Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.30 (073666df8b*) started at 2025-11-04T15:53:11.430 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.65s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.3 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.2 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 4.88s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 21525.3 ms ✓ AbstractAlgebra 1142.5 ms ✓ OpenBLAS32_jll 1240.8 ms ✓ FLINT_jll 31964.8 ms ✓ Nemo 123113.9 ms ✓ Groebner 10438.2 ms ✓ ParamPunPam 12455.9 ms ✓ RationalFunctionFields 11821.9 ms ✓ StructuralIdentifiability 8 dependencies successfully precompiled in 214 seconds. 27 already precompiled. Precompilation completed after 222.59s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_vaGo05/Project.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.2 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_vaGo05/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.2 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_vaGo05/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.26.1 Updating `/tmp/jl_vaGo05/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.1 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.10 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.15 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.1 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.124.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.3.1 [c0aeaf25] + SciMLOperators v1.9.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_vaGo05/Project.toml` [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_vaGo05/Manifest.toml` WARNING: Method definition rrule(typeof(ArrayInterface.restructure), Any, Any) in module ArrayInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/ArrayInterface/U8kYm/ext/ArrayInterfaceChainRulesCoreExt.jl:7 overwritten in module ArrayInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ArrayInterfaceChainRulesCoreExt` └ @ Base loading.jl:2629 WARNING: Method definition rrule(typeof(LogExpFunctions.logit), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:118 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xexpx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:92 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log2mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:124 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1pexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:122 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1pmx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:126 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logsubexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:130 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logmxp1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:127 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logaddexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:129 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logcosh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:119 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.cloglog), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:187 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:123 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logistic), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:117 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logabssinh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:120 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s11", N} where N where var"#s11"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:140 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.logexpm1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:125 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.cexpexp), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:188 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xlogy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:45 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.softmax), AbstractArray{var"#s12", N} where N where var"#s12"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:165 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xlogx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:20 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.log1psq), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:121 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xexpy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:111 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(typeof(LogExpFunctions.xlog1py), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:70 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.rrule), typeof(LogExpFunctions.softmax), AbstractArray{var"#s11", N} where N where var"#s11"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:165 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.rrule), typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s3", N} where N where var"#s3"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:140 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.frule), Any, typeof(LogExpFunctions.softmax), AbstractArray{var"#s1", N} where N where var"#s1"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:155 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition kwcall(NamedTuple{names, T} where T<:Tuple where names, typeof(ChainRulesCore.frule), Any, typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s1", N} where N where var"#s1"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:135 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:123 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logabssinh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:120 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log2mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:124 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1pexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:122 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logistic), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:117 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logexpm1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:125 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logmxp1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:127 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logsubexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:130 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.cexpexp), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:188 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logaddexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:129 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logcosh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:119 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1psq), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:121 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.log1pmx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:126 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.cloglog), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:187 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition derivatives_given_output(Any, typeof(LogExpFunctions.logit), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:118 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xlog1py), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:65 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logit), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:118 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log2mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:124 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1pexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:122 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logsubexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:130 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logmxp1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:127 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logaddexp), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:129 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logcosh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:119 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.cloglog), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:187 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logistic), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:117 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1mexp), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:123 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logabssinh), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:120 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logsumexp), AbstractArray{var"#s2", N} where N where var"#s2"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:135 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.logexpm1), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:125 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.cexpexp), Number) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:188 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.softmax), AbstractArray{var"#s2", N} where N where var"#s2"<:Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:155 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xlogy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:40 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1pmx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:126 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.log1psq), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:121 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xexpx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:87 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xexpy), Real, Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:106 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition frule(Any, typeof(LogExpFunctions.xlogx), Real) in module LogExpFunctionsChainRulesCoreExt at /home/pkgeval/.julia/packages/LogExpFunctions/iNqo2/ext/LogExpFunctionsChainRulesCoreExt.jl:15 overwritten in module LogExpFunctionsChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `LogExpFunctionsChainRulesCoreExt` └ @ Base loading.jl:2629 WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where Union{ChainRulesCore.HasForwardsMode, ChainRulesCore.HasReverseMode}<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:22 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:16 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition mode(ADTypes.AutoChainRules{RC}) where {RC<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasForwardsMode<:var"#s1"<:Any)} in module ADTypesChainRulesCoreExt at /home/pkgeval/.julia/packages/ADTypes/kYxzQ/ext/ADTypesChainRulesCoreExt.jl:10 overwritten in module ADTypesChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `ADTypesChainRulesCoreExt` └ @ Base loading.jl:2629 WARNING: Method definition known_last(Type{StaticArrays.SOneTo{N}}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:21 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition defines_strides(Type{var"#s2"} where var"#s2"<:(StaticArraysCore.MArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:40 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition defines_strides(Type{var"#s2"} where var"#s2"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:39 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_strides(StaticArraysCore.StaticArray{S, T, N} where N where T) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:53 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_strides(StaticArraysCore.SizedArray{S, T, M, N, A}) where {S, T, M, N, A<:(Base.SubArray{T, N, P, I, L} where L where I where P where N where T)} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:63 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition axes_types(Type{var"#s3"} where var"#s3"<:(StaticArraysCore.StaticArray{S, T, N} where N where T)) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:42 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_size(StaticArraysCore.StaticArray{S, T, N} where N where T) where {S} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:45 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition contiguous_axis(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:31 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition parent_type(Type{var"#s3"} where var"#s3"<:StaticArraysCore.SizedArray{S, T, M, N, A}) where {S, T, M, N, A} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:64 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition stride_rank(Type{T}) where {N, T<:(StaticArraysCore.StaticArray{var"#s1", var"#s2", N} where var"#s2" where var"#s1")} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:33 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_first(Type{var"#s1"} where var"#s1"<:(StaticArrays.SOneTo{n} where n)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:20 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition dense_dims(Type{var"#s2"} where var"#s2"<:StaticArraysCore.StaticArray{S, T, N}) where {S, T, N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:36 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition device(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.SArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:30 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition device(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.MArray{S, T, N, L} where L where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:29 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{StaticArrays.SOneTo{N}}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:22 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{StaticArrays.Length{L}}) where {L} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:23 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition known_length(Type{A}) where {A<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:24 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition contiguous_batch_size(Type{var"#s1"} where var"#s1"<:(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple)) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:32 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition static_length(StaticArraysCore.StaticArray{S, T, N} where N where T where S<:Tuple) in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:28 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). WARNING: Method definition (::Type{Static.OptionallyStaticUnitRange{F, L} where L<:Union{Int64, Static.StaticInt{N} where N} where F<:Union{Int64, Static.StaticInt{N} where N}})(StaticArrays.SOneTo{N}) where {N} in module StaticArrayInterfaceStaticArraysExt at /home/pkgeval/.julia/packages/StaticArrayInterface/lkDPR/ext/StaticArrayInterfaceStaticArraysExt.jl:17 overwritten in module StaticArrayInterfaceStaticArraysExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `StaticArrayInterfaceStaticArraysExt` └ @ Base loading.jl:2629 WARNING: Method definition inplace_support(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(DifferentiationInterface.DifferentiateWith{F, B} where B<:ADTypes.AbstractADType where F, Any) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/differentiate_with.jl:1 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition check_available(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:20 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_same_point(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_nokwarg(Base.Val{x} where x, Any, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:9 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition value_and_pullback(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:36 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `DifferentiationInterfaceChainRulesCoreExt` └ @ Base loading.jl:2629 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 1.771191 seconds (948.59 k allocations: 47.903 MiB, 99.41% compilation time) 0.001751 seconds (7.12 k allocations: 314.047 KiB) 0.001694 seconds (10.80 k allocations: 485.875 KiB) 0.001514 seconds (10.76 k allocations: 479.609 KiB) 0.002286 seconds (14.53 k allocations: 636.109 KiB) 0.001289 seconds (7.95 k allocations: 360.867 KiB) 0.000905 seconds (7.46 k allocations: 301.141 KiB) 13.484725 seconds (6.78 M allocations: 348.085 MiB, 0.95% gc time, 99.76% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.318663 seconds (112.44 k allocations: 6.027 MiB, 97.93% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.010919 seconds (9.76 k allocations: 518.773 KiB, 90.27% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003305639 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.46287409 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.060892235 seconds [ Info: Global identifiability assessed in 53.234386382 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002987831 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 0.985300138 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 5.272e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.033013753 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.535123066 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.9199e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:15 ✓ # Computing specializations.. Time: 0:00:17 [ Info: Search for polynomial generators concluded in 11.966593711 [ Info: Selecting generators in 0.011687677 [ Info: Inclusion checked with probability 0.9955 in 0.059296891 seconds [ Info: Global identifiability assessed in 102.078228752 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.460711438 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.528808174 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.122385594 seconds [ Info: Global identifiability assessed in 34.870149403 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013059604 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.029474207 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000298367 seconds [ Info: Global identifiability assessed in 0.072305856 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 6.558890148 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002929422 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 2.042e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.866538418 [ Info: Selecting generators in 0.000414526 [ Info: Inclusion checked with probability 0.9955 in 0.003321578 seconds [ Info: Global identifiability assessed in 8.770542508 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003457327 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001904651 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.88e-5 seconds [ Info: Global identifiability assessed in 0.008226881 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002854863 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002002781 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.165e-5 seconds [ Info: Global identifiability assessed in 0.008072463 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004835153 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003801244 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 2.1249e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.072084834 [ Info: Selecting generators in 0.016253974 [ Info: Inclusion checked with probability 0.9955 in 0.005621266 seconds [ Info: Global identifiability assessed in 2.196756274 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008838976 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0041536 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.473e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007002073 [ Info: Selecting generators in 0.004374989 [ Info: Inclusion checked with probability 0.9955 in 0.004637026 seconds [ Info: Global identifiability assessed in 0.054720144 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001802752 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001566285 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.146e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000111129 [ Info: Selecting generators in 1.170360081 [ Info: Inclusion checked with probability 0.995 in 0.002273228 seconds [ Info: The search for identifiable functions concluded in 2.410826959 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001406757 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001307218 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.824e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113149 [ Info: Selecting generators in 0.000849992 [ Info: Inclusion checked with probability 0.995 in 0.00211265 seconds [ Info: The search for identifiable functions concluded in 0.010746017 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001352057 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001170908 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.997e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9619e-5 [ Info: Selecting generators in 0.000918641 [ Info: Inclusion checked with probability 0.995 in 0.002115049 seconds [ Info: The search for identifiable functions concluded in 0.01041539 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001387197 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001288857 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.034e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000580534 [ Info: Selecting generators in 0.000806803 [ Info: Inclusion checked with probability 0.995 in 0.001944342 seconds [ Info: The search for identifiable functions concluded in 0.010702967 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001541395 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001306387 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.507e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000646994 [ Info: Selecting generators in 0.000840162 [ Info: Inclusion checked with probability 0.995 in 0.00206208 seconds [ Info: The search for identifiable functions concluded in 0.011686298 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001251738 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001187239 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.974e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000599864 [ Info: Selecting generators in 0.000890651 [ Info: Inclusion checked with probability 0.995 in 0.001778183 seconds [ Info: The search for identifiable functions concluded in 0.010321001 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002266128 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001525025 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.7159e-5 seconds [ Info: The search for identifiable functions concluded in 0.034982584 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00204122 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001342467 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.474e-5 seconds [ Info: The search for identifiable functions concluded in 0.004094591 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001657174 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001308607 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.369e-5 seconds [ Info: The search for identifiable functions concluded in 0.003586416 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001690084 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001248188 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.903e-5 seconds [ Info: The search for identifiable functions concluded in 0.003619825 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001574485 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001270678 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.282e-5 seconds [ Info: The search for identifiable functions concluded in 0.003462056 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001441056 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001147199 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.478e-5 seconds [ Info: The search for identifiable functions concluded in 0.00319044 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002296478 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001628824 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.055e-5 seconds [ Info: The search for identifiable functions concluded in 0.004943703 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002015841 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001540986 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.154e-5 seconds [ Info: The search for identifiable functions concluded in 0.004370288 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001972951 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001518645 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.06e-5 seconds [ Info: The search for identifiable functions concluded in 0.004288769 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001920712 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001553315 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.038e-5 seconds [ Info: The search for identifiable functions concluded in 0.004217559 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001986351 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001336907 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.688e-5 seconds [ Info: The search for identifiable functions concluded in 0.0040947 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0020314 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001575125 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.099e-5 seconds [ Info: The search for identifiable functions concluded in 0.004412138 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.320488743 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001993701 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.873e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107119 [ Info: Selecting generators in 0.000850991 [ Info: Inclusion checked with probability 0.995 in 0.001951001 seconds [ Info: The search for identifiable functions concluded in 0.330678094 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002819363 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001757263 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.864e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9109e-5 [ Info: Selecting generators in 0.000718983 [ Info: Inclusion checked with probability 0.995 in 0.00200653 seconds [ Info: The search for identifiable functions concluded in 0.012175043 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002949682 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00204375 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.059e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000101529 [ Info: Selecting generators in 0.000773482 [ Info: Inclusion checked with probability 0.995 in 0.00204315 seconds [ Info: The search for identifiable functions concluded in 0.012989465 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003016321 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001842162 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.94e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000560655 [ Info: Selecting generators in 0.000849172 [ Info: Inclusion checked with probability 0.995 in 0.00213302 seconds [ Info: The search for identifiable functions concluded in 0.013221343 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002962941 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001876912 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.946e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000565175 [ Info: Selecting generators in 0.000841172 [ Info: Inclusion checked with probability 0.995 in 0.001944231 seconds [ Info: The search for identifiable functions concluded in 0.013065385 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003003101 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001791973 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.1769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000542825 [ Info: Selecting generators in 0.000822232 [ Info: Inclusion checked with probability 0.995 in 0.00203868 seconds [ Info: The search for identifiable functions concluded in 0.012913966 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001516855 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001540145 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.311e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000147729 [ Info: Selecting generators in 0.002610035 [ Info: Inclusion checked with probability 0.995 in 0.004207499 seconds [ Info: The search for identifiable functions concluded in 0.019447743 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001622755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001464276 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.328e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137329 [ Info: Selecting generators in 0.002677654 [ Info: Inclusion checked with probability 0.995 in 0.004352758 seconds [ Info: The search for identifiable functions concluded in 0.020310755 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001606165 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001577245 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.413e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000142148 [ Info: Selecting generators in 0.002719134 [ Info: Inclusion checked with probability 0.995 in 0.00413608 seconds [ Info: The search for identifiable functions concluded in 0.020704261 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001528986 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001431916 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.6389e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.268432422 [ Info: Selecting generators in 0.004527436 [ Info: Inclusion checked with probability 0.995 in 0.004556536 seconds [ Info: The search for identifiable functions concluded in 0.290649689 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001641714 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001534925 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0789e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.238204743 [ Info: Selecting generators in 0.00409944 [ Info: Inclusion checked with probability 0.995 in 0.003967192 seconds [ Info: The search for identifiable functions concluded in 0.259181811 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001536956 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001494936 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.473e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017636341 [ Info: Selecting generators in 0.003886093 [ Info: Inclusion checked with probability 0.995 in 0.003527156 seconds [ Info: The search for identifiable functions concluded in 0.03746448 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001339558 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001184239 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.845e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000113779 [ Info: Selecting generators in 0.002643075 [ Info: Inclusion checked with probability 0.995 in 0.002556535 seconds [ Info: The search for identifiable functions concluded in 1.086052461 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001341387 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001246559 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.873e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000103959 [ Info: Selecting generators in 0.002236938 [ Info: Inclusion checked with probability 0.995 in 0.002594475 seconds [ Info: The search for identifiable functions concluded in 0.013833097 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001284007 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001118109 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.65e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000116439 [ Info: Selecting generators in 0.00208132 [ Info: Inclusion checked with probability 0.995 in 0.002459836 seconds [ Info: The search for identifiable functions concluded in 0.012629878 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001330147 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001184068 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.239338682 [ Info: Selecting generators in 0.002773693 [ Info: Inclusion checked with probability 0.995 in 0.002711664 seconds [ Info: The search for identifiable functions concluded in 0.253735694 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001370657 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001237228 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.82e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006366219 [ Info: Selecting generators in 0.002720604 [ Info: Inclusion checked with probability 0.995 in 0.002698134 seconds [ Info: The search for identifiable functions concluded in 0.02082206 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001322358 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001208818 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8219e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006409909 [ Info: Selecting generators in 0.002629535 [ Info: Inclusion checked with probability 0.995 in 0.002809233 seconds [ Info: The search for identifiable functions concluded in 0.02079977 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002412867 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001721274 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.931e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120709 [ Info: Selecting generators in 0.000550265 [ Info: Inclusion checked with probability 0.995 in 0.002773344 seconds [ Info: The search for identifiable functions concluded in 0.017148636 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002320098 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001673584 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.984e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109898 [ Info: Selecting generators in 0.000576025 [ Info: Inclusion checked with probability 0.995 in 0.003318728 seconds [ Info: The search for identifiable functions concluded in 0.01772814 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002556395 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001784993 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.906e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107079 [ Info: Selecting generators in 0.000608774 [ Info: Inclusion checked with probability 0.995 in 0.003284578 seconds [ Info: The search for identifiable functions concluded in 0.018261455 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002477716 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001733534 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.909e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007907534 [ Info: Selecting generators in 0.000702094 [ Info: Inclusion checked with probability 0.995 in 0.002856093 seconds [ Info: The search for identifiable functions concluded in 0.025563094 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002293828 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001757203 