Package evaluation to test RayTraceHeatTransfer on Julia 1.14.0-DEV.24 (d5fb6bbb43*) started at 2025-11-02T15:59:49.515 ################################################################################ # Set-up # Installing PkgEval dependencies (TestEnv)... Set-up completed after 9.72s ################################################################################ # Installation # Installing RayTraceHeatTransfer... Resolving package versions... Updating `~/.julia/environments/v1.14/Project.toml` [7cf1493d] + RayTraceHeatTransfer v0.6.1 Updating `~/.julia/environments/v1.14/Manifest.toml` [66dad0bd] + AliasTables v1.1.3 [49dc2e85] + Calculus v0.5.2 [9a962f9c] + DataAPI v1.16.0 [864edb3b] + DataStructures v0.19.1 [ffbed154] + DocStringExtensions v0.9.5 [411431e0] + Extents v0.1.6 [5c1252a2] + GeometryBasics v0.5.10 [92d709cd] + IrrationalConstants v0.2.6 [c8e1da08] + IterTools v1.10.0 [692b3bcd] + JLLWrappers v1.7.1 [2ab3a3ac] + LogExpFunctions v0.3.29 ⌅ [eff96d63] + Measurements v2.14.0 [e1d29d7a] + Missings v1.2.0 [bac558e1] + OrderedCollections v1.8.1 [aea7be01] + PrecompileTools v1.3.3 [21216c6a] + Preferences v1.5.0 [92933f4c] + ProgressMeter v1.11.0 [43287f4e] + PtrArrays v1.3.0 [7cf1493d] + RayTraceHeatTransfer v0.6.1 [a2af1166] + SortingAlgorithms v1.2.2 [90137ffa] + StaticArrays v1.9.15 [1e83bf80] + StaticArraysCore v1.4.4 [10745b16] + Statistics v1.11.1 [82ae8749] + StatsAPI v1.7.1 ⌅ [2913bbd2] + StatsBase v0.34.6 [5ae413db] + EarCut_jll v2.2.4+0 [0dad84c5] + ArgTools v1.1.2 [56f22d72] + Artifacts v1.11.0 [2a0f44e3] + Base64 v1.11.0 [ade2ca70] + Dates v1.11.0 [8ba89e20] + Distributed v1.11.0 [f43a241f] + Downloads v1.7.0 [7b1f6079] + FileWatching v1.11.0 [ac6e5ff7] + JuliaSyntaxHighlighting v1.12.0 [b27032c2] + LibCURL v1.0.0 [76f85450] + LibGit2 v1.11.0 [8f399da3] + Libdl v1.11.0 [37e2e46d] + LinearAlgebra v1.13.0 [56ddb016] + Logging v1.11.0 [d6f4376e] + Markdown v1.11.0 [ca575930] + NetworkOptions v1.3.0 [44cfe95a] + Pkg v1.13.0 [de0858da] + Printf v1.11.0 [9a3f8284] + Random v1.11.0 [ea8e919c] + SHA v1.0.0 [9e88b42a] + Serialization v1.11.0 [6462fe0b] + Sockets v1.11.0 [2f01184e] + SparseArrays v1.13.0 [f489334b] + StyledStrings v1.11.0 [fa267f1f] + TOML v1.0.3 [a4e569a6] + Tar v1.10.0 [cf7118a7] + UUIDs v1.11.0 [4ec0a83e] + Unicode v1.11.0 [e66e0078] + CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] + LibCURL_jll v8.16.0+0 [e37daf67] + LibGit2_jll v1.9.1+0 [29816b5a] + LibSSH2_jll v1.11.3+1 [14a3606d] + MozillaCACerts_jll v2025.9.9 [4536629a] + OpenBLAS_jll v0.3.29+0 [458c3c95] + OpenSSL_jll v3.5.4+0 [efcefdf7] + PCRE2_jll v10.47.0+0 [bea87d4a] + SuiteSparse_jll v7.10.1+0 [83775a58] + Zlib_jll v1.3.1+2 [3161d3a3] + Zstd_jll v1.5.7+1 [8e850b90] + libblastrampoline_jll v5.15.0+0 [8e850ede] + nghttp2_jll v1.67.1+0 [3f19e933] + p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated -m` Installation completed after 4.37s ################################################################################ # Precompilation # Precompiling PkgEval dependencies... ┌ Error: Failed to use TestEnv.jl; test dependencies will not be precompiled │ exception = │ UndefVarError: `project_rel_path` not defined in `TestEnv` │ Suggestion: this global was defined as `Pkg.Operations.project_rel_path` but not assigned a value. │ Stacktrace: │ [1] get_test_dir(ctx::Pkg.Types.Context, pkgspec::PackageSpec) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:75 │ [2] test_dir_has_project_file │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:52 [inlined] │ [3] maybe_gen_project_override! │ @ ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/common.jl:83 [inlined] │ [4] activate(pkg::String; allow_reresolve::Bool) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:12 │ [5] activate(pkg::String) │ @ TestEnv ~/.julia/packages/TestEnv/nGMfF/src/julia-1.11/activate_set.jl:9 │ [6] top-level scope │ @ /PkgEval.jl/scripts/precompile.jl:24 │ [7] include(mod::Module, _path::String) │ @ Base ./Base.jl:309 │ [8] exec_options(opts::Base.JLOptions) │ @ Base ./client.jl:344 │ [9] _start() │ @ Base ./client.jl:577 └ @ Main /PkgEval.jl/scripts/precompile.jl:26 Precompiling package dependencies... Precompiling packages... 1614.4 ms ✓ Measurements 6788.3 ms ✓ StatsBase 13626.3 ms ✓ StaticArrays 1747.7 ms ✓ StaticArrays → StaticArraysStatisticsExt 23181.7 ms ✓ GeometryBasics 8331.0 ms ✓ RayTraceHeatTransfer 6 dependencies successfully precompiled in 56 seconds. 53 already precompiled. Precompilation completed after 65.56s ################################################################################ # Testing # Testing RayTraceHeatTransfer Status `/tmp/jl_yGjyp4/Project.toml` [5c1252a2] GeometryBasics v0.5.10 ⌅ [eff96d63] Measurements v2.14.0 [92933f4c] ProgressMeter v1.11.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [90137ffa] StaticArrays v1.9.15 ⌅ [2913bbd2] StatsBase v0.34.6 [37e2e46d] LinearAlgebra v1.13.0 [9a3f8284] Random v1.11.0 [2f01184e] SparseArrays v1.13.0 [8dfed614] Test v1.11.0 Status `/tmp/jl_yGjyp4/Manifest.toml` [66dad0bd] AliasTables v1.1.3 [49dc2e85] Calculus v0.5.2 [9a962f9c] DataAPI v1.16.0 [864edb3b] DataStructures v0.19.1 [ffbed154] DocStringExtensions v0.9.5 [411431e0] Extents v0.1.6 [5c1252a2] GeometryBasics v0.5.10 [92d709cd] IrrationalConstants v0.2.6 [c8e1da08] IterTools v1.10.0 [692b3bcd] JLLWrappers v1.7.1 [2ab3a3ac] LogExpFunctions v0.3.29 ⌅ [eff96d63] Measurements v2.14.0 [e1d29d7a] Missings v1.2.0 [bac558e1] OrderedCollections v1.8.1 [aea7be01] PrecompileTools v1.3.3 [21216c6a] Preferences v1.5.0 [92933f4c] ProgressMeter v1.11.0 [43287f4e] PtrArrays v1.3.0 [7cf1493d] RayTraceHeatTransfer v0.6.1 [a2af1166] SortingAlgorithms v1.2.2 [90137ffa] StaticArrays v1.9.15 [1e83bf80] StaticArraysCore v1.4.4 [10745b16] Statistics v1.11.1 [82ae8749] StatsAPI v1.7.1 ⌅ [2913bbd2] StatsBase v0.34.6 [5ae413db] EarCut_jll v2.2.4+0 [0dad84c5] ArgTools v1.1.2 [56f22d72] Artifacts v1.11.0 [2a0f44e3] Base64 v1.11.0 [ade2ca70] Dates v1.11.0 [8ba89e20] Distributed v1.11.0 [f43a241f] Downloads v1.7.0 [7b1f6079] FileWatching v1.11.0 [b77e0a4c] InteractiveUtils v1.11.0 [ac6e5ff7] JuliaSyntaxHighlighting v1.12.0 [b27032c2] LibCURL v1.0.0 [76f85450] LibGit2 v1.11.0 [8f399da3] Libdl v1.11.0 [37e2e46d] LinearAlgebra v1.13.0 [56ddb016] Logging v1.11.0 [d6f4376e] Markdown v1.11.0 [ca575930] NetworkOptions v1.3.0 [44cfe95a] Pkg v1.13.0 [de0858da] Printf v1.11.0 [9a3f8284] Random v1.11.0 [ea8e919c] SHA v1.0.0 [9e88b42a] Serialization v1.11.0 [6462fe0b] Sockets v1.11.0 [2f01184e] SparseArrays v1.13.0 [f489334b] StyledStrings v1.11.0 [fa267f1f] TOML v1.0.3 [a4e569a6] Tar v1.10.0 [8dfed614] Test v1.11.0 [cf7118a7] UUIDs v1.11.0 [4ec0a83e] Unicode v1.11.0 [e66e0078] CompilerSupportLibraries_jll v1.3.0+1 [deac9b47] LibCURL_jll v8.16.0+0 [e37daf67] LibGit2_jll v1.9.1+0 [29816b5a] LibSSH2_jll v1.11.3+1 [14a3606d] MozillaCACerts_jll v2025.9.9 [4536629a] OpenBLAS_jll v0.3.29+0 [458c3c95] OpenSSL_jll v3.5.4+0 [efcefdf7] PCRE2_jll v10.47.0+0 [bea87d4a] SuiteSparse_jll v7.10.1+0 [83775a58] Zlib_jll v1.3.1+2 [3161d3a3] Zstd_jll v1.5.7+1 [8e850b90] libblastrampoline_jll v5.15.0+0 [8e850ede] nghttp2_jll v1.67.1+0 [3f19e933] p7zip_jll v17.6.0+0 Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. Testing Running tests... ================================================================================ STARTING COMPREHENSIVE TEST SUITE ================================================================================ ------------------------------------------------------------ Testing 3D View Factors ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2493092599238253e-15 Converged after 6 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 9.899056296961976e-16 Converged after 5 iterations. d = 8.777083671441753e-17 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 6.080941944488118e-16 Converged after 5 iterations. d = 1.798766884999431e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 5.162835502930473e-16 Converged after 10 iterations. d = 1.9229626863835638e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3911054626160788e-15 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 7.162874682589104e-16 Converged after 8 iterations. d = 1.7554167342883506e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 6×6 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.2875715499064634e-15 Converged after 5 iterations. d = 1.3597399555105182e-16 ✓ 3D View Factor tests complete ------------------------------------------------------------ Testing 3D Heat Transfer ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 150×150 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5447360816507047e-15 Converged after 5 iterations. d = 1.3944809801037358e-16 === 3D Surface-Only Grey Solver === Found 150 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 150 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.7526145670900904e-15 Converged after 6 iterations. d = 1.4226597660905571e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.675788675092768e-15 Converged after 5 iterations. d = 1.8155469240802306e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.5407671817066656e-15 Converged after 5 iterations. d = 1.665031176662253e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === ✓ 3D Heat Transfer tests complete ------------------------------------------------------------ Testing 2D Grey Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 ┌ Warning: `Progress(n::Integer, dt::Real, desc::AbstractString = "Progress: ", barlen = nothing, color::Symbol = :green, output::IO = stderr; offset::Integer = 0)` is deprecated, use `Progress(n; dt = dt, desc = desc, barlen = barlen, color = color, output = output, offset = offset)` instead. │ caller = ip:0x0 └ @ Core :-1 Bin 1 progress: 1%|▍ | ETA: 0:04:13 Bin 1 progress: 62%|████████████████████▍ | ETA: 0:00:03 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:05 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0011719046384806014 Iteration 10: d = 1.4054003376381624e-5 Iteration 20: d = 2.3095703671686364e-7 Iteration 30: d = 4.058157505928045e-9 Iteration 40: d = 7.176143081858065e-11 Iteration 50: d = 1.269889572207355e-12 Iteration 60: d = 2.249742047322492e-14 Converged after 66 iterations. d = 1.963553217544065e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 77%|█████████████████████████▍ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010698940381608602 Iteration 10: d = 1.5953374943799995e-5 Iteration 20: d = 2.6096522702383343e-7 Iteration 30: d = 4.546475955554654e-9 Iteration 40: d = 8.064340234004288e-11 Iteration 50: d = 1.4387517002967768e-12 Iteration 60: d = 2.5746788208087422e-14 Converged after 67 iterations. d = 1.5271818613088228e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|████████████▊ | ETA: 0:00:02 Bin 1 progress: 92%|██████████████████████████████▎ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010756389374163933 Iteration 10: d = 1.2666412131611504e-5 Iteration 20: d = 2.1494447301531572e-7 Iteration 30: d = 3.840528362537417e-9 Iteration 40: d = 6.877491629293528e-11 Iteration 50: d = 1.231234764106492e-12 Iteration 60: d = 2.2109506419116565e-14 Converged after 66 iterations. d = 1.9321534289476262e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 39%|█████████████ | ETA: 0:00:02 Bin 1 progress: 79%|██████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001143104625796052 Iteration 10: d = 1.4409205120333501e-5 Iteration 20: d = 2.233953164725448e-7 Iteration 30: d = 3.763529142252654e-9 Iteration 40: d = 6.500765134385762e-11 Iteration 50: d = 1.1344738999384612e-12 Iteration 60: d = 1.990395280763587e-14 Converged after 66 iterations. d = 1.7342047368692487e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012918977932194437 Iteration 10: d = 1.214921398472908e-5 Iteration 20: d = 1.644502076712349e-7 Iteration 30: d = 2.4920638754906204e-9 Iteration 40: d = 3.846467426446395e-11 Iteration 50: d = 5.967435744943993e-13 Iteration 60: d = 9.293419700238968e-15 Converged after 64 iterations. d = 1.757184696337352e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014299307371468857 