/…ow.jl:986 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +32 19 @Base/…ow.jl:1137 show_datatype ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +33 19 @Base/…ow.jl:1229 show_datatype(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +34 19 @Base/…ow.jl:735 show_typeparams(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +35 19 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +36 19 @Base/…ow.jl:983 _show_type(io::I… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +37 17 @Base/…ow.jl:818 show_typealias(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 4 @Base/…ow.jl:637 make_typealias(x… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +39 4 @Base/…ls.jl:119 unsorted_names 4╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +40 4 @Base/…ls.jl:119 #unsorted_names#4 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 1 @Base/…ow.jl:638 make_typealias(x… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 1 @Base/…ow.jl:639 make_typealias(x… 2╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 3 @Base/…ow.jl:640 make_typealias(x… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +39 1 @Base/…ot.jl:354 has_free_typevars 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 1 @Base/…ow.jl:642 make_typealias(x… 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 6 @Base/…ow.jl:657 make_typealias(x… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +37 1 @Base/…ow.jl:820 show_typealias(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 1 @Base/…ow.jl:793 make_wheres(io::… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +39 1 @Base/…ls.jl:980 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +37 1 @Base/…ow.jl:821 show_typealias(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +38 1 @Base/…ow.jl:768 show_typealias(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +39 1 @Base/…ow.jl:735 show_typeparams(… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +40 1 @Base/…ow.jl:978 show(io::IOConte… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +41 1 @Base/…ow.jl:983 _show_type(io::I… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +42 1 @Base/…ow.jl:818 show_typealias(i… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +43 1 @Base/…ow.jl:637 make_typealias(x… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +44 1 @Base/…ls.jl:119 unsorted_names 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +45 1 @Base/…ls.jl:119 #unsorted_names#4 /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:138 Got exception outside of a @test TypeError: in typeassert, expected Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, got a value of type Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}} Stacktrace: [1] deref_phi @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1229 [inlined] [2] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:403 [inlined] [3] (::Tuple{Base.RefValue{UInt64}, Base.RefValue{DynamicPPL.AbstractVarInfo}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}, Base.RefValue{Union{DynamicPPL.DefaultContext, DynamicPPL.InitContext{<:Random.AbstractRNG, DynamicPPL.InitFromPrior}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, _4::Distributions.Poisson{Float64}, _5::AbstractPPL.VarName{:m, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [4] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Poisson{Float64}, AbstractPPL.VarName{:m, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Poisson{Float64}, ::AbstractPPL.VarName{:m, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [5] (::Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Poisson{Float64}, AbstractPPL.VarName{:m, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}})(::Function, ::Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ::Distributions.Poisson{Float64}, ::AbstractPPL.VarName{:m, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1263 [6] tilde_assume!! @ ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:145 [inlined] [7] (::Tuple{Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Poisson{Float64}, AbstractPPL.VarName{:m, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}}, Base.RefValue{Int32}})(_2::typeof(DynamicPPL.tilde_assume!!), _3::Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, _4::Distributions.Poisson{Float64}, _5::AbstractPPL.VarName{:m, typeof(identity)}, _6::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Base.Experimental ./:0 [8] (::MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{typeof(DynamicPPL.tilde_assume!!), Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Distributions.Poisson{Float64}, AbstractPPL.VarName{:m, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Any, Any}, Libtask.ProducedValue}}})(::Function, ::Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, ::Distributions.Poisson{Float64}, ::AbstractPPL.VarName{:m, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ MistyClosures ~/.julia/packages/MistyClosures/2vtLL/src/MistyClosures.jl:22 [9] (::Libtask.DynamicCallable{Dict{Any, Any}})(::Function, ::Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, ::Distributions.Poisson{Float64}, ::AbstractPPL.VarName{:m, typeof(identity)}, ::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}) @ Libtask ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:1292 [10] test_model @ ~/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:200 [inlined] [11] (::Tuple{Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}}, Base.RefValue{@NamedTuple{s::Bool, m::Bool, xs::Bool, ys::Bool, q::Bool, r::Bool}}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Float64}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{Bool}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Bool}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Base.RefValue{Tuple{Float64, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Any, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Int64, Any}}, Base.RefValue{Any}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Type}, Base.RefValue{Int32}, Base.RefValue{Bool}, Base.RefValue{Type}, Base.RefValue{DataType}, Base.RefValue{Bool}, Base.RefValue{Type}, Base.RefValue{Type{Type{T}} where T}, Base.RefValue{DataType}, Base.RefValue{DataType}, Base.RefValue{DataType}, Base.RefValue{Type{Main.GibbsTests.var"#test_model##2#test_model##3"{AbstractPPL.VarName{:n, typeof(identity)}, _A}} where _A}, Base.RefValue{Main.GibbsTests.var"#test_model##2#test_model##3"{AbstractPPL.VarName{:n, typeof(identity)}}}, Base.RefValue{Any}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Vector{Float64}}, Base.RefValue{Any}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Accessors.IndexLens{Tuple{Int64}}}, Base.RefValue{AbstractPPL.VarName{:xs, Accessors.IndexLens{Tuple{Int64}}}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Vector{Float64}}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Vector{Float64}}, Base.RefValue{Any}, Base.RefValue{Accessors.IndexLens{Tuple{Int64}}}, Base.RefValue{AbstractPPL.VarName{:ys, Accessors.IndexLens{Tuple{Int64}}}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{Int64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Vector{Float64}}, Base.RefValue{Any}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Memory{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Vector{Float64}}, Base.RefValue{Distributions.Normal{Float64}}, Base.RefValue{Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Base.RefValue{Tuple{Float64, Any}}, Base.RefValue{Float64}, Base.RefValue{Any}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{Bool}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Tuple{Int64}}, Base.RefValue{Int64}, Base.RefValue{UInt64}, Base.RefValue{Bool}, Base.RefValue{Tuple{Int64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{MemoryRef{Float64}}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Float64}, Base.RefValue{Tuple{Float64, Float64, Any}}, Base.RefValue{Tuple{Tuple{Float64, Float64, Any}, Any}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_observe!!), Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Distributions.Normal{Float64}, Float64, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.LazyCallable{Tuple{typeof(DynamicPPL.tilde_assume!!), DynamicPPL.InitContext{Random.TaskLocalRNG, DynamicPPL.InitFromPrior}, Distributions.Normal{Float64}, AbstractPPL.VarName{:s, typeof(identity)}, DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Union{Tuple{Float64, Any}, Libtask.ProducedValue}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Libtask.DynamicCallable{Dict{Any, Any}}}, Base.RefValue{Int32}})(_2::Main.GibbsTests.var"#test_model#test_model##1", _3::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, _4::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, _5::Int64, _6::DynamicPPL.TypeWrap{Vector{Float64}}) @ Base.Experimental ./:0 [12] consume @ ~/.julia/packages/Libtask/Upinq/src/copyable_task.jl:378 [inlined] [13] advance!(trace::AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Union{Tuple{Tuple{Float64, Float64, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, isref::Bool) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:36 [14] reweight!(pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Union{Tuple{Tuple{Float64, Float64, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:272 [15] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Union{Tuple{Tuple{Float64, Float64, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, ref::Nothing) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:353 [16] sweep!(rng::Random.TaskLocalRNG, pc::AdvancedPS.ParticleContainer{AdvancedPS.Trace{AdvancedPS.LibtaskModel{Turing.Inference.TracedModel{DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}}, Libtask.TapedTask{AdvancedPSLibtaskExt.TapedGlobals{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, MistyClosures.MistyClosure{Core.OpaqueClosure{Tuple{Main.GibbsTests.var"#test_model#test_model##1", DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, Turing.Inference.ParticleMCMCContext{AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}}}, DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::Turing.Inference.ProduceLogLikelihoodAccumulator{Float64}}}}, Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Union{Tuple{Tuple{Float64, Float64, Any}, Any}, Libtask.ProducedValue}}}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, AdvancedPS.TracedRNG{UInt64, 1, Random123.Philox2x{UInt64, 10}}}, resampler::AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}, sampler::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}) @ AdvancedPS ~/.julia/packages/AdvancedPS/mkUwY/src/container.jl:325 [17] initialstep(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:274 [18] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.initialstep), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}, vi::DynamicPPL.VarInfo{@NamedTuple{m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/particle_mcmc.jl:257 [19] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, spl::Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:179 [20] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:161 [inlined] [21] step(::Random.TaskLocalRNG, ::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, ::Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}; kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ Main.GibbsTests ~/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:181 [22] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(AbstractMCMC.step), ::Random.TaskLocalRNG, ::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, Turing.Inference.GibbsContext{Tuple{AbstractPPL.VarName{:m, typeof(identity)}}, Base.RefValue{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}}, DynamicPPL.DefaultContext}}, ::Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}) @ Main.GibbsTests ~/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:173 [23] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}, Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:396 ┌ [24] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}, Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}}) │ @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:373 ├ [25] gibbs_initialstep_recursive(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::typeof(AbstractMCMC.step), varname_vecs::Tuple{Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{Turing.Inference.MHState{DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, Float64}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) │ @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:413 ╰───── repeated 2 times [28] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior}, ::typeof(Turing.Inference.gibbs_initialstep_recursive), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, step_function::Function, varname_vecs::Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, samplers::Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}, vi::DynamicPPL.VarInfo{@NamedTuple{s::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:s, typeof(identity)}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{Float64}}, m::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:m, typeof(identity)}, Int64}, Vector{Distributions.Poisson{Float64}}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{Int64}}, xs::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:xs, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:xs, Accessors.IndexLens{Tuple{Int64}}}}, Vector{Float64}}, ys::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:ys, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Vector{Distributions.Beta{Float64}}, Vector{AbstractPPL.VarName{:ys, Accessors.IndexLens{Tuple{Int64}}}}, Vector{Float64}}, q::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{Float64}}, r::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}, Int64}, Vector{Distributions.Normal{Float64}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}, Vector{Float64}}}, DynamicPPL.AccumulatorTuple{3, @NamedTuple{LogPrior::DynamicPPL.LogPriorAccumulator{Float64}, LogJacobian::DynamicPPL.LogJacobianAccumulator{Float64}, LogLikelihood::DynamicPPL.LogLikelihoodAccumulator{Float64}}}}, states::Tuple{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:373 [29] step(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}; initial_params::DynamicPPL.InitFromPrior, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:328 [30] step @ ~/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:317 [inlined] [31] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:188 [inlined] [32] (::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, Int64, Float64, Int64, Int64})() @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 [33] with_logstate(f::AbstractMCMC.var"#27#28"{Nothing, Int64, Int64, Int64, Type{MCMCChains.Chains}, Nothing, @Kwargs{initial_params::DynamicPPL.InitFromPrior}, Random.TaskLocalRNG, DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, Int64, Float64, Int64, Int64}, logstate::Base.CoreLogging.LogState) @ Base.CoreLogging ./logging/logging.jl:540 [34] with_logger(f::Function, logger::LoggingExtras.TeeLogger{Tuple{LoggingExtras.EarlyFilteredLogger{TerminalLoggers.TerminalLogger, AbstractMCMC.var"#with_progresslogger##0#with_progresslogger##1"{Module}}, LoggingExtras.EarlyFilteredLogger{Base.CoreLogging.ConsoleLogger, AbstractMCMC.var"#with_progresslogger##2#with_progresslogger##3"{Module}}}}) @ Base.CoreLogging ./logging/logging.jl:651 [35] with_progresslogger(f::Function, _module::Module, logger::Base.CoreLogging.ConsoleLogger) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 [36] macro expansion @ ~/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] [37] mcmcsample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{initial_params::DynamicPPL.InitFromPrior}) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 [38] kwcall(::@NamedTuple{initial_params::DynamicPPL.InitFromPrior, chain_type::UnionAll}, ::typeof(AbstractMCMC.mcmcsample), rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, sampler::Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, N::Int64) @ AbstractMCMC ~/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 [39] sample(rng::Random.TaskLocalRNG, model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, N::Int64; initial_params::DynamicPPL.InitFromPrior, check_model::Bool, chain_type::Type, kwargs::@Kwargs{}) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 [40] sample @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [inlined] [41] #sample#1 @ ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] [42] sample(model::DynamicPPL.Model{Main.GibbsTests.var"#test_model#test_model##1", (:val, Symbol("##arg#801")), (), (), Tuple{Int64, DynamicPPL.TypeWrap{Vector{Float64}}}, Tuple{}, DynamicPPL.DefaultContext}, spl::Turing.Inference.Gibbs{12, Tuple{Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:m, typeof(identity)}}, Vector{AbstractPPL.VarName{:xs, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, typeof(identity)}}, Vector{AbstractPPL.VarName{:r, typeof(identity)}}, Vector{AbstractPPL.VarName{:ys, typeof(identity)}}, Vector{AbstractPPL.VarName{sym, typeof(identity)} where sym}, Vector{AbstractPPL.VarName{:s, typeof(identity)}}, Vector{AbstractPPL.VarName{:q, Accessors.PropertyLens{:a}}}, Vector{AbstractPPL.VarName{:r, Accessors.IndexLens{Tuple{Int64}}}}}, Tuple{Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.PG{AdvancedPS.ResampleWithESSThreshold{typeof(AdvancedPS.resample_systematic), Float64}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.NUTS{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.DiagEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.HMC{ADTypes.AutoForwardDiff{nothing, Nothing}, AdvancedHMC.UnitEuclideanMetric}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}, Main.GibbsTests.AlgWrapper{Turing.Inference.MH{@NamedTuple{}}}}}, N::Int64) @ Turing.Inference ~/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 [43] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:141 [44] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [45] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:242 [inlined] [46] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [47] top-level scope @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:33 [48] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [49] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:55 [inlined] [50] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [51] macro expansion @ ~/.julia/packages/Turing/ObWSF/test/runtests.jl:25 [inlined] [52] include(mapexpr::Function, mod::Module, _path::String) @ Base ./Base.jl:310 [53] top-level scope @ none:6 [54] eval(m::Module, e::Any) @ Core ./boot.jl:489 [55] exec_options(opts::Base.JLOptions) @ Base ./client.jl:310 [56] _start() @ Base ./client.jl:577 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_76916.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007f7d19e1f850 Total snapshots: 414. Utilization: 0% ╎414 @Base/task.jl:1168 wait_forever() 413╎ 414 @Base/task.jl:1246 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_76916.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 25349791 (Pool: 25349123; Big: 668); GC: 22 [201] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/Turing/ObWSF/test/mcmc/gibbs.jl:275 unknown function (ip: 0x79e73e2d26d7) at /workspace/srcdir/gcc-14.2.0/libstdc++-v3/src/c++98/tree.cc operator++ at /usr/local/x86_64-linux-gnu/include/c++/9.1.0/bits/stl_tree.h:366 [inlined] emit_function at /source/src/codegen.cpp:9174 jl_emit_code at /source/src/codegen.cpp:9798 jl_emit_codeinst at /source/src/codegen.cpp:9869 jl_emit_codeinst_to_jit_impl at /source/src/jitlayers.cpp:820 add_codeinsts_to_jit! at ./../usr/share/julia/Compiler/src/typeinfer.jl:1556 typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1563 [inlined] typeinf_ext_toplevel at ./../usr/share/julia/Compiler/src/typeinfer.jl:1571 jfptr_typeinf_ext_toplevel_85045.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] jl_type_infer at /source/src/gf.c:463 jl_compile_method_internal at /source/src/gf.c:3636 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #step_warmup#84 at /home/pkgeval/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:362 step_warmup at /home/pkgeval/.julia/packages/Turing/ObWSF/src/mcmc/gibbs.jl:341 [inlined] macro expansion at /home/pkgeval/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:182 [inlined] #27 at /home/pkgeval/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:134 with_logstate at ./logging/logging.jl:540 unknown function (ip: 0x79e703384636) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 with_logger at ./logging/logging.jl:651 with_progresslogger at /home/pkgeval/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:157 unknown function (ip: 0x79e7163f91be) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/AbstractMCMC/mcqES/src/logging.jl:133 [inlined] #mcmcsample#25 at /home/pkgeval/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:168 mcmcsample at /home/pkgeval/.julia/packages/AbstractMCMC/mcqES/src/sample.jl:123 unknown function (ip: 0x79e7033842d0) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #sample#2 at /home/pkgeval/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:85 sample at /home/pkgeval/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:74 [inlined] #sample#1 at /home/pkgeval/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:71 [inlined] sample at /home/pkgeval/.julia/packages/Turing/ObWSF/src/mcmc/abstractmcmc.jl:68 unknown function (ip: 0x79e70337f215) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_eval_module_expr at /source/src/toplevel.c:248 [inlined] jl_toplevel_eval_flex at /source/src/toplevel.c:650 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x79e728b797c2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_57780.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_68679.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x79e73e5ad249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1194841174 (Pool: 1194833218; Big: 7956); GC: 204 PkgEval terminated after 2769.16s: test duration exceeded the time limit