Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.36 (e2f3178d9b*) started at 2025-11-06T15:54:11.567 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.87s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.3 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.3 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 5.61s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 21929.8 ms ✓ AbstractAlgebra 1199.6 ms ✓ OpenBLAS32_jll 1303.9 ms ✓ FLINT_jll 32347.0 ms ✓ Nemo 125947.6 ms ✓ Groebner 9917.5 ms ✓ ParamPunPam 10582.3 ms ✓ RationalFunctionFields 11881.5 ms ✓ StructuralIdentifiability 8 dependencies successfully precompiled in 216 seconds. 27 already precompiled. Precompilation completed after 227.69s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_FAIbdG/Project.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.3 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_FAIbdG/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.3 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_FAIbdG/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.26.1 Updating `/tmp/jl_FAIbdG/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.1 [70df07ce] + BracketingNonlinearSolve v1.6.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.10 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.15 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.15.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.2.0 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.1 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.2.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.124.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.4.0 [c0aeaf25] + SciMLOperators v1.10.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_FAIbdG/Project.toml` [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_FAIbdG/Manifest.toml` WARNING: Method definition inplace_support(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_nokwarg(Base.Val{x} where x, Any, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:9 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition check_available(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:20 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_same_point(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition value_and_pullback(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:36 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(DifferentiationInterface.DifferentiateWith{F, B} where B<:ADTypes.AbstractADType where F, Any) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/differentiate_with.jl:1 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `DifferentiationInterfaceChainRulesCoreExt` └ @ Base loading.jl:2629 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.088059 seconds (955.93 k allocations: 48.259 MiB, 99.48% compilation time) 0.001755 seconds (7.08 k allocations: 315.773 KiB) 0.001802 seconds (10.80 k allocations: 486.172 KiB) 0.001768 seconds (10.76 k allocations: 480.312 KiB) 0.002454 seconds (14.53 k allocations: 635.891 KiB) 0.001439 seconds (7.95 k allocations: 360.930 KiB) 0.001127 seconds (7.45 k allocations: 301.094 KiB) 15.186156 seconds (6.79 M allocations: 348.437 MiB, 1.58% gc time, 99.79% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.301602 seconds (112.45 k allocations: 6.028 MiB, 97.87% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.010598 seconds (9.76 k allocations: 520.398 KiB, 90.28% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003093611 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.458089516 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.060979417 seconds [ Info: Global identifiability assessed in 56.328487034 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002670085 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 1.062137225 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 4.7089e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.03617107 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.54364797 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.4149e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:16 ✓ # Computing specializations.. Time: 0:00:18 [ Info: Search for polynomial generators concluded in 12.49900388 [ Info: Selecting generators in 0.012289964 [ Info: Inclusion checked with probability 0.9955 in 0.057610867 seconds [ Info: Global identifiability assessed in 106.038988629 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.534581507 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.684066296 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.167983416 seconds [ Info: Global identifiability assessed in 35.946725215 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014173306 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.03069228 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000279338 seconds [ Info: Global identifiability assessed in 0.076584957 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 6.421906037 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002706914 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 2.6169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.841830391 [ Info: Selecting generators in 0.000309337 [ Info: Inclusion checked with probability 0.9955 in 0.002508186 seconds [ Info: Global identifiability assessed in 8.542560852 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001953032 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001398777 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.74e-5 seconds [ Info: Global identifiability assessed in 0.006087982 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002293458 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001660444 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.905e-5 seconds [ Info: Global identifiability assessed in 0.007127222 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004403928 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003606216 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.057e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.960378791 [ Info: Selecting generators in 0.01372366 [ Info: Inclusion checked with probability 0.9955 in 0.004500458 seconds [ Info: Global identifiability assessed in 2.048884092 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006930395 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003420068 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.463e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006109782 [ Info: Selecting generators in 0.003419317 [ Info: Inclusion checked with probability 0.9955 in 0.003585396 seconds [ Info: Global identifiability assessed in 0.043821976 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001457586 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001182299 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.044e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000100189 [ Info: Selecting generators in 1.190318656 [ Info: Inclusion checked with probability 0.995 in 0.002043801 seconds [ Info: The search for identifiable functions concluded in 2.405604366 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001342897 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001195549 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.892e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.8909e-5 [ Info: Selecting generators in 0.000730813 [ Info: Inclusion checked with probability 0.995 in 0.001979441 seconds [ Info: The search for identifiable functions concluded in 0.010134015 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001203209 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001151199 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.835e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.8739e-5 [ Info: Selecting generators in 0.000605265 [ Info: Inclusion checked with probability 0.995 in 0.00208297 seconds [ Info: The search for identifiable functions concluded in 0.009464171 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001207078 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00106586 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.041e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000460935 [ Info: Selecting generators in 0.000800472 [ Info: Inclusion checked with probability 0.995 in 0.001780463 seconds [ Info: The search for identifiable functions concluded in 0.009689288 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001335608 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00106123 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.1049e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000446626 [ Info: Selecting generators in 0.000788082 [ Info: Inclusion checked with probability 0.995 in 0.001988161 seconds [ Info: The search for identifiable functions concluded in 0.01055984 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001250368 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107449 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.271e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000443056 [ Info: Selecting generators in 0.000820182 [ Info: Inclusion checked with probability 0.995 in 0.001960011 seconds [ Info: The search for identifiable functions concluded in 0.010814268 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001646075 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001185619 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.788e-5 seconds [ Info: The search for identifiable functions concluded in 0.037189909 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001765943 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001184739 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.0979e-5 seconds [ Info: The search for identifiable functions concluded in 0.004159851 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001574915 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001194379 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.76e-5 seconds [ Info: The search for