Iteration 10: d = 2.1198931090484965e-5 Iteration 20: d = 3.223958444064939e-7 Iteration 30: d = 5.023492324734675e-9 Iteration 40: d = 7.829565030949542e-11 Iteration 50: d = 1.2193919169453603e-12 Iteration 60: d = 1.8990699577075775e-14 Converged after 66 iterations. d = 1.5634305329824545e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▍ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.001385154893682176 Iteration 10: d = 2.2680412374129584e-5 Iteration 20: d = 3.450218851309711e-7 Iteration 30: d = 5.363465012567046e-9 Iteration 40: d = 8.353374356418509e-11 Iteration 50: d = 1.3007224713130473e-12 Iteration 60: d = 2.024834211788081e-14 Converged after 66 iterations. d = 1.6490820528005923e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:01 Bin 1 progress: 91%|██████████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0010947841111595637 Iteration 10: d = 1.482745798727418e-5 Iteration 20: d = 2.2374026040514997e-7 Iteration 30: d = 3.4832413793953798e-9 Iteration 40: d = 5.4347264731221563e-11 Iteration 50: d = 8.477421363054046e-13 Iteration 60: d = 1.3239224567114364e-14 Converged after 65 iterations. d = 1.6622959262038956e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 40%|█████████████▎ | ETA: 0:00:02 Bin 1 progress: 81%|██████████████████████████▋ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014044011951444043 Iteration 10: d = 1.8714596714125066e-5 Iteration 20: d = 2.688675632372935e-7 Iteration 30: d = 4.0950423023429765e-9 Iteration 40: d = 6.305332022286636e-11 Iteration 50: d = 9.736713858087085e-13 Iteration 60: d = 1.5064312868953932e-14 Converged after 65 iterations. d = 1.8629011997777145e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 58%|███████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:01 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013447109595967413 Iteration 10: d = 1.977713637864708e-5 Iteration 20: d = 2.917940391950509e-7 Iteration 30: d = 4.469488560771177e-9 Iteration 40: d = 6.898442292076984e-11 Iteration 50: d = 1.0673012646643205e-12 Iteration 60: d = 1.6581849052140297e-14 Converged after 65 iterations. d = 2.0471752741962753e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.004134134257531873 Iteration 10: d = 4.745840185464181e-5 Iteration 20: d = 6.068242553912165e-7 Iteration 30: d = 8.487145174228093e-9 Iteration 40: d = 1.2016893855389043e-10 Iteration 50: d = 1.705425572724795e-12 Iteration 60: d = 2.423921519829026e-14 Converged after 66 iterations. d = 1.8900499462829312e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.003646258062144811 Iteration 10: d = 4.5284022911975616e-5 Iteration 20: d = 6.509976567844067e-7 Iteration 30: d = 9.926272546023393e-9 Iteration 40: d = 1.5284340915299823e-10 Iteration 50: d = 2.3636210964854863e-12 Iteration 60: d = 3.6664949650363774e-14 Converged after 67 iterations. d = 1.9910189325785973e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 117×117 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.00250683909256737 Iteration 10: d = 2.3801835308945644e-5 Iteration 20: d = 3.466255590633225e-7 Iteration 30: d = 5.642307725982466e-9 Iteration 40: d = 9.272201213410173e-11 Iteration 50: d = 1.5264572834335163e-12 Iteration 60: d = 2.5141094187181164e-14 Converged after 66 iterations. d = 2.1409735443770278e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 36 surfaces and 81 volumes (total: 117 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 81 volumes, 36 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Smoothing single F matrix for grey extinction Matrix size: 165×165 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0024464049593888914 Iteration 10: d = 2.2107198259512174e-5 Iteration 20: d = 2.962065073516864e-7 Iteration 30: d = 4.979490574074948e-9 Iteration 40: d = 8.850727812940795e-11 Iteration 50: d = 1.5972281182594794e-12 Iteration 60: d = 2.8977575229240323e-14 Converged after 67 iterations. d = 1.7594749944668835e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 44 surfaces and 121 volumes (total: 165 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 121 volumes, 44 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▊ | ETA: 0:00:01 Bin 1 progress: 82%|███████████████████████████ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 77×77 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012918977932194437 Iteration 10: d = 1.214921398472908e-5 Iteration 20: d = 1.644502076712349e-7 Iteration 30: d = 2.4920638754906204e-9 Iteration 40: d = 3.846467426446395e-11 Iteration 50: d = 5.967435744943993e-13 Iteration 60: d = 9.293419700238968e-15 Converged after 64 iterations. d = 1.757184696337352e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 28 surfaces and 49 volumes (total: 77 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 49 volumes, 28 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === ✓ 2D Grey Participating Media tests complete ------------------------------------------------------------ Testing 2D Spectral Participating Media ------------------------------------------------------------ Uniform extinction detected (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for grey extinction Using 1 threads for spectral bin 1 Bin 1 progress: 42%|█████████████▉ | ETA: 0:00:01 Bin 1 progress: 89%|█████████████████████████████▍ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for grey extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013460326333447176 Iteration 10: d = 8.870427445672309e-6 Iteration 20: d = 9.132219533059423e-8 Iteration 30: d = 1.195419641226407e-9 Iteration 40: d = 1.6144358592624435e-11 Iteration 50: d = 2.1955357403189236e-13 Iteration 60: d = 3.0077148736768318e-15 Converged after 61 iterations. d = 1.959744428194186e-15 === Variable Extinction Memory-Optimized Steady State Solver === Found 20 surfaces and 25 volumes (total: 45 elements). Allocating workspace... Populating workspace from mesh... Computing emissive powers with variable extinction... Computing B matrix with variable extinction... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures with variable extinction... Writing results to mesh... Grey results written: 25 volumes, 20 surfaces Computing energy conservation error... === Variable Extinction Steady State Solution Complete === Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 36%|███████████▊ | ETA: 0:00:02 Bin 1 progress: 76%|████████████████████████▉ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013948364983292466 Iteration 10: d = 1.8840103363256457e-5 Iteration 20: d = 2.470205843752462e-7 Iteration 30: d = 3.3698783409107416e-9 Iteration 40: d = 4.6278097385038566e-11 Iteration 50: d = 6.371949150852203e-13 Iteration 60: d = 8.809943587569923e-15 Converged after 64 iterations. d = 1.5733770091482995e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.900128344045 Iteration 2: convergence error = 4820.39825956487 Iteration 3: convergence error = 1099.1509133436618 Iteration 4: convergence error = 320.6901855631529 Iteration 5: convergence error = 95.2289362340266 Iteration 6: convergence error = 28.414800594429607 Iteration 7: convergence error = 8.499797380645532 Iteration 8: convergence error = 2.5484167001586684 Iteration 9: convergence error = 0.7623072903043067 Iteration 10: convergence error = 0.2277259827862963 Iteration 11: convergence error = 0.0679777599928002 Iteration 12: convergence error = 0.020283124565594335 Iteration 13: convergence error = 0.006050578980193677 Iteration 14: convergence error = 0.0018046729533125472 Iteration 15: convergence error = 0.0005382268686844327 Iteration 16: convergence error = 0.00016051374359449255 Iteration 17: convergence error = 4.786824479197094e-5 Iteration 18: convergence error = 1.42750018312654e-5 Iteration 19: convergence error = 4.256967486071517e-6 Iteration 20: convergence error = 1.2694706583715742e-6 Iteration 21: convergence error = 3.785621629504021e-7 Iteration 22: convergence error = 1.1276597433607094e-7 Iteration 23: convergence error = 3.271316018071957e-8 Iteration 24: convergence error = 9.433051673113368e-9 Iteration 25: convergence error = 2.7205260266782716e-9 Iteration 26: convergence error = 7.773905963404104e-10 Iteration 27: convergence error = 2.2578205971512944e-10 Iteration 28: convergence error = 6.45741238258779e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 29%|█████████▌ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013460326333447176 Iteration 10: d = 8.870427445672309e-6 Iteration 20: d = 9.132219533059423e-8 Iteration 30: d = 1.195419641226407e-9 Iteration 40: d = 1.6144358592624435e-11 Iteration 50: d = 2.1955357403189236e-13 Iteration 60: d = 3.0077148736768318e-15 Converged after 61 iterations. d = 1.959744428194186e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.592844012872 Iteration 2: convergence error = 4835.388417218606 Iteration 3: convergence error = 1100.8845311753075 Iteration 4: convergence error = 321.2075258783593 Iteration 5: convergence error = 95.37527803089915 Iteration 6: convergence error = 28.453477254877953 Iteration 7: convergence error = 8.494853628281817 Iteration 8: convergence error = 2.537930064368993 Iteration 9: convergence error = 0.7590373977948275 Iteration 10: convergence error = 0.22669906185637956 Iteration 11: convergence error = 0.06765422345733896 Iteration 12: convergence error = 0.020181123532438505 Iteration 13: convergence error = 0.006018446304096869 Iteration 14: convergence error = 0.0017945662300462573 Iteration 15: convergence error = 0.0005350541086954763 Iteration 16: convergence error = 0.00015951979094097624 Iteration 17: convergence error = 4.7557499101458234e-5 Iteration 18: convergence error = 1.4178037417877931e-5 Iteration 19: convergence error = 4.226776127325138e-6 Iteration 20: convergence error = 1.260086946786032e-6 Iteration 21: convergence error = 3.75650870410027e-7 Iteration 22: convergence error = 1.1185102266608737e-7 Iteration 23: convergence error = 3.2436446417705156e-8 Iteration 24: convergence error = 9.357108865515329e-9 Iteration 25: convergence error = 2.689375833142549e-9 Iteration 26: convergence error = 7.696598913753405e-10 Iteration 27: convergence error = 2.2077983885537833e-10 Iteration 28: convergence error = 6.298250809777528e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 0%| | ETA: 12:54:37 Bin 1 ray tracing: 8%|██▎ | ETA: 0:01:08 Bin 1 ray tracing: 16%|████▊ | ETA: 0:00:36 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:24 Bin 1 ray tracing: 32%|█████████▋ | ETA: 0:00:18 Bin 1 ray tracing: 40%|████████████▏ | ETA: 0:00:14 Bin 1 ray tracing: 48%|██████████████▌ | ETA: 0:00:12 Bin 1 ray tracing: 56%|████████████████▉ | ETA: 0:00:09 Bin 1 ray tracing: 64%|███████████████████▏ | ETA: 0:00:07 Bin 1 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:05 Bin 1 ray tracing: 80%|███████████████████████▉ | ETA: 0:00:04 Bin 1 ray tracing: 87%|██████████████████████████▎ | ETA: 0:00:02 Bin 1 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:17 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▌ | ETA: 0:00:12 Bin 2 ray tracing: 16%|████▉ | ETA: 0:00:11 Bin 2 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 2 ray tracing: 32%|█████████▋ | ETA: 0:00:09 Bin 2 ray tracing: 40%|████████████ | ETA: 0:00:08 Bin 2 ray tracing: 48%|██████████████▌ | ETA: 0:00:07 Bin 2 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 2 ray tracing: 65%|███████████████████▌ | ETA: 0:00:04 Bin 2 ray tracing: 73%|█████████████████████▉ | ETA: 0:00:03 Bin 2 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 89%|██████████████████████████▊ | ETA: 0:00:01 Bin 2 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 3 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 3 ray tracing: 25%|███████▌ | ETA: 0:00:09 Bin 3 ray tracing: 33%|██████████ | ETA: 0:00:08 Bin 3 ray tracing: 41%|████████████▍ | ETA: 0:00:07 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:06 Bin 3 ray tracing: 56%|█████████████████ | ETA: 0:00:06 Bin 3 ray tracing: 64%|███████████████████▎ | ETA: 0:00:05 Bin 3 