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.938e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.008219141 [ Info: Selecting generators in 0.000726823 [ Info: Inclusion checked with probability 0.995 in 0.002986521 seconds [ Info: The search for identifiable functions concluded in 0.025640604 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002419627 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001780503 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.271e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00836309 [ Info: Selecting generators in 0.000776012 [ Info: Inclusion checked with probability 0.995 in 0.003285378 seconds [ Info: The search for identifiable functions concluded in 0.028236659 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00313756 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002222409 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.165e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120698 [ Info: Selecting generators in 0.003622985 [ Info: Inclusion checked with probability 0.995 in 0.003672875 seconds [ Info: The search for identifiable functions concluded in 0.024043289 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002973211 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002224138 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.136e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000114109 [ Info: Selecting generators in 0.003694014 [ Info: Inclusion checked with probability 0.995 in 0.003894433 seconds [ Info: The search for identifiable functions concluded in 0.024335107 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003233809 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002337808 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.311e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126209 [ Info: Selecting generators in 0.003803233 [ Info: Inclusion checked with probability 0.995 in 0.004006362 seconds [ Info: The search for identifiable functions concluded in 0.025085979 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00314138 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002168929 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.439e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015892627 [ Info: Selecting generators in 0.004034801 [ Info: Inclusion checked with probability 0.995 in 0.003834423 seconds [ Info: The search for identifiable functions concluded in 0.040437142 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003041851 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002251619 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.2969e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01554877 [ Info: Selecting generators in 0.003653995 [ Info: Inclusion checked with probability 0.995 in 0.003823973 seconds [ Info: The search for identifiable functions concluded in 0.039764928 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003011261 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002192559 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.982e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.015728859 [ Info: Selecting generators in 0.003729494 [ Info: Inclusion checked with probability 0.995 in 0.003710725 seconds [ Info: The search for identifiable functions concluded in 0.039985076 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016585091 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00524 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.425e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000154918 [ Info: Selecting generators in 0.011388281 [ Info: Inclusion checked with probability 0.995 in 0.006648526 seconds [ Info: The search for identifiable functions concluded in 0.318198984 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007731656 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00523597 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.7609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000153398 [ Info: Selecting generators in 0.012139754 [ Info: Inclusion checked with probability 0.995 in 0.007453598 seconds [ Info: The search for identifiable functions concluded in 0.054108481 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008709637 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006152911 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.117e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000164169 [ Info: Selecting generators in 0.01143679 [ Info: Inclusion checked with probability 0.995 in 0.006339799 seconds [ Info: The search for identifiable functions concluded in 0.053894112 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00829602 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00628543 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.495e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003106221 [ Info: Selecting generators in 0.334549108 [ Info: Inclusion checked with probability 0.995 in 0.006543217 seconds [ Info: The search for identifiable functions concluded in 0.381567946 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008182252 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00515284 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.04e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002340078 [ Info: Selecting generators in 0.011111543 [ Info: Inclusion checked with probability 0.995 in 0.006474998 seconds [ Info: The search for identifiable functions concluded in 0.053537346 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.007784725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005327059 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.222e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002538785 [ Info: Selecting generators in 0.010684558 [ Info: Inclusion checked with probability 0.995 in 0.005911184 seconds [ Info: The search for identifiable functions concluded in 0.054233419 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004635666 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002912132 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.951e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000112799 [ Info: Selecting generators in 0.001827292 [ Info: Inclusion checked with probability 0.995 in 0.003600705 seconds [ Info: The search for identifiable functions concluded in 0.023822451 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004854773 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003319398 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.461e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126299 [ Info: Selecting generators in 0.001749663 [ Info: Inclusion checked with probability 0.995 in 0.003793713 seconds [ Info: The search for identifiable functions concluded in 0.024834792 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005088911 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003000131 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.2219e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110059 [ Info: Selecting generators in 0.001956151 [ Info: Inclusion checked with probability 0.995 in 0.004577116 seconds [ Info: The search for identifiable functions concluded in 0.026309798 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005178881 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003204259 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.813e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001455146 [ Info: Selecting generators in 0.001846262 [ Info: Inclusion checked with probability 0.995 in 0.003920393 seconds [ Info: The search for identifiable functions concluded in 0.027198978 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005552766 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003473397 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.2959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001524505 [ Info: Selecting generators in 0.00216871 [ Info: Inclusion checked with probability 0.995 in 0.004312969 seconds [ Info: The search for identifiable functions concluded in 0.029788544 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005165341 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0030985 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.118e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001501576 [ Info: Selecting generators in 0.002153629 [ Info: Inclusion checked with probability 0.995 in 0.004057391 seconds [ Info: The search for identifiable functions concluded in 0.028448977 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005921393 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003746134 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.324e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000137609 [ Info: Selecting generators in 0.002866873 [ Info: Inclusion checked with probability 0.995 in 0.00411168 seconds [ Info: The search for identifiable functions concluded in 0.032035872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005837844 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003649725 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.371e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133309 [ Info: Selecting generators in 0.002938582 [ Info: Inclusion checked with probability 0.995 in 0.004218409 seconds [ Info: The search for identifiable functions concluded in 0.031918714 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005885244 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003693344 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.587e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107049 [ Info: Selecting generators in 0.002354838 [ Info: Inclusion checked with probability 0.995 in 0.003946182 seconds [ Info: The search for identifiable functions concluded in 0.028653424 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005791184 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003501996 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.506e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021972109 [ Info: Selecting generators in 0.004899333 [ Info: Inclusion checked with probability 0.995 in 0.0041367 seconds [ Info: The search for identifiable functions concluded in 0.055546137 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006157731 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003738864 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.305e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022433925 [ Info: Selecting generators in 0.004589056 [ Info: Inclusion checked with probability 0.995 in 0.004283839 seconds [ Info: The search for identifiable functions concluded in 0.057520057 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005838254 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003677004 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.021398775 [ Info: Selecting generators in 0.004558996 [ Info: Inclusion checked with probability 0.995 in 0.004346318 seconds [ Info: The search for identifiable functions concluded in 0.05621436 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00315927 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002349597 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.292e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000110609 [ Info: Selecting generators in 0.001997081 [ Info: Inclusion checked with probability 0.995 in 0.003548316 seconds [ Info: The search for identifiable functions concluded in 0.022234977 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00309889 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002309617 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.347e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000115729 [ Info: Selecting generators in 0.002009081 [ Info: Inclusion checked with probability 0.995 in 0.003716344 seconds [ Info: The search for identifiable functions concluded in 0.022002639 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002957291 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002273889 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.206e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121879 [ Info: Selecting generators in 0.0021096 [ Info: Inclusion checked with probability 0.995 in 0.003734904 seconds [ Info: The search for identifiable functions concluded in 0.021168177 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002959202 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002288408 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.071e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014730059 [ Info: Selecting generators in 0.003625715 [ Info: Inclusion checked with probability 0.995 in 0.003656895 seconds [ Info: The search for identifiable functions concluded in 0.037005415 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0031292 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002234048 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.885e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014685829 [ Info: Selecting generators in 0.003363877 [ Info: Inclusion checked with probability 0.995 in 0.003579536 seconds [ Info: The search for identifiable functions concluded in 0.036803387 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00313592 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002406947 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.8399e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014413721 [ Info: Selecting generators in 0.003601266 [ Info: Inclusion checked with probability 0.995 in 0.003473077 seconds [ Info: The search for identifiable functions concluded in 0.036966615 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016235844 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.049212477 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000315877 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:07 ✓ # Computing specializations.. Time: 0:00:07 [ Info: Search for polynomial generators concluded in 0.000284388 [ Info: Selecting generators in 0.019048027 [ Info: Inclusion checked with probability 0.995 in 0.03019898 seconds [ Info: The search for identifiable functions concluded in 14.97607738 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015840897 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032970524 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000308577 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000176718 [ Info: Selecting generators in 0.018494082 [ Info: Inclusion checked with probability 0.995 in 0.029064811 seconds [ Info: The search for identifiable functions concluded in 0.172106357 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014925006 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.032395059 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000281547 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000158039 [ Info: Selecting generators in 0.021416994 [ Info: Inclusion checked with probability 0.995 in 0.033140712 seconds [ Info: The search for identifiable functions concluded in 0.179483107 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.016074766 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031768995 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000288907 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.170931018 [ Info: Selecting generators in 0.020001078 [ Info: Inclusion checked with probability 0.995 in 0.408493008 seconds [ Info: The search for identifiable functions concluded in 1.729690912 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014348303 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.031519177 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000321227 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.049375386 [ Info: Selecting generators in 0.017484253 [ Info: Inclusion checked with probability 0.995 in 0.027603984 seconds [ Info: The search for identifiable functions concluded in 0.212546409 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014068445 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.030757845 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000318147 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.048869741 [ Info: Selecting generators in 0.018534502 [ Info: Inclusion checked with probability 0.995 in 0.029107291 seconds [ Info: The search for identifiable functions concluded in 0.21348348 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.736064161 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.836997266 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.186358961 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000244718 [ Info: Selecting generators in 0.968979887 [ Info: Inclusion checked with probability 0.995 in 2.484121191 seconds [ Info: The search for identifiable functions concluded in 17.313650182 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.639339021 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.188802866 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.216307193 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000319427 [ Info: Selecting generators in 0.992064197 [ Info: Inclusion checked with probability 0.995 in 2.895312196 seconds [ Info: The search for identifiable functions concluded in 17.74779614 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.584149323 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.812723234 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.177515596 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000171158 [ Info: Selecting generators in 1.045636903 [ Info: Inclusion checked with probability 0.995 in 2.450816575 seconds [ Info: The search for identifiable functions concluded in 17.01511302 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.768375206 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.842163288 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.180480358 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.029535547 [ Info: Selecting generators in 1.108875687 [ Info: Inclusion checked with probability 0.995 in 2.550137184 seconds [ Info: The search for identifiable functions concluded in 17.3678554 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.411362814 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.240930208 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.18029481 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.027591815 [ Info: Selecting generators in 1.175780226 [ Info: Inclusion checked with probability 0.995 in 2.671449983 seconds [ Info: The search for identifiable functions concluded in 17.745480942 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.415408867 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 9.058661168 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.190571531 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 2   ⌝ # Computing specializations.. Time: 0:00:00 Points: 8   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.03433044 [ Info: Selecting generators in 0.601870365 [ Info: Inclusion checked with probability 0.995 in 2.80229169 seconds [ Info: The search for identifiable functions concluded in 18.505778332 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013933126 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011221582 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.754e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138289 [ Info: Selecting generators in 0.009830515 [ Info: Inclusion checked with probability 0.995 in 0.009211592 seconds [ Info: The search for identifiable functions concluded in 0.084532759 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.734889999 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013371471 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.369e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000187519 [ Info: Selecting generators in 0.013649749 [ Info: Inclusion checked with probability 0.995 in 0.01248887 seconds [ Info: The search for identifiable functions concluded in 0.82011099 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021424234 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016161455 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.9859e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000174429 [ Info: Selecting generators in 0.010727687 [ Info: Inclusion checked with probability 0.995 in 0.010286302 seconds [ Info: The search for identifiable functions concluded in 0.108138483 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.017456332 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.013187823 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.749e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.039884688 [ Info: Selecting generators in 0.014348983 [ Info: Inclusion checked with probability 0.995 in 0.010450439 seconds [ Info: The search for identifiable functions concluded in 0.139340893 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01557423 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0125426 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.235e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.036622228 [ Info: Selecting generators in 0.014848727 [ Info: Inclusion checked with probability 0.995 in 0.010116973 seconds [ Info: The search for identifiable functions concluded in 0.132433919 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014213794 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.011290981 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.136e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.03640603 [ Info: Selecting generators in 0.017814159 [ Info: Inclusion checked with probability 0.995 in 0.009648927 seconds [ Info: The search for identifiable functions concluded in 0.12924723 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013459411 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007741295 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.964e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000384096 [ Info: Selecting generators in 0.038890677 [ Info: Inclusion checked with probability 0.995 in 0.014935747 seconds [ Info: The search for identifiable functions concluded in 0.768194899 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01458836 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008026823 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.3269e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000298437 [ Info: Selecting generators in 0.042698501 [ Info: Inclusion checked with probability 0.995 in 0.019373914 seconds [ Info: The search for identifiable functions concluded in 0.519642243 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014076035 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.008409249 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.665e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000352746 [ Info: Selecting generators in 0.060382421 [ Info: Inclusion checked with probability 0.995 in 0.015430332 seconds [ Info: The search for identifiable functions concluded in 1.378896579 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.015273514 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009502609 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.1879e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.98579329 [ Info: Selecting generators in 0.061123703 [ Info: Inclusion checked with probability 0.995 in 0.012813947 seconds [ Info: The search for identifiable functions concluded in 3.502813218 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011921946 