identifiable functions concluded in 0.003969012 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001251478 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00102707 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.732e-5 seconds [ Info: The search for identifiable functions concluded in 0.002998362 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001504766 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001209529 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.911e-5 seconds [ Info: The search for identifiable functions concluded in 0.003872743 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001476256 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001169169 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.467e-5 seconds [ Info: The search for identifiable functions concluded in 0.003653195 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00207225 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001368807 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.248e-5 seconds [ Info: The search for identifiable functions concluded in 0.004996593 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001829293 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001422876 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.2979e-5 seconds [ Info: The search for identifiable functions concluded in 0.004551347 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001859942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001370877 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.9729e-5 seconds [ Info: The search for identifiable functions concluded in 0.00427171 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001857762 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001299338 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.9599e-5 seconds [ Info: The search for identifiable functions concluded in 0.004503347 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001811903 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001269268 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.925e-5 seconds [ Info: The search for identifiable functions concluded in 0.0042698 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001840003 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013373443 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.434e-5 seconds [ Info: The search for identifiable functions concluded in 0.016607093 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.319034286 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001943392 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.8879e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9889e-5 [ Info: Selecting generators in 0.000686954 [ Info: Inclusion checked with probability 0.995 in 0.001901152 seconds [ Info: The search for identifiable functions concluded in 0.328583795 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002618535 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001619215 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.787e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2979e-5 [ Info: Selecting generators in 0.000595424 [ Info: Inclusion checked with probability 0.995 in 0.001757013 seconds [ Info: The search for identifiable functions concluded in 0.010787798 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002644175 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001712984 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.913e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.6729e-5 [ Info: Selecting generators in 0.000656664 [ Info: Inclusion checked with probability 0.995 in 0.001868612 seconds [ Info: The search for identifiable functions concluded in 0.011472872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002447767 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001526725 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.111e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000425156 [ Info: Selecting generators in 0.000757793 [ Info: Inclusion checked with probability 0.995 in 0.001882122 seconds [ Info: The search for identifiable functions concluded in 0.011400272 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003004012 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001837942 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.871e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000463265 [ Info: Selecting generators in 0.000846302 [ Info: Inclusion checked with probability 0.995 in 0.00207957 seconds [ Info: The search for identifiable functions concluded in 0.013136576 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002834113 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001668964 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.841e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000437116 [ Info: Selecting generators in 0.000630834 [ Info: Inclusion checked with probability 0.995 in 0.001867562 seconds [ Info: The search for identifiable functions concluded in 0.01171104 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001473216 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001340208 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.992e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121489 [ Info: Selecting generators in 0.002245679 [ Info: Inclusion checked with probability 0.995 in 0.003748664 seconds [ Info: The search for identifiable functions concluded in 0.017706973 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001518466 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001477896 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.159e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000122409 [ Info: Selecting generators in 0.002324688 [ Info: Inclusion checked with probability 0.995 in 0.003623416 seconds [ Info: The search for identifiable functions concluded in 0.018561634 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001447847 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001393047 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.959e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000118959 [ Info: Selecting generators in 0.002437417 [ Info: Inclusion checked with probability 0.995 in 0.003963732 seconds [ Info: The search for identifiable functions concluded in 0.018398726 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001497586 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001427257 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.96e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.25728876 [ Info: Selecting generators in 0.003955622 [ Info: Inclusion checked with probability 0.995 in 0.003538617 seconds [ Info: The search for identifiable functions concluded in 0.276626317 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001407437 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001542176 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.194e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.279743497 [ Info: Selecting generators in 0.003884773 [ Info: Inclusion checked with probability 0.995 in 0.003856644 seconds [ Info: The search for identifiable functions concluded in 0.299573009 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001487696 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001338327 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.537e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015741172 [ Info: Selecting generators in 0.003504437 [ Info: Inclusion checked with probability 0.995 in 0.003588237 seconds [ Info: The search for identifiable functions concluded in 0.035831951 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001322708 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00109978 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.998e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.85e-5 [ Info: Selecting generators in 0.002329508 [ Info: Inclusion checked with probability 0.995 in 0.002701995 seconds [ Info: The search for identifiable functions concluded in 1.068843872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001249538 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00107573 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.0269e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7369e-5 [ Info: Selecting generators in 0.002438877 [ Info: Inclusion checked with probability 0.995 in 0.002738554 seconds [ Info: The search for identifiable functions concluded in 0.01376861 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001251448 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001103599 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.079e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6629e-5 [ Info: Selecting generators in 0.002109641 [ Info: Inclusion checked with probability 0.995 in 0.002719884 seconds [ Info: The search for identifiable functions concluded in 0.013478573 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001274258 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00106715 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.69e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.238428267 [ Info: Selecting generators in 0.002831123 [ Info: Inclusion checked with probability 0.995 in 0.002842813 seconds [ Info: The search for identifiable functions concluded in 0.25297696 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001264338 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00109223 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.007e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006158932 [ Info: Selecting generators in 0.002480156 [ Info: Inclusion checked with probability 0.995 in 0.002674524 seconds [ Info: The search for identifiable functions concluded in 0.020955492 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001308388 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00108505 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.062e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005569787 [ Info: Selecting generators in 0.002183439 [ Info: Inclusion checked with probability 0.995 in 0.002700185 seconds [ Info: The search for identifiable functions concluded in 0.020013091 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00213594 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001631054 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.201e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5539e-5 [ Info: Selecting generators in 0.000621514 [ Info: Inclusion checked with probability 0.995 in 0.002883712 seconds [ Info: The search for identifiable functions concluded in 0.017534904 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002388618 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001714204 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.335e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102869 [ Info: Selecting generators in 0.000573354 [ Info: Inclusion checked with probability 0.995 in 0.002934052 seconds [ Info: The search for identifiable functions concluded in 0.018904601 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002358408 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001763803 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.069e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.8019e-5 [ Info: Selecting generators in 0.000730433 [ Info: Inclusion checked with probability 0.995 in 0.00318971 seconds [ Info: The search for identifiable functions concluded in 0.018416386 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002214529 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001618995 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.977e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00735503 [ Info: Selecting generators in 0.000705843 [ Info: Inclusion checked with probability 0.995 in 0.003042391 seconds [ Info: The search for identifiable functions concluded in 0.025723297 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002321959 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001685824 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.083e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007626418 [ Info: Selecting generators in 0.000813592 [ Info: Inclusion checked with probability 0.995 in 0.003388298 seconds [ Info: The search for identifiable functions concluded in 0.026066033 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00205585 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001672374 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.319e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007466939 [ Info: Selecting generators in 0.000746823 [ Info: Inclusion checked with probability 0.995 in 0.003401468 seconds [ Info: The search for identifiable functions concluded in 0.026024744 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002752854 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002037631 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.485e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126699 [ Info: Selecting generators in 0.003384018 [ Info: Inclusion checked with probability 0.995 in 0.003663825 seconds [ Info: The search for identifiable functions concluded in 0.023343609 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002741684 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002001381 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.439e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110849 [ Info: Selecting generators in 0.003370808 [ Info: Inclusion checked with probability 0.995 in 0.003390088 seconds [ Info: The search for identifiable functions concluded in 0.022908204 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002614606 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002012931 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.574e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9309e-5 [ Info: Selecting generators in 0.003278229 [ Info: Inclusion checked with probability 0.995 in 0.003547866 seconds [ Info: The search for identifiable functions concluded in 0.022577747 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002627275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002037921 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.4999e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013961788 [ Info: Selecting generators in 0.003525177 [ Info: Inclusion checked with probability 0.995 in 0.003446667 seconds [ Info: The search for identifiable functions concluded in 0.036722353 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002594915 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002021851 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.533e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013959848 [ Info: Selecting generators in 0.00316206 [ Info: Inclusion checked with probability 0.995 in 0.003505507 seconds [ Info: The search for identifiable functions concluded in 0.036503575 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002685665 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001975321 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.882e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013878949 [ Info: Selecting generators in 0.003675215 [ Info: Inclusion checked with probability 0.995 in 0.003512647 seconds [ Info: The search for identifiable functions concluded in 0.036117849 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014361104 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005014273 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.816e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000131299 [ Info: Selecting generators in 0.009704029 [ Info: Inclusion checked with probability 0.995 in 0.006145942 seconds [ Info: The search for identifiable functions concluded in 0.304430414 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007274942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004770444 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.449e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000149438 [ Info: Selecting generators in 0.009925846 [ Info: Inclusion checked with probability 0.995 in 0.005937324 seconds [ Info: The search for identifiable functions concluded in 0.045990255 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007650208 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005696666 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.967e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000141608 [ Info: Selecting generators in 0.010639839 [ Info: Inclusion checked with probability 0.995 in 0.006605548 seconds [ Info: The search for identifiable functions concluded in 0.051932329 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00736957 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005765796 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.629e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002395327 [ Info: Selecting generators in 0.010908037 [ Info: Inclusion checked with probability 0.995 in 0.006658447 seconds [ Info: The search for identifiable functions concluded in 0.053776912 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007814986 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006033183 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 4.2269e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002268159 [ Info: Selecting generators in 0.010277512 [ Info: Inclusion checked with probability 0.995 in 0.005924824 seconds [ Info: The search for identifiable functions concluded in 0.397696843 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006912145 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004807954 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.692e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00219594 [ Info: Selecting generators in 0.010493931 [ Info: Inclusion checked with probability 0.995 in 0.006223351 seconds [ Info: The search for identifiable functions concluded in 0.049087036 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005082592 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003042691 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.048e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105259 [ Info: Selecting generators in 0.001994601 [ Info: Inclusion checked with probability 0.995 in 0.003625436 seconds [ Info: The search for identifiable functions concluded in 0.023971814 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004983073 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002978822 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.061e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107169 [ Info: Selecting generators in 0.00204196 [ Info: Inclusion checked with probability 0.995 in 0.003795314 seconds [ Info: The search for identifiable functions concluded in 0.024718837 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004785765 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003049911 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.177e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111319 [ Info: Selecting generators in 0.001996271 [ Info: Inclusion checked with probability 0.995 in 0.004031752 seconds [ Info: The search for identifiable functions concluded in 0.024717847 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004905164 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00312657 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.9969e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00106626 [ Info: Selecting generators in 0.002050851 [ Info: Inclusion checked with probability 0.995 in 0.004023222 seconds [ Info: The search for identifiable functions concluded in 0.026061583 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004808594 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003083811 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.085e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001211189 [ Info: Selecting generators in 0.002184339 [ Info: Inclusion checked with probability 0.995 in 