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 80%|████████████████████████ | ETA: 0:00:03 Bin 3 ray tracing: 88%|██████████████████████████▌ | ETA: 0:00:01 Bin 3 ray tracing: 96%|█████████████████████████████ | ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 4 ray tracing: 16%|████▊ | ETA: 0:00:11 Bin 4 ray tracing: 24%|███████▎ | ETA: 0:00:10 Bin 4 ray tracing: 32%|█████████▋ | ETA: 0:00:08 Bin 4 ray tracing: 40%|████████████▏ | ETA: 0:00:07 Bin 4 ray tracing: 49%|██████████████▌ | ETA: 0:00:06 Bin 4 ray tracing: 57%|█████████████████ | ETA: 0:00:05 Bin 4 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 4 ray tracing: 76%|██████████████████████▊ | ETA: 0:00:03 Bin 4 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 4 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 10%|██▉ | ETA: 0:00:09 Bin 5 ray tracing: 19%|█████▊ | ETA: 0:00:09 Bin 5 ray tracing: 28%|████████▎ | ETA: 0:00:08 Bin 5 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 5 ray tracing: 44%|█████████████▎ | ETA: 0:00:07 Bin 5 ray tracing: 53%|███████████████▊ | ETA: 0:00:06 Bin 5 ray tracing: 61%|██████████████████▍ | ETA: 0:00:05 Bin 5 ray tracing: 70%|████████████████████▉ | ETA: 0:00:04 Bin 5 ray tracing: 79%|███████████████████████▋ | ETA: 0:00:02 Bin 5 ray tracing: 89%|██████████████████████████▋ | ETA: 0:00:01 Bin 5 ray tracing: 99%|█████████████████████████████▌| ETA: 0:00:00 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 6 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 6 ray tracing: 25%|███████▋ | ETA: 0:00:09 Bin 6 ray tracing: 34%|██████████▏ | ETA: 0:00:08 Bin 6 ray tracing: 42%|████████████▊ | ETA: 0:00:07 Bin 6 ray tracing: 51%|███████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 59%|█████████████████▉ | ETA: 0:00:05 Bin 6 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 6 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████ | ETA: 0:00:02 Bin 6 ray tracing: 95%|████████████████████████████▋ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 7 ray tracing: 18%|█████▍ | ETA: 0:00:09 Bin 7 ray tracing: 27%|████████▎ | ETA: 0:00:08 Bin 7 ray tracing: 37%|███████████▏ | ETA: 0:00:07 Bin 7 ray tracing: 47%|██████████████ | ETA: 0:00:06 Bin 7 ray tracing: 55%|████████████████▌ | ETA: 0:00:05 Bin 7 ray tracing: 66%|████████████████████ | ETA: 0:00:04 Bin 7 ray tracing: 80%|████████████████████████ | ETA: 0:00:02 Bin 7 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 8%|██▌ | ETA: 0:00:11 Bin 8 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 8 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 8 ray tracing: 34%|██████████▎ | ETA: 0:00:08 Bin 8 ray tracing: 43%|████████████▉ | ETA: 0:00:07 Bin 8 ray tracing: 52%|███████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 60%|██████████████████▏ | ETA: 0:00:05 Bin 8 ray tracing: 69%|████████████████████▋ | ETA: 0:00:04 Bin 8 ray tracing: 77%|███████████████████████▏ | ETA: 0:00:03 Bin 8 ray tracing: 86%|█████████████████████████▋ | ETA: 0:00:02 Bin 8 ray tracing: 95%|████████████████████████████▌ | ETA: 0:00:01 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 9%|██▋ | ETA: 0:00:11 Bin 9 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 9 ray tracing: 26%|███████▊ | ETA: 0:00:09 Bin 9 ray tracing: 35%|██████████▍ | ETA: 0:00:08 Bin 9 ray tracing: 43%|█████████████ | ETA: 0:00:07 Bin 9 ray tracing: 52%|███████████████▋ | ETA: 0:00:06 Bin 9 ray tracing: 61%|██████████████████▎ | ETA: 0:00:05 Bin 9 ray tracing: 69%|████████████████████▊ | ETA: 0:00:04 Bin 9 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:01 Bin 9 ray tracing: 96%|████████████████████████████▉ | ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 9%|██▌ | ETA: 0:00:11 Bin 10 ray tracing: 17%|█████ | ETA: 0:00:10 Bin 10 ray tracing: 26%|███████▋ | ETA: 0:00:09 Bin 10 ray tracing: 35%|██████████ | ETA: 0:00:08 Bin 10 ray tracing: 43%|████████████▌ | ETA: 0:00:07 Bin 10 ray tracing: 52%|███████████████ | ETA: 0:00:06 Bin 10 ray tracing: 61%|█████████████████▌ | ETA: 0:00:05 Bin 10 ray tracing: 69%|████████████████████▏ | ETA: 0:00:04 Bin 10 ray tracing: 79%|███████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 90%|██████████████████████████ | ETA: 0:00:01 Bin 10 ray tracing: 98%|████████████████████████████▌| ETA: 0:00:00 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:11 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing 10 separate F matrices for variable spectral extinction Computing F matrix for spectral bin 1/10 Using 1 threads for spectral bin 1 Bin 1 progress: 22%|███████▍ | ETA: 0:00:04 Bin 1 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 1 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 2/10 Using 1 threads for spectral bin 2 Bin 2 progress: 33%|███████████ | ETA: 0:00:02 Bin 2 progress: 60%|███████████████████▊ | ETA: 0:00:02 Bin 2 progress: 84%|███████████████████████████▉ | ETA: 0:00:01 Bin 2 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 3/10 Using 1 threads for spectral bin 3 Bin 3 progress: 24%|████████▏ | ETA: 0:00:03 Bin 3 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 3 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 3 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 3 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 4/10 Using 1 threads for spectral bin 4 Bin 4 progress: 24%|████████▏ | ETA: 0:00:03 Bin 4 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 4 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 4 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 4 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 5/10 Using 1 threads for spectral bin 5 Bin 5 progress: 24%|████████▏ | ETA: 0:00:03 Bin 5 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 5 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 5 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 5 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 6/10 Using 1 threads for spectral bin 6 Bin 6 progress: 24%|████████▏ | ETA: 0:00:03 Bin 6 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 6 