Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.30 (073666df8b*) started at 2025-11-04T16:05:58.262 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.4s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.2 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.96s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1382.8 ms ✓ Measurements 4471.5 ms ✓ StatsBase 1694.6 ms ✓ EarCut_jll 23420.4 ms ✓ GeometryBasics 8057.0 ms ✓ RayTraceHeatTransfer 5 dependencies successfully precompiled in 44 seconds. 54 already precompiled. Precompilation completed after 51.54s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_jUDPF3/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_jUDPF3/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.2 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:24 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:06 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010615677986885268 Iteration 10: d = 6.30817266663994e-6 Iteration 20: d = 6.178866047664219e-8 Iteration 30: d = 8.272780682749572e-10 Iteration 40: d = 1.2825716503062266e-11 Iteration 50: d = 2.1253116563055133e-13 Iteration 60: d = 3.63335757334275e-15 Converged after 62 iterations. d = 1.6126980744278083e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▋ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011568991588875464 Iteration 10: d = 1.236711896077815e-5 Iteration 20: d = 2.0939567008986493e-7 Iteration 30: d = 3.756994099017508e-9 Iteration 40: d = 6.719303068505994e-11 Iteration 50: d = 1.197375320691009e-12 Iteration 60: d = 2.1310545939352215e-14 Converged after 66 iterations. d = 1.9216278087987274e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|██████████████ | ETA: 0:00:01 Bin 1 progress: 83%|███████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012837983302540345 Iteration 10: d = 1.4812737416373264e-5 Iteration 20: d = 2.3516003161027168e-7 Iteration 30: d = 4.077673187588289e-9 Iteration 40: d = 7.159397028261e-11 Iteration 50: d = 1.260363448098993e-12 Iteration 60: d = 2.2195578809554958e-14 Converged after 66 iterations. d = 1.9486182548461343e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 82%|███████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011721773296666312 Iteration 10: d = 7.2639548790691346e-6 Iteration 20: d = 7.282825503817438e-8 Iteration 30: d = 1.1256636068750473e-9 Iteration 40: d = 1.9409207270361326e-11 Iteration 50: d = 3.401885610069376e-13 Iteration 60: d = 5.924164543782994e-15 Converged after 63 iterations. d = 1.7450423169926903e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011947492089838807 Iteration 10: d = 9.3299214963986e-6 Iteration 20: d = 1.1403544212461602e-7 Iteration 30: d = 1.6581653964448866e-9 Iteration 40: d = 2.52133357478978e-11 Iteration 50: d = 3.896089189768721e-13 Iteration 60: d = 6.091740288075039e-15 Converged after 63 iterations. d = 1.6915577493505543e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011881122607775231 Iteration 10: d = 1.5281756874087982e-5 Iteration 20: d = 2.1061650105413218e-7 Iteration 30: d = 3.133581327820589e-9 Iteration 40: d = 4.7873995416453893e-11 Iteration 50: d = 7.400033955607819e-13 Iteration 60: d = 1.1475118664058966e-14 Converged after 65 iterations. d = 1.3803304340975177e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014713675475895717 Iteration 10: d = 2.0585991921830247e-5 Iteration 20: d = 3.0015489611242475e-7 Iteration 30: d = 4.5394573403169455e-9 Iteration 40: d = 6.949812089986862e-11 Iteration 50: d = 1.0706207304854736e-12 Iteration 60: d = 1.6550478307904536e-14 Converged after 65 iterations. d = 2.0891460206561315e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▏ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011766740424307461 Iteration 10: d = 1.3918774399741433e-5 Iteration 20: d = 2.0646415186132777e-7 Iteration 30: d = 3.210246987580136e-9 Iteration 40: d = 5.000096597930109e-11 Iteration 50: d = 7.775555059285946e-13 Iteration 60: d = 1.2043392794543514e-14 Converged after 65 iterations. d = 1.5117344130138879e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 86%|████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010759084684471077 Iteration 10: d = 7.649303265749065e-6 Iteration 20: d = 9.48016890204674e-8 Iteration 30: d = 1.4247676404132748e-9 Iteration 40: d = 2.2022605967634204e-11 Iteration 50: d = 3.4143824635684794e-13 Iteration 60: d = 5.3142165734551725e-15 Converged after 63 iterations. d = 1.5018884522349914e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 35%|███████████▋ | ETA: 0:00:02 Bin 1 progress: 75%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011585830155943775 Iteration 10: d = 1.3772378859947818e-5 Iteration 20: d = 2.1060719062093177e-7 Iteration 30: d = 3.279977769909102e-9 Iteration 40: d = 5.1102044156623464e-11 Iteration 50: d = 7.964497033542124e-13 Iteration 60: d = 1.2401966109088852e-14 Converged after 65 iterations. d = 1.5372955931289925e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.005675693303136199 Iteration 10: d = 6.702783375504025e-5 Iteration 20: d = 7.372261033142846e-7 Iteration 30: d = 9.11414911525348e-9 Iteration 40: d = 1.1713205907393288e-10 Iteration 50: d = 1.5294087591095617e-12 Iteration 60: d = 2.0092539414390782e-14 Converged after 66 iterations. d = 1.4822688464044625e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004406991635819661 Iteration 10: d = 6.819702803684085e-5 Iteration 20: d = 9.722793382826388e-7 Iteration 30: d = 1.4453461532382937e-8 Iteration 40: d = 2.1734625324469066e-10 Iteration 50: d = 3.2820789820785374e-12 Iteration 60: d = 4.96432929496427e-14 Converged after 68 iterations. d = 1.7635038254103353e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002143540444439196 Iteration 10: d = 1.8768005914162034e-5 Iteration 20: d = 2.8311060128877323e-7 Iteration 30: d = 4.683244333390465e-9 Iteration 40: d = 7.832007381759946e-11 Iteration 50: d = 1.3146941769503167e-12 Iteration 60: d = 2.211029518871853e-14 Converged after 66 iterations. d = 1.9274127275569847e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0022327808968063364 Iteration 10: d = 1.9223171045323926e-5 Iteration 20: d = 2.416048916412435e-7 Iteration 30: d = 3.4867236266478377e-9 Iteration 40: d = 5.345760890262918e-11 Iteration 50: d = 8.576432176512171e-13 Iteration 60: d = 1.4298237746632103e-14 Converged after 65 iterations. d = 1.842475840793437e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011947492089838807 Iteration 10: d = 9.3299214963986e-6 Iteration 20: d = 1.1403544212461602e-7 Iteration 30: d = 1.6581653964448866e-9 Iteration 40: d = 2.52133357478978e-11 Iteration 50: d = 3.896089189768721e-13 Iteration 60: d = 6.091740288075039e-15 Converged after 63 iterations. d = 1.6915577493505543e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015165677980101364 Iteration 10: d = 2.1378194589894292e-5 Iteration 20: d = 2.989916699655125e-7 Iteration 30: d = 4.257912136636498e-9 Iteration 40: d = 6.050516993864037e-11 Iteration 50: d = 8.58127546376125e-13 Iteration 60: d = 1.2144160108886418e-14 Converged after 65 iterations. d = 1.4317998381043327e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0017723067726501149 Iteration 10: d = 1.3126789832294204e-5 Iteration 20: d = 1.0587329781771146e-7 Iteration 30: d = 1.1932133058220575e-9 Iteration 40: d = 1.4876790858250256e-11 Iteration 50: d = 1.9290807224125389e-13 Iteration 60: d = 2.580982746415511e-15 Converged after 61 iterations. d = 1.626449311369185e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.736604043506 Iteration 2: convergence error = 4815.682070902339 Iteration 3: convergence error = 1097.8362366816568 Iteration 4: convergence error = 319.2861081797 Iteration 5: convergence error = 94.683992699094 Iteration 6: convergence error = 28.33125355464017 Iteration 7: convergence error = 8.53555143161202 Iteration 8: convergence error = 2.5615720066002723 Iteration 9: convergence error = 0.7669597054912174 Iteration 10: convergence error = 0.22932728964542548 Iteration 11: convergence error = 0.06851830320874797 Iteration 12: convergence error = 0.02046296101570988 Iteration 13: convergence error = 0.006109739268595149 Iteration 14: convergence error = 0.0018239599230582826 Iteration 15: convergence error = 0.0005444682158213254 Iteration 16: convergence error = 0.00016252095724667015 Iteration 17: convergence error = 4.851034168495971e-5 Iteration 18: convergence error = 1.4479469655270805e-5 Iteration 19: convergence error = 4.32182378062862e-6 Iteration 20: convergence error = 1.2899633929919219e-6 Iteration 21: convergence error = 3.85025259674876e-7 Iteration 22: convergence error = 1.147948296420509e-7 Iteration 23: convergence error = 3.334798748255707e-8 Iteration 24: convergence error = 9.626774044591002e-9 Iteration 25: convergence error = 2.7785063139162958e-9 Iteration 26: convergence error = 7.921698852442205e-10 Iteration 27: convergence error = 2.2782842279411852e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.887201506178826e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 31%|██████████▎ | ETA: 0:00:03 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:03 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015165677980101364 Iteration 10: d = 2.1378194589894292e-5 Iteration 20: d = 2.989916699655125e-7 Iteration 30: d = 4.257912136636498e-9 Iteration 40: d = 6.050516993864037e-11 Iteration 50: d = 8.58127546376125e-13 Iteration 60: d = 1.2144160108886418e-14 Converged after 65 iterations. d = 1.4317998381043327e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.827414493486 Iteration 2: convergence error = 4836.368621952132 Iteration 3: convergence error = 1094.1178758788121 Iteration 4: convergence error = 318.67346391746787 Iteration 5: convergence error = 94.30828372602537 Iteration 6: convergence error = 28.06924255709987 Iteration 7: convergence error = 8.36606930191624 Iteration 8: convergence error = 2.5037342744524267 Iteration 9: convergence error = 0.747562817101425 Iteration 10: convergence error = 0.22290666767116818 Iteration 11: convergence error = 0.0664147470390617 Iteration 12: convergence error = 0.019779521650889365 Iteration 13: convergence error = 0.005889230442107873 Iteration 14: convergence error = 0.0017532312576804543 Iteration 15: convergence error = 0.000521896241707509 Iteration 16: convergence error = 0.0001553490258174861 Iteration 17: convergence error = 4.624033090294688e-5 Iteration 18: convergence error = 1.3763427432422759e-5 Iteration 19: convergence error = 4.09664698963752e-6 Iteration 20: convergence error = 1.2193477232358418e-6 Iteration 21: convergence error = 3.629243110481184e-7 Iteration 22: convergence error = 1.0787061910377815e-7 Iteration 23: convergence error = 3.119771463389043e-8 Iteration 24: convergence error = 8.97443896974437e-9 Iteration 25: convergence error = 2.5765984901227057e-9 Iteration 26: convergence error = 7.341895980061963e-10 Iteration 27: convergence error = 2.1236701286397874e-10 Iteration 28: convergence error = 6.02540239924565e-11 Iteration 29: convergence error = 1.6370904631912708e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:59:46 Bin 1 ray tracing: 9%|██▊ | ETA: 0:00:57 Bin 1 ray tracing: 18%|█████▌ | ETA: 0:00:30 Bin 1 ray tracing: 27%|████████▏ | ETA: 0:00:21 Bin 1 ray tracing: 35%|██████████▌ | ETA: 0:00:17 Bin 1 ray tracing: 43%|████████████▉ | ETA: 0:00:13 Bin 1 ray tracing: 51%|███████████████▎ | ETA: 0:00:11 Bin 1 ray tracing: 59%|█████████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 68%|████████████████████▍ | ETA: 0:00:06 Bin 1 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:04 Bin 1 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 1 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 2 ray tracing: 36%|██████████▋ | ETA: 0:00:07 Bin 2 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 2 ray tracing: 53%|███████████████▉ | ETA: 0:00:05 Bin 2 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 2 ray tracing: 70%|█████████████████████▏ | ETA: 0:00:03 Bin 2 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▊ | ETA: 0:00:10 Bin 3 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:09 Bin 3 ray tracing: 35%|██████████▋ | ETA: 0:00:08 Bin 3 ray tracing: 44%|█████████████▎ | ETA: 0:00:06 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:05 Bin 3 ray tracing: 62%|██████████████████▊ | ETA: 0:00:04 Bin 3 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:03 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 3 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 4 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 4 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 4 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 47%|██████████████▏ | ETA: 0:00:06 Bin 4 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 4 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 75%|██████████████████████▋ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|███ | ETA: 0:00:09 Bin 5 ray tracing: 20%|█████▉ | ETA: 0:00:09 Bin 5 ray tracing: 29%|████████▋ | ETA: 0:00:08 Bin 5 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 5 ray tracing: 47%|██████████████▎ | ETA: 0:00:06 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:05 Bin 5 ray tracing: 66%|███████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 6 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 38%|███████████▎ | ETA: 0:00:07 Bin 6 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 6 ray tracing: 56%|████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 66%|███████████████████▊ | ETA: 0:00:04 Bin 6 ray tracing: 76%|██████████████████████▋ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 7 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 7 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 37%|███████████ | ETA: 0:00:07 Bin 7 ray tracing: 46%|█████████████▊ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 64%|███████████████████▎ | ETA: 0:00:04 Bin 7 ray tracing: 73%|██████████████████████ | ETA: 0:00:03 Bin 7 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 9%|██▋ | ETA: 0:00:10 Bin 8 ray tracing: 18%|█████▌ | ETA: 0:00:09 Bin 8 ray tracing: 28%|████████▍ | ETA: 0:00:08 Bin 8 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 8 ray tracing: 46%|█████████████▉ | ETA: 0:00:06 Bin 8 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 63%|███████████████████ | ETA: 0:00:04 Bin 8 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 8 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 10%|███ | ETA: 0:00:09 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:09 Bin 9 ray tracing: 29%|████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 38%|███████████▍ | ETA: 0:00:07 Bin 9 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:05 Bin 9 ray tracing: 64%|███████████████████▍ | ETA: 0:00:04 Bin 9 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:03 Bin 9 ray tracing: 83%|█████████████████████████ | ETA: 0:00:02 Bin 9 ray tracing: 93%|███████████████████████████▊ | ETA: 0:00:01 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 10 ray tracing: 17%|████▉ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▌ | ETA: 0:00:09 Bin 10 ray tracing: 34%|██████████ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▋ | ETA: 0:00:07 Bin 10 ray tracing: 53%|███████████████▎ | ETA: 0:00:05 Bin 10 ray tracing: 62%|█████████████████▉ | ETA: 0:00:04 Bin 10 ray tracing: 71%|████████████████████▋ | ETA: 0:00:03 Bin 10 ray tracing: 80%|███████████████████████▏ | ETA: 0:00:02 Bin 10 ray tracing: 89%|█████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 97%|████████████████████████████▏| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 20%|██████▋ | ETA: 0:00:04 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:03 Bin 1 progress: 67%|██████████████████████ | ETA: 0:00:02 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 24%|████████▏ | ETA: 0:00:03 Bin 2 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 2 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 2 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 5 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 5 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 27%|████████▊ | ETA: 0:00:03 Bin 7 progress: 51%|████████████████▉ | ETA: 0:00:02 Bin 7 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 8 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 8 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 73%|███████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 98%|███████████████████████████████▎| ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015165677980101364 Iteration 10: d = 2.1378194589894292e-5 Iteration 20: d = 2.989916699655125e-7 Iteration 30: d = 4.257912136636498e-9 Iteration 40: d = 6.050516993864037e-11 Iteration 50: d = 8.58127546376125e-13 Iteration 60: d = 1.2144160108886418e-14 Converged after 65 iterations. d = 1.4317998381043327e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001754969476833763 Iteration 10: d = 1.295337771453365e-5 Iteration 20: d = 1.044760464985542e-7 Iteration 30: d = 1.1708299508361263e-9 Iteration 40: d = 1.449155606162843e-11 Iteration 50: d = 1.8661882697294248e-13 Iteration 60: d = 2.4246982530495537e-15 Converged after 61 iterations. d = 1.661044158716119e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011552552553986237 Iteration 10: d = 8.107898990095479e-6 Iteration 20: d = 9.767968835923719e-8 Iteration 30: d = 1.3737769012626763e-9 Iteration 40: d = 1.9564867845626782e-11 Iteration 50: d = 2.7814792860761753e-13 Iteration 60: d = 3.920215900222834e-15 Converged after 62 iterations. d = 1.6977788583279468e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014845622013652537 Iteration 10: d = 1.959136417505341e-5 Iteration 20: d = 2.6408510462600415e-7 Iteration 30: d = 3.7195810064001578e-9 Iteration 40: d = 5.250811691885123e-11 Iteration 50: d = 7.412882165206296e-13 Iteration 60: d = 1.042656389280844e-14 Converged after 64 iterations. d = 1.860438892582158e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013965494651821818 Iteration 10: d = 1.3987688703073017e-5 Iteration 20: d = 1.6725231560250425e-7 Iteration 30: d = 2.29877720755078e-9 Iteration 40: d = 3.225054767847942e-11 Iteration 50: d = 4.546242621215557e-13 Iteration 60: d = 6.4332982091419104e-15 Converged after 63 iterations. d = 1.770642314921218e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014768592871290225 Iteration 10: d = 1.1625206379266891e-5 Iteration 20: d = 1.1441423211592626e-7 Iteration 30: d = 1.3939263999715093e-9 Iteration 40: d = 1.7924317057240254e-11 Iteration 50: d = 2.340843850561206e-13 Iteration 60: d = 3.0763686476009424e-15 Converged after 61 iterations. d = 1.992007768372511e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0019682173337021913 Iteration 10: d = 1.8196184570190928e-5 Iteration 20: d = 2.2196405103432647e-7 Iteration 30: d = 2.950675490831853e-9 Iteration 40: d = 3.9766764060141066e-11 Iteration 50: d = 5.400138097509685e-13 Iteration 60: d = 7.360537582035598e-15 Converged after 63 iterations. d = 2.0640708461743215e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014232962676794618 Iteration 10: d = 1.3389815786408647e-5 Iteration 20: d = 1.526863357535454e-7 Iteration 30: d = 2.027248066373019e-9 Iteration 40: d = 2.786058443651838e-11 Iteration 50: d = 3.870494370064842e-13 Iteration 60: d = 5.368755964480286e-15 Converged after 63 iterations. d = 1.5261279923018689e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015755063421112787 Iteration 10: d = 1.730195785370024e-5 Iteration 20: d = 1.8424068207696967e-7 Iteration 30: d = 2.279442867387481e-9 Iteration 40: d = 3.018237913553503e-11 Iteration 50: d = 4.135774175960675e-13 Iteration 60: d = 5.784723376703694e-15 Converged after 63 iterations. d = 1.6079172710110763e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015023378393362594 Iteration 10: d = 8.48967003849008e-6 Iteration 20: d = 6.564036765550874e-8 Iteration 30: d = 8.260316043436835e-10 Iteration 40: d = 1.1281282629186754e-11 Iteration 50: d = 1.561900569858161e-13 Converged after 60 iterations. d = 2.1980277893304298e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8652.15789556225 Iteration 2: convergence error = 4817.5738698242 Iteration 3: convergence error = 1109.0531956616833 Iteration 4: convergence error = 320.63651879041504 Iteration 5: convergence error = 95.79354466612472 Iteration 6: convergence error = 28.77344437030274 Iteration 7: convergence error = 8.697401406575636 Iteration 8: convergence error = 2.619102456013252 Iteration 9: convergence error = 0.7869273786793656 Iteration 10: convergence error = 0.23612781356632695 Iteration 11: convergence error = 0.07079998537642496 Iteration 12: convergence error = 0.02121938243385557 Iteration 13: convergence error = 0.006358075443358757 Iteration 14: convergence error = 0.0019048352178288042 Iteration 15: convergence error = 0.0005706290535272274 Iteration 16: convergence error = 0.00017093458745875978 Iteration 17: convergence error = 5.120284959048149e-5 Iteration 18: convergence error = 1.5337392596848076e-5 Iteration 19: convergence error = 4.594139909386286e-6 Iteration 20: convergence error = 1.3761207355855731e-6 Iteration 21: convergence error = 4.1219550439564046e-7 Iteration 22: convergence error = 1.2334112398093566e-7 Iteration 23: convergence error = 3.6029177863383666e-8 Iteration 24: convergence error = 1.0436906450195238e-8 Iteration 25: convergence error = 3.0095179681666195e-9 Iteration 26: convergence error = 8.719780453247949e-10 Iteration 27: convergence error = 2.5011104298755527e-10 Iteration 28: convergence error = 7.298694981727749e-11 Iteration 29: convergence error = 2.1600499167107046e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2430258356366 K, F = -7463.707723276919, relative_change = 0.03275697416436344 Iter 2: T = 936.5578965624977 K, F = -6326.912875724666, relative_change = 0.03172432207162087 Iter 3: T = 907.9134548044369 K, F = -5361.7614917373985, relative_change = 0.03058480619638796 Iter 5: T = 856.6097249370549 K, F = -3847.0042412505463, relative_change = 0.027989728005923118 Iter 10: T = 761.0844219872412 K, F = -1666.0312676339706, relative_change = 0.020090541736839652 Iter 15: T = 705.0481565101547 K, F = -713.4210976544362, relative_change = 0.01206846115478949 Iter 20: T = 676.1815467413749 K, F = -302.40470379218357, relative_change = 0.006191639329911916 Iter 25: T = 662.7058402294072 K, F = -127.31465551394439, relative_change = 0.0028632984568082633 Iter 30: T = 656.770003416654 K, F = -53.40566179841422, relative_change = 0.001253155694060767 Iter 35: T = 654.2299091031732 K, F = -22.364178768600848, relative_change = 0.0005345033555841315 Iter 40: T = 653.1571020986866 K, F = -9.358175899543145, relative_change = 0.0002254115588710085 Iter 45: T = 652.706570572586 K, F = -3.9146184626477405, relative_change = 9.46019544883402e-5 Iter 50: T = 652.5178232491941 K, F = -1.6373011461377667, relative_change = 3.962206126245142e-5 Iter 55: T = 652.4388290259018 K, F = -0.684767078827647, relative_change = 1.6580654548203755e-5 Iter 60: T = 652.4057825690269 K, F = -0.28638270249243797, relative_change = 6.9360195430650085e-6 Iter 65: T = 652.3919603735054 K, F = -0.11976952914284722, relative_change = 2.9010397122131007e-6 Iter 70: T = 652.3861794561667 K, F = -0.05008919835365394, relative_change = 1.2133042944311391e-6 Iter 75: T = 652.3837617532553 K, F = -0.0209479273355207, relative_change = 5.074279381585687e-7 Iter 80: T = 652.3827506315371 K, F = -0.008760677997764088, relative_change = 2.1221410143184285e-7 Iter 85: T = 652.3823277667 K, F = -0.0036638209694173085, relative_change = 8.875076500550523e-8 Iter 90: T = 652.3821509192848 K, F = -0.001532253825472285, relative_change = 3.711668114734262e-8 Iter 95: T = 652.3820769595329 K, F = -0.0006408068724294003, relative_change = 1.552264827367344e-8 Iter 100: T = 652.3820460286727 K, F = -0.00026799309121910975, relative_change = 6.491758457630217e-9 Iter 105: T = 652.3820330930159 K, F = -0.00011207791204653761, relative_change = 2.7149311902711068e-9 Iter 110: T = 652.3820276831696 K, F = -4.687232143818498e-5, relative_change = 1.1354166948097208e-9 Iter 115: T = 652.382025420707 K, F = -1.960256340755029e-5, relative_change = 4.748448004830302e-10 Iter 120: T = 652.3820244745183 K, F = -8.198025902628192e-6, relative_change = 1.9858576248601013e-10 Iter 125: T = 652.3820240788108 K, F = -3.4285121924826356e-6, relative_change = 8.305093421145086e-11 Iter 130: T = 652.3820239133212 K, F = -1.4338444432326902e-6, relative_change = 3.473288528163656e-11 Iter 135: T = 652.3820238441116 K, F = -5.996507572714194e-7, relative_change = 1.4525704702608702e-11 Iter 140: T = 652.3820238151671 K, F = -2.507804433005134e-7, relative_change = 6.074807079236652e-12 Iter 145: T = 652.3820238030622 K, F = -1.0487893253863234e-7, relative_change = 2.540546118826667e-12 Iter 150: T = 652.3820237979999 K, F = -4.3860777454440836e-8, relative_change = 1.0624662669375577e-12 Iter 155: T = 652.3820237958828 K, F = -1.8343425667310953e-8, relative_change = 4.4434394744004484e-13 Converged in 159 iterations to T = 652.3820237951186 K Iter 1: T = 970.3516638684019 K, F = -6755.401590433156, relative_change = 0.02964833613159806 Iter 2: T = 942.8677965055944 K, F = -5721.656470624197, relative_change = 0.028323615433646476 Iter 3: T = 917.5035929500377 K, F = -4844.350743850097, relative_change = 0.026901124048949492 Iter 5: T = 872.9179290313191 K, F = -3468.535141235037, relative_change = 0.023807904747123923 Iter 10: T = 793.7842169592652 K, F = -1492.925903257427, relative_change = 0.015502170442488156 Iter 15: T = 750.6711591375199 K, F = -635.4963667987053, relative_change = 0.00848781590427802 Iter 20: T = 729.7445185856551 K, F = -268.24460488884864, relative_change = 0.004083386484681315 Iter 25: T = 720.3259611306094 K, F = -112.67105136299222, relative_change = 0.0018230684187129054 Iter 30: T = 716.2537565461149 K, F = -47.210603153223914, relative_change = 0.0007846629986630616 Iter 35: T = 714.5259665695621 K, F = -19.760206477917876, relative_change = 0.0003322127623804649 Iter 40: T = 713.7989426141728 K, F = -8.266811658388283, relative_change = 0.00013965792390142675 Iter 45: T = 713.4941070994299 K, F = -3.457781298339204, relative_change = 5.853395863225241e-5 Iter 50: T = 713.3664832403932 K, F = -1.4461733836718589, relative_change = 2.4501945038955706e-5 Iter 55: T = 713.3130852341158 K, F = -0.6048223742964012, relative_change = 1.0250919346914782e-5 Iter 60: T = 713.2907493168946 K, F = -0.2529466333366823, relative_change = 4.287741719625139e-6 