Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.36 (e2f3178d9b*) started at 2025-11-06T16:07:41.712 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 7.55s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.3 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.11.4 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.68.0+1 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.22s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1050.2 ms ✓ Measurements 3637.1 ms ✓ StatsBase 5837.3 ms ✓ RayTraceHeatTransfer 3 dependencies successfully precompiled in 11 seconds. 56 already precompiled. Precompilation completed after 20.21s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_gk1SKb/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_gk1SKb/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.3 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.11.4 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.68.0+1 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:03:22 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:02 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011294849169214442 Iteration 10: d = 1.2983988558338347e-5 Iteration 20: d = 1.937813248801134e-7 Iteration 30: d = 3.2464425279645423e-9 Iteration 40: d = 5.610902562835881e-11 Iteration 50: d = 9.792222098936739e-13 Iteration 60: d = 1.7156632084803822e-14 Converged after 66 iterations. d = 1.5316368796023827e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 59%|███████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012079156044649236 Iteration 10: d = 1.21537846770816e-5 Iteration 20: d = 1.4815156105734287e-7 Iteration 30: d = 2.1234531242818868e-9 Iteration 40: d = 3.314202238587693e-11 Iteration 50: d = 5.444103151462326e-13 Iteration 60: d = 9.191003636605643e-15 Converged after 64 iterations. d = 1.7861565600534537e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012239449685861475 Iteration 10: d = 1.1838193357676568e-5 Iteration 20: d = 1.5537166465688733e-7 Iteration 30: d = 2.470692920854255e-9 Iteration 40: d = 4.134740101414578e-11 Iteration 50: d = 7.068061335759568e-13 Iteration 60: d = 1.2214162518282575e-14 Converged after 65 iterations. d = 1.6201069960445386e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011264795022677381 Iteration 10: d = 8.34970240412925e-6 Iteration 20: d = 1.0144314934285244e-7 Iteration 30: d = 1.6169421309545298e-9 Iteration 40: d = 2.7501558492297546e-11 Iteration 50: d = 4.767794123520649e-13 Iteration 60: d = 8.319797219214796e-15 Converged after 64 iterations. d = 1.6582086442668041e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 53%|█████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013536666562392694 Iteration 10: d = 1.3259485053375684e-5 Iteration 20: d = 1.4944304990823467e-7 Iteration 30: d = 2.0145255942388056e-9 Iteration 40: d = 2.9292125235401083e-11 Iteration 50: d = 4.408586639745312e-13 Iteration 60: d = 6.731189952931531e-15 Converged after 63 iterations. d = 1.89850516969866e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013790719536170774 Iteration 10: d = 1.2847559952535017e-5 Iteration 20: d = 1.3858182394148788e-7 Iteration 30: d = 1.8521052844669548e-9 Iteration 40: d = 2.701799621818845e-11 Iteration 50: d = 4.0916190155190436e-13 Iteration 60: d = 6.297713058368527e-15 Converged after 63 iterations. d = 1.7635740574897026e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013089150137725863 Iteration 10: d = 1.5329390461938995e-5 Iteration 20: d = 1.8513329250296421e-7 Iteration 30: d = 2.5859985851956114e-9 Iteration 40: d = 3.838617889275356e-11 Iteration 50: d = 5.851811759826785e-13 Iteration 60: d = 9.012881682307176e-15 Converged after 64 iterations. d = 1.7191175765427755e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012427143640272539 Iteration 10: d = 1.2505543896319689e-5 Iteration 20: d = 1.527917590858648e-7 Iteration 30: d = 2.151852197686357e-9 Iteration 40: d = 3.1876471596675144e-11 Iteration 50: d = 4.830951120408814e-13 Iteration 60: d = 7.408323500852177e-15 Converged after 63 iterations. d = 2.1156050846226233e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 68%|██████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013833830599195354 Iteration 10: d = 1.4861043445601978e-5 Iteration 20: d = 2.039662755108301e-7 Iteration 30: d = 3.0749957292956545e-9 Iteration 40: d = 4.709959991968483e-11 Iteration 50: d = 7.245803654862835e-13 Iteration 60: d = 1.1161645211446677e-14 Converged after 64 iterations. d = 2.058717587411777e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00151466318832533 Iteration 10: d = 1.5781930330828326e-5 Iteration 20: d = 1.778619699766912e-7 Iteration 30: d = 2.3003829618028714e-9 Iteration 40: d = 3.214621647483578e-11 Iteration 50: d = 4.725285605077357e-13 Iteration 60: d = 7.180091047451508e-15 Converged after 63 iterations. d = 2.0380504758407667e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005251554351804209 Iteration 10: d = 6.481886144424678e-5 Iteration 20: d = 8.357910600734354e-7 Iteration 30: d = 1.1553468034533179e-8 Iteration 40: d = 1.6207426727843037e-10 Iteration 50: d = 2.2842523074218253e-12 Iteration 60: d = 3.225987378270468e-14 Converged after 67 iterations. d = 1.6467113393184025e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0032420194267654716 Iteration 10: d = 2.2566236483520433e-5 Iteration 20: d = 2.7472395063461804e-7 Iteration 30: d = 4.04026214921756e-9 Iteration 40: d = 6.031893660521331e-11 Iteration 50: d = 9.013484409047071e-13 Iteration 60: d = 1.3446151954303292e-14 Converged after 65 iterations. d = 1.6327405600467714e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003242722317030084 Iteration 10: d = 3.153406938741716e-5 Iteration 20: d = 4.6574916953493424e-7 Iteration 30: d = 7.828883880715543e-9 Iteration 40: d = 1.3439615982561808e-10 Iteration 50: d = 2.322787015514963e-12 Iteration 60: d = 4.030588923097271e-14 Converged after 68 iterations. d = 1.5731596139617149e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0021779997847452956 Iteration 10: d = 2.6148219414556034e-5 Iteration 20: d = 4.408185893774073e-7 Iteration 30: d = 7.674393018291118e-9 Iteration 40: d = 1.3419761086884923e-10 Iteration 50: d = 2.3561724834587096e-12 Iteration 60: d = 4.154864157140223e-14 Converged after 68 iterations. d = 1.63749468574739e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 65%|█████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013536666562392694 Iteration 10: d = 1.3259485053375684e-5 Iteration 20: d = 1.4944304990823467e-7 Iteration 30: d = 2.0145255942388056e-9 Iteration 40: d = 2.9292125235401083e-11 Iteration 50: d = 4.408586639745312e-13 Iteration 60: d = 6.731189952931531e-15 Converged after 63 iterations. d = 1.89850516969866e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 62%|████████████████████▌ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017785815252300287 Iteration 10: d = 2.4779635846027985e-5 Iteration 20: d = 3.3529264981049794e-7 Iteration 30: d = 4.688608442040463e-9 Iteration 40: d = 6.562475202698302e-11 Iteration 50: d = 9.179110241054592e-13 Iteration 60: d = 1.287783052911868e-14 Converged after 65 iterations. d = 1.5091187581826492e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 60%|███████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012130702176101934 Iteration 10: d = 1.3035809025820377e-5 Iteration 20: d = 1.4817160268437062e-7 Iteration 30: d = 1.972084237339e-9 Iteration 40: d = 2.73878771436394e-11 Iteration 50: d = 3.8565690660167336e-13 Iteration 60: d = 5.454279033031069e-15 Converged after 63 iterations. d = 1.5562080482915094e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.863879499446 Iteration 2: convergence error = 4829.588984783955 Iteration 3: convergence error = 1095.7507412415096 Iteration 4: convergence error = 319.8039281270428 Iteration 5: convergence error = 94.7865783485579 Iteration 6: convergence error = 28.518382459441227 Iteration 7: convergence error = 8.580217701487754 Iteration 8: convergence error = 2.5710897678882247 Iteration 9: convergence error = 0.7685926166316221 Iteration 10: convergence error = 0.2294441622100294 Iteration 11: convergence error = 0.06844122546613107 Iteration 12: convergence error = 0.02040636627089043 Iteration 13: convergence error = 0.006082805766936872 Iteration 14: convergence error = 0.0018129242373561283 Iteration 15: convergence error = 0.0005402807603331894 Iteration 16: convergence error = 0.00016100474545055476 Iteration 17: convergence error = 4.7978428483475e-5 Iteration 18: convergence error = 1.4297043662736542e-5 Iteration 19: convergence error = 4.2603207930369535e-6 Iteration 20: convergence error = 1.2695068107859697e-6 Iteration 21: convergence error = 3.783022748393705e-7 Iteration 22: convergence error = 1.125843027693918e-7 Iteration 23: convergence error = 3.264221959398128e-8 Iteration 24: convergence error = 9.405084711033851e-9 Iteration 25: convergence error = 2.6991529011866078e-9 Iteration 26: convergence error = 7.787548383930698e-10 Iteration 27: convergence error = 2.2328094928525388e-10 Iteration 28: convergence error = 6.343725544866174e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 56%|██████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017785815252300287 Iteration 10: d = 2.4779635846027985e-5 Iteration 20: d = 3.3529264981049794e-7 Iteration 30: d = 4.688608442040463e-9 Iteration 40: d = 6.562475202698302e-11 Iteration 50: d = 9.179110241054592e-13 Iteration 60: d = 1.287783052911868e-14 Converged after 65 iterations. d = 1.5091187581826492e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.807103675383 Iteration 2: convergence error = 4830.331204009147 Iteration 3: convergence error = 1098.592098197204 Iteration 4: convergence error = 318.9798993780437 Iteration 5: convergence error = 94.61578882356548 Iteration 6: convergence error = 28.288829323030768 Iteration 7: convergence error = 8.523137491740727 Iteration 8: convergence error = 2.557669887000884 Iteration 9: convergence error = 0.7656787064950095 Iteration 10: convergence error = 0.22889888305485329 Iteration 11: convergence error = 0.06837453490493317 Iteration 12: convergence error = 0.020414904899098474 Iteration 13: convergence error = 0.006093787085092117 Iteration 14: convergence error = 0.0018187052296525508 Iteration 15: convergence error = 0.0005427501778285659 Iteration 16: convergence error = 0.00016196309275073872 Iteration 17: convergence error = 4.8330301069654524e-5 Iteration 18: convergence error = 1.4421679452425451e-5 Iteration 19: convergence error = 4.303357172830147e-6 Iteration 20: convergence error = 1.2840998806495918e-6 Iteration 21: convergence error = 3.8316466088872403e-7 Iteration 22: convergence error = 1.1420047485444229e-7 Iteration 23: convergence error = 3.3163132684421726e-8 Iteration 24: convergence error = 9.577661330695264e-9 Iteration 25: convergence error = 2.7555415726965293e-9 Iteration 26: convergence error = 7.919425115687773e-10 Iteration 27: convergence error = 2.2964741219766438e-10 Iteration 28: convergence error = 6.52562448522076e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 9:53:41 Bin 1 ray tracing: 13%|███▉ | ETA: 0:00:31 Bin 1 ray tracing: 26%|███████▊ | ETA: 0:00:16 Bin 1 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 53%|███████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 1 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:03 Bin 1 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 13%|███▉ | ETA: 0:00:07 Bin 2 ray tracing: 26%|███████▊ | ETA: 0:00:06 Bin 2 ray tracing: 39%|███████████▋ | ETA: 0:00:05 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:04 Bin 2 ray tracing: 64%|███████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 2 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 13%|████ | ETA: 0:00:07 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:05 Bin 3 ray tracing: 40%|████████████ | ETA: 0:00:04 Bin 3 ray tracing: 54%|████████████████▏ | ETA: 0:00:03 Bin 3 ray tracing: 67%|████████████████████▏ | ETA: 0:00:02 Bin 3 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:01 Bin 3 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 42%|████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 56%|█████████████████ | ETA: 0:00:03 Bin 4 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:02 Bin 4 ray tracing: 83%|█████████████████████████ | ETA: 0:00:01 Bin 4 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 5 ray tracing: 28%|████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 42%|████████████▊ | ETA: 0:00:04 Bin 5 ray tracing: 56%|█████████████████ | ETA: 0:00:03 Bin 5 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:02 Bin 5 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 14%|████▎ | ETA: 0:00:06 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:05 Bin 6 ray tracing: 41%|████████████▍ | ETA: 0:00:04 Bin 6 ray tracing: 54%|████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 12%|███▌ | ETA: 0:00:07 Bin 7 ray tracing: 25%|███████▋ | ETA: 0:00:06 Bin 7 ray tracing: 39%|███████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 53%|████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 67%|████████████████████▎ | ETA: 0:00:02 Bin 7 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 8 ray tracing: 28%|████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 41%|████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:03 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 14%|████▏ | ETA: 0:00:06 Bin 9 ray tracing: 27%|████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 41%|████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 55%|████████████████▋ | ETA: 0:00:03 Bin 9 ray tracing: 69%|████████████████████▊ | ETA: 0:00:02 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:07 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:06 Bin 10 ray tracing: 40%|███████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 53%|███████████████▌ | ETA: 0:00:04 Bin 10 ray tracing: 66%|███████████████████▎ | ETA: 0:00:03 Bin 10 ray tracing: 80%|███████████████████████▎ | ETA: 0:00:02 Bin 10 ray tracing: 94%|███████████████████████████▏ | ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:07 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 2 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 3 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 4 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 33%|███████████ | ETA: 0:00:02 Bin 5 progress: 64%|█████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 33%|███████████ | ETA: 0:00:02 Bin 6 progress: 67%|██████████████████████ | ETA: 0:00:01 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:03 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 7 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 8 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 9 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:02 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 36%|███████████▍ | ETA: 0:00:02 Bin 10 progress: 71%|██████████████████████▊ | ETA: 0:00:01 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:02 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017785815252300287 Iteration 10: d = 2.4779635846027985e-5 Iteration 20: d = 3.3529264981049794e-7 Iteration 30: d = 4.688608442040463e-9 Iteration 40: d = 6.562475202698302e-11 Iteration 50: d = 9.179110241054592e-13 Iteration 60: d = 1.287783052911868e-14 Converged after 65 iterations. d = 1.5091187581826492e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001217784129425908 Iteration 10: d = 1.3015895586039145e-5 Iteration 20: d = 1.4744033995609467e-7 Iteration 30: d = 1.9609398970844973e-9 Iteration 40: d = 2.72181778254505e-11 Iteration 50: d = 3.830160330160811e-13 Iteration 60: d = 5.393911056141689e-15 Converged after 63 iterations. d = 1.5019598727051745e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013906573402590499 Iteration 10: d = 1.4497014279954008e-5 Iteration 20: d = 1.833073638438529e-7 Iteration 30: d = 2.525218065934464e-9 Iteration 40: d = 3.508702734107325e-11 Iteration 50: d = 4.882771864948384e-13 Iteration 60: d = 6.7812811034270755e-15 Converged after 63 iterations. d = 1.8502761774403152e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012682833445848344 Iteration 10: d = 1.107581159511591e-5 Iteration 20: d = 1.3061586792413092e-7 Iteration 30: d = 1.7905519734100112e-9 Iteration 40: d = 2.5062868945385578e-11 Iteration 50: d = 3.516705108535202e-13 Iteration 60: d = 4.946992739818864e-15 Converged after 62 iterations. d = 2.068650609769725e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014597160652918219 Iteration 10: d = 1.4820428188333e-5 Iteration 20: d = 1.5371510186018924e-7 Iteration 30: d = 1.9020157825467917e-9 Iteration 40: d = 2.4894227638785893e-11 Iteration 50: d = 3.32131548698273e-13 Iteration 60: d = 4.463202205691737e-15 Converged after 62 iterations. d = 1.9271813464881715e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015889079642241355 Iteration 10: d = 1.9310790685367776e-5 Iteration 20: d = 2.532704953854103e-7 Iteration 30: d = 3.58209233317356e-9 Iteration 40: d = 5.0938161931463207e-11 Iteration 50: d = 7.232744979836241e-13 Iteration 60: d = 1.0264667859500478e-14 Converged after 64 iterations. d = 1.8688344795629364e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001299337617756093 Iteration 10: d = 1.242049325738535e-5 Iteration 20: d = 1.3005711617776112e-7 Iteration 30: d = 1.5944824230558636e-9 Iteration 40: d = 2.0966466379675935e-11 Iteration 50: d = 2.8596723363189844e-13 Iteration 60: d = 4.0194743625294894e-15 Converged after 62 iterations. d = 1.6902869491420168e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001590115720417218 Iteration 10: d = 1.5738864114153286e-5 Iteration 20: d = 1.629787877649832e-7 Iteration 30: d = 2.0266819666993667e-9 Iteration 40: d = 2.7162973674665465e-11 Iteration 50: d = 3.771839389207924e-13 Iteration 60: d = 5.297680827400671e-15 Converged after 63 iterations. d = 1.5084863082440915e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0016722704200568916 Iteration 10: d = 2.1331168976993554e-5 Iteration 20: d = 2.655930251646995e-7 Iteration 30: d = 3.48622335988569e-9 Iteration 40: d = 4.629344474117338e-11 Iteration 50: d = 6.18271053166401e-13 Iteration 60: d = 8.352863349463648e-15 Converged after 64 iterations. d = 1.5048660031681272e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001456238183865075 Iteration 10: d = 1.1631000716815995e-5 Iteration 20: d = 1.1343637014438055e-7 Iteration 30: d = 1.5132223136292841e-9 Iteration 40: d = 2.135582992983575e-11 Iteration 50: d = 3.0242480774417004e-13 Iteration 60: d = 4.291970057725269e-15 Converged after 62 iterations. d = 1.810165865555874e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8650.846508278944 Iteration 2: convergence error = 4810.571859461875 Iteration 3: convergence error = 1102.7863628017542 Iteration 4: convergence error = 321.5194959712792 Iteration 5: convergence error = 95.71070112202437 Iteration 6: convergence error = 28.82323215813517 Iteration 7: convergence error = 8.719982773409129 Iteration 8: convergence error = 2.627808700659216 Iteration 9: convergence error = 0.7900578005992429 Iteration 10: convergence error = 0.2372123280983942 Iteration 11: convergence error = 0.07116719259101956 Iteration 12: convergence error = 0.021341779251770276 Iteration 13: convergence error = 0.006398403523462548 Iteration 14: convergence error = 0.0019180040967512468 Iteration 15: convergence error = 0.0005748982848672313 Iteration 16: convergence error = 0.00017231036008524825 Iteration 17: convergence error = 5.164395224710461e-5 Iteration 18: convergence error = 1.5478198747587157e-5 Iteration 19: convergence error = 4.6389238832489355e-6 Iteration 20: convergence error = 1.3903086255595554e-6 Iteration 21: convergence error = 4.16679313275381e-7 Iteration 22: convergence error = 1.2476220945245586e-7 Iteration 23: convergence error = 3.650939106591977e-8 Iteration 24: convergence error = 1.0594476407277398e-8 Iteration 25: convergence error = 3.0563569453079253e-9 Iteration 26: convergence error = 8.913048077374697e-10 Iteration 27: convergence error = 2.539763954700902e-10 Iteration 28: convergence error = 7.344169716816396e-11 Iteration 29: convergence error = 2.2282620193436742e-11 Iteration 30: convergence error = 6.821210263296962e-12 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.4704325988456 K, F = -7411.892875960061, relative_change = 0.0325295674011544 Iter 2: T = 937.0216823476724 K, F = -6282.602850307738, relative_change = 0.03147253830732687 Iter 3: T = 908.62199852144 K, F = -5323.847037416362, relative_change = 0.0303084596239844 Iter 5: T = 857.8285936515115 K, F = -3819.201470525396, relative_change = 0.02766661967100522 Iter 10: T = 763.6106743908027 K, F = -1653.1805745423853, relative_change = 0.01970415152882187 Iter 15: T = 708.6831866411867 K, F = -707.552233677024, relative_change = 0.011741078327008526 Iter 20: T = 680.5397154273423 K, F = -299.79940605640104, relative_change = 0.005987504975971179 Iter 25: T = 667.4475533746597 K, F = -126.1891073686967, relative_change = 0.002759357323867368 Iter 30: T = 661.6913162278028 K, F = -52.927621928362974, relative_change = 0.0012056370408682446 Iter 35: T = 659.2302022145858 K, F = -22.162885697260094, relative_change = 0.0005138487157589365 Iter 40: T = 658.1911462989377 K, F = -9.273745748353418, relative_change = 0.00021663085508601495 Iter 45: T = 657.7548593438743 K, F = -3.879265023117691, relative_change = 9.090434829480197e-5 Iter 50: T = 657.5720921718943 K, F = -1.6225082245953686, relative_change = 3.8071199881554906e-5 Iter 55: T = 657.4956029440202 K, F = -0.6785791542501682, relative_change = 1.593128003668536e-5 Iter 60: T = 657.4636048114742 K, F = -0.28379460252798794, relative_change = 6.664305753311885e-6 Iter 65: T = 657.4502211611729 K, F = -0.11868711353533895, relative_change = 2.7873816781384005e-6 Iter 70: T = 657.4446236702844 K, F = -0.04963651199611846, relative_change = 1.165766934220642e-6 Iter 75: T = 657.4422826822837 K, F = -0.020758607231092185, relative_change = 4.8754650947575e-7 Iter 80: T = 657.4413036443183 K, F = -0.008681501847002449, relative_change = 2.0389932160179467e-7 Iter 85: T = 657.4408941974054 K, F = -0.0036307085195866895, relative_change = 8.527340225268502e-8 Iter 90: T = 657.4407229615466 K, F = -0.0015184057966030617, relative_change = 3.56624025695252e-8 Iter 95: T = 657.4406513486183 K, F = -0.0006350154617006942, relative_change = 1.4914450951209078e-8 Iter 100: T = 657.4406213992281 K, F = -0.0002655710534102962, relative_change = 6.237402942279146e-9 Iter 105: T = 657.4406088740341 K, F = -0.00011106498617580174, relative_change = 2.608556638600191e-9 Iter 110: T = 657.4406036358481 K, F = -4.644870369352461e-5, relative_change = 1.0909295822406448e-9 Iter 115: T = 657.4406014451762 K, F = -1.9425403479711445e-5, relative_change = 4.5623980765959616e-10 Iter 120: T = 657.440600529011 K, F = -8.12393672838807e-6, relative_change = 1.9080496108411906e-10 Iter 125: T = 657.4406001458598 K, F = -3.397527195414529e-6, relative_change = 7.979690977119073e-11 Iter 130: T = 657.4405999856214 K, F = -1.4208866773168793e-6, relative_change = 3.337202606340833e-11 Iter 135: T = 657.4405999186077 K, F = -5.94232543116302e-7, relative_change = 1.3956597836270574e-11 Iter 140: T = 657.4405998905818 K, F = -2.485149401820763e-7, relative_change = 5.836811055383735e-12 Iter 145: T = 657.440599878861 K, F = -1.0393148575094102e-7, relative_change = 2.4410139874914125e-12 Iter 150: T = 657.4405998739592 K, F = -4.3465119836660904e-8, relative_change = 1.0208548903774847e-12 Iter 155: T = 657.4405998719093 K, F = -1.817762446121307e-8, relative_change = 4.269335250123585e-13 Converged in 159 iterations to T = 657.4405998711694 K Iter 1: T = 970.4061846640271 K, F = -6742.978975287285, relative_change = 0.029593815335972846 Iter 2: T = 942.9778879350255 K, F = -5711.050051414391, relative_change = 0.028264758780878776 Iter 3: T = 917.6699741403588 K, F = -4835.292964651116, relative_change = 0.026838289761053683 Iter 5: T = 873.1973545443549 K, F = -3461.9274085961815, relative_change = 0.023738864949363864 Iter 10: T = 794.3252224856051 K, F = -1489.9357627705242, relative_change = 0.015433336413734894 Iter 15: T = 751.4025653552525 K, F = -634.1686919243072, relative_change = 0.008438824903858867 Iter 20: T = 730.5855069803008 K, F = -267.66915212629124, relative_change = 0.0040563409204532564 Iter 25: T = 721.2207108546623 K, F = -112.42603603200044, relative_change = 0.0018101884332868744 Iter 30: T = 717.1726901175871 K, F = -47.107295516111144, relative_change = 0.0007789592636124604 Iter 35: T = 715.4553401276455 K, F = -19.716848789065303, relative_change = 0.0003297682939811954 Iter 40: T = 714.7327416378603 K, F = -8.248651666387474, relative_change = 0.00013862499878469783 Iter 45: T = 714.4297674612535 K, F = -3.4501817630622593, relative_change = 5.810009842430458e-5 Iter 50: T = 714.3029238954401 K, F = -1.44299432330613, relative_change = 2.4320169377158506e-5 Iter 55: T = 714.2498525432898 K, F = -0.6034927054763759, relative_change = 1.0174840736453696e-5 Iter 60: T = 714.2276532938466 K, F = -0.25239052409156004, relative_change = 4.255914608304578e-6 Iter 65: T = 714.218368571953 K, F = -0.10555319793652174, relative_change = 1.779992348404659e-6 Iter 70: T = 714.2144854625632 K, F = -0.044143689553226895, relative_change = 7.444347037087667e-7 Iter 75: T = 714.2128614774867 K, F = -0.01846143242719378, relative_change = 3.113350946095875e-7 Iter 80: T = 714.2121823036235 K, F = -0.007720794012551324, relative_change = 1.3020468628247735e-7 Iter 85: T = 714.211898264319 K, F = -0.003228928697878719, relative_change = 5.445326523601423e-8 Iter 90: T = 714.2117794755701 K, F = -0.001350376619399074, relative_change = 2.2773025152812062e-8 Iter 95: T = 714.2117297966756 K, F = -0.0005647436412360429, relative_change = 9.523954444410722e-9 Iter 100: T = 714.2117090203651 K, F = -0.00023618253753565632, relative_change = 3.9830320792528795e-9 Iter 105: T = 714.2117003314634 K, F = -9.877435844130034e-5, relative_change = 1.6657516900797086e-9 Iter 110: T = 714.2116966976607 K, F = -4.1308616184121405e-5, relative_change = 6.966372647339821e-10 Iter 115: T = 714.211695177961 K, F = -1.7275756554635535e-5, relative_change = 2.913420256130586e-10 Iter 120: T = 714.2116945424044 K, F = -7.224926880544658e-6, relative_change = 1.218427010443981e-10 Iter 125: T = 714.2116942766071 K, F = -3.0215505009145716e-6, relative_change = 5.095606932952878e-11 Iter 130: T = 714.2116941654475 K, F = -1.2636487902728533e-6, relative_change = 2.131044157413339e-11 Iter 135: T = 714.2116941189594 K, F = -5.284739889033219e-7, relative_change = 8.912297589452717e-12 Iter 140: T = 714.2116940995173 K, F = -2.2101566499177494e-7, relative_change = 3.727255115583598e-12 Iter 145: T = 714.2116940913864 K, F = -9.243183574092484e-8, relative_change = 1.5587901094686657e-12 Iter 150: T = 714.2116940879861 K, F = -3.865579201178804e-8, relative_change = 6.518994865785196e-13 Iter 155: T = 714.211694086564 K, F = -1.616721911901209e-8, relative_change = 2.726474169762798e-13 Converged in 157 iterations to T = 714.2116940862629 K Iter 1: T = 974.3915263530431 K, F = -5834.915080406346, relative_change = 0.02560847364695685 Iter 2: T = 950.9724515849887 K, F = -4936.577020533655, relative_change = 0.024034563247596577 Iter 3: T = 929.6682324444589 K, F = -4174.742839131544, relative_change = 0.022402561825026528 Iter 5: T = 893.0517512088697 K, F = -2981.5859504184464, relative_change = 0.019048556334243752 Iter 10: T = 831.3552688882091 K, F = -1274.9929710039776, relative_change = 0.011197324412232815 Iter 15: T = 800.0254419037115 K, F = -539.8821763051966, relative_change = 0.0056537792594944705 Iter 20: T = 785.5344247563531 K, F = -227.15865070730675, relative_change = 0.002590961942785004 Iter 25: T = 779.1822301911805 K, F = -95.26021905045552, relative_change = 0.0011289901574582522 Iter 30: T = 776.4700899878333 K, F = -39.886001518692666, relative_change = 0.0004805986790538526 Iter 35: T = 775.3257516020968 K, F = -16.689153516389645, relative_change = 0.00020250758487825183 Iter 40: T = 774.8453828004995 K, F = -6.981073241380374, relative_change = 8.495909260010121e-5 Iter 45: T = 774.6441711559677 K, F = -2.9198259779016866, relative_change = 3.557799908928713e-5 Iter 50: T = 774.5599666758368 K, F = -1.2211512295805402, relative_change = 1.4887396579382628e-5 Iter 55: T = 774.5247416613952 K, F = -0.5107079256947931, relative_change = 6.227531583957663e-6 Iter 60: T = 774.5100084431375 K, F = -0.21358553524417523, relative_change = 2.6046808185189274e-6 Iter 65: T = 774.5038465385229 K, F = -0.08932426323260889, relative_change = 1.0893528349962165e-6 Iter 70: T = 774.5012695045118 K, F = -0.03735651589864375, relative_change = 4.5558809801015545e-7 Iter 75: T = 774.5001917490324 K, F = -0.015622948468036246, relative_change = 1.905337359331329e-7 Iter 80: T = 774.4997410172318 K, F = -0.006533704918719296, relative_change = 7.968372036961474e-8 Iter 85: T = 774.4995525155322 K, F = -0.002732473650479794, relative_change = 3.332472483882359e-8 Iter 90: T = 774.4994736818217 K, F = -0.001142753152335363, relative_change = 1.3936805139620138e-8 Iter 95: T = 774.4994407126139 K, F = -0.00047791302088029397, relative_change = 5.828539594955524e-9 Iter 100: T = 774.4994269244962 K, F = -0.00019986893502310643, relative_change = 2.4375650995682253e-9 Iter 105: T = 774.4994211581403 K, F = -8.358757519910665e-5, relative_change = 1.0194188669788815e-9 Iter 110: T = 774.4994187465813 K, F = -3.495732201352908e-5, relative_change = 4.2633314871341417e-10 Iter 115: T = 774.4994177380386 K, F = -1.4619569051133041e-5, relative_change = 1.7829760937161986e-10 Iter 120: T = 774.499417316254 K, F = -6.11407843742473e-6, relative_change = 7.45661905571364e-11 Iter 125: T = 774.4994171398587 K, F = -2.556982348633774e-6, relative_change = 3.118449251470884e-11 Iter 130: T = 774.499417066088 K, F = -1.0693601186773094e-6, relative_change = 1.30417218755389e-11 Iter 135: T = 774.4994170352362 K, F = -4.472182053572027e-7, relative_change = 5.4541920454885555e-12 Iter 140: T = 774.4994170223337 K, F = -1.870330459396996e-7, relative_change = 2.281021074877601e-12 Iter 145: T = 774.4994170169376 K, F = -7.821872916036199e-8, relative_change = 9.539414212842925e-13 Iter 150: T = 774.499417014681 K, F = -3.2712088704478504e-8, relative_change = 3.9895069540677984e-13 Converged in 154 iterations to T = 774.4994170138664 K Iter 1: T = 970.380490547808 K, F = -6748.833404109239, relative_change = 0.029619509452192022 Iter 2: T = 942.9260073954018 K, F = -5716.048520083196, relative_change = 0.028292492913689304 Iter 3: T = 917.5915710488123 K, F = -4839.5615691390085, relative_change = 0.02686789435002394 Iter 5: T = 873.0656965449884 K, F = -3465.0413208071045, relative_change = 0.023771383956873227 Iter 10: T = 794.0703896482279 K, F = -1491.3447494874408, relative_change = 0.015465732856689094 Iter 15: T = 751.0581316651276 K, F = -634.7942412379168, relative_change = 0.008461866315644384 Iter 20: T = 730.189529500836 K, F = -267.9402615588839, relative_change = 0.004069055264138993 Iter 25: T = 720.7994529135763 K, F = -112.54146328508857, relative_change = 0.0018162420019761259 Iter 30: T = 716.7400616578072 K, F = -47.15596289500972, relative_change = 0.0007816397170051237 Iter 35: T = 715.017803406723 K, F = -19.737274039578203, relative_change = 0.00033091701006025294 Iter 40: T = 714.2931243823513 K, F = -8.257206569397068, relative_change = 0.0001391103859734936 Iter 45: T = 713.9892751489102 K, F = -3.4537617850861495, relative_change = 5.830397417858435e-5 Iter 50: T = 713.862064751511 K, F = -1.4444919277230124, relative_change = 2.440558748325865e-5 Iter 55: T = 713.8088398329766 K, F = -0.6041190909630274, relative_change = 1.0210590742801087e-5 Iter 60: T = 713.7865763334383 K, F = -0.2526524981332485, relative_change = 4.270870437680662e-6 Iter 65: T = 713.777264736698 K, F = -0.10566276073591552, relative_change = 1.7862478859064808e-6 Iter 70: T = 713.7733703871058 K, F = -0.0441895103943144, relative_change = 7.470509895364327e-7 Iter 75: T = 713.7717417010992 K, F = -0.01848059531602453, relative_change = 3.1242928202861816e-7 Iter 80: T = 713.7710605612257 K, F = -0.007728808173687596, relative_change = 1.306622929892486e-7 Iter 85: T = 713.7707756997078 K, F = -0.003232280318796965, relative_change = 5.464464262104016e-8 Iter 90: T = 713.7706565670987 K, F = -0.0013517783078725865, relative_change = 2.2853061600707474e-8 Iter 95: T = 713.7706067443978 K, F = -0.000565329846788698, relative_change = 9.557426711004544e-9 Iter 100: T = 713.7705859079456 K, F = -0.00023642769648302142, relative_change = 3.9970305981285295e-9 Iter 105: T = 713.7705771938917 K, F = -9.887688612120193e-5, relative_change = 1.6716060263894895e-9 Iter 110: T = 713.7705735495701 K, F = -4.13514934954895e-5, relative_change = 6.990856014909461e-10 Iter 115: T = 713.7705720254714 K, F = -1.729368856207003e-5, relative_change = 2.923659527470105e-10 Iter 120: T = 713.770571388075 K, F = -7.232426697090233e-6, relative_change = 1.2227092695514893e-10 Iter 125: T = 713.7705711215084 K, F = -3.024688500552486e-6, relative_change = 5.1135183647215226e-11 Iter 130: T = 713.770571010027 K, F = -1.264959244351438e-6, relative_change = 2.1385317298769425e-11 Iter 135: T = 713.7705709634041 K, F = -5.290205719044039e-7, relative_change = 8.94358679284641e-12 Iter 140: T = 713.7705709439059 K, F = -2.2124335863349387e-7, relative_change = 3.740325585853417e-12 Iter 145: T = 713.7705709357514 K, F = -9.252482380261995e-8, relative_change = 1.5642185507933756e-12 Iter 150: T = 713.7705709323412 K, F = -3.8695228132823445e-8, relative_change = 6.541789671822869e-13 Iter 155: T = 713.770570930915 K, F = -1.618348133280989e-8, relative_change = 2.735968649021019e-13 Converged in 157 iterations to T = 713.7705709306132 K Iter 1: T = 969.3168673189712 K, F = -6991.180968566586, relative_change = 0.030683132681028787 Iter 2: T = 940.7745377608983 K, F = -5923.02271504269, relative_change = 0.029445819546107758 Iter 3: T = 914.3339555668649 K, F = -5016.3756095003155, relative_change = 0.02810512097506762 Iter 5: T = 867.5723300059234 K, F = -3594.1423840242855, relative_change = 0.025145397567693406 Iter 10: T = 783.3158035073283 K, F = -1549.9628997343038, relative_change = 0.016877442103352618 Iter 15: T = 736.3798540701057 K, F = -660.9280998715141, relative_change = 0.009494224541730366 Iter 20: T = 713.2101667352018 K, F = -279.3036799359057, relative_change = 0.004649282068023649 Iter 25: T = 702.6784443391413 K, F = -117.38868944905879, relative_change = 0.0020952026618024718 Iter 30: T = 698.1026105092745 K, F = -49.20156592625838, relative_change = 0.0009057230096946289 Iter 35: T = 696.1568393985339 K, F = -20.596146636957865, relative_change = 0.0003841994365407094 Iter 40: T = 695.3373095693179 K, F = -8.616999796568306, relative_change = 0.00016164392686237992 Iter 45: T = 694.9935476500967 K, F = -3.604337863727358, relative_change = 6.77720720502389e-5 Iter 50: T = 694.8496021174941 K, F = -1.5074832914430831, relative_change = 2.837304775864679e-5 Iter 55: T = 694.7893707900009 K, F = -0.6304660981446111, relative_change = 1.1871195216025925e-5 Iter 60: T = 694.7641757997908 K, F = -0.26367170286684705, relative_change = 4.965594052732727e-6 Iter 65: T = 694.7536379864567 K, F = -0.11027122376501602, relative_change = 2.076831414379052e-6 Iter 70: T = 694.7492307778219 K, F = -0.04611684216442402, relative_change = 8.685838062528375e-7 Iter 75: T = 694.7473876009337 K, F = -0.019286631537878574, relative_change = 3.63257036806356e-7 Iter 80: T = 694.7466167571692 K, F = -0.008065902681511972, relative_change = 1.519192908053736e-7 Iter 85: T = 694.7462943801955 K, F = -0.0033732573603346694, relative_change = 6.353461209259707e-8 Iter 90: T = 694.7461595581368 K, F = -0.0014107366052679149, relative_change = 2.6570959822849274e-8 Iter 95: T = 694.746103173914 K, F = -0.0005899869114376344, relative_change = 1.1112297305331652e-8 Iter 100: T = 694.7460795933539 K, F = -0.00024673957578380534, relative_change = 4.647296258650971e-9 Iter 105: T = 694.7460697316812 K, F = -0.00010318943788012458, relative_change = 1.9435549383530706e-9 Iter 110: T = 694.7460656074117 K, F = -4.3155055099664e-5, relative_change = 8.128179060523731e-10 Iter 115: T = 694.7460638825929 K, F = -1.8047958259326258e-5, relative_change = 3.399301375096455e-10 Iter 120: T = 694.7460631612531 K, F = -7.547873036140018e-6, relative_change = 1.4216286933387452e-10 Iter 125: T = 694.7460628595802 K, F = -3.1566107195901694e-6, relative_change = 5.94542112786034e-11 Iter 130: T = 694.746062733417 K, F = -1.3201328066259066e-6, relative_change = 2.486447073809679e-11 Iter 135: T = 694.7460626806541 K, F = -5.520951460447066e-7, relative_change = 1.0398615608624613e-11 Iter 140: T = 694.7460626585879 K, F = -2.3089282386035137e-7, relative_change = 4.348825994355537e-12 Iter 145: T = 694.7460626493596 K, F = -9.65613822234701e-8, relative_change = 1.8187167624787929e-12 Iter 150: T = 694.7460626455002 K, F = -4.0382129751215246e-8, relative_change = 7.605903581112998e-13 Iter 155: T = 694.7460626438861 K, F = -1.6888727194519504e-8, relative_change = 3.180962258356161e-13 Converged in 158 iterations to T = 694.7460626434136 K Iter 1: T = 963.5831068732367 K, F = -8297.623740341432, relative_change = 0.03641689312676325 Iter 2: T = 929.0452880711362 K, F = -7040.771208274591, relative_change = 0.03584311364089137 Iter 3: T = 896.3530897999103 K, F = -5973.372302090451, relative_change = 0.035189025433949105 Iter 5: T = 836.3869274184626 K, F = -4297.125601088664, relative_change = 0.033610754752780685 Iter 10: T = 716.8312391997454 K, F = -1877.7482810549548, relative_change = 0.027870733647851014 Iter 15: T = 637.3397082540628 K, F = -813.0522812794899, relative_change = 0.01994704160521689 Iter 20: T = 590.8171732333816 K, F = -348.09444519629784, relative_change = 0.011946063078066161 Iter 25: T = 566.8999158909376 K, F = -147.52838556195152, relative_change = 0.006114980980385048 Iter 30: T = 555.7494379853011 K, F = -62.10523077521041, relative_change = 0.002824170451404502 Iter 35: T = 550.8412570466061 K, F = -26.050663728099156, relative_change = 0.001235246718042201 Iter 40: T = 548.7416079344426 K, F = -10.908781124417576, relative_change = 0.0005267149326239496 Iter 45: T = 547.854949764204 K, F = -4.564686243785169, relative_change = 0.0002220998053950924 Iter 50: T = 547.4826153211267 K, F = -1.9094472490296353, relative_change = 9.320722409506082e-5 Iter 55: T = 547.326632199719 K, F = -0.7986309906700745, relative_change = 3.903705597324569e-5 Iter 60: T = 547.261351105106 K, F = -0.334010562635918, relative_change = 1.63356978846893e-5 Iter 65: T = 547.2340415249005 K, F = -0.13968957639170934, relative_change = 6.8335231182968496e-6 Iter 70: T = 547.2226188891564 K, F = -0.0584202637170462, relative_change = 2.8581652743472937e-6 Iter 75: T = 547.2178415540069 K, F = -0.024432124492725193, relative_change = 1.1953720814466863e-6 Iter 80: T = 547.2158435712334 K, F = -0.010217818927022976, relative_change = 4.99928190748236e-7 Iter 85: T = 547.2150079832527 K, F = -0.0042732161186742335, relative_change = 2.0907756817161246e-7 Iter 90: T = 547.2146585290293 K, F = -0.0017871104014396955, relative_change = 8.743902072975373e-8 Iter 95: T = 547.2145123828634 K, F = -0.000747390980247592, relative_change = 3.656809252310258e-8 Iter 100: T = 547.2144512627501 K, F = -0.00031256784509500757, relative_change = 1.5293221699523487e-8 Iter 105: T = 547.2144257015817 K, F = -0.00013071960778288094, relative_change = 6.39580948023917e-9 Iter 110: T = 547.2144150115944 K, F = -5.466850089799746e-5, relative_change = 2.6748041457840085e-9 Iter 115: T = 547.214410540914 K, F = -2.2863019849911348e-5, relative_change = 1.1186350760270345e-9 Iter 120: T = 547.2144086712219 K, F = -9.561588330292414e-6, relative_change = 4.678265746606581e-10 Iter 125: T = 547.2144078892944 K, F = -3.998770277763297e-6, relative_change = 1.9565065447343333e-10 Iter 130: T = 547.214407562283 K, F = -1.672333703406359e-6, relative_change = 8.182345115442143e-11 Iter 135: T = 547.2144074255228 K, F = -6.993898009344246e-7, relative_change = 3.4219538341052703e-11 Iter 140: T = 547.2144073683281 K, F = -2.9249288607813284e-7, relative_change = 1.4311005852878853e-11 Iter 145: T = 547.2144073444086 K, F = -1.223238234870916e-7, relative_change = 5.98502403838623e-12 Iter 150: T = 547.2144073344051 K, F = -5.1156623243064914e-8, relative_change = 2.502976207994084e-12 Iter 155: T = 547.2144073302217 K, F = -2.1393915861089852e-8, relative_change = 1.0467552196253204e-12 Iter 160: T = 547.2144073284721 K, F = -8.947647900381384e-9, relative_change = 4.3778788343608946e-13 Converged in 164 iterations to T = 547.2144073278406 K Iter 1: T = 966.8773187914039 K, F = -7547.034421182542, relative_change = 0.03312268120859612 Iter 2: T = 935.8113212233986 K, F = -6398.18169444337, relative_change = 0.03213023717097616 Iter 3: T = 906.7716467436026 K, F = -5422.755475938106, relative_change = 0.031031548583780884 Iter 5: T = 854.6406884347239 K, F = -3891.7551771786743, relative_change = 0.02851538223640141 Iter 10: T = 756.972677842685 K, F = -1686.7651051443906, relative_change = 0.020731722356645506 Iter 15: T = 699.08674704182 K, F = -722.9244879817575, relative_change = 0.01262326365505977 Iter 20: T = 668.9945630729609 K, F = -306.6379163485729, relative_change = 0.006543169249835885 Iter 25: T = 654.8619100153654 K, F = -129.1476015648098, relative_change = 0.0030439700593878375 Iter 30: T = 648.6166915634948 K, F = -54.1850519750807, relative_change = 0.0013361330471067293 Iter 35: T = 645.9401778821097 K, F = -22.692540467217484, relative_change = 0.0005706451125931575 Iter 40: T = 644.8090047634945 K, F = -9.495935792261529, relative_change = 0.0002407898361668816 Iter 45: T = 644.3338274247967 K, F = -3.9723084095428334, relative_change = 0.00010108028221455934 Iter 50: T = 644.1347310821949 K, F = -1.6614413336327203, relative_change = 4.2339652719438634e-5 Iter 55: T = 644.0514014196247 K, F = -0.6948651712161253, relative_change = 1.7718636357144885e-5 Iter 60: T = 644.0165405410046 K, F = -0.29060626159087005, relative_change = 7.412191546238665e-6 Iter 65: T = 644.0019593069479 K, F = -0.12153594483293545, relative_change = 3.100225055237599e-6 Iter 70: T = 643.9958609111404 K, F = -0.050827947230972614, relative_change = 1.2966137729525595e-6 Iter 75: T = 643.9933104280343 K, F = -0.021256883167688034, relative_change = 5.422703195118682e-7 Iter 80: T = 643.9922437748447 K, F = -0.008889887405963415, relative_change = 2.2678583972248798e-7 Iter 85: T = 643.9917976858717 K, F = -0.0037178579561297775, relative_change = 9.484488168629316e-8 Iter 90: T = 643.9916111258086 K, F = -0.0015548527510012011, relative_change = 3.966532082291756e-8 Iter 95: T = 643.991533104105 K, F = -0.0006502580158663784, relative_change = 1.6588521117494537e-8 Iter 100: T = 643.9915004744868 K, F = -0.00027194567211608067, relative_change = 6.9375194197805094e-9 Iter 105: T = 643.991486828389 K, F = -0.00011373092906724613, relative_change = 2.901353797961997e-9 Iter 110: T = 643.9914811214277 K, F = -4.756363302582667e-5, relative_change = 1.2133808655087583e-9 Iter 115: T = 643.9914787347083 K, F = -1.989167974297823e-5, relative_change = 5.074503874784878e-10 Iter 120: T = 643.9914777365536 K, F = -8.318938640450302e-6, relative_change = 2.1222182953895328e-10 Iter 125: T = 643.9914773191134 K, F = -3.4790786509475424e-6, relative_change = 8.875368248330247e-11 Iter 130: T = 643.991477144535 K, F = -1.4549921506512575e-6, relative_change = 3.711784770548327e-11 Iter 135: T = 643.9914770715243 K, F = -6.084952651752573e-7, relative_change = 1.5523131574534272e-11 Iter 140: T = 643.9914770409903 K, F = -2.544813828553316e-7, relative_change = 6.491994623962623e-12 Iter 145: T = 643.9914770282205 K, F = -1.0642698511365012e-7, relative_change = 2.715025388165124e-12 Iter 150: T = 643.9914770228801 K, F = -4.450911406106428e-8, relative_change = 1.1354580283962105e-12 Iter 155: T = 643.9914770206467 K, F = -1.861449228091061e-8, relative_change = 4.748684657311023e-13 Converged in 160 iterations to T = 643.9914770197126 K Iter 1: T = 965.2389723316595 K, F = -7920.333220505115, relative_change = 0.03476102766834048 Iter 2: T = 932.4555688868053 K, F = -6717.629571014159, relative_change = 0.03396402796051814 Iter 3: T = 901.6203814037372 K, F = -5696.329792936838, relative_change = 0.033068800822199144 Iter 5: T = 845.6813887971392 K, F = -4092.8455549278406, relative_change = 0.030965480192647794 Iter 10: T = 737.7541322537672 K, F = -1780.7441427119543, relative_change = 0.02394130479681291 Iter 15: T = 670.4048585008859 K, F = -766.6116309294623, relative_change = 0.015635461515720876 Iter 20: T = 633.6332924523149 K, F = -326.3793228431387, relative_change = 0.008582945843065185 Iter 25: T = 615.756312444902 K, F = -137.78050056290462, relative_change = 0.004136009287790787 Iter 30: T = 607.702939007374 K, F = -57.8753828766887, relative_change = 0.0018481567716965997 Iter 35: T = 604.2194169505781 K, F = -24.251163857139577, relative_change = 0.0007957788314266695 Iter 40: T = 602.7410990741225 K, F = -10.15054953079385, relative_change = 0.0003369778031359177 Iter 45: T = 602.1189943004621 K, F = -4.246569821839499, relative_change = 0.00014167161842942738 Iter 50: T = 601.8581409293976 K, F = -1.776227760462855, relative_change = 5.937980704432239e-5 Iter 55: T = 601.7489291394753 K, F = -0.7428854918276244, relative_change = 2.4856338741466593e-5 Iter 60: T = 601.7032344711705 K, F = -0.3106916064828447, relative_change = 1.0399244905725546e-5 Iter 65: T = 601.6841207403678 K, F = -0.12993634374303786, relative_change = 4.3497931743195375e-6 Iter 70: T = 601.6761265069316 K, F = -0.05434117621375967, relative_change = 1.8192587456682705e-6 Iter 75: T = 601.6727831105691 K, F = -0.022726171798523154, relative_change = 7.608573000199395e-7 Iter 80: T = 601.6713848426099 K, F = -0.00950436396160198, relative_change = 3.182033814425641e-7 Iter 85: T = 601.67080006681 K, F = -0.003974839826601795, relative_change = 1.330771139680171e-7 Iter 90: T = 601.670555505985 K, F = -0.0016623257148536963, relative_change = 5.565455373140942e-8 Iter 95: T = 601.6704532276221 K, F = -0.000695204506142022, relative_change = 2.3275419196836107e-8 Iter 100: T = 601.6704104535709 K, F = -0.0002907428335047202, relative_change = 9.734061788962814e-9 Iter 105: T = 601.6703925649487 K, F = -0.00012159212700824096, relative_change = 4.070901527027749e-9 Iter 110: T = 601.6703850837126 K, F = -5.085127938841971e-5, relative_change = 1.702499728080569e-9 Iter 115: T = 601.6703819549703 K, F = -2.126661152335174e-5, relative_change = 7.120057089521656e-10 Iter 120: T = 601.6703806464928 K, F = -8.893951152666446e-6, relative_change = 2.977693016328819e-10 Iter 125: T = 601.6703800992719 K, F = -3.7195565036340916e-6, relative_change = 1.245306757655166e-10 Iter 130: T = 601.6703798704176 K, F = -1.5555628871122273e-6, relative_change = 5.208021378069611e-11 Iter 135: T = 601.6703797747081 K, F = -6.505548587609766e-7, relative_change = 2.178056343893557e-11 Iter 140: T = 601.6703797346812 K, F = -2.72069932305552e-7, relative_change = 9.108895802532309e-12 Iter 145: T = 601.6703797179415 K, F = -1.1378344016987896e-7, relative_change = 3.809467264226729e-12 Iter 150: T = 601.6703797109407 K, F = -4.7585541895767136e-8, relative_change = 1.5931629755772157e-12 Iter 155: T = 601.6703797080129 K, F = -1.9900797842975493e-8, relative_change = 6.662783073492807e-13 Iter 160: T = 601.6703797067884 K, F = -8.322384281722606e-9, relative_change = 2.786332566232958e-13 Converged in 162 iterations to T = 601.6703797065293 K Iter 1: T = 980.0141794482493 K, F = -4553.788224139773, relative_change = 0.0199858205517508 Iter 2: T = 962.0775735407345 K, F = -3846.732202773223, relative_change = 0.01830239427516558 Iter 3: T = 946.0701941162815 K, F = -3247.94451598917, relative_change = 0.01663834587219509 Iter 5: T = 919.3227510437905 K, F = -2312.3011906668717, relative_change = 0.01345770466442344 Iter 10: T = 876.8054664519647 K, F = -981.7898415553722, relative_change = 0.007085618403901644 Iter 15: T = 856.6516465906226 K, F = -413.75574300725765, relative_change = 0.003327032727927036 Iter 20: T = 847.7008724245765 K, F = -173.64794896491657, relative_change = 0.001467118829949933 Iter 25: T = 843.8557144857555 K, F = -72.73330960366673, relative_change = 0.0006278920151313977 Iter 30: T = 842.2289306652885 K, F = -30.437853198688664, relative_change = 0.00026518420704742295 Iter 35: T = 841.5452523302381 K, F = -12.732985733787228, relative_change = 0.00011136319127496814 Iter 40: T = 841.2587409368474 K, F = -5.325703097942839, relative_change = 4.6654359882678275e-5 Iter 45: T = 841.1388150621967 K, F = -2.227380604303006, relative_change = 1.952560370454603e-5 Iter 50: T = 841.0886425185192 K, F = -0.9315360641193171, relative_change = 8.168325717988599e-6 Iter 55: T = 841.067656591941 K, F = -0.38958281241833126, relative_change = 3.4165261999982585e-6 Iter 60: T = 841.0588794723012 K, F = -0.16292876292448155, relative_change = 1.4289081257809446e-6 Iter 65: T = 841.0552086790505 K, F = -0.06813885555103938, relative_change = 5.975997481197807e-7 Iter 70: T = 841.053673492509 K, F = -0.028496500821775017, relative_change = 2.499256786310281e-7 Iter 75: T = 841.0530314561962 K, F = -0.011917580053948607, relative_change = 1.0452231054886558e-7 Iter 80: T = 841.0527629484237 K, F = -0.0049840748442882, relative_change = 4.371254971088862e-8 Iter 85: T = 841.0526506551759 K, F = -0.002084399716266727, relative_change = 1.8281122772675583e-8 Iter 90: T = 841.0526036927827 K, F = -0.0008717208696211731, relative_change = 7.645386032935335e-9 Iter 95: T = 841.0525840525462 K, F = -0.00036456408012375263, relative_change = 3.1973921163548315e-9 Iter 100: T = 841.0525758387643 K, F = -0.00015246505061172755, relative_change = 1.3371876169150503e-9 Iter 105: T = 841.0525724036625 K, F = -6.376270526864403e-5, relative_change = 5.592278441662751e-10 Iter 110: T = 841.0525709670619 K, F = -2.6666321853330288e-5, relative_change = 2.338757388089631e-10 Iter 115: T = 841.0525703662585 K, F = -1.1152175386941465e-5, relative_change = 9.780963723324591e-11 Iter 120: T = 841.0525701149952 K, F = -4.663972057006305e-6, relative_change = 4.090515076949298e-11 Iter 125: T = 841.052570009914 K, F = -1.9505289448051855e-6, relative_change = 1.7107023721362667e-11 Iter 130: T = 841.0525699659678 K, F = -8.157374284945007e-7, relative_change = 7.154387316474472e-12 Iter 135: T = 841.052569947589 K, F = -3.4115254798905426e-7, relative_change = 2.9920626139152806e-12 Iter 140: T = 841.0525699399027 K, F = -1.4267555692448752e-7, relative_change = 1.2513293608042247e-12 Iter 145: T = 841.0525699366881 K, F = -5.966881500008014e-8, relative_change = 5.233225770751465e-13 Converged in 150 iterations to T = 841.0525699353437 K Iter 1: T = 976.344493749146 K, F = -5389.929601452738, relative_change = 0.023655506250854084 Iter 2: T = 954.8524799732476 K, F = -4557.657301354148, relative_change = 0.022012736194546877 Iter 3: T = 935.4330949503452 K, F = -3852.1557261702355, relative_change = 0.02033757614940316 Iter 5: T = 902.3942009591816 K, F = -2748.0463090823273, relative_change = 0.01698305164623518 Iter 10: T = 847.9287250702765 K, F = -1171.9689364609317, relative_change = 0.009573828248784428 Iter 15: T = 821.0062146701136 K, F = -495.3120675610219, relative_change = 0.00469492114401935 Iter 20: T = 808.7588842664201 K, F = -208.18541919599645, relative_change = 0.002117376755748227 Iter 25: T = 803.4355242141127 K, F = -87.2596089254081, relative_change = 0.0009156346446915475 Iter 30: T = 801.17147327475 K, F = -36.52791186621235, relative_change = 0.0003884647433687197 Iter 35: T = 800.2178136501686 K, F = -15.2825875878879, relative_change = 0.0001634494147665808 Iter 40: T = 799.8177759558909 K, F = -6.392446823705741, relative_change = 6.853099230482025e-5 Iter 45: T = 799.6502633661509 K, F = -2.6735879857647307, relative_change = 2.8691113298740144e-5 Iter 50: T = 799.5801704288203 K, F = -1.1181597528581013, relative_change = 1.2004332538289904e-5 Iter 55: T = 799.550850217778 K, F = -0.4676335934834388, relative_change = 5.021294419613238e-6 Iter 60: T = 799.5385870167314 K, F = -0.19557097352780695, relative_change = 2.100129603448156e-6 Iter 65: T = 799.5334582004199 K, F = -0.08179029513713765, relative_change = 8.783280222063319e-7 Iter 70: T = 799.5313132333486 K, F = -0.034205709405031315, relative_change = 3.67332295381785e-7 Iter 75: T = 799.5304161764096 K, F = -0.014305241629264498, relative_change = 1.5362363202754735e-7 Iter 80: T = 799.5300410154189 K, F = -0.005982623843931889, relative_change = 6.424739134694012e-8 Iter 85: T = 799.5298841184259 K, F = -0.0025020049060034966, relative_change = 2.6869053233626613e-8 Iter 90: T = 799.529818502197 K, F = -0.0010463683591286355, relative_change = 1.1236963629380911e-8 Iter 95: T = 799.5297910607007 K, F = -0.0004376037483818651, relative_change = 4.699433201816505e-9 Iter 100: T = 799.5297795843384 K, F = -0.00018301111324114938, relative_change = 1.965359217842539e-9 Iter 105: T = 799.5297747847864 K, F = -7.653743316782258e-5, relative_change = 8.219367196981797e-10 Iter 110: T = 799.5297727775564 K, F = -3.2008869119581895e-5, relative_change = 3.4374376185557776e-10 Iter 115: T = 799.5297719381089 K, F = -1.3386491778177856e-5, relative_change = 1.4375775188094462e-10 Iter 120: T = 799.5297715870419 K, F = -5.598391289107774e-6, relative_change = 6.012121479553993e-11 Iter 125: T = 799.5297714402216 K, F = -2.3413152768769763e-6, relative_change = 2.5143422729693795e-11 Iter 130: T = 799.5297713788195 K, F = -9.791672985759448e-7, relative_change = 1.0515293503329048e-11 Iter 135: T = 799.5297713531405 K, F = -4.0950148127993913e-7, relative_change = 4.397643051016443e-12 Iter 140: T = 799.5297713424012 K, F = -1.712598729497472e-7, relative_change = 1.8391625541611336e-12 Iter 145: T = 799.5297713379098 K, F = -7.162196136167864e-8, relative_change = 7.691494050924003e-13 Iter 150: T = 799.5297713360314 K, F = -2.995289949403457e-8, relative_change = 3.2166467364036007e-13 Converged in 153 iterations to T = 799.5297713354815 K Iter 1: T = 980.8828343876178 K, F = -4355.864369900478, relative_change = 0.01911716561238223 Iter 2: T = 963.775465550947 K, F = -3678.655044087978, relative_change = 0.017440787255035523 Iter 3: T = 948.5518952701702 K, F = -3105.287898259314, relative_change = 0.01579576449590796 Iter 5: T = 923.2174371637392 K, F = -2209.720791555636, relative_change = 0.012684731416651322 Iter 10: T = 883.2609868587202 K, F = -937.3528319387059, relative_change = 0.006582642925762259 Iter 15: T = 864.4827989564288 K, F = -394.8053609361686, relative_change = 0.0030644125246177844 Iter 20: T = 856.181673225151 K, F = -165.6478672690507, relative_change = 0.0013455563470287327 Iter 25: T = 852.6234441381753 K, F = -69.3735369938509, relative_change = 0.0005747563112135988 Iter 30: T = 851.1195176025334 K, F = -29.0302232598989, relative_change = 0.00024254038847292342 Iter 35: T = 850.4877353343721 K, F = -12.143849233686991, relative_change = 0.00010181795000865316 Iter 40: T = 850.2230188566579 K, F = -5.079240239294402, relative_change = 4.264913582160339e-5 Iter 45: T = 850.1122239417253 K, F = -2.1242930550049977, relative_change = 1.7848238173369264e-5 Iter 50: T = 850.0658728907301 K, F = -0.8884211971834881, relative_change = 7.46642275083593e-6 Iter 55: T = 850.0464856510679 K, F = -0.37155123626401376, relative_change = 3.1229104739172265e-6 Iter 60: T = 850.0383772076558 K, F = -0.1553876682841404, relative_change = 1.3061020098901809e-6 Iter 65: T = 850.0349860778797 K, F = -0.06498506674473647, relative_change = 5.462385751213894e-7 Iter 70: T = 850.0335678525828 K, F = -0.02717754640855441, relative_change = 2.2844543985837208e-7 Iter 75: T = 850.0329747313209 K, F = -0.011365977169843333, relative_change = 9.553895120754711e-8 Iter 80: T = 850.0327266804876 K, F = -0.004753387858951186, relative_change = 3.995558982041633e-8 Iter 85: T = 850.0326229425903 K, F = -0.0019879236540714107, relative_change = 1.6709915249269417e-8 Iter 90: T = 850.0325795581493 K, F = -0.0008313734289964181, relative_change = 6.9882879488439376e-9 Iter 95: T = 850.0325614142556 K, F = -0.0003476902987826769, relative_change = 2.922585792502625e-9 Iter 100: T = 850.0325538262622 K, F = -0.0001454082348413266, relative_change = 1.2222603299844022e-9 Iter 105: T = 850.0325506528726 K, F = -6.081146138026128e-5, relative_change = 5.111638846023017e-10 Iter 110: T = 850.0325493257232 K, F = -2.5432077431331024e-5, relative_change = 2.137748262396537e-10 Iter 115: T = 850.0325487706934 K, F = -1.063599959616468e-5, relative_change = 8.94031947945698e-11 Iter 120: T = 850.0325485385733 K, F = -4.448101013521111e-6, relative_change = 3.7389475084053254e-11 Iter 125: T = 850.0325484414981 K, F = -1.8602501792308601e-6, relative_change = 1.563673521641072e-11 Iter 130: T = 850.0325484008999 K, F = -7.779788100403806e-7, relative_change = 6.539469150528916e-12 Iter 135: T = 850.0325483839213 K, F = -3.253599534236429e-7, relative_change = 2.734883458231143e-12 Iter 140: T = 850.0325483768206 K, F = -1.360687225115953e-7, relative_change = 1.1437550764271923e-12 Iter 145: T = 850.0325483738511 K, F = -5.6905360645842507e-8, relative_change = 4.783303165805702e-13 Converged in 150 iterations to T = 850.0325483726091 K Iter 1: T = 967.3724559360243 K, F = -7434.216951783767, relative_change = 0.03262754406397572 Iter 2: T = 936.8219061600548 K, F = -6301.692875629605, relative_change = 0.03158095890419883 Iter 3: T = 908.3168645898919 K, F = -5340.180974294064, relative_change = 0.030427385805913067 Iter 5: T = 857.3039696293674 K, F = -3831.17780135615, relative_change = 0.027805478453619147 Iter 10: T = 762.5250840842416 K, F = -1658.7132953258078, relative_change = 0.0198694961134111 Iter 15: T = 707.123654484473 K, F = -710.0770691664906, relative_change = 0.01188054261314224 Iter 20: T = 678.6721214709978 K, F = -300.9194240936361, relative_change = 0.006074169995949886 Iter 25: T = 665.4169323448756 K, F = -126.67275607721307, relative_change = 0.0028033985127613754 Iter 30: T = 659.584447147569 K, F = -53.132986666673126, relative_change = 0.0012257518810384527 Iter 35: T = 657.0898214044465 K, F = -22.249351160882266, relative_change = 0.0005225881226313399 Iter 40: T = 656.0364482991938 K, F = -9.310010987273635, relative_change = 0.0002203454592463292 Iter 45: T = 655.5941194497855 K, F = -3.8944500570632847, relative_change = 9.2468466254963e-5 Iter 50: T = 655.408815885614 K, F = -1.6288620358092558, relative_change = 3.8727205226003086e-5 Iter 55: T = 655.3312642212823 K, F = -0.6812369634177998, relative_change = 1.620595784718309e-5 Iter 60: T = 655.2988214694883 K, F = -0.28490622974970015, relative_change = 6.779236832022012e-6 Iter 65: T = 655.2852518223582 K, F = -0.1191520267577103, relative_change = 2.8354572968492173e-6 Iter 70: T = 655.2795765363204 K, F = -0.04983094730792098, relative_change = 1.1858744935688337e-6 Iter 75: T = 655.2772030118755 K, F = -0.02083992293358705, relative_change = 4.959560390298921e-7 Iter 80: T = 655.2762103665035 K, F = -0.008715509138708, relative_change = 2.0741634119444833e-7 Iter 85: T = 655.2757952287621 K, F = -0.0036449307900992545, relative_change = 8.67442712423033e-8 Iter 90: T = 655.2756216129226 K, F = -0.0015243537232870752, relative_change = 3.627753920602804e-8 Iter 95: T = 655.2755490046565 K, F = -0.0006375029559597678, relative_change = 1.5171708722297798e-8 Iter 100: T = 655.2755186390037 K, F = -0.00026661135349126397, relative_change = 6.344991269202521e-9 Iter 105: T = 655.2755059397238 K, F = -0.00011150005249815909, relative_change = 2.653551379675313e-9 Iter 110: T = 655.2755006287329 K, F = -4.663065340337891e-5, relative_change = 1.1097469164914327e-9 Iter 115: T = 655.275498407613 K, F = -1.9501495229334864e-5, relative_change = 4.6410939944951934e-10 Iter 120: T = 655.2754974787142 K, F = -8.155757767192018e-6, relative_change = 1.9409608444997188e-10 Iter 125: T = 655.2754970902376 K, F = -3.4108357415685298e-6, relative_change = 8.117331128595012e-11 Iter 130: T = 655.275496927772 K, F = -1.4264515815209933e-6, relative_change = 3.3947632536702866e-11 Iter 135: T = 655.2754968598272 K, F = -5.965599413904066e-7, relative_change = 1.419732569179961e-11 Iter 140: T = 655.2754968314116 K, F = -2.4948823657000574e-7, relative_change = 5.937485080431136e-12 Iter 145: T = 655.2754968195279 K, F = -1.0433765312845011e-7, relative_change = 2.4830960663631547e-12 Iter 150: T = 655.275496814558 K, F = -4.363520217376404e-8, relative_change = 1.038459229508994e-12 Iter 155: T = 655.2754968124796 K, F = -1.824846412867842e-8, relative_change = 4.342889468831218e-13 Converged in 159 iterations to T = 655.2754968117293 K Iter 1: T = 973.4474159423563 K, F = -6050.031535562182, relative_change = 0.026552584057643647 Iter 2: T = 949.0879404432666 K, F = -5119.897819177569, relative_change = 0.025023925381227 Iter 3: T = 926.8546870936106 K, F = -4330.948912715757, relative_change = 0.023425914925514792 Iter 5: T = 888.4469377681936 K, F = -3094.9109314590823, relative_change = 0.02009929541607281 Iter 10: T = 822.9986446644913 K, F = -1325.3070686447095, relative_change = 0.01207609499750916 Iter 15: T = 789.2789828036413 K, F = -561.7762449306176, relative_change = 0.0061964765376847026 Iter 20: T = 773.5363567602496 K, F = -236.51337871409532, relative_change = 0.0028657810513713407 Iter 25: T = 766.6016544964651 K, F = -99.21237234340633, relative_change = 0.0012542947482602565 Iter 30: T = 763.6340558218726 K, F = -41.54626980336472, relative_change = 0.0005349992353090542 Iter 35: T = 762.380680662599 K, F = -17.38483298385818, relative_change = 0.0002256225074161595 Iter 40: T = 761.8543163402153 K, F = -7.272250983481799, relative_change = 9.469081102176105e-5 Iter 45: T = 761.6337989676763 K, F = -3.0416415138691875, relative_change = 3.965933411724414e-5 Iter 50: T = 761.5415083281633 K, F = -1.2721032193898272, relative_change = 1.6596262152862042e-5 Iter 55: T = 761.5028994345412 K, F = -0.532017930318556, relative_change = 6.9425502715245454e-6 Iter 60: T = 761.4867506611256 K, F = -0.22249785657333554, relative_change = 2.9037715431679893e-6 Iter 65: T = 761.479996688571 K, F = -0.09305154143810779, relative_change = 1.2144468840945297e-6 Iter 70: T = 761.4771720331548 K, F = -0.03891531497911216, relative_change = 5.079058012450768e-7 Iter 75: T = 761.4759907174312 K, F = -0.01627485805347295, relative_change = 2.1241395271064743e-7 Iter 80: T = 761.4754966751473 K, F = -0.006806341500845581, relative_change = 8.883434577294075e-8 Iter 85: T = 761.4752900604246 K, F = -0.0028464935627586785, relative_change = 3.7151635726237413e-8 Iter 90: T = 761.4752036516207 K, F = -0.0011904376486029378, relative_change = 1.553726674429994e-8 Iter 95: T = 761.4751675144166 K, F = -0.0004978552484653509, relative_change = 6.497872066076374e-9 Iter 100: T = 761.4751524014044 K, F = -0.00020820901063611785, relative_change = 2.7174879568568587e-9 Iter 105: T = 761.4751460809621 K, F = -8.707549608899523e-5, relative_change = 1.1364859791012262e-9 Iter 110: T = 761.4751434376774 K, F = -3.641601159232177e-5, relative_change = 4.752920067336887e-10 Iter 115: T = 761.4751423322243 K, F = -1.5229611273870347e-5, relative_change = 1.9877279904234244e-10 Iter 120: T = 761.4751418699105 K, F = -6.369205846734616e-6, relative_change = 8.312916559230132e-11 Iter 125: T = 761.4751416765654 K, F = -2.663676644365509e-6, relative_change = 3.476559283054374e-11 Iter 130: T = 761.4751415957062 K, F = -1.1139829333428608e-6, relative_change = 1.4539406343587192e-11 Iter 135: T = 761.4751415618899 K, F = -4.658826165959695e-7, relative_change = 6.080574908098584e-12 Iter 140: T = 761.4751415477475 K, F = -1.9483757607297036e-7, relative_change = 2.5429677651103493e-12 Iter 145: T = 761.4751415418331 K, F = -8.148325336687634e-8, relative_change = 1.0634975598256514e-12 Iter 150: T = 761.4751415393595 K, F = -3.407688697887323e-8, relative_change = 4.44762385540424e-13 Converged in 154 iterations to T = 761.4751415384667 K Iter 1: T = 970.0038325003673 K, F = -6834.655298512897, relative_change = 0.029996167499632697 Iter 2: T = 942.164972353935 K, F = -5789.330428945318, relative_change = 0.02869974242748333 Iter 3: T = 916.4406617560344 K, F = -4902.151085077735, relative_change = 0.027303403706072985 Iter 5: T = 871.1300581429663 K, F = -3510.7150086585875, relative_change = 0.024251693178649624 Iter 10: T = 790.308315617389 K, F = -1512.0371353761968, relative_change = 0.01594959793045808 Iter 15: T = 745.955546503194 K, F = -643.9947486919407, relative_change = 0.008809418398254833 Iter 20: T = 724.310539641071 K, F = -271.93229150988566, relative_change = 0.004262071474445033 Iter 25: T = 714.5381347268817 K, F = -114.24222211673752, relative_change = 0.0019084512087789384 Iter 30: T = 710.3064393323281 K, F = -47.87327833611551, relative_change = 0.0008225328745738025 Iter 35: T = 708.5097363377486 K, F = -20.038367303667528, relative_change = 0.000348453904454905 Iter 40: T = 707.7534890614576 K, F = -8.383324005160341, relative_change = 0.00014652272420052253 Iter 45: T = 707.4363602685617 K, F = -3.5065402683687714, relative_change = 6.141774056649085e-5 Iter 50: T = 707.3035825746894 K, F = -1.466570602968085, relative_change = 2.5710233964123316e-5 Iter 55: T = 707.2480269557326 K, F = -0.6133537220705981, relative_change = 1.0756635750164822e-5 Iter 60: T = 707.2247883107959 K, F = -0.25651471760311856, relative_change = 4.499307599878889e-6 Iter 65: T = 707.2150688233428 K, F = -0.1072780196602321, relative_change = 1.8817960908534735e-6 Iter 70: T = 707.2110038761671 K, F = -0.04486503667198771, relative_change = 7.870126737085872e-7 Iter 75: T = 707.2093038419719 K, F = -0.018763109471278572, relative_change = 3.291421350609195e-7 Iter 80: T = 707.2085928630415 K, F = -0.007846959140293985, relative_change = 1.3765187756099106e-7 Iter 85: T = 707.2082955224051 K, F = -0.0032816924927012714, relative_change = 5.7567782549709473e-8 Iter 90: T = 707.2081711708677 K, F = -0.0013724430735241322, relative_change = 2.4075555749884416e-8 Iter 95: T = 707.2081191655466 K, F = -0.0005739720977817608, relative_change = 1.006868870827931e-8 Iter 100: T = 707.2080974162963 K, F = -0.0002400419899231121, relative_change = 4.210846549302816e-9 Iter 105: T = 707.2080883204992 K, F = -0.00010038842706716622, relative_change = 1.761026425945676e-9 Iter 110: T = 707.2080845165282 K, F = -4.198363957130802e-5, relative_change = 7.364823097227986e-10 Iter 115: T = 707.2080829256621 K, F = -1.7558060698363853e-5, relative_change = 3.080057224175631e-10 Iter 120: T = 707.2080822603427 K, F = -7.3429906771727005e-6, relative_change = 1.288116721551775e-10 Iter 125: T = 707.2080819820983 K, F = -3.070926360426718e-6, relative_change = 5.387057912557214e-11 Iter 130: T = 707.2080818657332 K, F = -1.2842982897165456e-6, relative_change = 2.2529323263094754e-11 Iter 135: T = 707.208081817068 K, F = -5.371096616357818e-7, relative_change = 9.42204571599891e-12 Iter 140: T = 707.2080817967155 K, F = -2.246260498717234e-7, relative_change = 3.94041861905808e-12 Iter 145: T = 707.2080817882039 K, F = -9.39418584033902e-8, relative_change = 1.647939979331161e-12 Iter 150: T = 707.2080817846443 K, F = -3.9288157838157645e-8, relative_change = 6.891978412786854e-13 Iter 155: T = 707.2080817831555 K, F = -1.6431205063227594e-8, relative_change = 2.882382805003616e-13 Converged in 157 iterations to T = 707.2080817828405 K Iter 1: T = 973.572023966886 K, F = -6021.639478640253, relative_change = 0.026427976033113924 Iter 2: T = 949.3369978287009 K, F = -5095.697004187441, relative_change = 0.02489289496984305 Iter 3: T = 927.2270405139699 K, F = -4310.32237274843, relative_change = 0.023289893225798976 Iter 5: T = 889.0580966460275 K, F = -3079.9375655643626, relative_change = 0.01995857653090386 Iter 10: T = 824.1152747460052 K, F = -1318.6462824049408, relative_change = 0.011956222649220038 Iter 15: T = 790.721909578475 K, F = -558.8724590335094, relative_change = 0.006121428885388659 Iter 20: T = 775.15168335445 K, F = -235.2711688980402, relative_change = 0.0028274789749288395 Iter 25: T = 768.2975944783587 K, F = -98.68723766686695, relative_change = 0.0012367642442726603 Iter 30: T = 765.3654266820688 K, F = -41.325600924189466, relative_change = 0.0005273754601521046 Iter 35: T = 764.1271890692033 K, F = -17.292357435482362, relative_change = 0.00022238077219024861 Iter 40: T = 763.6072129390687 K, F = -7.233543112802188, relative_change = 9.332556967470986e-5 Iter 45: T = 763.389377355368 K, F = -3.0254475323943653, relative_change = 3.908669789749883e-5 Iter 50: T = 763.2982100593753 K, F = -1.2653296709740274, relative_change = 1.635648476767041e-5 Iter 55: T = 763.2600712746768 K, F = -0.5291849708261057, relative_change = 6.842221001130515e-6 Iter 60: T = 763.2441191612609 K, F = -0.22131304747366398, relative_change = 2.8618036308490867e-6 Iter 65: T = 763.2374474438606 K, F = -0.09255603459607287, relative_change = 1.1968938251865174e-6 Iter 70: T = 763.2346571902103 K, F = -0.03870808713243923, relative_change = 5.005646265627638e-7 Iter 75: T = 763.2334902620097 K, F = -0.016188192723039396, relative_change = 2.093437375322496e-7 Iter 80: T = 763.2330022368109 K, F = -0.006770096994158203, relative_change = 8.75503366699136e-8 Iter 85: T = 763.2327981385142 K, F = -0.002831335671803381, relative_change = 3.6614646306301904e-8 Iter 90: T = 763.2327127821113 K, F = -0.001184098437300718, relative_change = 1.531269110577664e-8 Iter 95: T = 763.2326770850341 K, F = -0.0004952041144442587, relative_change = 6.403951807155255e-9 Iter 100: T = 763.2326621560883 K, F = -0.00020710027377424112, relative_change = 2.6782093632275624e-9 Iter 105: T = 763.2326559126246 K, F = -8.661180881708308e-5, relative_change = 1.1200591971569229e-9 Iter 110: T = 763.2326533015336 K, F = -3.6222093615756457e-5, relative_change = 4.684221506230174e-10 Iter 115: T = 763.232652209544 K, F = -1.514851051187538e-5, relative_change = 1.9589971789921804e-10 Iter 120: T = 763.232651752861 K, F = -6.3352878250100275e-6, relative_change = 8.192759943577238e-11 Iter 125: T = 763.2326515618707 K, F = -2.64949415651472e-6, relative_change = 3.426311514435976e-11 Iter 130: T = 763.2326514819963 K, F = -1.1080506774341359e-6, relative_change = 1.43292514430642e-11 Iter 135: T = 763.2326514485918 K, F = -4.633988112123788e-7, relative_change = 5.992648369693021e-12 Iter 140: T = 763.2326514346217 K, F = -1.938002139878492e-7, relative_change = 2.5062138883420403e-12 Iter 145: T = 763.2326514287791 K, F = -8.104995319335728e-8, relative_change = 1.0481336122921068e-12 Iter 150: T = 763.2326514263358 K, F = -3.389644764872912e-8, relative_change = 4.3834702820514513e-13 Converged in 154 iterations to T = 763.2326514254539 K Iter 1: T = 964.3482791667484 K, F = -8123.278505398059, relative_change = 0.03565172083325166 Iter 2: T = 930.6235141942265 K, F = -6891.41341183914, relative_change = 0.03497156131357647 Iter 3: T = 898.7948045989215 K, F = -5845.283377824081, relative_change = 0.03420148868993885 Iter 5: T = 840.7126717131789 K, F = -4202.595832531829, relative_change = 0.03236628456417767 Iter 10: T = 726.7036027884845 K, F = -1832.650918942438, relative_change = 0.025956690898787535 Iter 15: T = 653.2119520505053 K, F = -791.2606496125564, relative_change = 0.017751740688500797 Iter 20: T = 611.6922842729051 K, F = -337.7859285665306, relative_change = 0.010162354612640631 Iter 25: T = 590.9671249065921 K, F = -142.85722102040617, relative_change = 0.005036088922325958 Iter 30: T = 581.4830405881786 K, F = -60.06701474484354, relative_change = 0.00228414524099256 Iter 35: T = 577.3484100820433 K, F = -25.18117580001839, relative_change = 0.0009903941989775691 Iter 40: T = 575.5875357866668 K, F = -10.541966402932305, relative_change = 0.00042067737891151886 Iter 45: T = 574.8453846293381 K, F = -4.410707445049198, relative_change = 0.00017709236103619565 Iter 50: T = 574.5339914923793 K, F = -1.8449501717934336, relative_change = 7.42670051865194e-5 Iter 55: T = 574.4035843036553 K, F = -0.7716397373749666, relative_change = 3.109532528334126e-5 Iter 60: T = 574.3490151001083 K, F = -0.322719377588242, relative_change = 1.3010739475442443e-5 Iter 65: T = 574.326188116972 K, F = -0.13496692169880165, relative_change = 5.44234983068897e-6 Iter 70: T = 574.316640639302 K, F = -0.056445097549026074, relative_change = 2.2762487028582627e-6 Iter 75: T = 574.3126476020602 K, F = -0.023606069693866555, relative_change = 9.519881531111587e-7 Iter 80: T = 574.3109776368032 K, F = -0.009872350020609932, relative_change = 3.98138719931944e-7 Iter 85: T = 574.3102792322477 K, F = -0.00412873638546879, relative_change = 1.6650740026919574e-7 Iter 90: T = 574.3099871502226 K, F = -0.0017266871619188717, relative_change = 6.963556393634266e-8 Iter 95: T = 574.3098649978743 K, F = -0.0007221212441552716, relative_change = 2.912245605103798e-8 Iter 100: T = 574.3098139122759 K, F = -0.00030199973758165966, relative_change = 1.2179364450083667e-8 Iter 105: T = 574.3097925476638 K, F = -0.00012629989837864564, relative_change = 5.093556627289278e-9 Iter 110: T = 574.309783612727 K, F = -5.282012592566776e-5, relative_change = 2.130186372628344e-9 Iter 115: T = 574.3097798760296 K, F = -2.2090006743635815e-5, relative_change = 8.90869379228692e-10 Iter 120: T = 574.309778313298 K, F = -9.238303914138601e-6, relative_change = 3.725721895537448e-10 Iter 125: T = 574.309777659745 K, F = -3.863569146445034e-6, relative_change = 1.558141448430847e-10 Iter 130: T = 574.3097773864215 K, F = -1.615790796938299e-6, relative_change = 6.516333791317376e-11 Iter 135: T = 574.3097772721142 K, F = -6.757427885029088e-7, relative_change = 2.7252077307760725e-11 Iter 140: T = 574.3097772243095 K, F = -2.8260357609610764e-7, relative_change = 1.139713902583461e-11 Iter 145: T = 574.309777204317 K, F = -1.1818731360246915e-7, relative_change = 4.766384286596616e-12 Iter 150: T = 574.3097771959559 K, F = -4.942700781995768e-8, relative_change = 1.9933451928290665e-12 Iter 155: T = 574.3097771924594 K, F = -2.067133719751979e-8, relative_change = 8.336557774913756e-13 Iter 160: T = 574.3097771909969 K, F = -8.644280791170189e-9, relative_change = 3.486157936976014e-13 Converged in 163 iterations to T = 574.3097771905688 K Iter 1: T = 963.546444817587 K, F = -8305.977224595843, relative_change = 0.036453555182412986 Iter 2: T = 928.9695684234704 K, F = -7047.928950930875, relative_change = 0.03588501268422252 Iter 3: T = 896.2357634674634 K, F = -5979.512432037118, relative_change = 0.03523668166176709 Iter 5: T = 836.1783112066728 K, F = -4301.6606321651525, relative_change = 0.033671364602190945 Iter 10: T = 716.3488749187992 K, F = -1879.92141489141, relative_change = 0.02796711625619844 Iter 15: T = 636.5505716887461 K, F = -814.1123638687644, relative_change = 0.02006277992911623 Iter 20: T = 589.7616369437036 K, F = -348.6023771852579, relative_change = 0.012044552117938532 Iter 25: T = 565.6684450207714 K, F = -147.76110863390747, relative_change = 0.006176592478274616 Iter 30: T = 554.4240637662717 K, F = -62.207472508515146, relative_change = 0.0028556007027614994 Iter 35: T = 549.4717814272991 K, F = -26.094429450984915, relative_change = 0.0012496288233919118 Iter 40: T = 547.3527130136761 K, F = -10.927273617426522, relative_change = 0.0005329688824249024 Iter 45: T = 546.4577516229666 K, F = -4.572454142436668, relative_change = 0.00022475895631385897 Iter 50: T = 546.0819119913891 K, F = -1.912701922690705, relative_change = 9.432709222638318e-5 Iter 55: T = 545.9244571758238 K, F = -0.7999931972924789, relative_change = 3.9506769326091565e-5 Iter 60: T = 545.8585595848705 K, F = -0.33458044010310284, relative_change = 1.6532378203352093e-5 Iter 65: T = 545.8309920004258 K, F = -0.13992793858481373, relative_change = 6.915819311725565e-6 Iter 70: T = 545.81946143305 K, F = -0.05851995534283497, relative_change = 2.892589898959018e-6 Iter 75: T = 545.8146389541482 K, F = -0.024473817719862456, relative_change = 1.2097701605375227e-6 Iter 80: T = 545.8126220907642 K, F = -0.010235255706938506, relative_change = 5.059498649971216e-7 Iter 85: T = 545.8117786065199 K, F = -0.00428050842004063, relative_change = 2.1159594378163207e-7 Iter 90: T = 545.8114258499554 K, F = -0.001790160134428842, relative_change = 8.849224239439412e-8 Iter 95: T = 545.811278322706 K, F = -0.0007486664158684875, relative_change = 3.7008563605111265e-8 Iter 100: T = 545.8112166250062 K, F = -0.00031310124797373495, relative_change = 1.5477432192450037e-8 Iter 105: T = 545.811190822284 K, F = -0.00013094268301275247, relative_change = 6.472848532775788e-9 Iter 110: T = 545.8111800312761 K, F = -5.4761794350183246e-5, relative_change = 2.7070228394602848e-9 Iter 115: T = 545.8111755183475 K, F = -2.290203571481131e-5, relative_change = 1.1321092912719071e-9 Iter 120: T = 545.8111736309869 K, F = -9.57790533737124e-6, relative_change = 4.734616580331188e-10 Iter 125: T = 545.8111728416701 K, F = -4.005594436751192e-6, relative_change = 1.980073230719612e-10 Iter 130: T = 545.8111725115683 K, F = -1.6751866440678498e-6, relative_change = 8.280898858594313e-11 Iter 135: T = 545.8111723735159 K, F = -7.005833873308109e-7, relative_change = 3.4631724172514347e-11 Iter 140: T = 545.8111723157807 K, F = -2.9299251363967826e-7, relative_change = 1.4483409263742123e-11 Iter 145: T = 545.8111722916352 K, F = -1.2253322073663142e-7, relative_change = 6.057147203731551e-12 Iter 150: T = 545.8111722815372 K, F = -5.124500582209812e-8, relative_change = 2.533178691312033e-12 Iter 155: T = 545.8111722773142 K, F = -2.1431622670986528e-8, relative_change = 1.059422845239907e-12 Iter 