0.004094271 seconds [ Info: The search for identifiable functions concluded in 0.02650646 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004873834 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002990852 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.3179e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001433886 [ Info: Selecting generators in 0.002372088 [ Info: Inclusion checked with probability 0.995 in 0.004158711 seconds [ Info: The search for identifiable functions concluded in 0.027688148 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004742056 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002880362 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.435e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105939 [ Info: Selecting generators in 0.002238749 [ Info: Inclusion checked with probability 0.995 in 0.003673205 seconds [ Info: The search for identifiable functions concluded in 0.027345062 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004677876 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002721634 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.109e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109549 [ Info: Selecting generators in 0.002621615 [ Info: Inclusion checked with probability 0.995 in 0.004406238 seconds [ Info: The search for identifiable functions concluded in 0.028833918 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00532917 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003260889 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.3059e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113769 [ Info: Selecting generators in 0.002504317 [ Info: Inclusion checked with probability 0.995 in 0.003461297 seconds [ Info: The search for identifiable functions concluded in 0.029665809 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00530443 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003290029 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.114e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.018275497 [ Info: Selecting generators in 0.004074121 [ Info: Inclusion checked with probability 0.995 in 0.003607346 seconds [ Info: The search for identifiable functions concluded in 0.04868042 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00523001 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003301219 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.27e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020079481 [ Info: Selecting generators in 0.003973023 [ Info: Inclusion checked with probability 0.995 in 0.003633136 seconds [ Info: The search for identifiable functions concluded in 0.051530313 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00533312 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003346798 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.3929e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019284017 [ Info: Selecting generators in 0.003919913 [ Info: Inclusion checked with probability 0.995 in 0.003721755 seconds [ Info: The search for identifiable functions concluded in 0.051208676 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002735184 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00212261 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.936e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112529 [ Info: Selecting generators in 0.001821443 [ Info: Inclusion checked with probability 0.995 in 0.003399237 seconds [ Info: The search for identifiable functions concluded in 0.020372588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002363037 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00208443 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.288e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114289 [ Info: Selecting generators in 0.001780754 [ Info: Inclusion checked with probability 0.995 in 0.003266359 seconds [ Info: The search for identifiable functions concluded in 0.022708026 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002613965 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002069971 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.861e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.5109e-5 [ Info: Selecting generators in 0.001737924 [ Info: Inclusion checked with probability 0.995 in 0.00317273 seconds [ Info: The search for identifiable functions concluded in 0.01906249 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002488776 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001990731 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.853e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013602541 [ Info: Selecting generators in 0.002949532 [ Info: Inclusion checked with probability 0.995 in 0.00311045 seconds [ Info: The search for identifiable functions concluded in 0.032996828 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002522646 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00207719 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.654e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012123555 [ Info: Selecting generators in 0.002967362 [ Info: Inclusion checked with probability 0.995 in 0.00317018 seconds [ Info: The search for identifiable functions concluded in 0.031638751 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002359507 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001969501 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.791e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012464822 [ Info: Selecting generators in 0.002992422 [ Info: Inclusion checked with probability 0.995 in 0.003014952 seconds [ Info: The search for identifiable functions concluded in 0.031691941 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01479078 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031297874 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000257157 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 [ Info: Search for polynomial generators concluded in 0.000182448 [ Info: Selecting generators in 0.017104409 [ Info: Inclusion checked with probability 0.995 in 0.026978065 seconds [ Info: The search for identifiable functions concluded in 13.522535565 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013566892 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031634221 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000310237 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000131289 [ Info: Selecting generators in 0.016767842 [ Info: Inclusion checked with probability 0.995 in 0.028302332 seconds [ Info: The search for identifiable functions concluded in 0.162052478 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014475094 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031818089 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000279888 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000124599 [ Info: Selecting generators in 0.017220717 [ Info: Inclusion checked with probability 0.995 in 0.028377162 seconds [ Info: The search for identifiable functions concluded in 0.162845231 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0136913 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.03169946 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000279938 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.108048656 [ Info: Selecting generators in 0.0200531 [ Info: Inclusion checked with probability 0.995 in 0.030253944 seconds [ Info: The search for identifiable functions concluded in 1.274959908 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015329755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.034244736 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000258947 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.045881956 [ Info: Selecting generators in 0.015784181 [ Info: Inclusion checked with probability 0.995 in 0.026775637 seconds [ Info: The search for identifiable functions concluded in 0.600716102 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013857549 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030492342 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000337777 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.04442572 [ Info: Selecting generators in 0.015819711 [ Info: Inclusion checked with probability 0.995 in 0.027396831 seconds [ Info: The search for identifiable functions concluded in 0.199609493 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.701440246 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.960802124 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.214502622 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000219808 [ Info: Selecting generators in 0.974043879 [ Info: Inclusion checked with probability 0.995 in 2.580335747 seconds [ Info: The search for identifiable functions concluded in 17.49706079 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.580429523 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.918676507 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.188195359 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000145489 [ Info: Selecting generators in 0.612692183 [ Info: Inclusion checked with probability 0.995 in 3.007103607 seconds [ Info: The search for identifiable functions concluded in 17.521196901 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.771639467 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.688546164 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.223052639 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000156589 [ Info: Selecting generators in 1.101141216 [ Info: Inclusion checked with probability 0.995 in 2.664471537 seconds [ Info: The search for identifiable functions concluded in 18.531096731 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.956539257 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.127681244 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.1880133 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.028349061 [ Info: Selecting generators in 1.178029633 [ Info: Inclusion checked