Iter 65: T = 713.2814074289082 K, F = -0.10578577398892453, relative_change = 1.79330459844597e-6 Iter 70: T = 713.2775004102269 K, F = -0.04424095642555914, relative_change = 7.500023555959e-7 Iter 75: T = 713.2758664256936 K, F = -0.018502110733451316, relative_change = 3.1366360734084127e-7 Iter 80: T = 713.2751830698845 K, F = -0.007737806189024976, relative_change = 1.3117850757716962e-7 Iter 85: T = 713.274897281631 K, F = -0.003236043397536803, relative_change = 5.486053059078514e-8 Iter 90: T = 713.2747777614491 K, F = -0.0013533520726700665, relative_change = 2.294334868085695e-8 Iter 95: T = 713.2747277766604 K, F = -0.0005659880126088757, relative_change = 9.595185848069208e-9 Iter 100: T = 713.2747068724211 K, F = -0.00023670294825184346, relative_change = 4.012821907146012e-9 Iter 105: T = 713.2746981300179 K, F = -9.899199908547374e-5, relative_change = 1.6782101307873753e-9 Iter 110: T = 713.2746944738404 K, F = -4.139963646387912e-5, relative_change = 7.018475398219596e-10 Iter 115: T = 713.2746929447834 K, F = -1.7313822892495168e-5, relative_change = 2.935210345781457e-10 Iter 120: T = 713.2746923053135 K, F = -7.240847837319819e-6, relative_change = 1.2275400821076185e-10 Iter 125: T = 713.2746920378795 K, F = -3.028209471733767e-6, relative_change = 5.133719964460461e-11 Iter 130: T = 713.2746919260353 K, F = -1.2664320956368158e-6, relative_change = 2.1469808474430423e-11 Iter 135: T = 713.2746918792608 K, F = -5.296362949325228e-7, relative_change = 8.978917903324793e-12 Iter 140: T = 713.2746918596991 K, F = -2.2150113676566718e-7, relative_change = 3.7551061772024475e-12 Iter 145: T = 713.2746918515181 K, F = -9.263319866725794e-8, relative_change = 1.570409532102925e-12 Iter 150: T = 713.2746918480968 K, F = -3.874080201082819e-8, relative_change = 6.567723627793736e-13 Iter 155: T = 713.2746918466661 K, F = -1.6202474362181363e-8, relative_change = 2.7468035811053736e-13 Converged in 157 iterations to T = 713.2746918463632 K Iter 1: T = 974.3718680389065 K, F = -5839.394245982269, relative_change = 0.025628131961093516 Iter 2: T = 950.9332710014611 K, F = -4940.393192569887, relative_change = 0.02405508390202167 Iter 3: T = 929.6098275245299 K, F = -4177.993637668938, relative_change = 0.022423701144113677 Iter 5: T = 892.9564688166694 K, F = -2983.9427385289673, relative_change = 0.019070076906144054 Iter 10: T = 831.183658032147 K, F = -1276.0370937697885, relative_change = 0.011214951263023626 Iter 15: T = 799.805938415933 K, F = -540.3356069867592, relative_change = 0.005664497055717707 Iter 20: T = 785.2900873488161 K, F = -227.3521350094886, relative_change = 0.0025963412516425873 Iter 25: T = 778.9263960500234 K, F = -95.34190619111752, relative_change = 0.0011314322566222863 Iter 30: T = 776.2092264928559 K, F = -39.920306932994286, relative_change = 0.00048165685180625044 Iter 35: T = 775.0627437895056 K, F = -16.70352608982406, relative_change = 0.0002029568291879942 Iter 40: T = 774.5814708633319 K, F = -6.987088556707476, relative_change = 8.514816403781094e-5 Iter 45: T = 774.3798798050512 K, F = -2.922342451157561, relative_change = 3.5657280980408226e-5 Iter 50: T = 774.2955164215413 K, F = -1.2222037883348116, relative_change = 1.4920590042361864e-5 Iter 55: T = 774.2602249118553 K, F = -0.5111481427678543, relative_change = 6.241419935935539e-6 Iter 60: T = 774.2454638774992 K, F = -0.21376964355375228, relative_change = 2.610490221725271e-6 Iter 65: T = 774.2392903386367 K, F = -0.08940126027566475, relative_change = 1.0917825942459138e-6 Iter 70: T = 774.2367084388301 K, F = -0.037388717112864955, relative_change = 4.566042868857099e-7 Iter 75: T = 774.2356286483795 K, F = -0.015636415423447403, relative_change = 1.9095872429920482e-7 Iter 80: T = 774.2351770655231 K, F = -0.006539336963378939, relative_change = 7.986145662490957e-8 Iter 85: T = 774.2349882079006 K, F = -0.002734829040623721, relative_change = 3.339905646167443e-8 Iter 90: T = 774.2349092253388 K, F = -0.0011437382068790747, relative_change = 1.3967891570372983e-8 Iter 95: T = 774.2348761938796 K, F = -0.00047832498495092857, relative_change = 5.841540347396969e-9 Iter 100: T = 774.2348623797274 K, F = -0.0002000412200495738, relative_change = 2.443002130552976e-9 Iter 105: T = 774.2348566024837 K, F = -8.365962723688725e-5, relative_change = 1.0216927030913808e-9 Iter 110: T = 774.2348541863713 K, F = -3.498745447716445e-5, relative_change = 4.272840873288394e-10 Iter 115: T = 774.2348531759243 K, F = -1.4632171204453925e-5, relative_change = 1.7869530810435126e-10 Iter 120: T = 774.2348527533433 K, F = -6.119347892741267e-6, relative_change = 7.473250173562301e-11 Iter 125: T = 774.2348525766148 K, F = -2.55918320313242e-6, relative_change = 3.1254010513864006e-11 Iter 130: T = 774.2348525027049 K, F = -1.070281684056873e-6, relative_change = 1.3070809069303875e-11 Iter 135: T = 774.234852471795 K, F = -4.476057100522013e-7, relative_change = 5.46638222692758e-12 Iter 140: T = 774.234852458868 K, F = -1.8719481742479616e-7, relative_change = 2.2861156594849217e-12 Iter 145: T = 774.2348524534618 K, F = -7.82884808092632e-8, relative_change = 9.560976334892062e-13 Iter 150: T = 774.2348524512009 K, F = -3.2742484612491296e-8, relative_change = 3.9986740998671754e-13 Converged in 154 iterations to T = 774.2348524503848 K Iter 1: T = 970.3562256207217 K, F = -6754.362190827745, relative_change = 0.02964377437927827 Iter 2: T = 942.8770086046433 K, F = -5720.769020310998, relative_change = 0.02831868986928017 Iter 3: T = 917.5175164194452 K, F = -4843.592857789319, relative_change = 0.02689586441685259 Iter 5: T = 872.9413169769413 K, F = -3467.9822337368078, relative_change = 0.0238021228020141 Iter 10: T = 793.8295222254234 K, F = -1492.6756622171824, relative_change = 0.015496397827767308 Iter 15: T = 750.7324351589923 K, F = -635.3852351927112, relative_change = 0.00848370244657405 Iter 20: T = 729.8149939196261 K, F = -268.1964305200177, relative_change = 0.004081113880993161 Iter 25: T = 720.4009518566123 K, F = -112.65053813252604, relative_change = 0.0018219856916915813 Iter 30: T = 716.3307789498596 K, F = -47.201953676349746, relative_change = 0.0007841834369658293 Iter 35: T = 714.6038661283017 K, F = -19.75657627472844, relative_change = 0.00033200721817235686 Iter 40: T = 713.8772140125516 K, F = -8.265291168141037, relative_change = 0.00013957106689411127 Iter 45: T = 713.5725348955981 K, F = -3.4571450064841485, relative_change = 5.849747548843946e-5 Iter 50: T = 713.4449766007657 K, F = -1.4459072078111888, relative_change = 2.4486659496351317e-5 Iter 55: T = 713.3916060417253 K, F = -0.6047110439363631, relative_change = 1.0244521868577795e-5 Iter 60: T = 713.3692816080827 K, F = -0.25290007147476323, relative_change = 4.285065363229286e-6 Iter 65: T = 713.359944523509 K, F = -0.10576630088161232, relative_change = 1.792185164724724e-6 Iter 70: T = 713.3560395138197 K, F = -0.0442328124728083, relative_change = 7.495341688884182e-7 Iter 75: T = 713.3544063694966 K, F = -0.018498704824613466, relative_change = 3.1346780151256476e-7 Iter 80: T = 713.3537233650778 K, F = -0.007736381795314773, relative_change = 1.3109661844256713e-7 Iter 85: T = 713.3534377237808 K, F = -0.0032354476982578984, relative_change = 5.48262834289569e-8 Iter 90: T = 713.353318265058 K, F = -0.001353102943856932, relative_change = 2.2929026080945345e-8 Iter 95: T = 713.3532683059723 K, F = -0.0005658838227240448, relative_change = 9.589195940630996e-9 Iter 100: T = 713.3532474124822 K, F = -0.00023665937543160265, relative_change = 4.010316866348077e-9 Iter 105: T = 713.3532386745745 K, F = -9.897377674683572e-5, relative_change = 1.677162498371589e-9 Iter 110: T = 713.3532350202771 K, F = -4.139201508202017e-5, relative_change = 7.014093975451722e-10 Iter 115: T = 713.3532334920063 K, F = -1.7310635405332064e-5, relative_change = 2.933377959629882e-10 Iter 120: T = 713.3532328528652 K, F = -7.2395130793490026e-6, relative_change = 1.2267734660660302e-10 Iter 125: T = 713.3532325855688 K, F = -3.02765090898216e-6, relative_change = 5.130513289452161e-11 Iter 130: T = 713.3532324737822 K, F = -1.2662001181995564e-6, relative_change = 2.1456425240780082e-11 Iter 135: T = 713.3532324270317 K, F = -5.295394882587345e-7, relative_change = 8.97332442328761e-12 Iter 140: T = 713.35323240748 K, F = -2.2146009137635758e-7, relative_change = 3.752757426126694e-12 Iter 145: T = 713.3532323993032 K, F = -9.261591948916958e-8, relative_change = 1.569425342053328e-12 Iter 150: T = 713.3532323958838 K, F = -3.8732901552762655e-8, relative_change = 6.563493361058554e-13 Iter 155: T = 713.3532323944537 K, F = -1.6198870356198825e-8, relative_change = 2.7449835612171057e-13 Converged in 157 iterations to T = 713.3532323941511 K Iter 1: T = 969.2775804058873 K, F = -7000.132529084245, relative_change = 0.03072241959411265 Iter 2: T = 940.6949251196977 K, F = -5930.669921570351, relative_change = 0.029488616949357862 Iter 3: T = 914.2131755096885 K, F = -5022.910786145137, relative_change = 0.028151262330494115 Iter 5: T = 867.3677830158707 K, F = -3598.9184678487018, relative_change = 0.025197211779368733 Iter 10: T = 782.9106341165159 K, F = -1552.1393012111657, relative_change = 0.016932365822345818 Iter 15: T = 735.8212172858329 K, F = -661.902754353569, relative_change = 0.009535537772506816 Iter 20: T = 712.5597348168974 K, F = -279.7289892505277, relative_change = 0.004672939583298117 Iter 25: T = 701.9819294229189 K, F = -117.57048921467383, relative_change = 0.0021066899525535223 Iter 30: T = 697.3851255461703 K, F = -49.278366266302086, relative_change = 0.0009108563330381042 Iter 35: T = 695.4302543055479 K, F = -20.628406933963014, relative_change = 0.0003864082152554804 Iter 40: T = 694.6068582019939 K, F = -8.630516718047092, relative_change = 0.00016257884734909072 Iter 45: T = 694.2614685699284 K, F = -3.6099952634071033, relative_change = 6.816504896843243e-5 Iter 50: T = 694.1168404053094 K, F = -1.5098500668793886, relative_change = 2.8537743990105296e-5 Iter 55: T = 694.0563232589433 K, F = -0.631456049119776, relative_change = 1.1940134258323884e-5 Iter 60: T = 694.0310086773628 K, F = -0.26408573620502246, relative_change = 4.994435882455476e-6 Iter 65: T = 694.0204208392506 K, F = -0.11044438165346249, relative_change = 2.0888952840300454e-6 Iter 70: T = 694.015992707865 K, F = -0.046189259595061705, relative_change = 8.736293880638408e-7 Iter 75: T = 694.0141407805194 K, F = -0.019316917502595787, relative_change = 3.6536721669037077e-7 Iter 80: T = 694.0133662771541 K, F = -0.00807856865541734, relative_change = 1.5280180323865277e-7 Iter 85: T = 694.0130423696821 K, F = -0.003378554425526037, relative_change = 6.390369107833254e-8 Iter 90: T = 694.012906907549 K, F = -0.0014129519021138792, relative_change = 2.672531337324791e-8 Iter 95: T = 694.0128502556393 K, F = -0.0005909133761416996, relative_change = 1.1176849875669334e-8 Iter 100: T = 694.0128265631291 K, F = -0.0002471270341998233, relative_change = 4.674292919967778e-9 Iter 105: T = 694.0128166546375 K, F = -0.0001033514771282551, relative_change = 1.954845256858688e-9 Iter 110: T = 694.0128125107879 K, F = -4.322282199220595e-5, relative_change = 8.175396550611303e-10 Iter 115: T = 694.0128107777804 K, F = -1.8076299775571236e-5, relative_change = 3.419048404951833e-10 Iter 120: T = 694.0128100530161 K, F = -7.559725334949086e-6, relative_change = 1.4298870508761596e-10 Iter 125: T = 694.0128097499108 K, F = -3.16156718982441e-6, relative_change = 5.979957993586958e-11 Iter 130: T = 694.0128096231488 K, F = -1.3222052012151764e-6, relative_change = 2.5008899366405475e-11 Iter 135: T = 694.0128095701352 K, F = -5.52961673117025e-7, relative_change = 1.0459014099160046e-11 Iter 140: T = 694.0128095479645 K, F = -2.3125613146657287e-7, relative_change = 4.374102686466109e-12 Iter 145: T = 694.0128095386924 K, F = -9.671564205060434e-8, relative_change = 1.8293316032786e-12 Iter 150: T = 694.0128095348146 K, F = -4.044601042973994e-8, relative_change = 7.650175663303181e-13 Iter 155: T = 694.0128095331929 K, F = -1.691570261641573e-8, relative_change = 3.19952685345854e-13 Converged in 158 iterations to T = 694.012809532718 K Iter 1: T = 963.5535017525967 K, F = -8304.369295241, relative_change = 0.03644649824740327 Iter 2: T = 928.9841441224613 K, F = -7046.55117457108, relative_change = 0.035876946705354316 Iter 3: T = 896.2583495445549 K, F = -5978.33052159151, relative_change = 0.03522750607204385 Iter 5: T = 836.218476641022 K, F = -4300.787660511143, relative_change = 0.033659690961536363 Iter 10: T = 716.4417917016042 K, F = -1879.503026789273, relative_change = 0.027948529128329926 Iter 15: T = 636.7026847215806 K, F = -813.9081929072455, relative_change = 0.020040419692262782 Iter 20: T = 589.9652398753125 K, F = -348.50449884169785, relative_change = 0.012025488145744294 Iter 25: T = 565.9061016722264 K, F = -147.71624201169783, relative_change = 0.006164649508429207 Iter 30: T = 554.6799136093579 K, F = -62.187755534938475, relative_change = 0.002849503082757737 Iter 35: T = 549.736180011637 K, F = -26.08598810864452, relative_change = 0.001246837486824 Iter 40: T = 547.6208767967406 K, F = -10.923706620388858, relative_change = 0.000531754868415256 Iter 45: T = 546.7275254841455 K, F = -4.570955756042493, relative_change = 0.00022424272231373098 Iter 50: T = 546.3523655747907 K, F = -1.9120741054486903, relative_change = 9.410967946058171e-5 Iter 55: T = 546.1951961539762 K, F = -0.7997304301249742, relative_change = 3.941557723511753e-5 Iter 60: T = 546.1294181165554 K, F = -0.3344705115340288, relative_change = 1.6494193648377913e-5 Iter 65: T = 546.1019005655338 K, F = -0.1398819588069955, relative_change = 6.89984185499434e-6 Iter 70: T = 546.0903909288087 K, F = -0.058500724941436766, relative_change = 2.8859064972559458e-6 Iter 75: T = 546.085577204418 K, F = -0.02446577514220713, relative_change = 1.2069748304714285e-6 Iter 80: T = 546.0835640024611 K, F = -0.010231892171140261, relative_change = 5.047807805698296e-7 Iter 85: T = 546.0827220495017 K, F = -0.004279101743270869, relative_change = 2.1110701101344305e-7 Iter 90: T = 546.0823699333447 K, F = -0.0017895718444886077, relative_change = 8.828776353108295e-8 Iter 95: T = 546.0822226739223 K, F = -0.0007484203860780025, relative_change = 3.6923047880279306e-8 Iter 100: T = 546.0821610882311 K, F = -0.00031299835545775534, relative_change = 1.544166845941546e-8 Iter 105: T = 546.0821353323523 K, F = -0.0001308996527991102, relative_change = 6.457891738425695e-9 Iter 110: T = 546.0821245609349 K, F = -5.474379790595951e-5, relative_change = 2.7007676939262304e-9 Iter 115: T = 546.0821200561993 K, F = -2.2894510639304144e-5, relative_change = 1.1294933763542006e-9 Iter 120: T = 546.0821181722649 K, F = -9.57475789792328e-6, relative_change = 4.723676331809662e-10 Iter 125: T = 546.0821173843811 K, F = -4.004277793762112e-6, relative_change = 1.9754977172230074e-10 Iter 130: T = 546.0821170548787 K, F = -1.6746370327669347e-6, relative_change = 8.261768576758773e-11 Iter 135: T = 546.0821169170769 K, F = -7.003530454741114e-7, relative_change = 3.4551694949242197e-11 Iter 140: T = 546.0821168594465 K, F = -2.9289649655650507e-7, relative_change = 1.4449955591977042e-11 Iter 145: T = 546.0821168353448 K, F = -1.2249246295059635e-7, relative_change = 6.04312673988733e-12 Iter 150: T = 546.0821168252651 K, F = -5.122766530418765e-8, relative_change = 2.5273005913335006e-12 Iter 155: T = 546.0821168210497 K, F = -2.1423940899101268e-8, relative_change = 1.0569433173164027e-12 Iter 160: T = 546.0821168192867 K, F = -8.959359615312579e-9, relative_change = 4.4200716000770313e-13 Converged in 164 iterations to T = 546.0821168186505 K Iter 1: T = 966.8833479250379 K, F = -7545.660677348826, relative_change = 0.03311665207496202 Iter 2: T = 935.8236367738473 K, F = -6397.006628810829, relative_change = 0.03212353508605333 Iter 3: T = 906.7904944711977 K, F = -5421.749700619167, relative_change = 0.03102416006795716 Iter 5: T = 854.6732399807609 K, F = -3891.0170053512775, relative_change = 0.028506655126595663 Iter 10: T = 757.0409650500459 K, F = -1686.4225931418973, relative_change = 0.02072094776123686 Iter 15: T = 699.1862198999171 K, F = -722.7671405243539, relative_change = 0.012613819319276881 Iter 20: T = 669.1149024804126 K, F = -306.56767415744304, relative_change = 0.00653712549134603 Iter 25: T = 654.9935084840376 K, F = -129.11714345252, relative_change = 0.0030408457145739256 Iter 30: T = 648.7536112862406 K, F = -54.172091085996016, relative_change = 0.0013346940084912075 Iter 35: T = 646.0794479289837 K, F = -22.687078069815257, relative_change = 0.0005700175136497323 Iter 40: T = 644.9492811305122 K, F = -9.493643766445633, relative_change = 0.00024052264477366663 Iter 45: T = 644.4745288585821 K, F = -3.9713485119048286, relative_change = 0.00010096769729800038 Iter 50: T = 644.2756110297689 K, F = -1.6610396563642424, relative_change = 4.2292419822322544e-5 Iter 55: T = 644.1923561549161 K, F = -0.6946971435014252, relative_change = 1.7698856925306432e-5 Iter 60: T = 644.1575265763954 K, F = -0.2905359831322586, relative_change = 7.403914985327467e-6 Iter 65: T = 644.1429584364374 K, F = -0.12150655227056217, relative_change = 3.096762899457765e-6 Iter 70: T = 644.1368655174424 K, F = -0.050815654687480505, relative_change = 1.2951657182375748e-6 Iter 75: T = 644.1343173249278 K, F = -0.021251742238887428, relative_change = 5.416647012455395e-7 Iter 80: T = 644.1332516297125 K, F = -0.008887737401069906, relative_change = 2.2653255864662981e-7 Iter 85: T = 644.1328059413796 K, F = -0.0037169587970256046, relative_change = 9.473895576254487e-8 Iter 90: T = 644.1326195488697 K, F = -0.001554476711560171, relative_change = 3.962102120172174e-8 Iter 95: T = 644.1325415972389 K, F = -0.0006501007520505753, relative_change = 1.656999447432114e-8 Iter 100: T = 644.1325089969259 K, F = -0.0002718799028876284, relative_change = 6.9297713621421095e-9 Iter 105: T = 644.1324953630841 K, F = -0.0001137034232806533, relative_change = 2.8981134591480794e-9 Iter 110: T = 644.1324896612482 K, F = -4.7552129467276494e-5, relative_change = 1.212025709094806e-9 Iter 115: T = 644.1324872766724 K, F = -1.988686820347807e-5, relative_change = 5.0688362920553e-10 Iter 120: T = 644.1324862794143 K, F = -8.316926543294745e-6, relative_change = 2.1198480816794407e-10 Iter 125: T = 644.132485862349 K, F = -3.4782387408616167e-6, relative_change = 8.86545974259299e-11 Iter 130: T = 644.1324856879273 K, F = -1.4546409851656783e-6, relative_change = 3.707641157301168e-11 Iter 135: T = 644.1324856149821 K, F = -6.083479029417305e-7, relative_change = 1.5505789724904695e-11 Iter 140: T = 644.1324855844755 K, F = -2.544194845910397e-7, relative_change = 6.484735152041258e-12 Iter 145: T = 644.1324855717172 K, F = -1.0640076342216531e-7, relative_change = 2.7119808529676866e-12 Iter 150: T = 644.1324855663817 K, F = -4.449807688988727e-8, relative_change = 1.1341829573647392e-12 Iter 155: T = 644.1324855641502 K, F = -1.8610501639759747e-8, relative_change = 4.743511464642453e-13 Converged in 160 iterations to T = 644.1324855632171 K Iter 1: T = 965.2110995299843 K, F = -7926.684064880698, relative_change = 0.034788900470015725 Iter 2: T = 932.3983200554219 K, F = -6723.0666308369255, relative_change = 0.033995443577618134 Iter 3: T = 901.5322294125147 K, F = -5700.98865760405, relative_change = 0.03310397496326732 Iter 5: T = 845.5269668231055 K, F = -4096.275399453825, relative_change = 0.031008559403134163 Iter 10: T = 737.4151167072266 K, F = -1782.3593549805883, relative_change = 0.02400121792778082 Iter 15: T = 669.8856326590097 K, F = -767.3724460047364, relative_change = 0.015695708367360988 Iter 20: T = 632.9796986541742 K, F = -326.7280345082251, relative_change = 0.008626148630063045 Iter 25: T = 615.0243638966624 K, F = -137.93455350245614, relative_change = 0.004159976004358943 Iter 30: T = 606.9322965344372 K, F = -57.941605294715764, relative_change = 0.0018595996614742282 Iter 35: T = 603.4313158394008 K, F = -24.279207202408557, relative_change = 0.0008008521680114627 Iter 40: T = 601.9454512182006 K, F = -10.162341354447898, relative_change = 0.00033915322616730117 Iter 45: T = 601.320145604011 K, F = -4.251512674326259, relative_change = 0.00014259105983971043 Iter 50: T = 601.057945647681 K, F = -1.7782969255981742, relative_change = 5.9766036587085605e-5 Iter 55: T = 600.9481692980629 K, F = -0.7437511933200234, relative_change = 2.5018164770938074e-5 Iter 60: T = 600.9022382782458 K, F = -0.31105371482608163, relative_change = 1.0466975100551728e-5 Iter 65: T = 600.8830256593536 K, F = -0.1300877925639156, relative_change = 4.378127961254461e-6 Iter 70: T = 600.8749900622014 K, F = -0.05440451580804978, relative_change = 1.8311103035234944e-6 Iter 75: T = 600.8716293657204 K, F = -0.02275266150388111, relative_change = 7.658140449668637e-7 Iter 80: T = 600.8702238624146 K, F = -0.009515442331142876, relative_change = 3.2027640070493335e-7 Iter 85: T = 600.8696360606659 K, F = -0.003979472944360241, relative_change = 1.3394408404533417e-7 Iter 90: T = 600.869390234346 K, F = -0.0016642633425634212, relative_change = 5.601713250572332e-8 Iter 95: T = 600.8692874267367 K, F = -0.0006960148455817938, relative_change = 2.342705423689319e-8 Iter 100: T = 600.8692444313482 K, F = -0.0002910817279717648, relative_change = 9.797477445989743e-9 Iter 105: T = 600.8692264501598 K, F = -0.00012173385543634563, relative_change = 4.097422676739153e-9 Iter 110: T = 600.8692189302116 K, F = -5.0910551948946114e-5, relative_change = 1.7135911922159774e-9 Iter 115: T = 600.8692157852794 K, F = -2.1291400792877724e-5, relative_change = 7.166443179471653e-10 Iter 120: T = 600.8692144700311 K, F = -8.904318562763525e-6, relative_change = 2.997092315237006e-10 Iter 125: T = 600.8692139199786 K, F = -3.723892269325013e-6, relative_change = 1.2534197730166323e-10 Iter 130: T = 600.86921368994 K, F = -1.5573758028186724e-6, relative_change = 5.241949787076901e-11 Iter 135: T = 600.8692135937351 K, F = -6.513129864327283e-7, relative_change = 2.192245421416431e-11 Iter 140: T = 600.869213553501 K, F = -2.7238586519651165e-7, relative_change = 9.168198369519911e-12 Iter 145: T = 600.8692135366748 K, F = -1.1391518234260545e-7, relative_change = 3.834255453757865e-12 Iter 150: T = 600.8692135296379 K, F = -4.7641330824799155e-8, relative_change = 1.6035530013906995e-12 Iter 155: T = 600.8692135266949 K, F = -1.992462600464151e-8, relative_change = 6.706402461671743e-13 Iter 160: T = 600.8692135254641 K, F = -8.332284973100457e-9, relative_change = 2.8045523385221375e-13 Converged in 162 iterations to T = 600.8692135252037 K Iter 1: T = 980.1175229111556 K, F = -4530.241317811535, relative_change = 0.019882477088844386 Iter 2: T = 962.2798171293142 K, F = -3826.73198753929, relative_change = 0.01819955807836143 Iter 3: T = 946.3661551632676 K, F = -3230.9654113140464, relative_change = 0.01653745790233912 Iter 5: T = 919.7882782978389 K, F = -2300.0861742064217, relative_change = 0.013364579578900837 Iter 10: T = 877.5805595779409 K, F = -976.4922688479722, relative_change = 0.007024259881836986 Iter 15: T = 857.5943610808755 K, F = -411.49472669519673, relative_change = 0.003294755164039513 Iter 20: T = 848.7230970388805 K, F = -172.69301922885944, relative_change = 0.0014521223157718832 Iter 25: T = 844.9131305482142 K, F = -72.33218732505748, relative_change = 0.000621325875283055 Iter 30: T = 843.3014291948936 K, F = -30.2697813611604, relative_change = 0.00026238399663065033 Iter 35: T = 842.6241244093061 K, F = -12.662639753497169, relative_change = 0.00011018242870338372 Iter 40: T = 842.3402901881217 K, F = -5.296273659825408, relative_change = 4.6158842203603746e-5 Iter 45: T = 842.221485992806 K, F = -2.2150711245331913, relative_change = 1.9318072305874064e-5 Iter 50: T = 842.1717829089065 K, F = -0.9263877885156719, relative_change = 8.081481056816844e-6 Iter 55: T = 842.1509933790551 K, F = -0.3874296888580344, relative_change = 3.3801975280578542e-6 Iter 60: T = 842.1422984059025 K, F = -0.1620282916312501, relative_change = 1.4137134322472749e-6 Iter 65: T = 842.1386619692231 K, F = -0.06776226607550861, relative_change = 5.912448643691992e-7 Iter 70: T = 842.1371411513477 K, F = -0.02833900631921704, relative_change = 2.4726794110796024e-7 Iter 75: T = 842.1365051242417 K, F = -0.01185171392292439, relative_change = 1.034108043716185e-7 Iter 80: T = 842.1362391296016 K, F = -0.004956528832053442, relative_change = 4.3247703039362394e-8 Iter 85: T = 842.1361278873775 K, F = -0.0020728796427307294, relative_change = 1.8086718073481023e-8 Iter 90: T = 842.1360813645352 K, F = -0.000866903036150779, relative_change = 7.564083612423921e-9 Iter 95: T = 842.1360619081244 K, F = -0.00036254920682399217, relative_change = 3.16339048468374e-9 Iter 100: T = 842.1360537712205 K, F = -0.00015162240927502069, relative_change = 1.3229677511445648e-9 Iter 105: T = 842.13605036827 K, F = -6.341030136081116e-5, relative_change = 5.532809154388588e-10 Iter 110: T = 842.1360489451156 K, F = -2.651894669325472e-5, relative_change = 2.3138870035468216e-10 Iter 115: T = 842.1360483499353 K, F = -1.1090541067293458e-5, relative_change = 9.676952565689524e-11 Iter 120: T = 842.1360481010238 K, F = -4.638195653994259e-6, relative_change = 4.047016202808953e-11 Iter 125: T = 842.136047996926 K, F = -1.939747231505251e-6, relative_change = 1.6925091275775492e-11 Iter 130: T = 842.1360479533912 K, F = -8.11226333663484e-7, relative_change = 7.078282944779401e-12 Iter 135: T = 842.1360479351844 K, F = -3.392651908296074e-7, relative_change = 2.9602281319061575e-12 Iter 140: T = 842.1360479275701 K, F = -1.4188729746678064e-7, relative_change = 1.2380249459495337e-12 Iter 145: T = 842.1360479243857 K, F = -5.933988145301328e-8, relative_change = 5.17764837596128e-13 Converged in 150 iterations to T = 842.1360479230539 K Iter 1: T = 976.3987706953 K, F = -5377.562547640837, relative_change = 0.02360122930470005 Iter 2: T = 954.9599649213483 K, F = -4547.132020758833, relative_change = 0.02195701840005897 Iter 3: T = 935.5922641412644 K, F = -3843.20067466606, relative_change = 0.020281165170813187 Iter 5: T = 902.65042473842 K, F = -2741.572424674807, relative_change = 0.016927631864895595 Iter 10: T = 848.3764720337232 K, F = -1169.1248662709838, relative_change = 0.009532059024086076 Iter 15: T = 821.5673280449731 K, F = -494.086079046267, relative_change = 0.004670970249319615 Iter 20: T = 809.3766549297785 K, F = -207.66467268718978, relative_change = 0.0021057385676670672 Iter 25: T = 804.0790280970234 K, F = -87.04026396219845, relative_change = 0.0009104321127787872 Iter 30: T = 801.8261354823409 K, F = -36.435892554442866, relative_change = 0.0003862258483898032 Iter 35: T = 800.8772150083829 K, F = -15.244052845743036, relative_change = 0.00016250168580405253 Iter 40: T = 800.4791722346704 K, F = -6.376322107482572, relative_change = 6.813262074673759e-5 Iter 45: T = 800.3124962285715 K, F = -2.6668428523184167, relative_change = 2.852415427354514e-5 Iter 50: T = 800.2427535613836 K, F = -1.1153385799347846, relative_change = 1.1934445994847473e-5 Iter 55: T = 800.2135799077134 K, F = -0.46645369669999337, relative_change = 4.992056128090117e-6 Iter 60: T = 800.2013780109985 K, F = -0.19507751810746232, relative_change = 2.0878998928108634e-6 Iter 65: T = 800.1962748350402 K, F = -0.08158392470138898, relative_change = 8.73213077405984e-7 Iter 70: T = 800.1941405914469 K, F = -0.03411940256505641, relative_change = 3.651931060100526e-7 Iter 75: T = 800.1932480192602 K, F = -0.014269147031340523, relative_change = 1.5272898726067322e-7 Iter 80: T = 800.1928747338579 K, F = -0.005967528642477404, relative_change = 6.387323841818988e-8 Iter 85: T = 800.1927186212605 K, F = -0.0024956919110955544, relative_change = 2.6712577698197267e-8 Iter 90: T = 800.1926533330756 K, F = -0.0010437281913738827, relative_change = 1.1171523662365952e-8 Iter 95: T = 800.1926260287713 K, F = -0.00043649959934399796, relative_change = 4.672065423950484e-9 Iter 100: T = 800.1926146097841 K, F = -0.00018254934475803175, relative_change = 1.9539136829433375e-9 Iter 105: T = 800.1926098342273 K, F = -7.63443174426337e-5, relative_change = 8.171500746965694e-10 Iter 110: T = 800.1926078370323 K, F = -3.192810451124739e-5, relative_change = 3.4174191570883423e-10 Iter 115: T = 800.1926070017814 K, F = -1.3352714481551509e-5, relative_change = 1.429205497592062e-10 Iter 120: T = 800.1926066524695 K, F = -5.584264100022551e-6, relative_change = 5.977107485802488e-11 Iter 125: T = 800.1926065063832 K, F = -2.335406193432199e-6, relative_change = 2.4996980091307517e-11 Iter 130: T = 800.1926064452882 K, F = -9.766954289780472e-7, relative_change = 1.0454042757517132e-11 Iter 135: T = 800.1926064197374 K, F = -4.084667452053381e-7, relative_change = 4.3720167959807516e-12 Iter 140: T = 800.1926064090519 K, F = -1.7082521741595968e-7, relative_change = 1.828424782516089e-12 Iter 145: T = 800.1926064045831 K, F = -7.144266422898227e-8, relative_change = 7.64685330331774e-13 Iter 150: T = 800.1926064027141 K, F = -2.987843505941612e-8, relative_change = 3.1980331682803515e-13 Converged in 153 iterations to T = 800.1926064021669 K Iter 1: T = 980.6398680243922 K, F = -4411.224486882117, relative_change = 0.019360131975607868 Iter 2: T = 963.3010308623128 K, F = -3725.6589261962854, relative_change = 0.017681146491637562 Iter 3: T = 947.859122898065 K, F = -3145.1754927553, relative_change = 0.016030199770911455 Iter 5: T = 922.1322444727414 K, F = -2238.3917312709755, relative_change = 0.012898713591948607 Iter 10: T = 881.4688353696184 K, F = -949.7612267179626, relative_change = 0.0067204536326202725 Iter 15: T = 862.3133627667551 K, F = -400.0935153836758, relative_change = 0.003135924004886273 Iter 20: T = 853.8347102554399 K, F = -167.8795227541468, relative_change = 0.0013785555347414322 Iter 25: T = 850.1982101499119 K, F = -70.31060392800757, relative_change = 0.0005891602318968958 Iter 30: T = 848.6607955369595 K, F = -29.42279367627375, relative_change = 0.00024867490002170045 Iter 35: T = 848.0148723115202 K, F = -12.308146932671194, relative_change = 0.00010440321569669367 Iter 40: T = 847.7442178602694 K, F = -5.147972610354178, relative_change = 4.373380658203151e-5 Iter 45: T = 847.6309353843734 K, F = -2.153041454050823, relative_change = 1.8302471565885386e-5 Iter 50: T = 847.583543264307 K, F = -0.9004447688400761, relative_change = 7.656495625640986e-6 Iter 55: T = 847.563720507341 K, F = -0.37657975087587714, relative_change = 3.202419954083392e-6 Iter 60: T = 847.555429902683 K, F = -0.15749067297623842, relative_change = 1.3393571014767198e-6 Iter 65: T = 847.5519625869263 K, F = -0.06586457188923012, relative_change = 5.601468248518555e-7 Iter 70: T = 847.5505124990475 K, F = -0.027545366569602825, relative_change = 2.3426213626376937e-7 Iter 75: T = 847.549906052352 K, F = -0.0115198040623683, relative_change = 9.797158066848687e-8 Iter 80: T = 847.5496524286419 K, F = -0.004817720121364832, relative_change = 4.097294758259185e-8 Iter 85: T = 847.5495463600971 K, F = -0.002014828175765704, relative_change = 1.7135386935032436e-8 Iter 90: T = 847.549502000951 K, F = -0.0008426252202924367, relative_change = 7.1662253698315495e-9 Iter 95: T = 847.5494834494237 K, F = -0.00035239593215430354, relative_change = 2.997001361457958e-9 Iter 100: T = 847.5494756909532 K, F = -0.00014737618806148767, relative_change = 1.2533818220247896e-9 Iter 105: T = 847.549472446268 K, F = -6.163448286189421e-5, relative_change = 5.24179264325184e-10 Iter 110: T = 847.549471089302 K, F = -2.5776278146150133e-5, relative_change = 2.1921804144871148e-10 Iter 115: T = 847.5494705218025 K, F = -1.0779947626771147e-5, relative_change = 9.1679605558078e-11 Iter 120: T = 847.5494702844674 K, F = -4.508300766925544e-6, relative_change = 3.834148837361153e-11 Iter 125: T = 847.549470185211 K, F = -1.8854245307231565e-6, relative_change = 1.6034862468515154e-11 Iter 130: T = 847.5494701437009 K, F = -7.885071131585875e-7, relative_change = 6.705971473195374e-12 Iter 135: T = 847.5494701263409 K, F = -3.297643436095399e-7, relative_change = 2.804528005435344e-12 Iter 140: T = 847.5494701190806 K, F = -1.379101937093452e-7, relative_change = 1.1728769589674277e-12 Iter 145: T = 847.5494701160444 K, F = -5.767676580781256e-8, relative_change = 4.905203006782051e-13 Converged in 150 iterations to T = 847.5494701147745 K Iter 1: T = 967.3671074832118 K, F = -7435.43560184477, relative_change = 0.032632892516788144 Iter 2: T = 936.8109987044282 K, F = -6302.735010228835, relative_change = 0.03158688004007199 Iter 3: T = 908.3002016378907 K, F = -5341.072682780136, relative_change = 0.03043388378869039 Iter 5: T = 857.2753083908093 K, F = -3831.8316782000406, relative_change = 0.02781307385285532 Iter 10: T = 762.4656999473973 K, F = -1659.0154912594976, relative_change = 0.019878571012388026 Iter 15: T = 707.0382354433821 K, F = -710.2150588680048, relative_change = 0.011888224244153632 Iter 20: T = 678.5697349321994 K, F = -300.9806709905349, relative_change = 0.006078956182513878 Iter 25: T = 665.305550855148 K, F = -126.69921350696953, relative_change = 0.002805834473775091 Iter 30: T = 659.4688547755703 K, F = -53.14422301688147, relative_change = 0.001226865285223622 Iter 35: T = 656.9723774985929 K, F = -22.254082451565317, relative_change = 0.0005230720318640715 Iter 40: T = 655.9182132111838 K, F = -9.311995454177614, relative_change = 0.00022055117013166582 Iter 45: T = 655.4755504530914 K, F = -3.8952810092692727, relative_change = 9.255509077235058e-5 Iter 50: T = 655.2901067088918 K, F = -1.6292097300656219, relative_change = 3.8763537274366566e-5 Iter 55: T = 655.2124963255046 K, F = -0.6813824048794771, relative_change = 1.6221170703677772e-5 Iter 60: T = 655.1800290002105 K, F = -0.28496706063324345, relative_change = 6.78560224575059e-6 Iter 65: T = 655.1664490732627 K, F = -0.11917746792619777, relative_change = 2.8381199515764136e-6 Iter 70: T = 655.1607694875775 K, F = -0.04984158727772581, relative_change = 1.1869881460176283e-6 Iter 75: T = 655.1583941648803 K, F = -0.020844372727062188, relative_change = 4.964217990370299e-7 Iter 80: T = 655.1574007674421 K, F = -0.008717370099990351, relative_change = 2.0761113058760307e-7 Iter 85: T = 655.1569853151752 K, F = -0.0036457090691386362, relative_change = 8.682573506480787e-8 Iter 90: T = 655.1568115677967 K, F = -0.0015246792086024974, relative_change = 3.631160843132985e-8 Iter 95: T = 655.1567389045192 K, F = -0.0006376390777945162, relative_change = 1.5185956894381606e-8 Iter 100: T = 655.1567085158603 K, F = -0.00026666828151011845, relative_change = 6.3509500333868515e-9 Iter 105: T = 655.1566958069587 K, F = -0.00011152386117313506, relative_change = 2.6560434231024552e-9 Iter 110: T = 655.156690491944 K, F = -4.664061047615631e-5, relative_change = 1.110789118905443e-9 Iter 115: T = 655.1566882691413 K, F = -1.950566078967597e-5, relative_change = 4.645452941336224e-10 Iter 120: T = 655.1566873395387 K, F = -8.157500012317964e-6, relative_change = 1.9427838457146512e-10 Iter 125: T = 655.1566869507678 K, F = -3.4115647903343316e-6, relative_change = 8.124956140959132e-11 Iter 130: T = 655.1566867881792 K, F = -1.4267571095127884e-6, relative_change = 3.3979536267736385e-11 Iter 135: T = 655.1566867201827 K, F = -5.966868562579108e-7, relative_change = 1.4210647732212445e-11 Iter 140: T = 655.1566866917457 K, F = -2.495413700120963e-7, relative_change = 5.9430578491838315e-12 Iter 145: T = 655.156686679853 K, F = -1.0436093078602937e-7, relative_change = 2.4854518065665025e-12 Iter 150: T = 655.1566866748794 K, F = -4.3645305869421946e-8, relative_change = 1.0394532082857287e-12 Iter 155: T = 655.1566866727994 K, F = -1.8253888622865588e-8, relative_change = 4.347331910052691e-13 Converged in 159 iterations to T = 655.1566866720486 K Iter 1: T = 973.5356437602173 K, F = -6029.928743336223, relative_change = 0.02646435623978261 Iter 2: T = 949.2642941594246 K, F = -5102.762439407237, relative_change = 0.024931136067135956 Iter 3: T = 927.1183610970673 K, F = -4316.344132314861, relative_change = 0.023329575544572108 Iter 5: T = 888.879772045008 K, F = -3084.3086345598067, relative_change = 0.01999959548757344 Iter 10: T = 823.7897052506155 K, F = -1320.5903038566867, relative_change = 0.011991093930609252 Iter 15: T = 790.3014303660517 K, F = -559.7197847290702, relative_change = 0.0061432268733337255 Iter 20: T = 774.6811082781853 K, F = -235.6335964805546, relative_change = 0.0028385940747074835 Iter 25: T = 767.8036073589836 K, F = -98.84044017315469, relative_change = 0.0012418492937112825 Iter 30: T = 764.8611521965446 K, F = -41.38997661105736, relative_change = 0.0005295864431743898 Iter 35: T = 763.6185198831203 K, F = -17.319334917947053, relative_change = 0.00022332083314703473 Iter 40: T = 763.0966892350776 K, F = -7.244835119016926, relative_change = 9.372145763413868e-5 Iter 45: T = 762.8780751329958 K, F = -3.030171689554599, relative_change = 3.9252746455486455e-5 Iter 50: T = 762.7865817352024 K, F = -1.2673056688104076, relative_change = 1.6426013091825623e-5 Iter 55: T = 762.7483064803862 K, F = -0.5300114090410772, relative_change = 6.871313434166832e-6 Iter 60: T = 762.7322972777043 K, F = -0.22165868296021607, relative_change = 2.87397303385353e-6 Iter 65: T = 762.725601682121 K, F = -0.09270058508622736, relative_change = 1.201983669723692e-6 Iter 70: T = 762.7228014418448 K, F = -0.03876854015348563, relative_change = 5.026933398926867e-7 Iter 75: T = 762.7216303370333 K, F = -0.01621347494752634, relative_change = 2.1023400478692655e-7 Iter 80: T = 762.7211405651111 K, F = -0.006780670330235772, relative_change = 8.792265949265034e-8 Iter 85: T = 762.7209357363112 K, F = -0.002835757568824593, relative_change = 3.677035658426855e-8 Iter 90: T = 762.7208500744027 K, F = -0.0011859477262784468, relative_change = 1.5377811059583345e-8 Iter 95: T = 762.7208142495593 K, F = -0.0004959775095105812, relative_change = 6.431185766213874e-9 Iter 100: T = 762.7207992671803 K, F = -0.0002074237192197792, relative_change = 2.6895989632666055e-9 Iter 105: T = 762.7207930013702 K, F = -8.674707838574047e-5, relative_change = 1.124822474961432e-9 Iter 110: T = 762.7207903809334 K, F = -3.627866327315932e-5, relative_change = 4.704141884440619e-10 Iter 115: T = 762.7207892850354 K, F = -1.517216860935644e-5, relative_change = 1.9673281174648894e-10 Iter 120: T = 762.7207888267178 K, F = -6.345182323452825e-6, relative_change = 8.227601440828878e-11 Iter 125: T = 762.720788635044 K, F = -2.6536308204150316e-6, relative_change = 3.440880919512678e-11 Iter 130: T = 762.7207885548837 K, F = -1.1097817053107306e-6, relative_change = 1.4390195754289232e-11 Iter 135: T = 762.7207885213596 K, F = -4.641247042247443e-7, relative_change = 6.0181613353621794e-12 Iter 140: T = 762.7207885073394 K, F = -1.9410218499160692e-7, relative_change = 2.5168629342393085e-12 Iter 145: T = 762.720788501476 K, F = -8.117548433439481e-8, relative_change = 1.0525773715863854e-12 Iter 150: T = 762.7207884990239 K, F = -3.394730030414905e-8, relative_change = 4.4018413219373706e-13 Converged in 154 iterations to T = 762.7207884981389 K Iter 1: T = 970.0789195547147 K, F = -6817.546641753611, relative_change = 0.02992108044528528 Iter 2: T = 942.316760307838 K, F = -5774.720462069526, relative_change = 0.02861845432083008 Iter 3: T = 916.6703319016535 K, F = -4889.671620071854, relative_change = 0.02721635599244382 Iter 5: T = 871.5167721365972 K, F = -3501.6060502002506, relative_change = 0.024155401856892893 Iter 10: T = 791.062266934865 K, F = -1507.906430149543, relative_change = 0.015851781411152385 Iter 15: T = 746.9808389667083 K, F = -642.156021813735, relative_change = 0.008738638951949013 Iter 20: T = 725.4937911573885 K, F = -271.13378087395733, relative_change = 0.0042225746436583035 Iter 25: T = 715.7994043235656 K, F = -113.90185437802766, relative_change = 0.001889535006183389 Iter 30: T = 711.6029217975045 K, F = -47.729689154148986, relative_change = 0.0008141340773481567 Iter 35: T = 709.8214429334212 K, F = -19.978089169826085, relative_change = 0.0003448502673698616 Iter 40: T = 709.0716533252679 K, F = -8.358074423571605, relative_change = 0.00014499923901917531 Iter 45: T = 708.7572413634713 K, F = -3.495973442623063, relative_change = 6.077769787408577e-5 Iter 50: T = 708.6256027279012 K, F = -1.462150175590597, relative_change = 2.5442050180454672e-5 Iter 55: T = 708.5705239762516 K, F = -0.6115048267973151, relative_change = 1.0644388652047408e-5 Iter 60: T = 708.5474848503992 K, F = -0.25574144906041624, relative_change = 4.452348866545754e-6 Iter 65: T = 708.537848819519 K, F = -0.10695462279343282, relative_change = 1.8621546484561477e-6 Iter 70: T = 708.533818777557 K, F = -0.04472978706415742, relative_change = 7.78797908762111e-7 Iter 75: T = 708.5321333416074 K, F = -0.018706546263447366, relative_change = 3.2570653842704226e-7 Iter 80: T = 708.5314284679198 K, F = -0.007823303696798956, relative_change = 1.3621505538612062e-7 Iter 85: T = 708.5311336805831 K, F = -0.0032717994977840004, relative_change = 5.6966883799221334e-8 Iter 90: T = 708.5310103968686 K, F = -0.0013683057040358992, relative_change = 2.3824252271903168e-8 Iter 95: T = 708.5309588381241 K, F = -0.0005722418000746465, relative_change = 9.963590510998552e-9 Iter 100: T = 708.5309372756375 K, F = -0.0002393183568819568, relative_change = 4.166893182079045e-9 Iter 105: T = 708.5309282579474 K, F = -0.00010008579564946274, relative_change = 1.7426446103835975e-9 Iter 110: T = 708.5309244866415 K, F = -4.1857075271267696e-5, relative_change = 7.287948105230499e-10 Iter 115: T = 708.5309229094364 K, F = -1.7505128276140702e-5, relative_change = 3.047906882581267e-10 Iter 120: T = 708.5309222498303 K, F = -7.320852881576023e-6, relative_change = 1.274670921059962e-10 Iter 125: T = 708.5309219739753 K, F = -3.061668892745395e-6, relative_change = 5.3308274020258894e-11 Iter 130: T = 708.5309218586094 K, F = -1.2804275479894045e-6, relative_change = 2.2294175182024966e-11 Iter 135: T = 708.530921810362 K, F = -5.35490017772311e-7, relative_change = 9.323689018608073e-12 Iter 140: T = 708.5309217901844 K, F = -2.2394842003059523e-7, relative_change = 3.899279828862885e-12 Iter 145: T = 708.5309217817459 K, F = -9.365905118130513e-8, relative_change = 1.6307453699941942e-12 Iter 150: T = 708.5309217782168 K, F = -3.9169954169082644e-8, relative_change = 6.820079917527623e-13 Iter 155: T = 708.5309217767409 K, F = -1.638307856044463e-8, relative_change = 2.852541123641826e-13 Converged in 157 iterations to T = 708.5309217764286 K Iter 1: T = 973.74746078283 K, F = -5981.666033243936, relative_change = 0.026252539217170003 Iter 2: T = 949.6874772485934 K, F = -5061.627176050851, relative_change = 0.024708648292539718 Iter 3: T = 927.7507588409156 K, F = -4281.287100936885, relative_change = 0.023098881403840532 Iter 5: T = 889.9167918802401 K, F = -3058.8648165820637, relative_change = 0.019761518298858166 Iter 10: T = 825.6802300156465 K, F = -1309.2789957969903, relative_change = 0.01178950765991313 Iter 15: T = 792.7404948394438 K, F = -554.791610240264, relative_change = 0.006017595118693501 Iter 20: T = 777.4091432071442 K, F = -233.52622681266266, relative_change = 0.0027746440962307514 Iter 25: T = 770.6665501923709 K, F = -97.94975397121077, relative_change = 0.0012126176855810787 Iter 30: T = 767.7833450860852 K, F = -41.0157344364249, relative_change = 0.0005168813691524823 Iter 35: T = 766.5660185524657 K, F = -17.162508202345865, relative_change = 0.00021791980589761512 Iter 40: T = 766.0548656900071 K, F = -7.179192706992584, relative_change = 9.144708100447936e-5 Iter 45: T = 765.8407338993808 K, F = -3.0027094743910574, relative_change = 3.829882531186977e-5 Iter 50: T = 765.7511179984334 K, F = -1.2558189292924737, relative_change = 1.6026589424512384e-5 Iter 55: T = 765.7136284505658 K, F = -0.5252072174969069, relative_change = 6.7041851924455865e-6 Iter 60: T = 765.6979479301223 K, F = -0.21964946020907705, relative_change = 2.804063220898835e-6 Iter 65: T = 765.6913898091595 K, F = -0.09186029495680326, relative_change = 1.1727439642905309e-6 Iter 70: T = 765.6886470651725 K, F = -0.03841711918111157, relative_change = 4.904644934226104e-7 Iter 75: T = 765.6875000064784 K, F = -0.01606650621883987, relative_change = 2.051196760052459e-7 Iter 80: T = 765.6870202910144 K, F = -0.006719206205116235, relative_change = 8.578377229604215e-8 Iter 85: T = 765.6868196679601 K, F = -0.002810052527468243, relative_change = 3.5875845973559007e-8 Iter 90: T = 765.6867357649471 K, F = -0.001175197568965225, relative_change = 1.500371560931372e-8 Iter 95: T = 765.6867006756955 K, F = -0.0004914816679497669, relative_change = 6.274734544054033e-9 Iter 100: T = 765.6866860009496 K, F = -0.0002055435032606301, relative_change = 2.6241691644055826e-9 Iter 105: T = 765.6866798637953 K, F = -8.596074765132578e-5, relative_change = 1.0974589241007843e-9 Iter 110: T = 765.6866772971641 K, F = -3.5949812857705155e-5, relative_change = 4.589704562615633e-10 Iter 115: T = 765.6866762237684 K, F = -1.503464160457213e-5, relative_change = 1.919469341982531e-10 Iter 120: T = 765.6866757748614 K, F = -6.28766888088883e-6, relative_change = 8.027452865536136e-11 Iter 125: T = 765.6866755871231 K, F = -2.629577212864831e-6, relative_change = 3.3571753788375e-11 Iter 130: T = 765.6866755086087 K, F = -1.0997212405161605e-6, relative_change = 1.404011662401697e-11 Iter 135: T = 765.686675475773 K, F = -4.5991708497172823e-7, relative_change = 5.871751198211528e-12 Iter 140: T = 765.6866754620407 K, F = -1.9234292703007583e-7, relative_change = 2.4556378731227708e-12 Iter 145: T = 765.6866754562977 K, F = -8.04400634990543e-8, relative_change = 1.0269765023428458e-12 Iter 150: T = 765.6866754538959 K, F = -3.364054335097677e-8, relative_change = 4.2948806906922857e-13 Converged in 154 iterations to T = 765.686675453029 K Iter 1: T = 964.2973625332651 K, F = -8134.879908771438, relative_change = 0.0357026374667349 Iter 2: T = 930.5186199669251 K, F = -6901.350235316299, relative_change = 0.03502938396264112 Iter 3: T = 898.6327395834422 K, F = -5853.803121396192, relative_change = 0.03426678381203836 Iter 5: T = 840.4264862340676 K, F = -4208.878986341695, relative_change = 0.03244789565087404 Iter 10: T = 726.0579171936296 K, F = -1835.636884526063, relative_change = 0.02607852591882892 Iter 15: T = 652.1893961111492 K, F = -792.6919494756205, relative_change = 0.017885855934512883 Iter 20: T = 610.3665994911414 K, F = -338.4558837222754, relative_change = 0.01026690696409159 Iter 25: T = 589.4538349118131 K, F = -143.15810298771672, relative_change = 0.005097452575896411 Iter 30: T = 579.8737104113361 K, F = -60.197591015213845, relative_change = 0.0023143430778537278 Iter 35: T = 575.6949519090388 K, F = -25.23672784774557, relative_change = 0.001003974500157133 Iter 40: T = 573.9148437488408 K, F = -10.56537364624262, relative_change = 0.00042653712594788894 Iter 45: T = 573.1645053658257 K, F = -4.420527949986125, relative_change = 0.00017957561934422336 Iter 50: T = 572.8496626009043 K, F = -1.849062758604914, relative_change = 7.531132648838988e-5 Iter 55: T = 572.7178082120279 K, F = -0.7733606424893814, relative_change = 3.1533092357258524e-5 Iter 60: T = 572.6626329776873 K, F = -0.3234392510087087, relative_change = 1.3193997652351626e-5 Iter 65: T = 572.6395524060681 K, F = -0.13526801117683238, relative_change = 5.519021887505103e-6 Iter 70: T = 572.6298988503091 K, F = -0.056571021981403236, relative_change = 2.3083193493209126e-6 Iter 75: T = 572.6258614456825 K, F = -0.02365873370823568, relative_change = 9.6540143852975e-7 Iter 80: T = 572.6241729247098 K, F = -0.00989437490004419, relative_change = 4.037484836617567e-7 Iter 85: T = 572.623466759802 K, F = -0.004137947480925552, relative_change = 1.6885349976271285e-7 Iter 90: T = 572.6231714322821 K, F = -0.0017305393567660365, relative_change = 7.061673588259328e-8 Iter 95: T = 572.6230479226251 K, F = -0.0007237322789353517, relative_change = 2.9532794774649377e-8 Iter 100: T = 572.6229962693833 K, F = -0.00030267349078982875, relative_change = 1.2350973123904167e-8 Iter 105: T = 572.6229746673758 K, F = -0.0001265816703399647, relative_change = 5.165325463624229e-9 Iter 110: T = 572.6229656331575 K, F = -5.293796622646285e-5, relative_change = 2.160200957583044e-9 Iter 115: T = 572.6229618549393 K, F = -2.2139289527822736e-5, relative_change = 9.034218605215775e-10 Iter 120: T = 572.6229602748433 K, F = -9.25891521480482e-6, relative_change = 3.778218135296293e-10 Iter 125: T = 572.6229596140283 K, F = -3.872188975628799e-6, relative_change = 1.5800959779825214e-10 Iter 130: T = 572.6229593376676 K, F = -1.6193952212528728e-6, relative_change = 6.608148253739754e-11 Iter 135: T = 572.6229592220902 K, F = -6.772499728802117e-7, relative_change = 2.7636046909362554e-11 Iter 140: T = 572.6229591737545 K, F = -2.832339155434127e-7, relative_change = 1.1557720329079012e-11 Iter 145: T = 572.6229591535399 K, F = -1.1845267727794706e-7, relative_change = 4.833612224060841e-12 Iter 150: T = 572.6229591450858 K, F = -4.9538036006602226e-8, relative_change = 2.0214625951632104e-12 Iter 155: T = 572.6229591415503 K, F = -2.0717272952719412e-8, relative_change = 8.453946850730685e-13 Iter 160: T = 572.6229591400715 K, F = -8.663948003473365e-9, relative_change = 3.5354342295395703e-13 Converged in 163 iterations to T = 572.6229591396387 K Iter 1: T = 963.53366300833 K, F = -8308.88957199369, relative_change = 0.03646633699166999 Iter 2: T = 928.9431674455292 K, F = -7050.424448685115, relative_change = 0.035899623324838405 Iter 3: T = 896.1948517365482 K, F = -5981.653182011601, relative_change = 0.03525330381516716 Iter 5: T = 836.1055501255962 K, F = -4303.241844322507, relative_change = 0.033692516989473856 Iter 10: T = 716.180497096113 K, F = -1880.679326075426, relative_change = 0.02800082440905453 Iter 15: T = 636.2747961611714 K, F = -814.4823126145843, relative_change = 0.020103380097529138 Iter 20: T = 589.3923420450726 K, F = -348.7797908905674, relative_change = 0.0120792116506381 Iter 25: T = 565.2372392952507 K, F = -147.84245930260786, relative_change = 0.006198326739167337 Iter 30: T = 553.9597608058168 K, F = -62.24322981470182, relative_change = 0.0028667036543194523 Iter 35: T = 548.9919211180794 K, F = -26.109739633506635, relative_change = 0.0012547128834294477 Iter 40: T = 546.8659995223261 K, F = -10.933743432571552, relative_change = 0.0005351803278884926 Iter 45: T = 545.9681073557039 K, F = -4.5751719690992365, relative_change = 0.00022569937762211313 Iter 50: T = 545.5910304084153 K, F = -1.913840689809578, relative_change = 9.472316115984164e-5 Iter 55: T = 545.4330560747361 K, F = -0.8004698195930244, relative_change = 3.967289894450901e-5 Iter 60: T = 545.3669408534121 K, F = -0.33477983520776183, relative_change = 1.66019413739615e-5 Iter 65: T = 545.3392821899577 K, F = -0.14001133954804562, relative_change = 6.9449264839024296e-6 Iter 70: T = 545.3277135211559 K, F = -0.05855483664257838, relative_change = 2.904765495097465e-6 Iter 75: T = 545.3228751058413 K, F = -0.024488405849355993, relative_change = 1.2148626001877235e-6 Iter 80: T = 545.3208515773194 K, F = -0.010241356698964532, relative_change = 5.080796645388533e-7 Iter 85: T = 545.3200053055754 K, F = -0.004283059937810113, relative_change = 2.1248666541866424e-7 Iter 90: T = 545.3196513832348 K, F = -0.0017912272109150695, relative_change = 8.886475525147942e-8 Iter 95: T = 545.3195033684423 K, F = -0.0007491126802957326, relative_change = 3.7164353359458354e-8 Iter 100: T = 545.3194414668458 K, F = -0.0003132878811626105, relative_change = 1.554258540440005e-8 Iter 105: T = 545.3194155788515 K, F = -0.000131020735961912, relative_change = 6.500096432490144e-9 Iter 110: T = 545.3194047521816 K, F = -5.4794436027960636e-5, relative_change = 2.7184181892758495e-9 Iter 115: T = 545.3194002243389 K, F = -2.2915687717062205e-5, relative_change = 1.1368750057128058e-9 Iter 120: T = 545.3193983307409 K, F = -9.58361383110451e-6, relative_change = 4.754546904125758e-10 Iter 125: T = 545.3193975388157 K, F = -4.007982065235005e-6, relative_change = 1.9884084634083392e-10 Iter 130: T = 545.3193972076231 K, F = -1.6761857372094013e-6, relative_change = 8.315760553567026e-11 Iter 135: T = 545.3193970691143 K, F = -7.010009944186102e-7, relative_change = 3.477750881087685e-11 Iter 140: T = 545.3193970111882 K, F = -2.9316624836073224e-7, relative_change = 1.4544332849383608e-11 Iter 145: T = 545.3193969869629 K, F = -1.2260520684814757e-7, relative_change = 6.0825928899221055e-12 Iter 150: T = 545.3193969768316 K, F = -5.127498933776842e-8, relative_change = 2.5438143584767372e-12 Iter 155: T = 545.3193969725945 K, F = -2.144304775408834e-8, relative_change = 1.0638155848077657e-12 Iter 160: T = 545.3193969708226 K, F = -8.967715042773605e-9, relative_change = 4.4489921079181867e-13 Converged in 164 iterations to T = 545.319396970183 K Iter 1: T = 969.328536469747 K, F = -6988.522141462099, relative_change = 0.03067146353025302 Iter 2: T = 940.7981826337068 K, F = -5920.751342748538, relative_change = 0.029433110408516944 Iter 3: T = 