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 6 progress: 96%|███████████████████████████████▌ | ETA: 0:00:00 Bin 6 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 7/10 Using 1 threads for spectral bin 7 Bin 7 progress: 22%|███████▍ | ETA: 0:00:04 Bin 7 progress: 44%|██████████████▋ | ETA: 0:00:03 Bin 7 progress: 69%|██████████████████████▊ | ETA: 0:00:01 Bin 7 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 7 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 8/10 Using 1 threads for spectral bin 8 Bin 8 progress: 24%|████████▏ | ETA: 0:00:03 Bin 8 progress: 47%|███████████████▍ | ETA: 0:00:02 Bin 8 progress: 71%|███████████████████████▌ | ETA: 0:00:01 Bin 8 progress: 93%|██████████████████████████████▊ | ETA: 0:00:00 Bin 8 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 9/10 Using 1 threads for spectral bin 9 Bin 9 progress: 24%|████████▏ | ETA: 0:00:03 Bin 9 progress: 49%|████████████████▏ | ETA: 0:00:02 Bin 9 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 9 progress: 98%|████████████████████████████████▎| ETA: 0:00:00 Bin 9 progress: 100%|█████████████████████████████████| Time: 0:00:04 Computing F matrix for spectral bin 10/10 Using 1 threads for spectral bin 10 Bin 10 progress: 24%|███████▉ | ETA: 0:00:03 Bin 10 progress: 49%|███████████████▋ | ETA: 0:00:02 Bin 10 progress: 73%|███████████████████████▌ | ETA: 0:00:01 Bin 10 progress: 98%|███████████████████████████████▎| ETA: 0:00:00 Bin 10 progress: 100%|████████████████████████████████| Time: 0:00:04 Smoothing F matrix for spectral bin 1/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013460326333447176 Iteration 10: d = 8.870427445672309e-6 Iteration 20: d = 9.132219533059423e-8 Iteration 30: d = 1.195419641226407e-9 Iteration 40: d = 1.6144358592624435e-11 Iteration 50: d = 2.1955357403189236e-13 Iteration 60: d = 3.0077148736768318e-15 Converged after 61 iterations. d = 1.959744428194186e-15 Smoothing F matrix for spectral bin 2/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013798295065107317 Iteration 10: d = 1.851262720456408e-5 Iteration 20: d = 2.4290043737845515e-7 Iteration 30: d = 3.3134328161996448e-9 Iteration 40: d = 4.54939628852445e-11 Iteration 50: d = 6.262041191977869e-13 Iteration 60: d = 8.636678630248422e-15 Converged after 64 iterations. d = 1.522086664701307e-15 Smoothing F matrix for spectral bin 3/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013871512720857087 Iteration 10: d = 9.101259793113088e-6 Iteration 20: d = 6.13409245312185e-8 Iteration 30: d = 5.848068348425916e-10 Iteration 40: d = 6.9406357373405114e-12 Iteration 50: d = 9.088573235434655e-14 Converged after 59 iterations. d = 1.895005691235544e-15 Smoothing F matrix for spectral bin 4/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013484098264456288 Iteration 10: d = 1.37010609467405e-5 Iteration 20: d = 1.514230770626898e-7 Iteration 30: d = 1.9921593131198675e-9 Iteration 40: d = 2.722440493316604e-11 Iteration 50: d = 3.7502270491439967e-13 Iteration 60: d = 5.213147989219167e-15 Converged after 62 iterations. d = 2.168076733957226e-15 Smoothing F matrix for spectral bin 5/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0015869192372306037 Iteration 10: d = 1.558954430902646e-5 Iteration 20: d = 1.8335344113866755e-7 Iteration 30: d = 2.421516834546419e-9 Iteration 40: d = 3.277907043578466e-11 Iteration 50: d = 4.48138493763489e-13 Iteration 60: d = 6.163185679115063e-15 Converged after 63 iterations. d = 1.7047887799706903e-15 Smoothing F matrix for spectral bin 6/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013474621237138608 Iteration 10: d = 1.9020162195431457e-5 Iteration 20: d = 2.478704226373005e-7 Iteration 30: d = 3.380057130950381e-9 Iteration 40: d = 4.6664286374047037e-11 Iteration 50: d = 6.47935518289616e-13 Iteration 60: d = 9.029903040011945e-15 Converged after 64 iterations. d = 1.6383327198517585e-15 Smoothing F matrix for spectral bin 7/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018800064848469241 Iteration 10: d = 2.5586422293439694e-5 Iteration 20: d = 3.203746241626869e-7 Iteration 30: d = 4.268516071915368e-9 Iteration 40: d = 5.800090511040717e-11 Iteration 50: d = 7.956305294365745e-13 Iteration 60: d = 1.0977387533278262e-14 Converged after 64 iterations. d = 1.9643459572032905e-15 Smoothing F matrix for spectral bin 8/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0018461577659542132 Iteration 10: d = 2.1885447065487418e-5 Iteration 20: d = 2.707389159198514e-7 Iteration 30: d = 3.6771828417972978e-9 Iteration 40: d = 5.113619779177974e-11 Iteration 50: d = 7.166986813538469e-13 Iteration 60: d = 1.007391189633676e-14 Converged after 64 iterations. d = 1.8359923081914055e-15 Smoothing F matrix for spectral bin 9/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0014920941563427838 Iteration 10: d = 1.4951388427724153e-5 Iteration 20: d = 1.662204387638149e-7 Iteration 30: d = 2.1983382621188916e-9 Iteration 40: d = 3.027313504861061e-11 Iteration 50: d = 4.216289011635544e-13 Iteration 60: d = 5.87345306792939e-15 Converged after 63 iterations. d = 1.6624295840129356e-15 Smoothing F matrix for spectral bin 10/10 Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012799671883127564 Iteration 10: d = 1.2245132284338615e-5 Iteration 20: d = 1.392195914997201e-7 Iteration 30: d = 1.828010332009589e-9 Iteration 40: d = 2.48521249514499e-11 Iteration 50: d = 3.41559400595371e-13 Iteration 60: d = 4.752277048714629e-15 Converged after 62 iterations. d = 1.9658057205280768e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.429491292993 Iteration 2: convergence error = 4809.777370097085 Iteration 3: convergence error = 1097.1259972174746 Iteration 4: convergence error = 320.6715454351872 Iteration 5: convergence error = 95.43834108210012 Iteration 6: convergence error = 28.873381909259024 Iteration 7: convergence error = 8.731719851278285 Iteration 8: convergence error = 2.6301857041855783 Iteration 9: convergence error = 0.7904096818233484 Iteration 10: convergence error = 