with probability 0.995 in 2.289055419 seconds [ Info: The search for identifiable functions concluded in 18.950177313 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.796714091 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.73229836 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.18795919 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 4   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.026557728 [ Info: Selecting generators in 0.505959856 [ Info: Inclusion checked with probability 0.995 in 2.630485964 seconds [ Info: The search for identifiable functions concluded in 16.986442081 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.927410755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.521935201 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.172607534 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.026664698 [ Info: Selecting generators in 0.524733955 [ Info: Inclusion checked with probability 0.995 in 2.739253891 seconds [ Info: The search for identifiable functions concluded in 18.125987424 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01266232 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01158245 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.6119e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133599 [ Info: Selecting generators in 0.007628207 [ Info: Inclusion checked with probability 0.995 in 0.00849235 seconds [ Info: The search for identifiable functions concluded in 0.075548763 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012311333 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010676669 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.99e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000128679 [ Info: Selecting generators in 0.007110623 [ Info: Inclusion checked with probability 0.995 in 0.008196112 seconds [ Info: The search for identifiable functions concluded in 0.072558052 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012140275 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010784458 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.963e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132059 [ Info: Selecting generators in 0.008533879 [ Info: Inclusion checked with probability 0.995 in 0.008726178 seconds [ Info: The search for identifiable functions concluded in 0.870588155 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013355874 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012044256 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.104e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.033941818 [ Info: Selecting generators in 0.011740768 [ Info: Inclusion checked with probability 0.995 in 0.008746858 seconds [ Info: The search for identifiable functions concluded in 0.124607869 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01258912 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011223644 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.0079e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.029993995 [ Info: Selecting generators in 0.010897906 [ Info: Inclusion checked with probability 0.995 in 0.008171633 seconds [ Info: The search for identifiable functions concluded in 0.107059935 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011488991 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010363702 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 2.95e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031103925 [ Info: Selecting generators in 0.011108615 [ Info: Inclusion checked with probability 0.995 in 0.008289712 seconds [ Info: The search for identifiable functions concluded in 0.105719858 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01157951 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007203291 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.233e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000203388 [ Info: Selecting generators in 0.031932947 [ Info: Inclusion checked with probability 0.995 in 0.011820598 seconds [ Info: The search for identifiable functions concluded in 0.66236871 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010670509 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006504429 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.173e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000240678 [ Info: Selecting generators in 0.032218524 [ Info: Inclusion checked with probability 0.995 in 0.012824048 seconds [ Info: The search for identifiable functions concluded in 0.414577509 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011490491 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007249232 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.153e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000366846 [ Info: Selecting generators in 0.06320465 [ Info: Inclusion checked with probability 0.995 in 0.01583093 seconds [ Info: The search for identifiable functions concluded in 1.132387673 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015364814 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010251632 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.081e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.724825642 [ Info: Selecting generators in 0.054695461 [ Info: Inclusion checked with probability 0.995 in 0.012524301 seconds [ Info: The search for identifiable functions concluded in 3.231414928 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011178293 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006812795 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.2499e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.95539388 [ Info: Selecting generators in 0.084797916 [ Info: Inclusion checked with probability 0.995 in 0.016679572 seconds [ Info: The search for identifiable functions concluded in 1.446041337 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013506532 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008874936 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.456e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.257798525 [ Info: Selecting generators in 0.049788077 [ Info: Inclusion checked with probability 0.995 in 0.011016026 seconds [ Info: The search for identifiable functions concluded in 0.715735783 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019052889 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012784769 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.371e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111589 [ Info: Selecting generators in 0.00738529 [ Info: Inclusion checked with probability 0.995 in 0.01169042 seconds [ Info: The search for identifiable functions concluded in 0.084115472 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.018078779 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012765319 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.9559e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113698 [ Info: Selecting generators in 0.007193512 [ Info: Inclusion checked with probability 0.995 in 0.0115887 seconds [ Info: The search for identifiable functions concluded in 0.082652186 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017697112 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012622411 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.322e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109519 [ Info: Selecting generators in 0.0073909 [ Info: Inclusion checked with probability 0.995 in 0.012109825 seconds [ Info: The search for identifiable functions concluded in 0.083229071 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017579453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014845959 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.14e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.041834844 [ Info: Selecting generators in 0.013551661 [ Info: Inclusion checked with probability 0.995 in 0.01262112 seconds [ Info: The search for identifiable functions concluded in 0.137646205 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.019304007 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01478154 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.3859e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.041019601 [ Info: Selecting generators in 0.013422332 [ Info: Inclusion checked with probability 0.995 in 0.012557011 seconds [ Info: The search for identifiable functions concluded in 0.138660365 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.018805621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014362424 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 7.1879e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.802787417 [ Info: Selecting generators in 0.021880103 [ Info: Inclusion checked with probability 0.995 in 0.016485803 seconds [ Info: The search for identifiable functions concluded in 0.912787353 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01167396 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016091117 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 5.9239e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138679 [ Info: Selecting generators in 0.064458239 [ Info: Inclusion checked with probability 0.995 in 0.016837471 seconds [ Info: The search for identifiable functions concluded in 0.497996667 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009340791 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013492242 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.085e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000182398 [ Info: Selecting generators in 0.071425193 [ Info: Inclusion checked with probability 0.995 in 0.015476773 seconds [ Info: The search for identifiable functions concluded in 0.443632463 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009795477 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014304554 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.0779e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000165129 [ Info: Selecting generators in 0.071424732 [ Info: Inclusion checked