914.3698238655666 K, F = -5014.434564075267, relative_change = 0.028091422003129002 Iter 5: T = 867.6330625932703 K, F = -3592.7238767612525, relative_change = 0.025130022352767574 Iter 10: T = 783.43603652525 K, F = -1549.3166146133894, relative_change = 0.016861168441015532 Iter 15: T = 736.5455464275699 K, F = -660.6387381960196, relative_change = 0.009482000540798832 Iter 20: T = 713.403023634776 K, F = -279.1774338579735, relative_change = 0.004642288709399145 Iter 25: T = 702.8849302804197 K, F = -117.33473086216175, relative_change = 0.0020918086370393858 Iter 30: T = 698.3152964729734 K, F = -49.17877259083999, relative_change = 0.0009042066829030621 Iter 35: T = 696.372215544445 K, F = -20.586572426127507, relative_change = 0.0003835470561109472 Iter 40: T = 695.5538285956451 K, F = -8.612988284943729, relative_change = 0.00016136780299560942 Iter 45: T = 695.2105478201933 K, F = -3.6026588846748324, relative_change = 6.765601057062467e-5 Iter 50: T = 695.0668040680358 K, F = -1.5067808911358422, relative_change = 2.832440689523965e-5 Iter 55: T = 695.006657225886 K, F = -0.6301723054416135, relative_change = 1.185083504525677e-5 Iter 60: T = 694.9814975856822 K, F = -0.26354882816070574, relative_change = 4.957076038244633e-6 Iter 65: T = 694.9709745591578 K, F = -0.1102198348546663, relative_change = 2.07326852818402e-6 Iter 70: T = 694.9665735350709 K, F = -0.04609535049114433, relative_change = 8.670936683386997e-7 Iter 75: T = 694.9647329447268 K, F = -0.019277643427961344, relative_change = 3.626338265277992e-7 Iter 80: T = 694.9639631827021 K, F = -0.008062143739782757, relative_change = 1.51658653873014e-7 Iter 85: T = 694.9636412581276 K, F = -0.003371685324772722, relative_change = 6.342561009778375e-8 Iter 90: T = 694.9635066252681 K, F = -0.001410079161435096, relative_change = 2.6525373804542434e-8 Iter 95: T = 694.9634503201709 K, F = -0.0005897119614858282, relative_change = 1.1093232690111579e-8 Iter 100: T = 694.9634267727018 K, F = -0.0002466245873438133, relative_change = 4.6393231857902e-9 Iter 105: T = 694.9634169248683 K, F = -0.00010314134825217813, relative_change = 1.940220501923906e-9 Iter 110: T = 694.9634128063866 K, F = -4.313494431495979e-5, relative_change = 8.114234212449238e-10 Iter 115: T = 694.9634110839884 K, F = -1.8039549481652095e-5, relative_change = 3.3934698104540297e-10 Iter 120: T = 694.9634103636608 K, F = -7.544355749122822e-6, relative_change = 1.4191897434219767e-10 Iter 125: T = 694.9634100624112 K, F = -3.1551405875740457e-6, relative_change = 5.935222726872818e-11 Iter 130: T = 694.9634099364249 K, F = -1.319516793385489e-6, relative_change = 2.4821797476140843e-11 Iter 135: T = 694.9634098837361 K, F = -5.518375791879748e-7, relative_change = 1.0380770221292989e-11 Iter 140: T = 694.9634098617008 K, F = -2.307845401450237e-7, relative_change = 4.341352188734962e-12 Iter 145: T = 694.9634098524855 K, F = -9.651630550333579e-8, relative_change = 1.8155950736937066e-12 Iter 150: T = 694.9634098486315 K, F = -4.0364176445706335e-8, relative_change = 7.593017524684474e-13 Iter 155: T = 694.9634098470198 K, F = -1.6880052911005805e-8, relative_change = 3.1753537135753313e-13 Converged in 158 iterations to T = 694.9634098465478 K Iter 1: T = 966.4858477774702 K, F = -7636.231464092397, relative_change = 0.03351415222252978 Iter 2: T = 935.0111469306373 K, F = -6474.486534484695, relative_change = 0.03256612698386844 Iter 3: T = 905.546165519934 K, F = -5488.075732302463, relative_change = 0.03151297340938456 Iter 5: T = 852.520639803004 K, F = -3939.7132583680177, relative_change = 0.029086472350010297 Iter 10: T = 752.5020606863237 K, F = -1709.05484961357, relative_change = 0.021446529338134596 Iter 15: T = 692.5390377761424 K, F = -733.1911897651421, relative_change = 0.013259320094177659 Iter 20: T = 661.0409559647956 K, F = -311.23298927391596, relative_change = 0.006955059746010679 Iter 25: T = 646.1436908960521 K, F = -131.14355998594374, relative_change = 0.003258409011847869 Iter 30: T = 639.535531582077 K, F = -55.03517321766396, relative_change = 0.0014352494104236183 Iter 35: T = 636.698380310658 K, F = -23.050978399013452, relative_change = 0.0006139409990443839 Iter 40: T = 635.4983651624552 K, F = -9.64636457830679, relative_change = 0.0002592351542588706 Iter 45: T = 634.9940977106332 K, F = -4.035312798726838, relative_change = 0.00010885475369424281 Iter 50: T = 634.7827824652417 K, F = -1.6878069334646595, relative_change = 4.5601688187818275e-5 Iter 55: T = 634.6943333793071 K, F = -0.7058944576098993, relative_change = 1.908472949187681e-5 Iter 60: T = 634.657329860769 K, F = -0.2952193447172311, relative_change = 7.983835734700343e-6 Iter 65: T = 634.641852262713 K, F = -0.12346527944810276, relative_change = 3.3393508373782667e-6 Iter 70: T = 634.6353789466652 K, F = -0.05163483343011088, relative_change = 1.3966290650165192e-6 Iter 75: T = 634.6326716586713 K, F = -0.021594335310245683, relative_change = 5.840996642804467e-7 Iter 80: T = 634.6315394262716 K, F = -0.009031014393288017, relative_change = 2.4427967823363123e-7 Iter 85: T = 634.6310659110216 K, F = -0.003776879028914215, relative_change = 1.0216106753335117e-7 Iter 90: T = 634.630867880915 K, F = -0.001579536082555455, relative_change = 4.2725046499120605e-8 Iter 95: T = 634.6307850622941 K, F = -0.0006605808823060277, relative_change = 1.7868136575024316e-8 Iter 100: T = 634.6307504265465 K, F = -0.0002762628199854955, relative_change = 7.472670210355379e-9 Iter 105: T = 634.630735941461 K, F = -0.00011553641172307172, relative_change = 3.1251602946757714e-9 Iter 110: T = 634.630729883625 K, F = -4.831870757215917e-5, relative_change = 1.3069794275678341e-9 Iter 115: T = 634.6307273501656 K, F = -2.0207460597609916e-5, relative_change = 5.46594416810197e-10 Iter 120: T = 634.6307262906425 K, F = -8.45100129404086e-6, relative_change = 2.2859231313019693e-10 Iter 125: T = 634.6307258475374 K, F = -3.5343100623363988e-6, relative_change = 9.560004631926364e-11 Iter 130: T = 634.6307256622255 K, F = -1.4780903982436477e-6, relative_change = 3.998107360144409e-11 Iter 135: T = 634.6307255847258 K, F = -6.181553684481145e-7, relative_change = 1.6720570897956003e-11 Iter 140: T = 634.6307255523145 K, F = -2.585189463055748e-7, relative_change = 6.992715087260627e-12 Iter 145: T = 634.6307255387597 K, F = -1.0811591605319748e-7, relative_change = 2.924442514713949e-12 Iter 150: T = 634.630725533091 K, F = -4.521498186971229e-8, relative_change = 1.2230263601740972e-12 Iter 155: T = 634.6307255307203 K, F = -1.8909741383854595e-8, relative_change = 5.114922359934072e-13 Converged in 160 iterations to T = 634.6307255297288 K Iter 1: T = 966.4403472897873 K, F = -7646.598793493099, relative_change = 0.03355965271021275 Iter 2: T = 934.9180756736465 K, F = -6483.356425055029, relative_change = 0.032616882878016625 Iter 3: T = 905.4035107154784 K, F = -5495.669839613743, relative_change = 0.03156914571033582 Iter 5: T = 852.2733954418765 K, F = -3945.291077194817, relative_change = 0.029153421631948097 Iter 10: T = 751.9776833253965 K, F = -1711.6521046535368, relative_change = 0.021531599965180847 Iter 15: T = 691.7663659475822 K, F = -734.391040509283, relative_change = 0.013336284503069704 Iter 20: T = 660.0980676772476 K, F = -311.77159209843353, relative_change = 0.007005556528396922 Iter 25: T = 645.1074124215415 K, F = -131.37797960949084, relative_change = 0.0032849050907719345 Iter 30: T = 638.4547090643659 K, F = -55.135123044777714, relative_change = 0.0014475440412250328 Iter 35: T = 635.5977971887852 K, F = -23.093141115560005, relative_change = 0.000619321006909598 Iter 40: T = 634.3893048843868 K, F = -9.664063184354642, relative_change = 0.0002615289463343072 Iter 45: T = 633.8814537278362 K, F = -4.042726221900336, relative_change = 0.00010982187177900056 Iter 50: T = 633.6686329175778 K, F = -1.6909093667868254, relative_change = 4.6007529755813674e-5 Iter 55: T = 633.5795529874515 K, F = -0.7071922919782463, relative_change = 1.9254699770803303e-5 Iter 60: T = 633.5422854321399 K, F = -0.29576217753152906, relative_change = 8.054961813474711e-6 Iter 65: T = 633.5266973739517 K, F = -0.1236923096352216, relative_change = 3.369104047348317e-6 Iter 70: T = 633.5201778557182 K, F = -0.05172978209362328, relative_change = 1.4090735133944007e-6 Iter 75: T = 633.5174512442919 K, F = -0.02163404431186805, relative_change = 5.893043087027004e-7 Iter 80: T = 633.5163109304052 K, F = -0.009047621231595249, relative_change = 2.4645636249760786e-7 Iter 85: T = 633.5158340353463 K, F = -0.003783824217402809, relative_change = 1.0307138984918945e-7 Iter 90: T = 633.5156345917572 K, F = -0.0015824406447962902, relative_change = 4.3105755371356516e-8 Iter 95: T = 633.515551182 K, F = -0.0006617956049033702, relative_change = 1.8027353775731136e-8 Iter 100: T = 633.5155162990318 K, F = -0.00027677083048310847, relative_change = 7.539256753823884e-9 Iter 105: T = 633.5155017105558 K, F = -0.00011574886676263274, relative_change = 3.153007560944498e-9 Iter 110: T = 633.5154956094807 K, F = -4.8407558567720166e-5, relative_change = 1.3186254815096406e-9 Iter 115: T = 633.5154930579381 K, F = -2.024461891025897e-5, relative_change = 5.514649294502629e-10 Iter 120: T = 633.5154919908526 K, F = -8.46654193636942e-6, relative_change = 2.3062923583629794e-10 Iter 125: T = 633.5154915445846 K, F = -3.54080819769953e-6, relative_change = 9.645188056167298e-11 Iter 130: T = 633.51549135795 K, F = -1.4808084237150076e-6, relative_change = 4.033733245195331e-11 Iter 135: T = 633.5154912798971 K, F = -6.192910597113688e-7, relative_change = 1.6869534893705348e-11 Iter 140: T = 633.5154912472545 K, F = -2.5899496047809833e-7, relative_change = 7.055042141553337e-12 Iter 145: T = 633.515491233603 K, F = -1.083150748537598e-7, relative_change = 2.950510760234655e-12 Iter 150: T = 633.5154912278938 K, F = -4.529788749652042e-8, relative_change = 1.2339178517908543e-12 Iter 155: T = 633.5154912255061 K, F = -1.894479023656359e-8, relative_change = 5.160575065127269e-13 Converged in 160 iterations to T = 633.5154912245075 K Iter 1: T = 976.598754767583 K, F = -5331.99598653717, relative_change = 0.02340124523241696 Iter 2: T = 955.3558324033748 K, F = -4508.354146408167, relative_change = 0.021751944962559094 Iter 3: T = 936.1782407633434 K, F = -3810.2104690607043, relative_change = 0.020073768317074768 Iter 5: T = 903.5929214306348 K, F = -2717.726982083831, relative_change = 0.016724331589719962 Iter 10: T = 850.0204759390891 K, F = -1158.6544394620855, relative_change = 0.009379602277927395 Iter 15: T = 823.6251416748521 K, F = -489.57448094712265, relative_change = 0.004583846985104303 Iter 20: T = 811.640843789237 K, F = -205.74881811477735, relative_change = 0.002063481114561902 Iter 25: T = 806.4368505643788 K, F = -86.2333811444858, relative_change = 0.0008915583301338235 Iter 30: T = 804.2245390968611 K, F = -36.097408871517246, relative_change = 0.0003781066476048611 Iter 35: T = 803.2928505358236 K, F = -15.102310102672062, relative_change = 0.00015906536809047754 Iter 40: T = 802.9020607894306 K, F = -6.317010996937333, relative_change = 6.668828632432858e-5 Iter 45: T = 802.7384262743104 K, F = -2.6420325148825627, relative_change = 2.7918845652464764e-5 Iter 50: T = 802.6699570320455 K, F = -1.1049615981173404, relative_change = 1.1681075935828259e-5 Iter 55: T = 802.6413161915931 K, F = -0.462113743545176, relative_change = 4.886054743958312e-6 Iter 60: T = 802.6293371677792 K, F = -0.19326246717459883, relative_change = 2.0435620241853275e-6 Iter 65: T = 802.6243272076364 K, F = -0.08082484335931006, relative_change = 8.546692575738403e-7 Iter 70: T = 802.6222319493581 K, F = -0.03380194474259057, relative_change = 3.5743765029403997e-7 Iter 75: T = 802.6213556815317 K, F = -0.014136382216519694, relative_change = 1.4948552656313558e-7 Iter 80: T = 802.6209892148488 K, F = -0.005912004784271563, relative_change = 6.25167780494734e-8 Iter 85: T = 802.6208359539283 K, F = -0.0024724711641037622, relative_change = 2.6145288640790903e-8 Iter 90: T = 802.62077185835 K, F = -0.001034016994849285, relative_change = 1.0934276387748033e-8 Iter 95: T = 802.6207450528085 K, F = -0.0004324382613736244, relative_change = 4.5728457519872835e-9 Iter 100: T = 802.6207338424098 K, F = -0.0001808508452649793, relative_change = 1.9124188314960697e-9 Iter 105: T = 802.6207291540871 K, F = -7.563398404708543e-5, relative_change = 7.997964245264879e-10 Iter 110: T = 802.6207271933746 K, F = -3.163103548153856e-5, relative_change = 3.3448442119228894e-10 Iter 115: T = 802.6207263733811 K, F = -1.3228477279580986e-5, relative_change = 1.3988538535899994e-10 Iter 120: T = 802.62072603045 K, F = -5.532305484390321e-6, relative_change = 5.850172093325738e-11 Iter 125: T = 802.6207258870322 K, F = -2.3136771463150296e-6, relative_change = 2.4466128134182284e-11 Iter 130: T = 802.6207258270532 K, F = -9.67607698409978e-7, relative_change = 1.0232029987004725e-11 Iter 135: T = 802.6207258019692 K, F = -4.046666817192346e-7, relative_change = 4.2791739147104815e-12 Iter 140: T = 802.6207257914788 K, F = -1.6923461032547493e-7, relative_change = 1.7895822975573888e-12 Iter 145: T = 802.6207257870916 K, F = -7.077788333198498e-8, relative_change = 7.484452904119243e-13 Iter 150: T = 802.6207257852567 K, F = -2.9598762329996475e-8, relative_change = 3.129940205224781e-13 Converged in 152 iterations to T = 802.6207257848685 K Iter 1: T = 965.25449440323 K, F = -7916.796501732494, relative_change = 0.03474550559677007 Iter 2: T = 932.4874478595788 K, F = -6714.601763609538, relative_change = 0.03394653610383803 Iter 3: T = 901.6694648003322 K, F = -5693.735386988159, relative_change = 0.03304922026563013 Iter 5: T = 845.7673552352137 K, F = -4090.9356387237003, relative_change = 0.030941510677700325 Iter 10: T = 737.9427420804716 K, F = -1779.8448966252042, relative_change = 0.02390802374098007 Iter 15: T = 670.6935125738407 K, F = -766.1882200729666, relative_change = 0.015602062761406075 Iter 20: T = 633.9964180299512 K, F = -326.18534127864336, relative_change = 0.008559038495184162 Iter 25: T = 616.1628107923361 K, F = -137.6948317887309, relative_change = 0.004122762107156132 Iter 30: T = 608.1308404268899 K, F = -57.83856335839517, relative_change = 0.0018418357671987054 Iter 35: T = 604.6569718912549 K, F = -24.235573187289777, relative_change = 0.0007929771340008127 Iter 40: T = 603.1828262004017 K, F = -10.143994133612807, relative_change = 0.00033577659712333 Iter 45: T = 602.5624908718202 K, F = -4.243822000928359, relative_change = 0.00014116395614593814 Iter 50: T = 602.3023818792062 K, F = -1.7750774823458924, relative_change = 5.916655821420329e-5 Iter 55: T = 602.193482168097 K, F = -0.742404237572709, relative_change = 2.4766990607464963e-5 Iter 60: T = 602.1479181501147 K, F = -0.3104903061885431, relative_change = 1.0361849544410073e-5 Iter 65: T = 602.1288590825205 K, F = -0.12985215160438557, relative_change = 4.334148927920714e-6 Iter 70: T = 602.1208877140352 K, F = -0.05430596501455576, relative_change = 1.8127152497248505e-6 Iter 75: T = 602.1175538807934 K, F = -0.022711445872808433, relative_change = 7.581205770287208e-7 Iter 80: T = 602.1161596123723 K, F = -0.009498205370794377, relative_change = 3.1705882408640576e-7 Iter 85: T = 602.1155765092491 K, F = -0.003972264225613531, relative_change = 1.325984417023786e-7 Iter 90: T = 602.1153326479615 K, F = -0.0016612485664360133, relative_change = 5.545436643304483e-8 Iter 95: T = 602.1152306621541 K, F = -0.000694754030203304, relative_change = 2.3191698351850415e-8 Iter 100: T = 602.1151880104532 K, F = -0.0002905544392850512, relative_change = 9.69904871404741e-9 Iter 105: T = 602.1151701729992 K, F = -0.00012151333757259852, relative_change = 4.0562586124975706e-9 Iter 110: T = 602.1151627131625 K, F = -5.0818329372037674e-5, relative_change = 1.6963759079011813e-9 Iter 115: T = 602.1151595933695 K, F = -2.1252831608364886e-5, relative_change = 7.094446600267472e-10 Iter 120: T = 602.1151582886349 K, F = -8.888188285816057e-6, relative_change = 2.966982422829573e-10 Iter 125: T = 602.1151577429792 K, F = -3.7171457477613856e-6, relative_change = 1.2408272405622987e-10 Iter 130: T = 602.1151575147796 K, F = -1.554555211780162e-6, relative_change = 5.1892892776053655e-11 Iter 135: T = 602.1151574193437 K, F = -6.5013406524983e-7, relative_change = 2.170224454420918e-11 Iter 140: T = 602.1151573794313 K, F = -2.7189339252275957e-7, relative_change = 9.076123236333255e-12 Iter 145: T = 602.1151573627395 K, F = -1.1370912766928143e-7, relative_change = 3.795745260238981e-12 Iter 150: T = 602.1151573557588 K, F = -4.755483923313264e-8, relative_change = 1.5874368164669075e-12 Iter 155: T = 602.1151573528394 K, F = -1.9888780122823135e-8, relative_change = 6.639110196027397e-13 Iter 160: T = 602.1151573516184 K, F = -8.317499189391953e-9, relative_change = 2.7764796701084183e-13 Converged in 162 iterations to T = 602.11515735136 K Iter 1: T = 964.5711803027447 K, F = -8072.490269527584, relative_change = 0.03542881969725537 Iter 2: T = 931.0825069371836 K, F = -6847.915422032713, relative_change = 0.03471871651302107 Iter 3: T = 899.5035971729951 K, F = -5807.992027861212, relative_change = 0.033916338808757114 Iter 5: T = 841.962769230187 K, F = -4175.10149925903, relative_change = 0.03201098677345588 Iter 10: T = 729.5120482051592 K, F = -1819.603358391081, relative_change = 0.025432082695068563 Iter 15: T = 657.635708604939 K, F = -785.024255983886, relative_change = 0.017182551882254656 Iter 20: T = 617.3993248898408 K, F = -334.87726405518583, relative_change = 0.009724712085064648 Iter 25: T = 597.4604984797744 K, F = -141.55469796385032, relative_change = 0.0047816731966759726 Iter 30: T = 588.3764850968557 K, F = -59.50271432477626, relative_change = 0.0021595957435391073 Iter 35: T = 584.4250979138508 K, F = -24.94130318159992, relative_change = 0.0009345213682399341 Iter 40: T = 582.7439773330935 K, F = -10.440932611211489, relative_change = 0.0003965952492130776 Iter 45: T = 582.0357532699874 K, F = -4.3683256469042755, relative_change = 0.00016689155796407288 Iter 50: T = 581.7386512220642 K, F = -1.8272029395316376, relative_change = 6.997796011587897e-5 Iter 55: T = 581.6142388020874 K, F = -0.7642136532853385, relative_change = 2.9297558091114576e-5 Iter 60: T = 581.5621798537288 K, F = -0.3196130032712512, relative_change = 1.2258183882463982e-5 Iter 65: T = 581.5404032448213 K, F = -0.13366767681923356, relative_change = 5.12749815627984e-6 Iter 70: T = 581.5312951434239 K, F = -0.0559017164709541, relative_change = 2.14455228615433e-6 Iter 75: T = 581.5274858755964 K, F = -0.023378817503028837, relative_change = 8.969073452304502e-7 Iter 80: T = 581.5258927678783 K, F = -0.009777309787419253, relative_change = 3.7510260472306225e-7 Iter 85: T = 581.5252265065839 K, F = -0.004088989310460256, relative_change = 1.5687330571200044e-7 Iter 90: T = 581.5249478673455 K, F = -0.0017100644401476517, relative_change = 6.560645022574891e-8 Iter 95: T = 581.5248313369472 K, F = -0.0007151694202917613, relative_change = 2.7437429044508098e-8 Iter 100: T = 581.5247826025181 K, F = -0.0002990924015133789, relative_change = 1.1474665422827508e-8 Iter 105: T = 581.5247622211936 K, F = -0.00012508401559679916, relative_change = 4.798842969428159e-9 Iter 110: T = 581.5247536974795 K, F = -5.2311629455847886e-5, relative_change = 2.0069335922246616e-9 Iter 115: T = 581.5247501327602 K, F = -2.1877347834986516e-5, relative_change = 8.393236077122575e-10 Iter 120: T = 581.5247486419521 K, F = -9.149368074001796e-6, relative_change = 3.5101515831844267e-10 Iter 125: T = 581.5247480184784 K, F = -3.826374931070742e-6, relative_change = 1.4679872950873478e-10 Iter 130: T = 581.5247477577342 K, F = -1.600235667365002e-6, relative_change = 6.139298098513208e-11 Iter 135: T = 581.5247476486878 K, F = -6.692373274996832e-7, relative_change = 2.5675264835249645e-11 Iter 140: T = 581.5247476030834 K, F = -2.7988297290892916e-7, relative_change = 1.0737699706387282e-11 Iter 145: T = 581.524747584011 K, F = -1.1705030050768173e-7, relative_change = 4.4906303678541135e-12 Iter 150: T = 581.5247475760348 K, F = -4.8951396047769435e-8, relative_change = 1.8780184647274403e-12 Iter 155: T = 581.524747572699 K, F = -2.0472413764238695e-8, relative_change = 7.854233826204101e-13 Iter 160: T = 581.5247475713039 K, F = -8.561291342523702e-9, relative_change = 3.284536197517917e-13 Converged in 163 iterations to T = 581.5247475708954 K Iter 1: T = 964.3496392425126 K, F = -8122.968610841401, relative_change = 0.03565036075748738 Iter 2: T = 930.6263158651698 K, F = -6891.147984850198, relative_change = 0.03497001710275135 Iter 3: T = 898.7991328449092 K, F = -5845.055807105222, relative_change = 0.034199745351787124 Iter 5: T = 840.7203130286082 K, F = -4202.428011905521, relative_change = 0.032364106895634986 Iter 10: T = 726.7208288365235 K, F = -1832.5711868796316, relative_change = 0.025953446796537195 Iter 15: T = 653.2392040181328 K, F = -791.2224518558224, relative_change = 0.01774817963490052 Iter 20: T = 611.7275809434719 K, F = -337.7680617105466, relative_change = 0.010159586042058572 Iter 25: T = 591.0073906146107 K, F = -142.84920147542664, relative_change = 0.005034467081126486 Iter 30: T = 581.5258469645619 K, F = -60.06353561937999, relative_change = 0.0022833479441044203 Iter 35: T = 577.3923830949846 K, F = -25.179695897783795, relative_change = 0.0009900358235967399 Iter 40: T = 575.632017148526 K, F = -10.54134288286626, relative_change = 0.0004205227779394461 Iter 45: T = 574.8900823512644 K, F = -4.410445855834461, relative_change = 0.00017702685001715 Iter 50: T = 574.5787803711285 K, F = -1.8448406261536736, relative_change = 7.423945596611806e-5 Iter 55: T = 574.4484114239688 K, F = -0.7715938984494959, relative_change = 3.1083777170659655e-5 Iter 60: T = 574.3938582343397 K, F = -0.3227002027110467, relative_change = 1.3005905235070553e-5 Iter 65: T = 574.3710379520658 K, F = -0.1349589017494483, relative_change = 5.440327273892757e-6 Iter 70: T = 574.3614932774154 K, F = -0.05644174337264088, relative_change = 2.2754027020083925e-6 Iter 75: T = 574.3575014125418 K, F = -0.023604666912723865, relative_change = 9.516343203424416e-7 Iter 80: T = 574.3558319376025 K, F = -0.00987176335662937, relative_change = 3.9799073845577637e-7 Iter 85: T = 574.3551337381073 K, F = -0.004128491035172321, relative_change = 1.664455118939656e-7 Iter 90: T = 574.3548417418415 K, F = -0.0017265845533995239, relative_change = 6.960968134581214e-8 Iter 95: T = 574.3547196253587 K, F = -0.0007220783317497537, relative_change = 2.91116316080149e-8 Iter 100: T = 574.3546685547599 K, F = -0.0003019817913118561, relative_change = 1.2174837543282723e-8 Iter 105: T = 574.3546471964207 K, F = -0.0001262923929798987, relative_change = 5.091663417920427e-9 Iter 110: T = 574.3546382641074 K, F = -5.281698750231323e-5, relative_change = 2.1293946268378527e-9 Iter 115: T = 574.3546345285071 K, F = -2.2088694751676297e-5, relative_change = 8.90538283208047e-10 Iter 120: T = 574.3546329662344 K, F = -9.237755967950179e-6, relative_change = 3.7243375126554765e-10 Iter 125: T = 574.3546323128733 K, F = -3.8633400478715885e-6, relative_change = 1.5575625067685794e-10 Iter 130: T = 574.3546320396299 K, F = -1.6156950249368585e-6, relative_change = 6.513912748375479e-11 Iter 135: T = 574.3546319253562 K, F = -6.75703078045764e-7, relative_change = 2.724196602969713e-11 Iter 140: T = 574.3546318775656 K, F = -2.825865570987851e-7, relative_change = 1.1392893775544383e-11 Iter 145: T = 574.3546318575791 K, F = -1.1818126038898313e-7, relative_change = 4.7646517934822475e-12 Iter 150: T = 574.3546318492204 K, F = -4.9424765502514845e-8, relative_change = 1.9926323076536226e-12 Iter 155: T = 574.3546318457247 K, F = -2.0669810696372082e-8, relative_change = 8.333338999003075e-13 Iter 160: T = 574.3546318442627 K, F = -8.644119087186652e-9, relative_change = 3.485004084473577e-13 Converged in 163 iterations to T = 574.3546318438347 K Iter 1: T = 980.0894388012625 K, F = -4536.640308965559, relative_change = 0.019910561198737464 Iter 2: T = 962.2248629987712 K, F = -3832.1670364053853, relative_change = 0.018227495466476312 Iter 3: T = 946.2857454041217 K, F = -3235.5793733439323, relative_change = 0.016564857350469243 Iter 5: T = 919.661827543231 K, F = -2303.40536942459, relative_change = 0.013389855295422925 Iter 10: T = 877.3701161585265 K, F = -977.931615433834, relative_change = 0.007040892734819612 Iter 15: T = 857.3384744636564 K, F = -412.1089925583683, relative_change = 0.00330349821022478 Iter 20: T = 848.4456644161163 K, F = -172.95243993362797, relative_change = 0.0014561828830210906 Iter 25: T = 844.6261636549812 K, F = -72.44115578749583, relative_change = 0.0006231034637973988 Iter 30: T = 843.0103764666644 K, F = -30.31543915721823, relative_change = 0.0002631420139602394 Iter 35: T = 842.3313451603808 K, F = -12.681749615580156, relative_change = 0.00011050205108588916 Iter 40: T = 842.0467857369906 K, F = -5.304268310780405, relative_change = 4.62929728215883e-5 Iter 45: T = 841.9276776993115 K, F = -2.218415052624605, relative_change = 1.9374248218698757e-5 Iter 50: T = 841.8778474477596 K, F = -0.9277863413908722, relative_change = 8.104988664045699e-6 Iter 55: T = 841.8570047178694 K, F = -0.3880145947553416, relative_change = 3.3900311700456842e-6 Iter 60: T = 841.8482874928493 K, F = -0.16227290877819622, relative_change = 1.417826412618803e-6 Iter 65: T = 841.8446417496527 K, F = -0.06786456832601262, relative_change = 5.929650377554847e-7 Iter 70: T = 841.8431170395896 K, F = -0.028381790421456277, relative_change = 2.479873514559213e-7 Iter 75: T = 841.8424793847083 K, F = -0.0118696067579378, relative_change = 1.0371167268402791e-7 Iter 80: T = 841.8422127093103 K, F = -0.004964011833545889, relative_change = 4.337353018294455e-8 Iter 85: T = 841.8421011823846 K, F = -0.0020760091216740495, relative_change = 1.813934054063931e-8 Iter 90: T = 841.8420545404767 K, F = -0.0008682118238179104, relative_change = 7.58609098761649e-9 Iter 95: T = 841.8420350342711 K, F = -0.00036309655534627616, relative_change = 3.1725942154513296e-9 Iter 100: T = 841.8420268765426 K, F = -0.00015185131880102176, relative_change = 1.3268168776902387e-9 Iter 105: T = 841.8420234648829 K, F = -6.350603556004586e-5, relative_change = 5.548906793002578e-10 Iter 110: T = 841.8420220380862 K, F = -2.6558982759938843e-5, relative_change = 2.3206191307876164e-10 Iter 115: T = 841.8420214413827 K, F = -1.110728388842297e-5, relative_change = 9.705106480370327e-11 Iter 120: T = 841.8420211918342 K, F = -4.645199075392625e-6, relative_change = 4.0587917051279225e-11 Iter 125: T = 841.84202108747 K, F = -1.942678249822194e-6, relative_change = 1.697435619613027e-11 Iter 130: T = 841.8420210438237 K, F = -8.124537591580605e-7, relative_change = 7.098900451220128e-12 Iter 135: T = 841.8420210255703 K, F = -3.3977746238811335e-7, relative_change = 2.968841431431136e-12 Iter 140: T = 841.8420210179364 K, F = -1.4209923682173553e-7, relative_change = 1.2416070763029114e-12 Iter 145: T = 841.842021014744 K, F = -5.9430079080158293e-8, relative_change = 5.192765871435823e-13 Converged in 150 iterations to T = 841.8420210134088 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 1 ray tracing: 13%|████ | ETA: 0:00:13 Bin 1 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 1 ray tracing: 27%|████████ | ETA: 0:00:11 Bin 1 ray tracing: 33%|█████████▉ | ETA: 0:00:11 Bin 1 ray tracing: 39%|███████████▊ | ETA: 0:00:10 Bin 1 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 1 ray tracing: 52%|███████████████▊ | ETA: 0:00:07 Bin 1 ray tracing: 59%|█████████████████▋ | ETA: 0:00:07 Bin 1 ray tracing: 65%|███████████████████▌ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 1 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 1 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 1 ray tracing: 91%|███████████████████████████▌ | ETA: 0:00:01 Bin 1 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 2 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 2 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 2 ray tracing: 25%|███████▋ | ETA: 0:00:12 Bin 2 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 2 ray tracing: 38%|███████████▌ | ETA: 0:00:10 Bin 2 ray tracing: 45%|█████████████▍ | ETA: 0:00:09 Bin 2 ray tracing: 51%|███████████████▎ | ETA: 0:00:08 Bin 2 ray tracing: 57%|█████████████████▏ | ETA: 0:00:07 Bin 2 ray tracing: 64%|███████████████████▏ | ETA: 0:00:06 Bin 2 ray tracing: 70%|█████████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 76%|██████████████████████▉ | ETA: 0:00:04 Bin 2 ray tracing: 83%|█████████████████████████ | ETA: 0:00:03 Bin 2 ray tracing: 90%|███████████████████████████ | ETA: 0:00:02 Bin 2 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 3 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 3 ray tracing: 20%|██████▏ | ETA: 0:00:13 Bin 3 ray tracing: 27%|████████ | ETA: 0:00:12 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:11 Bin 3 ray tracing: 40%|████████████ | ETA: 0:00:09 Bin 3 ray tracing: 47%|██████████████ | ETA: 0:00:08 Bin 3 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 3 ray tracing: 60%|█████████████████▉ | ETA: 0:00:06 Bin 3 ray tracing: 66%|███████████████████▉ | ETA: 0:00:05 Bin 3 ray tracing: 73%|██████████████████████ | ETA: 0:00:04 Bin 3 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:03 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 3 ray tracing: 99%|█████████████████████████████▉| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 4 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 4 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 4 ray tracing: 28%|████████▌ | ETA: 0:00:11 Bin 4 ray tracing: 35%|██████████▋ | ETA: 0:00:10 Bin 4 ray tracing: 42%|████████████▊ | ETA: 0:00:09 Bin 4 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 4 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▌ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▋ | ETA: 0:00:02 Bin 4 ray tracing: 93%|███████████████████████████▉ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 5 ray tracing: 14%|████▍ | ETA: 0:00:12 Bin 5 ray tracing: 22%|██████▌ | ETA: 0:00:11 Bin 5 ray tracing: 29%|████████▊ | ETA: 0:00:10 Bin 5 ray tracing: 36%|██████████▊ | ETA: 0:00:09 Bin 5 ray tracing: 43%|████████████▉ | ETA: 0:00:08 Bin 5 ray tracing: 50%|███████████████ | ETA: 0:00:07 Bin 5 ray tracing: 57%|█████████████████▏ | ETA: 0:00:06 Bin 5 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 5 ray tracing: 78%|███████████████████████▎ | ETA: 0:00:03 Bin 5 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 5 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 5 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 7%|██ | ETA: 0:00:14 Bin 6 ray tracing: 14%|████▏ | ETA: 0:00:12 Bin 6 ray tracing: 21%|██████▎ | ETA: 0:00:11 Bin 6 ray tracing: 28%|████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 35%|██████████▍ | ETA: 0:00:10 Bin 6 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 6 ray tracing: 49%|██████████████▉ | ETA: 0:00:07 Bin 6 ray tracing: 57%|█████████████████ | ETA: 0:00:06 Bin 6 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 6 ray tracing: 71%|█████████████████████▎ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 6 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 6 ray tracing: 98%|█████████████████████████████▌| ETA: 0:00:00 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 7 ray tracing: 14%|████▎ | ETA: 0:00:12 Bin 7 ray tracing: 21%|██████▎ | ETA: 0:00:12 Bin 7 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 7 ray tracing: 34%|██████████▍ | ETA: 0:00:10 Bin 7 ray tracing: 42%|████████████▋ | ETA: 0:00:08 Bin 7 ray tracing: 49%|██████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 56%|████████████████▊ | ETA: 0:00:07 Bin 7 ray tracing: 63%|██████████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 70%|█████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 7 ray tracing: 84%|█████████████████████████▏ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 8 ray tracing: 13%|███▉ | ETA: 0:00:13 Bin 8 ray tracing: 20%|█████▉ | ETA: 0:00:12 Bin 8 ray tracing: 27%|████████▏ | ETA: 0:00:11 Bin 8 ray tracing: 34%|██████████▎ | ETA: 0:00:10 Bin 8 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 8 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 8 ray tracing: 55%|████████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 62%|██████████████████▋ | ETA: 0:00:06 Bin 8 ray tracing: 69%|████████████████████▊ | ETA: 0:00:05 Bin 8 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:04 Bin 8 ray tracing: 82%|████████████████████████▋ | ETA: 0:00:03 Bin 8 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:02 Bin 8 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 9 ray tracing: 13%|████ | ETA: 0:00:13 Bin 9 ray tracing: 21%|██████▏ | ETA: 0:00:12 Bin 9 ray tracing: 27%|████████▎ | ETA: 0:00:11 Bin 9 ray tracing: 34%|██████████▏ | ETA: 0:00:10 Bin 9 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 9 ray tracing: 48%|██████████████▌ | ETA: 0:00:08 Bin 9 ray tracing: 56%|████████████████▊ | ETA: 0:00:06 Bin 9 ray tracing: 63%|███████████████████ | ETA: 0:00:05 Bin 9 ray tracing: 71%|█████████████████████▏ | ETA: 0:00:04 Bin 9 ray tracing: 77%|███████████████████████▎ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:02 Bin 9 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 9 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 7%|██▏ | ETA: 0:00:13 Bin 10 ray tracing: 15%|████▎ | ETA: 0:00:12 Bin 10 ray tracing: 22%|██████▍ | ETA: 0:00:11 Bin 10 ray tracing: 29%|████████▍ | ETA: 0:00:10 Bin 10 ray tracing: 36%|██████████▍ | ETA: 0:00:09 Bin 10 ray tracing: 43%|████████████▋ | ETA: 0:00:08 Bin 10 ray tracing: 51%|██████████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:06 Bin 10 ray tracing: 64%|██████████████████▋ | ETA: 0:00:05 Bin 10 ray tracing: 71%|████████████████████▊ | ETA: 0:00:04 Bin 10 ray tracing: 78%|██████████████████████▊ | ETA: 0:00:03 Bin 10 ray tracing: 86%|████████████████████████▊ | ETA: 0:00:02 Bin 10 ray tracing: 92%|██████████████████████████▊ | ETA: 0:00:01 Bin 10 ray tracing: 99%|████████████████████████████▊| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:14 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2516619463754 K, F = -7461.739977230007, relative_change = 0.03274833805362457 Iter 2: T = 936.575515893388 K, F = -6325.230039812185, relative_change = 0.03171475145491986 Iter 3: T = 907.940383280031 K, F = -5360.3214477345045, relative_change = 0.0305742912636813 Iter 5: T = 856.6560904686438 K, F = -3845.948045950758, relative_change = 0.027977405191037003 Iter 10: T = 761.1807831389029 K, F = -1665.5426584998563, relative_change = 0.020075698759450422 Iter 15: T = 705.1871908707932 K, F = -713.1976605437405, relative_change = 0.012055789517331451 Iter 20: T = 676.3485702497625 K, F = -302.3053947067057, relative_change = 0.006183693002881522 Iter 25: T = 662.8877646365972 K, F = -127.2717177224236, relative_change = 0.002859239015062528 Iter 30: T = 656.9589193769336 K, F = -53.38741790226858, relative_change = 0.0012512968560384546 Iter 35: T = 654.4219025551313 K, F = -22.356495180150844, relative_change = 0.0005336948026730638 Iter 40: T = 653.3504112195013 K, F = -9.354952838899647, relative_change = 0.0002250677197841904 Iter 45: T = 652.9004350673187 K, F = -3.913268823243891, relative_change = 9.445714273743043e-5 Iter 50: T = 652.7119209183558 K, F = -1.636736408905498, relative_change = 3.956132050616305e-5 Iter 55: T = 652.6330243714046 K, F = -0.6845308460484796, relative_change = 1.6555220672841897e-5 Iter 60: T = 652.6000187919851 K, F = -0.2862838978574438, relative_change = 6.9253772992829434e-6 Iter 65: T = 652.5862136968127 K, F = -0.11972820624384195, relative_change = 2.896588037439381e-6 Iter 70: T = 652.5804399319029 K, F = -0.05007191634006419, relative_change = 1.2114423826938303e-6 Iter 75: T = 652.578025220373 K, F = -0.020940699741170632, relative_change = 5.06649235009909e-7 Iter 80: T = 652.5770153497125 K, F = -0.008757655323330504, relative_change = 2.1188843334250718e-7 Iter 85: T = 652.5765930080872 K, F = -0.00366255684954353, relative_change = 8.861456582593217e-8 Iter 90: T = 652.5764163794863 K, F = -0.0015317251551072997, relative_change = 3.705972086475979e-8 Iter 95: T = 652.5763425112455 K, F = -0.0006405857766532685, relative_change = 1.549882678858548e-8 Iter 100: T = 652.5763116186561 K, F = -0.00026790062620041244, relative_change = 6.481796020442664e-9 Iter 105: T = 652.5762986990048 K, F = -0.00011203924283925693, relative_change = 2.710764797830833e-9 Iter 110: T = 652.5762932958521 K, F = -4.6856150078156134e-5, relative_change = 1.1336742732450548e-9 Iter 115: T = 652.576291036189 K, F = -1.9595801575844618e-5, relative_change = 4.741161286049777e-10 Iter 120: T = 652.5762900911709 K, F = -8.195198497984446e-6, relative_change = 1.9828103467796532e-10 Iter 125: T = 652.576289695953 K, F = -3.4273303177179137e-6, relative_change = 8.292350743022228e-11 Iter 130: T = 652.5762895306683 K, F = -1.4333514880560116e-6, relative_change = 3.4679625800527865e-11 Iter 135: T = 652.5762894615441 K, F = -5.994450693047604e-7, relative_change = 1.4503442369281672e-11 Iter 140: T = 652.5762894326355 K, F = -2.506938481250387e-7, relative_change = 6.0654828366488515e-12 Iter 145: T = 652.5762894205455 K, F = -1.0484252666032035e-7, relative_change = 2.5366420070586875e-12 Iter 150: T = 652.5762894154896 K, F = -4.3846203279240825e-8, relative_change = 1.0608493007098955e-12 Iter 155: T = 652.576289413375 K, F = -1.83376321349904e-8, relative_change = 4.4367499971406423e-13 Converged in 159 iterations to T = 652.5762894126118 K Iter 1: T = 970.3296472775697 K, F = -6760.41809159746, relative_change = 0.029670352722430272 Iter 2: T = 942.8233337991572 K, F = -5725.939642196318, relative_change = 0.028347390554937978 Iter 3: T = 917.4363874117765 K, F = -4848.008620296719, relative_change = 0.02692651473217428 Iter 5: T = 872.8050290814056 K, F = -3471.2037633680816, relative_change = 0.023835824263178935 Iter 10: T = 793.5654568443224 K, F = -1494.1337972506817, relative_change = 0.015530065273334852 Iter 15: T = 750.3752156806268 K, F = -636.0328424600059, relative_change = 0.008507705994295582 Iter 20: T = 729.4040971379019 K, F = -268.4771787103837, relative_change = 0.004094379927555374 Iter 25: T = 719.963702447247 K, F = -112.77008832213912, relative_change = 0.001828307115169456 Iter 30: T = 715.8816710494564 K, F = -47.252363296391664, relative_change = 0.0007869835567623917 Iter 35: T = 714.1496382061896 K, F = -19.777733455597286, relative_change = 0.0003332074170407732 Iter 40: T = 713.4208155885495 K, F = -8.274152763473241, relative_change = 0.00014007824393693464 Iter 45: T = 713.1152235385641 K, F = -3.4608533950751794, relative_change = 5.8710509933683765e-5 Iter 50: T = 712.9872825276445 K, F = -1.4474585149488237, relative_change = 2.4575915950528594e-5 Iter 55: T = 712.9337517513708 K, F = -0.605359891746075, relative_change = 1.0281878533325553e-5 Iter 60: T = 712.9113602848092 K, F = -0.25317144009003534, relative_change = 4.30069336414452e-6 Iter 65: T = 712.9019951613406 K, F = -0.10587979270049064, relative_change = 1.7987218557225437e-6 Iter 70: T = 712.8980784245887 K, F = -0.04428027649561228, relative_change = 7.522680440784655e-7 Iter 75: T = 712.8964403757171 K, F = -0.01851855491383325, relative_change = 3.1461116751986825e-7 Iter 80: T = 712.8957553201312 K, F = -0.007744683351940784, relative_change = 1.315747924467575e-7 Iter 85: T = 712.895468821007 K, F = -0.003238919509023108, relative_change = 5.502626230206046e-8 Iter 90: T = 712.8953490035298 K, F = -0.0013545548959752463, relative_change = 2.3012659760596543e-8 Iter 95: T = 712.8952988944086 K, F = -0.0005664910478466734, relative_change = 9.624172592054587e-9 Iter 100: T = 712.895277938172 K, F = -0.00023691332333652948, relative_change = 4.024944508713087e-9 Iter 105: T = 712.8952691740229 K, F = -9.90799821665167e-5, relative_change = 1.6832799771254319e-9 Iter 110: T = 712.895265508751 K, F = -4.1436431341690394e-5, relative_change = 7.039677983707641e-10 Iter 115: T = 712.8952639758904 K, F = -1.7329210842298437e-5, relative_change = 2.9440775023425034e-10 Iter 120: T = 712.8952633348298 K, F = -7.247281151312457e-6, relative_change = 1.2312480744939583e-10 Iter 125: T = 712.8952630667306 K, F = -3.0308989987792856e-6, relative_change = 5.1492255992286216e-11 Iter 130: T = 712.8952629546084 K, F = -1.2675572331755092e-6, relative_change = 2.153466070981248e-11 Iter 135: T = 712.8952629077177 K, F = -5.301094367915482e-7, relative_change = 9.006083958317102e-12 Iter 140: T = 712.8952628881073 K, F = -2.2169809155148101e-7, relative_change = 3.766451769388009e-12 Iter 145: T = 712.895262879906 K, F = -9.271639234142981e-8, relative_change = 1.5751683632499256e-12 Iter 150: T = 712.8952628764761 K, F = -3.877554544118311e-8, relative_change = 6.587617454224245e-13 Iter 155: T = 712.8952628750416 K, F = -1.6215915499273592e-8, relative_change = 2.7549386285822977e-13 Converged in 157 iterations to T = 712.895262874738 K Iter 1: T = 974.4568117414995 K, F = -5820.039742544143, relative_change = 0.02554318825850056 Iter 2: T = 951.1025526503236 K, F = -4923.903776400584, relative_change = 0.023966438337516823 Iter 3: T = 929.8621412374825 K, F = -4163.947443857181, relative_change = 0.02233240921670639 Iter 5: T = 893.3680036260533 K, F = -2973.759911857935, relative_change = 0.018977193849103822 Iter 10: T = 831.9244765877098 K, F = -1271.5264850408046, relative_change = 0.011138982446014864 Iter 15: T = 800.7531558485955 K, F = -538.3770543224115, relative_change = 0.005618353396836073 Iter 20: T = 786.3442581442636 K, F = -226.5164701781528, relative_change = 0.002573195223727736 Iter 25: T = 780.0300629471279 K, F = -94.98911266937938, relative_change = 0.0011209274187274157 Iter 30: T = 777.3345423722716 K, F = -39.7721504542669, relative_change = 0.0004771056367502261 Iter 35: T = 776.1972892743887 K, F = -16.641455105675668, relative_change = 0.0002010247291874243 Iter 40: T = 775.7199077757253 K, F = -6.96111024989839, relative_change = 8.433502860680757e-5 Iter 45: T = 775.5199497246477 K, F = -2.911474590358299, relative_change = 3.531631838941125e-5 Iter 50: T = 775.4362702619252 K, F = -1.2176581193890725, relative_change = 1.4777837607770853e-5 Iter 55: T = 775.4012649473865 K, F = -0.5092469847439054, relative_change = 6.181691528689193e-6 Iter 60: T = 775.3866236332433 K, F = -0.2129745381979371, relative_change = 2.585506252807024e-6 Iter 65: T = 775.3805001680493 K, F = -0.08906873450540487, relative_change = 1.0813331540958489e-6 Iter 70: T = 775.3779392105666 K, F = -0.03724965030374472, relative_change = 4.52234058265681e-7 Iter 75: T = 775.3768681786064 K, F = -0.015578255922798934, relative_change = 1.8913101659374596e-7 Iter 80: T = 775.3764202586834 K, F = -0.006515013948986126, relative_change = 7.909708291500404e-8 Iter 85: T = 775.3762329329485 K, F = -0.0027246568636185575, relative_change = 3.307938546927858e-8 Iter 90: T = 775.3761545910409 K, F = -0.0011394840777514403, relative_change = 1.3834201172339341e-8 Iter 95: T = 775.3761218275112 K, F = -0.0004765458534521372, relative_change = 5.7856293559211456e-9 Iter 100: T = 775.3761081254104 K, F = -0.00019929716815025866, relative_change = 2.4196195083130376e-9 Iter 105: T = 775.3761023950279 K, F = -8.334845687385517e-5, relative_change = 1.0119138230005335e-9 Iter 110: T = 775.3760999985135 K, F = -3.485732018326804e-5, relative_change = 4.231944533616938e-10 Iter 115: T = 775.3760989962626 K, F = -1.4577748347677222e-5, relative_change = 1.7698498475417787e-10 Iter 120: T = 775.3760985771094 K, F = -6.096589754034376e-6, relative_change = 7.401725024422901e-11 Iter 125: T = 775.3760984018143 K, F = -2.5496649787015713e-6, relative_change = 3.095487782259841e-11 Iter 130: T = 775.3760983285039 K, F = -1.0663003356947698e-6, relative_change = 1.2945699495505892e-11 Iter 135: T = 775.3760982978446 K, F = -4.459389849609252e-7, relative_change = 5.414039460055497e-12 Iter 140: T = 775.3760982850224 K, F = -1.864971391762893e-7, relative_change = 2.264217538316065e-12 Iter 145: T = 775.3760982796601 K, F = -7.799478307646268e-8, relative_change = 9.469161646376118e-13 Iter 150: T = 775.3760982774176 K, F = -3.26190422450523e-8, relative_change = 3.9602005620019124e-13 Converged in 154 iterations to T = 775.376098276608 K Iter 1: T = 970.4903032087116 K, F = -6723.812484863561, relative_change = 0.029509696791288488 Iter 2: T = 943.1477061905292 K, F = -5694.686317185568, relative_change = 0.028174003313356247 Iter 3: T = 917.9265579662751 K, F = -4821.319112872824, relative_change = 0.026741461659409552 Iter 5: T = 873.628041425832 K, F = -3451.7345158390267, relative_change = 0.023632620582328005 Iter 10: T = 795.1579171083031 K, F = -1485.3252256368103, relative_change = 0.015327809704877677 Iter 15: T = 752.5269943690474 K, F = -632.122557646237, relative_change = 0.008363967453876974 Iter 20: T = 731.8774570710926 K, F = -266.7826379424809, relative_change = 0.004015104083595234 Iter 25: T = 722.5947377826661 K, F = -112.04865968566453, relative_change = 0.0017905720099989251 Iter 30: T = 718.5836139256835 K, F = -46.948196221806484, relative_change = 0.0007702768752364967 Iter 35: T = 716.882187301399 K, F = -19.650078745377776, relative_change = 0.00032604809587960217 Iter 40: T = 716.1663377889412 K, F = -8.220686173655091, relative_change = 0.00013705315780954532 Iter 45: T = 715.8662020577676 K, F = -3.4384789525460953, relative_change = 5.7439903873752195e-5 Iter 50: T = 715.7405483718521 K, F = -1.438098786001422, relative_change = 2.4043570481407343e-5 Iter 55: T = 715.6879751342849 K, F = -0.6014451087543174, relative_change = 1.0059076562568868e-5 Iter 60: T = 715.6659842885722 K, F = -0.25153415538926444, relative_change = 4.207485382016772e-6 Iter 65: T = 715.656786738703 K, F = -0.10519504744465946, relative_change = 1.7597359966233544e-6 Iter 70: T = 715.6529400883354 K, F = -0.04399390553573379, relative_change = 7.359627882185629e-7 Iter 75: T = 715.6513313513196 K, F = -0.018398790753435423, relative_change = 3.0779195667709424e-7 Iter 80: T = 715.650658554458 K, F = -0.007694596478248883, relative_change = 1.2872288936702136e-7 Iter 85: T = 715.650377182106 K, F = -0.0032179725706658058, relative_change = 5.383355758517231e-8 Iter 90: T = 715.650259508711 K, F = -0.001345794635638331, relative_change = 2.251385558527412e-8 Iter 95: T = 715.6502102962713 K, F = -0.0005628274019844337, relative_change = 9.415566581138979e-9 Iter 100: T = 715.6501897150378 K, F = -0.0002353811422100005, relative_change = 3.93770294777277e-9 Iter 105: T = 715.6501811077195 K, F = -9.843920620422608e-5, relative_change = 1.6467945180488841e-9 Iter 110: T = 715.6501775080361 K, F = -4.1168451786033344e-5, relative_change = 6.887091531472111e-10 Iter 115: T = 715.6501760026055 K, F = -1.7217138818415023e-5, relative_change = 2.8802640613341233e-10 Iter 120: T = 715.6501753730164 K, F = -7.200412220909058e-6, relative_change = 1.2045606910807245e-10 Iter 125: T = 715.6501751097147 K, F = -3.0112981037611064e-6, relative_change = 5.037616208607272e-11 Iter 130: T = 715.6501749995988 K, F = -1.2593608555988567e-6, relative_change = 2.1067913055084534e-11 Iter 135: T = 715.650174953547 K, F = -5.266788740687645e-7, relative_change = 8.810838196931002e-12 Iter 140: T = 715.6501749342876 K, F = -2.2026284984821842e-7, relative_change = 3.684788638024699e-12 Iter 145: T = 715.6501749262331 K, F = -9.211805818143404e-8, relative_change = 1.5410477726767707e-12 Iter 150: T = 715.6501749228645 K, F = -3.852227503653438e-8, relative_change = 6.444411369147635e-13 Iter 155: T = 715.6501749214558 K, F = -1.6110352829556973e-8, relative_change = 2.695109279975952e-13 Converged in 157 iterations to T = 715.6501749211577 K Iter 1: T = 969.3161164933512 K, F = -6991.352044898339, relative_change = 0.03068388350664886 Iter 2: T = 940.7730163529361 K, F = -5923.168861933266, relative_change = 0.029446637329908487 Iter 3: T = 914.3316476025867 K, F = -5016.500502671794, relative_change = 0.02810600250085168 Iter 5: T = 867.5684219456783 K, F = -3594.2336563518725, relative_change = 0.02514638708440884 Iter 10: T = 783.3080656265273 K, F = -1550.004485993168, relative_change = 0.01687848982214497 Iter 15: T = 736.3691892663471 K, F = -660.9467203041678, relative_change = 0.009495011803196191 Iter 20: T = 713.1977525130146 K, F = -279.3118042263983, relative_change = 0.0046497325635026345 Iter 25: T = 702.6651522689297 K, F = -117.39216192486664, relative_change = 0.0020954213235873788 Iter 30: T = 698.0889190657674 K, F = -49.20303279755185, relative_change = 0.0009058207054609862 Iter 35: T = 696.1429746616492 K, F = -20.596762791379653, relative_change = 0.00038424146997708303 Iter 40: T = 695.3233712104746 K, F = -8.617257960576282, relative_change = 0.00016166171795569328 Iter 45: T = 694.9795782967898 K, F = -3.6044459158650226, relative_change = 6.777955010748668e-5 Iter 50: T = 694.8356197658003 K, F = -1.507528495037051, relative_change = 2.8376181786083156e-5 Iter 55: T = 694.7753829958848 K, F = -0.630485005437484, relative_change = 1.1872507063320986e-5 Iter 60: T = 694.750185728478 K, F = -0.2636796105794402, relative_change = 4.966142885952139e-6 Iter 65: T = 694.7396469625986 K, F = -0.11027453094420553, relative_change = 2.0770609784965274e-6 Iter 70: T = 694.735239355564 K, F = -0.04611822527912213, relative_change = 8.686798189011435e-7 Iter 75: T = 694.7333960120543 K, F = -0.019287209975972885, relative_change = 3.632971915400155e-7 Iter 80: T = 694.7326250986057 K, F = -0.008066144591945323, relative_change = 1.5193608419003743e-7 Iter 85: T = 694.732302692489 K, F = -0.003373358528510395, relative_change = 6.354163528725589e-8 Iter 90: T = 694.7321678582424 K, F = -0.0014107789163104734, relative_change = 2.6573897036846248e-8 Iter 95: T = 694.7321114689224 K, F = -0.000590004606262573, relative_change = 1.1113525681292646e-8 Iter 100: T = 694.7320878862305 K, F = -0.00024674697506932297, relative_change = 4.6478099633363934e-9 Iter 105: T = 694.7320780236663 K, F = -0.00010319253165791409, relative_change = 1.9437697627867814e-9 Iter 110: T = 694.732073899024 K, F = -4.315634924467737e-5, relative_change = 8.129077536671249e-10 Iter 115: T = 694.7320721740494 K, F = -1.804850083242382e-5, relative_change = 3.399677382117038e-10 Iter 120: T = 694.7320714526444 K, F = -7.548099138832143e-6, relative_change = 1.421785791816617e-10 Iter 125: T = 694.7320711509442 K, F = -3.1567041661739736e-6, relative_change = 5.946076037375147e-11 Iter 130: T = 694.7320710247695 K, F = -1.3201721659195087e-6, relative_change = 2.4867214900551185e-11 Iter 135: T = 694.7320709720019 K, F = -5.521125369112312e-7, relative_change = 1.0399780774094969e-11 Iter 140: T = 694.7320709499337 K, F = -2.3089891798555584e-7, relative_change = 4.349291073560173e-12 Iter 145: T = 694.7320709407046 K, F = -9.656522204082307e-8, relative_change = 1.8189355841474513e-12 Iter 150: T = 694.7320709368448 K, F = -4.038522283256185e-8, relative_change = 7.607098842972616e-13 Iter 155: T = 694.7320709352307 K, F = -1.688983886083406e-8, relative_change = 3.181427875001668e-13 Converged in 158 iterations to T = 694.7320709347581 K Iter 1: T = 963.571615962869 K, F = -8300.241955199388, relative_change = 0.03642838403713094 Iter 2: T = 929.021556421479 K, F = -7043.014629695359, relative_change = 0.03585624458942281 Iter 3: T = 896.3163197682107 K, F = -5975.296760979598, relative_change = 0.035203958861026105 Iter 5: T = 836.3215547348492 K, F = -4298.546949031814, relative_change = 0.03362974175844783 Iter 10: T = 716.6801473873252 K, F = -1878.4292771060761, relative_change = 0.02790089449321231 Iter 15: T = 637.0926684436035 K, F = -813.384375032453, relative_change = 0.019983203640198476 Iter 20: T = 590.4869285845278 K, F = -348.25349532440504, relative_change = 0.011976785746949903 Iter 25: T = 566.5147888480343 K, F = -147.60122988037847, relative_change = 0.0061341764704091 Iter 30: T = 555.3350418474632 K, F = -62.137225303867496, relative_change = 0.0028339557957177794 Iter 35: T = 550.4131207698068 K, F = -26.064357596731234, relative_change = 0.001239722812717573 Iter 40: T = 548.3074226639168 K, F = -10.914566907674853, relative_change = 0.0005286610237931538 Iter 45: T = 547.4181783255141 K, F = -4.567116540106915, relative_change = 0.00022292721860330518 Iter 50: T = 547.0447521788464 K, F = -1.9104655084688777, relative_change = 9.355566884322551e-5 Iter 55: T = 546.8883107004907 K, F = -0.7990571696351173, relative_change = 3.918320459306379e-5 Iter 60: T = 546.8228376003323 K, F = -0.3341888537422463, relative_change = 1.6396893530849924e-5 Iter 65: T = 546.7954476658753 K, F = -0.1397641500105246, relative_change = 6.859128924367219e-6 Iter 70: T = 546.7839914153539 K, F = -0.05845145307009772, relative_change = 2.8688762130035374e-6 Iter 75: T = 546.7792000204113 K, F = -0.024445168562989922, relative_change = 1.199851923600343e-6 Iter 80: T = 546.7771961573686 K, F = -0.01022327416726182, relative_change = 5.018017841503953e-7 Iter 85: T = 546.7763581101373 