Package evaluation to test StructuralIdentifiability on Julia 1.14.0-DEV.24 (d5fb6bbb43*) started at 2025-11-02T15:47:13.046 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.68s ################################################################################ # Installation # Installing StructuralIdentifiability... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [220ca800] + StructuralIdentifiability v0.5.17 Updating `~/.julia/environments/v1.14/Manifest.toml` [c3fe647b] + AbstractAlgebra v0.47.3 [a9b6321e] + Atomix v1.1.2 [861a8166] + Combinatorics v1.0.3 [864edb3b] + DataStructures v0.19.1 [e2ba6199] + ExprTools v0.1.10 [0b43b601] + Groebner v0.10.0 [18e54dd8] + IntegerMathUtils v0.1.3 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [1914dd2f] + MacroTools v0.5.16 [2edaba10] + Nemo v0.52.3 [bac558e1] + OrderedCollections v1.8.1 [3e851597] + ParamPunPam v0.5.5 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [27ebfcd6] + Primes v0.5.7 [92933f4c] + ProgressMeter v1.11.0 [fb686558] + RandomExtensions v0.4.4 [73480bc8] + RationalFunctionFields v0.2.2 [220ca800] + StructuralIdentifiability v0.5.17 [a759f4b9] + TimerOutputs v0.5.29 [013be700] + UnsafeAtomics v0.3.0 [e134572f] + FLINT_jll v301.300.102+0 [656ef2d0] + OpenBLAS32_jll v0.3.29+0 [56f22d72] + Artifacts v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [fa267f1f] + TOML v1.0.3 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [781609d7] + GMP_jll v6.3.0+2 [3a97d323] + MPFR_jll v4.2.2+0 [4536629a] + OpenBLAS_jll v0.3.29+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [8e850b90] + libblastrampoline_jll v5.15.0+0 Installation completed after 4.77s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1274.5 ms ✓ OpenBLAS32_jll 1287.8 ms ✓ FLINT_jll 32308.9 ms ✓ Nemo 131834.4 ms ✓ Groebner 10041.7 ms ✓ ParamPunPam 11158.0 ms ✓ RationalFunctionFields 12358.6 ms ✓ StructuralIdentifiability 7 dependencies successfully precompiled in 202 seconds. 28 already precompiled. Precompilation completed after 212.98s ################################################################################ # Testing # Testing StructuralIdentifiability Status `/tmp/jl_MCzGiG/Project.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [864edb3b] DataStructures v0.19.1 [0b43b601] Groebner v0.10.0 [c8e1da08] IterTools v1.10.0 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [27ebfcd6] Primes v0.5.7 [73480bc8] RationalFunctionFields v0.2.2 [276daf66] SpecialFunctions v2.6.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [ade2ca70] Dates v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [44cfe95a] Pkg v1.13.0 [9a3f8284] Random v1.11.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_MCzGiG/Manifest.toml` [c3fe647b] AbstractAlgebra v0.47.3 [4c88cf16] Aqua v0.8.14 [a9b6321e] Atomix v1.1.2 [2a0fbf3d] CPUSummary v0.2.7 [861a8166] Combinatorics v1.0.3 [f70d9fcc] CommonWorldInvalidations v1.0.0 [34da2185] Compat v4.18.1 [adafc99b] CpuId v0.3.1 [864edb3b] DataStructures v0.19.1 [ab62b9b5] DeepDiffs v1.2.0 [ffbed154] DocStringExtensions v0.9.5 [e2ba6199] ExprTools v0.1.10 [0b43b601] Groebner v0.10.0 [615f187c] IfElse v0.1.1 [18e54dd8] IntegerMathUtils v0.1.3 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 [1914dd2f] MacroTools v0.5.16 [2edaba10] Nemo v0.52.3 [bac558e1] OrderedCollections v1.8.1 [3e851597] ParamPunPam v0.5.5 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [27ebfcd6] Primes v0.5.7 [92933f4c] ProgressMeter v1.11.0 [fb686558] RandomExtensions v0.4.4 [73480bc8] RationalFunctionFields v0.2.2 [431bcebd] SciMLPublic v1.0.0 [276daf66] SpecialFunctions v2.6.1 [aedffcd0] Static v1.3.1 [220ca800] StructuralIdentifiability v0.5.17 ⌅ [98d24dd4] TestSetExtensions v2.0.0 [a759f4b9] TimerOutputs v0.5.29 [013be700] UnsafeAtomics v0.3.0 [e134572f] FLINT_jll v301.300.102+0 [656ef2d0] OpenBLAS32_jll v0.3.29+0 [efe28fd5] OpenSpecFun_jll v0.5.6+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [781609d7] GMP_jll v6.3.0+2 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [3a97d323] MPFR_jll v4.2.2+0 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [05823500] OpenLibm_jll v0.8.7+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... Resolving package versions... Updating `/tmp/jl_MCzGiG/Project.toml` ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [961ee093] + ModelingToolkit v10.26.1 Updating `/tmp/jl_MCzGiG/Manifest.toml` [47edcb42] + ADTypes v1.18.0 [1520ce14] + AbstractTrees v0.4.5 [7d9f7c33] + Accessors v0.1.42 [79e6a3ab] + Adapt v4.4.0 [66dad0bd] + AliasTables v1.1.3 [ec485272] + ArnoldiMethod v0.4.0 [4fba245c] + ArrayInterface v7.22.0 [4c555306] + ArrayLayouts v1.12.0 [e2ed5e7c] + Bijections v0.2.2 [62783981] + BitTwiddlingConvenienceFunctions v0.1.6 [8e7c35d0] + BlockArrays v1.9.1 [70df07ce] + BracketingNonlinearSolve v1.5.0 [d360d2e6] + ChainRulesCore v1.26.0 [fb6a15b2] + CloseOpenIntervals v0.1.13 ⌅ [861a8166] ↓ Combinatorics v1.0.3 ⇒ v1.0.2 [loaded: v1.0.3] [a80b9123] + CommonMark v0.9.1 [38540f10] + CommonSolve v0.2.4 [bbf7d656] + CommonSubexpressions v0.3.1 [b152e2b5] + CompositeTypes v0.1.4 [a33af91c] + CompositionsBase v0.1.2 [2569d6c7] + ConcreteStructs v0.2.3 [187b0558] + ConstructionBase v1.6.0 [9a962f9c] + DataAPI v1.16.0 [2b5f629d] + DiffEqBase v6.190.2 [459566f4] + DiffEqCallbacks v4.10.1 [77a26b50] + DiffEqNoiseProcess v5.24.1 [163ba53b] + DiffResults v1.1.0 [b552c78f] + DiffRules v1.15.1 [a0c0ee7d] + DifferentiationInterface v0.7.10 [8d63f2c5] + DispatchDoctor v0.4.26 [31c24e10] + Distributions v0.25.122 [5b8099bc] + DomainSets v0.7.16 [7c1d4256] + DynamicPolynomials v0.6.4 [06fc5a27] + DynamicQuantities v1.10.0 [4e289a0a] + EnumX v1.0.5 [f151be2c] + EnzymeCore v0.8.15 [55351af7] + ExproniconLite v0.10.14 [7034ab61] + FastBroadcast v0.3.5 [9aa1b823] + FastClosures v0.3.2 [a4df4552] + FastPower v1.2.0 [1a297f60] + FillArrays v1.14.0 [64ca27bc] + FindFirstFunctions v1.4.2 [6a86dc24] + FiniteDiff v2.29.0 [1fa38f19] + Format v1.3.7 [f6369f11] + ForwardDiff v1.2.2 [069b7b12] + FunctionWrappers v1.1.3 [77dc65aa] + FunctionWrappersWrappers v0.1.3 [46192b85] + GPUArraysCore v0.2.0 [c27321d9] + Glob v1.3.1 [86223c79] + Graphs v1.13.1 [34004b35] + HypergeometricFunctions v0.3.28 [3263718b] + ImplicitDiscreteSolve v1.2.0 [d25df0c9] + Inflate v0.1.5 [8197267c] + IntervalSets v0.7.11 [3587e190] + InverseFunctions v0.1.17 [82899510] + IteratorInterfaceExtensions v1.0.0 [ae98c720] + Jieko v0.2.1 [98e50ef6] + JuliaFormatter v2.1.6 ⌅ [70703baa] + JuliaSyntax v0.4.10 [ccbc3e58] + JumpProcesses v9.19.1 [b964fa9f] + LaTeXStrings v1.4.0 [23fbe1c1] + Latexify v0.16.10 [10f19ff3] + LayoutPointers v0.1.17 [87fe0de2] + LineSearch v0.1.4 [d3d80556] + LineSearches v7.4.0 [e6f89c97] + LoggingExtras v1.2.0 [d8e11817] + MLStyle v0.4.17 [d125e4d3] + ManualMemory v0.1.8 [bb5d69b7] + MaybeInplace v0.1.4 [e1d29d7a] + Missings v1.2.0 [961ee093] + ModelingToolkit v10.26.1 [2e0e35c7] + Moshi v0.3.7 [46d2c3a1] + MuladdMacro v0.2.4 [102ac46a] + MultivariatePolynomials v0.5.13 [d8a4904e] + MutableArithmetics v1.6.7 [d41bc354] + NLSolversBase v7.10.0 [77ba4419] + NaNMath v1.1.3 [be0214bd] + NonlinearSolveBase v2.0.0 [6fe1bfb0] + OffsetArrays v1.17.0 [429524aa] + Optim v1.13.2 [bbf590c4] + OrdinaryDiffEqCore v1.36.0 [90014a1f] + PDMats v0.11.36 [d96e819e] + Parameters v0.12.3 [e409e4f3] + PoissonRandom v0.4.7 [f517fe37] + Polyester v0.7.18 [1d0040c9] + PolyesterWeave v0.2.2 [85a6dd25] + PositiveFactorizations v0.2.4 [d236fae5] + PreallocationTools v0.4.34 [43287f4e] + PtrArrays v1.3.0 [1fd47b50] + QuadGK v2.11.2 [74087812] + Random123 v1.7.1 [e6cf234a] + RandomNumbers v1.6.0 [3cdcf5f2] + RecipesBase v1.3.4 [731186ca] + RecursiveArrayTools v3.39.0 [189a3867] + Reexport v1.2.2 [ae029012] + Requires v1.3.1 [ae5879a3] + ResettableStacks v1.1.1 [79098fc4] + Rmath v0.9.0 [7e49a35a] + RuntimeGeneratedFunctions v0.5.16 [9dfe8606] + SCCNonlinearSolve v1.6.0 [94e857df] + SIMDTypes v0.1.0 [0bca4576] + SciMLBase v2.124.0 [19f34311] + SciMLJacobianOperators v0.1.11 [a6db7da4] + SciMLLogging v1.3.1 [c0aeaf25] + SciMLOperators v1.9.0 [53ae85a6] + SciMLStructures v1.7.0 [efcf1570] + Setfield v1.1.2 [727e6d20] + SimpleNonlinearSolve v2.9.0 [699a6c99] + SimpleTraits v0.9.5 [ce78b400] + SimpleUnPack v1.1.0 [a2af1166] + SortingAlgorithms v1.2.2 [0d7ed370] + StaticArrayInterface v1.8.0 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 [2913bbd2] + StatsBase v0.34.7 [4c63d2b9] + StatsFuns v1.5.2 [7792a7ef] + StrideArraysCore v0.5.8 [2efcf032] + SymbolicIndexingInterface v0.3.46 ⌃ [19f23fe9] + SymbolicLimits v0.2.3 ⌅ [d1185830] + SymbolicUtils v3.32.0 [0c5d862f] + Symbolics v6.57.0 [ed4db957] + TaskLocalValues v0.1.3 [8ea1fca8] + TermInterface v2.0.0 [1c621080] + TestItems v1.0.0 [8290d209] + ThreadingUtilities v0.5.5 [410a4b4d] + Tricks v0.1.13 [781d530d] + TruncatedStacktraces v1.4.0 [5c2747f8] + URIs v1.6.1 [3a884ed6] + UnPack v1.0.2 [1986cc42] + Unitful v1.25.1 [a7c27f48] + Unityper v0.1.6 [61579ee1] + Ghostscript_jll v9.55.1+0 [aacddb02] + JpegTurbo_jll v3.1.3+0 [f50d1b31] + Rmath_jll v0.5.1+0 [9fa8497b] + Future v1.11.0 [a63ad114] + Mmap v1.11.0 [1a1011a3] + SharedArrays v1.11.0 [4607b0f0] + SuiteSparse Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m` Updating `/tmp/jl_MCzGiG/Project.toml` [0c5d862f] + Symbolics v6.57.0 Manifest No packages added to or removed from `/tmp/jl_MCzGiG/Manifest.toml` WARNING: Method definition prepare_pullback_nokwarg(Base.Val{x} where x, Any, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:9 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition rrule(DifferentiationInterface.DifferentiateWith{F, B} where B<:ADTypes.AbstractADType where F, Any) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/differentiate_with.jl:1 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition value_and_pullback(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:36 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition check_available(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:20 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition inplace_support(ADTypes.AutoChainRules{RC} where RC) in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/DifferentiationInterfaceChainRulesCoreExt.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). WARNING: Method definition prepare_pullback_same_point(Any, DifferentiationInterface.NoPullbackPrep{SIG} where SIG, ADTypes.AutoChainRules{var"#s2"} where var"#s2"<:(ChainRulesCore.RuleConfig{var"#s1"} where ChainRulesCore.HasReverseMode<:var"#s1"<:Any), Any, Tuple{Vararg{T, N}} where T where N, Vararg{DifferentiationInterface.GeneralizedConstant, C}) where {C} in module DifferentiationInterfaceChainRulesCoreExt at /home/pkgeval/.julia/packages/DifferentiationInterface/S6Hq1/ext/DifferentiationInterfaceChainRulesCoreExt/reverse_onearg.jl:21 overwritten in module DifferentiationInterfaceChainRulesCoreExt on the same line (check for duplicate calls to `include`). ┌ Warning: Replacing module `DifferentiationInterfaceChainRulesCoreExt` └ @ Base loading.jl:2629 [ Info: Testing started [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y ┌ Warning: New variable c, treating as a scalar parameter └ @ StructuralIdentifiability ~/.julia/packages/StructuralIdentifiability/erhUr/src/pb_representation.jl:94 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: a [ Info: Parameters: b [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: a, b [ Info: Parameters: k1, k2 [ Info: Inputs: c [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x, y [ Info: Parameters: a, b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y 2.307591 seconds (956.88 k allocations: 48.322 MiB, 99.48% compilation time) 0.001855 seconds (7.32 k allocations: 326.109 KiB) 0.001924 seconds (10.80 k allocations: 485.781 KiB) 0.002258 seconds (10.76 k allocations: 480.188 KiB) 0.002617 seconds (14.53 k allocations: 636.000 KiB) 0.001534 seconds (7.75 k allocations: 355.164 KiB) 0.000971 seconds (7.45 k allocations: 300.805 KiB) 16.313889 seconds (6.79 M allocations: 348.586 MiB, 1.08% gc time, 99.78% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.370592 seconds (112.44 k allocations: 6.027 MiB, 98.21% compilation time) [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: u [ Info: Outputs: y 0.013722 seconds (9.76 k allocations: 518.320 KiB, 91.74% compilation time) [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b [ Info: Inputs: u [ Info: Outputs: y Coefficient extraction for rational functions: Test Failed at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 Expression: Set(C) == Set([x // 1, (y + 3) // 1, y ^ 2 // 1, one(R) // 1, 3 * one(R) // 1, -((x ^ 2 + y ^ 2)) // 1]) Evaluated: Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[1//3, -1//3*x^2 - 1//3*y^2, 1//3*y^2, 1//3*x, 1, 1//3*y + 1]) == Set(AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[y^2, 3, y + 3, 1, x, -x^2 - y^2]) Stacktrace: [1] top-level scope @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:2 [2] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] [3] macro expansion @ ~/.julia/packages/StructuralIdentifiability/erhUr/test/extract_coefficients.jl:27 [inlined] [4] macro expansion @ /opt/julia/share/julia/stdlib/v1.14/Test/src/Test.jl:753 [inlined] [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y1, y2 IOEQS: Dict{QQMPolyRingElem, QQMPolyRingElem}(y2(t)_1 => -a*y2(t)_0 + a*u(t)_0 + y2(t)_1 - u(t)_1, y1(t)_2 => -y1(t)_0 + y1(t)_2) [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a, b, c, d [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, I, W, R [ Info: Parameters: a, bi, bw, gam, k, mu, xi [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: b [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a1, a2, a21 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a01, a12, a13, a21, a31 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, In [ Info: Parameters: N, a, b, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003336617 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 6.668422286 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 0.064531266 seconds [ Info: Global identifiability assessed in 51.674559392 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002509486 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Global identifiability assessed in 1.068673647 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Global identifiability assessed in 6.491e-5 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.038776007 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.556490961 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.527e-5 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:15 ✓ # Computing specializations.. Time: 0:00:17 [ Info: Search for polynomial generators concluded in 8.964790733 [ Info: Selecting generators in 0.009892834 [ Info: Inclusion checked with probability 0.9955 in 0.045855438 seconds [ Info: Global identifiability assessed in 93.411954608 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.175243859 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.130496061 seconds [ Info: Dimensions of the Wronskians [676] [ Info: Ranks of the Wronskians computed in 0.073673458 seconds [ Info: Global identifiability assessed in 25.043458383 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009403689 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.075601469 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000238018 seconds [ Info: Global identifiability assessed in 0.105954255 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Note: the input model has nontrivial submodels. If the computation for the full model will be too heavy, you may want to try to first analyze one of the submodels. They can be produced using function `find_submodels` [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 4.044442468 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001930181 seconds [ Info: Dimensions of the Wronskians [2, 3, 2] [ Info: Ranks of the Wronskians computed in 1.986e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.629314424 [ Info: Selecting generators in 0.000251878 [ Info: Inclusion checked with probability 0.9955 in 0.00202561 seconds [ Info: Global identifiability assessed in 5.652312229 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001440296 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001150519 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.56e-5 seconds [ Info: Global identifiability assessed in 0.004383067 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001689464 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001283228 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.698e-5 seconds [ Info: Global identifiability assessed in 0.005083311 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003235759 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002695204 seconds [ Info: Dimensions of the Wronskians [6] [ Info: Ranks of the Wronskians computed in 1.838e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.772584037 [ Info: Selecting generators in 0.009768025 [ Info: Inclusion checked with probability 0.9955 in 0.003454576 seconds [ Info: Global identifiability assessed in 1.732405003 seconds [ Info: Assessing local identifiability [ Info: Assessing global identifiability [ Info: Functions to check involve states [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005204999 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002396437 seconds [ Info: Dimensions of the Wronskians [2, 5] [ Info: Ranks of the Wronskians computed in 2.036e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004939372 [ Info: Selecting generators in 0.002834143 [ Info: Inclusion checked with probability 0.9955 in 0.003160419 seconds [ Info: Global identifiability assessed in 0.035013232 seconds [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: V_m, c, k01, k_m [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x0, x1 [ Info: Parameters: a01, a12, a21 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k1, k2, k3, k4 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: a1, a2, b1, b2 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: alpha, b, beta, c, delta, gama, sigma [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: s, i, r, x1, x2 [ Info: Parameters: M, b0, b1, g, mu, nu [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, E, I, R, Q [ Info: Parameters: beta, gamma, psi, v [ Info: Inputs: [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: k01, k12, k13, k14, k21, k31, k41 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: x5, x7, x4, x6 [ Info: Parameters: k10, k5, k6, k7, k8, k9 [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, In, L, Q [ Info: Parameters: Ninv, a, b, e, g, s [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, R, W [ Info: Parameters: Dd, T, a, d, dr, e, g, r, rR [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: P3, P0, P5, P4, P1, P2 [ Info: Parameters: Ks, M, Mar, alpa, beta, beta_SA, beta_SI, phi, siga1, siga2 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: a, b, c, d [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: β1, β2, β3, λ1, λ2, λ3 [ Info: Inputs: u1, u2, u3 [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: Θ [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: C, α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: α [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: a, b, c [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: p1, p2, p3, p4 [ Info: Inputs: u [ Info: Outputs: y1 [ Info: Summary of the model: [ Info: State variables: EGFR, pEGFR, pEGFR_Akt, Akt, pAkt, S6, pAkt_S6, pS6, EGF_EGFR [ Info: Parameters: EGFR_turnover, a1, a2, a3, reaction_1_k1, reaction_1_k2, reaction_2_k1, reaction_2_k2, reaction_3_k1, reaction_4_k1, reaction_5_k1, reaction_5_k2, reaction_6_k1, reaction_7_k1, reaction_8_k1, reaction_9_k1 [ Info: Inputs: pro_EGFR [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: beta, cry, zea, beta10, OHbeta10, betaio, OHbetaio [ Info: Parameters: kOHbeta10, kbeta, kbeta10, kcryOH, kcrybeta, kzea [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: EpoR_A, k1, k2, k3, k5, k6, k7 [ Info: Inputs: [ Info: Outputs: y1, y2, y3 [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: S, E, U, I [ Info: Parameters: N, a, b, d, g [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x [ Info: Parameters: alpha [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: k01, k02, k12, k21, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: K_M, V_M, b1, c, k02, k12, k21 [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3 [ Info: Parameters: k02, k03, k12, k13, k21, k31, v [ Info: Inputs: u [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: a03, a04, a13, a24, a31, a42, a43 [ Info: Inputs: u [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: S, I [ Info: Parameters: N, beta, k, mu, nu [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2 [ Info: Parameters: p1, p2, p3, p4, p5 [ Info: Inputs: [ Info: Outputs: y [ Info: Summary of the model: [ Info: State variables: x1, x2, x3, x4 [ Info: Parameters: beta, c, d, k1, k2, mu1, mu2, q1, q2, s [ Info: Inputs: [ Info: Outputs: y1, y2 [ Info: Summary of the model: [ Info: State variables: A, I, H, R, D, E [ Info: Parameters: N, a, c1, c2, d, h, r1, r2, r3, s [ Info: Inputs: [ Info: Outputs: y [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00108708 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000889581 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.11e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.29e-5 [ Info: Selecting generators in 0.74819286 [ Info: Inclusion checked with probability 0.995 in 0.001445786 seconds [ Info: The search for identifiable functions concluded in 1.593493111 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000932421 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000864381 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.8409e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0859e-5 [ Info: Selecting generators in 0.000600425 [ Info: Inclusion checked with probability 0.995 in 0.001654444 seconds [ Info: The search for identifiable functions concluded in 0.008543078 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000959831 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000882001 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.9139e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.4279e-5 [ Info: Selecting generators in 0.000493565 [ Info: Inclusion checked with probability 0.995 in 0.001365677 seconds [ Info: The search for identifiable functions concluded in 0.007683536 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000859892 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000823452 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.876e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000400686 [ Info: Selecting generators in 0.000503685 [ Info: Inclusion checked with probability 0.995 in 0.001312677 seconds [ Info: The search for identifiable functions concluded in 0.007545737 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001201898 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000994941 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 2.121e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000361286 [ Info: Selecting generators in 0.000497255 [ Info: Inclusion checked with probability 0.995 in 0.001474915 seconds [ Info: The search for identifiable functions concluded in 0.008421319 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000860702 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000847972 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.7729e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000344527 [ Info: Selecting generators in 0.000478936 [ Info: Inclusion checked with probability 0.995 in 0.001355947 seconds [ Info: The search for identifiable functions concluded in 0.007489868 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001222578 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000909801 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.82e-5 seconds [ Info: The search for identifiable functions concluded in 0.028592714 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001180419 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000877572 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.705e-5 seconds [ Info: The search for identifiable functions concluded in 0.002531645 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000867552 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000722893 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.4369e-5 seconds [ Info: The search for identifiable functions concluded in 0.002004121 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000813152 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000704613 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.443e-5 seconds [ Info: The search for identifiable functions concluded in 0.001925881 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000956591 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000745973 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 2.369e-5 seconds [ Info: The search for identifiable functions concluded in 0.00211682 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000872032 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000656634 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.228e-5 seconds [ Info: The search for identifiable functions concluded in 0.001906132 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001463236 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001057429 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.8589e-5 seconds [ Info: The search for identifiable functions concluded in 0.003273828 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001150359 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000970931 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.764e-5 seconds [ Info: The search for identifiable functions concluded in 0.002667525 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001162249 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00100322 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.829e-5 seconds [ Info: The search for identifiable functions concluded in 0.002717434 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001151239 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000921481 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.641e-5 seconds [ Info: The search for identifiable functions concluded in 0.002588775 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001116899 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00099821 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.853e-5 seconds [ Info: The search for identifiable functions concluded in 0.002750213 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001203269 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001117819 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 1.937e-5 seconds [ Info: The search for identifiable functions concluded in 0.0030431 seconds [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.235317282 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001258288 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.957e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 6.5969e-5 [ Info: Selecting generators in 0.000414606 [ Info: Inclusion checked with probability 0.995 in 0.001332097 seconds [ Info: The search for identifiable functions concluded in 0.242249555 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001683694 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00110678 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.665e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 5.462e-5 [ Info: Selecting generators in 0.000401436 [ Info: Inclusion checked with probability 0.995 in 0.001234729 seconds [ Info: The search for identifiable functions concluded in 0.007898314 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001683554 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00108359 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.667e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 5.677e-5 [ Info: Selecting generators in 0.000411866 [ Info: Inclusion checked with probability 0.995 in 0.001251758 seconds [ Info: The search for identifiable functions concluded in 0.007971793 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001650564 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001131809 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.731e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000332496 [ Info: Selecting generators in 0.000429536 [ Info: Inclusion checked with probability 0.995 in 0.001255248 seconds [ Info: The search for identifiable functions concluded in 0.00826039 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001673964 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001118419 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.76e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000322496 [ Info: Selecting generators in 0.000428996 [ Info: Inclusion checked with probability 0.995 in 0.001327048 seconds [ Info: The search for identifiable functions concluded in 0.008373469 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001702453 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001214649 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 1.747e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000329656 [ Info: Selecting generators in 0.000444086 [ Info: Inclusion checked with probability 0.995 in 0.001267728 seconds [ Info: The search for identifiable functions concluded in 0.008545517 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[Θ] │ case = │ (ode = x1'(t) = x2(t)^2*Θ │ x2'(t) = u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 5 variables x1(t), x2(t), y(t), u(t), Θ │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000975001 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000969821 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.401e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.669e-5 [ Info: Selecting generators in 0.001382307 [ Info: Inclusion checked with probability 0.995 in 0.002459826 seconds [ Info: The search for identifiable functions concluded in 0.012798736 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000985821 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00095557 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.042e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2429e-5 [ Info: Selecting generators in 0.001378766 [ Info: Inclusion checked with probability 0.995 in 0.002409776 seconds [ Info: The search for identifiable functions concluded in 0.012548579 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00099898 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000963311 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.061e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.2109e-5 [ Info: Selecting generators in 0.001533666 [ Info: Inclusion checked with probability 0.995 in 0.002532565 seconds [ Info: The search for identifiable functions concluded in 0.013106623 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m//k_m] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00102643 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000982451 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0789e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.184509994 [ Info: Selecting generators in 0.002541196 [ Info: Inclusion checked with probability 0.995 in 0.002323427 seconds [ Info: The search for identifiable functions concluded in 0.19843271 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00099073 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00096188 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.054e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.010063113 [ Info: Selecting generators in 0.002320308 [ Info: Inclusion checked with probability 0.995 in 0.002274188 seconds [ Info: The search for identifiable functions concluded in 0.023231086 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0010566 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000962481 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.096e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01034156 [ Info: Selecting generators in 0.002349437 [ Info: Inclusion checked with probability 0.995 in 0.002257529 seconds [ Info: The search for identifiable functions concluded in 0.023579342 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, c*k_m, V_m*c] │ case = │ (ode = x'(t) = (x(t)^2*k01 - x(t)*V_m + x(t)*k01*k_m)//(x(t) + k_m) │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[k01, c*k_m, V_m*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), V_m, c, ..., k_m │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), V_m, c, k01, k_m] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000890111 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000845362 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.772e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.3599e-5 [ Info: Selecting generators in 0.001698694 [ Info: Inclusion checked with probability 0.995 in 0.00201055 seconds [ Info: The search for identifiable functions concluded in 0.724090062 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000951801 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000906621 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.879e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.04e-5 [ Info: Selecting generators in 0.001341647 [ Info: Inclusion checked with probability 0.995 in 0.001799622 seconds [ Info: The search for identifiable functions concluded in 0.009913254 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000885491 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000827392 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.641e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.3089e-5 [ Info: Selecting generators in 0.001323837 [ Info: Inclusion checked with probability 0.995 in 0.001791102 seconds [ Info: The search for identifiable functions concluded in 0.009681356 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000860022 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000786623 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.721e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.167601068 [ Info: Selecting generators in 0.001858672 [ Info: Inclusion checked with probability 0.995 in 0.001867622 seconds [ Info: The search for identifiable functions concluded in 0.17772795 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000882442 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000914351 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.0399e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003629675 [ Info: Selecting generators in 0.001453786 [ Info: Inclusion checked with probability 0.995 in 0.001766113 seconds [ Info: The search for identifiable functions concluded in 0.013484709 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000859281 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000793162 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.627e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003660355 [ Info: Selecting generators in 0.001420426 [ Info: Inclusion checked with probability 0.995 in 0.001769222 seconds [ Info: The search for identifiable functions concluded in 0.013162563 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , ident_funcs = QQMPolyRingElem[b*c, a]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001406186 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001103859 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.648e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.3369e-5 [ Info: Selecting generators in 0.000360767 [ Info: Inclusion checked with probability 0.995 in 0.001813182 seconds [ Info: The search for identifiable functions concluded in 0.011995034 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001484386 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001131069 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.815e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.6429e-5 [ Info: Selecting generators in 0.000347786 [ Info: Inclusion checked with probability 0.995 in 0.00206926 seconds [ Info: The search for identifiable functions concluded in 0.012604998 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001367216 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001115879 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.723e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.2819e-5 [ Info: Selecting generators in 0.000346086 [ Info: Inclusion checked with probability 0.995 in 0.001863562 seconds [ Info: The search for identifiable functions concluded in 0.012027064 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001487285 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001166949 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.769e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004541436 [ Info: Selecting generators in 0.000431526 [ Info: Inclusion checked with probability 0.995 in 0.001887072 seconds [ Info: The search for identifiable functions concluded in 0.016913737 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001526216 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001110949 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.731e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004640595 [ Info: Selecting generators in 0.000447975 [ Info: Inclusion checked with probability 0.995 in 0.001872672 seconds [ Info: The search for identifiable functions concluded in 0.017016655 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001393016 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00112026 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.747e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004621785 [ Info: Selecting generators in 0.000422656 [ Info: Inclusion checked with probability 0.995 in 0.001851202 seconds [ Info: The search for identifiable functions concluded in 0.016720198 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a01 + a12 + a21, a01*a12] │ case = │ (ode = x0'(t) = -x0(t)*a01 - x0(t)*a21 + x1(t)*a12 │ x1'(t) = x0(t)*a21 - x1(t)*a12 │ y(t) = x0(t) │ , ident_funcs = QQMPolyRingElem[a01*a12, a01 + a12 + a21]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x0(t), x1(t), y(t), a01, ..., a21 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x0(t), x1(t), y(t), a01, a12, a21] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001757432 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001382986 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.952e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.5409e-5 [ Info: Selecting generators in 0.001927112 [ Info: Inclusion checked with probability 0.995 in 0.002257248 seconds [ Info: The search for identifiable functions concluded in 0.014928125 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001795993 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001453856 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0599e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2379e-5 [ Info: Selecting generators in 0.001925312 [ Info: Inclusion checked with probability 0.995 in 0.002279588 seconds [ Info: The search for identifiable functions concluded in 0.015060534 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001756143 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001374207 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.899e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.1579e-5 [ Info: Selecting generators in 0.002778153 [ Info: Inclusion checked with probability 0.995 in 0.002611535 seconds [ Info: The search for identifiable functions concluded in 0.016570159 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001812843 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001465346 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.6759e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009533248 [ Info: Selecting generators in 0.002365587 [ Info: Inclusion checked with probability 0.995 in 0.002340887 seconds [ Info: The search for identifiable functions concluded in 0.025398294 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001822622 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001441896 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 1.88e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.204209933 [ Info: Selecting generators in 0.002382856 [ Info: Inclusion checked with probability 0.995 in 0.002353467 seconds [ Info: The search for identifiable functions concluded in 0.22002956 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001811722 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001476466 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.0509e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.009068972 [ Info: Selecting generators in 0.002283598 [ Info: Inclusion checked with probability 0.995 in 0.002289408 seconds [ Info: The search for identifiable functions concluded in 0.024625872 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k3 + k4, k1 + k2, k2*k3] │ case = │ (ode = x1'(t) = -x1(t)*k1 - x1(t)*k2 + x2(t)*k3 + u(t) │ x2'(t) = x1(t)*k2 - x2(t)*k3 - x2(t)*k4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[k1 + k2, k3 + k4, k2*k3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 8 variables x1(t), x2(t), y(t), u(t), ..., k4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), u(t), k1, k2, k3, k4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011811106 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003214349 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.7099e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106349 [ Info: Selecting generators in 0.006416288 [ Info: Inclusion checked with probability 0.995 in 0.004008522 seconds [ Info: The search for identifiable functions concluded in 0.214193176 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004470017 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003782164 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.857e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000104959 [ Info: Selecting generators in 0.006540107 [ Info: Inclusion checked with probability 0.995 in 0.003808993 seconds [ Info: The search for identifiable functions concluded in 0.032891122 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004345218 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003436427 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.733e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000107169 [ Info: Selecting generators in 0.0061585 [ Info: Inclusion checked with probability 0.995 in 0.003836343 seconds [ Info: The search for identifiable functions concluded in 0.031295627 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004286859 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003220049 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.8489e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001625424 [ Info: Selecting generators in 0.007027082 [ Info: Inclusion checked with probability 0.995 in 0.004307738 seconds [ Info: The search for identifiable functions concluded in 0.034412227 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004937502 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003802223 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 2.64e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001614975 [ Info: Selecting generators in 0.006961912 [ Info: Inclusion checked with probability 0.995 in 0.004289259 seconds [ Info: The search for identifiable functions concluded in 0.035573026 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0052415 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003984131 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 3.7879e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001507095 [ Info: Selecting generators in 0.006721215 [ Info: Inclusion checked with probability 0.995 in 0.00416826 seconds [ Info: The search for identifiable functions concluded in 0.036073401 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003314557 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002280318 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.964e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.9259e-5 [ Info: Selecting generators in 0.001260208 [ Info: Inclusion checked with probability 0.995 in 0.002631834 seconds [ Info: The search for identifiable functions concluded in 0.017073715 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003280808 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002278798 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.923e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.7019e-5 [ Info: Selecting generators in 0.001241338 [ Info: Inclusion checked with probability 0.995 in 0.002598125 seconds [ Info: The search for identifiable functions concluded in 0.016955925 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003643855 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002338778 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.073e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9829e-5 [ Info: Selecting generators in 0.001285687 [ Info: Inclusion checked with probability 0.995 in 0.002971011 seconds [ Info: The search for identifiable functions concluded in 0.018090205 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003380077 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002373897 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.0e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000938071 [ Info: Selecting generators in 0.001397747 [ Info: Inclusion checked with probability 0.995 in 0.0030851 seconds [ Info: The search for identifiable functions concluded in 0.019091756 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003472476 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00305215 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 2.356e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00109111 [ Info: Selecting generators in 0.001467136 [ Info: Inclusion checked with probability 0.995 in 0.003015651 seconds [ Info: The search for identifiable functions concluded in 12.02690938 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003342538 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002292967 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 1.873e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000911611 [ Info: Selecting generators in 0.001337577 [ Info: Inclusion checked with probability 0.995 in 0.002603815 seconds [ Info: The search for identifiable functions concluded in 0.018643839 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[b2, b1, a2, a1] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 + u(t) │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[a1, a2, b1, b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004285919 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003364957 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.6789e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000138369 [ Info: Selecting generators in 0.002441336 [ Info: Inclusion checked with probability 0.995 in 0.003403227 seconds [ Info: The search for identifiable functions concluded in 0.028354435 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004757214 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003133149 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.438e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105999 [ Info: Selecting generators in 0.001914772 [ Info: Inclusion checked with probability 0.995 in 0.002782223 seconds [ Info: The search for identifiable functions concluded in 0.249292706 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003560976 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002479696 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.584e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000102379 [ Info: Selecting generators in 0.001800493 [ Info: Inclusion checked with probability 0.995 in 0.002632195 seconds [ Info: The search for identifiable functions concluded in 0.022475282 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2 + b1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003660905 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002283268 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.5039e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014004185 [ Info: Selecting generators in 0.002823002 [ Info: Inclusion checked with probability 0.995 in 0.002677924 seconds [ Info: The search for identifiable functions concluded in 0.037652205 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.003775103 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002317177 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.563e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013579339 [ Info: Selecting generators in 0.002616035 [ Info: Inclusion checked with probability 0.995 in 0.002342797 seconds [ Info: The search for identifiable functions concluded in 0.036783964 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00301098 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001998481 seconds [ Info: Dimensions of the Wronskians [4] [ Info: Ranks of the Wronskians computed in 2.084e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.011642507 [ Info: Selecting generators in 0.002470386 [ Info: Inclusion checked with probability 0.995 in 0.002273528 seconds [ Info: The search for identifiable functions concluded in 0.03204156 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a1 + a2 + b1 + b2, b1*b2, a1*a2 + a1*b2] │ case = │ (ode = x1'(t) = -x1(t)*a1 + x2(t)*b1 │ x2'(t) = x1(t)*a1 - x2(t)*a2 - x2(t)*b1 + x3(t)*b2 │ x3'(t) = x2(t)*a2 - x3(t)*b2 + u(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[b1*b2, a1 + a2 + b1 + b2, a1*a2 + a1*b2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y(t), ..., b2 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u(t), a1, a2, b1, b2] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001559355 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001223629 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.714e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.9419e-5 [ Info: Selecting generators in 0.001016771 [ Info: Inclusion checked with probability 0.995 in 0.002166059 seconds [ Info: The search for identifiable functions concluded in 0.012154662 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001863722 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001376907 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.838e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.1119e-5 [ Info: Selecting generators in 0.001171829 [ Info: Inclusion checked with probability 0.995 in 0.002427217 seconds [ Info: The search for identifiable functions concluded in 0.014098614 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00312853 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001497576 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.927e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.9619e-5 [ Info: Selecting generators in 0.001176149 [ Info: Inclusion checked with probability 0.995 in 0.002025641 seconds [ Info: The search for identifiable functions concluded in 0.014726747 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001570965 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001268378 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.805e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007884154 [ Info: Selecting generators in 0.001957802 [ Info: Inclusion checked with probability 0.995 in 0.002228018 seconds [ Info: The search for identifiable functions concluded in 0.021322744 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001620705 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001333167 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.992e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007888143 [ Info: Selecting generators in 0.001912172 [ Info: Inclusion checked with probability 0.995 in 0.002328758 seconds [ Info: The search for identifiable functions concluded in 0.021546511 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001558685 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001236978 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 1.748e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007608557 [ Info: Selecting generators in 0.00198904 [ Info: Inclusion checked with probability 0.995 in 0.0020768 seconds [ Info: The search for identifiable functions concluded in 0.020816879 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[p1 + p4, p1*p4 - p2*p3] │ case = │ (ode = x1'(t) = x1(t)^2*p1 + x1(t)*x2(t)*p2 │ x2'(t) = x1(t)^2*p3 + x1(t)*x2(t)*p4 │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[p1 + p4, p1*p4 - p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), p1, ..., p4 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008767415 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018322823 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000191388 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:04 ✓ # Computing specializations.. Time: 0:00:04 [ Info: Search for polynomial generators concluded in 0.000220468 [ Info: Selecting generators in 0.013121353 [ Info: Inclusion checked with probability 0.995 in 0.022915408 seconds [ Info: The search for identifiable functions concluded in 9.86382941 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011236241 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.024102307 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000283017 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000119929 [ Info: Selecting generators in 0.012601358 [ Info: Inclusion checked with probability 0.995 in 0.020999246 seconds [ Info: The search for identifiable functions concluded in 0.123548603 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011060673 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.021970137 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000291217 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000117208 [ Info: Selecting generators in 0.015376131 [ Info: Inclusion checked with probability 0.995 in 0.022782209 seconds [ Info: The search for identifiable functions concluded in 0.12697138 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01139229 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.021993817 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000206088 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.900844651 [ Info: Selecting generators in 0.013021604 [ Info: Inclusion checked with probability 0.995 in 0.213361842 seconds [ Info: The search for identifiable functions concluded in 1.215668731 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009176111 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.020117705 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000281468 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.032233247 [ Info: Selecting generators in 0.011087682 [ Info: Inclusion checked with probability 0.995 in 0.018845748 seconds [ Info: The search for identifiable functions concluded in 0.138154531 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.009393839 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.019687829 seconds [ Info: Dimensions of the Wronskians [69] [ Info: Ranks of the Wronskians computed in 0.000259057 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.031034339 [ Info: Selecting generators in 0.010143392 [ Info: Inclusion checked with probability 0.995 in 0.017253123 seconds [ Info: The search for identifiable functions concluded in 0.132946302 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[sigma, c, b, beta + delta, beta*delta] │ case = │ (ode = x1'(t) = (-x1(t)*x4(t)*b - x1(t)*b*c + 1)//(x4(t) + c) │ x2'(t) = x1(t)*alpha - x2(t)*beta │ x3'(t) = x2(t)*gama - x3(t)*delta │ x4'(t) = (x2(t)*x4(t)*gama*sigma - x3(t)*x4(t)*delta*sigma)//x3(t) │ y(t) = x1(t) │ , ident_funcs = QQMPolyRingElem[sigma, beta + delta, c, b, beta*delta]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x1(t), x2(t), x3(t), x4(t), ..., sigma │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y(t), alpha, b, beta, c, delta, gama, sigma] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.117967457 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.337755608 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.144997824 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000122569 [ Info: Selecting generators in 0.592348048 [ Info: Inclusion checked with probability 0.995 in 1.754011885 seconds [ Info: The search for identifiable functions concluded in 11.474901549 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.050667044 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.103281536 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.128139878 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 Points: 4   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000165068 [ Info: Selecting generators in 0.702526886 [ Info: Inclusion checked with probability 0.995 in 1.601483775 seconds [ Info: The search for identifiable functions concluded in 11.261693768 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.265958579 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 5.534331645 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.1319016 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.000123249 [ Info: Selecting generators in 0.764374112 [ Info: Inclusion checked with probability 0.995 in 2.405592312 seconds [ Info: The search for identifiable functions concluded in 12.773103671 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.842351897 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.655678205 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.182634697 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.030098347 [ Info: Selecting generators in 1.237150914 [ Info: Inclusion checked with probability 0.995 in 2.479813902 seconds [ Info: The search for identifiable functions concluded in 18.47051753 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.388770139 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 8.347059685 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.179851272 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 4   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.034707823 [ Info: Selecting generators in 0.462773351 [ Info: Inclusion checked with probability 0.995 in 1.974588405 seconds [ Info: The search for identifiable functions concluded in 16.68572684 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 1.493602229 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 7.96069665 seconds [ Info: Dimensions of the Wronskians [830, 3] [ Info: Ranks of the Wronskians computed in 0.217513934 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ✓ # Computing specializations.. Time: 0:00:00 [ Info: Search for polynomial generators concluded in 0.027653891 [ Info: Selecting generators in 0.614185815 [ Info: Inclusion checked with probability 0.995 in 5.037256972 seconds [ Info: The search for identifiable functions concluded in 20.015333313 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[nu, mu, g, b0, M^2] │ case = │ (ode = s'(t) = -s(t)*i(t)*x1(t)*b0*b1 - s(t)*i(t)*b0 - s(t)*mu + r(t)*g + mu │ i'(t) = s(t)*i(t)*x1(t)*b0*b1 + s(t)*i(t)*b0 - i(t)*mu - i(t)*nu │ r'(t) = i(t)*nu - r(t)*g - r(t)*mu │ x1'(t) = -x2(t)*M │ x2'(t) = x1(t)*M │ y1(t) = i(t) │ y2(t) = r(t) │ , ident_funcs = QQMPolyRingElem[g, mu, b0, nu, M^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables s(t), i(t), r(t), x1(t), ..., nu │ over rational field └ with_states = false [ Info: QQMPolyRingElem[s(t), i(t), r(t), x1(t), x2(t), y1(t), y2(t), M, b0, b1, g, mu, nu] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01131775 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009399169 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.225e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120309 [ Info: Selecting generators in 0.006832104 [ Info: Inclusion checked with probability 0.995 in 0.007887263 seconds [ Info: The search for identifiable functions concluded in 0.070185467 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011413418 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01028082 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.0609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120919 [ Info: Selecting generators in 0.00723836 [ Info: Inclusion checked with probability 0.995 in 0.008028782 seconds [ Info: The search for identifiable functions concluded in 0.071142648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01127568 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009694406 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 3.952e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126708 [ Info: Selecting generators in 0.007443948 [ Info: Inclusion checked with probability 0.995 in 0.007977072 seconds [ Info: The search for identifiable functions concluded in 0.072740973 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, gamma*psi - gamma - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012241731 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.009881034 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.488e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.035056369 [ Info: Selecting generators in 0.012620537 [ Info: Inclusion checked with probability 0.995 in 0.009025072 seconds [ Info: The search for identifiable functions concluded in 0.11607222 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012563488 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010179091 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.498e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.035818322 [ Info: Selecting generators in 0.012033363 [ Info: Inclusion checked with probability 0.995 in 0.008413089 seconds [ Info: The search for identifiable functions concluded in 0.117271999 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01237986 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.010654996 seconds [ Info: Dimensions of the Wronskians [15] [ Info: Ranks of the Wronskians computed in 4.371e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.030623602 [ Info: Selecting generators in 0.011251781 [ Info: Inclusion checked with probability 0.995 in 0.00826066 seconds [ Info: The search for identifiable functions concluded in 0.11094231 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[gamma, beta//psi, gamma*psi - psi*v, psi*v - psi - v] │ case = │ (ode = S'(t) = -S(t)*I(t)*beta │ E'(t) = S(t)*I(t)*beta - E(t)*v │ I'(t) = E(t)*v + I(t)*gamma*psi - I(t)*gamma - I(t)*psi │ R'(t) = -I(t)*gamma*psi + I(t)*gamma + Q(t)*gamma │ Q'(t) = I(t)*psi - Q(t)*gamma │ y1(t) = Q(t) │ , ident_funcs = RingElem[gamma*psi - psi*v, beta//psi, gamma, psi*v - psi - v]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 10 variables S(t), E(t), I(t), R(t), ..., v │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), E(t), I(t), R(t), Q(t), y1(t), beta, gamma, psi, v] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011658287 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006804703 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.9749e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000220418 [ Info: Selecting generators in 0.034069978 [ Info: Inclusion checked with probability 0.995 in 0.013656527 seconds [ Info: The search for identifiable functions concluded in 0.733649781 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010759195 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006370688 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.841e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000232888 [ Info: Selecting generators in 0.028058997 [ Info: Inclusion checked with probability 0.995 in 0.01033124 seconds [ Info: The search for identifiable functions concluded in 0.396442302 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01032788 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00618659 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.023e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000188118 [ Info: Selecting generators in 0.033704612 [ Info: Inclusion checked with probability 0.995 in 0.013047623 seconds [ Info: The search for identifiable functions concluded in 0.444645123 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k12*k13 + k12*k14 + k13*k14, k01*k12 + k01*k13 + k01*k14 + k12*k13 + k12*k14 + k12*k31 + k12*k41 + k13*k14 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k12*k13*k14, k01*k12*k13 + k01*k12*k14 + k01*k13*k14 + k12*k13*k14 + k12*k13*k41 + k12*k14*k31 + k13*k14*k21] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.011124212 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006412018 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 3.1999e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 2.818669745 [ Info: Selecting generators in 0.059039296 [ Info: Inclusion checked with probability 0.995 in 0.012139072 seconds [ Info: The search for identifiable functions concluded in 4.744202235 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.008915933 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0050947 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.312e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.280831496 [ Info: Selecting generators in 0.054548779 [ Info: Inclusion checked with probability 0.995 in 0.012105222 seconds [ Info: The search for identifiable functions concluded in 0.653816816 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010615787 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006688665 seconds [ Info: Dimensions of the Wronskians [8] [ Info: Ranks of the Wronskians computed in 2.867e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.109013834 [ Info: Selecting generators in 0.077629734 [ Info: Inclusion checked with probability 0.995 in 0.013617147 seconds [ Info: The search for identifiable functions concluded in 1.563245843 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31 + k21*k41 + k31*k41, k12*k13 + k12*k14 + k13*k14, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31*k41, k12*k13*k14] │ case = │ (ode = x1'(t) = -x1(t)*k01 - x1(t)*k21 - x1(t)*k31 - x1(t)*k41 + x2(t)*k12 + x3(t)*k13 + x4(t)*k14 + u(t) │ x2'(t) = x1(t)*k21 - x2(t)*k12 │ x3'(t) = x1(t)*k31 - x3(t)*k13 │ x4'(t) = x1(t)*k41 - x4(t)*k14 │ y1(t) = x1(t) │ , ident_funcs = AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k12*k13 + k12*k14 + k13*k14, k01, k21 + k31 + k41, k12 + k13 + k14, k21*k31*k41, k12*k31 + k12*k41 + k13*k21 + k13*k41 + k14*k21 + k14*k31, k21*k31 + k21*k41 + k31*k41, k12*k13*k14]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), x4(t), ..., k41 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), x4(t), y1(t), u(t), k01, k12, k13, k14, k21, k31, k41] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022481621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015826656 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.5009e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000145738 [ Info: Selecting generators in 0.009534208 [ Info: Inclusion checked with probability 0.995 in 0.01439109 seconds [ Info: The search for identifiable functions concluded in 0.105304785 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022188014 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015469909 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.3609e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132809 [ Info: Selecting generators in 0.010050072 [ Info: Inclusion checked with probability 0.995 in 0.015041103 seconds [ Info: The search for identifiable functions concluded in 0.105062857 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022580651 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015527469 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 9.5379e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000134669 [ Info: Selecting generators in 0.009726055 [ Info: Inclusion checked with probability 0.995 in 0.014661387 seconds [ Info: The search for identifiable functions concluded in 0.106411614 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10//k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.022938467 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016249052 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000105219 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.046777625 [ Info: Selecting generators in 0.017014864 [ Info: Inclusion checked with probability 0.995 in 0.014834506 seconds [ Info: The search for identifiable functions concluded in 0.162055752 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.023115635 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.01543242 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000113039 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.049682847 [ Info: Selecting generators in 0.015797406 [ Info: Inclusion checked with probability 0.995 in 0.014153872 seconds [ Info: The search for identifiable functions concluded in 0.163424519 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.021352122 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014842005 seconds [ Info: Dimensions of the Wronskians [3, 36] [ Info: Ranks of the Wronskians computed in 0.000110259 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.047273749 [ Info: Selecting generators in 0.015975415 [ Info: Inclusion checked with probability 0.995 in 0.013961444 seconds [ Info: The search for identifiable functions concluded in 0.156494907 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[k7, k6, k5, k10 + 2*k8, k9^2, k10*k9] │ case = │ (ode = x5'(t) = (x5(t)*x4(t)*k5 - x5(t)*x4(t)*k7 - x5(t)*k6*k7 + x4(t)*x6(t)*k5 + x4(t)*k5*k8)//(x5(t)*x4(t) + x5(t)*k6 + x4(t)*x6(t) + x4(t)*k8 + x6(t)*k6 + k6*k8) │ x7'(t) = (-x6(t)^2*k9 + x6(t)*k10*k9)//k10 │ x4'(t) = (-x4(t)*k5)//(x4(t) + k6) │ x6'(t) = (x5(t)*x6(t)^2*k9 - x5(t)*x6(t)*k10*k9 + x5(t)*k10*k7 + x6(t)^3*k9 - x6(t)^2*k10*k9 + x6(t)^2*k8*k9 - x6(t)*k10*k8*k9)//(x5(t)*k10 + x6(t)*k10 + k10*k8) │ y1(t) = x4(t) │ y2(t) = x5(t) │ , ident_funcs = QQMPolyRingElem[k7, k5, k6, k10*k9, k9^2, k10 + 2*k8]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables x5(t), x7(t), x4(t), x6(t), ..., k9 │ over rational field └ with_states = false [ Info: QQMPolyRingElem[x5(t), x7(t), x4(t), x6(t), y1(t), y2(t), k10, k5, k6, k7, k8, k9] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010805915 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.014784487 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.3889e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000159198 [ Info: Selecting generators in 0.081838583 [ Info: Inclusion checked with probability 0.995 in 0.018696988 seconds [ Info: The search for identifiable functions concluded in 0.508380591 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012911244 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016834636 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.5929e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000277737 [ Info: Selecting generators in 0.093075224 [ Info: Inclusion checked with probability 0.995 in 0.018167983 seconds [ Info: The search for identifiable functions concluded in 1.478338907 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.012239391 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.016295871 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.4349e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000179658 [ Info: Selecting generators in 0.080248859 [ Info: Inclusion checked with probability 0.995 in 0.017180223 seconds [ Info: The search for identifiable functions concluded in 0.538781994 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*b*g + a*b*s + b*e*g*s, (a + e*s - s)//(a*e)] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.010849925 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015149662 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 8.1039e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.07909545 [ Info: Selecting generators in 0.077154449 [ Info: Inclusion checked with probability 0.995 in 0.016010954 seconds [ Info: The search for identifiable functions concluded in 0.580503208 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.01130188 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.015725707 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.456e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.092194862 [ Info: Selecting generators in 0.082600546 [ Info: Inclusion checked with probability 0.995 in 0.918280959 seconds [ Info: The search for identifiable functions concluded in 1.527813114 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.014170622 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.018718128 seconds [ Info: Dimensions of the Wronskians [32] [ Info: Ranks of the Wronskians computed in 7.4069e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 1.296873691 [ Info: Selecting generators in 0.078686473 [ Info: Inclusion checked with probability 0.995 in 0.015667558 seconds [ Info: The search for identifiable functions concluded in 1.890301903 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[s, b, Ninv, a + g, a*e*g, a*g + e*g*s - g*s] │ case = │ (ode = S'(t) = -S(t)*In(t)*Ninv*b - S(t)*u(t)*Ninv │ In'(t) = -In(t)*g + L(t)*a + Q(t)*s │ L'(t) = S(t)*In(t)*Ninv*b - L(t)*a │ Q'(t) = -In(t)*e*g + In(t)*g - Q(t)*s │ y(t) = In(t)*Ninv │ , ident_funcs = QQMPolyRingElem[a*g + e*g*s - g*s, b, a + g, a*e*g, s, Ninv]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 12 variables S(t), In(t), L(t), Q(t), ..., s │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), In(t), L(t), Q(t), y(t), u(t), Ninv, a, b, e, g, s] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.737960856 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.050962564 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 9.6129e-5 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 20   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 41   ⌜ # Computing specializations.. Time: 0:00:01 Points: 52   ⌝ # Computing specializations.. Time: 0:00:02 Points: 62   ⌟ # Computing specializations.. Time: 0:00:02 Points: 73   ⌞ # Computing specializations.. Time: 0:00:02 Points: 83   ⌜ # Computing specializations.. Time: 0:00:03 Points: 93   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 44   ⌜ # Computing specializations.. Time: 0:00:01 Points: 57   ⌝ # Computing specializations.. Time: 0:00:02 Points: 65   ⌟ # Computing specializations.. Time: 0:00:02 Points: 76   ⌞ # Computing specializations.. Time: 0:00:02 Points: 87   ⌜ # Computing specializations.. Time: 0:00:03 Points: 98   ⌝ # Computing specializations.. Time: 0:00:03 Points: 109   ⌟ # Computing specializations.. Time: 0:00:04 Points: 118   ⌞ # Computing specializations.. Time: 0:00:04 Points: 129   ⌜ # Computing specializations.. Time: 0:00:04 Points: 140   ⌝ # Computing specializations.. Time: 0:00:05 Points: 152   ⌟ # Computing specializations.. Time: 0:00:05 Points: 162   ⌞ # Computing specializations.. Time: 0:00:05 Points: 172   ⌜ # Computing specializations.. Time: 0:00:06 Points: 182   ⌝ # Computing specializations.. Time: 0:00:06 Points: 192   ⌟ # Computing specializations.. Time: 0:00:07 Points: 202   ⌞ # Computing specializations.. Time: 0:00:07 Points: 212   ⌜ # Computing specializations.. Time: 0:00:07 Points: 222   ⌝ # Computing specializations.. Time: 0:00:08 Points: 232   ⌟ # Computing specializations.. Time: 0:00:08 Points: 242   ⌞ # Computing specializations.. Time: 0:00:08 Points: 252   ⌜ # Computing specializations.. Time: 0:00:09 Points: 262   ⌝ # Computing specializations.. Time: 0:00:09 Points: 272   ⌟ # Computing specializations.. Time: 0:00:09 Points: 282   ⌞ # Computing specializations.. Time: 0:00:10 Points: 292   ⌜ # Computing specializations.. Time: 0:00:10 Points: 302   ⌝ # Computing specializations.. Time: 0:00:10 Points: 313   ⌟ # Computing specializations.. Time: 0:00:11 Points: 322   ⌞ # Computing specializations.. Time: 0:00:11 Points: 333   ⌜ # Computing specializations.. Time: 0:00:12 Points: 342   ⌝ # Computing specializations.. Time: 0:00:12 Points: 353   ⌟ # Computing specializations.. Time: 0:00:12 Points: 362   ⌞ # Computing specializations.. Time: 0:00:13 Points: 372   ⌜ # Computing specializations.. Time: 0:00:13 Points: 382   ⌝ # Computing specializations.. Time: 0:00:13 Points: 393   ⌟ # Computing specializations.. Time: 0:00:14 Points: 402   ⌞ # Computing specializations.. Time: 0:00:14 Points: 413   ⌜ # Computing specializations.. Time: 0:00:14 Points: 423   ⌝ # Computing specializations.. Time: 0:00:15 Points: 434   ⌟ # Computing specializations.. Time: 0:00:15 Points: 443   ⌞ # Computing specializations.. Time: 0:00:15 Points: 454   ⌜ # Computing specializations.. Time: 0:00:16 Points: 464   ⌝ # Computing specializations.. Time: 0:00:16 Points: 475   ⌟ # Computing specializations.. Time: 0:00:17 Points: 485   ⌞ # Computing specializations.. Time: 0:00:17 Points: 496   ⌜ # Computing specializations.. Time: 0:00:17 Points: 507   ⌝ # Computing specializations.. Time: 0:00:18 Points: 518   ⌟ # Computing specializations.. Time: 0:00:18 Points: 527   ⌞ # Computing specializations.. Time: 0:00:18 Points: 538   ⌜ # Computing specializations.. Time: 0:00:19 