with probability 0.995 in 0.016531274 seconds [ Info: The search for identifiable functions concluded in 0.465497845 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010240223 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014577042 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.213e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.075866571 [ Info: Selecting generators in 0.071292563 [ Info: Inclusion checked with probability 0.995 in 0.014663201 seconds [ Info: The search for identifiable functions concluded in 1.344934555 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010369942 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014145556 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 5.8549e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.075260696 [ Info: Selecting generators in 0.071999447 [ Info: Inclusion checked with probability 0.995 in 0.013395153 seconds [ Info: The search for identifiable functions concluded in 0.507759154 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009100484 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.012937638 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.106e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.223691743 [ Info: Selecting generators in 0.075514233 [ Info: Inclusion checked with probability 0.995 in 0.015933579 seconds [ Info: The search for identifiable functions concluded in 1.685550333 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.231005513 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.071892208 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 7.8999e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 22   ⌟ # Computing specializations.. Time: 0:00:01 Points: 34   ⌞ # Computing specializations.. Time: 0:00:01 Points: 46   ⌜ # Computing specializations.. Time: 0:00:01 Points: 57   ⌝ # Computing specializations.. Time: 0:00:02 Points: 68   ⌟ # Computing specializations.. Time: 0:00:02 Points: 78   ⌞ # Computing specializations.. Time: 0:00:02 Points: 88   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:02 Points: 83   ⌜ # Computing specializations.. Time: 0:00:03 Points: 94   ⌝ # Computing specializations.. Time: 0:00:03 Points: 106   ⌟ # Computing specializations.. Time: 0:00:04 Points: 117   ⌞ # Computing specializations.. Time: 0:00:04 Points: 129   ⌜ # Computing specializations.. Time: 0:00:04 Points: 140   ⌝ # Computing specializations.. Time: 0:00:05 Points: 152   ⌟ # Computing specializations.. Time: 0:00:05 Points: 163   ⌞ # Computing specializations.. Time: 0:00:06 Points: 175   ⌜ # Computing specializations.. Time: 0:00:06 Points: 186   ⌝ # Computing specializations.. Time: 0:00:06 Points: 196   ⌟ # Computing specializations.. Time: 0:00:07 Points: 206   ⌞ # Computing specializations.. Time: 0:00:07 Points: 216   ⌜ # Computing specializations.. Time: 0:00:07 Points: 227   ⌝ # Computing specializations.. Time: 0:00:08 Points: 238   ⌟ # Computing specializations.. Time: 0:00:08 Points: 250   ⌞ # Computing specializations.. Time: 0:00:09 Points: 261   ⌜ # Computing specializations.. Time: 0:00:09 Points: 271   ⌝ # Computing specializations.. Time: 0:00:09 Points: 281   ⌟ # Computing specializations.. Time: 0:00:10 Points: 289   ⌞ # Computing specializations.. Time: 0:00:10 Points: 300   ⌜ # Computing specializations.. Time: 0:00:10 Points: 311   ⌝ # Computing specializations.. Time: 0:00:11 Points: 321   ⌟ # Computing specializations.. Time: 0:00:11 Points: 331   ⌞ # Computing specializations.. Time: 0:00:12 Points: 341   ⌜ # Computing specializations.. Time: 0:00:12 Points: 353   ⌝ # Computing specializations.. Time: 0:00:12 Points: 364   ⌟ # Computing specializations.. Time: 0:00:13 Points: 374   ⌞ # Computing specializations.. Time: 0:00:13 Points: 383   ⌜ # Computing specializations.. Time: 0:00:14 Points: 393   ⌝ # Computing specializations.. Time: 0:00:14 Points: 405   ⌟ # Computing specializations.. Time: 0:00:14 Points: 416   ⌞ # Computing specializations.. Time: 0:00:15 Points: 425   ⌜ # Computing specializations.. Time: 0:00:15 Points: 436   ⌝ # Computing specializations.. Time: 0:00:15 Points: 447   ⌟ # Computing specializations.. Time: 0:00:16 Points: 459   ⌞ # Computing specializations.. Time: 0:00:16 Points: 470   ⌜ # Computing specializations.. Time: 0:00:17 Points: 480   ⌝ # Computing specializations.. Time: 0:00:17 Points: 490   ⌟ # Computing specializations.. Time: 0:00:17 Points: 500   ⌞ # Computing specializations.. Time: 0:00:18 Points: 512   ⌜ # Computing specializations.. Time: 0:00:18 Points: 523   ⌝ # Computing specializations.. Time: 0:00:18 Points: 533   ⌟ # Computing specializations.. Time: 0:00:19 Points: 543   ⌞ # Computing specializations.. Time: 0:00:19 Points: 553   ⌜ # Computing specializations.. Time: 0:00:20 Points: 565   ⌝ # Computing specializations.. Time: 0:00:20 Points: 577   ⌟ # Computing specializations.. Time: 0:00:20 Points: 587   ⌞ # Computing specializations.. Time: 0:00:21 Points: 597   ⌜ # Computing specializations.. Time: 0:00:21 Points: 607   ⌝ # Computing specializations.. Time: 0:00:21 Points: 615   ⌟ # Computing specializations.. Time: 0:00:22 Points: 625   ⌞ # Computing specializations.. Time: 0:00:22 Points: 635   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 0.000380817 [ Info: Selecting generators in 0.041247368 [ Info: Inclusion checked with probability 0.995 in 8.783117444 seconds [ Info: The search for identifiable functions concluded in 54.308090975 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 3.654294668 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.072395283 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000117138 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 5   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 34   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 64   ⌞ # Computing specializations.. Time: 0:00:02 Points: 74   ⌜ # Computing specializations.. Time: 0:00:03 Points: 84   ⌝ # Computing specializations.. Time: 0:00:03 Points: 93   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 62   ⌟ # Computing specializations.. Time: 0:00:02 Points: 72   ⌞ # Computing specializations.. Time: 0:00:03 Points: 83   ⌜ # Computing specializations.. Time: 0:00:03 Points: 93   ⌝ # Computing specializations.. Time: 0:00:03 Points: 104   ⌟ # Computing specializations.. Time: 0:00:04 Points: 115   ⌞ # Computing specializations.. Time: 0:00:04 Points: 126   ⌜ # Computing specializations.. Time: 0:00:04 Points: 136   ⌝ # Computing specializations.. Time: 0:00:05 Points: 147   ⌟ # Computing specializations.. Time: 0:00:05 Points: 158   ⌞ # Computing specializations.. Time: 0:00:06 Points: 168   ⌜ # Computing specializations.. Time: 0:00:06 Points: 178   ⌝ # Computing specializations.. Time: 0:00:06 Points: 189   ⌟ # Computing specializations.. Time: 0:00:07 Points: 200   ⌞ # Computing specializations.. Time: 0:00:07 Points: 211   ⌜ # Computing specializations.. Time: 0:00:08 Points: 222   ⌝ # Computing specializations.. Time: 0:00:08 Points: 233   ⌟ # Computing specializations.. Time: 0:00:08 Points: 243   ⌞ # Computing specializations.. Time: 0:00:09 Points: 254   ⌜ # Computing specializations.. Time: 0:00:09 Points: 264   ⌝ # Computing specializations.. Time: 0:00:09 Points: 275   ⌟ # Computing specializations.. Time: 0:00:10 Points: 286   ⌞ # Computing specializations.. Time: 0:00:10 Points: 297   ⌜ # Computing specializations.. Time: 0:00:11 Points: 307   ⌝ # Computing specializations.. Time: 0:00:11 Points: 317   ⌟ # Computing specializations.. Time: 0:00:11 Points: 325   ⌞ # Computing specializations.. Time: 0:00:12 Points: 333   ⌜ # Computing specializations.. Time: 0:00:12 Points: 344   ⌝ # Computing specializations.. Time: 0:00:13 Points: 354   ⌟ # Computing specializations.. Time: 0:00:13 Points: 365   ⌞ # Computing specializations.. Time: 0:00:13 Points: 376   ⌜ # Computing specializations.. Time: 0:00:14 Points: 388   ⌝ # Computing specializations.. Time: 0:00:14 Points: 399   ⌟ # Computing specializations.. Time: 0:00:14 Points: 411   ⌞ # Computing specializations.. Time: 0:00:15 Points: 422   ⌜ # Computing specializations.. Time: 0:00:15 Points: 433   ⌝ # Computing specializations.. Time: 0:00:16 Points: 443   ⌟ # Computing specializations.. Time: 0:00:16 Points: 454   ⌞ # Computing specializations.. Time: 0:00:16 Points: 465   ⌜ # Computing specializations.. Time: 0:00:17 Points: 475   ⌝ # Computing specializations.. Time: 0:00:17 Points: 485   ⌟ # Computing specializations.. Time: 0:00:18 Points: 495   ⌞ # Computing specializations.. Time: 0:00:18 Points: 506   ⌜ # Computing specializations.. Time: 0:00:18 Points: 515   ⌝ # Computing specializations.. Time: 0:00:19 Points: 526   ⌟ # Computing specializations.. Time: 0:00:19 Points: 537   ⌞ # Computing specializations.. Time: 0:00:19 Points: 548   ⌜ # Computing specializations.. Time: 0:00:20 Points: 558   ⌝ # Computing specializations.. Time: 0:00:20 Points: 569   ⌟ # Computing specializations.. Time: 0:00:20 Points: 579   ⌞ # Computing specializations.. Time: 0:00:21 Points: 588   ⌜ # Computing specializations.. Time: 0:00:21 Points: 598   ⌝ # Computing specializations.. Time: 0:00:22 Points: 608   ⌟ # Computing specializations.. Time: 0:00:22 Points: 620   ⌞ # Computing specializations.. Time: 0:00:22 Points: 631   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 0.000343616 [ Info: Selecting generators in 0.045398629 [ Info: Inclusion checked with probability 0.995 in 8.897558414 seconds [ Info: The search for identifiable functions concluded in 58.090763659 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.764609462 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.079686921 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000137709 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 46   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 64   ⌞ # Computing specializations.. Time: 0:00:02 Points: 73   ⌜ # Computing specializations.. Time: 0:00:03 Points: 82   ⌝ # Computing specializations.. Time: 0:00:03 Points: 