0.23720774829212132 Iteration 11: convergence error = 0.07113271307343894 Iteration 12: convergence error = 0.021321540593362442 Iteration 13: convergence error = 0.006389379554093466 Iteration 14: convergence error = 0.0019144160521591402 Iteration 15: convergence error = 0.0005735589427331433 Iteration 16: convergence error = 0.00017183002182719065 Iteration 17: convergence error = 5.1476384896886884e-5 Iteration 18: convergence error = 1.542091217743291e-5 Iteration 19: convergence error = 4.619635319613735e-6 Iteration 20: convergence error = 1.3838969152857317e-6 Iteration 21: convergence error = 4.1456951294094324e-7 Iteration 22: convergence error = 1.240618985320907e-7 Iteration 23: convergence error = 3.62229002348613e-8 Iteration 24: convergence error = 1.0492158253327943e-8 Iteration 25: convergence error = 3.026798367500305e-9 Iteration 26: convergence error = 8.747065294301137e-10 Iteration 27: convergence error = 2.512479113647714e-10 Iteration 28: convergence error = 7.185008144006133e-11 Iteration 29: convergence error = 2.0463630789890885e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Iter 1: T = 967.2735987343012 K, F = -7456.74165923385, relative_change = 0.03272640126569882 Iter 2: T = 936.6202689062783 K, F = -6320.955463055036, relative_change = 0.03169044401515098 Iter 3: T = 908.0087776599298 K, F = -5356.663624188161, relative_change = 0.030547589237801785 Iter 5: T = 856.7738371895326 K, F = -3843.2653016007116, relative_change = 0.027946122346897573 Iter 10: T = 761.4254013255066 K, F = -1664.3017396780663, relative_change = 0.02003805643309382 Iter 15: T = 705.5400008917862 K, F = -712.6303027795683, relative_change = 0.012023688177579058 Iter 20: T = 676.7722857484147 K, F = -302.05327009798117, relative_change = 0.006163578738191774 Iter 25: T = 663.3492086833719 K, F = -127.16272014824276, relative_change = 0.0028489683290408925 Iter 30: T = 657.43806070274 K, F = -53.341108490089525, relative_change = 0.0012465949450786722 Iter 35: T = 654.9088326874414 K, F = -22.336992061930555, relative_change = 0.0005316497888181981 Iter 40: T = 653.8406709718738 K, F = -9.346771896652458, relative_change = 0.0002241981115832053 Iter 45: T = 653.3921002925514 K, F = -3.9098431145842647, relative_change = 9.409090427245697e-5 Iter 50: T = 653.2041762267453 K, F = -1.6353029733254392, relative_change = 3.9407704353590844e-5 Iter 55: T = 653.1255268634264 K, F = -0.6839312323656344, relative_change = 1.649089745291117e-5 Iter 60: T = 653.0926247299243 K, F = -0.2860331088298891, relative_change = 6.898462705270765e-6 Iter 65: T = 653.0788629094582 K, F = -0.11962331917877056, relative_change = 2.8853296081186617e-6 Iter 70: T = 653.073107244715 K, F = -0.0500280505996511, relative_change = 1.2067335489141158e-6 Iter 75: T = 653.0707001032699 K, F = -0.020922354439366686, relative_change = 5.046798702941555e-7 Iter 80: T = 653.0696933985757 K, F = -0.008749983075941159, relative_change = 2.1106480849389227e-7 Iter 85: T = 653.0692723810071 K, F = -0.0036593482205351524, relative_change = 8.827011381585526e-8 Iter 90: T = 653.0690963061445 K, F = -0.0015303832684407936, relative_change = 3.691566654707221e-8 Iter 95: T = 653.0690226694838 K, F = -0.000640024584436294, relative_change = 1.543858150558821e-8 Iter 100: T = 653.0689918737442 K, F = -0.0002676659280693161, relative_change = 6.456600691615219e-9 Iter 105: T = 653.0689789945966 K, F = -0.00011194108893375354, relative_change = 2.7002278000211506e-9 Iter 110: T = 653.068973608383 K, F = -4.6815100747665817e-5, relative_change = 1.1292675698216926e-9 Iter 115: T = 653.0689713558041 K, F = -1.9578634974704023e-5, relative_change = 4.722732098892613e-10 Iter 120: T = 653.0689704137487 K, F = -8.188019721355744e-6, relative_change = 1.975103161172979e-10 Iter 125: T = 653.0689700197698 K, F = -3.424327979784092e-6, relative_change = 8.260118157202775e-11 Iter 130: T = 653.0689698550033 K, F = -1.432095870779193e-6, relative_change = 3.4544825113491e-11 Iter 135: T = 653.0689697860959 K, F = -5.989196050770751e-7, relative_change = 1.444705864109856e-11 Iter 140: T = 653.0689697572778 K, F = -2.504750923337795e-7, relative_change = 6.041926691271432e-12 Iter 145: T = 653.0689697452259 K, F = -1.0475168210621888e-7, relative_change = 2.5268060717404826e-12 Iter 150: T = 653.0689697401856 K, F = -4.380816864824055e-8, relative_change = 1.05673478755241e-12 Iter 155: T = 653.0689697380777 K, F = -1.8321637040852323e-8, relative_change = 4.419520793424573e-13 Converged in 159 iterations to T = 653.0689697373168 K Iter 1: T = 970.4464611652866 K, F = -6733.801936162496, relative_change = 0.029553538834713483 Iter 2: T = 943.059203853272 K, F = -5703.214899090096, relative_change = 0.02822129649391338 Iter 3: T = 917.7928464208734 K, F = -4828.602023081576, relative_change = 0.026791910125220236 Iter 5: T = 873.4036353299518 K, F = -3457.046685485837, relative_change = 0.023687952871104746 Iter 10: T = 794.7242251665589 K, F = -1487.727775284698, relative_change = 0.015382707721410864 Iter 15: T = 751.9415580618638 K, F = -633.1886432001291, relative_change = 0.00840287295371004 Iter 20: T = 731.2049430033511 K, F = -267.2444822189704, relative_change = 0.00403652270450552 Iter 25: T = 721.8795765191837 K, F = -112.24524780180187, relative_change = 0.0018007575781800868 Iter 30: T = 717.8492846769957 K, F = -47.03107392202741, relative_change = 0.0007747844139554242 Iter 35: T = 716.1395865543296 K, F = -19.68486000039814, relative_change = 0.000327979342865673 Iter 40: T = 715.420231371533 K, F = -8.235253624189543, relative_change = 0.0001378691165655844 Iter 45: T = 715.118621269374 K, F = -3.444575025945532, relative_change = 5.778261358717686e-5 Iter 50: T = 714.9923495294047 K, F = -1.4406489019785609, relative_change = 2.4187153398027462e-5 Iter 55: T = 714.939517559105 K, F = -0.602511714225247, relative_change = 1.0119169800577786e-5 Iter 60: T = 714.9174184635932 K, F = -0.2519802429273934, relative_change = 4.232624994748969e-6 Iter 65: T = 714.9081756345463 