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006448828 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.9819e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.340876749 [ Info: Selecting generators in 0.061396471 [ Info: Inclusion checked with probability 0.995 in 0.012591289 seconds [ Info: The search for identifiable functions concluded in 1.462770375 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012066774 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.007449429 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.51e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.286997626 [ Info: Selecting generators in 0.067540922 [ Info: Inclusion checked with probability 0.995 in 0.014963596 seconds [ Info: The search for identifiable functions concluded in 0.78270137 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.023724592 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014866067 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.4209e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000129059 [ Info: Selecting generators in 0.008801796 [ Info: Inclusion checked with probability 0.995 in 0.012799037 seconds [ Info: The search for identifiable functions concluded in 0.099511615 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021298556 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016938727 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 8.3969e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000161228 [ Info: Selecting generators in 0.01138791 [ Info: Inclusion checked with probability 0.995 in 0.016015387 seconds [ Info: The search for identifiable functions concluded in 0.112852647 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024664833 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019901459 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000105659 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000198468 [ Info: Selecting generators in 0.016867018 [ Info: Inclusion checked with probability 0.995 in 0.020773091 seconds [ Info: The search for identifiable functions concluded in 0.873185731 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.032054682 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01985597 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.5579e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.059709397 [ Info: Selecting generators in 0.020236546 [ Info: Inclusion checked with probability 0.995 in 0.017114576 seconds [ Info: The search for identifiable functions concluded in 0.207486939 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.02816681 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018042127 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.143e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.054326429 [ Info: Selecting generators in 0.017734069 [ Info: Inclusion checked with probability 0.995 in 0.015799448 seconds [ Info: The search for identifiable functions concluded in 0.184612658 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.024708173 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016858498 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.1569e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.052732773 [ Info: Selecting generators in 0.017624941 [ Info: Inclusion checked with probability 0.995 in 0.014621849 seconds [ Info: The search for identifiable functions concluded in 0.168601092 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012021555 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016133735 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.9439e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000196658 [ Info: Selecting generators in 0.083238261 [ Info: Inclusion checked with probability 0.995 in 0.018056947 seconds [ Info: The search for identifiable functions concluded in 0.500392599 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011525709 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015515071 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.915e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000176988 [ Info: Selecting generators in 0.080632836 [ Info: Inclusion checked with probability 0.995 in 0.017245235 seconds [ Info: The search for identifiable functions concluded in 0.529857846 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01141834 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017457292 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.275e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 Points: 101   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000247858 [ Info: Selecting generators in 0.104041041 [ Info: Inclusion checked with probability 0.995 in 0.019270295 seconds [ Info: The search for identifiable functions concluded in 1.414072582 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01251077 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.017695401 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.4889e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.085396011 [ Info: Selecting generators in 0.107655827 [ Info: Inclusion checked with probability 0.995 in 0.01777114 seconds [ Info: The search for identifiable functions concluded in 0.635221485 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012703278 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016428423 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.692e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.105472998 [ Info: Selecting generators in 0.090906538 [ Info: Inclusion checked with probability 0.995 in 0.017879248 seconds [ Info: The search for identifiable functions concluded in 0.673794305 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.013041725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016952498 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 6.899e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.289542097 [ Info: Selecting generators in 0.087866967 [ Info: Inclusion checked with probability 0.995 in 0.015800759 seconds [ Info: The search for identifiable functions concluded in 2.667708644 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.805225995 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.07295608 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000115898 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 41   ⌜ # Computing specializations.. Time: 0:00:01 Points: 52   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:02 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 92   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 33   ⌞ # Computing specializations.. Time: 0:00:01 Points: 44   ⌜ # Computing specializations.. Time: 0:00:01 Points: 55   ⌝ # Computing specializations.. Time: 0:00:02 Points: 65   ⌟ # Computing specializations.. Time: 0:00:02 Points: 76   ⌞ # Computing specializations.. Time: 0:00:03 Points: 87   ⌜ # Computing specializations.. Time: 0:00:03 Points: 96   ⌝ # Computing specializations.. Time: 0:00:03 Points: 106   ⌟ # Computing specializations.. Time: 0:00:04 Points: 116   ⌞ # Computing specializations.. Time: 0:00:04 Points: 127   ⌜ # Computing specializations.. Time: 0:00:04 Points: 137   ⌝ # Computing specializations.. Time: 0:00:05 Points: 149   ⌟ # Computing specializations.. Time: 0:00:05 Points: 160   ⌞ # Computing specializations.. Time: 0:00:06 Points: 171   ⌜ # Computing specializations.. Time: 0:00:06 Points: 182   ⌝ # Computing specializations.. Time: 0:00:06 Points: 193   ⌟ # Computing specializations.. Time: 0:00:07 Points: 204   ⌞ # Computing specializations.. Time: 0:00:07 Points: 214   ⌜ # Computing specializations.. Time: 0:00:07 Points: 224   ⌝ # Computing specializations.. Time: 0:00:08 Points: 233   ⌟ # Computing specializations.. Time: 0:00:08 Points: 244   ⌞ # Computing specializations.. Time: 0:00:09 Points: 255   ⌜ # Computing specializations.. Time: 0:00:09 Points: 267   ⌝ # Computing specializations.. Time: 0:00:09 Points: 278   ⌟ # Computing specializations.. Time: 0:00:10 Points: 288   ⌞ # Computing specializations.. Time: 0:00:10 Points: 298   ⌜ # Computing specializations.. Time: 0:00:11 Points: 306   ⌝ # Computing specializations.. Time: 0:00:11 Points: 316   ⌟ # Computing specializations.. Time: 0:00:11 Points: 325   ⌞ # Computing specializations.. Time: 0:00:12 Points: 334   ⌜ # Computing specializations.. Time: 0:00:12 Points: 344   ⌝ # Computing specializations.. Time: 0:00:12 Points: 354   ⌟ # Computing specializations.. Time: 0:00:13 Points: 363   ⌞ # Computing specializations.. Time: 0:00:13 Points: 373   ⌜ # Computing specializations.. Time: 0:00:14 Points: 383   ⌝ # Computing specializations.. Time: 0:00:14 Points: 395   ⌟ # Computing specializations.. Time: 0:00:14 Points: 406   ⌞ # Computing specializations.. Time: 0:00:15 Points: 416   ⌜ # Computing specializations.. Time: 0:00:15 Points: 426   ⌝ # Computing specializations.. Time: 0:00:15 Points: 436   ⌟ # Computing specializations.. Time: 0:00:16 Points: 447   ⌞ # Computing specializations.. Time: 0:00:16 Points: 458   ⌜ # Computing specializations.. Time: 0:00:16 Points: 468   ⌝ # Computing specializations.. Time: 0:00:17 Points: 478   ⌟ # Computing specializations.. Time: 0:00:17 Points: 488   ⌞ # Computing specializations.. Time: 0:00:18 Points: 499   ⌜ # Computing specializations.. Time: 0:00:18 Points: 509   ⌝ # Computing specializations.. Time: 0:00:18 Points: 518   ⌟ # Computing specializations.. Time: 0:00:19 Points: 528   ⌞ # Computing specializations.. Time: 0:00:19 Points: 538   ⌜ # Computing specializations.. Time: 0:00:19 Points: 550   ⌝ # Computing specializations.. Time: 0:00:20 Points: 561   ⌟ # Computing specializations.. Time: 0:00:20 Points: 571   ⌞ # Computing specializations.. Time: 0:00:21 Points: 581   ⌜ # Computing specializations.. Time: 0:00:21 Points: 590   ⌝ # Computing specializations.. Time: 0:00:21 Points: 601   ⌟ # Computing specializations.. Time: 0:00:22 Points: 611   ⌞ # Computing specializations.. Time: 0:00:22 Points: 621   ⌜ # Computing specializations.. Time: 0:00:22 Points: 631   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 0.000770443 [ Info: Selecting generators in 0.050081899 [ Info: Inclusion checked with probability 0.995 in 9.103684683 seconds [ Info: The search for identifiable functions concluded in 55.705117998 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.655534417 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.101006981 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000292417 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 34   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 52   ⌟ # Computing specializations.. Time: 0:00:03 Points: 63   ⌞ # Computing specializations.. Time: 0:00:03 Points: 73   ⌜ # Computing specializations.. Time: 0:00:06 Points: 81   ⌝ # Computing specializations.. Time: 0:00:06 Points: 91   ✓ # Computing specializations.. Time: 0:00:07 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 28   ⌞ # Computing specializations.. Time: 0:00:01 Points: 38   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 67   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 97   ⌟ # Computing specializations.. Time: 0:00:04 Points: 107   ⌞ # Computing specializations.. Time: 0:00:04 Points: 116   ⌜ # Computing specializations.. Time: 0:00:04 Points: 127   ⌝ # Computing specializations.. Time: 0:00:05 Points: 137   ⌟ # Computing specializations.. Time: 0:00:05 Points: 148   ⌞ # Computing specializations.. Time: 0:00:06 Points: 158   ⌜ # Computing specializations.. Time: 0:00:06 Points: 168   ⌝ # Computing specializations.. Time: 0:00:06 Points: 178   ⌟ # Computing specializations.. Time: 0:00:07 Points: 187   ⌞ # Computing specializations.. Time: 0:00:07 Points: 197   ⌜ # Computing specializations.. Time: 