92   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 9   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 62   ⌟ # Computing specializations.. Time: 0:00:02 Points: 73   ⌞ # Computing specializations.. Time: 0:00:02 Points: 83   ⌜ # Computing specializations.. Time: 0:00:03 Points: 92   ⌝ # Computing specializations.. Time: 0:00:03 Points: 101   ⌟ # Computing specializations.. Time: 0:00:03 Points: 110   ⌞ # Computing specializations.. Time: 0:00:04 Points: 119   ⌜ # Computing specializations.. Time: 0:00:04 Points: 128   ⌝ # Computing specializations.. Time: 0:00:04 Points: 138   ⌟ # Computing specializations.. Time: 0:00:05 Points: 148   ⌞ # Computing specializations.. Time: 0:00:05 Points: 158   ⌜ # Computing specializations.. Time: 0:00:06 Points: 167   ⌝ # Computing specializations.. Time: 0:00:06 Points: 176   ⌟ # Computing specializations.. Time: 0:00:06 Points: 184   ⌞ # Computing specializations.. Time: 0:00:07 Points: 193   ⌜ # Computing specializations.. Time: 0:00:07 Points: 202   ⌝ # Computing specializations.. Time: 0:00:07 Points: 211   ⌟ # Computing specializations.. Time: 0:00:08 Points: 219   ⌞ # Computing specializations.. Time: 0:00:08 Points: 228   ⌜ # Computing specializations.. Time: 0:00:09 Points: 237   ⌝ # Computing specializations.. Time: 0:00:09 Points: 247   ⌟ # Computing specializations.. Time: 0:00:09 Points: 255   ⌞ # Computing specializations.. Time: 0:00:10 Points: 264   ⌜ # Computing specializations.. Time: 0:00:10 Points: 273   ⌝ # Computing specializations.. Time: 0:00:10 Points: 283   ⌟ # Computing specializations.. Time: 0:00:11 Points: 292   ⌞ # Computing specializations.. Time: 0:00:11 Points: 301   ⌜ # Computing specializations.. Time: 0:00:12 Points: 310   ⌝ # Computing specializations.. Time: 0:00:12 Points: 320   ⌟ # Computing specializations.. Time: 0:00:12 Points: 329   ⌞ # Computing specializations.. Time: 0:00:13 Points: 341   ⌜ # Computing specializations.. Time: 0:00:13 Points: 351   ⌝ # Computing specializations.. Time: 0:00:14 Points: 360   ⌟ # Computing specializations.. Time: 0:00:14 Points: 369   ⌞ # Computing specializations.. Time: 0:00:14 Points: 379   ⌜ # Computing specializations.. Time: 0:00:15 Points: 387   ⌝ # Computing specializations.. Time: 0:00:15 Points: 396   ⌟ # Computing specializations.. Time: 0:00:15 Points: 405   ⌞ # Computing specializations.. Time: 0:00:16 Points: 415   ⌜ # Computing specializations.. Time: 0:00:16 Points: 424   ⌝ # Computing specializations.. Time: 0:00:17 Points: 434   ⌟ # Computing specializations.. Time: 0:00:17 Points: 443   ⌞ # Computing specializations.. Time: 0:00:17 Points: 453   ⌜ # Computing specializations.. Time: 0:00:18 Points: 462   ⌝ # Computing specializations.. Time: 0:00:18 Points: 470   ⌟ # Computing specializations.. Time: 0:00:18 Points: 479   ⌞ # Computing specializations.. Time: 0:00:19 Points: 488   ⌜ # Computing specializations.. Time: 0:00:19 Points: 497   ⌝ # Computing specializations.. Time: 0:00:20 Points: 506   ⌟ # Computing specializations.. Time: 0:00:20 Points: 515   ⌞ # Computing specializations.. Time: 0:00:20 Points: 522   ⌜ # Computing specializations.. Time: 0:00:21 Points: 532   ⌝ # Computing specializations.. Time: 0:00:21 Points: 541   ⌟ # Computing specializations.. Time: 0:00:21 Points: 551   ⌞ # Computing specializations.. Time: 0:00:22 Points: 561   ⌜ # Computing specializations.. Time: 0:00:22 Points: 569   ⌝ # Computing specializations.. Time: 0:00:22 Points: 579   ⌟ # Computing specializations.. Time: 0:00:23 Points: 589   ⌞ # Computing specializations.. Time: 0:00:23 Points: 598   ⌜ # Computing specializations.. Time: 0:00:24 Points: 606   ⌝ # Computing specializations.. Time: 0:00:24 Points: 616   ⌟ # Computing specializations.. Time: 0:00:24 Points: 625   ⌞ # Computing specializations.. Time: 0:00:25 Points: 635   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000371896 [ Info: Selecting generators in 0.059002268 [ Info: Inclusion checked with probability 0.995 in 8.540321564 seconds [ Info: The search for identifiable functions concluded in 63.851576346 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.166278875 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.060602582 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000130479 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 69   ⌞ # Computing specializations.. Time: 0:00:02 Points: 77   ⌜ # Computing specializations.. Time: 0:00:03 Points: 86   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:03 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 97   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 117   ⌜ # Computing specializations.. Time: 0:00:04 Points: 127   ⌝ # Computing specializations.. Time: 0:00:05 Points: 137   ⌟ # Computing specializations.. Time: 0:00:05 Points: 147   ⌞ # Computing specializations.. Time: 0:00:06 Points: 157   ⌜ # Computing specializations.. Time: 0:00:06 Points: 167   ⌝ # Computing specializations.. Time: 0:00:06 Points: 177   ⌟ # Computing specializations.. Time: 0:00:07 Points: 190   ⌞ # Computing specializations.. Time: 0:00:07 Points: 203   ⌜ # Computing specializations.. Time: 0:00:07 Points: 214   ⌝ # Computing specializations.. Time: 0:00:08 Points: 224   ⌟ # Computing specializations.. Time: 0:00:08 Points: 234   ⌞ # Computing specializations.. Time: 0:00:09 Points: 245   ⌜ # Computing specializations.. Time: 0:00:09 Points: 255   ⌝ # Computing specializations.. Time: 0:00:09 Points: 266   ⌟ # Computing specializations.. Time: 0:00:10 Points: 277   ⌞ # Computing specializations.. Time: 0:00:10 Points: 288   ⌜ # Computing specializations.. Time: 0:00:11 Points: 299   ⌝ # Computing specializations.. Time: 0:00:11 Points: 309   ⌟ # Computing specializations.. Time: 0:00:11 Points: 318   ⌞ # Computing specializations.. Time: 0:00:12 Points: 328   ⌜ # Computing specializations.. Time: 0:00:12 Points: 337   ⌝ # Computing specializations.. Time: 0:00:12 Points: 346   ⌟ # Computing specializations.. Time: 0:00:13 Points: 355   ⌞ # Computing specializations.. Time: 0:00:13 Points: 364   ⌜ # Computing specializations.. Time: 0:00:14 Points: 374   ⌝ # Computing specializations.. Time: 0:00:14 Points: 383   ⌟ # Computing specializations.. Time: 0:00:14 Points: 394   ⌞ # Computing specializations.. Time: 0:00:15 Points: 404   ⌜ # Computing specializations.. Time: 0:00:15 Points: 415   ⌝ # Computing specializations.. Time: 0:00:16 Points: 425   ⌟ # Computing specializations.. Time: 0:00:16 Points: 435   ⌞ # Computing specializations.. Time: 0:00:16 Points: 445   ⌜ # Computing specializations.. Time: 0:00:17 Points: 454   ⌝ # Computing specializations.. Time: 0:00:17 Points: 463   ⌟ # Computing specializations.. Time: 0:00:17 Points: 472   ⌞ # Computing specializations.. Time: 0:00:18 Points: 482   ⌜ # Computing specializations.. Time: 0:00:18 Points: 492   ⌝ # Computing specializations.. Time: 0:00:19 Points: 503   ⌟ # Computing specializations.. Time: 0:00:19 Points: 513   ⌞ # Computing specializations.. Time: 0:00:19 Points: 523   ⌜ # Computing specializations.. Time: 0:00:20 Points: 533   ⌝ # Computing specializations.. Time: 0:00:20 Points: 544   ⌟ # Computing specializations.. Time: 0:00:21 Points: 554   ⌞ # Computing specializations.. Time: 0:00:21 Points: 565   ⌜ # Computing specializations.. Time: 0:00:21 Points: 575   ⌝ # Computing specializations.. Time: 0:00:22 Points: 586   ⌟ # Computing specializations.. Time: 0:00:22 Points: 596   ⌞ # Computing specializations.. Time: 0:00:23 Points: 607   ⌜ # Computing specializations.. Time: 0:00:23 Points: 617   ⌝ # Computing specializations.. Time: 0:00:23 Points: 628   ⌟ # Computing specializations.. Time: 0:00:24 Points: 638   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 2.299518725 [ Info: Selecting generators in 0.035575746 [ Info: Inclusion checked with probability 0.995 in 9.199021885 seconds [ Info: The search for identifiable functions concluded in 57.138794181 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.439439873 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.075794268 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000138059 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 34   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 52   ⌟ # Computing specializations.. Time: 0:00:02 Points: 61   ⌞ # Computing specializations.. Time: 0:00:02 Points: 70   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 18   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 67   ⌞ # Computing specializations.. Time: 0:00:03 Points: 77   ⌜ # Computing specializations.. Time: 0:00:03 Points: 87   ⌝ # Computing specializations.. Time: 0:00:03 Points: 98   ⌟ # Computing specializations.. Time: 0:00:04 Points: 108   ⌞ # Computing specializations.. Time: 0:00:04 Points: 118   ⌜ # Computing specializations.. Time: 0:00:05 Points: 128   ⌝ # Computing specializations.. Time: 0:00:05 Points: 138   ⌟ # Computing specializations.. Time: 0:00:05 Points: 147   ⌞ # Computing specializations.. Time: 0:00:06 Points: 158   ⌜ # Computing specializations.. Time: 0:00:06 Points: 168   ⌝ # Computing specializations.. Time: 0:00:07 Points: 182   ⌟ # Computing specializations.. Time: 0:00:07 Points: 192   ⌞ # Computing specializations.. Time: 0:00:07 Points: 202   ⌜ # Computing specializations.. Time: 0:00:08 Points: 212   ⌝ # Computing specializations.. Time: 0:00:08 Points: 222   ⌟ # Computing specializations.. Time: 0:00:09 Points: 232   ⌞ # Computing specializations.. Time: 0:00:09 Points: 243   ⌜ # Computing specializations.. Time: 0:00:09 Points: 253   ⌝ # Computing specializations.. Time: 0:00:10 Points: 263   ⌟ # Computing specializations.. Time: 0:00:10 Points: 273   ⌞ # Computing specializations.. Time: 0:00:11 Points: 285   ⌜ # Computing specializations.. Time: 0:00:11 Points: 295   ⌝ # Computing specializations.. Time: 0:00:11 Points: 305   ⌟ # Computing specializations.. Time: 0:00:12 Points: 314   ⌞ # Computing specializations.. Time: 0:00:12 Points: 324   ⌜ # Computing specializations.. Time: 0:00:12 