160: T = 545.811172275548 K, F = -8.962725922545545e-9, relative_change = 4.430516878672663e-13 Converged in 164 iterations to T = 545.8111722749104 K Iter 1: T = 969.3263543517687 K, F = -6989.019339119186, relative_change = 0.03067364564823133 Iter 2: T = 940.793761138256 K, F = -5921.176085731402, relative_change = 0.02943548690842497 Iter 3: T = 914.3631167522543 K, F = -5014.797535352074, relative_change = 0.028093983482653562 Iter 5: T = 867.6217064598693 K, F = -3592.989132406641, relative_change = 0.025132896984225436 Iter 10: T = 783.4135569797825 K, F = -1549.4374637026854, relative_change = 0.01686421020818836 Iter 15: T = 736.5145703471295 K, F = -660.692843847074, relative_change = 0.009484284784124943 Iter 20: T = 713.3669713121845 K, F = -279.2010389211545, relative_change = 0.004643595298843942 Iter 25: T = 702.8463313776059 K, F = -117.34481965857027, relative_change = 0.002092442693124436 Iter 30: T = 698.2755391634854 K, F = -49.18303428717037, relative_change = 0.0009044899436114756 Iter 35: T = 696.3319556165299 K, F = -20.588362519694876, relative_change = 0.00038366892308319304 Iter 40: T = 695.5133551407866 K, F = -8.613738317288096, relative_change = 0.00016141938348254972 Iter 45: T = 695.1699844725757 K, F = -3.6029728031467965, relative_change = 6.767769100961691e-5 Iter 50: T = 695.0262030215723 K, F = -1.5069122187760726, relative_change = 2.8333493059932883e-5 Iter 55: T = 694.9660403949529 K, F = -0.6302272357949961, relative_change = 1.1854638344332031e-5 Iter 60: T = 694.9408741502793 K, F = -0.26357180201551067, relative_change = 4.958667210979822e-6 Iter 65: T = 694.9303483611238 K, F = -0.11022944302817206, relative_change = 2.0739340784688504e-6 Iter 70: T = 694.9259461815731 K, F = -0.046099368782739014, relative_change = 8.673720273676904e-7 Iter 75: T = 694.924105107983 K, F = -0.019279323931174708, relative_change = 3.627502427175358e-7 Iter 80: T = 694.9233351438561 K, F = -0.00806284654922973, relative_change = 1.5170734109598658e-7 Iter 85: T = 694.9230131347596 K, F = -0.003371979248282475, relative_change = 6.344597177190913e-8 Iter 90: T = 694.9228784665518 K, F = -0.0014102020840689455, relative_change = 2.653388932181596e-8 Iter 95: T = 694.9228221466714 K, F = -0.0005897633686695603, relative_change = 1.1096793973983934e-8 Iter 100: T = 694.92279859302 K, F = -0.00024664608764179974, relative_change = 4.640812580302886e-9 Iter 105: T = 694.9227887426009 K, F = -0.00010315034079511065, relative_change = 1.940843400793106e-9 Iter 110: T = 694.9227846230377 K, F = -4.313870451899682e-5, relative_change = 8.116839140052089e-10 Iter 115: T = 694.9227829001873 K, F = -1.8041120989020776e-5, relative_change = 3.3945590238601723e-10 Iter 120: T = 694.9227821796707 K, F = -7.545012957521635e-6, relative_change = 1.4196452627370562e-10 Iter 125: T = 694.922781878342 K, F = -3.155414861399919e-6, relative_change = 5.937126674830707e-11 Iter 130: T = 694.9227817523226 K, F = -1.3196315165053818e-6, relative_change = 2.4829760359561583e-11 Iter 135: T = 694.9227816996199 K, F = -5.518853637420662e-7, relative_change = 1.0384096743082791e-11 Iter 140: T = 694.922781677579 K, F = -2.3080585942469867e-7, relative_change = 4.342768500413625e-12 Iter 145: T = 694.9227816683612 K, F = -9.652500154722077e-8, relative_change = 1.8161832515559729e-12 Iter 150: T = 694.9227816645063 K, F = -4.0368314357941415e-8, relative_change = 7.595571640214806e-13 Iter 155: T = 694.922781662894 K, F = -1.6881806841340108e-8, relative_change = 3.176426247182609e-13 Converged in 158 iterations to T = 694.9227816624219 K Iter 1: T = 966.5180598199761 K, F = -7628.891919565866, relative_change = 0.03348194018002389 Iter 2: T = 935.0770281800444 K, F = -6468.207228715203, relative_change = 0.03253020605304359 Iter 3: T = 905.6471304430612 K, F = -5482.699736251442, relative_change = 0.03147323359473716 Iter 5: T = 852.6955711034364 K, F = -3935.764908741867, relative_change = 0.029039148092604543 Iter 10: T = 752.8726872382787 K, F = -1707.2169546922937, relative_change = 0.021386558747234993 Iter 15: T = 693.084557281173 K, F = -732.3425973138754, relative_change = 0.013205227858676234 Iter 20: T = 661.7060921652663 K, F = -310.85226983324173, relative_change = 0.00691965523696867 Iter 25: T = 646.8743488849573 K, F = -130.9779182763257, relative_change = 0.0032398590125145284 Iter 30: T = 640.2974132459003 K, F = -54.96456222713919, relative_change = 0.001426648172040959 Iter 35: T = 637.4741074455629 K, F = -23.021194676724498, relative_change = 0.0006101784287473966 Iter 40: T = 636.2800307682395 K, F = -9.633862794877075, relative_change = 0.0002576311945428891 Iter 45: T = 635.7782735896413 K, F = -4.030076260944984, relative_change = 0.00010817852676593815 Iter 50: T = 635.5680129087777 K, F = -1.6856155178063472, relative_change = 4.531792349968523e-5 Iter 55: T = 635.480005687695 K, F = -0.7049777301225677, relative_change = 1.896588743991862e-5 Iter 60: T = 635.4431871084139 K, F = -0.2948359143338899, relative_change = 7.93410509258752e-6 Iter 65: T = 635.4277868797419 K, F = -0.12330491658470205, relative_change = 3.3185477300935974e-6 Iter 70: T = 635.42134592497 K, F = -0.051567766418297134, relative_change = 1.3879280545599767e-6 Iter 75: T = 635.4186521716307 K, F = -0.02156628684862566, relative_change = 5.804606399025861e-7 Iter 80: T = 635.4175255997224 K, F = -0.009019284150188212, relative_change = 2.4275776715908654e-7 Iter 85: T = 635.4170544517814 K, F = -0.003771973294873776, relative_change = 1.0152458134175063e-7 Iter 90: T = 635.416857411716 K, F = -0.0015774844453705916, relative_change = 4.245885954503785e-8 Iter 95: T = 635.4167750071427 K, F = -0.0006597228631059493, relative_change = 1.775681386937769e-8 Iter 100: T = 635.4167405445548 K, F = -0.0002759039857463397, relative_change = 7.426113690695785e-9 Iter 105: T = 635.416726131887 K, F = -0.00011538634273411397, relative_change = 3.105689791733107e-9 Iter 110: T = 635.4167201043368 K, F = -4.8255946842712394e-5, relative_change = 1.298836627603543e-9 Iter 115: T = 635.4167175835433 K, F = -2.0181212771308576e-5, relative_change = 5.431889859576667e-10 Iter 120: T = 635.4167165293173 K, F = -8.440024342859509e-6, relative_change = 2.2716812673354112e-10 Iter 125: T = 635.4167160884275 K, F = -3.5297191068317524e-6, relative_change = 9.500442741279374e-11 Iter 130: T = 635.4167159040421 K, F = -1.4761707182731065e-6, relative_change = 3.9731987107807565e-11 Iter 135: T = 635.4167158269299 K, F = -6.173523553476556e-7, relative_change = 1.6616395064735187e-11 Iter 140: T = 635.4167157946806 K, F = -2.5818368065699815e-7, relative_change = 6.9491628256359854e-12 Iter 145: T = 635.4167157811936 K, F = -1.0797487193237032e-7, relative_change = 2.906206016978637e-12 Iter 150: T = 635.4167157755533 K, F = -4.5157128703010585e-8, relative_change = 1.215430190404981e-12 Iter 155: T = 635.4167157731944 K, F = -1.8885738584106804e-8, relative_change = 5.083205576375583e-13 Converged in 160 iterations to T = 635.4167157722078 K Iter 1: T = 966.4942304163662 K, F = -7634.321471846005, relative_change = 0.03350576958363382 Iter 2: T = 935.028292088217 K, F = -6472.852441228622, relative_change = 0.0325567782381833 Iter 3: T = 905.5724421229537 K, F = -5486.6767005601505, relative_change = 0.031502629615066495 Iter 5: T = 852.5661711023783 K, F = -3938.685730205037, relative_change = 0.029074151237548945 Iter 10: T = 752.5985582543607 K, F = -1708.5765024175964, relative_change = 0.021430902707303606 Iter 15: T = 692.6811187893547 K, F = -732.9702910116707, relative_change = 0.013245212165953759 Iter 20: T = 661.2142356731797 K, F = -311.1338670596881, relative_change = 0.006945818999750912 Iter 25: T = 646.3340686097891 K, F = -131.10042947543545, relative_change = 0.003253565225746557 Iter 30: T = 639.7340593873423 K, F = -55.016786118368, relative_change = 0.001433002951849219 Iter 35: T = 636.9005225729111 K, F = -23.043222502180956, relative_change = 0.0006129581976257727 Iter 40: T = 635.702057794236 K, F = -9.643108983555068, relative_change = 0.00025881617400941575 Iter 45: T = 635.1984457212845 K, F = -4.0339491425668275, relative_change = 0.00010867810900013562 Iter 50: T = 634.9874058031379 K, F = -1.687236261741233, relative_change = 4.552756230633504e-5 Iter 55: T = 634.8990720804353 K, F = -0.7056557302206614, relative_change = 1.905368510540601e-5 Iter 60: T = 634.8621168464122 K, F = -0.29511949457448483, relative_change = 7.970844883715986e-6 Iter 65: T = 634.8466594482109 K, F = -0.12342351891517994, relative_change = 3.3339165576446757e-6 Iter 70: T = 634.8401945811547 K, F = -0.0516173683257205, relative_change = 1.3943561480538352e-6 Iter 75: T = 634.8374908268347 K, F = -0.021587031132032752, relative_change = 5.831490618883921e-7 Iter 80: T = 634.8363600722956 K, F = -0.009027959689041909, relative_change = 2.4388211775995467e-7 Iter 85: T = 634.8358871751109 K, F = -0.003775601514454552, relative_change = 1.0199480176384227e-7 Iter 90: T = 634.8356894034877 K, F = -0.0015790018106206505, relative_change = 4.2655511952876055e-8 Iter 95: T = 634.8356066929678 K, F = -0.0006603574441644833, relative_change = 1.7839056380841167e-8 Iter 100: T = 634.8355721024292 K, F = -0.00027616937560215327, relative_change = 7.460508522462907e-9 Iter 105: T = 634.8355576362508 K, F = -0.00011549733117294236, relative_change = 3.1200741035874013e-9 Iter 110: T = 634.8355515863219 K, F = -4.83023638955804e-5, relative_change = 1.304852328967318e-9 Iter 115: T = 634.8355490561694 K, F = -2.020062578722559e-5, relative_change = 5.457048471209838e-10 Iter 120: T = 634.8355479980293 K, F = -8.448143307859812e-6, relative_change = 2.2822029561935025e-10 Iter 125: T = 634.8355475555024 K, F = -3.533114452503039e-6, relative_change = 9.544445425459141e-11 Iter 130: T = 634.8355473704323 K, F = -1.4775894134344547e-6, relative_change = 3.9915977042136684e-11 Iter 135: T = 634.8355472930339 K, F = -6.179449174581464e-7, relative_change = 1.6693321519913592e-11 Iter 140: T = 634.835547260665 K, F = -2.5843146234105774e-7, relative_change = 6.981333401872622e-12 Iter 145: T = 634.8355472471279 K, F = -1.0807968386927769e-7, relative_change = 2.919692131530179e-12 Iter 150: T = 634.8355472414665 K, F = -4.520081792191988e-8, relative_change = 1.221066417908676e-12 Iter 155: T = 634.8355472390989 K, F = -1.890406903237718e-8, relative_change = 5.106793398638697e-13 Converged in 160 iterations to T = 634.8355472381087 K Iter 1: T = 976.4202357570724 K, F = -5372.671712897435, relative_change = 0.023579764242927584 Iter 2: T = 955.0024671207806 K, F = -4542.969642172308, relative_change = 0.02193499054194165 Iter 3: T = 935.6551957494746 K, F = -3839.6593476377825, relative_change = 0.020258870565681 Iter 5: T = 902.7517042417016 K, F = -2739.0124240983223, relative_change = 0.016905743525779216 Iter 10: T = 848.5533600856565 K, F = -1168.0003889453185, relative_change = 0.009515586840785338 Iter 15: T = 821.7889241848367 K, F = -493.60141281057037, relative_change = 0.004661534575884352 Iter 20: T = 809.6205807654198 K, F = -207.45882294991512, relative_change = 0.0021011561189931303 Iter 25: T = 804.3330926156526 K, F = -86.95356067627421, relative_change = 0.0009083841857524615 Iter 30: T = 802.084595644983 K, F = -36.39951951167155, relative_change = 0.00038534462937088275 Iter 35: T = 801.1375419643019 K, F = -15.22882108938886, relative_change = 0.00016212868215137588 Iter 40: T = 800.7402849860179 K, F = -6.36994845644031, relative_change = 6.79758343777688e-5 Iter 45: T = 800.5739385048496 K, F = -2.664176692428638, relative_change = 2.8458445082742385e-5 Iter 50: T = 800.5043338061605 K, F = -1.1142234509161049, relative_change = 1.1906941213007993e-5 Iter 55: T = 800.4752178801053 K, F = -0.46598731733186194, relative_change = 4.9805490257286155e-6 Iter 60: T = 800.463040130588 K, F = -0.1948824693409722, relative_change = 2.083086737278711e-6 Iter 65: T = 800.4579470541195 K, F = -0.08150235239285597, relative_change = 8.712000274513147e-7 Iter 70: T = 800.4558170344008 K, F = -0.034085287946984844, relative_change = 3.643512015713746e-7 Iter 75: T = 800.4549262287148 K, F = -0.014254879873782267, relative_change = 1.5237688877849518e-7 Iter 80: T = 800.4545536820889 K, F = -0.005961561945327487, relative_change = 6.372598594568283e-8 Iter 85: T = 800.454397878457 K, F = -0.0024931965635833775, relative_change = 2.6650994801556032e-8 Iter 90: T = 800.4543327194855 K, F = -0.0010426846065336726, relative_change = 1.1145768931550775e-8 Iter 95: T = 800.4543054692199 K, F = -0.00043606315908140125, relative_change = 4.661294477761072e-9 Iter 100: T = 800.4542940728325 K, F = -0.00018236682213035316, relative_change = 1.9494091643465816e-9 Iter 105: T = 800.4542893067269 K, F = -7.626798428661541e-5, relative_change = 8.152662309554369e-10 Iter 110: T = 800.4542873134845 K, F = -3.1896182515089855e-5, relative_change = 3.409540851575179e-10 Iter 115: T = 800.4542864798868 K, F = -1.3339363501563284e-5, relative_change = 1.4259106084744676e-10 Iter 120: T = 800.4542861312664 K, F = -5.578682192752815e-6, relative_change = 5.963329611279402e-11 Iter 125: T = 800.454285985469 K, F = -2.3330712484170846e-6, relative_change = 2.4939353761807545e-11 Iter 130: T = 800.4542859244948 K, F = -9.757175548630315e-7, relative_change = 1.0429928060564042e-11 Iter 135: T = 800.4542858989947 K, F = -4.0805690815215456e-7, relative_change = 4.361922337131829e-12 Iter 140: T = 800.4542858883303 K, F = -1.7065493174150959e-7, relative_change = 1.824215063832849e-12 Iter 145: T = 800.4542858838703 K, F = -7.136831303711233e-8, relative_change = 7.628912355330733e-13 Iter 150: T = 800.4542858820051 K, F = -2.9848153948464073e-8, relative_change = 3.190616966459139e-13 Converged in 153 iterations to T = 800.454285881459 K Iter 1: T = 965.2261552459712 K, F = -7923.253605671397, relative_change = 0.03477384475402882 Iter 2: T = 932.4292441276216 K, F = -6720.129749807199, relative_change = 0.033978473272921125 Iter 3: T = 901.5798475692479 K, F = -5698.472115516096, relative_change = 0.033084973205914726 Iter 5: T = 845.610387549704 K, F = -4094.4227048257308, relative_change = 0.03098528384892415 Iter 10: T = 737.598291530828 K, F = -1781.4868138842153, relative_change = 0.023968831287202525 Iter 15: T = 670.1662393686594 K, F = -766.96140558577, relative_change = 0.015663121853973692 Iter 20: T = 633.3329877821334 K, F = -326.539614147735, relative_change = 0.008602768626470187 Iter 25: T = 615.4200523842393 K, F = -137.8513056101006, relative_change = 0.004147001510545589 Iter 30: T = 607.3489276346756 K, F = -57.905817753996196, relative_change = 0.00185340388511171 Iter 35: T = 603.8573972292671 K, F = -24.264051783714102, relative_change = 0.0007981049699217482 Iter 40: T = 602.3756178287524 K, F = -10.15596864507646, relative_change = 0.00033797519736919197 Iter 45: T = 601.7520449371364 K, F = -4.248841372632129, relative_change = 0.00014209315881510753 Iter 50: T = 601.4905739391817 K, F = -1.7771786693019367, relative_change = 5.955688204178884e-5 Iter 55: T = 601.3811032085799 K, F = -0.7432833345778485, relative_change = 2.493053102129639e-5 Iter 60: T = 601.3353001356053 K, F = -0.3108580173263472, relative_change = 1.0430297083885108e-5 Iter 65: T = 601.3161410489585 K, F = -0.13000594368994003, relative_change = 4.36278378141129e-6 Iter 70: T = 601.3081278437163 K, F = -0.05437028460815596, relative_change = 1.8246923102375111e-6 Iter 75: T = 601.3047765125144 K, F = -0.022738345428350404, relative_change = 7.631298106389833e-7 Iter 80: T = 601.3033749260051 K, F = -0.009509455146123114, relative_change = 3.191537951116486e-7 Iter 85: T = 601.3027887623293 K, F = -0.003976969026405264, relative_change = 1.3347459229533926e-7 Iter 90: T = 601.302543621075 K, F = -0.0016632161720453453, relative_change = 5.582078459157229e-8 Iter 95: T = 601.3024410999689 K, F = -0.00069557690576455, relative_change = 2.3344939036705927e-8 Iter 100: T = 601.3023982243994 K, F = -0.0002908985754363491, relative_change = 9.76313583521309e-9 Iter 105: T = 601.3023802933211 K, F = -0.00012165725989610188, relative_change = 4.083060635664846e-9 Iter 110: T = 601.3023727943294 K, F = -5.087851882601413e-5, relative_change = 1.7075848159937054e-9 Iter 115: T = 601.3023696581614 K, F = -2.127800397255797e-5, relative_change = 7.141323733236654e-10 Iter 120: T = 601.3023683465784 K, F = -8.898714151606146e-6, relative_change = 2.986586491291576e-10 Iter 125: T = 601.3023677980589 K, F = -3.7215488833397536e-6, relative_change = 1.249026261612098e-10 Iter 130: T = 601.3023675686615 K, F = -1.5563965597986673e-6, relative_change = 5.223578249649575e-11 Iter 135: T = 601.3023674727247 K, F = -6.509032275947568e-7, relative_change = 2.1845614624804742e-11 Iter 140: T = 601.3023674326028 K, F = -2.722152241951825e-7, relative_change = 9.136087566559484e-12 Iter 145: T = 601.3023674158233 K, F = -1.1384312431639287e-7, relative_change = 3.820803027525414e-12 Iter 150: T = 601.3023674088059 K, F = -4.761111832563003e-8, relative_change = 1.597924390646319e-12 Iter 155: T = 601.3023674058712 K, F = -1.9911601312205818e-8, relative_change = 6.682731788975934e-13 Iter 160: T = 601.3023674046439 K, F = -8.32666979810881e-9, relative_change = 2.7945969831445954e-13 Converged in 162 iterations to T = 601.3023674043841 K Iter 1: T = 964.641014172851 K, F = -8056.578555794679, relative_change = 0.03535898582714896 Iter 2: T = 931.2262370030634 K, F = -6834.288747706768, relative_change = 0.03463959823275785 Iter 3: T = 899.725427733769 K, F = -5796.310866079238, relative_change = 0.03382723554984065 Iter 5: T = 842.3534995754222 K, F = -4166.491612740674, relative_change = 0.031900331515863696 Iter 10: T = 730.3858935966655 K, F = -1815.5236727160695, relative_change = 0.025270600994810093 Iter 15: T = 659.0043751462525 K, F = -783.0800897057526, relative_change = 0.017010013322649883 Iter 20: T = 619.1560145403071 K, F = -333.9738445527377, relative_change = 0.009593962631219578 Iter 25: T = 599.4524767093249 K, F = -141.15133450124927, relative_change = 0.004706421634308319 Iter 30: T = 590.4874066218542 K, F = -59.328265489250924, relative_change = 0.002122956317276422 Iter 35: T = 586.5903203801938 K, F = -24.867211557467527, relative_change = 0.0009181272503439335 Iter 40: T = 584.9327978956295 K, F = -10.409737290279097, relative_change = 0.0003895371489189538 Iter 45: T = 584.2346058483943 K, F = -4.355241940043812, relative_change = 0.00016390331706640142 Iter 50: T = 583.9417284024687 K, F = -1.8217245636454142, relative_change = 6.872177848941732e-5 Iter 55: T = 583.8190878934872 K, F = -0.7619213696935867, relative_change = 2.8771071000128976e-5 Iter 60: T = 583.767770880275 K, F = -0.31865413942948606, relative_change = 1.2037801368585795e-5 Iter 65: T = 583.7463047152944 K, F = -0.1332666328969205, relative_change = 5.03529666013669e-6 Iter 70: T = 583.7373264728695 K, F = -0.05573398888248529, relative_change = 2.1059864132899152e-6 Iter 75: T = 583.7335715184463 K, F = -0.02330867073306092, relative_change = 8.807775685025951e-7 Iter 80: T = 583.7320011260875 K, F = -0.009747973379227448, relative_change = 3.6835675260936876e-7 Iter 85: T = 583.7313443647755 K, F = -0.004076720441069104, relative_change = 1.540520771258256e-7 Iter 90: T = 583.7310696985691 K, F = -0.0017049334465035204, relative_change = 6.442657301918584e-8 Iter 95: T = 583.7309548297445 K, F = -0.0007130235762579096, relative_change = 2.6943989298864285e-8 Iter 100: T = 583.7309067902064 K, F = -0.0002981949830723196, relative_change = 1.1268302828179351e-8 Iter 105: T = 583.7308866994937 K, F = -0.0001247087052532181, relative_change = 4.712539667469441e-9 Iter 110: T = 583.730878297317 K, F = -5.2154670236392864e-5, relative_change = 1.970840517321338e-9 Iter 115: T = 583.7308747834262 K, F = -2.1811706457153246e-5, relative_change = 8.242290838926833e-10 Iter 120: T = 583.730873313875 K, F = -9.12191579660604e-6, relative_change = 3.447024378980642e-10 Iter 125: T = 583.7308726992911 K, F = -3.814893970055522e-6, relative_change = 1.4415867101969466e-10 Iter 130: T = 583.7308724422649 K, F = -1.5954339089851999e-6, relative_change = 6.028886629786399e-11 Iter 135: T = 583.7308723347735 K, F = -6.672304492250092e-7, relative_change = 2.5213559240472515e-11 Iter 140: T = 583.7308722898191 K, F = -2.790431561372486e-7, relative_change = 1.0544589442323137e-11 Iter 145: T = 583.7308722710187 K, F = -1.1669900973343417e-7, relative_change = 4.409866786154659e-12 Iter 150: T = 583.7308722631562 K, F = -4.8804605801144874e-8, relative_change = 1.8442470989193017e-12 Iter 155: T = 583.730872259868 K, F = -2.041033708710671e-8, relative_change = 7.712736194457303e-13 Iter 160: T = 583.7308722584928 K, F = -8.535501694328929e-9, relative_change = 3.225428006185508e-13 Converged in 163 iterations to T = 583.7308722580901 K Iter 1: T = 964.2465051079929 K, F = -8146.4678214975975, relative_change = 0.035753494892007055 Iter 2: T = 930.4138299201257 K, F = -6911.275766956176, relative_change = 0.03508716392399885 Iter 3: T = 898.4708043961789 K, F = -5862.313475284349, relative_change = 0.03433206224663391 Iter 5: T = 840.1403989568317 K, F = -4215.155840999612, relative_change = 0.0325295804512806 Iter 10: T = 725.4114197465672 K, F = -1838.6214594123992, relative_change = 0.02620097597045624 Iter 15: T = 651.1634582380701 K, F = -794.1241400105462, relative_change = 0.01802139173417898 Iter 20: T = 609.0340175743108 K, F = -339.1271828793852, relative_change = 0.010373130361874603 Iter 25: T = 587.9307368411731 K, F = -143.4599300732183, relative_change = 0.005160030089775003 Iter 30: T = 578.2528464462813 K, F = -60.32866572198667, relative_change = 0.002345201550344568 Iter 35: T = 574.029111229259 K, F = -25.29251050674529, relative_change = 0.001017865468081753 Iter 40: T = 572.2293880575418 K, F = -10.588881580136388, relative_change = 0.00043253351822552616 Iter 45: T = 571.4706981215157 K, F = -4.430391337313511, relative_change = 0.00018211725727428237 Iter 50: T = 571.1523361161172 K, F = -1.8531934166972812, relative_change = 7.63802828895667e-5 Iter 55: T = 571.0190052567963 K, F = -0.7750891294219864, relative_change = 3.1981200937980364e-5 Iter 60: T = 570.9632117227765 K, F = -0.3241622994788005, relative_change = 1.3381587583683733e-5 Iter 65: T = 570.9398724268242 K, F = -0.13557042924229606, relative_change = 5.597506729122573e-6 Iter 70: T = 570.9301106442521 K, F = -0.056697502173362585, relative_change = 2.3411483328185183e-6 Iter 75: T = 570.9260279734697 K, F = -0.02371163016924102, relative_change = 9.791319060321711e-7 Iter 80: T = 570.9243205208786 K, F = -0.009916496994801793, relative_change = 4.094909030927163e-7 Iter 85: T = 570.9236064384071 K, F = -0.0041471992332386964, relative_change = 1.712550785539368e-7 Iter 90: T = 570.9233077996439 K, F = -0.001734408555239375, relative_change = 7.162111014234278e-8 Iter 95: T = 570.9231829051813 K, F = -0.0007253504242416553, relative_change = 2.995283699171067e-8 Iter 100: T = 570.9231306727966 K, F = -0.00030335021860816713, relative_change = 1.2526639956791473e-8 Iter 105: T = 570.9231088285844 K, F = -0.00012686468505412885, relative_change = 5.2387914196307135e-9 Iter 110: T = 570.9230996930733 K, F = -5.305632698404672e-5, relative_change = 2.1909253281715206e-9 Iter 115: T = 570.9230958724933 K, F = -2.218878970483562e-5, relative_change = 9.16271172130615e-10 Iter 120: T = 570.923094274681 K, F = -9.279617324997602e-6, relative_change = 3.8319557171412176e-10 Iter 125: T = 570.923093606457 K, F = -3.880847564696754e-6, relative_change = 1.6025699740548157e-10 Iter 130: T = 570.9230933269976 K, F = -1.623016795126997e-6, relative_change = 6.702139019783413e-11 Iter 135: T = 570.9230932101243 K, F = -6.787650795869737e-7, relative_change = 2.8029148824944328e-11 Iter 140: T = 570.9230931612465 K, F = -2.838673098248812e-7, relative_change = 1.172211022067123e-11 Iter 145: T = 570.9230931408052 K, F = -1.1871710464683716e-7, relative_change = 4.902343235101253e-12 Iter 150: T = 570.9230931322564 K, F = -4.964893096648382e-8, relative_change = 2.05021931418361e-12 Iter 155: T = 570.9230931286812 K, F = -2.0764036379183892e-8, relative_change = 8.574369598213729e-13 Iter 160: T = 570.923093127186 K, F = -8.68366700768064e-9, relative_change = 3.5858620661655407e-13 Converged in 163 iterations to T = 570.9230931267482 K Iter 1: T = 980.0845822869298 K, F = -4537.746870375993, relative_change = 0.01991541771307013 Iter 2: T = 962.2153594207902 K, F = -3833.10691410806, relative_change = 0.01823232727979831 Iter 3: T = 946.2718388977427 K, F = -3236.3772689806706, relative_change = 0.01656959678199766 Iter 5: T = 919.6399562976874 K, F = -2303.9793719890395, relative_change = 0.013394228542894128 Iter 10: T = 877.3337101900696 K, F = -978.1805403628531, relative_change = 0.007043772156561231 Iter 15: T = 857.2942019054088 K, F = -412.2152293647374, relative_change = 0.003305012277372298 Iter 20: T = 848.3976613368466 K, F = -172.9973074215487, relative_change = 0.0014568861840386735 Iter 25: T = 844.5765096361993 K, F = -72.46000234118519, relative_change = 0.0006234113700886905 Iter 30: T = 842.9600149212849 K, F = -30.323335897061927, relative_change = 0.0002632733187825212 Iter 35: T = 842.2806846353847 K, F = -12.685054765725827, relative_change = 0.00011055741729164558 Iter 40: T = 841.995999628597 K, F = -5.305651028301748, relative_change = 4.6316207573736616e-5 Iter 45: T = 841.8768389743118 K, F = -2.218993402995877, relative_change = 1.9383979304914817e-5 Iter 50: T = 841.8269867010141 K, F = -0.9280282286728343, relative_change = 8.109060779225946e-6 Iter 55: T = 841.8061347584165 K, F = -0.3881157573992716, relative_change = 3.3917346075674514e-6 Iter 60: T = 841.7974136800159 K, F = -0.16231521664287785, relative_change = 1.4185388858411653e-6 Iter 65: T = 841.7937663251992 K, F = -0.06788226205339054, relative_change = 5.932630157067182e-7 Iter 70: T = 841.7922409411216 K, F = -0.028389190164705758, relative_change = 2.481119717128754e-7 Iter 75: T = 841.7916030043565 K, F = -0.01187270142129826, relative_change = 1.037637907668701e-7 Iter 80: T = 841.7913362110709 K, F = -0.004965306058607011, relative_change = 4.339532665350558e-8 Iter 85: T = 841.7912246348432 K, F = -0.0020765503850246336, relative_change = 1.8148456122614893e-8 Iter 90: T = 841.7911779723164 K, F = -0.0008684381831796095, relative_change = 7.5899032048822e-9 Iter 95: T = 841.7911584574879 K, F = -0.0003631912214374644, relative_change = 3.1741885297461098e-9 Iter 100: T = 841.791150296153 K, F = -0.00015189090583334064, relative_change = 1.327483608818303e-9 Iter 105: T = 841.7911468829852 K, F = -6.352259051767284e-5, relative_change = 5.55169507135234e-10 Iter 110: T = 841.7911454555576 K, F = -2.656590547789328e-5, relative_change = 2.3217851554300775e-10 Iter 115: T = 841.7911448585904 K, F = -1.1110178251172442e-5, relative_change = 9.709982235056586e-11 Iter 120: T = 841.7911446089317 K, F = -4.646411771558334e-6, relative_change = 4.060832760944914e-11 Iter 125: T = 841.7911445045214 K, F = -1.9431856781437773e-6, relative_change = 1.6982894446349937e-11 Iter 130: T = 841.7911444608557 K, F = -8.126633865845889e-7, relative_change = 7.1024486611962554e-12 Iter 135: T = 841.7911444425943 K, F = -3.3986662639762244e-7, relative_change = 2.9703384030100544e-12 Iter 140: T = 841.791144434957 K, F = -1.4213484944569643e-7, relative_change = 1.2422184731927986e-12 Iter 145: T = 841.7911444317631 K, F = -5.944255243583996e-8, relative_change = 5.195111333978458e-13 Converged in 150 iterations to T = 841.7911444304274 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 10%|███ | ETA: 0:00:09 Bin 1 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 1 ray tracing: 29%|████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 39%|███████████▋ | ETA: 0:00:06 Bin 1 ray tracing: 48%|██████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 58%|█████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 67%|████████████████████▎ | ETA: 0:00:03 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:02 Bin 1 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 96%|█████████████████████████████ | ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 2 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 2 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 2 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 2 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 56%|█████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 2 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 2 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▍ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:10 Bin 3 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 3 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 38%|███████████▌ | ETA: 0:00:07 Bin 3 ray tracing: 48%|██████████████▍ | ETA: 0:00:06 Bin 3 ray tracing: 58%|█████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 67%|████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 4 ray tracing: 19%|█████▋ | ETA: 0:00:09 Bin 4 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 4 ray tracing: 39%|███████████▋ | ETA: 0:00:07 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 59%|█████████████████▊ | ETA: 0:00:04 Bin 4 ray tracing: 69%|████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 4 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 5 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 41%|████████████▍ | ETA: 0:00:06 Bin 5 ray tracing: 51%|███████████████▌ | ETA: 0:00:05 Bin 5 ray tracing: 62%|██████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:03 Bin 5 ray tracing: 82%|████████████████████████▊ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|███ | ETA: 0:00:09 Bin 6 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 6 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 6 ray tracing: 40%|████████████▏ | ETA: 0:00:06 Bin 6 ray tracing: 51%|███████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 61%|██████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:03 Bin 6 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 6 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 10%|███ | ETA: 0:00:09 Bin 7 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 7 ray tracing: 30%|█████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 7 ray tracing: 51%|███████████████▎ | ETA: 0:00:05 Bin 7 ray tracing: 61%|██████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 7 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 10%|███▏ | ETA: 0:00:09 Bin 8 ray tracing: 21%|██████▏ | ETA: 0:00:08 Bin 8 ray tracing: 31%|█████████▎ | ETA: 0:00:07 Bin 8 ray tracing: 41%|████████████▎ | ETA: 0:00:06 Bin 8 ray tracing: 51%|███████████████▎ | ETA: 0:00:05 Bin 8 ray tracing: 61%|██████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 90%|███████████████████████████ | ETA: 0:00:01 Bin 8 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 9 ray tracing: 19%|█████▌ | ETA: 0:00:09 Bin 9 ray tracing: 28%|████████▌ | ETA: 0:00:08 Bin 9 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 9 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 9 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 9 ray tracing: 67%|████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 77%|███████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 87%|██████████████████████████ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 10 ray tracing: 20%|█████▉ | ETA: 0:00:08 Bin 10 ray tracing: 31%|████████▉ | ETA: 0:00:07 Bin 10 ray tracing: 41%|███████████▉ | ETA: 0:00:06 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:05 Bin 10 ray tracing: 62%|█████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 72%|████████████████████▉ | ETA: 0:00:03 Bin 10 ray tracing: 82%|███████████████████████▉ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:09 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2869015913449 K, F = -7453.71059060216, relative_change = 0.03271309840865512 Iter 2: T = 936.6474063444015 K, F = -6318.363307921101, relative_change = 0.03167570572550543 Iter 3: T = 908.0502481408785 K, F = -5354.445501338517, relative_change = 0.0305314016884257 Iter 5: T = 856.8452217063702 K, F = -3841.6385232354355, relative_change = 0.027927164886080817 Iter 10: T = 761.5736366966529 K, F = -1663.5493702334304, relative_change = 0.020015271772528036 Iter 15: T = 705.7537039499246 K, F = -712.2863865336086, relative_change = 0.012004281372947396 Iter 20: T = 677.0288545844677 K, F = -301.9004697701442, relative_change = 0.006151430050475203 Iter 25: T = 663.6285722104668 K, F = -127.09667065232912, relative_change = 0.002842768360852752 Iter 30: T = 657.7281129743047 K, F = -53.31304816179019, relative_change = 0.0012437573583183933 Iter 35: T = 655.203588484846 K, F = -22.325174875326923, relative_change = 0.0005304157772214023 Iter 40: T = 654.1374373313855 K, F = -9.341815026886355, relative_change = 0.00022367339560499578 Iter 45: T = 653.689715309699 K, F = -3.907767474191285, relative_change = 9.386992315844567e-5 Iter 50: T = 653.5021475455906 K, F = -1.6344344553369528, relative_change = 3.9315016225847054e-5 Iter 55: T = 653.4236474349461 K, F = -0.6835679270676691, relative_change = 1.6452086586764472e-5 Iter 60: T = 653.3908077632906 K, F = -0.28588115608696807, relative_change = 6.882223203760466e-6 Iter 65: T = 653.3770720725711 K, F = -0.11955976825482006, relative_change = 2.8785365962312428e-6 Iter 70: T = 653.3713273369045 K, F = -0.05000147241245001, relative_change = 1.2038923750931865e-6 Iter 75: T = 653.368924766358 K, F = -0.020911239047706143, relative_change = 5.034916128258246e-7 Iter 80: T = 653.3679199733081 K, F = -0.00874533447244713, relative_change = 2.105678572065911e-7 Iter 85: T = 653.3674997552189 K, F = -0.0036574041172675043, relative_change = 8.806228150049555e-8 Iter 90: T = 653.3673240147093 K, F = -0.0015295702201976735, relative_change = 3.682874833666026e-8 Iter 95: T = 653.3672505178793 K, F = -0.0006396845562077758, relative_change = 1.5402231189915708e-8 Iter 100: T = 653.3672197806186 K, F = -0.00026752372524402324, relative_change = 6.441398573578331e-9 Iter 105: T = 653.3672069259276 K, F = -0.00011188161821001907, relative_change = 2.6938700961816383e-9 Iter 110: T = 653.3672015499419 K, F = -4.679022808135036e-5, relative_change = 1.1266086706313392e-9 Iter 115: T = 653.3671993016405 K, F = -1.9568232177080702e-5, relative_change = 4.711612083291563e-10 Iter 120: T = 653.3671983613741 K, F = -8.183669260586335e-6, relative_change = 1.9704526647629083e-10 Iter 125: T = 653.3671979681434 K, F = -3.4225082853889255e-6, relative_change = 8.240668550623683e-11 Iter 130: T = 653.3671978036897 K, F = -1.4313341860083817e-6, relative_change = 3.4463468435011546e-11 Iter 135: T = 653.3671977349131 K, F = -5.986016102244029e-7, relative_change = 1.4413047568566946e-11 Iter 140: T = 653.3671977061499 K, F = -2.503421419053353e-7, relative_change = 6.027703799697699e-12 Iter 145: T = 653.3671976941208 K, F = -1.0469648881183957e-7, relative_change = 2.520867715992009e-12 Iter 150: T = 653.3671976890901 K, F = -4.378493750900603e-8, relative_change = 1.0542477275966235e-12 Iter 155: T = 653.3671976869862 K, F = -1.8311224647682423e-8, relative_change = 4.4089515876677264e-13 Converged in 159 iterations to T = 653.3671976862267 K Iter 1: T = 970.3411665396818 K, F = -6757.793416767567, relative_change = 0.029658833460318154 Iter 2: T = 942.8465974546937 K, F = -5723.698645238826, relative_change = 0.02833495066795539 Iter 3: T = 917.4715511587904 K, F = -4846.094777401176, relative_change = 0.02691322890108069 Iter 5: T = 872.8641037427739 K, F = -3469.8074976178273, relative_change = 0.023821213678308334 Iter 10: T = 793.6799348773995 K, F = -1493.5017872936617, relative_change = 0.01551546339549504 Iter 15: T = 750.530097969942 K, F = -635.7521299417278, relative_change = 0.008497291655638345 Iter 20: T = 729.5822670079958 K, F = -268.3554801674972, relative_change = 0.004088622879640925 Iter 25: T = 720.1533069245974 K, F = -112.71826453608978, relative_change = 0.0018255634787871775 Iter 30: T = 716.0764213905394 K, F = -47.23051098714091, relative_change = 0.0007857681741701542 Iter 35: T = 714.3466103981183 K, F = -19.768561879803748, relative_change = 0.0003326864617729914 Iter 40: T = 713.6187296905271 K, F = -8.270311279377594, relative_change = 0.0001398580976211941 Iter 45: T = 713.3135338189453 K, F = -3.4592458144252127, relative_change = 5.8618039347762557e-5 Iter 50: T = 713.1857588927519 K, F = -1.4467860254667357, relative_change = 2.45371728631333e-5 Iter 55: T = 713.132297644947 K, F = -0.6050786170780504, relative_change = 1.0265663306312304e-5 Iter 60: T = 713.1099352682543 K, F = -0.2530538021456243, relative_change = 4.2939097910418e-6 Iter 65: T = 713.1005823126569 K, F = -0.10583059414273444, relative_change = 1.795884504521131e-6 Iter 70: T = 713.0966706650285 K, F = -0.04425970090166109, relative_change = 7.510813634492052e-7 Iter 75: T = 713.0950347445547 K, F = -0.01850994992442656, relative_change = 3.141148718712816e-7 Iter 80: T = 713.0943505791017 K, F = -0.007741084637640228, relative_change = 1.3136723364970771e-7 Iter 85: T = 713.0940644522436 K, F = -0.003237414485158796, relative_change = 5.493945841845333e-8 Iter 90: T = 713.093944790453 K, F = -0.0013539254778068832, relative_change = 2.29763572936464e-8 Iter 95: T = 713.0938947464417 K, F = -0.0005662278174969337, relative_change = 9.608990453794843e-9 Iter 100: T = 713.093873817435 K, F = -0.00023680323910768575, relative_change = 4.018595186714846e-9 Iter 105: T = 713.0938650646737 K, F = -9.903394330057491e-5, relative_change = 1.6806246089641407e-9 Iter 110: T = 713.0938614041643 K, F = -4.141717835426384e-5, relative_change = 7.028573088923199e-10 Iter 115: T = 713.0938598732954 K, F = -1.7321157845251456e-5, relative_change = 2.939433104378803e-10 Iter 120: T = 713.0938592330679 K, F = -7.24391563289295e-6, relative_change = 1.2293061294115328e-10 Iter 125: T = 713.093858965317 K, F = -3.029492875006312e-6, relative_change = 5.141106489425296e-11 Iter 130: T = 713.0938588533404 K, F = -1.2669702815770734e-6, relative_change = 2.150072441210527e-11 Iter 135: T = 713.0938588065104 K, F = -5.298613965365462e-7, relative_change = 8.991847743205768e-12 Iter 140: T = 713.0938587869256 K, F = -2.2159490720152775e-7, relative_change = 3.7605073317491e-12 Iter 145: T = 713.093858778735 K, F = -9.26745487017655e-8, relative_change = 1.5727045548102016e-12 Iter 150: T = 713.0938587753096 K, F = -3.875833631816761e-8, relative_change = 6.577362708503881e-13 Iter 155: T = 713.0938587738772 K, F = -1.6209939612821245e-8, relative_change = 2.750857297956661e-13 Converged in 157 iterations to T = 713.093858773574 K Iter 1: T = 974.4867198944715 K, F = -5813.225141439443, relative_change = 0.02551328010552842 Iter 2: T = 951.1621445841133 K, F = -4918.098133161827, relative_change = 0.023935241839810918 Iter 3: T = 929.9509457031156 K, F = -4159.00219259843, relative_change = 0.02230029759045135 Iter 5: T = 893.5127904681211 K, F = -2970.1751400404532, relative_change = 0.018944556767613568 Iter 10: T = 832.1848734878545 K, F = -1269.9389782715818, relative_change = 0.011112355829778025 Iter 15: T = 801.0858880102008 K, F = -537.6879073432763, relative_change = 0.005602210032012961 Iter 20: T = 786.7144296680588 K, F = -226.22247360561192, relative_change = 0.0025651059890418287 Iter 25: T = 780.4175500404519 K, F = -94.8650055620929, relative_change = 0.0011172579564060988 Iter 30: T = 777.7296008993931 K, F = -39.72003325362636, relative_change = 0.00047551619997358125 Iter 35: T = 776.5955753207804 K, F = -16.619620654963843, relative_change = 0.00020035004004946563 Iter 40: T = 776.119554549716 K, F = -6.951972030254678, relative_change = 8.405109335021959e-5 Iter 45: T = 775.9201675043493 K, F = -2.9076516845179445, relative_change = 3.5197261168828455e-5 Iter 50: T = 775.8367271826047 K, F = -1.2160591254149862, relative_change = 1.4727991710669995e-5 Iter 55: T = 775.8018219391773 K, F = -0.5085782297706382, relative_change = 6.160835792607886e-6 Iter 60: T = 775.787222486382 K, F = -0.21269485047941894, relative_change = 2.576782457358305e-6 Iter 65: T = 775.7811165299256 K, F = -0.08895176464331944, relative_change = 1.0776844652104584e-6 Iter 70: T = 775.7785628951249 K, F = -0.03720073191536166, relative_change = 4.50708081676021e-7 Iter 75: T = 775.7774949256534 K, F = -0.015557797636673087, relative_change = 1.8849282601033142e-7 Iter 80: T = 775.7770482865095 K, F = -0.006506458043284202, relative_change = 7.883018241953385e-8 Iter 85: T = 775.7768614964132 K, F = -0.0027210786785392127, relative_change = 3.296776419463921e-8 Iter 90: T = 775.7767833785167 K, F = -0.0011379876399335576, relative_change = 1.3787519799653818e-8 Iter 95: T = 775.7767507086711 K, F = -0.00047592002994190086, relative_change = 5.766106696849057e-9 Iter 100: T = 775.77673704575 K, F = -0.0001990354421402829, relative_change = 2.4114549081107684e-9 Iter 105: T = 775.776731331753 K, F = -8.323899983120331e-5, relative_change = 1.008499288217152e-9 Iter 110: T = 775.7767289420912 K, F = -3.4811544094903724e-5, relative_change = 4.2176645595858307e-10 Iter 115: T = 775.776727942706 K, F = -1.4558603188774555e-5, relative_change = 1.7638776641332516e-10 Iter 120: T = 775.7767275247511 K, F = -6.088580411178768e-6, relative_change = 7.37674547609524e-11 Iter 125: T = 775.7767273499575 K, F = -2.5463155152172234e-6, relative_change = 3.085041209811939e-11 Iter 130: T = 775.7767272768567 K, F = -1.0648999522189229e-6, relative_change = 1.2902015554485586e-11 Iter 135: T = 775.7767272462851 K, F = -4.453547329807961e-7, relative_change = 5.395787351936003e-12 Iter 140: T = 775.7767272334996 K, F = -1.8625322817378276e-7, relative_change = 2.2565894970729825e-12 Iter 145: T = 775.7767272281526 K, F = -7.789255906942572e-8, relative_change = 9.437234050943183e-13 Iter 150: T = 775.7767272259165 K, F = -3.2576038755394165e-8, relative_change = 3.946817332287917e-13 Converged in 154 iterations to T = 775.7767272251094 K Iter 1: T = 970.3482105712928 K, F = -6756.188427464401, relative_change = 0.029651789428707172 Iter 2: T = 942.8608227527811 K, F = -5722.328281780639, relative_change = 0.028327344265754298 Iter 3: T = 917.4930524421446 K, F = -4844.924474691412, relative_change = 0.026905105927057887 Iter 5: T = 872.900223073018 K, F = -3468.9537030622632, relative_change = 0.02381228239878986 Iter 10: T = 793.7499155826376 K, F = -1493.1153453270945, relative_change = 0.01550654199221594 Iter 15: T = 750.6247628564768 K, F = -635.5805001486616, relative_change = 0.008490931591118986 Iter 20: T = 729.6911545942831 K, F = -268.2810766194174, relative_change = 0.004085108055001232 Iter 25: T = 720.269176840612 K, F = -112.686581666733, relative_change = 0.001823888672809602 Iter 30: T = 716.1954332506913 K, F = -47.21715160165004, relative_change = 0.0007850263167975341 Iter 35: T = 714.4669788135213 K, F = -19.7629548827067, relative_change = 0.00033236848567603497 Iter 40: T = 713.7396731808207 K, F = -8.267962813680654, relative_change = 0.00013972372841120594 Iter 45: T = 713.4347191906783 K, F = -3.4582630318499272, relative_change = 5.856159901718073e-5 Iter 50: T = 713.3070456649817 K, F = -1.446374904183616, relative_change = 2.4513525694051248e-5 Iter 55: T = 713.2536268666674 K, F = -0.6049066620032262, relative_change = 1.0255766215805975e-5 Iter 60: T = 713.2312822503175 K, F = -0.2529818851128162, relative_change = 4.289769385895916e-6 Iter 65: T = 713.2219367236128 K, F = -0.10580051699212611, relative_change = 1.7941527060510563e-6 Iter 70: T = 713.2180281830643 K, F = -0.04424712217531923, relative_change = 7.503570641389141e-7 Iter 75: T = 713.2163935620484 K, F = -0.018504689333446622, relative_change = 3.138119541741394e-7 Iter 80: T = 713.2157099400512 K, F = -0.007738884591981576, relative_change = 1.3124054860271186e-7 Iter 85: T = 713.215424040474 K, F = -0.0032364943984120043, relative_change = 5.488647698806069e-8 Iter 90: T = 713.215304473735 K, F = -0.001353540685586796, relative_change = 2.2954199774259455e-8 Iter 95: T = 713.2152544694757 K, F = -0.0005660668921179113, relative_change = 9.599723896742324e-9 Iter 100: T = 713.2152335570936 K, F = -0.00023673593662665304, relative_change = 4.014719774213194e-9 Iter 105: T = 713.215224811285 K, F = -9.900579610888638e-5, relative_change = 1.6790038566607615e-9 Iter 110: T = 713.2152211536833 K, F = -4.14054056074864e-5, relative_change = 7.021794695995051e-10 Iter 115: T = 713.2152196240306 K, F = -1.731623559675377e-5, relative_change = 2.9365985123331053e-10 Iter 120: T = 713.2152189843116 K, F = -7.241857122086692e-6, relative_change = 1.2281206745681946e-10 Iter 125: T = 713.2152187167735 K, F = -3.0286329649742427e-6, relative_change = 5.1361504430438987e-11 Iter 130: T = 713.2152186048858 K, F = -1.2666101067981828e-6, relative_change = 2.1479988302609535e-11 Iter 135: T = 713.2152185580929 K, F = -5.297104034296396e-7, relative_change = 8.983169494641014e-12 Iter 140: T = 713.2152185385237 K, F = -2.2153166612248754e-7, relative_change = 3.756876384877037e-12 Iter 145: T = 713.2152185303396 K, F = -9.264811484666069e-8, relative_change = 1.571186281772289e-12 Iter 150: T = 713.2152185269169 K, F = -3.874657383828861e-8, relative_change = 6.570893037871817e-13 Iter 155: T = 713.2152185254855 K, F = -1.6204732888880358e-8, relative_change = 2.748102760402335e-13 Converged in 157 iterations to T = 713.2152185251826 K Iter 1: T = 969.4023052155167 K, F = -6971.7138625662965, relative_change = 0.030597694784483393 Iter 2: T = 940.9476371748261 K, F = -5906.392756595828, relative_change = 0.029352795931679332 Iter 3: T = 914.5965057849481 K, F = -5002.164492620504, relative_change = 0.028004886083774664 Iter 5: T = 868.0167543237327 K, F = -3583.7576118552693, relative_change = 0.025032982009594338 Iter 10: T = 784.1949296674426 K, F = -1545.232671118364, relative_change = 0.01675871288634764 Iter 15: T = 737.5905128220292 K, F = -658.8108961389534, relative_change = 0.009405218019770173 Iter 20: T = 714.6186574700458 K, F = -278.38019746486174, relative_change = 0.004598429801069042 Iter 25: T = 704.1861072257892 K, F = -116.99404514615308, relative_change = 0.0020705407967387393 Iter 30: T = 699.6553686336133 K, F = -49.03487154587511, relative_change = 0.0008947087260457611 Iter 35: T = 697.729160444248 K, F = -20.526129941958175, relative_change = 0.00037946138881879285 Iter 40: T = 696.9179408954271 K, F = -8.58766382732067, relative_change = 0.0001596386484179335 Iter 45: T = 696.577677412483 K, F = -3.5920596546672288, relative_change = 6.692922820419454e-5 Iter 50: T = 696.4351990197866 K, F = -1.5023467200553677, relative_change = 2.8019819556238718e-5 Iter 55: T = 696.3755819788895 K, F = -0.6283176287472149, relative_change = 1.1723341089563447e-5 Iter 60: T = 696.3506440152338 K, F = -0.2627731358698659, relative_change = 4.903736954238191e-6 Iter 65: T = 696.3402137152739 K, F = -0.10989542331663055, relative_change = 2.050958058708314e-6 Iter 70: T = 696.3358514738298 K, F = -0.04595967635453868, relative_change = 8.577625639788926e-7 Iter 75: T = 696.334027103425 K, F = -0.01922090264397147, relative_change = 3.58731342328115e-7 Iter 80: T = 696.3332641248732 K, F = -0.008038414024444274, relative_change = 1.500265700260188e-7 Iter 85: T = 696.3329450372457 K, F = -0.003361761267542507, relative_change = 6.274304994061597e-8 Iter 90: T = 696.3328115908344 K, F = -0.0014059288006261772, relative_change = 2.6239918428932537e-8 Iter 95: T = 696.3327557819244 K, F = -0.0005879762311233883, relative_change = 1.0973851750719405e-8 Iter 100: T = 696.332732441967 K, F = -0.0002458986839783961, relative_change = 4.589396631139959e-9 Iter 105: T = 696.3327226809173 K, F = -0.00010283776630182206, relative_change = 1.9193406084269164e-9 Iter 110: T = 696.3327185987296 K, F = -4.300798179057708e-5, relative_change = 8.026911825261184e-10 Iter 115: T = 696.3327168915099 K, F = -1.7986452562013255e-5, relative_change = 3.3569506040259067e-10 Iter 120: T = 696.3327161775302 K, F = -7.522148645744409e-6, relative_change = 1.4039167243298656e-10 Iter 125: T = 696.3327158789355 K, F = -3.145852452757225e-6, relative_change = 5.87134752012035e-11 Iter 130: T = 696.3327157540594 K, F = -1.3156331220010031e-6, relative_change = 2.4554677598035234e-11 Iter 135: T = 696.3327157018349 K, F = -5.502136259938339e-7, relative_change = 1.0269062077580089e-11 Iter 140: T = 696.332715679994 K, F = -2.3010643335208414e-7, relative_change = 4.294654180233724e-12 Iter 145: T = 696.3327156708598 K, F = -9.623367536182315e-8, relative_change = 1.7960834478945145e-12 Iter 150: T = 696.3327156670398 K, F = -4.0246394439336086e-8, relative_change = 7.511495598607253e-13 Iter 155: T = 696.3327156654422 K, F = -1.6830577931337132e-8, relative_change = 3.141220817810027e-13 Converged in 157 iterations to T = 696.332715665104 K Iter 1: T = 963.5731022150107 K, F = -8299.903311235115, relative_change = 0.03642689778498926 Iter 2: T = 929.0246259611489 K, F = -7042.724461339785, relative_change = 0.035854546141277324 Iter 3: T = 896.3210758312915 K, F = -5975.047846994801, relative_change = 0.03520202717556922 Iter 5: T = 836.3300108303827 K, F = -4298.36310674616, relative_change = 0.03362728544561338 Iter 10: T = 716.6996946948285 K, F = -1878.3411896181342, relative_change = 0.027896990971358858 Iter 15: T = 637.1246362243467 K, F = -813.341413010528, relative_change = 0.01997852056622604 Iter 20: T = 590.5296731745159 K, F = -348.2329158507463, relative_change = 0.011972804532850512 Iter 25: T = 566.5646453295118 K, F = -147.5918030866562, relative_change = 0.006131687806850222 Iter 30: T = 555.3886923590552 K, F = -62.13308447795085, relative_change = 0.0028326867863786584 Iter 35: T = 550.468552664045 K, F = -26.062585206688027, relative_change = 0.0012391422521304248 Iter 40: T = 548.3636388619914 K, F = -10.913818039615201, relative_change = 0.0005284085953967329 Iter 45: T = 547.4747298543889 K, F = -4.566801977769508, relative_change = 0.00022281989159945697 Iter 50: T = 547.1014452636437 K, F = -1.9103337107823133, relative_change = 9.351047020353124e-5 Iter 55: T = 546.9450632185985 K, F = -0.7990020073650494, relative_change = 3.916424678100206e-5 Iter 60: T = 546.8796150150978 K, F = -0.33416577670156, relative_change = 1.638895546166798e-5 Iter 65: T = 546.852235499895 K, F = -0.13975449760049127, relative_change = 6.855807432732222e-6 Iter 70: T = 546.8407836080859 K, F = -0.05844741608748219, relative_change = 2.8674868287219844e-6 Iter 75: T = 546.8359940362285 K, F = -0.02444348020805706, relative_change = 1.1992708145538741e-6 Iter 80: T = 546.8339909356602 K, F = -0.010222568069808646, relative_change = 5.015587483130605e-7 Iter 85: T = 546.8331532073115 K, F = -0.004275202275272283, relative_change = 2.0975949746279018e-7 Iter 90: T = 546.8328028579527 K, F = -0.0017879410368073778, relative_change = 8.772421354027413e-8 Iter 95: T = 546.8326563374293 K, F = -0.0007477383619728661, relative_change = 3.66873638800895e-8 Iter 100: T = 546.832595060755 K, F = -0.0003127131247826209, relative_change = 1.5343102484718124e-8 Iter 105: T = 546.8325694341108 K, F = -0.00013078036609298627, relative_change = 6.4166702598091416e-9 Iter 110: T = 546.8325587167408 K, F = -5.4693911186232125e-5, relative_change = 2.683528395986649e-9 Iter 115: T = 546.8325542346084 K, F = -2.2873646489424138e-5, relative_change = 1.1222836498272997e-9 Iter 120: T = 546.8325523601271 K, F = -9.566031429847355e-6, relative_change = 4.693523985176801e-10 Iter 125: T = 546.8325515761966 K, F = -4.000628110567561e-6, relative_change = 1.962887562996022e-10 Iter 130: T = 546.8325512483475 K, F = -1.6731104507672345e-6, relative_change = 8.209030217101976e-11 Iter 135: T = 546.8325511112372 K, F = -6.997146278497901e-7, relative_change = 3.4331137717715346e-11 Iter 140: T = 546.8325510538959 K, F = -2.926285121440664e-7, relative_change = 1.4357667191316904e-11 Iter 145: T = 546.8325510299152 K, F = -1.2238117469420828e-7, relative_change = 6.004569289009174e-12 Iter 