0:00:07 Points: 205   ⌝ # Computing specializations.. Time: 0:00:08 Points: 215   ⌟ # Computing specializations.. Time: 0:00:08 Points: 225   ⌞ # Computing specializations.. Time: 0:00:08 Points: 235   ⌜ # Computing specializations.. Time: 0:00:09 Points: 245   ⌝ # Computing specializations.. Time: 0:00:09 Points: 256   ⌟ # Computing specializations.. Time: 0:00:10 Points: 266   ⌞ # Computing specializations.. Time: 0:00:10 Points: 277   ⌜ # Computing specializations.. Time: 0:00:10 Points: 287   ⌝ # Computing specializations.. Time: 0:00:11 Points: 298   ⌟ # Computing specializations.. Time: 0:00:11 Points: 308   ⌞ # Computing specializations.. Time: 0:00:11 Points: 317   ⌜ # Computing specializations.. Time: 0:00:12 Points: 326   ⌝ # Computing specializations.. Time: 0:00:12 Points: 335   ⌟ # Computing specializations.. Time: 0:00:12 Points: 345   ⌞ # Computing specializations.. Time: 0:00:13 Points: 354   ⌜ # Computing specializations.. Time: 0:00:13 Points: 365   ⌝ # Computing specializations.. Time: 0:00:14 Points: 375   ⌟ # Computing specializations.. Time: 0:00:14 Points: 386   ⌞ # Computing specializations.. Time: 0:00:14 Points: 396   ⌜ # Computing specializations.. Time: 0:00:15 Points: 407   ⌝ # Computing specializations.. Time: 0:00:15 Points: 417   ⌟ # Computing specializations.. Time: 0:00:15 Points: 426   ⌞ # Computing specializations.. Time: 0:00:16 Points: 436   ⌜ # Computing specializations.. Time: 0:00:16 Points: 444   ⌝ # Computing specializations.. Time: 0:00:16 Points: 454   ⌟ # Computing specializations.. Time: 0:00:17 Points: 464   ⌞ # Computing specializations.. Time: 0:00:17 Points: 475   ⌜ # Computing specializations.. Time: 0:00:18 Points: 485   ⌝ # Computing specializations.. Time: 0:00:18 Points: 496   ⌟ # Computing specializations.. Time: 0:00:19 Points: 507   ⌞ # Computing specializations.. Time: 0:00:19 Points: 518   ⌜ # Computing specializations.. Time: 0:00:19 Points: 528   ⌝ # Computing specializations.. Time: 0:00:20 Points: 538   ⌟ # Computing specializations.. Time: 0:00:20 Points: 548   ⌞ # Computing specializations.. Time: 0:00:20 Points: 556   ⌜ # Computing specializations.. Time: 0:00:21 Points: 566   ⌝ # Computing specializations.. Time: 0:00:21 Points: 576   ⌟ # Computing specializations.. Time: 0:00:22 Points: 587   ⌞ # Computing specializations.. Time: 0:00:22 Points: 597   ⌜ # Computing specializations.. Time: 0:00:22 Points: 608   ⌝ # Computing specializations.. Time: 0:00:23 Points: 618   ⌟ # Computing specializations.. Time: 0:00:23 Points: 627   ⌞ # Computing specializations.. Time: 0:00:23 Points: 637   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 0.000683393 [ Info: Selecting generators in 0.072034459 [ Info: Inclusion checked with probability 0.995 in 9.154911227 seconds [ Info: The search for identifiable functions concluded in 59.766771003 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.802656278 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.109774517 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000133529 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 37   ⌜ # Computing specializations.. Time: 0:00:01 Points: 46   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 64   ⌞ # Computing specializations.. Time: 0:00:02 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 81   ⌝ # Computing specializations.. Time: 0:00:03 Points: 90   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 51   ⌟ # Computing specializations.. Time: 0:00:02 Points: 60   ⌞ # Computing specializations.. Time: 0:00:02 Points: 70   ⌜ # Computing specializations.. Time: 0:00:03 Points: 79   ⌝ # Computing specializations.. Time: 0:00:03 Points: 88   ⌟ # Computing specializations.. Time: 0:00:03 Points: 97   ⌞ # Computing specializations.. Time: 0:00:04 Points: 106   ⌜ # Computing specializations.. Time: 0:00:04 Points: 115   ⌝ # Computing specializations.. Time: 0:00:05 Points: 124   ⌟ # Computing specializations.. Time: 0:00:05 Points: 134   ⌞ # Computing specializations.. Time: 0:00:05 Points: 143   ⌜ # Computing specializations.. Time: 0:00:06 Points: 153   ⌝ # Computing specializations.. Time: 0:00:06 Points: 162   ⌟ # Computing specializations.. Time: 0:00:06 Points: 171   ⌞ # Computing specializations.. Time: 0:00:07 Points: 180   ⌜ # Computing specializations.. Time: 0:00:07 Points: 189   ⌝ # Computing specializations.. Time: 0:00:07 Points: 198   ⌟ # Computing specializations.. Time: 0:00:08 Points: 207   ⌞ # Computing specializations.. Time: 0:00:08 Points: 215   ⌜ # Computing specializations.. Time: 0:00:09 Points: 224   ⌝ # Computing specializations.. Time: 0:00:09 Points: 233   ⌟ # Computing specializations.. Time: 0:00:09 Points: 242   ⌞ # Computing specializations.. Time: 0:00:10 Points: 251   ⌜ # Computing specializations.. Time: 0:00:10 Points: 260   ⌝ # Computing specializations.. Time: 0:00:10 Points: 269   ⌟ # Computing specializations.. Time: 0:00:11 Points: 278   ⌞ # Computing specializations.. Time: 0:00:11 Points: 285   ⌜ # Computing specializations.. Time: 0:00:11 Points: 294   ⌝ # Computing specializations.. Time: 0:00:12 Points: 302   ⌟ # Computing specializations.. Time: 0:00:12 Points: 311   ⌞ # Computing specializations.. Time: 0:00:12 Points: 320   ⌜ # Computing specializations.. Time: 0:00:13 Points: 328   ⌝ # Computing specializations.. Time: 0:00:13 Points: 336   ⌟ # Computing specializations.. Time: 0:00:13 Points: 347   ⌞ # Computing specializations.. Time: 0:00:14 Points: 358   ⌜ # Computing specializations.. Time: 0:00:14 Points: 367   ⌝ # Computing specializations.. Time: 0:00:15 Points: 374   ⌟ # Computing specializations.. Time: 0:00:15 Points: 383   ⌞ # Computing specializations.. Time: 0:00:15 Points: 392   ⌜ # Computing specializations.. Time: 0:00:16 Points: 401   ⌝ # Computing specializations.. Time: 0:00:16 Points: 410   ⌟ # Computing specializations.. Time: 0:00:16 Points: 420   ⌞ # Computing specializations.. Time: 0:00:17 Points: 429   ⌜ # Computing specializations.. Time: 0:00:17 Points: 439   ⌝ # Computing specializations.. Time: 0:00:18 Points: 448   ⌟ # Computing specializations.. Time: 0:00:18 Points: 458   ⌞ # Computing specializations.. Time: 0:00:18 Points: 467   ⌜ # Computing specializations.. Time: 0:00:19 Points: 477   ⌝ # Computing specializations.. Time: 0:00:19 Points: 486   ⌟ # Computing specializations.. Time: 0:00:20 Points: 498   ⌞ # Computing specializations.. Time: 0:00:20 Points: 509   ⌜ # Computing specializations.. Time: 0:00:20 Points: 518   ⌝ # Computing specializations.. Time: 0:00:21 Points: 527   ⌟ # Computing specializations.. Time: 0:00:21 Points: 536   ⌞ # Computing specializations.. Time: 0:00:21 Points: 545   ⌜ # Computing specializations.. Time: 0:00:22 Points: 554   ⌝ # Computing specializations.. Time: 0:00:22 Points: 563   ⌟ # Computing specializations.. Time: 0:00:22 Points: 573   ⌞ # Computing specializations.. Time: 0:00:23 Points: 583   ⌜ # Computing specializations.. Time: 0:00:23 Points: 593   ⌝ # Computing specializations.. Time: 0:00:24 Points: 602   ⌟ # Computing specializations.. Time: 0:00:24 Points: 610   ⌞ # Computing specializations.. Time: 0:00:24 Points: 619   ⌜ # Computing specializations.. Time: 0:00:25 Points: 627   ⌝ # Computing specializations.. Time: 0:00:25 Points: 636   ✓ # Computing specializations.. Time: 0:00:26 [ Info: Search for polynomial generators concluded in 0.000383386 [ Info: Selecting generators in 0.065107486 [ Info: Inclusion checked with probability 0.995 in 8.641507975 seconds [ Info: The search for identifiable functions concluded in 65.371556446 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.735966755 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.081682957 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000152309 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 48   ⌝ # Computing specializations.. Time: 0:00:02 Points: 58   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:02 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 41   ⌜ # Computing specializations.. Time: 0:00:01 Points: 52   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 73   ⌞ # Computing specializations.. Time: 0:00:03 Points: 84   ⌜ # Computing specializations.. Time: 0:00:03 Points: 97   ⌝ # Computing specializations.. Time: 0:00:03 Points: 109   ⌟ # Computing specializations.. Time: 0:00:04 Points: 119   ⌞ # Computing specializations.. Time: 0:00:04 Points: 127   ⌜ # Computing specializations.. Time: 0:00:04 Points: 138   ⌝ # Computing specializations.. Time: 0:00:05 Points: 149   ⌟ # Computing specializations.. Time: 0:00:05 Points: 165   ⌞ # Computing specializations.. Time: 0:00:06 Points: 179   ⌜ # Computing specializations.. Time: 0:00:06 Points: 190   ⌝ # Computing specializations.. Time: 0:00:06 Points: 199   ⌟ # Computing specializations.. Time: 0:00:07 Points: 209   ⌞ # Computing specializations.. Time: 0:00:07 Points: 218   ⌜ # Computing specializations.. Time: 0:00:07 Points: 229   ⌝ # Computing specializations.. Time: 0:00:08 Points: 240   ⌟ # Computing specializations.. Time: 0:00:08 Points: 249   ⌞ # Computing specializations.. Time: 0:00:09 Points: 259   ⌜ # Computing specializations.. Time: 0:00:09 Points: 267   ⌝ # Computing specializations.. Time: 0:00:09 Points: 278   ⌟ # Computing specializations.. Time: 0:00:10 Points: 288   ⌞ # Computing specializations.. Time: 0:00:10 Points: 297   ⌜ # Computing specializations.. Time: 0:00:10 Points: 307   ⌝ # Computing specializations.. Time: 0:00:11 Points: 316   ⌟ # Computing specializations.. Time: 0:00:11 Points: 326   ⌞ # Computing specializations.. Time: 0:00:11 Points: 336   ⌜ # Computing specializations.. Time: 0:00:12 Points: 345   ⌝ # Computing specializations.. Time: 0:00:12 Points: 355   ⌟ # Computing specializations.. Time: 0:00:13 Points: 363   ⌞ # Computing specializations.. Time: 0:00:13 Points: 374   ⌜ # Computing specializations.. Time: 0:00:13 Points: 384   ⌝ # Computing specializations.. Time: 0:00:14 Points: 393   ⌟ # Computing specializations.. Time: 0:00:14 Points: 403   ⌞ # Computing specializations.. Time: 0:00:14 Points: 411   ⌜ # Computing specializations.. Time: 0:00:15 Points: 422   ⌝ # Computing specializations.. Time: 0:00:15 Points: 432   ⌟ # Computing specializations.. Time: 0:00:15 Points: 441   ⌞ # Computing specializations.. Time: 0:00:16 Points: 451   ⌜ # Computing specializations.. Time: 0:00:16 Points: 461   ⌝ # Computing specializations.. Time: 0:00:16 Points: 471   ⌟ # Computing specializations.. Time: 0:00:17 Points: 481   ⌞ # Computing specializations.. Time: 0:00:17 Points: 491   ⌜ # Computing specializations.. Time: 0:00:18 Points: 501   ⌝ # Computing specializations.. Time: 0:00:18 Points: 509   ⌟ # Computing specializations.. Time: 0:00:18 Points: 520   ⌞ # Computing specializations.. Time: 0:00:19 Points: 530   ⌜ # Computing specializations.. Time: 0:00:19 Points: 539   ⌝ # Computing specializations.. Time: 0:00:19 Points: 548   ⌟ # Computing specializations.. Time: 0:00:20 Points: 557   ⌞ # Computing specializations.. Time: 0:00:20 Points: 568   ⌜ # Computing specializations.. Time: 0:00:20 Points: 578   ⌝ # Computing specializations.. Time: 0:00:21 Points: 587   ⌟ # Computing specializations.. Time: 0:00:21 Points: 597   ⌞ # Computing specializations.. Time: 0:00:22 Points: 607   ⌜ # Computing specializations.. Time: 0:00:22 Points: 618   ⌝ # Computing specializations.. Time: 0:00:22 Points: 628   ⌟ # Computing specializations.. Time: 0:00:23 Points: 639   ✓ # Computing specializations.. Time: 0:00:23 [ Info: Search for polynomial generators concluded in 2.128694599 [ Info: Selecting generators in 0.03539338 [ Info: Inclusion checked with probability 0.995 in 8.735653052 seconds [ Info: The search for identifiable functions concluded in 55.043873638 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 45 running 1 of 1 signal (10): User defined signal 1 _mpoly_compress_exps at /workspace/srcdir/flint-3.3.1/src/mpoly/compression.c:109 mpoly_compression_set at /workspace/srcdir/flint-3.3.1/src/mpoly/compression.c:309 _factor at /workspace/srcdir/flint-3.3.1/src/fmpz_mpoly_factor/factor.c:717 fmpq_mpoly_factor at /workspace/srcdir/flint-3.3.1/src/fmpq_mpoly_factor/factor.c:22 factor at /home/pkgeval/.julia/packages/Nemo/kdloy/src/flint/fmpq_mpoly.jl:359 unknown function (ip: 0x714e323dc5e2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 fast_factor at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/util.jl:164 unknown function (ip: 0x714e33ef70a2) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 eliminate_var at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/elimination.jl:308 unknown function (ip: 0x714e33eaa652) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 find_ioprojections at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/io_equation.jl:109 #_find_ioequations#193 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/io_equation.jl:359 _find_ioequations at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/io_equation.jl:359 [inlined] #initial_identifiable_functions#206 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 initial_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 [inlined] #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x714e2f845564) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x714e34f80e12) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_36779.