Points: 333   ⌝ # Computing specializations.. Time: 0:00:13 Points: 344   ⌟ # Computing specializations.. Time: 0:00:13 Points: 354   ⌞ # Computing specializations.. Time: 0:00:14 Points: 364   ⌜ # Computing specializations.. Time: 0:00:14 Points: 374   ⌝ # Computing specializations.. Time: 0:00:14 Points: 383   ⌟ # Computing specializations.. Time: 0:00:15 Points: 392   ⌞ # Computing specializations.. Time: 0:00:15 Points: 401   ⌜ # Computing specializations.. Time: 0:00:15 Points: 411   ⌝ # Computing specializations.. Time: 0:00:16 Points: 420   ⌟ # Computing specializations.. Time: 0:00:16 Points: 430   ⌞ # Computing specializations.. Time: 0:00:16 Points: 440   ⌜ # Computing specializations.. Time: 0:00:17 Points: 449   ⌝ # Computing specializations.. Time: 0:00:17 Points: 458   ⌟ # Computing specializations.. Time: 0:00:18 Points: 467   ⌞ # Computing specializations.. Time: 0:00:18 Points: 477   ⌜ # Computing specializations.. Time: 0:00:18 Points: 486   ⌝ # Computing specializations.. Time: 0:00:19 Points: 497   ⌟ # Computing specializations.. Time: 0:00:19 Points: 507   ⌞ # Computing specializations.. Time: 0:00:19 Points: 517   ⌜ # Computing specializations.. Time: 0:00:20 Points: 527   ⌝ # Computing specializations.. Time: 0:00:20 Points: 536   ⌟ # Computing specializations.. Time: 0:00:20 Points: 545   ⌞ # Computing specializations.. Time: 0:00:21 Points: 554   ⌜ # Computing specializations.. Time: 0:00:21 Points: 567   ⌝ # Computing specializations.. Time: 0:00:22 Points: 580   ⌟ # Computing specializations.. Time: 0:00:22 Points: 590   ⌞ # Computing specializations.. Time: 0:00:22 Points: 598   ⌜ # Computing specializations.. Time: 0:00:23 Points: 612   ⌝ # Computing specializations.. Time: 0:00:23 Points: 627   ⌟ # Computing specializations.. Time: 0:00:23 Points: 640   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 2.011093119 [ Info: Selecting generators in 0.024049717 [ Info: Inclusion checked with probability 0.995 in 6.674372871 seconds [ Info: The search for identifiable functions concluded in 53.0336594 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.765917428 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.052885351 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.2019e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 25   ⌟ # Computing specializations.. Time: 0:00:01 Points: 38   ⌞ # Computing specializations.. Time: 0:00:01 Points: 48   ⌜ # Computing specializations.. Time: 0:00:01 Points: 61   ⌝ # Computing specializations.. Time: 0:00:02 Points: 73   ⌟ # Computing specializations.. Time: 0:00:02 Points: 83   ⌞ # Computing specializations.. Time: 0:00:02 Points: 96   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 23   ⌟ # Computing specializations.. Time: 0:00:01 Points: 35   ⌞ # Computing specializations.. Time: 0:00:01 Points: 47   ⌜ # Computing specializations.. Time: 0:00:01 Points: 58   ⌝ # Computing specializations.. Time: 0:00:02 Points: 70   ⌟ # Computing specializations.. Time: 0:00:02 Points: 80   ⌞ # Computing specializations.. Time: 0:00:02 Points: 89   ⌜ # Computing specializations.. Time: 0:00:03 Points: 96   ⌝ # Computing specializations.. Time: 0:00:03 Points: 105   ⌟ # Computing specializations.. Time: 0:00:03 Points: 112   ⌞ # Computing specializations.. Time: 0:00:04 Points: 122   ⌜ # Computing specializations.. Time: 0:00:04 Points: 131   ⌝ # Computing specializations.. Time: 0:00:04 Points: 141   ⌟ # Computing specializations.. Time: 0:00:05 Points: 151   ⌞ # Computing specializations.. Time: 0:00:05 Points: 161   ⌜ # Computing specializations.. Time: 0:00:06 Points: 170   ⌝ # Computing specializations.. Time: 0:00:06 Points: 178   ⌟ # Computing specializations.. Time: 0:00:06 Points: 186   ⌞ # Computing specializations.. Time: 0:00:07 Points: 194   ⌜ # Computing specializations.. Time: 0:00:07 Points: 204   ⌝ # Computing specializations.. Time: 0:00:07 Points: 213   ⌟ # Computing specializations.. Time: 0:00:08 Points: 221   ⌞ # Computing specializations.. Time: 0:00:08 Points: 229   ⌜ # Computing specializations.. Time: 0:00:09 Points: 237   ⌝ # Computing specializations.. Time: 0:00:09 Points: 246   ⌟ # Computing specializations.. Time: 0:00:09 Points: 255   ⌞ # Computing specializations.. Time: 0:00:10 Points: 263   ⌜ # Computing specializations.. Time: 0:00:10 Points: 272   ⌝ # Computing specializations.. Time: 0:00:10 Points: 279   ⌟ # Computing specializations.. Time: 0:00:11 Points: 288   ⌞ # Computing specializations.. Time: 0:00:11 Points: 297   ⌜ # Computing specializations.. Time: 0:00:11 Points: 305   ⌝ # Computing specializations.. Time: 0:00:12 Points: 314   ⌟ # Computing specializations.. Time: 0:00:12 Points: 321   ⌞ # Computing specializations.. Time: 0:00:12 Points: 330   ⌜ # Computing specializations.. Time: 0:00:13 Points: 339   ⌝ # Computing specializations.. Time: 0:00:13 Points: 349   ⌟ # Computing specializations.. Time: 0:00:14 Points: 358   ⌞ # Computing specializations.. Time: 0:00:14 Points: 368   ⌜ # Computing specializations.. Time: 0:00:15 Points: 378   ⌝ # Computing specializations.. Time: 0:00:15 Points: 388   ⌟ # Computing specializations.. Time: 0:00:15 Points: 397   ⌞ # Computing specializations.. Time: 0:00:16 Points: 405   ⌜ # Computing specializations.. Time: 0:00:16 Points: 414   ⌝ # Computing specializations.. Time: 0:00:16 Points: 421   ⌟ # Computing specializations.. Time: 0:00:17 Points: 431   ⌞ # Computing specializations.. Time: 0:00:17 Points: 440   ⌜ # Computing specializations.. Time: 0:00:17 Points: 450   ⌝ # Computing specializations.. Time: 0:00:18 Points: 461   ⌟ # Computing specializations.. Time: 0:00:18 Points: 472   ⌞ # Computing specializations.. Time: 0:00:19 Points: 482   ⌜ # Computing specializations.. Time: 0:00:19 Points: 492   ⌝ # Computing specializations.. Time: 0:00:19 Points: 502   ⌟ # Computing specializations.. Time: 0:00:20 Points: 511   ⌞ # Computing specializations.. Time: 0:00:20 Points: 520   ⌜ # Computing specializations.. Time: 0:00:21 Points: 530   ⌝ # Computing specializations.. Time: 0:00:21 Points: 539   ⌟ # Computing specializations.. Time: 0:00:21 Points: 547   ⌞ # Computing specializations.. Time: 0:00:22 Points: 556   ⌜ # Computing specializations.. Time: 0:00:22 Points: 563   ⌝ # Computing specializations.. Time: 0:00:22 Points: 574   ⌟ # Computing specializations.. Time: 0:00:23 Points: 583   ⌞ # Computing specializations.. Time: 0:00:23 Points: 593   ⌜ # Computing specializations.. Time: 0:00:24 Points: 602   ⌝ # Computing specializations.. Time: 0:00:24 Points: 610   ⌟ # Computing specializations.. Time: 0:00:24 Points: 619   ⌞ # Computing specializations.. Time: 0:00:25 Points: 626   ⌜ # Computing specializations.. Time: 0:00:25 Points: 635   ✓ # Computing specializations.. Time: 0:00:26 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 45 running 1 of 1 signal (10): User defined signal 1 n_poly_realloc at /workspace/srcdir/flint-3.3.1/src/n_poly/n_poly.c:45 unknown function (ip: 0x7ffe0d8f5b6f) at (unknown file) unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== [ Info: Search for polynomial generators concluded in 1.723370598 [ Info: Selecting generators in 0.038317789 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_76916.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x000079f84ef851e0 Total snapshots: 423. Utilization: 0% ╎423 @Base/task.jl:1168 wait_forever() 422╎ 423 @Base/task.jl:1246 wait() [1] signal 15: Terminated in expression starting at /PkgEval.jl/scripts/evaluate.jl:210 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1246 wait_forever at ./task.jl:1168 jfptr_wait_forever_76916.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) Allocations: 22792051 (Pool: 22791392; Big: 659); GC: 19 [45] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 n_urandint at /workspace/srcdir/flint-3.3.1/src/ulong_extras/randomisation.c:51 _set_estimates at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:305 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1616 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:185 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:177 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:185 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:177 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 _fmpz_mpoly_vec_content_mpoly at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/mpolyv.c:185 _try_missing_var at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:751 _fmpz_mpoly_gcd_algo_small at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1589 _fmpz_mpoly_gcd_algo at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/gcd_algo.c:1911 fmpz_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly/gcd.c:45 fmpq_mpoly_gcd at /workspace/srcdir/flint-3.3.1/src/fmpq_mpoly/gcd.c:38 gcd at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/fmpq_mpoly.jl:317 // at /home/pkgeval/.julia/packages/AbstractAlgebra/T6WZD/src/Fraction.jl:56 [inlined] derivative at /home/pkgeval/.julia/packages/AbstractAlgebra/T6WZD/src/Fraction.jl:681 derivative at /home/pkgeval/.julia/packages/AbstractAlgebra/T6WZD/src/Fraction.jl:674 [inlined] _check_algebraicity at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:138 check_algebraicity at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:185 issubfield at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:417 fields_equal at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:429 unknown function (ip: 0x72e1248e9b41) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x72e10a6c5359) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x72e10a6be354) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x72e12e9d4b92) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_57780.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_68679.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x72e1798c6249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1407717579 (Pool: 1407713519; Big: 4060); GC: 635 PkgEval terminated after 2741.94s: test duration exceeded the time limit