K, F = -0.004275497575440518, relative_change = 2.0986113956815267e-7 Iter 90: T = 546.7760076274169 K, F = -0.0017880645359346636, relative_change = 8.776672180243284e-8 Iter 95: T = 546.7758610511197 K, F = -0.0007477900112514702, relative_change = 3.6705141412734094e-8 Iter 100: T = 546.7757997511201 K, F = -0.0003127347251209167, relative_change = 1.535053726902057e-8 Iter 105: T = 546.775774114721 K, F = -0.00013078939911273513, relative_change = 6.419779552310663e-9 Iter 110: T = 546.7757633932714 K, F = -5.4697689834876106e-5, relative_change = 2.68482878523374e-9 Iter 115: T = 546.775758909433 K, F = -2.2875227473989623e-5, relative_change = 1.1228275229559982e-9 Iter 120: T = 546.775757034238 K, F = -9.566693162571527e-6, relative_change = 4.695798795535991e-10 Iter 125: T = 546.7757562500092 K, F = -4.000905064804883e-6, relative_change = 1.963839018706721e-10 Iter 130: T = 546.7757559220352 K, F = -1.6732257855645027e-6, relative_change = 8.21300690957975e-11 Iter 135: T = 546.7757557848727 K, F = -6.997630025151746e-7, relative_change = 3.4347775603101047e-11 Iter 140: T = 546.7757557275096 K, F = -2.9264927572936195e-7, relative_change = 1.436465149208109e-11 Iter 145: T = 546.7757557035197 K, F = -1.223895903512684e-7, relative_change = 6.007477064961639e-12 Iter 150: T = 546.7757556934869 K, F = -5.118453949570778e-8, relative_change = 2.5123864394465853e-12 Iter 155: T = 546.775755689291 K, F = -2.140587729293486e-8, relative_change = 1.0507046926094113e-12 Iter 160: T = 546.7757556875363 K, F = -8.952208307988485e-9, relative_change = 4.394179761867887e-13 Converged in 164 iterations to T = 546.7757556869029 K Iter 1: T = 966.8998286001917 K, F = -7541.905539837899, relative_change = 0.03310017139980837 Iter 2: T = 935.8573001543156 K, F = -6393.794598389914, relative_change = 0.03210521661878592 Iter 3: T = 906.8420108092347 K, F = -5419.000444003598, relative_change = 0.031003967528272218 Iter 5: T = 854.7622044621045 K, F = -3888.9992760870023, relative_change = 0.02848281002350724 Iter 10: T = 757.2275421165202 K, F = -1685.4864533761981, relative_change = 0.020691530837477524 Iter 15: T = 699.4579221131852 K, F = -722.3371472671889, relative_change = 0.012588055634484804 Iter 20: T = 669.4435266815284 K, F = -306.37574594763, relative_change = 0.006520649021815076 Iter 25: T = 655.3528332046501 K, F = -129.0339281752175, relative_change = 0.0030323313726736694 Iter 30: T = 649.1274422993388 K, F = -54.13668209560286, relative_change = 0.0013307731339510414 Iter 35: T = 646.4596854621756 K, F = -22.67215520638582, relative_change = 0.0005683076721000828 Iter 40: T = 645.3322615597738 K, F = -9.487382184639891, relative_change = 0.00023979473054843624 Iter 45: T = 644.8586678550524 K, F = -3.968726180134391, relative_change = 0.00010066098499251015 Iter 50: T = 644.6602365813051 K, F = -1.659942321462707, relative_change = 4.216374524972638e-5 Iter 55: T = 644.5771855462093 K, F = -0.6942381119568846, relative_change = 1.764497280823977e-5 Iter 60: T = 644.542441278418 K, F = -0.29034399087592827, relative_change = 7.381367590077294e-6 Iter 65: T = 644.5279088273686 K, F = -0.1214262553556078, relative_change = 3.0873311369792467e-6 Iter 70: T = 644.5218308358159 K, F = -0.05078207295284809, relative_change = 1.29122086244641e-6 Iter 75: T = 644.5192888864709 K, F = -0.02123769785082913, relative_change = 5.400148489681183e-7 Iter 80: T = 644.5182258022824 K, F = -0.00888186385220674, relative_change = 2.2584255910457938e-7 Iter 85: T = 644.5177812059222 K, F = -0.003714502405536224, relative_change = 9.44503876806675e-8 Iter 90: T = 644.51759527009 K, F = -0.0015534494184342718, relative_change = 3.9500338220232065e-8 Iter 95: T = 644.5175175094478 K, F = -0.0006496711258437982, relative_change = 1.6519523351690232e-8 Iter 100: T = 644.5174849890085 K, F = -0.0002717002278705416, relative_change = 6.908663720219716e-9 Iter 105: T = 644.5174713885708 K, F = -0.0001136282811862177, relative_change = 2.8892859930312077e-9 Iter 110: T = 644.517465700705 K, F = -4.7520704320902496e-5, relative_change = 1.2083339614825384e-9 Iter 115: T = 644.5174633219715 K, F = -1.9873726294417082e-5, relative_change = 5.053397079839927e-10 Iter 120: T = 644.5174623271567 K, F = -8.311429430696293e-6, relative_change = 2.113390961554371e-10 Iter 125: T = 644.5174619111134 K, F = -3.4759398029327038e-6, relative_change = 8.838455341834146e-11 Iter 130: T = 644.517461737119 K, F = -1.4536791291264173e-6, relative_change = 3.696346544843394e-11 Iter 135: T = 644.5174616643525 K, F = -6.079452234408755e-7, relative_change = 1.5458543651775933e-11 Iter 140: T = 644.5174616339207 K, F = -2.5424981747734776e-7, relative_change = 6.4649441286307135e-12 Iter 145: T = 644.5174616211938 K, F = -1.0633059693843094e-7, relative_change = 2.703724137370443e-12 Iter 150: T = 644.5174616158713 K, F = -4.446950430114782e-8, relative_change = 1.130749526688527e-12 Iter 155: T = 644.5174616136452 K, F = -1.8597421991284335e-8, relative_change = 4.72886452077555e-13 Converged in 160 iterations to T = 644.5174616127142 K Iter 1: T = 965.1671919623385 K, F = -7936.688445935665, relative_change = 0.034832808037661485 Iter 2: T = 932.3081261350068 K, F = -6731.631702605402, relative_change = 0.034044946928338926 Iter 3: T = 901.3933298014841 K, F = -5708.328004439516, relative_change = 0.03315941958125322 Iter 5: T = 845.2835700444327 K, F = -4101.6789781278585, relative_change = 0.031076519073598416 Iter 10: T = 736.8802057726784 K, F = -1784.904939195664, relative_change = 0.02409599276718881 Iter 15: T = 669.0653651385827 K, F = -768.5722582329018, relative_change = 0.01579133222267057 Iter 20: T = 631.9460780131899 K, F = -327.27835532573255, relative_change = 0.008694924638833925 Iter 25: T = 613.8660699232814 K, F = -138.1778053196623, relative_change = 0.004198203550791424 Iter 30: T = 605.712359653856 K, F = -58.04620353133693, relative_change = 0.001877869968500626 Iter 35: T = 602.1835488546926 K, F = -24.323508155490995, relative_change = 0.0008089563519796391 Iter 40: T = 600.68565096419 K, F = -10.180970486345274, relative_change = 0.00034262898259243145 Iter 45: T = 600.0552410082911 K, F = -4.259321783132486, relative_change = 0.00014406021633431743 Iter 50: T = 599.7908935601649 K, F = -1.7815659948958433, relative_change = 6.0383207823943514e-5 Iter 55: T = 599.6802168493635 K, F = -0.7451189199557782, relative_change = 2.527675693460531e-5 Iter 60: T = 599.6339088922149 K, F = -0.31162581301869663, relative_change = 1.057520622028558e-5 Iter 65: T = 599.6145385643604 K, F = -0.1303270681129377, relative_change = 4.423406350527409e-6 Iter 70: T = 599.6064369993147 K, F = -0.05450458671646008, relative_change = 1.8500488634847277e-6 Iter 75: T = 599.6030487121526 K, F = -0.02279451288164014, relative_change = 7.737348312122311e-7 Iter 80: T = 599.6016316697234 K, F = -0.00953294516928943, relative_change = 3.235890475572063e-7 Iter 85: T = 599.6010390421105 K, F = -0.003986792855899146, relative_change = 1.3532948639889574e-7 Iter 90: T = 599.6007911975453 K, F = -0.0016673246186680313, relative_change = 5.659652670728948e-8 Iter 95: T = 599.6006875458797 K, F = -0.000697295108293694, relative_change = 2.3669364236188634e-8 Iter 100: T = 599.6006441974964 K, F = -0.00029161714909342606, relative_change = 9.898814451840973e-9 Iter 105: T = 599.6006260686815 K, F = -0.00012195777576817779, relative_change = 4.1398030630869984e-9 Iter 110: T = 599.600618486994 K, F = -5.100419852044347e-5, relative_change = 1.7313151920518966e-9 Iter 115: T = 599.6006153162417 K, F = -2.1330564742794156e-5, relative_change = 7.240567011205067e-10 Iter 120: T = 599.6006139901951 K, F = -8.920697082914764e-6, relative_change = 3.0280916831987457e-10 Iter 125: T = 599.6006134356267 K, F = -3.7307419739063263e-6, relative_change = 1.2663840827784392e-10 Iter 130: T = 599.6006132036995 K, F = -1.5602402721470732e-6, relative_change = 5.296167527572915e-11 Iter 135: T = 599.6006131067048 K, F = -6.525116252320551e-7, relative_change = 2.2149222432412606e-11 Iter 140: T = 599.6006130661405 K, F = -2.7288841125683305e-7, relative_change = 9.263078063862119e-12 Iter 145: T = 599.600613049176 K, F = -1.1412580219749557e-7, relative_change = 3.873950565103809e-12 Iter 150: T = 599.6006130420811 K, F = -4.7728277940972674e-8, relative_change = 1.6201155720361386e-12 Iter 155: T = 599.6006130391141 K, F = -1.9960402053431636e-8, relative_change = 6.775471394887193e-13 Iter 160: T = 599.6006130378732 K, F = -8.348417068759773e-9, relative_change = 2.8338337520011236e-13 Converged in 162 iterations to T = 599.6006130376106 K Iter 1: T = 980.1198564230176 K, F = -4529.70962491403, relative_change = 0.019880143576982364 Iter 2: T = 962.2843830529706 K, F = -3826.280392443429, relative_change = 0.018197237055412943 Iter 3: T = 946.3728357762456 K, F = -3230.5820432601254, relative_change = 0.01653518186198106 Iter 5: T = 919.7987831380633 K, F = -2299.8103918826996, relative_change = 0.013362480472861867 Iter 10: T = 877.5980389079824 K, F = -976.3726832893242, relative_change = 0.007022879249782333 Iter 15: T = 857.6156126520704 K, F = -411.44369319777303, relative_change = 0.003294029657732326 Iter 20: T = 848.746136821144 K, F = -172.67146682311986, relative_change = 0.0014517854177185988 Iter 25: T = 844.936961558513 K, F = -72.32313441404116, relative_change = 0.0006211784021990223 Iter 30: T = 843.325599266457 K, F = -30.26598820479198, relative_change = 0.0002623211115618488 Iter 35: T = 842.6484377530602 K, F = -12.66105214775751, relative_change = 0.00011015591319130833 Iter 40: T = 842.3646637110421 K, F = -5.295609482077348, relative_change = 4.6147714939026685e-5 Iter 45: T = 842.2458847292817 K, F = -2.2147933185336974, relative_change = 1.931341205127501e-5 Iter 50: T = 842.1961921980403 K, F = -0.9262715999096204, relative_change = 8.079530909024564e-6 Iter 55: T = 842.1754070828458 K, F = -0.38738109620403227, relative_change = 3.3793817475662874e-6 Iter 60: T = 842.166713956202 K, F = -0.16200796939510465, relative_change = 1.4133722271736596e-6 Iter 65: T = 842.1630782917978 K, F = -0.06775376703569536, relative_change = 5.911021620338511e-7 Iter 70: T = 842.1615577969046 K, F = -0.028335451916960963, relative_change = 2.47208260223195e-7 Iter 75: T = 842.1609219048748 K, F = -0.011850227427077309, relative_change = 1.0338584490958833e-7 Iter 80: T = 842.1606559667255 K, F = -0.004955907162323747, relative_change = 4.3237264667446984e-8 Iter 85: T = 842.1605447481265 K, F = -0.0020726196547937725, relative_change = 1.808235263152957e-8 Iter 90: T = 842.1604982351647 K, F = -0.0008667943081517304, relative_change = 7.562257949472655e-9 Iter 95: T = 842.1604787828859 K, F = -0.00036250373399471236, relative_change = 3.1626269575364084e-9 Iter 100: T = 842.1604706477101 K, F = -0.00015160339231501396, relative_change = 1.3226484377365522e-9 Iter 105: T = 842.1604672454823 K, F = -6.340234917012744e-5, relative_change = 5.531473828598982e-10 Iter 110: T = 842.16046582263 K, F = -2.6515618903433236e-5, relative_change = 2.3133283721042032e-10 Iter 115: T = 842.1604652275762 K, F = -1.1089149326126702e-5, relative_change = 9.674616284973812e-11 Iter 120: T = 842.1604649787176 K, F = -4.637614172908755e-6, relative_change = 4.0460396324599273e-11 Iter 125: T = 842.160464874642 K, F = -1.9395072758943144e-6, relative_change = 1.6921035294767338e-11 Iter 130: T = 842.1604648311164 K, F = -8.111270977106955e-7, relative_change = 7.076596423673454e-12 Iter 135: T = 842.1604648129135 K, F = -3.39224929923887e-7, relative_change = 2.959533632821022e-12 Iter 140: T = 842.1604648053006 K, F = -1.4186825958439897e-7, relative_change = 1.237715299350461e-12 Iter 145: T = 842.160464802117 K, F = -5.93303739471196e-8, relative_change = 5.176218540142799e-13 Converged in 150 iterations to T = 842.1604648007853 K Iter 1: T = 976.3646119449467 K, F = -5385.345651402201, relative_change = 0.023635388055053372 Iter 2: T = 954.8923223440694 K, F = -4553.755983850717, relative_change = 0.021992080968710907 Iter 3: T = 935.4920988691485 K, F = -3848.836398015659, relative_change = 0.02031666086422938 Iter 5: T = 902.4891935782583 K, F = -2745.6466069327344, relative_change = 0.016962497714632752 Iter 10: T = 848.0947639156084 K, F = -1170.9146419682022, relative_change = 0.009558326485336709 Iter 15: T = 821.2143267674027 K, F = -494.8575690708344, relative_change = 0.004686028180996284 Iter 20: T = 808.9880293717165 K, F = -207.9923615235989, relative_change = 0.0021130544262414554 Iter 25: T = 803.6742237038595 K, F = -87.17828925158338, relative_change = 0.0009137022403773728 Iter 30: T = 801.4143159694135 K, F = -36.49379648594709, relative_change = 0.00038763309578170507 Iter 35: T = 800.4624160928163 K, F = -15.268301112186489, relative_change = 0.0001630973688369555 Iter 40: T = 800.0631191643121 K, F = -6.386468694059286, relative_change = 6.838301076670687e-5 Iter 45: T = 799.8959172213948 K, F = -2.6710872716398364, relative_change = 2.8629093434849257e-5 Iter 50: T = 799.8259543494132 K, F = -1.1171138211875002, relative_change = 1.1978371911148836e-5 Iter 55: T = 799.7966885593755 K, F = -0.4671961543145411, relative_change = 5.0104333172255445e-6 Iter 60: T = 799.7844481224147 K, F = -0.19538802808606914, relative_change = 2.0955866506782764e-6 Iter 65: T = 799.7793288271155 K, F = -0.08171378461838308, relative_change = 8.764279809173559e-7 Iter 70: T = 799.777187841985 K, F = -0.03417371169645578, relative_change = 3.665376537051711e-7 Iter 75: T = 799.7762924503656 K, F = -0.014291859788490013, relative_change = 1.5329129958821855e-7 Iter 80: T = 799.775917985836 K, F = -0.005977027395881462, relative_change = 6.410840529298166e-8 Iter 85: T = 799.775761380112 K, F = -0.002499664405756108, relative_change = 2.6810927507790843e-8 Iter 90: T = 799.7756958856953 K, F = -0.0010453895344664232, relative_change = 1.1212654742618095e-8 Iter 95: T = 799.7756684951426 K, F = -0.0004371943931894551, relative_change = 4.689266942101244e-9 Iter 100: T = 799.7756570400853 K, F = -0.00018283991914458397, relative_change = 1.9611075996547234e-9 Iter 105: T = 799.7756522494433 K, F = -7.646583700726683e-5, relative_change = 8.201586341060357e-10 Iter 110: T = 799.7756502459396 K, F = -3.197892571527028e-5, relative_change = 3.430001341010574e-10 Iter 115: T = 799.7756494080504 K, F = -1.3373968936858383e-5, relative_change = 1.4344675623350763e-10 Iter 120: T = 799.7756490576351 K, F = -5.5931521301122444e-6, relative_change = 5.999113170120221e-11 Iter 125: T = 799.7756489110873 K, F = -2.3391232357727887e-6, relative_change = 2.5089010089592773e-11 Iter 130: T = 799.7756488497993 K, F = -9.782497937260715e-7, relative_change = 1.049252924281344e-11 Iter 135: T = 799.7756488241678 K, F = -4.0911415866151657e-7, relative_change = 4.388084006345334e-12 Iter 140: T = 799.7756488134485 K, F = -1.710963672962862e-7, relative_change = 1.8351484959133346e-12 Iter 145: T = 799.7756488089656 K, F = -7.15551977670259e-8, relative_change = 7.674880281534392e-13 Iter 150: T = 799.7756488070908 K, F = -2.9926344735642374e-8, relative_change = 3.209845270225603e-13 Converged in 153 iterations to T = 799.7756488065419 K Iter 1: T = 980.9738536839061 K, F = -4335.125536659466, relative_change = 0.019026146316093843 Iter 2: T = 963.953102447266 K, F = -3661.048196344228, relative_change = 0.017350871455667303 Iter 3: T = 948.8111467731273 K, F = -3090.348137857667, relative_change = 0.015708187084720736 Iter 5: T = 923.6231426344186 K, F = -2198.9843926095527, relative_change = 0.012605008046561226 Iter 10: T = 883.9297076190601 K, F = -932.7085379222002, relative_change = 0.006531574303674557 Iter 15: T = 865.2914073574956 K, F = -392.82674564797134, relative_change = 0.0030379968466293754 Iter 20: T = 857.055980991194 K, F = -164.81302239416462, relative_change = 0.001333386029174788 Iter 25: T = 853.5266926919237 K, F = -69.02301723864026, relative_change = 0.0005694478474964398 Iter 30: T = 852.0351435002556 K, F = -28.88338361521354, relative_change = 0.00024028025634209485 Iter 35: T = 851.4085869049585 K, F = -12.082395206000177, relative_change = 0.00010086558801094606 Iter 40: T = 851.1460645981444 K, F = -5.05353170649577, relative_change = 4.224958609175712e-5 Iter 45: T = 851.0361888468008 K, F = -2.1135400855753432, relative_change = 1.7680920461137927e-5 Iter 50: T = 850.9902224700669 K, F = -0.883923939918004, relative_change = 7.396409733193116e-6 Iter 55: T = 850.970996152878 K, F = -0.36967038809379915, relative_change = 3.0936234118703363e-6 Iter 60: T = 850.9629550174077 K, F = -0.15460106786477068, relative_change = 1.2938526243300054e-6 Iter 65: T = 850.9595920380583 K, F = -0.06465609978443476, relative_change = 5.411155282382573e-7 Iter 70: T = 850.9581855858582 K, F = -0.027039968276000526, relative_change = 2.263028841773726e-7 Iter 75: T = 850.9575973882902 K, F = -0.011308440313456014, relative_change = 9.464290248945943e-8 Iter 80: T = 850.9573513966122 K, F = -0.004729325254104744, relative_change = 3.95808504553449e-8 Iter 85: T = 850.9572485198795 K, F = -0.0019778603834750275, relative_change = 1.6553194571378027e-8 Iter 90: T = 850.957205495588 K, F = -0.0008271648475588478, relative_change = 6.9227454449212e-9 Iter 95: T = 850.9571875023132 K, F = -0.00034593021797180157, relative_change = 2.8951751139953823e-9 Iter 100: T = 850.9571799773104 K, F = -0.00014467214930458105, relative_change = 1.210796866622353e-9 Iter 105: T = 850.9571768302644 K, F = -6.050362249654384e-5, relative_change = 5.063697344665933e-10 Iter 110: T = 850.9571755141321 K, F = -2.5303338741622383e-5, relative_change = 2.1176988228763144e-10 Iter 115: T = 850.9571749637098 K, F = -1.0582159344130204e-5, relative_change = 8.856470161666034e-11 Iter 120: T = 850.9571747335166 K, F = -4.425582901701475e-6, relative_change = 3.703879491204431e-11 Iter 125: T = 850.957174637247 K, F = -1.8508306098841132e-6, relative_change = 1.5490057905592844e-11 Iter 130: T = 850.9571745969861 K, F = -7.740397689470768e-7, relative_change = 6.478129754766499e-12 Iter 135: T = 850.9571745801484 K, F = -3.237122492283362e-7, relative_change = 2.709227662499365e-12 Iter 140: T = 850.9571745731067 K, F = -1.353816740934377e-7, relative_change = 1.1330426245475545e-12 Iter 145: T = 850.9571745701618 K, F = -5.6618213006842666e-8, relative_change = 4.738517904516896e-13 Converged in 150 iterations to T = 850.9571745689302 K Iter 1: T = 967.2510975142793 K, F = -7461.868583620032, relative_change = 0.03274890248572074 Iter 2: T = 936.5743643584716 K, F = -6325.3400250379, relative_change = 0.031715376942598704 Iter 3: T = 907.9386233594369 K, F = -5360.415564542736, relative_change = 0.03057497844140702 Iter 5: T = 856.6530603334536 K, F = -3846.017075097922, relative_change = 0.027978210449238268 Iter 10: T = 761.1744862696875 K, F = -1665.5745912104942, relative_change = 0.020076668442429696 Iter 15: T = 705.1781063833762 K, F = -713.2122624089615, relative_change = 0.012056617113611494 Iter 20: T = 676.3376577659405 K, F = -302.31188436833577, relative_change = 0.006184211873288695 Iter 25: T = 662.8758790995345 K, F = -127.27452354220006, relative_change = 0.002859504050911314 Iter 30: T = 656.9465773146637 K, F = -53.388610052320196, relative_change = 0.0012514182098155874 Iter 35: T = 654.4093595500764 K, F = -22.35699726177047, relative_change = 0.0005337475873984792 Iter 40: T = 653.3377823100767 K, F = -9.355163448106616, relative_change = 0.00022509016635077986 Iter 45: T = 652.8877698959402 K, F = -3.913357014604422, relative_change = 9.446659631732984e-5 Iter 50: T = 652.6992405223947 K, F = -1.6367733112942475, relative_change = 3.9565285767125923e-5 Iter 55: T = 652.6203375979013 K, F = -0.684546282523043, relative_change = 1.6556881038472997e-5 Iter 60: T = 652.5873293494878 K, F = -0.2862903541804871, relative_change = 6.9260720423823656e-6 Iter 65: T = 652.57352313779 K, F = -0.1197309064612026, relative_change = 2.8968786500166912e-6 Iter 70: T = 652.5677489058799 K, F = -0.05007304562128684, relative_change = 1.2115639313048917e-6 Iter 75: T = 652.565333999035 K, F = -0.020941172024065036, relative_change = 5.067000700281561e-7 Iter 80: T = 652.5643240466898 K, F = -0.008757852836807023, relative_change = 2.1190969345513536e-7 Iter 85: T = 652.5639016709027 K, F = -0.00366263945303702, relative_change = 8.862345713940945e-8 Iter 90: T = 652.5637250280148 K, F = -0.0015317597004055328, relative_change = 3.7063439316734805e-8 Iter 95: T = 652.563651153799 K, F = -0.0006406002239907616, relative_change = 1.550038189329584e-8 Iter 100: T = 652.5636202587109 K, F = -0.0002679066689941223, relative_change = 6.4824464021230945e-9 Iter 105: T = 652.5636073380143 K, F = -0.0001120417678283081, relative_change = 2.7110367425357103e-9 Iter 110: T = 652.5636019344246 K, F = -4.685720561431461e-5, relative_change = 1.1337879930251893e-9 Iter 115: T = 652.5635996745788 K, F = -1.959624196967713e-5, relative_change = 4.741636623155723e-10 Iter 120: T = 652.5635987294843 K, F = -8.195382612818936e-6, relative_change = 1.9830091231673277e-10 Iter 125: T = 652.5635983342345 K, F = -3.4274069133366503e-6, relative_change = 8.293181073598276e-11 Iter 130: T = 652.5635981689363 K, F = -1.4333827796919607e-6, relative_change = 3.468308040064779e-11 Iter 135: T = 652.5635980998067 K, F = -5.994579941881462e-7, relative_change = 1.4504883213535487e-11 Iter 140: T = 652.5635980708958 K, F = -2.5070135778459957e-7, relative_change = 6.066136330089707e-12 Iter 145: T = 652.5635980588048 K, F = -1.0484539003652316e-7, relative_change = 2.536908596025773e-12 Iter 150: T = 652.5635980537483 K, F = -4.384697976922425e-8, relative_change = 1.0609506040434167e-12 Iter 155: T = 652.5635980516336 K, F = -1.8336905216465027e-8, relative_change = 4.4369192059268264e-13 Converged in 159 iterations to T = 652.5635980508703 K Iter 1: T = 973.5652830404936 K, F = -6023.175405131063, relative_change = 0.026434716959506433 Iter 2: T = 949.3235271386022 K, F = -5097.00615568553, relative_change = 0.024899979820750266 Iter 3: T = 927.2069051721508 K, F = -4311.438131761276, relative_change = 0.023297244126155997 Iter 5: T = 889.0250613858046 K, F = -3080.7474536100904, relative_change = 0.019966172942058828 Iter 10: T = 824.0549768658611 K, F = -1319.0064522449254, relative_change = 0.011962676159081129 Iter 15: T = 790.6440477554287 K, F = -559.0294326519048, relative_change = 0.006125460888065228 Iter 20: T = 775.0645539016305 K, F = -235.3383083334732, relative_change = 0.0028295343368183574 Iter 25: T = 768.206134621093 K, F = -98.71561763757684, relative_change = 0.0012377044149976288 Iter 30: T = 765.2720641843098 K, F = -41.33752605511227, relative_change = 0.0005277842202521417 Iter 35: T = 764.0330138051615 K, F = -17.297354795133497, relative_change = 0.00022255456301126388 Iter 40: T = 763.5126947015699 K, F = -7.2356348610057335, relative_change = 9.339875734356223e-5 Iter 45: T = 763.2947151401024 K, F = -3.026322641610291, relative_change = 3.91173950819393e-5 Iter 50: T = 763.2034875356087 K, F = -1.2656957073345094, relative_change = 1.636933835288078e-5 Iter 55: T = 763.165323512477 K, F = -0.5293380612720082, relative_change = 6.847599265903336e-6 Iter 60: T = 763.149360841124 K, F = -0.22137707341752644, relative_change = 2.8640533652364107e-6 Iter 65: T = 763.1426847077569 K, F = -0.09258281130363388, relative_change = 1.197834774883314e-6 Iter 70: T = 763.1398926072072 K, F = -0.03871928552150827, relative_change = 5.009581576261485e-7 Iter 75: T = 763.1387249065956 K, F = -0.016192876031217773, relative_change = 2.0950831947900522e-7 Iter 80: T = 763.1382365583626 K, F = -0.006772055611524164, relative_change = 8.761916725955965e-8 Iter 85: T = 763.1380323249685 K, F = -0.0028321547867887764, relative_change = 3.664343212757301e-8 Iter 90: T = 763.1379469120664 K, F = -0.0011844410001606853, relative_change = 1.5324729682658616e-8 Iter 95: T = 763.1379111913604 K, F = -0.0004953473805361375, relative_change = 6.40898651469508e-9 Iter 100: T = 763.1378962525329 K, F = -0.00020716019064026536, relative_change = 2.680314954936689e-9 Iter 105: T = 763.1378900049365 K, F = -8.663686598653353e-5, relative_change = 1.1209397707457677e-9 Iter 110: T = 763.137887392117 K, F = -3.623257383233991e-5, relative_change = 4.687904300870801e-10 Iter 115: T = 763.1378862994047 K, F = -1.5152895401437938e-5, relative_change = 1.9605376183328208e-10 Iter 120: T = 763.1378858424195 K, F = -6.337122837152265e-6, relative_change = 8.199203796046068e-11 Iter 125: T = 763.1378856513027 K, F = -2.6502602805678066e-6, relative_change = 3.429004729316075e-11 Iter 130: T = 763.1378855713754 K, F = -1.1083699190672647e-6, relative_change = 1.4340499776853213e-11 Iter 135: T = 763.1378855379488 K, F = -4.635341823711059e-7, relative_change = 5.997376621188824e-12 Iter 140: T = 763.1378855239694 K, F = -1.9385669303151332e-7, relative_change = 2.508189563933331e-12 Iter 145: T = 763.1378855181231 K, F = -8.10730916844804e-8, relative_change = 1.0489536332551857e-12 Iter 150: T = 763.137885515678 K, F = -3.3905760088437376e-8, relative_change = 4.3868525912396907e-13 Converged in 154 iterations to T = 763.1378855147955 K Iter 1: T = 970.0847254758546 K, F = -6816.223757099028, relative_change = 0.029915274524145385 Iter 2: T = 942.3284953787933 K, F = -5773.590806607303, relative_change = 0.028612171048715444 Iter 3: T = 916.6880856864648 K, F = -4888.706721889177, relative_change = 0.027209629994285243 Iter 5: T = 871.5466563002808 K, F = -3500.901803024235, relative_change = 0.0241479676520311 Iter 10: T = 791.1204811756184 K, F = -1507.5871518425834, relative_change = 0.015844246521128032 Iter 15: T = 747.0599473999343 K, F = -642.0139433069799, relative_change = 0.008733197744228887 Iter 20: T = 725.5850459800138 K, F = -271.07209478131284, relative_change = 0.004219542318494125 Iter 25: T = 715.896653442759 K, F = -113.87556412654027, relative_change = 0.0018880837476885723 Iter 30: T = 711.7028752805119 K, F = -47.71859896707214, relative_change = 0.0008134899273695498 Iter 35: T = 709.9225654176245 K, F = -19.97343369570676, relative_change = 0.00034457392391992617 Iter 40: T = 709.1732716282621 K, F = -8.356124342348101, relative_change = 0.00014488241826567913 Iter 45: T = 708.8590682571729 K, F = -3.4951573476751485, relative_change = 6.072862069467299e-5 Iter 50: T = 708.7275170740531 K, F = -1.4618087788217262, relative_change = 2.5421486611167345e-5 Iter 55: T = 708.6724749341915 K, F = -0.6113620337557543, relative_change = 1.0635781902727056e-5 Iter 60: T = 708.6494511265037 K, F = -0.2556817283591628, relative_change = 4.448748227496542e-6 