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_63030.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x714e7effc249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x0000714e64ffc010 Total snapshots: 213. Utilization: 100% ╎198 @Base/client.jl:577 _start() ╎ 198 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 198 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 198 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 198 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::S… ╎ 198 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Module, _p… ╎ ╎ 198 @Base/loading.jl:2994 include_string(mapexpr::typeof(identity), … ╎ ╎ 198 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 198 @StructuralIdentifiability/…:150 top-level scope ╎ ╎ 198 @Base/timing.jl:689 macro expansion ╎ ╎ 198 @StructuralIdentifiability/…:151 macro expansion ╎ ╎ ╎ 198 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 198 @StructuralIdentifiability/…:153 macro expansion ╎ ╎ ╎ 198 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 198 @Base/Base.jl:310 include(mapexpr::Function, mod::Module… ╎ ╎ ╎ 198 @Base/loading.jl:3054 _include(mapexpr::Function, mod::… ╎ ╎ ╎ ╎ 198 @Base/loading.jl:2994 include_string(mapexpr::typeof(i… ╎ ╎ ╎ ╎ 198 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple… ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:61 #find_identifiable_… ╎ ╎ ╎ ╎ 198 @Base/…gging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 198 @Base/…gging.jl:540 with_logstate(f::StructuralId… ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:63 (::StructuralIde… ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:86 _find_identifia… ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:108 _find_identif… ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:86 initial_ident… ╎ ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:86 initial_iden… ╎ ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:359 _find_ioeq… ╎ ╎ ╎ ╎ ╎ ╎ 198 @StructuralIdentifiability/…:359 _find_ioe… ╎ ╎ ╎ ╎ ╎ ╎ 167 @StructuralIdentifiability/…:109 find_iop… ╎ ╎ ╎ ╎ ╎ ╎ 167 @StructuralIdentifiability/…:308 elimina… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @StructuralIdentifiability/…:284 choose… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Base/…ay.jl:2993 filter(f::Structural… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @StructuralIdentifiability/…:284 #cho… 6╎ ╎ ╎ ╎ ╎ ╎ ╎ 6 @Nemo/…ly.jl:530 evaluate(a::QQMPoly… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:160 fast_f… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @StructuralIdentifiability/…:128 uncer… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:317 gcd(a::QQMPolyRingEl… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 160 @StructuralIdentifiability/…:164 fast_f… 149╎ ╎ ╎ ╎ ╎ ╎ ╎ 150 @Nemo/…ly.jl:359 factor(a::QQMPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Nemo/…ly.jl:361 factor(a::QQMPolyRing… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Nemo/…ly.jl:347 Fac{QQMPolyRingElem}… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ct.jl:358 setindex!(h::Dict{Q… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ct.jl:271 ht_keyindex2_short… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ct.jl:129 hashindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Base/…ng.jl:40 hash ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 10 @Nemo/…ly.jl:136 hash ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:121 _hash_mpoly_ex… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:811 exponent_vect… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 8 @Nemo/…ly.jl:127 _hash_mpoly_ex… 5╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 5 @Base/…ls.jl:965 getindex ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 3 @Base/…ng.jl:147 hash_integer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +1 3 @Base/…ng.jl:154 _hash_integer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +2 3 @Base/…ng.jl:158 _hash_integer ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ng.jl:99 codeunits ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/…ng.jl:87 IntegerCodeUni… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +5 1 @Base/div.jl:337 cld ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +6 1 @Base/div.jl:377 div ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +7 1 @Base/int.jl:1058 + 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +8 1 @Base/int.jl:87 + 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ng.jl:399 hash_bytes(ar… ╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +3 1 @Base/…ng.jl:457 hash_bytes(ar… 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ +4 1 @Base/int.jl:419 xor 1╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 1 @Nemo/…ly.jl:129 _hash_mpoly_ex… ╎ ╎ ╎ ╎ ╎ ╎ 31 @StructuralIdentifiability/…:66 check_pri… ╎ ╎ ╎ ╎ ╎ ╎ 31 @StructuralIdentifiability/…:51 check_pr… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @Base/…ay.jl:3390 map ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @Base/…ay.jl:763 collect_similar ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @Base/…ay.jl:848 _collect(c::Vector{Q… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @Base/…or.jl:48 iterate ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @StructuralIdentifiability/…:52 #ch… 31╎ ╎ ╎ ╎ ╎ ╎ ╎ ╎ 31 @Nemo/…ly.jl:606 evaluate(a::QQMPo… [ Info: Computed IO-equations in 17.012857725 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.083875267 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000123859 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 27   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 67   ⌞ # Computing specializations.. Time: 0:00:02 Points: 77   ⌜ # Computing specializations.. Time: 0:00:03 Points: 87   ✓ # Computing specializations.. Time: 0:00:03 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 wait at ./task.jl:1223 wait_forever at ./task.jl:1145 jfptr_wait_forever_57186.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ⌟ # Computing specializations.. Time: 0:00:01 ✓ # Computing specializations.. Time: 0:00:01 ⌜ # Computing specializations.. Time: 0:00:00 Points: 6 ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007cf8802791e0 Total snapshots: 413. Utilization: 0% ╎413 @Base/task.jl:1145 wait_forever() 412╎ 413 @Base/task.jl:1223 wait()  ⌝ # Computing specializations.. Time: 0:00:00 Points: 11   ⌟ # Computing specializations.. Time: 0:00:01 Points: 20   ⌞ # Computing specializations.. Time: 0:00:01 Points: 32   ⌜ # Computing specializations.. Time: 0:00:02 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 64   ⌞ # Computing specializations.. Time: 0:00:03 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 84   ⌝ # Computing specializations.. Time: 0:00:03 Points: 94   ⌟ # Computing specializations.. Time: 0:00:04 Points: 103   ⌞ # Computing specializations.. Time: 0:00:04 Points: 113   ⌜ # Computing specializations.. Time: 0:00:04 Points: 122   ⌝ # Computing specializations.. Time: 0:00:05 Points: 132   ⌟ # Computing specializations.. Time: 0:00:05 Points: 141   ⌞ # Computing specializations.. Time: 0:00:05 Points: 151   ⌜ # Computing specializations.. Time: 0:00:06 Points: 161  [45] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 #linalg_reduce_dense_row_by_pivots_sparse!#96 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:415 linalg_reduce_dense_row_by_pivots_sparse! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:369 [inlined] linalg_reduce_dense_row_by_pivots_sparse! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend.jl:369 [inlined] linalg_apply_reduce_matrix_lower_part! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend_learn_apply.jl:125 linalg_apply_sparse! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/backend_learn_apply.jl:39 [inlined] _linalg_main_with_trace! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/linalg.jl:193 #linalg_main!#87 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/linalg.jl:40 [inlined] linalg_main! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/linalg/linalg.jl:23 [inlined] f4_reduction_apply! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/learn_apply.jl:247 f4_apply! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/f4/learn_apply.jl:479 _groebner_apply2! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:266 groebner_apply2! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:253 unknown function (ip: 0x714e2f8966d5) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner_apply1! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:237 unknown function (ip: 0x714e309f5350) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner_apply0! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/learn_apply.jl:129 #groebner_apply!#199 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:403 [inlined] groebner_apply! at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:401 unknown function (ip: 0x714e309f36e4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 interpolate_exponents! at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:432 _paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:138 #paramgb#56 at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:103 paramgb at /home/pkgeval/.julia/packages/ParamPunPam/wFnUz/src/groebner/paramgb.jl:60 [inlined] #groebner_basis_coeffs#124 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 groebner_basis_coeffs at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:548 unknown function (ip: 0x714e3093eb54) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x714e2f84c929) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:120 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x714e2f845564) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x714e34f80e12) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_36779.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_63030.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x714e7effc249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1180876910 (Pool: 1180872797; Big: 4113); GC: 521 PkgEval terminated after 2738.04s: test duration exceeded the time limit