Points: 547   ⌝ # Computing specializations.. Time: 0:00:19 Points: 558   ⌟ # Computing specializations.. Time: 0:00:20 Points: 568   ⌞ # Computing specializations.. Time: 0:00:20 Points: 580   ⌜ # Computing specializations.. Time: 0:00:20 Points: 592   ⌝ # Computing specializations.. Time: 0:00:21 Points: 603   ⌟ # Computing specializations.. Time: 0:00:21 Points: 612   ⌞ # Computing specializations.. Time: 0:00:21 Points: 623   ⌜ # Computing specializations.. Time: 0:00:22 Points: 633   ✓ # Computing specializations.. Time: 0:00:22 [ Info: Search for polynomial generators concluded in 0.000479696 [ Info: Selecting generators in 0.047246079 [ Info: Inclusion checked with probability 0.995 in 9.196086941 seconds [ Info: The search for identifiable functions concluded in 55.069232697 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.660129922 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.082744062 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000151369 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 12   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:00 Points: 36   ⌞ # Computing specializations.. Time: 0:00:01 Points: 50   ⌜ # Computing specializations.. Time: 0:00:01 Points: 61   ⌝ # Computing specializations.. Time: 0:00:02 Points: 76   ⌟ # Computing specializations.. Time: 0:00:02 Points: 90   ✓ # Computing specializations.. Time: 0:00:02 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 24   ⌟ # Computing specializations.. Time: 0:00:01 Points: 39   ⌞ # Computing specializations.. Time: 0:00:01 Points: 53   ⌜ # Computing specializations.. Time: 0:00:01 Points: 66   ⌝ # Computing specializations.. Time: 0:00:02 Points: 81   ⌟ # Computing specializations.. Time: 0:00:02 Points: 95   ⌞ # Computing specializations.. Time: 0:00:03 Points: 107   ⌜ # Computing specializations.. Time: 0:00:03 Points: 122   ⌝ # Computing specializations.. Time: 0:00:03 Points: 136   ⌟ # Computing specializations.. Time: 0:00:04 Points: 149   ⌞ # Computing specializations.. Time: 0:00:04 Points: 160   ⌜ # Computing specializations.. Time: 0:00:04 Points: 171   ⌝ # Computing specializations.. Time: 0:00:05 Points: 180   ⌟ # Computing specializations.. Time: 0:00:05 Points: 190   ⌞ # Computing specializations.. Time: 0:00:05 Points: 198   ⌜ # Computing specializations.. Time: 0:00:06 Points: 209   ⌝ # Computing specializations.. Time: 0:00:06 Points: 219   ⌟ # Computing specializations.. Time: 0:00:06 Points: 229   ⌞ # Computing specializations.. Time: 0:00:07 Points: 239   ⌜ # Computing specializations.. Time: 0:00:07 Points: 249   ⌝ # Computing specializations.. Time: 0:00:07 Points: 259   ⌟ # Computing specializations.. Time: 0:00:08 Points: 269   ⌞ # Computing specializations.. Time: 0:00:08 Points: 278   ⌜ # Computing specializations.. Time: 0:00:09 Points: 288   ⌝ # Computing specializations.. Time: 0:00:09 Points: 298   ⌟ # Computing specializations.. Time: 0:00:09 Points: 307   ⌞ # Computing specializations.. Time: 0:00:10 Points: 317   ⌜ # Computing specializations.. Time: 0:00:10 Points: 326   ⌝ # Computing specializations.. Time: 0:00:11 Points: 337   ⌟ # Computing specializations.. Time: 0:00:11 Points: 347   ⌞ # Computing specializations.. Time: 0:00:11 Points: 356   ⌜ # Computing specializations.. Time: 0:00:12 Points: 366   ⌝ # Computing specializations.. Time: 0:00:12 Points: 376   ⌟ # Computing specializations.. Time: 0:00:12 Points: 385   ⌞ # Computing specializations.. Time: 0:00:13 Points: 394   ⌜ # Computing specializations.. Time: 0:00:13 Points: 403   ⌝ # Computing specializations.. Time: 0:00:13 Points: 414   ⌟ # Computing specializations.. Time: 0:00:14 Points: 424   ⌞ # Computing specializations.. Time: 0:00:14 Points: 433   ⌜ # Computing specializations.. Time: 0:00:14 Points: 443   ⌝ # Computing specializations.. Time: 0:00:15 Points: 451   ⌟ # Computing specializations.. Time: 0:00:15 Points: 463   ⌞ # Computing specializations.. Time: 0:00:16 Points: 473   ⌜ # Computing specializations.. Time: 0:00:16 Points: 482   ⌝ # Computing specializations.. Time: 0:00:16 Points: 492   ⌟ # Computing specializations.. Time: 0:00:17 Points: 500   ⌞ # Computing specializations.. Time: 0:00:17 Points: 510   ⌜ # Computing specializations.. Time: 0:00:17 Points: 520   ⌝ # Computing specializations.. Time: 0:00:18 Points: 529   ⌟ # Computing specializations.. Time: 0:00:18 Points: 539   ⌞ # Computing specializations.. Time: 0:00:19 Points: 547   ⌜ # Computing specializations.. Time: 0:00:19 Points: 558   ⌝ # Computing specializations.. Time: 0:00:19 Points: 568   ⌟ # Computing specializations.. Time: 0:00:20 Points: 577   ⌞ # Computing specializations.. Time: 0:00:20 Points: 588   ⌜ # Computing specializations.. Time: 0:00:20 Points: 597   ⌝ # Computing specializations.. Time: 0:00:21 Points: 608   ⌟ # Computing specializations.. Time: 0:00:21 Points: 619   ⌞ # Computing specializations.. Time: 0:00:22 Points: 628   ⌜ # Computing specializations.. Time: 0:00:22 Points: 638   ✓ # Computing specializations.. Time: 0:00:22 [ Info: Search for polynomial generators concluded in 0.000222338 [ Info: Selecting generators in 0.02557051 [ Info: Inclusion checked with probability 0.995 in 7.459196921 seconds [ Info: The search for identifiable functions concluded in 47.845206417 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (T*a + T*d + T*dr + e + g - r - rR)//T, (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.75370845 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.078180684 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000188368 seconds [ Info: Simplifying generating set. Simplification level: weak ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:00 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:01 Points: 54   ⌟ # Computing specializations.. Time: 0:00:02 Points: 63   ⌞ # Computing specializations.. Time: 0:00:02 Points: 72   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 88   ⌟ # Computing specializations.. Time: 0:00:03 Points: 96   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 21   ⌟ # Computing specializations.. Time: 0:00:01 Points: 32   ⌞ # Computing specializations.. Time: 0:00:01 Points: 41   ⌜ # Computing specializations.. Time: 0:00:01 Points: 50   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 68   ⌞ # Computing specializations.. Time: 0:00:02 Points: 79   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 97   ⌟ # Computing specializations.. Time: 0:00:04 Points: 105   ⌞ # Computing specializations.. Time: 0:00:04 Points: 114   ⌜ # Computing specializations.. Time: 0:00:04 Points: 121   ⌝ # Computing specializations.. Time: 0:00:05 Points: 131   ⌟ # Computing specializations.. Time: 0:00:05 Points: 141   ⌞ # Computing specializations.. Time: 0:00:05 Points: 150   ⌜ # Computing specializations.. Time: 0:00:06 Points: 159   ⌝ # Computing specializations.. Time: 0:00:06 Points: 168   ⌟ # Computing specializations.. Time: 0:00:07 Points: 177   ⌞ # Computing specializations.. Time: 0:00:07 Points: 187   ⌜ # Computing specializations.. Time: 0:00:07 Points: 196   ⌝ # Computing specializations.. Time: 0:00:08 Points: 206   ⌟ # Computing specializations.. Time: 0:00:08 Points: 215   ⌞ # Computing specializations.. Time: 0:00:08 Points: 225   ⌜ # Computing specializations.. Time: 0:00:09 Points: 234   ⌝ # Computing specializations.. Time: 0:00:09 Points: 242   ⌟ # Computing specializations.. Time: 0:00:09 Points: 251   ⌞ # Computing specializations.. Time: 0:00:10 Points: 260   ⌜ # Computing specializations.. Time: 0:00:10 Points: 269   ⌝ # Computing specializations.. Time: 0:00:11 Points: 276   ⌟ # Computing specializations.. Time: 0:00:11 Points: 288   ⌞ # Computing specializations.. Time: 0:00:11 Points: 298   ⌜ # Computing specializations.. Time: 0:00:12 Points: 307   ⌝ # Computing specializations.. Time: 0:00:12 Points: 316   ⌟ # Computing specializations.. Time: 0:00:12 Points: 325   ⌞ # Computing specializations.. Time: 0:00:13 Points: 334   ⌜ # Computing specializations.. Time: 0:00:13 Points: 344   ⌝ # Computing specializations.. Time: 0:00:14 Points: 353   ⌟ # Computing specializations.. Time: 0:00:14 Points: 362   ⌞ # Computing specializations.. Time: 0:00:14 Points: 371   ⌜ # Computing specializations.. Time: 0:00:15 Points: 380   ⌝ # Computing specializations.. Time: 0:00:15 Points: 390   ⌟ # Computing specializations.. Time: 0:00:15 Points: 399   ⌞ # Computing specializations.. Time: 0:00:16 Points: 409   ⌜ # Computing specializations.. Time: 0:00:16 Points: 418   ⌝ # Computing specializations.. Time: 0:00:17 Points: 427   ⌟ # Computing specializations.. Time: 0:00:17 Points: 436   ⌞ # Computing specializations.. Time: 0:00:17 Points: 445   ⌜ # Computing specializations.. Time: 0:00:18 Points: 455   ⌝ # Computing specializations.. Time: 0:00:18 Points: 463   ⌟ # Computing specializations.. Time: 0:00:18 Points: 473   ⌞ # Computing specializations.. Time: 0:00:19 Points: 482   ⌜ # Computing specializations.. Time: 0:00:19 Points: 492   ⌝ # Computing specializations.. Time: 0:00:19 Points: 501   ⌟ # Computing specializations.. Time: 0:00:20 Points: 509   ⌞ # Computing specializations.. Time: 0:00:20 Points: 518   ⌜ # Computing specializations.. Time: 0:00:21 Points: 527   ⌝ # Computing specializations.. Time: 0:00:21 Points: 536   ⌟ # Computing specializations.. Time: 0:00:21 Points: 545   ⌞ # Computing specializations.. Time: 0:00:22 Points: 555   ⌜ # Computing specializations.. Time: 0:00:22 Points: 564   ⌝ # Computing specializations.. Time: 0:00:22 Points: 572   ⌟ # Computing specializations.. Time: 0:00:23 Points: 581   ⌞ # Computing specializations.. Time: 0:00:23 Points: 589   ⌜ # Computing specializations.. Time: 0:00:23 Points: 599   ⌝ # Computing specializations.. Time: 0:00:24 Points: 608   ⌟ # Computing specializations.. Time: 0:00:24 Points: 616   ⌞ # Computing specializations.. Time: 0:00:24 Points: 625   ⌜ # Computing specializations.. Time: 0:00:25 Points: 632   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 0.000387587 [ Info: Selecting generators in 0.059655515 [ Info: Inclusion checked with probability 0.995 in 7.870820348 seconds [ Info: The search for identifiable functions concluded in 61.540737723 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.473108428 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.079352181 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000162598 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 11   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 30   ⌞ # Computing specializations.. Time: 0:00:01 Points: 40   ⌜ # Computing specializations.. Time: 0:00:01 Points: 51   ⌝ # Computing specializations.. Time: 0:00:02 Points: 61   ⌟ # Computing specializations.. Time: 0:00:02 Points: 71   ⌞ # Computing specializations.. Time: 0:00:03 Points: 81   ⌜ # Computing specializations.. Time: 0:00:03 Points: 91   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 10   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 49   ⌝ # Computing specializations.. Time: 0:00:02 Points: 59   ⌟ # Computing specializations.. Time: 0:00:02 Points: 69   ⌞ # Computing specializations.. Time: 0:00:03 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 98   ⌟ # Computing specializations.. Time: 0:00:04 Points: 109   ⌞ # Computing specializations.. Time: 0:00:04 Points: 119   ⌜ # Computing specializations.. Time: 0:00:04 Points: 129   ⌝ # Computing specializations.. Time: 0:00:05 Points: 139   ⌟ # Computing specializations.. Time: 0:00:05 Points: 150   ⌞ # Computing specializations.. Time: 0:00:06 Points: 160   ⌜ # Computing specializations.. Time: 0:00:06 Points: 170   ⌝ # Computing specializations.. Time: 0:00:06 Points: 179   ⌟ # Computing specializations.. Time: 0:00:07 Points: 190   ⌞ # Computing specializations.. Time: 0:00:07 Points: 200   ⌜ # Computing specializations.. Time: 0:00:08 Points: 211   ⌝ # Computing specializations.. Time: 0:00:08 Points: 221   ⌟ # Computing specializations.. Time: 0:00:08 Points: 232   ⌞ # Computing specializations.. Time: 0:00:09 Points: 242   ⌜ # Computing specializations.. Time: 0:00:09 Points: 253   ⌝ # Computing specializations.. Time: 0:00:10 Points: 263   ⌟ # Computing specializations.. Time: 0:00:10 Points: 274   ⌞ # Computing specializations.. Time: 0:00:10 Points: 284   ⌜ # Computing specializations.. Time: 0:00:11 Points: 294   ⌝ # Computing specializations.. Time: 0:00:11 Points: 303   ⌟ # Computing specializations.. Time: 0:00:12 Points: 314   ⌞ # Computing specializations.. Time: 0:00:12 Points: 324   ⌜ # Computing specializations.. Time: 0:00:12 Points: 334   ⌝ # Computing specializations.. Time: 0:00:13 Points: 344   ⌟ # Computing specializations.. Time: 0:00:13 Points: 352   ⌞ # Computing specializations.. Time: 0:00:13 Points: 362   ⌜ # Computing specializations.. Time: 0:00:14 Points: 370   ⌝ # Computing specializations.. Time: 0:00:14 Points: 380   ⌟ # Computing specializations.. Time: 0:00:15 Points: 390   ⌞ # Computing specializations.. Time: 0:00:15 Points: 400   ⌜ # Computing specializations.. Time: 0:00:15 Points: 410   ⌝ # Computing specializations.. Time: 0:00:16 Points: 421   ⌟ # Computing specializations.. Time: 0:00:16 Points: 431   ⌞ # Computing specializations.. Time: 0:00:16 Points: 440   ⌜ # Computing specializations.. Time: 0:00:17 Points: 449   ⌝ # Computing specializations.. Time: 0:00:17 Points: 457   ⌟ # Computing specializations.. Time: 0:00:17 Points: 467   ⌞ # Computing specializations.. Time: 0:00:18 Points: 476   ⌜ # Computing specializations.. Time: 0:00:18 Points: 487   ⌝ # Computing specializations.. Time: 0:00:19 Points: 497   ⌟ # Computing specializations.. Time: 0:00:19 Points: 507   ⌞ # Computing specializations.. Time: 0:00:19 Points: 516   ⌜ # Computing specializations.. Time: 0:00:20 Points: 525   ⌝ # Computing specializations.. Time: 0:00:20 Points: 535   ⌟ # Computing specializations.. Time: 0:00:20 Points: 543   ⌞ # Computing specializations.. Time: 0:00:21 Points: 553   ⌜ # Computing specializations.. Time: 0:00:21 Points: 562   ⌝ # Computing specializations.. Time: 0:00:22 Points: 573   ⌟ # Computing specializations.. Time: 0:00:22 Points: 583   ⌞ # Computing specializations.. Time: 0:00:22 Points: 592   ⌜ # Computing specializations.. Time: 0:00:23 Points: 601   ⌝ # Computing specializations.. Time: 0:00:23 Points: 609   ⌟ # Computing specializations.. Time: 0:00:23 Points: 619   ⌞ # Computing specializations.. Time: 0:00:24 Points: 629   ⌜ # Computing specializations.. Time: 0:00:24 Points: 639   ✓ # Computing specializations.. Time: 0:00:25 [ Info: Search for polynomial generators concluded in 2.560485025 [ Info: Selecting generators in 0.046894419 [ Info: Inclusion checked with probability 0.995 in 8.66423587 seconds [ Info: The search for identifiable functions concluded in 57.200046566 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.476268623 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.074551327 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000153729 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 36   ⌜ # Computing specializations.. Time: 0:00:01 Points: 45   ⌝ # Computing specializations.. Time: 0:00:02 Points: 55   ⌟ # Computing specializations.. Time: 0:00:02 Points: 65   ⌞ # Computing specializations.. Time: 0:00:02 Points: 75   ⌜ # Computing specializations.. Time: 0:00:03 Points: 85   ⌝ # Computing specializations.. Time: 0:00:03 Points: 95   ✓ # Computing specializations.. Time: 0:00:03 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 8   ⌝ # Computing specializations.. Time: 0:00:00 Points: 19   ⌟ # Computing specializations.. Time: 0:00:01 Points: 29   ⌞ # Computing specializations.. Time: 0:00:01 Points: 39   ⌜ # Computing specializations.. Time: 0:00:01 Points: 47   ⌝ # Computing specializations.. Time: 0:00:02 Points: 57   ⌟ # Computing specializations.. Time: 0:00:02 Points: 67   ⌞ # Computing specializations.. Time: 0:00:03 Points: 78   ⌜ # Computing specializations.. Time: 0:00:03 Points: 88   ⌝ # Computing specializations.. Time: 0:00:03 Points: 99   ⌟ # Computing specializations.. Time: 0:00:04 Points: 109   ⌞ # Computing specializations.. Time: 0:00:04 Points: 120   ⌜ # Computing specializations.. Time: 0:00:05 Points: 130   ⌝ # Computing specializations.. Time: 0:00:05 Points: 141   ⌟ # Computing specializations.. Time: 0:00:05 Points: 151   ⌞ # Computing specializations.. Time: 0:00:06 Points: 160   ⌜ # Computing specializations.. Time: 0:00:06 Points: 169   ⌝ # Computing specializations.. Time: 0:00:06 Points: 178   ⌟ # Computing specializations.. Time: 0:00:07 Points: 187   ⌞ # Computing specializations.. Time: 0:00:07 Points: 196   ⌜ # Computing specializations.. Time: 0:00:07 Points: 206   ⌝ # Computing specializations.. Time: 0:00:08 Points: 216   ⌟ # Computing specializations.. Time: 0:00:08 Points: 227   ⌞ # Computing specializations.. Time: 0:00:09 Points: 237   ⌜ # Computing specializations.. Time: 0:00:09 Points: 248   ⌝ # Computing specializations.. Time: 0:00:10 Points: 258   ⌟ # Computing specializations.. Time: 0:00:10 Points: 269   ⌞ # Computing specializations.. Time: 0:00:10 Points: 279   ⌜ # Computing specializations.. Time: 0:00:11 Points: 290   ⌝ # Computing specializations.. Time: 0:00:11 Points: 300   ⌟ # Computing specializations.. Time: 0:00:12 Points: 311   ⌞ # Computing specializations.. Time: 0:00:12 Points: 321   ⌜ # Computing specializations.. Time: 0:00:12 Points: 331   ⌝ # Computing specializations.. Time: 0:00:13 Points: 341   ⌟ # Computing specializations.. Time: 0:00:13 Points: 350   ⌞ # Computing specializations.. Time: 0:00:13 Points: 360   ⌜ # Computing specializations.. Time: 0:00:14 Points: 368   ⌝ # Computing specializations.. Time: 0:00:14 Points: 378   ⌟ # Computing specializations.. Time: 0:00:15 Points: 387   ⌞ # Computing specializations.. Time: 0:00:15 Points: 398   ⌜ # Computing specializations.. Time: 0:00:15 Points: 408   ⌝ # Computing specializations.. Time: 0:00:16 Points: 419   ⌟ # Computing specializations.. Time: 0:00:16 Points: 429   ⌞ # Computing specializations.. Time: 0:00:16 Points: 440   ⌜ # Computing specializations.. Time: 0:00:17 Points: 450   ⌝ # Computing specializations.. Time: 0:00:17 Points: 460   ⌟ # Computing specializations.. Time: 0:00:18 Points: 470   ⌞ # Computing specializations.. Time: 0:00:18 Points: 478   ⌜ # Computing specializations.. Time: 0:00:18 Points: 488   ⌝ # Computing specializations.. Time: 0:00:19 Points: 496   ⌟ # Computing specializations.. Time: 0:00:19 Points: 507   ⌞ # Computing specializations.. Time: 0:00:20 Points: 517   ⌜ # Computing specializations.. Time: 0:00:20 Points: 528   ⌝ # Computing specializations.. Time: 0:00:20 Points: 538   ⌟ # Computing specializations.. Time: 0:00:21 Points: 549   ⌞ # Computing specializations.. Time: 0:00:21 Points: 559   ⌜ # Computing specializations.. Time: 0:00:21 Points: 568   ⌝ # Computing specializations.. Time: 0:00:22 Points: 578   ⌟ # Computing specializations.. Time: 0:00:22 Points: 586   ⌞ # Computing specializations.. Time: 0:00:22 Points: 596   ⌜ # Computing specializations.. Time: 0:00:23 Points: 606   ⌝ # Computing specializations.. Time: 0:00:23 Points: 617   ⌟ # Computing specializations.. Time: 0:00:24 Points: 627   ⌞ # Computing specializations.. Time: 0:00:24 Points: 638   ✓ # Computing specializations.. Time: 0:00:24 [ Info: Search for polynomial generators concluded in 2.92277221 [ Info: Selecting generators