150: T = 546.8325510198862 K, F = -5.118150703253832e-8, relative_change = 2.5111942754882276e-12 Iter 155: T = 546.8325510156919 K, F = -2.140450464094279e-8, relative_change = 1.0502009933351078e-12 Iter 160: T = 546.8325510139379 K, F = -8.95216661911391e-9, relative_change = 4.3923344332178323e-13 Converged in 164 iterations to T = 546.8325510133046 K Iter 1: T = 966.8985041999297 K, F = -7542.207305697401, relative_change = 0.03310149580007027 Iter 2: T = 935.8545950059912 K, F = -6394.052718702386, relative_change = 0.03210668861218904 Iter 3: T = 906.8378711338892 K, F = -5419.221374486985, relative_change = 0.031005589999711775 Iter 5: T = 854.755056036914 K, F = -3889.161418742095, relative_change = 0.028484725666789727 Iter 10: T = 757.2125533085052 K, F = -1685.5616758842352, relative_change = 0.02069389288620475 Iter 15: T = 699.436099119525 K, F = -722.3716955450416, relative_change = 0.012590123191200658 Iter 20: T = 669.4171357015059 K, F = -306.39116516979124, relative_change = 0.006521970699341989 Iter 25: T = 655.3239792190664 K, F = -129.04061314401176, relative_change = 0.0030330141851440044 Iter 30: T = 649.0974247020746 K, F = -54.13952652745916, relative_change = 0.0013310875309393959 Iter 35: T = 646.4291540087797 K, F = -22.673353953346474, relative_change = 0.0005684447686458352 Iter 40: T = 645.3015101105681 K, F = -9.487885171353797, relative_change = 0.0002398530938888663 Iter 45: T = 644.8278234835013 K, F = -3.968936828870473, relative_change = 0.00010068557658153094 Iter 50: T = 644.6293531860632 K, F = -1.6600304689410041, relative_change = 4.217406207831666e-5 Iter 55: T = 644.5462858022327 K, F = -0.6942749853427651, relative_change = 1.7649293103728266e-5 Iter 60: T = 644.5115346921989 K, F = -0.2903594133523297, relative_change = 7.383175383177512e-6 Iter 65: T = 644.4969993787658 K, F = -0.12143270549769564, relative_change = 3.0880873516075573e-6 Iter 70: T = 644.4909201899767 K, F = -0.05078477052891661, relative_change = 1.2915371508931316e-6 Iter 75: T = 644.4883777399061 K, F = -0.021238826018437684, relative_change = 5.401471299117449e-7 Iter 80: T = 644.4873144463036 K, F = -0.008882335667501795, relative_change = 2.258978815223429e-7 Iter 85: T = 644.4868697623631 K, F = -0.003714699723949666, relative_change = 9.447352432309445e-8 Iter 90: T = 644.4866837899037 K, F = -0.001553531940001296, relative_change = 3.9510014284260676e-8 Iter 95: T = 644.4866060139434 K, F = -0.0006497056367141818, relative_change = 1.6523569985868564e-8 Iter 100: T = 644.486573487098 K, F = -0.0002717146603387621, relative_change = 6.9103560618777955e-9 Iter 105: T = 644.4865598839812 K, F = -0.0001136343174683585, relative_change = 2.8899937621555906e-9 Iter 110: T = 644.4865541949949 K, F = -4.752322866713454e-5, relative_change = 1.2086299564893473e-9 Iter 115: T = 644.4865518157928 K, F = -1.9874781712003742e-5, relative_change = 5.054634891551817e-10 Iter 120: T = 644.4865508207821 K, F = -8.311871223409817e-6, relative_change = 2.1139087320579614e-10 Iter 125: T = 644.4865504046568 K, F = -3.476123775603135e-6, relative_change = 8.840618710326931e-11 Iter 130: T = 644.4865502306282 K, F = -1.4537566238592703e-6, relative_change = 3.697252703104546e-11 Iter 135: T = 644.4865501578473 K, F = -6.079780834888915e-7, relative_change = 1.5462344775763463e-11 Iter 140: T = 644.4865501274095 K, F = -2.542631140634022e-7, relative_change = 6.466522463656279e-12 Iter 145: T = 644.4865501146801 K, F = -1.0633668290349618e-7, relative_change = 2.704397573764276e-12 Iter 150: T = 644.4865501093564 K, F = -4.447098517212922e-8, relative_change = 1.1310041005914148e-12 Iter 155: T = 644.48655010713 K, F = -1.859783477220489e-8, relative_change = 4.729876639434968e-13 Converged in 160 iterations to T = 644.4865501061989 K Iter 1: T = 965.2002272382599 K, F = -7929.1613268923065, relative_change = 0.03479977276174006 Iter 2: T = 932.3759876706093 K, F = -6725.187476071809, relative_change = 0.03400769979258186 Iter 3: T = 901.4978394226454 K, F = -5702.80597417277, relative_change = 0.03311770000116375 Iter 5: T = 845.4667132443071 K, F = -4097.613352788584, relative_change = 0.031025376280366807 Iter 10: T = 737.2827620219016 K, F = -1782.9895536140734, relative_change = 0.024024640784178142 Iter 15: T = 669.6827871325318 K, F = -767.6693908290159, relative_change = 0.015719304384027813 Iter 20: T = 632.7242160539083 K, F = -326.8641892259134, relative_change = 0.008643096353633112 Iter 25: T = 614.7381523512414 K, F = -137.99472119289726, relative_change = 0.0041693875430327985 Iter 30: T = 606.6309001293051 K, F = -57.96747371535606, relative_change = 0.001864095649055111 Iter 35: T = 603.1230658129018 K, F = -24.290162621783434, relative_change = 0.0008028460216763948 Iter 40: T = 601.6342381789685 K, F = -10.16694811245661, relative_change = 0.0003400082763243656 Iter 45: T = 601.0076757663128 K, F = -4.2534437469649875, relative_change = 0.00014295246347258912 Iter 50: T = 600.7449470638088 K, F = -1.779105311770043, relative_change = 5.991785436286433e-5 Iter 55: T = 600.6349490333271 K, F = -0.7440894084646282, relative_change = 2.5081775321701822e-5 Iter 60: T = 600.5889252069239 K, F = -0.3111951846791339, relative_change = 1.0493598568647484e-5 Iter 65: T = 600.5696737582215 K, F = -0.13014696118820301, relative_change = 4.389265850450638e-6 Iter 70: T = 600.561621919006 K, F = -0.05442926157484973, relative_change = 1.8357689381018123e-6 Iter 75: T = 600.5582544293803 K, F = -0.022763010609053336, relative_change = 7.677624528988099e-7 Iter 80: T = 600.5568460850093 K, F = -0.009519770472902145, relative_change = 3.2109126762947536e-7 Iter 85: T = 600.5562570950773 K, F = -0.003981283029320548, relative_change = 1.3428487454408508e-7 Iter 90: T = 600.5560107718421 K, F = -0.0016650203413737241, relative_change = 5.615965572306079e-8 Iter 95: T = 600.5559077564164 K, F = -0.0006963314316582037, relative_change = 2.3486659253027804e-8 Iter 100: T = 600.5558646741165 K, F = -0.00029121412769672617, relative_change = 9.822404981188037e-9 Iter 105: T = 600.5558466565808 K, F = -0.00012178922728656172, relative_change = 4.1078476964165805e-9 Iter 110: T = 600.5558391214316 K, F = -5.09337091657569e-5, relative_change = 1.7179510620632544e-9 Iter 115: T = 600.5558359701422 K, F = -2.1301085777802875e-5, relative_change = 7.18467679826426e-10 Iter 120: T = 600.5558346522353 K, F = -8.908368444082715e-6, relative_change = 3.004717665894022e-10 Iter 125: T = 600.5558341010709 K, F = -3.725585734415393e-6, relative_change = 1.256608703510552e-10 Iter 130: T = 600.5558338705673 K, F = -1.5580839993756257e-6, relative_change = 5.255286168581229e-11 Iter 135: T = 600.555833774168 K, F = -6.516096858200093e-7, relative_change = 2.197824618693654e-11 Iter 140: T = 600.5558337338526 K, F = -2.7251073481115995e-7, relative_change = 9.191557692454627e-12 Iter 145: T = 600.5558337169923 K, F = -1.1396683202713476e-7, relative_change = 3.8440053103581834e-12 Iter 150: T = 600.5558337099411 K, F = -4.76624189560404e-8, relative_change = 1.607613270658915e-12 Iter 155: T = 600.5558337069922 K, F = -1.9933038553077154e-8, relative_change = 6.723246114047812e-13 Iter 160: T = 600.555833705759 K, F = -8.336585644030947e-9, relative_change = 2.8118601630634616e-13 Converged in 162 iterations to T = 600.555833705498 K Iter 1: T = 980.1003840669841 K, F = -4534.14641975926, relative_change = 0.019899615933015882 Iter 2: T = 962.2462809460118 K, F = -3830.048816138506, relative_change = 0.018216606595832283 Iter 3: T = 946.3170853295089 K, F = -3233.7811490651734, relative_change = 0.016554177378417537 Iter 5: T = 919.7111146011059 K, F = -2302.111747702673, relative_change = 0.01338000175747985 Iter 10: T = 877.4521496332051 K, F = -977.3706303498597, relative_change = 0.007034406700745373 Iter 15: T = 857.4382282139885 K, F = -411.86957806750627, relative_change = 0.0033000882442858416 Iter 20: T = 848.5538207455136 K, F = -172.85132783991148, relative_change = 0.0014545990423127692 Iter 25: T = 844.7380383715591 K, F = -72.39868391849025, relative_change = 0.0006224100809791865 Iter 30: T = 843.1238447030088 K, F = -30.297643402524862, relative_change = 0.0002628463295926998 Iter 35: T = 842.445486764763 K, F = -12.674301276977051, relative_change = 0.00011037737316465981 Iter 40: T = 842.1612101818437 K, F = -5.301152281490678, relative_change = 4.624065114953694e-5 Iter 45: T = 842.0422206477488 K, F = -2.217111708724804, relative_change = 1.935233509041928e-5 Iter 50: T = 841.9924399937347 K, F = -0.9272412353247375, relative_change = 8.095818799901109e-6 Iter 55: T = 841.9716180127667 K, F = -0.3877866192759959, relative_change = 3.3861952551264507e-6 Iter 60: T = 841.9629094663553 K, F = -0.16217756572844633, relative_change = 1.416222017799932e-6 Iter 65: T = 841.9592673528597 K, F = -0.06782469455143225, relative_change = 5.922940310447259e-7 Iter 70: T = 841.9577441608166 K, F = -0.028365114701976557, relative_change = 2.477067232471394e-7 Iter 75: T = 841.9571071407954 K, F = -0.011862632767442483, relative_change = 1.0359430970747555e-7 Iter 80: T = 841.9568407309046 K, F = -0.004961095223911194, relative_change = 4.332444740326314e-8 Iter 85: T = 841.9567293150175 K, F = -0.0020747893634107673, relative_change = 1.8118813533427583e-8 Iter 90: T = 841.9566827195473 K, F = -0.0008677017062934667, relative_change = 7.577506343000005e-9 Iter 95: T = 841.9566632327625 K, F = -0.00036288321807464996, relative_change = 3.1690040134801536e-9 Iter 100: T = 841.9566550831559 K, F = -0.00015176209621481362, relative_change = 1.3253153913127822e-9 Iter 105: T = 841.956651674893 K, F = -6.34687230056663e-5, relative_change = 5.542627519361412e-10 Iter 110: T = 841.9566502495168 K, F = -2.6543377517285194e-5, relative_change = 2.3179930035277436e-10 Iter 115: T = 841.9566496534075 K, F = -1.11007587186851e-5, relative_change = 9.694124688445029e-11 Iter 120: T = 841.9566494041073 K, F = -4.642469499493984e-6, relative_change = 4.0541984016004515e-11 Iter 125: T = 841.9566492998471 K, F = -1.9415374652442807e-6, relative_change = 1.6955153057526055e-11 Iter 130: T = 841.9566492562442 K, F = -8.119731977895839e-7, relative_change = 7.090839140100634e-12 Iter 135: T = 841.956649238009 K, F = -3.395803496175631e-7, relative_change = 2.965503838156946e-12 Iter 140: T = 841.9566492303828 K, F = -1.4201831888271954e-7, relative_change = 1.2402245012933533e-12 Iter 145: T = 841.9566492271935 K, F = -5.939403036059332e-8, relative_change = 5.186790849561361e-13 Converged in 150 iterations to T = 841.9566492258596 K Iter 1: T = 976.528785929665 K, F = -5347.938452814353, relative_change = 0.02347121407033504 Iter 2: T = 955.2173584287215 K, F = -4521.920966612342, relative_change = 0.021823655183553867 Iter 3: T = 935.9733104740684 K, F = -3821.7519630948104, relative_change = 0.02014625025900746 Iter 5: T = 903.26344730171 K, F = -2726.0684665837884, relative_change = 0.016795301087307982 Iter 10: T = 849.4463052580747 K, F = -1162.3162185523925, relative_change = 0.009432686247662437 Iter 15: T = 822.9068814999865 K, F = -491.151971219757, relative_change = 0.00461412968175895 Iter 20: T = 810.8508005937997 K, F = -206.41861657210725, relative_change = 0.002078155405019253 Iter 25: T = 805.6142567909179 K, F = -86.51545642528669, relative_change = 0.0008981095390063075 Iter 30: T = 803.3878413079317 K, F = -36.215734854809256, relative_change = 0.00038092432658420487 Iter 35: T = 802.4501644302014 K, F = -15.151859452586857, relative_change = 0.00016025780526784283 Iter 40: T = 802.0568542777522 K, F = -6.337744417428651, relative_change = 6.71894674958408e-5 Iter 45: T = 801.8921628738656 K, F = -2.650705460708684, relative_change = 2.812888345095956e-5 Iter 50: T = 801.8232511323399 K, F = -1.1085890747691174, relative_change = 1.1768993007726915e-5 Iter 55: T = 801.79442514658 K, F = -0.46363085835439655, relative_change = 4.922836151051652e-6 Iter 60: T = 801.7823686775913 K, F = -0.19389695333596613, relative_change = 2.0589467991210532e-6 Iter 65: T = 801.7773263262928 K, F = -0.08109019490655367, relative_change = 8.611037654626517e-7 Iter 70: T = 801.7752175211815 K, F = -0.033912918253365176, relative_change = 3.6012871027415536e-7 Iter 75: T = 801.7743355878263 K, F = -0.014182792720140114, relative_change = 1.506109725596538e-7 Iter 80: T = 801.7739667517375 K, F = -0.005931414219207509, relative_change = 6.298745518666329e-8 Iter 85: T = 801.7738124999007 K, F = -0.0024805884255820754, relative_change = 2.634213184939831e-8 Iter 90: T = 801.7737479899089 K, F = -0.0010374117312055287, relative_change = 1.1016598639479979e-8 Iter 95: T = 801.7737210110545 K, F = -0.00043385797971429163, relative_change = 4.6072739019891385e-9 Iter 100: T = 801.7737097281745 K, F = -0.00018144459042512828, relative_change = 1.9268171180921863e-9 Iter 105: T = 801.7737050095391 K, F = -7.58822940158943e-5, relative_change = 8.058179459876173e-10 Iter 110: T = 801.7737030361494 K, F = -3.1734880302281e-5, relative_change = 3.3700267885509215e-10 Iter 115: T = 801.7737022108541 K, F = -1.3271904463874051e-5, relative_change = 1.409385300070974e-10 Iter 120: T = 801.773701865706 K, F = -5.550469272641578e-6, relative_change = 5.894217999145364e-11 Iter 125: T = 801.7737017213609 K, F = -2.3212744773015714e-6, relative_change = 2.4650344222668046e-11 Iter 130: T = 801.773701660994 K, F = -9.707823782623137e-7, relative_change = 1.0309043601712773e-11 Iter 135: T = 801.7737016357479 K, F = -4.059936304923184e-7, relative_change = 4.3113741381279226e-12 Iter 140: T = 801.7737016251897 K, F = -1.6979160299968044e-7, relative_change = 1.8030704698552007e-12 Iter 145: T = 801.7737016207741 K, F = -7.100966259443453e-8, relative_change = 7.540739556007645e-13 Iter 150: T = 801.7737016189275 K, F = -2.9698278725120986e-8, relative_change = 3.1537536857394954e-13 Converged in 153 iterations to T = 801.7737016183869 K Iter 1: T = 980.8427663473655 K, F = -4364.99391098652, relative_change = 0.019157233652634574 Iter 2: T = 963.6972508692481 K, F = -3686.4061151606165, relative_change = 0.017480391420907085 Iter 3: T = 948.437721848506 K, F = -3111.8650862258023, relative_change = 0.015834359812667387 Iter 5: T = 923.038697159716 K, F = -2214.4478411205964, relative_change = 0.012719902267620285 Iter 10: T = 882.9661500080414 K, F = -939.3980249544006, relative_change = 0.00660521982360168 Iter 15: T = 864.1261327153812 K, F = -395.6767923174496, relative_change = 0.0030761051368105754 Iter 20: T = 855.7959471375651 K, F = -166.0155796081751, relative_change = 0.0013509467231347736 Iter 25: T = 852.224912643492 K, F = -69.52793056294492, relative_change = 0.0005771081454508329 Iter 30: T = 850.7155086705237 K, F = -29.094902707455965, relative_change = 0.00024354182601059998 Iter 35: T = 850.0814136939755 K, F = -12.170918470080691, relative_change = 0.00010223995173396458 Iter 40: T = 849.8157261223315 K, F = -5.0905643491519434, relative_change = 4.282618435009583e-5 Iter 45: T = 849.7045244001368 K, F = -2.1290295345624113, relative_change = 1.7922380686324842e-5 Iter 50: T = 849.6580030975623 K, F = -0.890402154810733, relative_change = 7.4974473239554e-6 Iter 55: T = 849.6385446356625 K, F = -0.372379714826905, relative_change = 3.13588834658207e-6 Iter 60: T = 849.6304064025868 K, F = -0.15573415113507116, relative_change = 1.311530040545286e-6 Iter 65: T = 849.6270028137751 K, F = -0.06512997057253855, relative_change = 5.485087349381401e-7 Iter 70: T = 849.6255793778485 K, F = -0.027238147022689674, relative_change = 2.2939486403549153e-7 Iter 75: T = 849.6249840774194 K, F = -0.011391321089594841, relative_change = 9.593601458585638e-8 Iter 80: T = 849.6247351152289 K, F = -0.004763986993949976, relative_change = 4.0121646979976634e-8 Iter 85: T = 849.6246309961904 K, F = -0.0019923563396815336, relative_change = 1.6779362425282326e-8 Iter 90: T = 849.6245874523514 K, F = -0.0008332272276561081, relative_change = 7.017331572997544e-9 Iter 95: T = 849.6245692417957 K, F = -0.00034846558030943164, relative_change = 2.934732192123843e-9 Iter 100: T = 849.6245616259233 K, F = -0.0001457324676956695, relative_change = 1.2273401070422874e-9 Iter 105: T = 849.6245584408745 K, F = -6.0947058790228326e-5, relative_change = 5.132883027197488e-10 Iter 110: T = 849.624557108849 K, F = -2.548878747599126e-5, relative_change = 2.1466329662646252e-10 Iter 115: T = 849.6245565517801 K, F = -1.0659713822080974e-5, relative_change = 8.977474191118191e-11 Iter 120: T = 849.6245563188072 K, F = -4.4580205100785975e-6, relative_change = 3.754487671334587e-11 Iter 125: T = 849.6245562213752 K, F = -1.864399429063468e-6, relative_change = 1.5701732773231725e-11 Iter 130: T = 849.6245561806278 K, F = -7.797111789553668e-7, relative_change = 6.5666275070702645e-12 Iter 135: T = 849.6245561635868 K, F = -3.2608454803018105e-7, relative_change = 2.7462422249721544e-12 Iter 140: T = 849.6245561564602 K, F = -1.3637451834469516e-7, relative_change = 1.14852869590354e-12 Iter 145: T = 849.6245561534797 K, F = -5.703539973644922e-8, relative_change = 4.803448186351262e-13 Converged in 150 iterations to T = 849.6245561522333 K Iter 1: T = 967.3209571610123 K, F = -7445.950996658216, relative_change = 0.03267904283898765 Iter 2: T = 936.7168732649596 K, F = -6311.727423476029, relative_change = 0.0316379828943979 Iter 3: T = 908.156395886101 K, F = -5348.76722310051, relative_change = 0.03048997855596439 Iter 5: T = 857.0279014990524 K, F = -3837.474232890873, relative_change = 0.027878678128487544 Iter 10: T = 761.9527601286949 K, F = -1661.6237904191219, relative_change = 0.019957087672077566 Iter 15: T = 706.2999403993987 K, F = -711.4064328343104, relative_change = 0.011954804849081875 Iter 20: T = 677.684375078978 K, F = -301.5096147606169, relative_change = 0.006120496318116169 Iter 25: T = 664.3421588069771 K, F = -126.92774885244727, relative_change = 0.0028269930310002517 Iter 30: T = 658.4689155673071 K, F = -53.24129021196371, relative_change = 0.0012365398983841364 Iter 35: T = 655.9563648484423 K, F = -22.294956336625802, relative_change = 0.0005272775423330782 Iter 40: T = 654.8953315165567 K, F = -9.32913970288976, relative_change = 0.00022233907335321624 Iter 45: T = 654.4497696411571 K, F = -3.9024598477049417, relative_change = 9.330799733980419e-5 Iter 50: T = 654.2631087811159 K, F = -1.632213572449416, relative_change = 3.907932542334272e-5 Iter 55: T = 654.1849885645848 K, F = -0.6826389222135829, relative_change = 1.6353397384726146e-5 Iter 60: T = 654.1523078771411 K, F = -0.2854925992549826, relative_change = 6.840929098006046e-6 Iter 65: T = 654.1386386944155 K, F = -0.11939726286535463, relative_change = 2.8612632150735573e-6 Iter 70: T = 654.1329217764925 K, F = -0.04993350961729015, relative_change = 1.1966677947084535e-6 Iter 75: T = 654.130530840237 K, F = -0.020882816003605253, relative_change = 5.004700940390774e-7 Iter 80: T = 654.129530912888 K, F = -0.00873344758450273, relative_change = 2.093042022516299e-7 Iter 85: T = 654.1291127297103 K, F = -0.0036524328723292476, relative_change = 8.753380243656084e-8 Iter 90: T = 654.1289378402282 K, F = -0.00152749118456591, relative_change = 3.660773146170293e-8 Iter 95: T = 654.1288646993088 K, F = -0.0006388150791092895, relative_change = 1.5309799202351057e-8 Iter 100: T = 654.1288341108941 K, F = -0.0002671600997766199, relative_change = 6.402742400478492e-9 Iter 105: T = 654.1288213184523 K, F = -0.00011172954517330025, relative_change = 2.6777036072126736e-9 Iter 110: T = 654.1288159685 K, F = -4.6726630040572203e-5, relative_change = 1.1198476686766169e-9 Iter 115: T = 654.1288137310861 K, F = -1.9541635308595318e-5, relative_change = 4.683336906562794e-10 Iter 120: T = 654.1288127953728 K, F = -8.172545192197678e-6, relative_change = 1.9586274216778692e-10 Iter 125: T = 654.1288124040465 K, F = -3.4178566312714764e-6, relative_change = 8.191215322773544e-11 Iter 130: T = 654.128812240389 K, F = -1.429388364504458e-6, relative_change = 3.425663844511293e-11 Iter 135: T = 654.1288121719456 K, F = -5.977881661900497e-7, relative_change = 1.4326556445169097e-11 Iter 140: T = 654.1288121433216 K, F = -2.5000153797138935e-7, relative_change = 5.9915223292220615e-12 Iter 145: T = 654.1288121313507 K, F = -1.0455287946520286e-7, relative_change = 2.5057082329889362e-12 Iter 150: T = 654.1288121263444 K, F = -4.372497031113198e-8, relative_change = 1.0479100973613714e-12 Iter 155: T = 654.1288121242507 K, F = -1.8286112790644182e-8, relative_change = 4.382439164336823e-13 Converged in 159 iterations to T = 654.128812123495 K Iter 1: T = 973.49651546713 K, F = -6038.844162136801, relative_change = 0.02650348453287 Iter 2: T = 949.1860890121827 K, F = -5110.361736262244, relative_change = 0.024972278861503733 Iter 3: T = 927.0014429620612 K, F = -4322.82104561815, relative_change = 0.023372283166527428 Iter 5: T = 888.6878781571756 K, F = -3089.010356846484, relative_change = 0.02004377265306315 Iter 10: T = 823.4391395767827 K, F = -1322.6817638710206, relative_change = 0.012028715360385437 Iter 15: T = 789.8484596903967 K, F = -560.6315342314506, relative_change = 0.006166774897532679 Iter 20: T = 774.1740395942672 K, F = -236.0236257162253, relative_change = 0.0028506106835783406 Iter 25: T = 767.2712447032317 K, F = -99.0053203034575, relative_change = 0.0012473488239816812 Iter 30: T = 764.3176728529627 K, F = -41.45926119181212, relative_change = 0.0005319780428814382 Iter 35: T = 763.0702911067137 K, F = -17.34836989538701, relative_change = 0.00022433776168456358 Iter 40: T = 762.546456165977 K, F = -7.256988397912538, relative_change = 9.414972993703215e-5 Iter 45: T = 762.3270006562824 K, F = -3.0352561825630704, relative_change = 3.943238039175539e-5 Iter 50: T = 762.235154811428 K, F = -1.2694323881768268, relative_change = 1.6501230329492563e-5 Iter 55: T = 762.196732060839 K, F = -0.5309008851410199, relative_change = 6.902786325484343e-6 Iter 60: T = 762.1806611564732 K, F = -0.22203068240210855, relative_change = 2.8871381981135233e-6 Iter 65: T = 762.1739397535011 K, F = -0.09285616143015951, relative_change = 1.2074899929031188e-6 Iter 70: T = 762.1711287197406 K, F = -0.03883360434119121, relative_change = 5.04996236451354e-7 Iter 75: T = 762.1699531008729 K, F = -0.016240685621254358, relative_change = 2.1119711875604585e-7 Iter 80: T = 762.1694614411026 K, F = -0.0067920501693232715, relative_change = 8.832544791543881e-8 Iter 85: T = 762.1692558227792 K, F = -0.002840516754692768, relative_change = 3.6938807970805596e-8 Iter 90: T = 762.1691698306819 K, F = -0.0011879380730699385, relative_change = 1.5448259497883432e-8 Iter 95: T = 762.1691338677497 K, F = -0.0004968098959966527, relative_change = 6.460648153864144e-9 Iter 100: T = 762.1691188276202 K, F = -0.00020777183260778376, relative_change = 2.701920480445369e-9 Iter 105: T = 762.1691125376581 K, F = -8.689266155137432e-5, relative_change = 1.1299754549228222e-9 Iter 110: T = 762.1691099071207 K, F = -3.633954765946967e-5, relative_change = 4.725692232214033e-10 Iter 115: T = 762.1691088069987 K, F = -1.519763472079827e-5, relative_change = 1.976341189347645e-10 Iter 120: T = 762.1691083469144 K, F = -6.355832760207569e-6, relative_change = 8.265295451216156e-11 Iter 125: T = 762.1691081545017 K, F = -2.6580844977308615e-6, relative_change = 3.456644402602726e-11 Iter 130: T = 762.1691080740325 K, F = -1.1116433504820833e-6, relative_change = 1.4456108413206275e-11 Iter 135: T = 762.1691080403793 K, F = -4.6490454519432234e-7, relative_change = 6.045743453257567e-12 Iter 140: T = 762.169108026305 K, F = -1.9442892051912963e-7, relative_change = 2.52840585364569e-12 Iter 145: T = 762.169108020419 K, F = -8.131215134543623e-8, relative_change = 1.0574050346674476e-12 Iter 150: T = 762.1691080179573 K, F = -3.4005245286294894e-8, relative_change = 4.4221333437146615e-13 Converged in 154 iterations to T = 762.1691080170689 K Iter 1: T = 969.928198598305 K, F = -6851.888555044209, relative_change = 0.030071801401695006 Iter 2: T = 942.0120411248587 K, F = -5804.047384475446, relative_change = 0.028781674265981147 Iter 3: T = 916.2092001219288 K, F = -4914.7225443531, relative_change = 0.027391200830213066 Iter 5: T = 870.7401012907501 K, F = -3519.8922636414663, relative_change = 0.024348960388149654 Iter 10: T = 789.5468458270128 K, F = -1516.2008054672692, relative_change = 0.016048824207894146 Iter 15: T = 744.91863972425 K, F = -645.849223984651, relative_change = 0.008881489689543082 Iter 20: T = 723.1128687459136 K, F = -272.73800665415854, relative_change = 0.0043023890896404125 Iter 25: T = 713.2609367665655 K, F = -114.58575063470151, relative_change = 0.0019277857896384035 Iter 30: T = 708.9933195941669 K, F = -48.01821934098235, relative_change = 0.0008311226652084391 Iter 35: T = 707.1810805135219 K, F = -20.09921637651651, relative_change = 0.0003521404753153216 Iter 40: T = 706.4182422418747 K, F = -8.408813365750879, relative_change = 0.00014808144847949464 Iter 45: T = 706.0983403458973 K, F = -3.517207550507673, relative_change = 6.207261931866804e-5 Iter 50: T = 705.9643999694866 K, F = -1.4710330736869994, relative_change = 2.5984639733438065e-5 Iter 55: T = 705.9083575873684 K, F = -0.6152202058540627, relative_change = 1.087148800316382e-5 Iter 60: T = 705.8849152819939 K, F = -0.25729534282970823, relative_change = 4.547356373478966e-6 Iter 65: T = 705.8751106055164 K, F = -0.10760449334867306, relative_change = 1.9018934944570707e-6 Iter 70: T = 705.8710100285098 K, F = -0.045001573074271994, relative_change = 7.954181434316531e-7 Iter 75: T = 705.8692950930104 K, F = -0.01882021083593788, relative_change = 3.3265748954634436e-7 Iter 80: T = 705.868577882092 K, F = -0.00787083964973323, relative_change = 1.3912205594635395e-7 Iter 85: T = 705.8682779351492 K, F = -0.003291679615079701, relative_change = 5.818263138908462e-8 Iter 90: T = 705.8681524936205 K, F = -0.0013766198087022952, relative_change = 2.433269334452745e-8 Iter 95: T = 705.8681000324516 K, F = -0.0005757188583490613, relative_change = 1.017622679942176e-8 Iter 100: T = 705.86807809256 K, F = -0.00024077250343590428, relative_change = 4.2558202308029354e-9 Iter 105: T = 705.8680689170347 K, F = -0.00010069393663914017, relative_change = 1.7798349606974076e-9 Iter 110: T = 705.8680650797204 K, F = -4.21114074614648e-5, relative_change = 7.443482664964562e-10 Iter 115: T = 705.8680634749096 K, F = -1.761149308576737e-5, relative_change = 3.1129533019529076e-10 Iter 120: T = 705.8680628037586 K, F = -7.36533578682419e-6, relative_change = 1.3018740858439265e-10 Iter 125: T = 705.8680625230753 K, F = -3.080272269473383e-6, relative_change = 5.4445944742082567e-11 Iter 130: T = 705.86806240569 K, F = -1.2882051663165583e-6, relative_change = 2.276991811806963e-11 Iter 135: T = 705.8680623565981 K, F = -5.387407100432284e-7, relative_change = 9.522615014573319e-12 Iter 140: T = 705.8680623360673 K, F = -2.2530698673417504e-7, relative_change = 3.98245696874863e-12 Iter 145: T = 705.8680623274811 K, F = -9.422511759726859e-8, relative_change = 1.6654941849222978e-12 Iter 150: T = 705.8680623238903 K, F = -3.9406323537605203e-8, relative_change = 6.965340492665007e-13 Iter 155: T = 705.8680623223886 K, F = -1.6480555142805997e-8, relative_change = 2.913052215322801e-13 Converged in 157 iterations to T = 705.8680623220708 K Iter 1: T = 973.4987136762238 K, F = -6038.343298103727, relative_change = 0.026501286323776133 Iter 2: T = 949.1904828041356 K, F = -5109.934807134135, relative_change = 0.024969967120236913 Iter 3: T = 927.0080121731322 K, F = -4322.4571679180135, relative_change = 0.023369883108679223 Iter 5: T = 888.6986613880011 K, F = -3088.746203334344, relative_change = 0.020041289157825094 Iter 10: T = 823.458845292265 K, F = -1322.5642503640931, relative_change = 0.012026598608534977 Iter 15: T = 789.8739274575219 K, F = -560.5803010460023, relative_change = 0.0061654491260345395 Iter 20: T = 774.2025525770184 K, F = -236.0017078680757, relative_change = 0.0028499338870688114 Iter 25: T = 767.3011818205658 K, F = -98.99605452078461, relative_change = 0.0012470390241818997 Iter 30: T = 764.3482359428102 K, F = -41.45536754630455, relative_change = 0.0005318433081200455 Iter 35: T = 763.1011216460876 K, F = -17.346738181755622, relative_change = 0.00022428046929102744 Iter 40: T = 762.5773995731053 K, F = -7.25630540368287, relative_change = 9.412560128666253e-5 Iter 45: T = 762.357991446005 K, F = -3.0349704421318653, relative_change = 3.9422259840579964e-5 Iter 50: T = 762.2661654487426 K, F = -1.2693128698714138, relative_change = 1.6496992589502066e-5 Iter 55: T = 762.2277510041961 K, F = -0.5308508979622732, relative_change = 6.901013140454768e-6 Iter 60: T = 762.2116835744868 K, F = -0.22200977660683907, relative_change = 2.886396471423137e-6 Iter 65: T = 762.2049636248272 K, F = -0.09284741827839604, relative_change = 1.2071797660268445e-6 Iter 70: T = 762.2021531988892 K, F = -0.03882994783507121, relative_change = 5.048664910044738e-7 Iter 75: T = 762.2009778342252 K, F = -0.01623915642290008, relative_change = 2.1114285679601703e-7 Iter 80: T = 762.2004862807668 K, F = -0.006791410640667239, relative_change = 8.830275477786172e-8 Iter 85: T = 762.2002807069044 K, F = -0.002840249295023911, relative_change = 3.692931738981299e-8 Iter 90: T = 762.2001947334015 K, F = -0.0011878262197621003, relative_change = 1.5444290438976432e-8 Iter 95: T = 762.2001587782455 K, F = -0.0004967631188519395, relative_change = 6.458988261448754e-9 Iter 100: T = 762.2001437413682 K, F = -0.0002077522705957735, relative_change = 2.701226303214245e-9 Iter 105: T = 762.2001374527662 K, F = -8.688448110660829e-5, relative_change = 1.1296851497830092e-9 Iter 110: T = 762.2001348227976 K, F = -3.633612680709053e-5, relative_change = 4.724478181391209e-10 Iter 115: T = 762.2001337229134 K, F = -1.5196202114320378e-5, relative_change = 1.9758332032344438e-10 Iter 120: T = 762.2001332629286 K, F = -6.355233826416118e-6, relative_change = 8.26317125171626e-11 Iter 125: T = 762.2001330705575 K, F = -2.6578336544957892e-6, relative_change = 3.455755566502893e-11 Iter 130: T = 762.2001329901058 K, F = -1.1115392387628376e-6, relative_change = 1.4452401515700529e-11 Iter 135: T = 762.2001329564597 K, F = -4.6486019034119863e-7, relative_change = 6.0441825952681966e-12 Iter 140: T = 762.2001329423884 K, F = -1.9440792120573036e-7, relative_change = 2.5277212337214236e-12 Iter 145: T = 762.2001329365039 K, F = -8.130479234313981e-8, relative_change = 1.0571372233291607e-12 Iter 150: T = 762.2001329340427 K, F = -3.4001074955547494e-8, relative_change = 4.420871259048182e-13 Converged in 154 iterations to T = 762.2001329331544 K Iter 1: T = 964.2387108986852 K, F = -8148.243739502563, relative_change = 0.03576128910131474 Iter 2: T = 930.3977686369583 K, F = -6912.79693820371, relative_change = 0.03509602122298809 Iter 3: T = 898.4459816643252 K, F = -5863.617784416801, relative_change = 0.034342071799508635 Iter 5: T = 840.0965335984489 K, F = -4216.117896128002, relative_change = 0.03254211406514403 Iter 10: T = 725.3122015272742 K, F = -1839.07904810874, relative_change = 0.02621980944447524 Iter 15: T = 651.0058203429517 K, F = -794.3438591930991, relative_change = 0.018042304368998858 Iter 20: T = 608.8290380990414 K, F = -339.23025314040854, relative_change = 0.010389570932917288 Iter 25: T = 587.6962780605091 K, F = -143.50630287837396, relative_change = 0.0051697365060611 Iter 30: T = 578.0032386768816 K, F = -60.348812044564156, relative_change = 0.0023499937529688313 Iter 35: T = 573.7725291887671 K, F = -25.301086037865655, relative_change = 0.0010200239140359696 Iter 40: T = 571.96976341691 K, F = -10.592495799687281, relative_change = 0.00043346550250306814 Iter 45: T = 571.2097778330582 K, F = -4.431907838220873, relative_change = 0.00018251233208904356 Iter 50: T = 570.8908698238297 K, F = -1.8538285177546627, relative_change = 7.654645019064176e-5 Iter 55: T = 570.7573098867687 K, F = -0.7753548912688633, relative_change = 3.205085993200241e-5 Iter 60: T = 570.7014204210949 K, F = -0.3242734714166716, relative_change = 1.3410748889454422e-5 Iter 65: T = 570.6780409828486 K, F = -0.13561692742759912, relative_change = 5.60970742759035e-6 Iter 70: T = 570.6682624083464 K, F = -0.05671694910209574, relative_change = 2.3462517016839303e-6 Iter 75: T = 570.6641727142885 K, F = -0.023719763253159137, relative_change = 9.812663517356067e-7 Iter 80: T = 570.6624623243591 K, F = -0.009919898373948355, relative_change = 4.103835810770947e-7 Iter 85: T = 570.6617470134365 K, F = -0.004148621736284552, relative_change = 1.7162841196672028e-7 Iter 90: T = 570.6614478609167 K, F = -0.0017350034640123413, relative_change = 7.177724347775607e-8 Iter 95: T = 570.6613227515943 K, F = -0.000725599223179052, relative_change = 3.001813399810113e-8 Iter 100: T = 570.6612704293525 K, F = -0.0003034542702695653, relative_change = 1.2553948009461888e-8 Iter 105: T = 570.6612485475611 K, F = -0.00012690820179528384, relative_change = 5.250212022862592e-9 Iter 110: T = 570.6612393963336 K, F = -5.307452552816283e-5, relative_change = 2.1957015336120394e-9 Iter 115: T = 570.6612355691809 K, F = -2.2196400430551932e-5, relative_change = 9.18268633344338e-10 Iter 120: T = 570.6612339686199 K, F = -9.282799983689749e-6, relative_change = 3.8403092407370847e-10 Iter 125: T = 570.6612332992462 K, F = -3.882178457093044e-6, relative_change = 1.6060634627932413e-10 Iter 130: T = 570.6612330193061 K, F = -1.6235734021652348e-6, relative_change = 6.71674925635162e-11 Iter 135: T = 570.6612329022317 K, F = -6.789978986843082e-7, relative_change = 2.8090252214186574e-11 Iter 140: T = 570.6612328532699 K, F = -2.839645986685291e-7, relative_change = 1.1747661097646746e-11 Iter 145: T = 570.6612328327934 K, F = -1.1875695826724098e-7, relative_change = 4.9129944559665634e-12 Iter 150: T = 570.66123282423 K, F = -4.9666172730056246e-8, relative_change = 2.0546975507757386e-12 Iter 155: T = 570.6612328206487 K, F = -2.0771146469478197e-8, relative_change = 8.593056688881652e-13 Iter 160: T = 570.6612328191509 K, F = -8.687156383135886e-9, relative_change = 3.593890562376592e-13 Converged in 163 iterations to T = 570.6612328187124 K Iter 1: T = 963.5654091832031 K, F = -8301.656175850445, relative_change = 0.03643459081679688 Iter 2: T = 929.0087374650109 K, F = -7044.2264124079165, relative_change = 0.03586333775460584 Iter 3: T = 896.2964572917462 K, F = -5976.336262512694, relative_change = 0.035212026382579344 Iter 5: T = 836.2862387740811 K, F = -4299.31470745554, relative_change = 0.03364000125541172 Iter 10: T = 716.5984997107964 K, F = -1878.7971623361886, relative_change = 0.02791720404609717 Iter 15: T = 636.9591177935632 K, F = -813.5638172838135, relative_change = 0.02000277948842464 Iter 20: T = 590.3083244113787 K, F = -348.3394625711429, relative_change = 0.011993435959517318 Iter 25: T = 566.3064415896919 K, F = -147.6406134682772, relative_change = 0.006144588438212396 Iter 30: T = 555.1108234068474 K, F = -62.15452631122011, relative_change = 0.002839266173965911 Iter 35: T = 550.1814494625879 K, F = -26.071763203045425, relative_change = 0.001242152521481063 Iter 40: T = 548.0724698174969 K, F = -10.91769597100115, relative_change = 0.0005297175141667056 Iter 45: T = 547.1818224112801 K, F = -4.5684309146079904, relative_change = 0.00022337642429710763 Iter 50: T = 546.8078039691876 K, F = -1.9110162167588385, relative_change = 9.37448445591166e-5 Iter 55: T = 546.651113809941 K, F = -0.7992876620080209, relative_change = 3.926255146729513e-5 Iter 60: T = 546.5855365369558 K, F = -0.33428527988804246, relative_change = 1.6430117931559104e-5 Iter 65: T = 546.5581030061207 K, F = -0.13980448208773683, relative_change = 6.873030874370393e-6 Iter 70: T = 546.5466285178119 K, F = -0.05846832139134456, relative_change = 2.8746914185906193e-6 Iter 75: T = 546.5418294946882 K, F = -0.02445222326481164, relative_change = 1.2022841296477793e-6 Iter 80: T = 546.5398224412879 K, F = -0.01022622455712266, relative_change = 5.028189998247357e-7 Iter 85: T = 546.5389830597828 K, F = -0.004276731468906447, relative_change = 2.1028655797118012e-7 Iter 90: T = 546.5386320190481 K, F = -0.0017885805650788844, relative_change = 8.794463798727683e-8 Iter 95: T = 546.5384852093821 K, F = -0.0007480058211074003, relative_change = 3.677954829694982e-8 Iter 100: T = 546.5384238117846 K, F = -0.0003128249789007831, relative_change = 1.538165512731115e-8 Iter 105: T = 546.5383981345688 K, F = -0.00013082714405990292, relative_change = 6.432793405424516e-9 Iter 110: T = 546.5383873960491 K, F = -5.4713473610107366e-5, relative_change = 2.6902712558570604e-9 Iter 115: T = 546.5383829050719 K, F = -2.2881828653759095e-5, relative_change = 1.1251036400196797e-9 Iter 120: T = 546.5383810268914 K, F = -9.569453977426035e-6, relative_change = 4.705317849403443e-10 Iter 125: T = 546.538380241414 K, F = -4.002059387192558e-6, relative_change = 1.9678198612164501e-10 Iter 130: T = 546.5383799129179 K, F = -1.6737091652896385e-6, relative_change = 8.229658353700547e-11 Iter 135: T = 546.538379775537 K, F = -6.999652533978828e-7, relative_change = 3.4417418636903964e-11 Iter 140: T = 546.5383797180825 K, F = -2.927337065805613e-7, relative_change = 1.439376952591555e-11 Iter 145: T = 546.5383796940545 K, F = -1.2242484720426106e-7, relative_change = 6.019651976044109e-12 Iter 150: T = 546.5383796840056 K, F = -5.119942136921907e-8, relative_change = 2.517484849544381e-12 Iter 155: T = 546.5383796798031 K, F = -2.1412217027227953e-8, relative_change = 1.052842600982663e-12 Iter 160: T = 546.5383796780455 K, F = -8.955055780246468e-9, relative_change = 4.403217195012925e-13 Converged in 164 iterations to T = 546.5383796774111 K Iter 1: T = 969.3201053467526 K, F = -6990.443180856439, relative_change = 0.03067989465324741 Iter 2: T = 940.7810989767125 K, F = -5922.392439275606, relative_change = 0.029442292811857916 Iter 3: T = 914.3439088105463 K, F = -5015.836993605737, relative_change = 0.02810131941949305 Iter 5: T = 867.589183502113 K, F = -3593.7487631421823, relative_change = 0.025141130477460305 Iter 10: T = 783.3491716395135 K, F = -1549.7835573117532, relative_change = 0.016872924554780275 Iter 15: T = 736.4258422254317 K, F = -660.8477998730649, relative_change = 0.00949083039886988 Iter 20: T = 713.2636972879701 K, F = -279.26864468970723, relative_change = 0.004647339976300392 Iter 25: T = 702.735759447584 K, F = -117.37371484364795, relative_change = 0.0020942600452214994 Iter 30: T = 698.1616473450756 K, F = -49.1952402580306, relative_change = 0.0009053018664134871 Iter 35: T = 696.216623306681 K, F = -20.59348956582277, relative_change = 0.000384018241844468 Iter 40: T = 695.3974108621996 K, F = -8.615886504874531, relative_change = 0.00016156723457238205 Iter 45: T = 695.0537825600439 K, F = -3.603871906022489, relative_change = 6.773983634213866e-5 Iter 50: T = 694.909893063413 K, F = -1.5072883581409648, relative_change = 2.835953789535442e-5 Iter 55: T = 694.8496851981627 K, F = -0.6303845634583796, relative_change = 1.1865540232646909e-5 Iter 60: T = 694.8245000249296 K, F = -0.2636376021178375, relative_change = 4.963228196273961e-6 Iter 65: T = 694.8139663180104 K, F = -0.11025696207962343, relative_change = 2.0758418318683184e-6 Iter 70: T = 694.809560826874 K, F = -0.04611087769599398, relative_change = 8.681699242315797e-7 Iter 75: T = 694.8077183682898 K, F = -0.01928413711589494, relative_change = 3.63083941727589e-7 Iter 80: T = 694.8069478249331 K, F = -0.008064859482230013, relative_change = 1.5184689954995427e-7 Iter 85: T = 694.8066255735943 K, F = -0.003372821081370936, relative_change = 6.350433705718508e-8 Iter 90: T = 694.8064908040777 K, F = -0.0014105541493685259, relative_change = 2.6558298439582847e-8 Iter 95: T = 694.8064344418287 K, F = -0.0005899106077427163, relative_change = 1.1107002188467233e-8 Iter 100: T = 694.8064108704582 K, F = -0.00024670766281942313, relative_change = 4.6450817420099316e-9 Iter 105: T = 694.8064010126287 K, F = -0.00010317609206900169, relative_change = 1.9426288116820257e-9 Iter 110: T = 694.8063968899665 K, F = -4.314947380046341e-5, relative_change = 8.124305902734553e-10 Iter 115: T = 694.8063951658199 K, F = -1.804562473517457e-5, relative_change = 3.397681695136915e-10 Iter 120: T = 694.8063944447613 K, F = -7.54689620197091e-6, relative_change = 1.4209511492971636e-10 Iter 125: T = 694.806394143206 K, F = -3.1562029016996007e-6, relative_change = 5.942588886648783e-11 Iter 130: T = 694.806394017092 K, F = -1.3199623417614603e-6, relative_change = 2.4852627647928694e-11 Iter 135: T = 694.8063939643495 K, F = -5.520237712497433e-7, relative_change = 1.03936610996989e-11 Iter 140: T = 694.806393942292 K, F = -2.3086149780748855e-7, relative_change = 4.346726163821359e-12 Iter 145: T = 694.8063939330673 K, F = -9.654939081560343e-8, relative_change = 1.8178594835925555e-12 Iter 150: T = 694.8063939292095 K, F = -4.0379157240089114e-8, relative_change = 7.602702959618113e-13 Iter 155: T = 694.8063939275961 K, F = -1.688761519513804e-8, relative_change = 3.1796483830256377e-13 Converged in 158 iterations to T = 694.8063939271237 K Iter 1: T = 966.4829276024869 K, F = -7636.896828740139, relative_change = 0.03351707239751305 Iter 2: T = 935.0051741338573 K, F = -6475.05578868221, relative_change = 0.032569383865595235 Iter 3: T = 905.5370114439474 K, F = -5488.56310208061, relative_change = 0.03151657713253585 Iter 5: T = 852.504777138832 K, F = -3940.071214058312, relative_change = 0.02909076548602045 Iter 10: T = 752.4684368196982 K, F = -1709.221497520458, relative_change = 0.021451976389532567 Iter 15: T = 692.4895227869596 K, F = -733.2681531055352, relative_change = 0.013264239925086917 Iter 20: T = 660.9805609166189 K, F = -311.26752716612685, relative_change = 0.0069582833850515575 Iter 25: T = 646.0773317784107 K, F = -131.15858907823193, relative_change = 0.0032600991262121603 Iter 30: T = 639.4663292060603 K, F = -55.0415804987315, relative_change = 0.0014360333371991358 Iter 35: T = 636.627916908743 K, F = -23.053681102245115, relative_change = 0.0006142839750272864 Iter 40: T = 635.4273608465464 K, F = -9.647499064493955, relative_change = 0.00025938137215148095 Iter 45: T = 634.9228647345124 K, F = -4.0357879969790895, relative_change = 0.00010891640061693918 Iter 50: T = 634.711453427581 K, F = -1.688005797738467, relative_change = 4.56275573456776e-5 Iter 55: T = 634.6229640913865 K, F = -0.7059776479421422, relative_change = 1.9095563675181187e-5 Iter 60: T = 634.5859437263542 K, F = -0.2952541399195198, relative_change = 7.98836941591288e-6 Iter 65: T = 634.5704590805552 K, F = -0.12347983191963624, relative_change = 3.34124734892235e-6 Iter 70: T = 634.563982816648 K, F = -0.05164091957025346, relative_change = 1.397422291351614e-6 Iter 75: T = 634.5612742957525 K, F = -0.02159688062839088, relative_change = 5.844314154529929e-7 Iter 80: T = 634.5601415477262 K, F = -0.009032078880373384, relative_change = 2.444184230857278e-7 Iter 85: T = 634.5596678168326 K, F = -0.0037773242110443195, relative_change = 1.0221909273631014e-7 Iter 90: T = 634.5594696965411 K, F = -0.0015797222628430307, relative_change = 4.2749313400822924e-8 Iter 95: T = 634.5593868402036 K, F = -0.0006606587454012214, relative_change = 1.78782853035452e-8 Iter 100: T = 634.5593521886824 K, F = -0.0002762953832426973, relative_change = 7.476914531586953e-9 Iter 105: T = 634.5593376970004 K, F = -0.00011555003085750304, relative_change = 3.1269353423181876e-9 Iter 110: T = 634.5593316364054 K, F = -4.832440241259173e-5, relative_change = 1.307721750916654e-9 Iter 115: T = 634.5593291017922 K, F = -2.0209841692764297e-5, relative_change = 5.469048502898036e-10 Iter 120: T = 634.5593280417867 K, F = -8.451996285741004e-6, relative_change = 2.2872211818070058e-10 Iter 125: T = 634.5593275984797 K, F = -3.5347254563888875e-6, relative_change = 9.56543127717019e-11 Iter 130: T = 634.5593274130833 K, F = -1.4782629697562832e-6, relative_change = 4.000373732251359e-11 Iter 135: T = 634.5593273355485 K, F = -6.182269063903512e-7, relative_change = 1.673003199654947e-11 Iter 140: T = 634.5593273031225 K, F = -2.585500111784711e-7, relative_change = 6.996702854671977e-12 Iter 145: T = 634.5593272895616 K, F = -1.0812802109239072e-7, relative_change = 2.9260862549408855e-12 Iter 150: T = 634.5593272838903 K, F = -4.5221015376739615e-8, relative_change = 1.2237400647600521e-12 Iter 155: T = 634.5593272815183 K, F = -1.8911812948996243e-8, relative_change = 5.117784952535734e-13 Converged in 160 iterations to T = 634.5593272805264 K Iter 1: T = 966.4837766195132 K, F = -7636.703379403106, relative_change = 0.0335162233804869 Iter 2: T = 935.0069106817028 K, F = -6474.8902825837995, relative_change = 0.03256843694563346 Iter 3: T = 905.5396729360634 K, F = -5488.421403124238, relative_change = 0.03151552936026451 Iter 5: T = 852.509389152771 K, F = -3939.967141039138, relative_change = 0.029089517240906568 Iter 10: T = 752.4782131099337 K, F = -1709.1730454195663, relative_change = 0.021450392524702783 Iter 15: T = 692.5039199139833 K, F = -733.245776052295, relative_change = 0.013262809247404925 Iter 20: T = 660.9981219551504 K, F = -311.2574851460011, relative_change = 0.006957345896472264 Iter 25: T = 646.0966272380743 K, F = -131.15421927092208, relative_change = 0.0032596075934100354 Iter 30: T = 639.4864515382689 K, F = -55.03971752990963, relative_change = 0.001435805344815086 Iter 35: T = 636.6484059749918 K, F = -23.052895267488314, relative_change = 0.0006141842251485991 Iter 40: T = 635.4480072232711 K, F = -9.647169202295878, relative_change = 0.00025933884651286427 Iter 45: T = 634.9435776111349 K, F = -4.035649828692839, relative_change = 0.000108898471354251 Iter 50: T = 634.7321942412391 K, F = -1.6879479761000873, relative_change = 4.562003360850095e-5 Iter 55: T = 634.6437166108051 K, F = -0.7059534595765553, relative_change = 1.9092412680793556e-5 Iter 60: T = 634.6067011451464 K, F = -0.2952440228894817, relative_change = 7.9870508480686e-6 Iter 65: T = 634.5912185490041 K, F = -0.12347560065327567, relative_change = 3.340695770842844e-6 Iter 70: T = 634.5847431424069 K, F = -0.05163914996941299, relative_change = 1.397191590822282e-6 Iter 75: T = 634.5820349800691 K, F = -0.021596140552317122, relative_change = 5.843349294916559e-7 Iter 80: T = 634.5809023819997 K, F = -0.009031769370517362, relative_change = 2.4437807076662793e-7 Iter 85: T = 634.5804287138207 K, F = -0.003777194769711778, relative_change = 1.0220221677458719e-7 Iter 90: T = 634.5802306197571 K, F = -0.0015796681294415471, relative_change = 4.274225566430732e-8 Iter 95: T = 634.5801477743886 K, F = -0.000660636105911161, relative_change = 1.7875333663172713e-8 Iter 100: T = 634.5801131274546 K, F = -0.00027628591506584366, relative_change = 7.475680117729108e-9 Iter 105: T = 634.580098637691 K, F = -0.00011554606890679109, relative_change = 3.126419034807913e-9 Iter 110: T = 634.5800925778985 K, F = -4.832274579125162e-5, relative_change = 1.3075058334215408e-9 Iter 115: T = 634.5800900436209 K, F = -2.0209149802385973e-5, relative_change = 5.468145761349222e-10 Iter 120: T = 634.5800889837557 K, F = -8.451707013523713e-6, relative_change = 2.286843667426334e-10 Iter 125: T = 634.5800885405074 K, F = -3.534604065658087e-6, relative_change = 9.563851347847391e-11 Iter 130: T = 634.5800883551357 K, F = -1.4782134051261053e-6, relative_change = 3.999716240933795e-11 Iter 135: T = 634.580088277611 K, F = -6.182068425508724e-7, relative_change = 1.6727300275256064e-11 Iter 140: T = 634.5800882451892 K, F = -2.58540739539459e-7, relative_change = 6.99553658589502e-12 Iter 145: T = 634.5800882316302 K, F = -1.0812520495617761e-7, relative_change = 2.9256272282374386e-12 Iter 150: T = 634.5800882259596 K, F = -4.52188461119718e-8, relative_change = 1.2235212638339902e-12 Iter 155: T = 634.5800882235881 K, F = -1.89115834103859e-8, relative_change = 5.117053269889375e-13 Converged in 160 iterations to T = 634.5800882225963 K Iter 1: T = 976.5175491279261 K, F = -5350.498768779502, relative_change = 0.023482450872073866 Iter 2: T = 955.1951169840256 K, F = -4524.09980797205, relative_change = 0.021835175581782836 Iter 3: T = 935.9403905594759 K, F = -3823.605581036076, relative_change = 0.020157898718479055 Iter 5: T = 903.2105067025537 K, F = -2727.408223170259, relative_change = 0.01680671457023879 Iter 10: T = 849.3539929423338 K, F = -1162.9044433384684, relative_change = 0.009441236995387197 Iter 15: T = 822.7913598239398 K, F = -491.40541095831423, relative_change = 0.004619012874049885 Iter 20: T = 810.7237086841324 K, F = -206.5262348653087, relative_change = 0.002080523056648227 Iter 25: T = 805.4819164944637 K, F = -86.56077995827232, relative_change = 0.0008991668440239461 Iter 30: T = 803.2532265584792 K, F = -36.23474766874749, relative_change = 0.0003813791286015195 Iter 35: T = 802.3145839232034 K, F = -15.159821183496597, relative_change = 0.00016045028660164573 Iter 40: T = 801.9208672841261 K, F = -6.341075933178395, relative_change = 6.727036912121847e-5 Iter 45: T = 801.75600542504 K, F = -2.652099060682719, relative_change = 2.8162788462726338e-5 Iter 50: T = 801.6870223167988 K, F = -1.1091719510254812, relative_change = 1.1783184932751827e-5 Iter 55: T = 801.6581664705585 K, F = -0.46387463398239437, relative_change = 4.928773562167842e-6 Iter 60: T = 801.6460975110984 K, F = -0.19399890493037764, relative_change = 2.061430276528066e-6 Iter 65: T = 801.6410499357052 K, F = -0.08113283258172577, relative_change = 8.621424520596492e-7 Iter 70: T = 801.6389389457396 K, F = -0.033930749892814416, relative_change = 3.605631130977661e-7 Iter 75: T = 801.638056098639 K, F = -0.014190250133967353, relative_change = 1.5079264704904555e-7 Iter 80: T = 801.6376868804086 K, F = -0.005934532999767095, relative_change = 6.30634339785051e-8 Iter 85: T = 801.6375324687555 K, F = -0.0024818927366300203, relative_change = 2.6373907144525028e-8 Iter 90: T = 801.6374678919265 K, F = -0.001037957211505125, relative_change = 1.1029887477342965e-8 Iter 95: T = 801.6374408851199 K, F = -0.00043408610662276637, relative_change = 4.612831460160882e-9 Iter 100: T = 801.6374295905499 K, F = -0.00018153999637293694, relative_change = 1.9291413614641023e-9 Iter 105: T = 801.6374248670256 K, F = -7.592219420327062e-5, relative_change = 8.067899753551776e-10 Iter 110: T = 801.6374228915913 K, F = -3.175156717216687e-5, relative_change = 3.3740919458012375e-10 Iter 115: T = 801.6374220654411 K, F = -1.3278884685163916e-5, relative_change = 1.4110855644491534e-10 Iter 120: T = 801.6374217199352 K, F = -5.553387110168728e-6, relative_change = 5.90132724760631e-11 Iter 125: T = 801.6374215754405 K, F = -2.3224913592301277e-6, relative_change = 2.4680039911536158e-11 Iter 130: T = 801.637421515011 K, F = -9.712923898508308e-7, relative_change = 1.032147433428549e-11 Iter 135: T = 801.6374214897388 K, F = -4.062049263620082e-7, relative_change = 4.3165516031470385e-12 Iter 140: T = 801.6374214791697 K, F = -1.6988005935303363e-7, relative_change = 1.805236704430249e-12 Iter 145: T = 801.6374214747495 K, F = -7.10450438479171e-8, relative_change = 7.549627738177099e-13 Iter 150: T = 801.637421472901 K, F = -2.971426149578349e-8, relative_change = 3.1575969365392203e-13 Converged in 153 iterations to T = 801.6374214723597 K Iter 1: T = 965.2121478713141 K, F = -7926.445199311461, relative_change = 0.03478785212868587 Iter 2: T = 932.400473373057 K, F = -6722.862132755993, relative_change = 0.03399426185281666 Iter 3: T = 901.5355452662615 K, F = -5700.81342734037, relative_change = 0.0331026516912185 Iter 5: T = 845.5327761182989 K, F = -4096.146392073027, relative_change = 0.031006938253087923 Iter 10: T = 737.4278753413003 K, F = -1782.2985938274855, relative_change = 0.02399896098500203 Iter 15: T = 669.9051824038532 K, F = -767.343818833007, relative_change = 0.015693436008589395 Iter 20: T = 633.0043171567032 K, F = -326.714909999586, relative_change = 0.008624517325826177 Iter 25: T = 615.0519404612938 K, F = -137.92875421765544, relative_change = 0.004159070387663347 Iter 30: T = 606.9613345429568 K, F = -57.93911208444094, relative_change = 0.0018591671122549361 Iter 35: T = 603.4610133978128 K, F = -24.278151339832924, relative_change = 0.0008006603587260313 Iter 40: T = 601.9754339055136 K, F = -10.161897368648612, relative_change = 0.00033907097292797475 Iter 45: T = 601.3502492298817 K, F = -4.251326564084985, relative_change = 0.0001425562944127994 Iter 50: T = 601.0881001530404 K, F = -1.7782190162307014, relative_change = 5.97514324805781e-5 Iter 55: T = 600.9783451349606 K, F = -0.7437185973812144, relative_change = 2.501204577174174e-5 Iter 60: T = 600.9324230455684 K, F = -0.31104008048303955, relative_change = 1.0464414066221191e-5 Iter 65: T = 600.9132141631189 K, F = -0.13008209011118593, relative_change = 4.37705655676335e-6 Iter 70: T = 600.9051801288773 K, F = -0.05440213090248519, relative_change = 1.8306621682325917e-6 Iter 75: T = 600.9018200860742 K, F = -0.022751664095697843, relative_change = 7.656266187536228e-7 Iter 80: T = 600.9004148561529 K, F = -0.009515025200465377, relative_change = 3.2019801493782394e-7 Iter 85: T = 600.8998271687385 K, F = -0.003979298494209138, relative_change = 1.3391130182944795e-7 Iter 90: T = 600.8995813902347 K, F = -0.0016641903843087613, relative_change = 5.6003422498940043e-8 Iter 95: T = 600.8994786026228 K, F = -0.0006959843330527904, relative_change = 2.3421320521361562e-8 Iter 100: T = 600.8994356155974 K, F = -0.00029106896728137155, relative_change = 9.795079536454703e-9 Iter 105: T = 600.8994176379068 K, F = -0.00012172851943559326, relative_change = 4.096419864671578e-9 Iter 110: T = 600.8994101194212 K, F = -5.090832029525094e-5, relative_change = 1.7131718016790449e-9 Iter 115: T = 600.8994069751008 K, F = -2.1290467067780483e-5, relative_change = 7.164689096443496e-10 Iter 120: T = 600.8994056601084 K, F = -8.903929075321226e-6, relative_change = 2.996359075778674e-10 Iter 125: T = 600.8994051101629 K, F = -3.723729351590155e-6, relative_change = 1.2531131136165848e-10 Iter 130: T = 600.8994048801691 K, F = -1.5573083979592006e-6, relative_change = 5.240669755310352e-11 Iter 135: T = 600.899404783983 K, F = -6.51285659347689e-7, relative_change = 2.191712999226597e-11 Iter 140: T = 600.8994047437567 K, F = -2.7237471678098757e-7, relative_change = 9.165981149004906e-12 Iter 145: T = 600.8994047269335 K, F = -1.1390973508884628e-7, relative_change = 3.833301772613557e-12 Iter 150: T = 600.8994047198979 K, F = -4.763868316493003e-8, relative_change = 1.6031417199666744e-12 Iter 155: T = 600.8994047169555 K, F = -1.992232806502514e-8, relative_change = 6.70428172207775e-13 Iter 160: T = 600.899404715725 K, F = -8.331466183619796e-9, relative_change = 2.803713314587721e-13 Converged in 162 iterations to T = 600.8994047154646 K Iter 1: T = 964.5728235166916 K, F = -8072.115861666661, relative_change = 0.03542717648330837 Iter 2: T = 931.085889337466 K, F = -6847.594776200553, relative_change = 0.03471685430358394 Iter 3: T = 899.508818182742 K, F = -5807.717155094083, relative_change = 0.03391424090552315 Iter 5: T = 841.9719682693825 K, F = -4174.8988841384735, relative_change = 0.03200837942775053 Iter 10: T = 729.5326428502176 K, F = -1819.5073182067126, relative_change = 0.025428267418743315 Iter 15: T = 657.6680070873713 K, F = -784.9784568842576, relative_change = 0.017178461052819633 Iter 20: T = 617.4408283825057 K, F = -334.855964194558, relative_change = 0.009721601864290335 Iter 25: T = 597.5075968447375 K, F = -141.54518156374277, relative_change = 0.00477987912305838 Iter 30: T = 588.426415853604 K, F = -59.49859702340761, relative_change = 0.0021587211637730487 Iter 35: T = 584.4763226803757 K, F = -24.93955415664223, relative_change = 0.0009341298184805246 Iter 40: T = 582.795764638025 K, F = -10.440196144335783, relative_change = 0.0003964266342231879 Iter 45: T = 582.0877797558319 K, F = -4.3680167522135385, relative_change = 0.00016682016247246498 Iter 50: T = 581.7907784360796 K, F = -1.8270735979436856, relative_change = 6.994794587295414e-5 Iter 55: T = 581.6664082652896 K, F = -0.7641595333170808, relative_change = 2.9284978370776585e-5 Iter 60: T = 581.6143670077174 K, F = -0.31959036478898634, relative_change = 1.2252918088418098e-5 Iter 65: T = 581.5925978011041 K, F = -0.13365820828286618, relative_change = 5.125295097073124e-6 Iter 70: T = 581.5834927960991 K, F = -0.055897756468250376, relative_change = 2.143630793343001e-6 Iter 75: T = 581.5796848233359 K, F = -0.02337716135569895, relative_change = 8.965219401512392e-7 Iter 80: T = 581.5780922572496 K, F = -0.009776617161570633, relative_change = 3.749414191857523e-7 Iter 85: T = 581.5774262224757 K, F = -0.00408869964566394, relative_change = 1.5680589522306157e-7 Iter 90: T = 581.5771476779715 K, F = -0.0017099432987531804, relative_change = 6.557825821730797e-8 Iter 95: T = 581.5770311871921 K, F = -0.0007151187569648387, relative_change = 2.742563876567383e-8 Iter 100: T = 581.5769824693323 K, F = -0.0002990712128616013, relative_change = 1.1469734558679854e-8 Iter 105: T = 581.5769620949372 K, F = -0.00012507515421206206, relative_change = 4.7967808210089684e-9 Iter 110: T = 581.5769535741211 K, F = -5.23079242253921e-5, relative_change = 2.006071204097745e-9 Iter 115: T = 581.576950010614 K, F = -2.1875799303516796e-5, relative_change = 8.389629865733232e-10 Iter 120: T = 581.5769485203127 K, F = -9.148720927998344e-6, relative_change = 3.508643602103802e-10 Iter 125: T = 581.5769478970508 K, F = -3.826104133131114e-6, relative_change = 1.4673565804268197e-10 Iter 130: T = 581.5769476363953 K, F = -1.6001221460615334e-6, relative_change = 6.136659337597873e-11 Iter 135: T = 581.5769475273861 K, F = -6.691908800426916e-7, relative_change = 2.56642686711244e-11 Iter 140: T = 581.5769474817971 K, F = -2.798635509448921e-7, relative_change = 1.0733101092063488e-11 Iter 145: T = 581.5769474627313 K, F = -1.1704307717463891e-7, relative_change = 4.488741657841043e-12 Iter 150: T = 581.5769474547577 K, F = -4.8948824382666345e-8, relative_change = 1.8772458177541033e-12 Iter 155: T = 581.576947451423 K, F = -2.047125391424487e-8, relative_change = 7.85097012653815e-13 Iter 160: T = 581.5769474500283 K, F = -8.560927355905079e-9, relative_change = 3.2832177847529077e-13 Converged in 163 iterations to T = 581.5769474496201 K Iter 1: T = 964.3185399557278 K, F = -8130.0546129183695, relative_change = 0.03568146004427215 Iter 2: T = 930.562250102043 K, F = -6897.217245273889, relative_change = 0.03500533117950283 Iter 3: T = 898.700153356964 K, F = -5850.25949719908, relative_change = 0.03423961883429616 Iter 5: T = 840.5455460092074 K, F = -4206.265552772432, relative_change = 0.032413931195604144 Iter 10: T = 726.3266626360634 K, F = -1834.3946986754895, relative_change = 0.02602776018640711 Iter 15: T = 652.6152546321727 K, F = -792.0963288483866, relative_change = 0.01782988396865536 Iter 20: T = 610.9190026110067 K, F = -338.17697719176397, relative_change = 0.010223205627230546 Iter 25: T = 590.0846435509599 K, F = -143.03280297530495, relative_change = 0.005071775858160318 Iter 30: T = 580.5446848715004 K, F = -60.1432029569188, relative_change = 0.0023016997713154385 Iter 35: T = 576.3843881265431 K, F = -25.213586908663203, relative_change = 0.0009982870676773202 Iter 40: T = 574.6123281308899 K, F = -10.555622629552996, relative_change = 0.00042408275757567797 Iter 45: T = 573.8654158336437 K, F = -4.416436836483975, relative_change = 0.0001785354454997379 Iter 50: T = 573.5520166691701 K, F = -1.847349487016567, relative_change = 7.487387695981675e-5 Iter 55: T = 573.4207679124761 K, F = -0.7726437244647706, relative_change = 3.134971698044411e-5 Iter 60: T = 573.3658462945657 K, F = -0.32313935594594834, relative_change = 1.3117232695653799e-5 Iter 65: T = 573.3428718468465 K, F = -0.13514257898468482, relative_change = 5.486904701822446e-6 Iter 70: T = 573.3332626836051 K, F = -0.056518562553685314, relative_change = 2.2948852552330453e-6 Iter 75: T = 573.3292438462502 K, F = -0.023636794166294828, relative_change = 9.59782736980595e-7 Iter 80: T = 573.3275630906454 K, F = -0.009885199455235694, relative_change = 4.0139860511233965e-7 Iter 85: T = 573.3268601733622 K, F = -0.004134110189149609, relative_change = 1.6787074018340025e-7 Iter 90: T = 573.3265662040471 K, F = -0.0017289345539052148, relative_change = 7.020573195145168e-8 Iter 95: T = 573.3264432624094 K, F = -0.0007230611305114043, relative_change = 2.9360907631151305e-8 Iter 100: T = 573.3263918467203 K, F = -0.00030239280925070666, relative_change = 1.227908783478854e-8 Iter 105: T = 573.3263703440601 K, F = -0.0001264642850623554, relative_change = 5.135262129310577e-9 Iter 110: T = 573.3263613513901 K, F = -5.288887448184898e-5, relative_change = 2.1476281175843624e-9 Iter 115: T = 573.3263575905479 K, F = -2.2118759053169068e-5, relative_change = 8.981637597237434e-10 Iter 120: T = 573.3263560177187 K, F = -9.250328380228101e-6, relative_change = 3.756227826889509e-10 Iter 125: T = 573.3263553599428 K, F = -3.86859768786163e-6, relative_change = 1.5708992987339245e-10 Iter 130: T = 573.3263550848532 K, F = -1.6178937338184873e-6, relative_change = 6.569688405857689e-11 Iter 135: T = 573.3263549698073 K, F = -6.766221381515614e-7, relative_change = 2.7475207595471995e-11 Iter 140: T = 573.3263549216938 K, F = -2.829718414032456e-7, relative_change = 1.1490475482479559e-11 Iter 145: T = 573.3263549015722 K, F = -1.1834295299273379e-7, relative_change = 4.805484508179948e-12 Iter 150: T = 573.326354893157 K, F = -4.949229470696537e-8, relative_change = 2.009705263310619e-12 Iter 155: T = 573.3263548896377 K, F = -2.069881999133827e-8, relative_change = 8.405051276855186e-13 Iter 160: T = 573.326354888166 K, F = -8.65717508791164e-9, relative_change = 3.515369502123751e-13 Converged in 163 iterations to T = 573.326354887735 K Iter 1: T = 980.2364447208193 K, F = -4503.144870355798, relative_change = 0.019763555279180608 Iter 2: T = 962.5124652213087 K, F = -3803.718259858685, relative_change = 0.018081330881916567 Iter 3: T = 946.7064909918581 K, F = -3211.4292656034368, relative_change = 0.016421578733337674 Iter 5: T = 920.3232484126182 K, F = -2286.033540573145, relative_change = 0.013257809539555925 Iter 10: T = 878.470097479452 K, F = -970.3998104821555, relative_change = 0.006954170247743153 Iter 15: T = 858.6754348091196 K, F = -408.89508048840156, relative_change = 0.0032579667669588026 Iter 20: T = 849.8949047598612 K, F = -171.59521514778856, relative_change = 0.0014350491327919347 Iter 25: T = 846.1250719455287 K, F = -71.8710786542991, relative_change = 0.0006138542758773686 Iter 30: T = 844.5305663508519 K, F = -30.0765802601924, relative_change = 0.00025919834384011386 Iter 35: T = 843.8605272661425 K, F = -12.581776936668096, relative_change = 0.00010883926260104512 Iter 40: T = 843.5797448031806 K, F = -5.2624446403195435, relative_change = 4.5595192610202655e-5 Iter 45: T = 843.4622192032923 K, F = -2.2009214568379267, relative_change = 1.908200997757311e-5 Iter 50: T = 843.4130512488803 K, F = -0.9204698839997031, relative_change = 7.982697878319862e-6 Iter 55: T = 843.3924855875822 K, F = -0.38495469023537, relative_change = 3.338874880732537e-6 Iter 60: T = 843.3838842513571 K, F = -0.16099320710300868, relative_change = 1.3964299982358615e-6 Iter 65: T = 843.3802869769327 K, F = -0.06732937951935214, relative_change = 5.84016409353349e-7 Iter 70: T = 843.37878253756 K, F = -0.028157967669468098, relative_change = 2.4424485953919943e-7 Iter 75: T = 843.378153360206 K, F = -0.011776001342234999, relative_change = 1.0214650588362738e-7 Iter 80: T = 843.3778902302255 K, F = -0.004924864914734206, relative_change = 4.2718956601971777e-8 Iter 85: T = 843.3777801860384 K, F = -0.0020596374124708383, relative_change = 1.7865589701251163e-8 Iter 90: T = 843.37773416423 K, F = -0.0008613649799056322, relative_change = 7.471605059760546e-9 Iter 95: T = 843.3777149173574 K, F = -0.0003602331215724064, relative_change = 3.1247148062430186e-9 Iter 100: T = 843.3777068680849 K, F = -0.00015065379404677337, relative_change = 1.306793112781526e-9 Iter 105: T = 843.377703501783 K, F = -6.30052156349592e-5, relative_change = 5.465164946343788e-10 Iter 110: T = 843.3777020939552 K, F = -2.6349530855451775e-5, relative_change = 2.2855970268031643e-10 Iter 115: T = 843.3777015051849 K, F = -1.101968570371703e-5, relative_change = 9.558637344477717e-11 Iter 120: T = 843.3777012589542 K, F = -4.608563268115873e-6, relative_change = 3.9975355200355495e-11 Iter 125: T = 843.3777011559775 K, F = -1.9273550613263524e-6, relative_change = 1.671816111358598e-11 Iter 130: T = 843.3777011129115 K, F = -8.060444705026981e-7, relative_change = 6.991748223382357e-12 Iter 135: T = 843.3777010949008 K, F = -3.3709877356180584e-7, relative_change = 2.9240443147322452e-12 Iter 140: T = 843.3777010873683 K, F = -1.409773602301101e-7, relative_change = 1.2228583460828375e-12 Iter 145: T = 843.3777010842183 K, F = -5.895821120205369e-8, relative_change = 5.114121907386197e-13 Converged in 150 iterations to T = 843.3777010829009 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017785815252300287 Iteration 10: d = 2.4779635846027985e-5 Iteration 20: d = 3.3529264981049794e-7 Iteration 30: d = 4.688608442040463e-9 Iteration 40: d = 6.562475202698302e-11 Iteration 50: d = 9.179110241054592e-13 Iteration 60: d = 1.287783052911868e-14 Converged after 65 iterations. d = 1.5091187581826492e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.807103675383 Iteration 2: convergence error = 4830.331204009147 Iteration 3: convergence error = 1098.592098197204 Iteration 4: convergence error = 318.9798993780437 Iteration 5: convergence error = 94.61578882356548 Iteration 6: convergence error = 28.288829323030768 Iteration 7: convergence error = 8.523137491740727 Iteration 8: convergence error = 2.557669887000884 Iteration 9: convergence error = 0.7656787064950095 Iteration 10: convergence error = 0.22889888305485329 Iteration 11: convergence error = 0.06837453490493317 Iteration 12: convergence error = 0.020414904899098474 Iteration 13: convergence error = 0.006093787085092117 Iteration 14: convergence error = 0.0018187052296525508 Iteration 15: convergence error = 0.0005427501778285659 Iteration 16: convergence error = 0.00016196309275073872 Iteration 17: convergence error = 4.8330301069654524e-5 Iteration 18: convergence error = 1.4421679452425451e-5 Iteration 19: convergence error = 4.303357172830147e-6 Iteration 20: convergence error = 1.2840998806495918e-6 Iteration 21: convergence error = 3.8316466088872403e-7 Iteration 22: convergence error = 1.1420047485444229e-7 Iteration 23: convergence error = 3.3163132684421726e-8 Iteration 24: convergence error = 9.577661330695264e-9 Iteration 25: convergence error = 2.7555415726965293e-9 Iteration 26: convergence error = 7.919425115687773e-10 Iteration 27: convergence error = 2.2964741219766438e-10 Iteration 28: convergence error = 6.52562448522076e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012283770816838705 Iteration 10: d = 1.3095022850554938e-5 Iteration 20: d = 1.38403713777071e-7 Iteration 30: d = 1.6673526440027834e-9 Iteration 40: d = 2.1007424934194228e-11 Iteration 50: d = 2.6965032681703677e-13 Iteration 60: d = 3.4930976320403902e-15 Converged after 62 iterations. d = 1.4818593452227255e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12258.474290721746 Iteration 2: convergence error = 8322.453571821252 Iteration 3: convergence error = 1949.8724151977951 Iteration 4: convergence error = 479.7094425352991 Iteration 5: convergence error = 122.32258965591018 Iteration 6: convergence error = 32.68040498513028 Iteration 7: convergence error = 8.910642155301048 Iteration 8: convergence error = 2.443744380685075 Iteration 9: convergence error = 0.6710455835871016 Iteration 10: convergence error = 0.18429624673353828 Iteration 11: convergence error = 0.050612900863825416 Iteration 12: convergence error = 0.013898995385716262 Iteration 13: convergence error = 0.0038167341026564827 Iteration 14: convergence error = 0.0010480775672476739 Iteration 15: convergence error = 0.0002878005977891007 Iteration 16: convergence error = 7.902936613390921e-5 Iteration 17: convergence error = 2.1701248897443293e-5 Iteration 18: convergence error = 5.9590988712443504e-6 Iteration 19: convergence error = 1.6363505892513786e-6 Iteration 20: convergence error = 4.4933835852134507e-7 Iteration 21: convergence error = 1.2424425221979618e-7 Iteration 22: convergence error = 3.346394805703312e-8 Iteration 23: convergence error = 8.959887054516003e-9 Iteration 24: convergence error = 2.3949269234435633e-9 Iteration 25: convergence error = 6.39829522697255e-10 Iteration 26: convergence error = 1.7280399333685637e-10 Iteration 27: convergence error = 4.661160346586257e-11 Iteration 28: convergence error = 1.2960299500264227e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 66%|█████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012283770816838705 Iteration 10: d = 1.3095022850554938e-5 Iteration 20: d = 1.38403713777071e-7 Iteration 30: d = 1.6673526440027834e-9 Iteration 40: d = 2.1007424934194228e-11 Iteration 50: d = 2.6965032681703677e-13 Iteration 60: d = 3.4930976320403902e-15 Converged after 62 iterations. d = 1.4818593452227255e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.569308761193 Iteration 2: convergence error = 5725.281474405141 Iteration 3: convergence error = 2018.777709109032 Iteration 4: convergence error = 898.4477558332683 Iteration 5: convergence error = 410.2528093944202 Iteration 6: convergence error = 193.60040253241277 Iteration 7: convergence error = 91.45626028645029 Iteration 8: convergence error = 43.22853527528878 Iteration 9: convergence error = 20.4340569709384 Iteration 10: convergence error = 9.657388609645295 Iteration 11: convergence error = 4.563105498676123 Iteration 12: convergence error = 2.155595913660818 Iteration 13: convergence error = 1.0181244879026963 Iteration 14: convergence error = 0.4808185808096823 Iteration 15: convergence error = 0.2270516322964795 Iteration 16: convergence error = 0.10712561670288778 Iteration 17: convergence error = 0.05011057182946388 Iteration 18: convergence error = 0.0228990859645819 Iteration 19: convergence error = 0.01042609290107066 Iteration 20: convergence error = 0.004737068536087463 Iteration 21: convergence error = 0.0021496474141713406 Iteration 22: convergence error = 0.0009747992662596516 Iteration 23: convergence error = 0.00044185618389747106 Iteration 24: convergence error = 0.00020023429351567756 Iteration 25: convergence error = 9.072586817637784e-5 Iteration 26: convergence error = 4.110405825485941e-5 Iteration 27: convergence error = 1.862148064901703e-5 Iteration 28: convergence error = 8.435858944721986e-6 Iteration 29: convergence error = 3.821507107204525e-6 Iteration 30: convergence error = 1.7311531337327324e-6 Iteration 31: convergence error = 7.842086233722512e-7 Iteration 32: convergence error = 3.552472662704531e-7 Iteration 33: convergence error = 1.6092189980554394e-7 Iteration 34: convergence error = 7.289690984180197e-8 Iteration 35: convergence error = 3.3021024137269706e-8 Iteration 36: convergence error = 1.496482582297176e-8 Iteration 37: convergence error = 6.775280780857429e-9 Iteration 38: convergence error = 3.0672708817292005e-9 Iteration 39: convergence error = 1.3919816410634667e-9 Iteration 40: convergence error = 6.316440703812987e-10 Iteration 41: convergence error = 2.878550731111318e-10 Iteration 42: convergence error = 1.3233147910796106e-10 Iteration 43: convergence error = 6.139089236967266e-11 Iteration 44: convergence error = 3.2741809263825417e-11 Iteration 45: convergence error = 1.2732925824820995e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012283770816838705 Iteration 10: d = 1.3095022850554938e-5 Iteration 20: d = 1.38403713777071e-7 Iteration 30: d = 1.6673526440027834e-9 Iteration 40: d = 2.1007424934194228e-11 Iteration 50: d = 2.6965032681703677e-13 Iteration 60: d = 3.4930976320403902e-15 Converged after 62 iterations. d = 1.4818593452227255e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.637302126503 Iteration 2: convergence error = 7342.065127796519 Iteration 3: convergence error = 1736.8188359804144 Iteration 4: convergence error = 505.16569252651607 Iteration 5: convergence error = 157.03758147570443 Iteration 6: convergence error = 48.82322906375384 Iteration 7: convergence error = 15.154865251101455 Iteration 8: convergence error = 4.696461138320956 Iteration 9: convergence error = 1.4537572497024485 Iteration 10: convergence error = 0.449681627857899 Iteration 11: convergence error = 0.1390393469691844 Iteration 12: convergence error = 0.04298002092855313 Iteration 13: convergence error = 0.01328423437098536 Iteration 14: convergence error = 0.004105564878045698 Iteration 15: convergence error = 0.0012687914731941419 Iteration 16: convergence error = 0.00039209987698995974 Iteration 17: convergence error = 0.00012117051073801122 Iteration 18: convergence error = 3.7444989629875636e-5 Iteration 19: convergence error = 1.1571461072890088e-5 Iteration 20: convergence error = 3.5758780541073065e-6 Iteration 21: convergence error = 1.1050337889173534e-6 Iteration 22: convergence error = 3.413183549128007e-7 Iteration 23: convergence error = 1.0426947483210824e-7 Iteration 24: convergence error = 3.1067429517861456e-8 Iteration 25: convergence error = 9.225914254784584e-9 Iteration 26: convergence error = 2.736669557634741e-9 Iteration 27: convergence error = 8.05357558419928e-10 Iteration 28: convergence error = 2.396518539171666e-10 Iteration 29: convergence error = 7.23048287909478e-11 Iteration 30: convergence error = 2.091837814077735e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012283770816838705 Iteration 10: d = 1.3095022850554938e-5 Iteration 20: d = 1.38403713777071e-7 Iteration 30: d = 1.6673526440027834e-9 Iteration 40: d = 2.1007424934194228e-11 Iteration 50: d = 2.6965032681703677e-13 Iteration 60: d = 3.4930976320403902e-15 Converged after 62 iterations. d = 1.4818593452227255e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.69896846788 Iteration 2: convergence error = 5512.760847814765 Iteration 3: convergence error = 939.2268485325271 Iteration 4: convergence error = 171.29645011366574 Iteration 5: convergence error = 31.11750289628526 Iteration 6: convergence error = 5.666848753664226 Iteration 7: convergence error = 1.0333399833791646 Iteration 8: convergence error = 0.18885698573694754 Iteration 9: convergence error = 0.03455476481758524 Iteration 10: convergence error = 0.0063187161999849195 Iteration 11: convergence error = 0.0011551045895430434 Iteration 12: convergence error = 0.0002111289904860314 Iteration 13: convergence error = 3.858691798086511e-5 Iteration 14: convergence error = 7.052042747091036e-6 Iteration 15: convergence error = 1.2887844604847487e-6 Iteration 16: convergence error = 2.3555094230687246e-7 Iteration 17: convergence error = 4.302637535147369e-8 Iteration 18: convergence error = 7.8580342233181e-9 Iteration 19: convergence error = 1.4415491023100913e-9 Iteration 20: convergence error = 2.623892214614898e-10 Iteration 21: convergence error = 4.8203219193965197e-11 Iteration 22: convergence error = 7.958078640513122e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012283770816838705 Iteration 10: d = 1.3095022850554938e-5 Iteration 20: d = 1.38403713777071e-7 Iteration 30: d = 1.6673526440027834e-9 Iteration 40: d = 2.1007424934194228e-11 Iteration 50: d = 2.6965032681703677e-13 Iteration 60: d = 3.4930976320403902e-15 Converged after 62 iterations. d = 1.4818593452227255e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.481491903801 Iteration 2: convergence error = 2711.498693111886 Iteration 3: convergence error = 205.38691486892583 Iteration 4: convergence error = 19.412948853608274 Iteration 5: convergence error = 1.6066359495057745 Iteration 6: convergence error = 0.13100979062767698 Iteration 7: convergence error = 0.010696195249527564 Iteration 8: convergence error = 0.0008752922076772106 Iteration 9: convergence error = 7.173545017540858e-5 Iteration 10: convergence error = 5.884135115167203e-6 Iteration 11: convergence error = 4.828665022537103e-7 Iteration 12: convergence error = 3.963458837768966e-8 Iteration 13: convergence error = 3.2545132232740876e-9 Iteration 14: convergence error = 2.6640939765196494e-10 Iteration 15: convergence error = 2.1714186004828662e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017785815252300287 Iteration 10: d = 2.4779635846027985e-5 Iteration 20: d = 3.3529264981049794e-7 Iteration 30: d = 4.688608442040463e-9 Iteration 40: d = 6.562475202698302e-11 Iteration 50: d = 9.179110241054592e-13 Iteration 60: d = 1.287783052911868e-14 Converged after 65 iterations. d = 1.5091187581826492e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.376612760545 Iteration 2: convergence error = 3616.6468861539324 Iteration 3: convergence error = 594.0981172780971 Iteration 4: convergence error = 104.45952243062447 Iteration 5: convergence error = 18.58986686624735 Iteration 6: convergence error = 3.27983838744899 Iteration 7: convergence error = 0.5766056068264334 Iteration 8: convergence error = 0.10121801596392288 Iteration 9: convergence error = 0.01775699901554617 Iteration 10: convergence error = 0.003114381285286072 Iteration 11: convergence error = 0.0005461716887111834 Iteration 12: convergence error = 9.577856235409854e-5 Iteration 13: convergence error = 1.6795758483567624e-5 Iteration 14: convergence error = 2.945304231616319e-6 Iteration 15: convergence error = 5.164688445802312e-7 Iteration 16: convergence error = 9.057021088665351e-8 Iteration 17: convergence error = 1.5897057892289013e-8 Iteration 18: convergence error = 2.7685018721967936e-9 Iteration 19: convergence error = 4.927187546854839e-10 Iteration 20: convergence error = 8.43556335894391e-11 Iteration 21: convergence error = 1.4551915228366852e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 7m07.3s Testing RayTraceHeatTransfer tests passed Testing completed after 436.29s PkgEval succeeded after 483.54s