Iter 65: T = 708.6398215030315 K, F = -0.10692964636726487, relative_change = 1.8606486093445561e-6 Iter 70: T = 708.6357941409283 K, F = -0.04471934153415591, relative_change = 7.781680286826568e-7 Iter 75: T = 708.6341098257635 K, F = -0.018702177801000253, relative_change = 3.2544310864276177e-7 Iter 80: T = 708.6334054208075 K, F = -0.007821476748659406, relative_change = 1.361048847480538e-7 Iter 85: T = 708.6331108295013 K, F = -0.003271035444610826, relative_change = 5.692080890699192e-8 Iter 90: T = 708.6329876277692 K, F = -0.0013679861686985983, relative_change = 2.3804983183349528e-8 Iter 95: T = 708.6329361033108 K, F = -0.0005721081664978866, relative_change = 9.955531940887714e-9 Iter 100: T = 708.632914555163 K, F = -0.00023926246810213048, relative_change = 4.1635229625949666e-9 Iter 105: T = 708.6329055434696 K, F = -0.00010006242053017811, relative_change = 1.7412351134702005e-9 Iter 110: T = 708.6329017746718 K, F = -4.184730055734054e-5, relative_change = 7.282053601480713e-10 Iter 115: T = 708.6329001985156 K, F = -1.750104296049937e-5, relative_change = 3.045442180796035e-10 Iter 120: T = 708.632899539348 K, F = -7.319144969097913e-6, relative_change = 1.2736402604849967e-10 Iter 125: T = 708.6328992636763 K, F = -3.060952754596613e-6, relative_change = 5.326513803699088e-11 Iter 130: T = 708.6328991483872 K, F = -1.2801267581519227e-6, relative_change = 2.2276112699952668e-11 Iter 135: T = 708.6328991001719 K, F = -5.353650077699612e-7, relative_change = 9.31614871465931e-12 Iter 140: T = 708.6328990800077 K, F = -2.2389688825175114e-7, relative_change = 3.896139414628349e-12 Iter 145: T = 708.6328990715748 K, F = -9.363623576508218e-8, relative_change = 1.6294100006081096e-12 Iter 150: T = 708.6328990680479 K, F = -3.9159460341053887e-8, relative_change = 6.814329493095232e-13 Iter 155: T = 708.632899066573 K, F = -1.6376417333319182e-8, relative_change = 2.8497405902651277e-13 Converged in 157 iterations to T = 708.632899066261 K Iter 1: T = 973.5609858562178 K, F = -6024.15452265596, relative_change = 0.02643901414378214 Iter 2: T = 949.3149397320501 K, F = -5097.840711868904, relative_change = 0.02490449645827174 Iter 3: T = 927.1940688884724 K, F = -4312.149406793228, relative_change = 0.02330193060041949 Iter 5: T = 889.0040005853448 K, F = -3081.263746028325, relative_change = 0.019971016435351104 Iter 10: T = 824.0165319044249 K, F = -1319.236061639092, relative_change = 0.011966791978125666 Iter 15: T = 790.5944009759901 K, F = -559.1295063934475, relative_change = 0.006128032848444127 Iter 20: T = 775.0089957417845 K, F = -235.3811117597291, relative_change = 0.0028308455698511327 Iter 25: T = 768.147814118549 K, F = -98.73371089020839, relative_change = 0.001238304236264625 Iter 30: T = 765.2125299591753 K, F = -41.34512878641219, relative_change = 0.0005280450122159081 Iter 35: T = 763.9729610971968 K, F = -17.300540810525835, relative_change = 0.0002226654440028288 Iter 40: T = 763.4524232014335 K, F = -7.2369684346344325, relative_change = 9.344545231470476e-5 Iter 45: T = 763.234351792372 K, F = -3.026880559120265, relative_change = 3.913698044167164e-5 Iter 50: T = 763.1430857152957 K, F = -1.2659290703451782, relative_change = 1.6377539179491164e-5 Iter 55: T = 763.1049055918114 K, F = -0.5294356626409437, relative_change = 6.851030700077995e-6 Iter 60: T = 763.0889361852329 K, F = -0.22141789255573252, relative_change = 2.8654887383383316e-6 Iter 65: T = 763.0822572347876 K, F = -0.0925998825454355, relative_change = 1.198435118673057e-6 Iter 70: T = 763.0794639560451 K, F = -0.03872642495290535, relative_change = 5.012092379580332e-7 Iter 75: T = 763.0782957626891 K, F = -0.016195861833926406, relative_change = 2.0961332593082412e-7 Iter 80: T = 763.0778072083828 K, F = -0.006773304309838579, relative_change = 8.766308248497512e-8 Iter 85: T = 763.0776028888062 K, F = -0.0028326770110009836, relative_change = 3.666179809458647e-8 Iter 90: T = 763.0775174398613 K, F = -0.001184659400652599, relative_change = 1.533241055893397e-8 Iter 95: T = 763.0774817040817 K, F = -0.0004954387158816465, relative_change = 6.412198719956793e-9 Iter 100: T = 763.0774667589503 K, F = -0.00020719838870264518, relative_change = 2.6816583446520725e-9 Iter 105: T = 763.0774605087175 K, F = -8.665283989195416e-5, relative_change = 1.1215015797236037e-9 Iter 110: T = 763.0774578947955 K, F = -3.6239252400815936e-5, relative_change = 4.690253606119692e-10 Iter 115: T = 763.0774568016221 K, F = -1.5155688626311559e-5, relative_change = 1.9615201475855187e-10 Iter 120: T = 763.0774563444439 K, F = -6.338290496898935e-6, relative_change = 8.203312203707993e-11 Iter 125: T = 763.0774561532465 K, F = -2.650749166055455e-6, relative_change = 3.430723634306677e-11 Iter 130: T = 763.0774560732855 K, F = -1.1085737416927088e-6, relative_change = 1.4347680220358045e-11 Iter 135: T = 763.0774560398448 K, F = -4.636182268091815e-7, relative_change = 6.000364083871063e-12 Iter 140: T = 763.0774560258595 K, F = -1.9389064642716392e-7, relative_change = 2.5094234951216923e-12 Iter 145: T = 763.0774560200108 K, F = -8.10876853440945e-8, relative_change = 1.049474776243892e-12 Iter 150: T = 763.0774560175648 K, F = -3.3913198582702364e-8, relative_change = 4.3892048889802807e-13 Converged in 154 iterations to T = 763.0774560166818 K Iter 1: T = 964.2838406103534 K, F = -8137.960891769526, relative_change = 0.03571615938964655 Iter 2: T = 930.4907602268393 K, F = -6903.989200376648, relative_change = 0.03504474404769092 Iter 3: T = 898.5896901331488 K, F = -5856.065795557459, relative_change = 0.034284134198080025 Iter 5: T = 840.3504445245401 K, F = -4210.54777208489, relative_change = 0.03246959746077355 Iter 10: T = 725.8861798502827 K, F = -1836.4302169705386, relative_change = 0.026111008736142183 Iter 15: T = 651.9170685099075 K, F = -793.0724886446371, relative_change = 0.01792173718691817 Iter 20: T = 610.0131220893137 K, F = -338.6341596715882, relative_change = 0.010294972843861437 Iter 25: T = 589.0500118033995 K, F = -143.23822514031426, relative_change = 0.005113963645604733 Iter 30: T = 579.4440748633649 K, F = -60.23237702810786, relative_change = 0.002322478869192363 Iter 35: T = 575.2534469563194 K, F = -25.251530218097695, relative_change = 0.001007635501239752 Iter 40: T = 573.4681634748379 K, F = -10.571611315282594, relative_change = 0.00042811723603429936 Iter 45: T = 572.7156217817757 K, F = -4.423145069246696, relative_change = 0.0001802453203659599 Iter 50: T = 572.3998506061993 K, F = -1.8501587628804135, relative_change = 7.559297961615433e-5 Iter 55: T = 572.267606716231 K, F = -0.7738192669767227, relative_change = 3.165116044103311e-5 Iter 60: T = 572.2122683721482 K, F = -0.32363109922637306, relative_change = 1.3243423775275091e-5 Iter 65: T = 572.1891195482933 K, F = -0.13534825244032545, relative_change = 5.5397009988320465e-6 Iter 70: T = 572.1794374420195 K, F = -0.056604581243457214, relative_change = 2.316969090824512e-6 Iter 75: T = 572.1753880960695 K, F = -0.023672768839033187, relative_change = 9.690191244285712e-7 Iter 80: T = 572.1736945808902 K, F = -0.009900244601884767, relative_change = 4.0526148868449655e-7 Iter 85: T = 572.1729863273102 K, F = -0.004140402267545751, relative_change = 1.6948626449442276e-7 Iter 90: T = 572.1726901262766 K, F = -0.0017315659796409144, relative_change = 7.088136706453546e-8 Iter 95: T = 572.1725662513045 K, F = -0.0007241616243552906, relative_change = 2.9643466908261206e-8 Iter 100: T = 572.1725144452835 K, F = -0.00030285304883459485, relative_change = 1.2397257599939483e-8 Iter 105: T = 572.1724927793819 K, F = -0.00012665676310935625, relative_change = 5.184682168968173e-9 Iter 110: T = 572.1724837184422 K, F = -5.296937165816251e-5, relative_change = 2.1682961943826753e-9 Iter 115: T = 572.1724799290489 K, F = -2.2152423903576413e-5, relative_change = 9.068073956203314e-10 Iter 120: T = 572.1724783442793 K, F = -9.264408337816832e-6, relative_change = 3.7923769173640976e-10 Iter 125: T = 572.1724776815097 K, F = -3.874486092680929e-6, relative_change = 1.5860172792237573e-10 Iter 130: T = 572.1724774043315 K, F = -1.620356098019915e-6, relative_change = 6.63291263514122e-11 Iter 135: T = 572.1724772884124 K, F = -6.776525069973616e-7, relative_change = 2.7739642450977286e-11 Iter 140: T = 572.1724772399335 K, F = -2.8340220958877893e-7, relative_change = 1.1601043139078096e-11 Iter 145: T = 572.1724772196591 K, F = -1.1852160641812048e-7, relative_change = 4.851670956258657e-12 Iter 150: T = 572.1724772111801 K, F = -4.956683408163798e-8, relative_change = 2.029013751941303e-12 Iter 155: T = 572.1724772076341 K, F = -2.0729474747849252e-8, relative_change = 8.485591245523661e-13 Iter 160: T = 572.1724772061513 K, F = -8.669706230701735e-9, relative_change = 3.5489361977705286e-13 Converged in 163 iterations to T = 572.1724772057171 K Iter 1: T = 963.5634230313874 K, F = -8302.108722430965, relative_change = 0.03643657696861256 Iter 2: T = 929.0046353792495 K, F = -7044.6141802507545, relative_change = 0.03586560762488814 Iter 3: T = 896.290101169521 K, F = -5976.668901675405, relative_change = 0.0352146081557208 Iter 5: T = 836.2749370103375 K, F = -4299.560391184317, relative_change = 0.03364328481718323 Iter 10: T = 716.5723673644977 K, F = -1878.9148915766045, relative_change = 0.02792242576563769 Iter 15: T = 636.9163652228656 K, F = -813.6212476149772, relative_change = 0.02000905009469879 Iter 20: T = 590.251138397522 K, F = -348.3669802801996, relative_change = 0.011998772225473988 Iter 25: T = 566.2397232210147 K, F = -147.65322159458873, relative_change = 0.006147926724300221 Iter 30: T = 555.0390171428519 K, F = -62.16006544714537, relative_change = 0.0028409691808214815 Iter 35: T = 550.1072536621053 K, F = -26.074134299858624, relative_change = 0.001242931802736895 Iter 40: T = 547.9972218205577 K, F = -10.918697840746006, relative_change = 0.0005300563798447654 Iter 45: T = 547.1061245198748 K, F = -4.5688517571320775, relative_change = 0.00022352050864031544 Iter 50: T = 546.7319161555431 K, F = -1.91119254571269, relative_change = 9.380552391329758e-5 Iter 55: T = 546.5751462552074 K, F = -0.7993614624933771, relative_change = 3.9288002597879256e-5 Iter 60: T = 546.5095355784771 K, F = -0.3343161542326365, relative_change = 1.644077493542345e-5 Iter 65: T = 546.4820880681456 K, F = -0.13981739587618686, relative_change = 6.877490043966159e-6 Iter 70: T = 546.4706077317549 K, F = -0.05847372240181928, relative_change = 2.8765566961687202e-6 Iter 75: T = 546.4658062625977 K, F = -0.02445448208578946, relative_change = 1.2030642808981535e-6 Iter 80: T = 546.4637981861854 K, F = -0.010227169232213479, relative_change = 5.031452806077517e-7 Iter 85: T = 546.4629583768354 K, F = -0.004277126545335214, relative_change = 2.1042301464797888e-7 Iter 90: T = 546.4626071571694 K, F = -0.0017887457914162186, relative_change = 8.800170619124298e-8 Iter 95: T = 546.4624602726716 K, F = -0.0007480749201792536, relative_change = 3.680341493699086e-8 Iter 100: T = 546.4623988437786 K, F = -0.00031285387676388554, relative_change = 1.5391636442654514e-8 Iter 105: T = 546.4623731534747 K, F = -0.00013083922937173753, relative_change = 6.4369677067394545e-9 Iter 110: T = 546.4623624094816 K, F = -5.471852841637537e-5, relative_change = 2.6920170275906865e-9 Iter 115: T = 546.462357916215 K, F = -2.288394147276218e-5, relative_change = 1.1258336855450895e-9 Iter 120: T = 546.4623560370773 K, F = -9.57033706583399e-6, relative_change = 4.708370732356456e-10 Iter 125: T = 546.4623552511995 K, F = -4.002429128097118e-6, relative_change = 1.9690968211939722e-10 Iter 130: T = 546.462354922536 K, F = -1.6738641404334675e-6, relative_change = 8.235000450945617e-11 Iter 135: T = 546.4623547850848 K, F = -7.000292022718568e-7, relative_change = 3.4439717442027494e-11 Iter 140: T = 546.4623547276011 K, F = -2.9275952140306316e-7, relative_change = 1.4403049426955954e-11 Iter 145: T = 546.4623547035609 K, F = -1.2243504471376454e-7, relative_change = 6.023503497074651e-12 Iter 150: T = 546.4623546935069 K, F = -5.1203539491728733e-8, relative_change = 2.5190883863284055e-12 Iter 155: T = 546.4623546893023 K, F = -2.1413908618539423e-8, relative_change = 1.0535117111884482e-12 Iter 160: T = 546.4623546875439 K, F = -8.955828495471607e-9, relative_change = 4.406047663503402e-13 Converged in 164 iterations to T = 546.4623546869093 K Iter 1: T = 969.3745261506976 K, F = -6978.043348910016, relative_change = 0.030625473849302386 Iter 2: T = 940.8913613985867 K, F = -5911.799697559646, relative_change = 0.029383034094381567 Iter 3: T = 914.5111577118569 K, F = -5006.784903561093, relative_change = 0.028037459763172845 Iter 5: T = 867.8723164776409 K, F = -3587.1338120360597, relative_change = 0.025069492659472347 Iter 10: T = 783.9093929440135 K, F = -1546.7702218770705, relative_change = 0.01679720932191623 Iter 15: T = 737.1975135977567 K, F = -659.4989202017563, relative_change = 0.009434032304496872 Iter 20: T = 714.1616036693787 K, F = -278.6802402534961, relative_change = 0.004614874971075725 Iter 25: T = 703.6969646124355 K, F = -117.122251437979, relative_change = 0.0020785117063785285 Iter 30: T = 699.1516396243006 K, F = -49.08902166033056, relative_change = 0.0008982676809453512 Iter 35: T = 697.2191046355258 K, F = -20.54887404236158, relative_change = 0.00038099217551973067 Iter 40: T = 696.4051976581717 K, F = -8.597193165570099, relative_change = 0.00016028648898196282 Iter 45: T = 696.0638028620718 K, F = -3.596048023075956, relative_change = 6.72015180025708e-5 Iter 50: T = 695.9208500360503 K, F = -1.5040152450141417, relative_change = 2.813393272306118e-5 Iter 55: T = 695.8610343524987 K, F = -0.6290155206957614, relative_change = 1.177110635745844e-5 Iter 60: T = 695.8360132740075 K, F = -0.2630650192238896, relative_change = 4.923720273906783e-6 Iter 65: T = 695.8255482074121 K, F = -0.110017495327144, relative_change = 2.0593166014354384e-6 Iter 70: T = 695.821171424918 K, F = -0.046010728834266046, relative_change = 8.612584302204148e-7 Iter 75: T = 695.8193409730576 K, F = -0.019242253490693417, relative_change = 3.6019339451864444e-7 Iter 80: T = 695.8185754511308 K, F = -0.008047343218350322, relative_change = 1.5063802454806082e-7 Iter 85: T = 695.818255299827 K, F = -0.0033654955643539486, relative_change = 6.29987686950611e-8 Iter 90: T = 695.8181214085724 K, F = -0.0014074905294627627, relative_change = 2.6346863291110017e-8 Iter 95: T = 695.8180654136235 K, F = -0.0005886293643597718, relative_change = 1.101857739662958e-8 Iter 100: T = 695.8180419958624 K, F = -0.0002461718332620322, relative_change = 4.6081014582916956e-9 Iter 105: T = 695.8180322022741 K, F = -0.00010295200112808711, relative_change = 1.927163201562914e-9 Iter 110: T = 695.8180281064784 K, F = -4.305575672991502e-5, relative_change = 8.059626952517094e-10 Iter 115: T = 695.8180263935677 K, F = -1.800643173965888e-5, relative_change = 3.370632298461573e-10 Iter 120: T = 695.818025677208 K, F = -7.530503484121098e-6, relative_change = 1.4096384424554266e-10 Iter 125: T = 695.8180253776178 K, F = -3.149346680109133e-6, relative_change = 5.895276680188533e-11 Iter 130: T = 695.8180252523256 K, F = -1.3170943131690649e-6, relative_change = 2.465474965246484e-11 Iter 135: T = 695.818025199927 K, F = -5.508255578323684e-7, relative_change = 1.0310929217156365e-11 Iter 140: T = 695.8180251780132 K, F = -2.3036048313329616e-7, relative_change = 4.31212859062063e-12 Iter 145: T = 695.8180251688485 K, F = -9.633918363061156e-8, relative_change = 1.8033776562114535e-12 Iter 150: T = 695.8180251650159 K, F = -4.029133493510528e-8, relative_change = 7.542153714048976e-13 Iter 155: T = 695.8180251634129 K, F = -1.685018802266569e-8, relative_change = 3.154194528020878e-13 Converged in 158 iterations to T = 695.8180251629436 K Iter 1: T = 966.4672565650192 K, F = -7640.467489534182, relative_change = 0.033532743434980854 Iter 2: T = 934.9731202986478 K, F = -6478.110690309856, relative_change = 0.03258686318904027 Iter 3: T = 905.4878831549989 K, F = -5491.178587195482, relative_change = 0.03153591959331488 Iter 5: T = 852.4196383505574 K, F = -3941.992227253932, relative_change = 0.029113812913313396 Iter 10: T = 752.2879247218929 K, F = -1710.1159055018586, relative_change = 0.02148123754196684 Iter 15: T = 692.2236281369918 K, F = -733.681272660995, relative_change = 0.013290688027693063 Iter 20: T = 660.6561753076869 K, F = -311.45294182105795, relative_change = 0.006975623106186475 Iter 25: T = 645.7208709877634 K, F = -131.23927902979898, relative_change = 0.003269193299583233 Iter 30: T = 639.0945738847626 K, F = -55.07598228155643, relative_change = 0.0014402522298901852 Iter 35: T = 636.249377544769 K, F = -23.068192695017537, relative_change = 0.0006161299300446111 Iter 40: T = 635.0459113506847 K, F = -9.653590506592819, relative_change = 0.0002601683687251238 Iter 45: T = 634.5401850163437 K, F = -4.038339508466346, relative_change = 0.00010924821106474543 Iter 50: T = 634.3282568812732 K, F = -1.6890735738824487, relative_change = 4.5766797216141384e-5 Iter 55: T = 634.2395509907775 K, F = -0.7064243280548772, relative_change = 1.9153878451737558e-5 Iter 60: T = 634.2024399881666 K, F = -0.29544096848043744, relative_change = 8.012771891473488e-6 Iter 65: T = 634.1869174240474 K, F = -0.12355796963521559, relative_change = 3.351455300287802e-6 Iter 70: T = 634.1804253000407 K, F = -0.05167359835798979, relative_change = 1.4016918237240333e-6 Iter 75: T = 634.1777101458762 K, F = -0.021610547402156954, relative_change = 5.862170627198015e-7 Iter 80: T = 634.1765746236703 K, F = -0.009037794508322317, relative_change = 2.451652157105697e-7 Iter 85: T = 634.1760997325699 K, F = -0.0037797145588723824, relative_change = 1.0253141272428529e-7 Iter 90: T = 634.175901127064 K, F = -0.0015807219367521275, relative_change = 4.287992980107894e-8 Iter 95: T = 634.1758180678037 K, F = -0.0006610768203882955, relative_change = 1.793291069621152e-8 Iter 100: T = 634.1757833314174 K, F = -0.00027647022536048116, relative_change = 7.499759485684586e-9 Iter 105: T = 634.175768804244 K, F = -0.00011562315109392429, relative_change = 3.136489354767268e-9 Iter 110: T = 634.1757627288061 K, F = -4.83549819356166e-5, relative_change = 1.3117173470333507e-9 Iter 115: T = 634.1757601879854 K, F = -2.0222630749189285e-5, relative_change = 5.485758654127766e-10 Iter 120: T = 634.1757591253838 K, F = -8.457345019530216e-6, relative_change = 2.2942096197746852e-10 Iter 125: T = 634.1757586809912 K, F = -3.5369624979963987e-6, relative_change = 9.594658129731004e-11 Iter 130: T = 634.1757584951408 K, F = -1.4791996745255886e-6, relative_change = 4.012599853836168e-11 Iter 135: T = 634.1757584174161 K, F = -6.186192271773194e-7, relative_change = 1.678117880060042e-11 Iter 140: T = 634.1757583849106 K, F = -2.587137886700397e-7, relative_change = 7.018085045177087e-12 Iter 145: T = 634.1757583713165 K, F = -1.0819719459265187e-7, relative_change = 2.935046938478992e-12 Iter 150: T = 634.1757583656313 K, F = -4.524953939322174e-8, relative_change = 1.227476577089995e-12 Iter 155: T = 634.1757583632536 K, F = -1.89246646686847e-8, relative_change = 5.133661673026317e-13 Converged in 160 iterations to T = 634.1757583622592 K Iter 1: T = 966.5100220536422 K, F = -7630.72333227095, relative_change = 0.03348997794635786 Iter 2: T = 935.0605897048026 K, F = -6469.774073562804, relative_change = 0.03253916838028818 Iter 3: T = 905.621939124401 K, F = -5484.041171867618, relative_change = 0.031483147621156074 Iter 5: T = 852.6519292231067 K, F = -3936.750091615907, relative_change = 0.029050951144471638 Iter 10: T = 752.7802529392864 K, F = -1707.675494326016, relative_change = 0.02140150328417795 Iter 15: T = 692.9485510287562 K, F = -732.5542787810003, relative_change = 0.013218694877160262 Iter 20: T = 661.5403067929265 K, F = -310.94722441381515, relative_change = 0.006928463083069754 Iter 25: T = 646.6922597716547 K, F = -131.01922597188172, relative_change = 0.003244471755199715 Iter 30: T = 640.107556926314 K, F = -54.98217011246107, relative_change = 0.0014287865196713782 Iter 35: T = 637.280807382676 K, F = -23.028621474173587, relative_change = 0.0006111137428457803 Iter 40: T = 636.0852537343089 K, F = -9.636980170886813, relative_change = 0.0002580298952889396 Iter 45: T = 635.5828722356136 K, F = -4.031382008316417, relative_change = 0.00010834661521628067 Iter 50: T = 635.3723492810054 K, F = -1.686161953059423, relative_change = 4.53884577931627e-5 Iter 55: T = 635.284232167144 K, F = -0.7052063183156767, relative_change = 1.899542745195782e-5 Iter 60: T = 635.2473675931424 K, F = -0.29493152358226465, relative_change = 7.946466388146634e-6 Iter 65: T = 635.2319481225827 K, F = -0.12334490342624127, relative_change = 3.3237186507947203e-6 Iter 70: T = 635.2254991195131 K, F = -0.05158448972700275, relative_change = 1.3900908191459091e-6 Iter 75: T = 635.2228020000855 K, F = -0.02157328079437615, relative_change = 5.813651730250577e-7 Iter 80: T = 635.2216740204049 K, F = -0.009022209112771906, relative_change = 2.4313606057987303e-7 Iter 85: T = 635.2212022837107 K, F = -0.003773196550535207, relative_change = 1.016827893546198e-7 Iter 90: T = 635.2210049974207 K, F = -0.001577996024352435, relative_change = 4.252502419562402e-8 Iter 95: T = 635.2209224898733 K, F = -0.0006599368121254501, relative_change = 1.778448476720483e-8 Iter 100: T = 635.2208879842202 K, F = -0.0002759934612535653, relative_change = 7.437685982571466e-9 Iter 105: T = 635.220873553542 K, F = -0.00011542376228113049, relative_change = 3.110529458659105e-9 Iter 110: T = 635.2208675184597 K, F = -4.827159597037278e-5, relative_change = 1.300860629619675e-9 Iter 115: T = 635.2208649945162 K, F = -2.0187758072998108e-5, relative_change = 5.4403546529428e-10 Iter 120: T = 635.2208639389729 K, F = -8.442762371274615e-6, relative_change = 2.2752215351277637e-10 Iter 125: T = 635.2208634975319 K, F = -3.5308634335207145e-6, relative_change = 9.515246544725871e-11 Iter 130: T = 635.2208633129161 K, F = -1.4766488108386433e-6, relative_change = 3.9793885487487216e-11 Iter 135: T = 635.2208632357076 K, F = -6.175529195795448e-7, relative_change = 1.66422984246849e-11 Iter 140: T = 635.220863203418 K, F = -2.582680465046394e-7, relative_change = 6.960009042556521e-12 Iter 145: T = 635.2208631899141 K, F = -1.0801014121986086e-7, relative_change = 2.9107416493376423e-12 Iter 150: T = 635.2208631842667 K, F = -4.517156998451455e-8, relative_change = 1.2173187502627296e-12 Iter 155: T = 635.2208631819049 K, F = -1.8891659681052886e-8, relative_change = 5.091072008703471e-13 Converged in 160 iterations to T = 635.2208631809171 K Iter 1: T = 976.4248030369931 K, F = -5371.631053822904, relative_change = 0.023575196963006907 Iter 2: T = 955.0115102488757 K, F = -4542.083988298863, relative_change = 0.0219303040249646 Iter 3: T = 935.6685850403869 K, F = -3838.90584450399, relative_change = 0.020254127830823702 Iter 5: T = 902.773250572451 K, F = -2738.467731776539, relative_change = 0.016901088276998908 Iter 10: T = 848.5909844498402 K, F = -1167.7611456989641, relative_change = 0.009512085317135023 Iter 15: T = 821.8360522882363 K, F = -493.4982998541315, relative_change = 0.004659529518909409 Iter 20: T = 809.6724545338757 K, F = -207.41502944603045, relative_change = 0.0021001825436501517 Iter 25: T = 804.3871208915566 K, F = -86.93511521846233, relative_change = 0.0009079491270118274 Iter 30: T = 802.1395579643506 K, F = -36.39178147045026, relative_change = 0.00038515743175970347 Iter 35: T = 801.1929009554269 K, F = -15.225580676726464, relative_change = 0.0001620494462024415 Iter 40: T = 800.7958109479322 K, F = -6.3685925236418655, relative_change = 6.794252899605428e-5 Iter 45: T = 800.6295344860333 K, F = -2.6636094928706875, relative_change = 2.8444486833632585e-5 Iter 50: T = 800.5599591036014 K, F = -1.11398621811895, relative_change = 1.1901098527764525e-5 Iter 55: T = 800.5308554437985 K, F = -0.46588809968803946, relative_change = 4.978104638323865e-6 Iter 60: T = 800.5186828251971 K, F = -0.1948409746293447, relative_change = 2.0820643066474735e-6 Iter 65: T = 800.5135918947178 K, F = -0.08148499868702341, relative_change = 8.70772407023417e-7 Iter 70: T = 800.5114627725087 K, F = -0.03407803039817736, relative_change = 3.6417236074670777e-7 Iter 75: T = 800.5105723421774 K, F = -0.014251844677889647, relative_change = 1.523020945767202e-7 Iter 80: T = 800.5101999525302 K, F = -0.005960292587181448, relative_change = 6.36947059440708e-8 Iter 85: T = 800.510044214549 K, F = -0.002492665704286856, relative_change = 2.663791312198105e-8 Iter 90: T = 800.5099790830335 K, F = -0.0010424625958471712, relative_change = 1.114029802340477e-8 Iter 95: T = 800.5099518442502 K, F = -0.0004359703123184566, relative_change = 4.659006485978759e-9 Iter 100: T = 800.5099404526648 K, F = -0.00018232799477746475, relative_change = 1.9484523230071566e-9 Iter 105: T = 800.5099356885675 K, F = -7.62517444913291e-5, relative_change = 8.14866049937893e-10 Iter 110: T = 800.509933696165 K, F = -3.188939073828223e-5, relative_change = 3.4078672359717247e-10 Iter 115: T = 800.5099328629185 K, F = -1.3336522936668871e-5, relative_change = 1.4252106650737359e-10 Iter 120: T = 800.5099325144449 K, F = -5.577493742747741e-6, relative_change = 5.960401838447448e-11 Iter 125: T = 800.5099323687091 K, F = -2.3325754714420555e-6, relative_change = 2.4927122793153647e-11 Iter 130: T = 800.5099323077607 K, F = -9.755117977849892e-7, relative_change = 1.0424829839841496e-11 Iter 135: T = 800.5099322822713 K, F = -4.0797116007684764e-7, relative_change = 4.35979342706633e-12 Iter 140: T = 800.5099322716113 K, F = -1.7062024526559583e-7, relative_change = 1.8233372764399185e-12 Iter 145: T = 800.5099322671532 K, F = -7.135511348455026e-8, relative_change = 7.625381037397062e-13 Iter 150: T = 800.5099322652887 K, F = -2.9842948112701606e-8, relative_change = 3.189173690970509e-13 Converged in 153 iterations to T = 800.5099322647428 K Iter 1: T = 965.1729281656815 K, F = -7935.381446547422, relative_change = 0.034827071834318477 Iter 2: T = 932.3199100612636 K, F = -6730.512727320666, relative_change = 0.034038478645329655 Iter 3: T = 901.4114784701102 K, F = -5707.369150531763, relative_change = 0.03315217368802352 Iter 5: T = 845.3153776782591 K, F = -4100.972998240443, relative_change = 0.031067633843126562 Iter 10: T = 736.9501482336077 K, F = -1784.5722959713062, relative_change = 0.024083583606498864 Iter 15: T = 669.1726902957926 K, F = -768.4154199620339, relative_change = 0.015778789446715145 Iter 20: T = 632.0813941922532 K, F = -327.20638997623894, relative_change = 0.00868588910324606 Iter 25: T = 614.0177609091894 K, F = -138.14598603237613, relative_change = 0.004193176155992653 Iter 30: T = 605.8721522222008 K, F = -58.032518991111786, relative_change = 0.0018754658907569495 Iter 35: T = 602.3470002568258 K, F = -24.317711823689883, relative_change = 0.0008078897026087806 Iter 40: T = 600.850684617205 K, F = -10.17853296721261, relative_change = 0.00034217146290286047 Iter 45: T = 600.2209458723511 K, F = -4.258299988933296, relative_change = 0.00014386681965343454 Iter 50: T = 599.956880822864 K, F = -1.7811382460438852, relative_change = 6.03019630787427e-5 Iter 55: T = 599.8463225123581 K, F = -0.7449399561563573, relative_change = 2.5242715442196554e-5 Iter 60: T = 599.8000641238771 K, F = -0.31155095523794246, relative_change = 1.0560958450054703e-5 Iter 65: T = 599.7807145353817 K, F = -0.13029575942244775, relative_change = 4.417445800228593e-6 Iter 70: T = 599.7726216453852 K, F = -0.05449149265182429, relative_change = 1.8475557468156458e-6 Iter 75: T = 599.7692369865123 K, F = -0.0227890367175001, relative_change = 7.72692119965403e-7 Iter 80: T = 599.7678214615258 K, F = -0.009530654959689966, relative_change = 3.231529627479753e-7 Iter 85: T = 599.7672294685344 K, F = -0.003985835060817622, relative_change = 1.351471086878161e-7 Iter 90: T = 599.7669818893769 K, F = -0.0016669240568880084, relative_change = 5.6520253846812895e-8 Iter 95: T = 599.7668783487082 K, F = -0.0006971275889837147, relative_change = 2.3637465974954365e-8 Iter 100: T = 599.7668350467452 K, F = -0.00029154708999407086, relative_change = 9.88547419085e-9 Iter 105: T = 599.7668169373438 K, F = -0.00012192847685976727, relative_change = 4.134224026790805e-9 Iter 110: T = 599.7668093637753 K, F = -5.099194559604614e-5, relative_change = 1.7289819799212043e-9 Iter 115: T = 599.7668061964184 K, F = -2.1325440993980038e-5, relative_change = 7.230809432452415e-10 Iter 120: T = 599.7668048717919 K, F = -8.91855361001559e-6, relative_change = 3.024010723315146e-10 Iter 125: T = 599.7668043178172 K, F = -3.729845626521122e-6, relative_change = 1.264677403277889e-10 Iter 130: T = 599.7668040861384 K, F = -1.5598659114379743e-6, relative_change = 5.289031695949935e-11 Iter 135: T = 599.7668039892477 K, F = -6.523552844028835e-7, relative_change = 2.211938701641528e-11 Iter 140: T = 599.7668039487268 K, F = -2.72822457292321e-7, relative_change = 9.250581187646907e-12 Iter 145: T = 599.7668039317805 K, F = -1.1409869954404073e-7, relative_change = 3.868740477431253e-12 Iter 150: T = 599.7668039246932 K, F = -4.771787215362977e-8, relative_change = 1.617968164806001e-12 Iter 155: T = 599.7668039217292 K, F = -1.9955355146095144e-8, relative_change = 6.766255050222983e-13 Iter 160: T = 599.7668039204897 K, F = -8.345586610669642e-9, relative_change = 2.829735032960418e-13 Converged in 162 iterations to T = 599.7668039202274 K Iter 1: T = 964.5606038483958 K, F = -8074.900124711784, relative_change = 0.035439396151604255 Iter 2: T = 931.0607358640029 K, F = -6849.979247510653, relative_change = 0.03473070313128621 Iter 3: T = 899.4699909787078 K, F = -5809.761243903926, relative_change = 0.03392984331573144 Iter 5: T = 841.9035543287135 K, F = -4176.405645105792, relative_change = 0.032027772955798194 Iter 10: T = 729.3794540178304 K, F = -1820.2215663348911, relative_change = 0.025456657535324403 Iter 15: T = 657.4277130517157 K, F = -785.3190998646941, relative_change = 0.01720891827455125 Iter 20: T = 617.1319947759691 K, F = -335.01440834978524, relative_change = 0.00974477014094734 Iter 25: T = 597.1570889859302 K, F = -141.61597899749063, relative_change = 0.0047932480304079365 Iter 30: T = 588.0548057246727 K, F = -59.52922963216006, relative_change = 0.002165239518878877 Iter 35: T = 584.0950706352029 K, F = -24.952567242601265, relative_change = 0.0009370483522416315 Iter 40: T = 582.410320789963 K, F = -10.445675674476412, relative_change = 0.00039768350672918565 Iter 45: T = 581.7005535899417 K, F = -4.370315032801784, relative_change = 0.000167352360463774 Iter 50: T = 581.4028016611056 K, F = -1.8280359452916004, relative_change = 7.01716803740269e-5 Iter 55: T = 581.2781166553146 K, F = -0.764562205514139, relative_change = 2.9378751382545544e-5 Iter 60: T = 581.2259435682622 K, F = -0.31975880338492557, relative_change = 1.2292170947780168e-5 Iter 65: T = 581.2041192006575 K, F = -0.13372865766541125, relative_change = 5.141717390996869e-6 Iter 70: T = 581.1949911217092 K, F = -0.05592722035135475, relative_change = 2.1504998914766023e-6 Iter 75: T = 581.1911734982801 K, F = -0.023389483697727698, relative_change = 8.993948712239479e-7 Iter 80: T = 581.1895768960184 K, F = -0.009781770546692936, relative_change = 3.7614294690970393e-7 Iter 85: T = 581.188909173241 K, F = -0.004090854858221804, relative_change = 1.5730839432389748e-7 Iter 90: T = 581.1886299227891 K, F = -0.0017108446363997554, relative_change = 6.578841040829987e-8 Iter 95: T = 581.1885131367732 K, F = -0.0007154957074131385, relative_change = 2.7513527105325783e-8 Iter 100: T = 581.1884642954417 K, F = -0.0002992288581507019, relative_change = 1.1506490546379913e-8 Iter 105: T = 581.1884438694093 K, F = -0.0001251410838555289, relative_change = 4.812152638557354e-9 Iter 110: T = 581.1884353269978 K, F = -5.233549656913361e-5, relative_change = 2.012499874297874e-9 Iter 115: T = 581.1884317544592 K, F = -2.188732983382513e-5, relative_change = 8.416515121850292e-10 Iter 120: T = 581.1884302603809 K, F = -9.15354280878189e-6, relative_change = 3.519887213124615e-10 Iter 125: T = 581.1884296355394 K, F = -3.828120405946489e-6, relative_change = 1.4720586790979484e-10 Iter 130: T = 581.1884293742232 K, F = -1.6009657896054463e-6, relative_change = 6.156325665492586e-11 Iter 135: T = 581.1884292649377 K, F = -6.69542891684749e-7, relative_change = 2.5746484520027504e-11 Iter 140: T = 581.1884292192333 K, F = -2.800111287282192e-7, relative_change = 1.076749866732978e-11 Iter 145: T = 581.188429200119 K, F = -1.17103959473841e-7, relative_change = 4.503095050178914e-12 Iter 150: T = 581.1884291921252 K, F = -4.8974452049321826e-8, relative_change = 1.8832549609241088e-12 Iter 155: T = 581.1884291887823 K, F = -2.0482054607917632e-8, relative_change = 7.876133236261469e-13 Iter 160: T = 581.188429187384 K, F = -8.565843589991573e-9, relative_change = 3.2938944206526403e-13 Converged in 163 iterations to T = 581.1884291869748 K Iter 1: T = 964.3311126632354 K, F = -8127.189909553028, relative_change = 0.035668887336764536 Iter 2: T = 930.5881511783682 K, F = -6894.76357471384, relative_change = 0.03499105342736259 Iter 3: T = 898.7401710644082 K, F = -5848.155744851076, relative_change = 0.03422349626269379 Iter 5: T = 840.6162107331965 K, F = -4204.714080301363, relative_change = 0.03239378083417805 Iter 10: T = 726.4860847812687 K, F = -1833.6574025414122, relative_change = 0.025997683195360173 Iter 15: T = 652.8677068762895 K, F = -791.7429268279325, relative_change = 0.01779678273228951 Iter 20: T = 611.2462676167337 K, F = -338.01156779679496, relative_change = 0.010197406461660896 Iter 25: T = 590.4582025598802 K, F = -142.95851972859043, relative_change = 0.005056636192487722 Iter 30: T = 580.941940680975 K, F = -60.1109665074458, relative_change = 0.002294249982993283 Iter 35: T = 576.7925314485419 K, F = -25.19987249674852, relative_change = 0.00099493695178342 Iter 40: T = 575.0252168299866 K, F = -10.549844001228822, relative_change = 0.00042263724638614555 Iter 45: T = 574.2803244632836 K, F = -4.414012420283619, relative_change = 0.00017792286788309214 Iter 50: T = 573.9677763780896 K, F = -1.8463342020468319, relative_change = 7.461626148831667e-5 Iter 55: T = 573.8368846685281 K, F = -0.7722188803541021, relative_change = 3.124172778604332e-5 Iter 60: T = 573.7821125678686 K, F = -0.3229616390450916, relative_change = 1.3072026254446314e-5 Iter 65: T = 573.7592006843637 K, F = -0.13506824829973707, relative_change = 5.467991111990416e-6 Iter 70: T = 573.7496176922295 K, F = -0.05648747528667922, relative_change = 2.286974015899175e-6 Iter 75: T = 573.7456098009949 K, F = -0.023623792874922306, relative_change = 9.564739260193762e-7 Iter 80: T = 573.7439336233721 K, F = -0.00987976211941205, relative_change = 4.000147794933172e-7 Iter 85: T = 573.7432326206876 K, F = -0.004131836222519725, relative_change = 1.6729200051801614e-7 Iter 90: T = 573.7429394520866 K, F = -0.0017279835530183418, relative_change = 6.996369486086648e-8 Iter 95: T = 573.7428168453177 K, F = -0.0007226634100561125, relative_change = 2.925968459552941e-8 Iter 100: T = 573.7427655696752 K, F = -0.0003022264775863759, relative_change = 1.2236755106340037e-8 Iter 105: T = 573.7427441255841 K, F = -0.00012639472336783975, relative_change = 5.1175580781482925e-9 Iter 110: T = 573.7427351574084 K, F = -5.285978356300847e-5, relative_change = 2.140224095635108e-9 Iter 115: T = 573.7427314068101 K, F = -2.2106592842130457e-5, relative_change = 8.950673074402386e-10 Iter 120: T = 573.7427298382651 K, F = -9.245241477329191e-6, relative_change = 3.743278560630997e-10 Iter 125: T = 573.7427291822808 K, F = -3.8664704998803145e-6, relative_change = 1.5654838482897282e-10 Iter 130: T = 573.7427289079402 K, F = -1.6170036283291722e-6, relative_change = 6.54703836125532e-11 Iter 135: T = 573.7427287932077 K, F = -6.762497420376157e-7, relative_change = 2.7380476639370386e-11 Iter 140: T = 573.7427287452253 K, F = -2.8281626623938294e-7, relative_change = 1.1450864514568387e-11 Iter 145: T = 573.7427287251585 K, F = -1.1827725127089295e-7, relative_change = 4.788892794934577e-12 Iter 150: T = 573.7427287167662 K, F = -4.946445769649088e-8, relative_change = 2.0027518608970375e-12 Iter 155: T = 573.7427287132565 K, F = -2.0686426960292437e-8, relative_change = 8.375666492788019e-13 Iter 160: T = 573.7427287117887 K, F = -8.651174554508145e-9, relative_change = 3.502748588696459e-13 Converged in 163 iterations to T = 573.742728711359 K Iter 1: T = 980.2435064116578 K, F = -4501.535857380874, relative_change = 0.019756493588342243 Iter 2: T = 962.5262773159452 K, F = -3802.3517294265334, relative_change = 0.018074314167680065 Iter 3: T = 946.7266924096149 K, F = -3210.2692729185787, relative_change = 0.016414705009808402 Iter 5: T = 920.3549908535795 K, F = -2285.1992066449416, relative_change = 0.013251482616249291 Iter 10: T = 878.5228388083078 K, F = -970.0381581644472, relative_change = 0.006950025576308885 Iter 15: T = 858.7395045197152 K, F = -408.74078478806007, relative_change = 0.0032557940644467012 Iter 20: T = 849.9643369381572 K, F = -171.53006245922867, relative_change = 0.0014340414361345773 Iter 25: T = 846.1968752146765 K, F = -71.84371363941337, relative_change = 0.0006134134120472634 Iter 30: T = 844.6033853806531 K, F = -30.06511469817224, relative_change = 0.00025901039683815235 Iter 35: T = 843.9337754545451 K, F = -12.576978146345128, relative_change = 0.00010876002272485727 Iter 40: T = 843.6531732426523 K, F = -5.260437068366568, relative_change = 4.556194092760845e-5 Iter 45: T = 843.535723161652 K, F = -2.2000817504706696, relative_change = 1.9068083955687103e-5 Iter 50: T = 843.4865868139365 K, F = -0.9201186884929529, relative_change = 7.976870386232598e-6 Iter 55: T = 843.4660343751023 K, F = -0.3848078125303772, relative_change = 3.336437147774411e-6 Iter 60: T = 843.4574385693984 K, F = -0.16093178047381107, relative_change = 1.3954104031691819e-6 Iter 65: T = 843.4538436080314 K, F = -0.06730369005977677, relative_change = 5.835899839607122e-7 Iter 70: T = 843.4523401360295 K, F = -0.028147224013737482, relative_change = 2.440665201206645e-7 Iter 75: T = 843.4517113632453 K, F = -0.011771508210847825, relative_change = 1.0207192161606099e-7 Iter 80: T = 843.4514484024616 K, F = -0.004922985835787541, relative_change = 4.268776449593239e-8 Iter 85: T = 843.4513384290345 K, F = -0.0020588515616584147, relative_change = 1.7852544794711293e-8 Iter 90: T = 843.4512924368189 K, F = -0.0008610363271359667, relative_change = 7.466149516187253e-9 Iter 95: T = 843.4512732023225 K, F = -0.0003600956785008158, relative_change = 3.122433262114518e-9 Iter 100: T = 843.4512651582259 K, F = -0.00015059631547176267, relative_change = 1.3058389589433854e-9 Iter 105: T = 843.4512617940884 K, F = -6.298117859149244e-5, relative_change = 5.461174663480745e-10 Iter 110: T = 843.4512603871659 K, F = -2.6339480594828046e-5, relative_change = 2.2839284439109806e-10 Iter 115: T = 843.4512597987741 K, F = -1.1015483262211134e-5, relative_change = 9.551659737167813e-11 Iter 120: T = 843.4512595527016 K, F = -4.606805271256675e-6, relative_change = 3.9946169804923864e-11 Iter 125: T = 843.4512594497912 K, F = -1.9266211515045484e-6, relative_change = 1.6705966755888902e-11 Iter 130: T = 843.4512594067529 K, F = -8.057365310509823e-7, relative_change = 6.98663963826075e-12 Iter 135: T = 843.4512593887537 K, F = -3.369678271969434e-7, relative_change = 2.9218890888329435e-12 Iter 140: T = 843.4512593812262 K, F = -1.409245700134676e-7, relative_change = 1.2219741181631039e-12 Iter 145: T = 843.4512593780782 K, F = -5.893572918580503e-8, relative_change = 5.110388890632839e-13 Converged in 150 iterations to T = 843.4512593767616 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████▏ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015165677980101364 Iteration 10: d = 2.1378194589894292e-5 Iteration 20: d = 2.989916699655125e-7 Iteration 30: d = 4.257912136636498e-9 Iteration 40: d = 6.050516993864037e-11 Iteration 50: d = 8.58127546376125e-13 Iteration 60: d = 1.2144160108886418e-14 Converged after 65 iterations. d = 1.4317998381043327e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.827414493486 Iteration 2: convergence error = 4836.368621952132 Iteration 3: convergence error = 1094.1178758788121 Iteration 4: convergence error = 318.67346391746787 Iteration 5: convergence error = 94.30828372602537 Iteration 6: convergence error = 28.06924255709987 Iteration 7: convergence error = 8.36606930191624 Iteration 8: convergence error = 2.5037342744524267 Iteration 9: convergence error = 0.747562817101425 Iteration 10: convergence error = 0.22290666767116818 Iteration 11: convergence error = 0.0664147470390617 Iteration 12: convergence error = 0.019779521650889365 Iteration 13: convergence error = 0.005889230442107873 Iteration 14: convergence error = 0.0017532312576804543 Iteration 15: convergence error = 0.000521896241707509 Iteration 16: convergence error = 0.0001553490258174861 Iteration 17: convergence error = 4.624033090294688e-5 Iteration 18: convergence error = 1.3763427432422759e-5 Iteration 19: convergence error = 4.09664698963752e-6 Iteration 20: convergence error = 1.2193477232358418e-6 Iteration 21: convergence error = 3.629243110481184e-7 Iteration 22: convergence error = 1.0787061910377815e-7 Iteration 23: convergence error = 3.119771463389043e-8 Iteration 24: convergence error = 8.97443896974437e-9 Iteration 25: convergence error = 2.5765984901227057e-9 Iteration 26: convergence error = 7.341895980061963e-10 Iteration 27: convergence error = 2.1236701286397874e-10 Iteration 28: convergence error = 6.02540239924565e-11 Iteration 29: convergence error = 1.6370904631912708e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002019566268380462 Iteration 10: d = 2.1382713638905138e-5 Iteration 20: d = 2.4274676744500083e-7 Iteration 30: d = 3.078642331132302e-9 Iteration 40: d = 4.0154871903341586e-11 Iteration 50: d = 5.29075842360698e-13 Iteration 60: d = 7.012877153305787e-15 Converged after 63 iterations. d = 1.9128851621609037e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12270.705251246178 Iteration 2: convergence error = 8321.720878565025 Iteration 3: convergence error = 1950.796880548561 Iteration 4: convergence error = 479.166911097808 Iteration 5: convergence error = 121.9375502399771 Iteration 6: convergence error = 32.511715508851694 Iteration 7: convergence error = 8.846500873265086 Iteration 8: convergence error = 2.4211043957066067 Iteration 9: convergence error = 0.6634317592861407 Iteration 10: convergence error = 0.181820653481509 Iteration 11: convergence error = 0.04982746847963426 Iteration 12: convergence error = 0.013654358421490542 Iteration 13: convergence error = 0.003741622140751133 Iteration 14: convergence error = 0.0010252778370158921 Iteration 15: convergence error = 0.00028094414096813125 Iteration 16: convergence error = 7.698338458794751e-5 Iteration 17: convergence error = 2.1094699604873313e-5 Iteration 18: convergence error = 5.780292212875793e-6 Iteration 19: convergence error = 1.5838941180845723e-6 Iteration 20: convergence error = 4.3401178118074313e-7 Iteration 21: convergence error = 1.1979091141256504e-7 Iteration 22: convergence error = 3.215018296032213e-8 Iteration 23: convergence error = 8.587221600464545e-9 Iteration 24: convergence error = 2.28988028538879e-9 Iteration 25: convergence error = 6.104983185650781e-10 Iteration 26: convergence error = 1.6257217794191092e-10 Iteration 27: convergence error = 4.274625098332763e-11 Iteration 28: convergence error = 1.1596057447604835e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002019566268380462 Iteration 10: d = 2.1382713638905138e-5 Iteration 20: d = 2.4274676744500083e-7 Iteration 30: d = 3.078642331132302e-9 Iteration 40: d = 4.0154871903341586e-11 Iteration 50: d = 5.29075842360698e-13 Iteration 60: d = 7.012877153305787e-15 Converged after 63 iterations. d = 1.9128851621609037e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10995.993485852441 Iteration 2: convergence error = 5730.43870768398 Iteration 3: convergence error = 2013.653711574042 Iteration 4: convergence error = 893.7661061693616 Iteration 5: convergence error = 410.29460234017733 Iteration 6: convergence error = 193.3686128356494 Iteration 7: convergence error = 91.23250960369887 Iteration 8: convergence error = 43.0709689633909 Iteration 9: convergence error = 20.335866310683286 Iteration 10: convergence error = 9.60003829161451 Iteration 11: convergence error = 4.530923454419735 Iteration 12: convergence error = 2.1380207101205997 Iteration 13: convergence error = 1.0087127225665427 Iteration 14: convergence error = 0.47585263397559174 Iteration 15: convergence error = 0.22446169615068357 Iteration 16: convergence error = 0.1057813106804133 Iteration 17: convergence error = 0.04940736752541852 Iteration 18: convergence error = 0.02255093755229609 Iteration 19: convergence error = 0.010254522773720964 Iteration 20: convergence error = 0.004653067423532775 Iteration 21: convergence error = 0.0021087770269332395 Iteration 22: convergence error = 0.0009550224463055201 Iteration 23: convergence error = 0.00043233090991634526 Iteration 24: convergence error = 0.0001956648020495777 Iteration 25: convergence error = 8.854128236635006e-5 Iteration 26: convergence error = 4.006276640211581e-5 Iteration 27: convergence error = 1.812646041798871e-5 Iteration 28: convergence error = 8.20108061816427e-6 Iteration 29: convergence error = 3.710399141709786e-6 Iteration 30: convergence error = 1.6786702872195747e-6 Iteration 31: convergence error = 7.594599082949571e-7 Iteration 32: convergence error = 3.4358890843577683e-7 Iteration 33: convergence error = 1.5544947018497624e-7 Iteration 34: convergence error = 7.031849236227572e-8 Iteration 35: convergence error = 3.182321961503476e-8 Iteration 36: convergence error = 1.4395027392311022e-8 Iteration 37: convergence error = 6.51152731734328e-9 Iteration 38: convergence error = 2.9440343496389687e-9 Iteration 39: convergence error = 1.3351382222026587e-9 Iteration 40: convergence error = 6.066329660825431e-10 Iteration 41: convergence error = 2.737579052336514e-10 Iteration 42: convergence error = 1.241460267920047e-10 Iteration 43: convergence error = 5.95719029661268e-11 Iteration 44: convergence error = 2.5920599000528455e-11 Iteration 45: convergence error = 1.4551915228366852e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 91%|█████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002019566268380462 Iteration 10: d = 2.1382713638905138e-5 Iteration 20: d = 2.4274676744500083e-7 Iteration 30: d = 3.078642331132302e-9 Iteration 40: d = 4.0154871903341586e-11 Iteration 50: d = 5.29075842360698e-13 Iteration 60: d = 7.012877153305787e-15 Converged after 63 iterations. d = 1.9128851621609037e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10827.118299442815 Iteration 2: convergence error = 7347.852710584764 Iteration 3: convergence error = 1729.880559912187 Iteration 4: convergence error = 505.28878914544975 Iteration 5: convergence error = 156.82247401208815 Iteration 6: convergence error = 48.6790190861484 Iteration 7: convergence error = 15.08689782813326 Iteration 8: convergence error = 4.668406445520304 Iteration 9: convergence error = 1.4429531194996343 Iteration 10: convergence error = 0.44569333029812697 Iteration 11: convergence error = 0.13760833251126314 Iteration 12: convergence error = 0.04247692444641871 Iteration 13: convergence error = 0.013110055604556692 Iteration 14: convergence error = 0.00404598073419038 Iteration 15: convergence error = 0.0012486043419812631 Iteration 16: convergence error = 0.0003853146267829288 Iteration 17: convergence error = 0.00011890504401890212 Iteration 18: convergence error = 3.669287298180279e-5 Iteration 19: convergence error = 1.1322975751681952e-5 Iteration 20: convergence error = 3.494139491522219e-6 Iteration 21: convergence error = 1.0782423487398773e-6 Iteration 22: convergence error = 3.325631041661836e-7 Iteration 23: convergence error = 1.0137910066987388e-7 Iteration 24: convergence error = 3.0157025321386755e-8 Iteration 25: convergence error = 8.93714968697168e-9 Iteration 26: convergence error = 2.6429916033521295e-9 Iteration 27: convergence error = 7.839844329282641e-10 Iteration 28: convergence error = 2.2919266484677792e-10 Iteration 29: convergence error = 6.821210263296962e-11 Iteration 30: convergence error = 2.1827872842550278e-11 Converged after 30 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002019566268380462 Iteration 10: d = 2.1382713638905138e-5 Iteration 20: d = 2.4274676744500083e-7 Iteration 30: d = 3.078642331132302e-9 Iteration 40: d = 4.0154871903341586e-11 Iteration 50: d = 5.29075842360698e-13 Iteration 60: d = 7.012877153305787e-15 Converged after 63 iterations. d = 1.9128851621609037e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.840019380999 Iteration 2: convergence error = 5517.371033133039 Iteration 3: convergence error = 935.272288165723 Iteration 4: convergence error = 170.16906416880215 Iteration 5: convergence error = 30.863265491008406 Iteration 6: convergence error = 5.611781335600426 Iteration 7: convergence error = 1.0252698562580917 Iteration 8: convergence error = 0.1874869497214604 Iteration 9: convergence error = 0.03424545203324669 Iteration 10: convergence error = 0.006251543883081467 Iteration 11: convergence error = 0.0011408987165850704 Iteration 12: convergence error = 0.00020818204302486265 Iteration 13: convergence error = 3.798449461100972e-5 Iteration 14: convergence error = 6.930311428732239e-6 Iteration 15: convergence error = 1.264414549950743e-6 Iteration 16: convergence error = 2.3070697352522984e-7 Iteration 17: convergence error = 4.2082774598384276e-8 Iteration 18: convergence error = 7.669314072700217e-9 Iteration 19: convergence error = 1.4083525456953794e-9 Iteration 20: convergence error = 2.546585164964199e-10 Iteration 21: convergence error = 4.547473508864641e-11 Iteration 22: convergence error = 9.094947017729282e-12 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 47%|███████████████▌ | ETA: 0:00:01 Bin 1 progress: 94%|███████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.002019566268380462 Iteration 10: d = 2.1382713638905138e-5 Iteration 20: d = 2.4274676744500083e-7 Iteration 30: d = 3.078642331132302e-9 Iteration 40: d = 4.0154871903341586e-11 Iteration 50: d = 5.29075842360698e-13 Iteration 60: d = 7.012877153305787e-15 Converged after 63 iterations. d = 1.9128851621609037e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.506506451748 Iteration 2: convergence error = 2713.2778658912093 Iteration 3: convergence error = 204.48874673670974 Iteration 4: convergence error = 19.34093400639514 Iteration 5: convergence error = 1.5966731385037594 Iteration 6: convergence error = 0.12991895884830557 Iteration 7: convergence error = 0.010585728516598355 Iteration 8: convergence error = 0.0008645511630777372 Iteration 9: convergence error = 7.071895862648204e-5 Iteration 10: convergence error = 5.789735967337123e-6 Iteration 11: convergence error = 4.743694013282169e-7 Iteration 12: convergence error = 3.887847323976994e-8 Iteration 13: convergence error = 3.187549814479497e-9 Iteration 14: convergence error = 2.601016598591129e-10 Iteration 15: convergence error = 2.2396307031158358e-11 Iteration 16: convergence error = 3.183231456205249e-12 Converged after 16 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 80%|██████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015165677980101364 Iteration 10: d = 2.1378194589894292e-5 Iteration 20: d = 2.989916699655125e-7 Iteration 30: d = 4.257912136636498e-9 Iteration 40: d = 6.050516993864037e-11 Iteration 50: d = 8.58127546376125e-13 Iteration 60: d = 1.2144160108886418e-14 Converged after 65 iterations. d = 1.4317998381043327e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.373360197638 Iteration 2: convergence error = 3619.951613003618 Iteration 3: convergence error = 591.5827994812784 Iteration 4: convergence error = 104.28220804931175 Iteration 5: convergence error = 18.507231295405063 Iteration 6: convergence error = 3.2558121653776197 Iteration 7: convergence error = 0.5706993828528084 Iteration 8: convergence error = 0.09988553673679235 Iteration 9: convergence error = 0.01747149423817973 Iteration 10: convergence error = 0.0030552635512322013 Iteration 11: convergence error = 0.0005342239435321972 Iteration 12: convergence error = 9.340719884676218e-5 Iteration 13: convergence error = 1.633165334169462e-5 Iteration 14: convergence error = 2.8554588880069787e-6 Iteration 15: convergence error = 4.992632511857664e-7 Iteration 16: convergence error = 8.729170986043755e-8 Iteration 17: convergence error = 1.527632775832899e-8 Iteration 18: convergence error = 2.647311703185551e-9 Iteration 19: convergence error = 4.704361344920471e-10 Iteration 20: convergence error = 8.185452315956354e-11 Iteration 21: convergence error = 1.2732925824820995e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m07.6s Testing RayTraceHeatTransfer tests passed Testing completed after 615.9s PkgEval succeeded after 717.49s