in 0.038192654 [ Info: Inclusion checked with probability 0.995 in 8.947539841 seconds [ Info: The search for identifiable functions concluded in 57.048398967 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 2.288285324 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.079526456 seconds [ Info: Dimensions of the Wronskians [34, 2] [ Info: Ranks of the Wronskians computed in 0.000154328 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 16   ⌟ # Computing specializations.. Time: 0:00:01 Points: 25   ⌞ # Computing specializations.. Time: 0:00:01 Points: 34   ⌜ # Computing specializations.. Time: 0:00:01 Points: 43   ⌝ # Computing specializations.. Time: 0:00:02 Points: 52   ⌟ # Computing specializations.. Time: 0:00:02 Points: 61   ⌞ # Computing specializations.. Time: 0:00:02 Points: 71   ⌜ # Computing specializations.. Time: 0:00:03 Points: 80   ⌝ # Computing specializations.. Time: 0:00:03 Points: 89   ✓ # Computing specializations.. Time: 0:00:04 ⌜ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 ⌝ # Computing specializations.. Time: 0:00:00 ✓ # Computing specializations.. Time: 0:00:00 ⌜ # Computing specializations.. Time: 0:00:00 Points: 7   ⌝ # Computing specializations.. Time: 0:00:00 Points: 17   ⌟ # Computing specializations.. Time: 0:00:01 Points: 26   ⌞ # Computing specializations.. Time: 0:00:01 Points: 35   ⌜ # Computing specializations.. Time: 0:00:01 Points: 44   ⌝ # Computing specializations.. Time: 0:00:02 Points: 52   ⌟ # Computing specializations.. Time: 0:00:02 Points: 61   ⌞ # Computing specializations.. Time: 0:00:02 Points: 68   ⌜ # Computing specializations.. Time: 0:00:03 Points: 77   ⌝ # Computing specializations.. Time: 0:00:03 Points: 86   ⌟ # Computing specializations.. Time: 0:00:04 Points: 95   ⌞ # Computing specializations.. Time: 0:00:04 Points: 104   ⌜ # Computing specializations.. Time: 0:00:04 Points: 114   ⌝ # Computing specializations.. Time: 0:00:05 Points: 123   ⌟ # Computing specializations.. Time: 0:00:05 Points: 132   ⌞ # Computing specializations.. Time: 0:00:06 Points: 141   ⌜ # Computing specializations.. Time: 0:00:06 Points: 151   ⌝ # Computing specializations.. Time: 0:00:06 Points: 160   ⌟ # Computing specializations.. Time: 0:00:07 Points: 169   ⌞ # Computing specializations.. Time: 0:00:07 Points: 178   ⌜ # Computing specializations.. Time: 0:00:07 Points: 186   ⌝ # Computing specializations.. Time: 0:00:08 Points: 195   ⌟ # Computing specializations.. Time: 0:00:08 Points: 202   ⌞ # Computing specializations.. Time: 0:00:08 Points: 211   ⌜ # Computing specializations.. Time: 0:00:09 Points: 220   ⌝ # Computing specializations.. Time: 0:00:09 Points: 229   ⌟ # Computing specializations.. Time: 0:00:10 Points: 238   ⌞ # Computing specializations.. Time: 0:00:10 Points: 246   ⌜ # Computing specializations.. Time: 0:00:10 Points: 255   ⌝ # Computing specializations.. Time: 0:00:11 Points: 262   ⌟ # Computing specializations.. Time: 0:00:11 Points: 271   ⌞ # Computing specializations.. Time: 0:00:11 Points: 280   ⌜ # Computing specializations.. Time: 0:00:12 Points: 289   ⌝ # Computing specializations.. Time: 0:00:12 Points: 298   ⌟ # Computing specializations.. Time: 0:00:12 Points: 307   ⌞ # Computing specializations.. Time: 0:00:13 Points: 316   ⌜ # Computing specializations.. Time: 0:00:13 Points: 324   ⌝ # Computing specializations.. Time: 0:00:14 Points: 333   ⌟ # Computing specializations.. Time: 0:00:14 Points: 340   ⌞ # Computing specializations.. Time: 0:00:14 Points: 349   ⌜ # Computing specializations.. Time: 0:00:15 Points: 358   ⌝ # Computing specializations.. Time: 0:00:15 Points: 367   ⌟ # Computing specializations.. Time: 0:00:15 Points: 376   ⌞ # Computing specializations.. Time: 0:00:16 Points: 386   ⌜ # Computing specializations.. Time: 0:00:16 Points: 395   ⌝ # Computing specializations.. Time: 0:00:17 Points: 403   ⌟ # Computing specializations.. Time: 0:00:17 Points: 412   ⌞ # Computing specializations.. Time: 0:00:17 Points: 419   ⌜ # Computing specializations.. Time: 0:00:18 Points: 428   ⌝ # Computing specializations.. Time: 0:00:18 Points: 435   ⌟ # Computing specializations.. Time: 0:00:18 Points: 445   ⌞ # Computing specializations.. Time: 0:00:19 Points: 454   ⌜ # Computing specializations.. Time: 0:00:19 Points: 464   ⌝ # Computing specializations.. Time: 0:00:19 Points: 473   ⌟ # Computing specializations.. Time: 0:00:20 Points: 481   ⌞ # Computing specializations.. Time: 0:00:20 Points: 490   ⌜ # Computing specializations.. Time: 0:00:20 Points: 497   ⌝ # Computing specializations.. Time: 0:00:21 Points: 506   ⌟ # Computing specializations.. Time: 0:00:21 Points: 515   ⌞ # Computing specializations.. Time: 0:00:22 Points: 524   ⌜ # Computing specializations.. Time: 0:00:22 Points: 533   ⌝ # Computing specializations.. Time: 0:00:22 Points: 541   ⌟ # Computing specializations.. Time: 0:00:23 Points: 550   ⌞ # Computing specializations.. Time: 0:00:23 Points: 557   ⌜ # Computing specializations.. Time: 0:00:23 Points: 566   ⌝ # Computing specializations.. Time: 0:00:24 Points: 575   ⌟ # Computing specializations.. Time: 0:00:24 Points: 584   ⌞ # Computing specializations.. Time: 0:00:24 Points: 593   ⌜ # Computing specializations.. Time: 0:00:25 Points: 601   ⌝ # Computing specializations.. Time: 0:00:25 Points: 610   ⌟ # Computing specializations.. Time: 0:00:26 Points: 617   ⌞ # Computing specializations.. Time: 0:00:26 Points: 626   ⌜ # Computing specializations.. Time: 0:00:26 Points: 635   ✓ # Computing specializations.. Time: 0:00:27 [ Info: Search for polynomial generators concluded in 1.645661903 [ Info: Selecting generators in 0.041065215 [ Info: Inclusion checked with probability 0.995 in 7.120365778 seconds [ Info: The search for identifiable functions concluded in 55.987926173 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)] │ case = │ (ode = S'(t) = -S(t)*W(t)*a - S(t)*W(t)*d - S(t)*e + S(t)*r + R(t)*g │ R'(t) = S(t)*W(t)*a + S(t)*e - R(t)*W(t)*dr - R(t)*g + R(t)*rR │ W'(t) = -W(t)*Dd + Dd*T │ y1(t) = S(t) + R(t) │ y2(t) = T │ , ident_funcs = RingElem[T, Dd, T*a + T*d + T*dr + e + g - r - rR, (d*rR - dr*r)//(d - dr), (a^2 + 2*a*d + d^2 + dr^2)//(a*dr + d*dr), (a*r - a*rR + d*e + d*g - dr*e - dr*g)//(d - dr), (a*dr*r - a*dr*rR + d^2*g + d*dr*e - d*dr*g - dr^2*e)//(a*d - a*dr + d^2 - dr^2)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 14 variables S(t), R(t), W(t), y1(t), ..., rR │ over rational field └ with_states = false [ Info: QQMPolyRingElem[S(t), R(t), W(t), y1(t), y2(t), Dd, T, a, d, dr, e, g, r, rR] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002235878 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000150768 [ Info: Selecting generators in 0.000164708 [ Info: Inclusion checked with probability 0.995 in 0.002333186 seconds [ Info: The search for identifiable functions concluded in 0.029716506 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000949311 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.4599e-5 [ Info: Selecting generators in 0.000157818 [ Info: Inclusion checked with probability 0.995 in 0.001924521 seconds [ Info: The search for identifiable functions concluded in 0.008271658 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00098794 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0179e-5 [ Info: Selecting generators in 0.000127159 [ Info: Inclusion checked with probability 0.995 in 0.001868072 seconds [ Info: The search for identifiable functions concluded in 0.008089311 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :weak │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000935071 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000775973 [ Info: Selecting generators in 0.000148309 [ Info: Inclusion checked with probability 0.995 in 0.001871671 seconds [ Info: The search for identifiable functions concluded in 0.008724544 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.000964851 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000448295 [ Info: Selecting generators in 0.000139369 [ Info: Inclusion checked with probability 0.995 in 0.001849502 seconds [ Info: The search for identifiable functions concluded in 0.008322487 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001193868 seconds [ Info: No parameters, so Wronskian computation is not needed [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000439926 [ Info: Selecting generators in 0.000132489 [ Info: Inclusion checked with probability 0.995 in 0.001849552 seconds [ Info: The search for identifiable functions concluded in 0.008672845 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x(t)] │ case = │ (ode = x'(t) = x(t) │ y(t) = x(t) │ , ident_funcs = QQMPolyRingElem[x(t)], with_states = true) │ simplify = :standard │ R = │ Multivariate polynomial ring in 2 variables x(t), y(t) │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t)] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001506635 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00196129 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 6.0719e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000486366 [ Info: Selecting generators in 0.000723473 [ Info: Inclusion checked with probability 0.995 in 0.001851971 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105149 [ Info: Selecting generators in 0.000447765 [ Info: Inclusion checked with probability 0.995 in 0.002436956 seconds [ Info: The search for identifiable functions concluded in 0.021368539 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001252647 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001159838 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.596e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000476155 [ Info: Selecting generators in 0.000758372 [ Info: Inclusion checked with probability 0.995 in 0.001906981 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6719e-5 [ Info: Selecting generators in 0.000388226 [ Info: Inclusion checked with probability 0.995 in 0.002439616 seconds [ Info: The search for identifiable functions concluded in 0.019967443 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001309987 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001156348 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.705e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000490295 [ Info: Selecting generators in 0.000770082 [ Info: Inclusion checked with probability 0.995 in 0.001848531 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.7789e-5 [ Info: Selecting generators in 0.000394186 [ Info: Inclusion checked with probability 0.995 in 0.002238388 seconds [ Info: The search for identifiable functions concluded in 0.019726185 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001404346 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001406376 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 5.1269e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000455376 [ Info: Selecting generators in 0.000733263 [ Info: Inclusion checked with probability 0.995 in 0.001948911 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.244130138 [ Info: Selecting generators in 0.000561935 [ Info: Inclusion checked with probability 0.995 in 0.002515255 seconds [ Info: The search for identifiable functions concluded in 0.264682775 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001179098 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00108178 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.2089e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000455176 [ Info: Selecting generators in 0.000659593 [ Info: Inclusion checked with probability 0.995 in 0.001741533 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000631333 [ Info: Selecting generators in 0.000427426 [ Info: Inclusion checked with probability 0.995 in 0.002242548 seconds [ Info: The search for identifiable functions concluded in 0.018950353 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001147599 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00104684 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.0959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000444225 [ Info: Selecting generators in 0.000633124 [ Info: Inclusion checked with probability 0.995 in 0.001741783 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000631944 [ Info: Selecting generators in 0.000439026 [ Info: Inclusion checked with probability 0.995 in 0.002242297 seconds [ Info: The search for identifiable functions concluded in 0.018938942 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, x(t)] │ case = │ (ode = x'(t) = x(t)*a + u(t) │ y(t) = x(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[a, x(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x(t), y(t), u(t), a │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002555495 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.0020835 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.65e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007712634 [ Info: Selecting generators in 0.002326807 [ Info: Inclusion checked with probability 0.995 in 0.003245658 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000132588 [ Info: Selecting generators in 0.003133839 [ Info: Inclusion checked with probability 0.995 in 0.005294928 seconds [ Info: The search for identifiable functions concluded in 0.049917377 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002401106 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002011701 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 5.968e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007638594 [ Info: Selecting generators in 0.002312178 [ Info: Inclusion checked with probability 0.995 in 0.003211138 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000133629 [ Info: Selecting generators in 0.003116519 [ Info: Inclusion checked with probability 0.995 in 0.005213188 seconds [ Info: The search for identifiable functions concluded in 0.049061945 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002273058 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001846791 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.1579e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.007006141 [ Info: Selecting generators in 0.002165559 [ Info: Inclusion checked with probability 0.995 in 0.002881981 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000123839 [ Info: Selecting generators in 0.002897322 [ Info: Inclusion checked with probability 0.995 in 0.004707653 seconds [ Info: The search for identifiable functions concluded in 0.044970225 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002218548 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001823572 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 5.5359e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006561786 [ Info: Selecting generators in 0.002117639 [ Info: Inclusion checked with probability 0.995 in 0.002855522 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.023159851 [ Info: Selecting generators in 0.00299129 [ Info: Inclusion checked with probability 0.995 in 0.004947321 seconds [ Info: The search for identifiable functions concluded in 0.06785434 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002489565 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00201892 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 5.684e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006469306 [ Info: Selecting generators in 0.00210383 [ Info: Inclusion checked with probability 0.995 in 0.00305612 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022782375 [ Info: Selecting generators in 0.00295359 [ Info: Inclusion checked with probability 0.995 in 0.004580655 seconds [ Info: The search for identifiable functions concluded in 0.067913509 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002163619 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001789082 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.988e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006673754 [ Info: Selecting generators in 0.002172459 [ Info: Inclusion checked with probability 0.995 in 0.002872511 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.022652146 [ Info: Selecting generators in 0.003157679 [ Info: Inclusion checked with probability 0.995 in 0.004903242 seconds [ Info: The search for identifiable functions concluded in 0.066984928 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002171518 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001829642 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.386e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006621854 [ Info: Selecting generators in 0.002232728 [ Info: Inclusion checked with probability 0.995 in 0.002873572 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000121149 [ Info: Selecting generators in 0.002815592 [ Info: Inclusion checked with probability 0.995 in 0.004797322 seconds [ Info: The search for identifiable functions concluded in 0.044067095 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002187309 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001818572 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.419e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006555145 [ Info: Selecting generators in 0.00211868 [ Info: Inclusion checked with probability 0.995 in 0.002901431 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000126929 [ Info: Selecting generators in 0.002796423 [ Info: Inclusion checked with probability 0.995 in 0.004893511 seconds [ Info: The search for identifiable functions concluded in 0.044084814 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002248317 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001853121 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.443e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006290908 [ Info: Selecting generators in 0.001954041 [ Info: Inclusion checked with probability 0.995 in 0.002658964 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000106759 [ Info: Selecting generators in 0.002516705 [ Info: Inclusion checked with probability 0.995 in 0.004165449 seconds [ Info: The search for identifiable functions concluded in 0.334173088 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00194727 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001635954 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 4.175e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005886352 [ Info: Selecting generators in 0.001926891 [ Info: Inclusion checked with probability 0.995 in 0.002542495 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.020609176 [ Info: Selecting generators in 0.002580384 [ Info: Inclusion checked with probability 0.995 in 0.00404497 seconds [ Info: The search for identifiable functions concluded in 0.059546121 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001926521 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001563344 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.5719e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005863302 [ Info: Selecting generators in 0.001869211 [ Info: Inclusion checked with probability 0.995 in 0.002462325 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019932293 [ Info: Selecting generators in 0.002616624 [ Info: Inclusion checked with probability 0.995 in 0.003912411 seconds [ Info: The search for identifiable functions concluded in 0.058047156 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001824812 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001464005 seconds [ Info: Dimensions of the Wronskians [5] [ Info: Ranks of the Wronskians computed in 3.231e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005750213 [ Info: Selecting generators in 0.001826192 [ Info: Inclusion checked with probability 0.995 in 0.002395206 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.019406798 [ Info: Selecting generators in 0.002484096 [ Info: Inclusion checked with probability 0.995 in 0.003834072 seconds [ Info: The search for identifiable functions concluded in 0.056019836 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[d, c, a, x1(t), x2(t)*b] │ case = │ (ode = x1'(t) = -x1(t)*x2(t)*b + x1(t)*a │ x2'(t) = x1(t)*x2(t)*d - x2(t)*c │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), c, d, a, x2(t)*b]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 7 variables x1(t), x2(t), y(t), a, ..., d │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), a, b, c, d] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005227218 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003882821 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 5.5409e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001592834 [ Info: Selecting generators in 0.006880622 [ Info: Inclusion checked with probability 0.995 in 0.004192728 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000148229 [ Info: Selecting generators in 0.008599685 [ Info: Inclusion checked with probability 0.995 in 0.007355657 seconds [ Info: The search for identifiable functions concluded in 0.290527669 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005121549 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003825402 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 5.4779e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001603774 [ Info: Selecting generators in 0.007052481 [ Info: Inclusion checked with probability 0.995 in 0.004162809 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000125549 [ Info: Selecting generators in 0.008576626 [ Info: Inclusion checked with probability 0.995 in 0.007554126 seconds [ Info: The search for identifiable functions concluded in 0.0778984 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.0050638 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003779362 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 5.5479e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001632254 [ Info: Selecting generators in 0.006670154 [ Info: Inclusion checked with probability 0.995 in 0.00407616 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000149279 [ Info: Selecting generators in 0.01019983 [ Info: Inclusion checked with probability 0.995 in 0.008617305 seconds [ Info: The search for identifiable functions concluded in 0.083562465 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005919901 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004650914 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 5.573e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00195085 [ Info: Selecting generators in 0.008640055 [ Info: Inclusion checked with probability 0.995 in 0.005499716 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003830662 [ Info: Selecting generators in 0.0101757 [ Info: Inclusion checked with probability 0.995 in 0.008460937 seconds [ Info: The search for identifiable functions concluded in 0.098024051 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006177579 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004630274 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 6.736e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001918551 [ Info: Selecting generators in 0.008263938 [ Info: Inclusion checked with probability 0.995 in 0.005022491 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.003669534 [ Info: Selecting generators in 0.010251579 [ Info: Inclusion checked with probability 0.995 in 0.00906654 seconds [ Info: The search for identifiable functions concluded in 0.097377708 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.005834893 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.004548725 seconds [ Info: Dimensions of the Wronskians [13] [ Info: Ranks of the Wronskians computed in 5.888e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.001945751 [ Info: Selecting generators in 0.008500686 [ Info: Inclusion checked with probability 0.995 in 0.005186719 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004246368 [ Info: Selecting generators in 0.010653805 [ Info: Inclusion checked with probability 0.995 in 0.008544605 seconds [ Info: The search for identifiable functions concluded in 0.098507606 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[λ3, λ2, λ1, β3, β2, β1, x3(t), x2(t), x1(t)] │ case = │ (ode = x1'(t) = x1(t)*λ1 + u1(t)*β1 │ x2'(t) = x2(t)*λ2 + u2(t)*β2 │ x3'(t) = x3(t)*λ3 + u3(t)*β3 │ y(t) = x1(t) + x2(t) + x3(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[λ1, λ2, λ3, β1, β2, β3, x1(t), x2(t), x3(t)]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 13 variables x1(t), x2(t), x3(t), y(t), ..., λ3 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), u1(t), u2(t), u3(t), β1, β2, β3, λ1, λ2, λ3] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001851022 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001296677 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 4.865e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0629e-5 [ Info: Selecting generators in 0.000480896 [ Info: Inclusion checked with probability 0.995 in 0.002346697 seconds [ Info: The search for identifiable functions concluded in 0.013377907 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001754672 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001177278 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 4.631e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.0059e-5 [ Info: Selecting generators in 0.000458145 [ Info: Inclusion checked with probability 0.995 in 0.002362306 seconds [ Info: The search for identifiable functions concluded in 0.012650655 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001666703 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001131309 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.881e-5 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000105568 [ Info: Selecting generators in 0.000437075 [ Info: Inclusion checked with probability 0.995 in 0.002429656 seconds [ Info: The search for identifiable functions concluded in 0.012568306 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001640004 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001138888 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.9839e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004762893 [ Info: Selecting generators in 0.000564994 [ Info: Inclusion checked with probability 0.995 in 0.002367026 seconds [ Info: The search for identifiable functions concluded in 0.01723265 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001670063 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001131949 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.6139e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005421386 [ Info: Selecting generators in 0.000591964 [ Info: Inclusion checked with probability 0.995 in 0.002395366 seconds [ Info: The search for identifiable functions concluded in 0.017784154 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001702033 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001159798 seconds [ Info: Dimensions of the Wronskians [1] [ Info: Ranks of the Wronskians computed in 3.68e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004788352 [ Info: Selecting generators in 0.000545144 [ Info: Inclusion checked with probability 0.995 in 0.002390777 seconds [ Info: The search for identifiable functions concluded in 0.017551927 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), x2(t)*Θ] │ case = │ (ode = x1'(t) = x1(t) + x2(t)*Θ │ x2'(t) = 0 │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*Θ]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), Θ │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), Θ] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002836822 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00198912 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.8169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002565195 [ Info: Selecting generators in 0.000861451 [ Info: Inclusion checked with probability 0.995 in 0.001842292 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000108059 [ Info: Selecting generators in 0.004719403 [ Info: Inclusion checked with probability 0.995 in 0.003499315 seconds [ Info: The search for identifiable functions concluded in 0.034012414 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002865661 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00205236 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.59e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002424856 [ Info: Selecting generators in 0.000934221 [ Info: Inclusion checked with probability 0.995 in 0.001893572 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000120898 [ Info: Selecting generators in 0.004391687 [ Info: Inclusion checked with probability 0.995 in 0.003465966 seconds [ Info: The search for identifiable functions concluded in 0.033869745 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002849172 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002257548 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.525e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002399756 [ Info: Selecting generators in 0.000900851 [ Info: Inclusion checked with probability 0.995 in 0.001792122 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000118889 [ Info: Selecting generators in 0.004403536 [ Info: Inclusion checked with probability 0.995 in 0.003518535 seconds [ Info: The search for identifiable functions concluded in 0.033916255 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002812322 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001951 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.667e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002535604 [ Info: Selecting generators in 0.001082129 [ Info: Inclusion checked with probability 0.995 in 0.002385977 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.024514388 [ Info: Selecting generators in 0.004526425 [ Info: Inclusion checked with probability 0.995 in 0.003453536 seconds [ Info: The search for identifiable functions concluded in 0.060361474 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002819662 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.002311887 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 4.373e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.002477895 [ Info: Selecting generators in 0.000881321 [ Info: Inclusion checked with probability 0.995 in 0.001773452 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.494501603 [ Info: Selecting generators in 0.003863932 [ Info: Inclusion checked with probability 0.995 in 0.002897021 seconds [ Info: The search for identifiable functions concluded in 0.526969702 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.002361457 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001561144 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.4989e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.00201557 [ Info: Selecting generators in 0.000685884 [ Info: Inclusion checked with probability 0.995 in 0.001542445 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.02132959 [ Info: Selecting generators in 0.003911381 [ Info: Inclusion checked with probability 0.995 in 0.002935341 seconds [ Info: The search for identifiable functions concluded in 0.04957548 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x1(t), C*α, x3(t)*α, x2(t)*α] │ case = │ (ode = x1'(t) = x2(t)*α │ x2'(t) = x3(t) │ x3'(t) = C │ y(t) = x1(t) │ , with_states = true, ident_funcs = QQMPolyRingElem[x1(t), x2(t)*α, x3(t)*α, C*α]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x1(t), x2(t), x3(t), y(t), ..., α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y(t), C, α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001612324 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00103794 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.3459e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000358666 [ Info: Selecting generators in 0.000449475 [ Info: Inclusion checked with probability 0.995 in 0.001283117 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.2559e-5 [ Info: Selecting generators in 0.001070249 [ Info: Inclusion checked with probability 0.995 in 0.00197031 seconds [ Info: The search for identifiable functions concluded in 0.017635105 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001567615 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101013 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.2619e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000326936 [ Info: Selecting generators in 0.000441886 [ Info: Inclusion checked with probability 0.995 in 0.001293857 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 8.3689e-5 [ Info: Selecting generators in 0.000947191 [ Info: Inclusion checked with probability 0.995 in 0.001981231 seconds [ Info: The search for identifiable functions concluded in 0.017466088 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001526435 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001020569 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.25e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000329097 [ Info: Selecting generators in 0.000464965 [ Info: Inclusion checked with probability 0.995 in 0.001301327 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 7.68e-5 [ Info: Selecting generators in 0.00095973 [ Info: Inclusion checked with probability 0.995 in 0.001962111 seconds [ Info: The search for identifiable functions concluded in 0.017286359 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001560264 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00102142 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.3609e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000329567 [ Info: Selecting generators in 0.000459945 [ Info: Inclusion checked with probability 0.995 in 0.001275357 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004277148 [ Info: Selecting generators in 0.001232797 [ Info: Inclusion checked with probability 0.995 in 0.001972921 seconds [ Info: The search for identifiable functions concluded in 0.021905913 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001551194 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001045439 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.4959e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000361577 [ Info: Selecting generators in 0.000459046 [ Info: Inclusion checked with probability 0.995 in 0.001462765 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004222148 [ Info: Selecting generators in 0.001263297 [ Info: Inclusion checked with probability 0.995 in 0.00201004 seconds [ Info: The search for identifiable functions concluded in 0.022441588 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001607954 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00101285 seconds [ Info: Dimensions of the Wronskians [2] [ Info: Ranks of the Wronskians computed in 3.158e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.000345806 [ Info: Selecting generators in 0.000463375 [ Info: Inclusion checked with probability 0.995 in 0.001356846 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004306918 [ Info: Selecting generators in 0.001275817 [ Info: Inclusion checked with probability 0.995 in 0.002163279 seconds [ Info: The search for identifiable functions concluded in 0.022564907 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[α, x1(t)^2 + x2(t)^2] │ case = │ (ode = x1'(t) = x1(t)*α - x2(t)*α │ x2'(t) = x1(t)*α + x2(t)*α │ y(t) = 1//2*x1(t)^2 + 1//2*x2(t)^2 │ , with_states = true, ident_funcs = QQMPolyRingElem[α, x1(t)^2 + x2(t)^2]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 4 variables x1(t), x2(t), y(t), α │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), y(t), α] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00108621 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001044729 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 4.5179e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004594315 [ Info: Selecting generators in 0.001944131 [ Info: Inclusion checked with probability 0.995 in 0.002092999 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 9.6179e-5 [ Info: Selecting generators in 0.001690733 [ Info: Inclusion checked with probability 0.995 in 0.002566875 seconds [ Info: The search for identifiable functions concluded in 0.028658266 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.00105874 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.000957531 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 7.2889e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.006388557 [ Info: Selecting generators in 0.002578595 [ Info: Inclusion checked with probability 0.995 in 0.003037711 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000119589 [ Info: Selecting generators in 0.002579024 [ Info: Inclusion checked with probability 0.995 in 0.003606194 seconds [ Info: The search for identifiable functions concluded in 17.695169648 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001253667 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001134509 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.944e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005328697 [ Info: Selecting generators in 0.00202629 [ Info: Inclusion checked with probability 0.995 in 0.002293547 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000109419 [ Info: Selecting generators in 0.00211376 [ Info: Inclusion checked with probability 0.995 in 0.003298737 seconds [ Info: The search for identifiable functions concluded in 0.033272731 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001194249 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001103959 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 4.45e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005503415 [ Info: Selecting generators in 0.002262058 [ Info: Inclusion checked with probability 0.995 in 0.002402696 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.013048321 [ Info: Selecting generators in 0.00197874 [ Info: Inclusion checked with probability 0.995 in 0.002882471 seconds [ Info: The search for identifiable functions concluded in 0.046243302 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001177808 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001100239 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 2.9379e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.005636484 [ Info: Selecting generators in 0.002307548 [ Info: Inclusion checked with probability 0.995 in 0.002330677 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014316238 [ Info: Selecting generators in 0.002506895 [ Info: Inclusion checked with probability 0.995 in 0.003216829 seconds [ Info: The search for identifiable functions concluded in 0.048364151 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.001245708 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.001130329 seconds [ Info: Dimensions of the Wronskians [3] [ Info: Ranks of the Wronskians computed in 3.812e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.004522706 [ Info: Selecting generators in 0.001961251 [ Info: Inclusion checked with probability 0.995 in 0.002354396 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014683705 [ Info: Selecting generators in 0.002618645 [ Info: Inclusion checked with probability 0.995 in 0.003289637 seconds [ Info: The search for identifiable functions concluded in 0.047786647 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[a, b*c, x(t)*c] │ case = │ (ode = x'(t) = x(t)*a + u(t)*b │ y(t) = x(t)*c │ , with_states = true, ident_funcs = QQMPolyRingElem[a, b*c, x(t)*c]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 6 variables x(t), y(t), u(t), a, ..., c │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x(t), y(t), u(t), a, b, c] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004466836 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.003514056 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 4.77e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.012630635 [ Info: Selecting generators in 0.004272977 [ Info: Inclusion checked with probability 0.995 in 0.004549105 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000196518 [ Info: Selecting generators in 0.030292881 [ Info: Inclusion checked with probability 0.995 in 0.010221189 seconds [ Info: The search for identifiable functions concluded in 0.125958514 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.004956751 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.00404069 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 6.8469e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.014528136 [ Info: Selecting generators in 0.00602469 [ Info: Inclusion checked with probability 0.995 in 0.004900141 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000211198 [ Info: Selecting generators in 0.033457019 [ Info: Inclusion checked with probability 0.995 in 0.01218394 seconds [ Info: The search for identifiable functions concluded in 0.151259484 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006982911 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005281798 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 7.1169e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.028350949 [ Info: Selecting generators in 0.008793183 [ Info: Inclusion checked with probability 0.995 in 0.007534365 seconds [ Info: Simplifying generating set. Simplification level: weak [ Info: Search for polynomial generators concluded in 0.000228058 [ Info: Selecting generators in 0.027583177 [ Info: Inclusion checked with probability 0.995 in 0.009780623 seconds [ Info: The search for identifiable functions concluded in 0.165710251 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :weak │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006812583 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.006482526 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 7.4109e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.016781494 [ Info: Selecting generators in 0.005729773 [ Info: Inclusion checked with probability 0.995 in 0.005279797 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.128749296 [ Info: Selecting generators in 0.03748526 [ Info: Inclusion checked with probability 0.995 in 0.013286129 seconds [ Info: The search for identifiable functions concluded in 0.285668875 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006995901 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005785073 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 7.5249e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.017332129 [ Info: Selecting generators in 0.006446526 [ Info: Inclusion checked with probability 0.995 in 0.006883902 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.118683806 [ Info: Selecting generators in 0.034488078 [ Info: Inclusion checked with probability 0.995 in 0.01116187 seconds [ Info: The search for identifiable functions concluded in 0.277797462 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.006422277 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 0.005415276 seconds [ Info: Dimensions of the Wronskians [7] [ Info: Ranks of the Wronskians computed in 6.731e-5 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.01520739 [ Info: Selecting generators in 0.004634094 [ Info: Inclusion checked with probability 0.995 in 0.004995591 seconds [ Info: Simplifying generating set. Simplification level: standard [ Info: Search for polynomial generators concluded in 0.125620737 [ Info: Selecting generators in 0.038315601 [ Info: Inclusion checked with probability 0.995 in 0.013883183 seconds [ Info: The search for identifiable functions concluded in 0.28515692 seconds ┌ Info: Test, result_funcs = │ AbstractAlgebra.Generic.FracFieldElem{QQMPolyRingElem}[x3(t), p1 + p3, p2*p4, p1*p3, x1(t)*x2(t), x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3] │ case = │ (ode = x1'(t) = -x1(t)*p1 + u(t)*p2 │ x2'(t) = -x2(t)*p3 + u(t)*p4 │ x3'(t) = x1(t)*u(t)*p4 + x2(t)*u(t)*p2 - x3(t)*p1 - x3(t)*p3 │ y1(t) = x3(t) │ , with_states = true, ident_funcs = RingElem[x3(t), x1(t)*x2(t), p1*p3, p2*p4, p1 + p3, x1(t)*p4 + x2(t)*p2, x1(t)*p1*p4 + x2(t)*p2*p3]) │ simplify = :standard │ R = │ Multivariate polynomial ring in 9 variables x1(t), x2(t), x3(t), y1(t), ..., p4 │ over rational field └ with_states = true [ Info: QQMPolyRingElem[x1(t), x2(t), x3(t), y1(t), u(t), p1, p2, p3, p4] [ Info: Computing IO-equations [ Info: Computed IO-equations in 0.218607368 seconds [ Info: Computing Wronskians [ Info: Computed Wronskians in 1.259801479 seconds [ Info: Dimensions of the Wronskians [145, 18, 9] [ Info: Ranks of the Wronskians computed in 0.001823272 seconds [ Info: Simplifying generating set. Simplification level: standard ⌜ # Computing specializations.. Time: 0:00:08 ✓ # Computing specializations.. Time: 0:00:08 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 41 running 1 of 1 signal (10): User defined signal 1 _ZN4llvm11IntervalMapINS_9SlotIndexEPKNS_12LiveIntervalELj8ENS_15IntervalMapInfoIS1_EEE14const_iterator13treeAdvanceToES1_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm17InterferenceCache5Entry6updateEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy19addSplitConstraintsENS_17InterferenceCache6CursorERNS_14BlockFrequencyE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy33calculateRegionSplitCostAroundRegEtRNS_15AllocationOrderERNS_14BlockFrequencyERjS5_ at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy14tryRegionSplitERKNS_12LiveIntervalERNS_15AllocationOrderERNS_15SmallVectorImplINS_8RegisterEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy8trySplitERKNS_12LiveIntervalERNS_15AllocationOrderERNS_15SmallVectorImplINS_8RegisterEEERKNS_8SmallSetIS7_Lj16ESt4lessIS7_EEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy17selectOrSplitImplERKNS_12LiveIntervalERNS_15SmallVectorImplINS_8RegisterEEERNS_8SmallSetIS5_Lj16ESt4lessIS5_EEERNS_11SmallVectorISt4pairIPS2_NS_10MCRegisterEELj8EEEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy13selectOrSplitERKNS_12LiveIntervalERNS_15SmallVectorImplINS_8RegisterEEE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm12RegAllocBase16allocatePhysRegsEv at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm8RAGreedy20runOnMachineFunctionERNS_15MachineFunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm19MachineFunctionPass13runOnFunctionERNS_8FunctionE.part.0 at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1628 addModule at /source/src/jitlayers.cpp:2119 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:57 unknown function (ip: 0x7ab704ffc44e) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:34 unknown function (ip: 0x7ab704f47e60) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner0 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:10 #groebner#194 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:109 [inlined] groebner at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:107 unknown function (ip: 0x7ab704f47552) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #polynomial_generators#138 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:98 polynomial_generators at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/normalforms.jl:98 unknown function (ip: 0x7ab704fe2d10) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x7ab707fe09e1) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #initial_identifiable_functions#206 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 initial_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 [inlined] #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x7ab704d43b94) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7ab72db71162) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_77374.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_48666.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7ab76f4dc249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== [ Info: Search for polynomial generators concluded in 11.480330647 ====================================================================================== Information request received. A stacktrace will print followed by a 1.0 second profile. --trace-compile is enabled during profile collection. ====================================================================================== cmd: /opt/julia/bin/julia 1 running 0 of 1 signal (10): User defined signal 1 epoll_pwait at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) uv__io_poll at /workspace/srcdir/libuv/src/unix/linux.c:1404 uv_run at /workspace/srcdir/libuv/src/unix/core.c:430 ijl_task_get_next at /source/src/scheduler.c:457 [ Info: Selecting generators in 0.13539636 wait at ./task.jl:1223 wait_forever at ./task.jl:1145 jfptr_wait_forever_69311.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] start_task at /source/src/task.c:1281 unknown function (ip: (nil)) at (unknown file) ============================================================== Profile collected. A report will print at the next yield point. Disabling --trace-compile ============================================================== ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007274c819d4b0 Total snapshots: 467. Utilization: 0% ╎467 @Base/task.jl:1145 wait_forever() 466╎ 467 @Base/task.jl:1223 wait() ┌ Warning: There were no samples collected in one or more groups. │ This may be due to idle threads, or you may need to run your │ program longer (perhaps by running it multiple times), │ or adjust the delay between samples with `Profile.init()`. └ @ Profile /opt/julia/share/julia/stdlib/v1.14/Profile/src/Profile.jl:1362 Overhead ╎ [+additional indent] Count File:Line Function ========================================================= Thread 1 (default) Task 0x00007ab7553fc010 Total snapshots: 44. Utilization: 100% ╎36 @Base/client.jl:577 _start() ╎ 36 @Base/client.jl:310 exec_options(opts::Base.JLOptions) ╎ 36 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ 36 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ 36 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, _path::Str… ╎ 36 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Module, _pat… ╎ ╎ 36 @Base/loading.jl:2994 include_string(mapexpr::typeof(identity), mo… ╎ ╎ 36 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ 36 @StructuralIdentifiability/…:150 top-level scope ╎ ╎ 36 @Base/timing.jl:689 macro expansion ╎ ╎ 36 @StructuralIdentifiability/…:151 macro expansion ╎ ╎ ╎ 36 @Test/src/Test.jl:1961 macro expansion ╎ ╎ ╎ 36 @StructuralIdentifiability/…:153 macro expansion ╎ ╎ ╎ 36 @Base/Base.jl:311 (::Base.IncludeInto)(fname::String) ╎ ╎ ╎ 36 @Base/Base.jl:310 include(mapexpr::Function, mod::Module, … ╎ ╎ ╎ 36 @Base/loading.jl:3054 _include(mapexpr::Function, mod::Mo… ╎ ╎ ╎ ╎ 36 @Base/loading.jl:2994 include_string(mapexpr::typeof(ide… ╎ ╎ ╎ ╎ 36 @Base/boot.jl:489 eval(m::Module, e::Any) ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:49 kwcall(::@NamedTuple{s… ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:61 #find_identifiable_fu… ╎ ╎ ╎ ╎ 36 @Base/…ogging.jl:651 with_logger ╎ ╎ ╎ ╎ ╎ 36 @Base/…ogging.jl:540 with_logstate(f::StructuralIde… ╎ ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:63 (::StructuralIdent… ╎ ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:86 _find_identifiabl… ╎ ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:108 _find_identifia… ╎ ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:86 initial_identif… ╎ ╎ ╎ ╎ ╎ ╎ 36 @StructuralIdentifiability/…:86 initial_identi… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:720 kwcall(::@Named… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:720 simplified_gen… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:98 kwcall(::@Name… ╎ ╎ ╎ ╎ ╎ ╎ 36 @RationalFunctionFields/…:98 polynomial_ge… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 36 @Groebner/…l:107 groebner(polynomials::Ve… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 36 @Groebner/…l:109 #groebner#194 ╎ ╎ ╎ ╎ ╎ ╎ ╎ 36 @Groebner/…l:10 groebner0(polynomials::… ╎ ╎ ╎ ╎ ╎ ╎ ╎ 36 @Groebner/…l:34 _groebner1(ring::Groeb… 35╎ ╎ ╎ ╎ ╎ ╎ ╎ 36 @Groebner/…l:57 __groebner1(ring::Gro… [41] signal 15: Terminated in expression starting at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/identifiable_functions.jl:1096 _ZN4llvm29canReplaceOperandWithVariableEPKNS_11InstructionEj at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm20ConstantHoistingPass25collectConstantCandidatesERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm20ConstantHoistingPass7runImplERNS_8FunctionERNS_19TargetTransformInfoERNS_13DominatorTreeEPNS_18BlockFrequencyInfoERNS_10BasicBlockEPNS_18ProfileSummaryInfoE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN12_GLOBAL__N_126ConstantHoistingLegacyPass13runOnFunctionERN4llvm8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager13runOnFunctionERNS_8FunctionE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm13FPPassManager11runOnModuleERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) _ZN4llvm6legacy15PassManagerImpl3runERNS_6ModuleE at /opt/julia/bin/../lib/julia/libLLVM.so.20.1jl (unknown line) operator() at /source/src/jitlayers.cpp:1628 addModule at /source/src/jitlayers.cpp:2119 jl_compile_codeinst_now at /source/src/jitlayers.cpp:682 jl_compile_codeinst_impl at /source/src/jitlayers.cpp:876 jl_compile_method_internal at /source/src/gf.c:3648 _jl_invoke at /source/src/gf.c:4108 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner_guess_lucky_prime at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:157 _groebner_learn_and_apply at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:238 _groebner2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:134 [inlined] groebner2 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:80 unknown function (ip: 0x7ab704e1441c) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 __groebner1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:57 unknown function (ip: 0x7ab719dac4d4) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _groebner1 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:34 unknown function (ip: 0x7ab719daa840) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 groebner0 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/groebner/groebner.jl:10 #groebner#194 at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:109 [inlined] groebner at /home/pkgeval/.julia/packages/Groebner/SQwvK/src/interface.jl:107 [inlined] field_contains_algebraic at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:343 issubfield at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:420 fields_equal at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:429 unknown function (ip: 0x7ab70503aa11) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #simplified_generating_set#126 at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 simplified_generating_set at /home/pkgeval/.julia/packages/RationalFunctionFields/fEaDA/src/Field.jl:720 unknown function (ip: 0x7ab707fe09e1) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 #initial_identifiable_functions#206 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 initial_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/global_identifiability.jl:86 [inlined] #_find_identifiable_functions#242 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:108 _find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:86 [inlined] #240 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:63 with_logstate at ./logging/logging.jl:540 with_logger at ./logging/logging.jl:651 [inlined] #find_identifiable_functions#238 at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:61 [inlined] find_identifiable_functions at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/src/identifiable_functions.jl:49 unknown function (ip: 0x7ab704d43b94) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_body at /source/src/interpreter.c:581 eval_body at /source/src/interpreter.c:550 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 eval_body at /source/src/interpreter.c:558 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 unknown function (ip: 0x7ab72db71162) at (unknown file) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:153 [inlined] macro expansion at /source/usr/share/julia/stdlib/v1.14/Test/src/Test.jl:1961 [inlined] macro expansion at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:151 [inlined] macro expansion at ./timing.jl:689 [inlined] top-level scope at /home/pkgeval/.julia/packages/StructuralIdentifiability/erhUr/test/runtests.jl:150 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_invoke at /source/src/gf.c:4123 jl_toplevel_eval_flex at /source/src/toplevel.c:731 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 include_string at ./loading.jl:2994 _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 _include at ./loading.jl:3054 include at ./Base.jl:310 IncludeInto at ./Base.jl:311 jfptr_IncludeInto_77374.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] do_call at /source/src/interpreter.c:123 eval_value at /source/src/interpreter.c:243 eval_stmt_value at /source/src/interpreter.c:194 [inlined] eval_body at /source/src/interpreter.c:679 jl_interpret_toplevel_thunk at /source/src/interpreter.c:884 jl_toplevel_eval_flex at /source/src/toplevel.c:742 jl_eval_toplevel_stmts at /source/src/toplevel.c:585 jl_toplevel_eval_flex at /source/src/toplevel.c:683 ijl_toplevel_eval at /source/src/toplevel.c:754 ijl_toplevel_eval_in at /source/src/toplevel.c:799 eval at ./boot.jl:489 exec_options at ./client.jl:310 _start at ./client.jl:577 jfptr__start_48666.1 at /opt/julia/lib/julia/sys.so (unknown line) _jl_invoke at /source/src/gf.c:4116 [inlined] ijl_apply_generic at /source/src/gf.c:4313 jl_apply at /source/src/julia.h:2284 [inlined] true_main at /source/src/jlapi.c:971 jl_repl_entrypoint at /source/src/jlapi.c:1138 main at /source/cli/loader_exe.c:58 unknown function (ip: 0x7ab76f4dc249) at /lib/x86_64-linux-gnu/libc.so.6 __libc_start_main at /lib/x86_64-linux-gnu/libc.so.6 (unknown line) unknown function (ip: 0x4010b8) at /workspace/srcdir/glibc-2.17/csu/../sysdeps/x86_64/start.S unknown function (ip: (nil)) at (unknown file) Allocations: 1438479592 (Pool: 1438475574; Big: 4018); GC: 662 PkgEval terminated after 2732.98s: test duration exceeded the time limit