K, F = -0.10538161014608094, relative_change = 1.7702510655764568e-6 Iter 70: T = 714.904310046518 K, F = -0.04407192890786582, relative_change = 7.403605574756789e-7 Iter 75: T = 714.9026933893072 K, F = -0.01843142116590113, relative_change = 3.096311985616406e-7 Iter 80: T = 714.9020172800837 K, F = -0.007708242925179021, relative_change = 1.2949208968201768e-7 Iter 85: T = 714.9017345224551 K, F = -0.00322367968136672, relative_change = 5.4155247642089355e-8 Iter 90: T = 714.9016162697194 K, F = -0.0013481814160335448, relative_change = 2.2648390400982705e-8 Iter 95: T = 714.9015668149924 K, F = -0.0005638255815884063, relative_change = 9.471830677877074e-9 Iter 100: T = 714.9015461324315 K, F = -0.00023579859506039913, relative_change = 3.961233308786855e-9 Iter 105: T = 714.9015374827368 K, F = -9.861378876674376e-5, relative_change = 1.6566351770292067e-9 Iter 110: T = 714.9015338653311 K, F = -4.1241464035945974e-5, relative_change = 6.928246300495665e-10 Iter 115: T = 714.9015323524887 K, F = -1.724767165356411e-5, relative_change = 2.8974751823983816e-10 Iter 120: T = 714.9015317198001 K, F = -7.213183034093795e-6, relative_change = 1.2117588585430618e-10 Iter 125: T = 714.9015314552021 K, F = -3.0166380915463975e-6, relative_change = 5.067718259211723e-11 Iter 130: T = 714.9015313445441 K, F = -1.261595393486914e-6, relative_change = 2.1193825119225168e-11 Iter 135: T = 714.9015312982656 K, F = -5.276151080479963e-7, relative_change = 8.86352501872285e-12 Iter 140: T = 714.9015312789113 K, F = -2.206548849192913e-7, relative_change = 3.706831103592525e-12 Iter 145: T = 714.9015312708173 K, F = -9.228095410040993e-8, relative_change = 1.5502485298349579e-12 Iter 150: T = 714.9015312674321 K, F = -3.859340669265521e-8, relative_change = 6.483393303764551e-13 Iter 155: T = 714.9015312660164 K, F = -1.6139589442687452e-8, relative_change = 2.7113259773237277e-13 Converged in 157 iterations to T = 714.9015312657168 K Iter 1: T = 974.4448048205403 K, F = -5822.775530906204, relative_change = 0.025555195179459655 Iter 2: T = 951.0786272603593 K, F = -4926.234534874516, relative_change = 0.023978964682852606 Iter 3: T = 929.8264848887766 K, F = -4165.932811290498, relative_change = 0.022345305385319016 Iter 5: T = 893.3098611294242 K, F = -2975.1991324830838, relative_change = 0.018990306052334843 Iter 10: T = 831.8198732339725 K, F = -1272.1639003807554, relative_change = 0.011149689719048703 Iter 15: T = 800.6194636473671 K, F = -538.6537845199636, relative_change = 0.005624849417784564 Iter 20: T = 786.1955036923208 K, F = -226.6345324454327, relative_change = 0.0025764515258743 Iter 25: T = 779.8743406953754 K, F = -95.03895265277453, relative_change = 0.0011224048212095821 Iter 30: T = 777.1757730502734 K, F = -39.79308039452537, relative_change = 0.000477745629322448 Iter 35: T = 776.0372210003059 K, F = -16.65022373367656, relative_change = 0.00020129640474277486 Iter 40: T = 775.5592918504987 K, F = -6.964780131190585, relative_change = 8.444936186670728e-5 Iter 45: T = 775.3591039852257 K, F = -2.9130098593109777, relative_change = 3.536425989853667e-5 Iter 50: T = 775.2753282744599 K, F = -1.218300271446596, relative_change = 1.4797909416429185e-5 Iter 55: T = 775.2402826838348 K, F = -0.5095155551497288, relative_change = 6.1900896682584006e-6 Iter 60: T = 775.2256245215498 K, F = -0.21308686012894362, relative_change = 2.589019132187996e-6 Iter 65: T = 775.2194940095266 K, F = -0.08911570933180513, relative_change = 1.08280240068561e-6 Iter 70: T = 775.216930104847 K, F = -0.03726929581477245, relative_change = 4.5284853543965146e-7 Iter 75: T = 775.2158578403115 K, F = -0.015586471925267298, relative_change = 1.8938800192645891e-7 Iter 80: T = 775.2154094049068 K, F = -0.006518449981437913, relative_change = 7.920455788020982e-8 Iter 85: T = 775.2152218635905 K, F = -0.0027260938517007505, relative_change = 3.3124332868038225e-8 Iter 90: T = 775.2151434315242 K, F = -0.0011400850442097044, relative_change = 1.3852998740473176e-8 Iter 95: T = 775.2151106302891 K, F = -0.00047679718831517004, relative_change = 5.793490769296465e-9 Iter 100: T = 775.2150969124194 K, F = -0.00019940227950676626, relative_change = 2.422907247236141e-9 Iter 105: T = 775.2150911754421 K, F = -8.339241554455867e-5, relative_change = 1.0132887929196112e-9 Iter 110: T = 775.2150887761698 K, F = -3.487570353521985e-5, relative_change = 4.237694738473667e-10 Iter 115: T = 775.2150877727654 K, F = -1.4585438464886913e-5, relative_change = 1.7722548925636257e-10 Iter 120: T = 775.2150873531297 K, F = -6.09980406496291e-6, relative_change = 7.411781038805914e-11 Iter 125: T = 775.215087177633 K, F = -2.5510108089266126e-6, relative_change = 3.0996952299460424e-11 Iter 130: T = 775.2150871042383 K, F = -1.066864086629593e-6, relative_change = 1.296330658515968e-11 Iter 135: T = 775.2150870735436 K, F = -4.461749690820582e-7, relative_change = 5.421405583346227e-12 Iter 140: T = 775.2150870607068 K, F = -1.865955959745591e-7, relative_change = 2.2672952900188316e-12 Iter 145: T = 775.2150870553382 K, F = -7.803700496911148e-8, relative_change = 9.482160224381713e-13 Iter 150: T = 775.2150870530932 K, F = -3.263772607731141e-8, relative_change = 3.965761476254913e-13 Converged in 154 iterations to T = 775.2150870522827 K Iter 1: T = 970.4229912936994 K, F = -6739.149568729242, relative_change = 0.02957700870630064 Iter 2: T = 943.011820850263 K, F = -5707.780568776685, relative_change = 0.028246620998636653 Iter 3: T = 917.7212505290953 K, F = -4832.500921775629, relative_change = 0.026818932448126213 Iter 5: T = 873.2834462125244 K, F = -3459.8907071190406, relative_change = 0.023717610991429893 Iter 10: T = 794.4917866658424 K, F = -1489.014314158384, relative_change = 0.01541218719550786 Iter 15: T = 751.627613287188 K, F = -633.7596583536276, relative_change = 0.008423798206567319 Iter 20: T = 730.8441747276382 K, F = -267.4919002323122, relative_change = 0.004048054582408639 Iter 25: T = 721.4958612116711 K, F = -112.3505745158081, relative_change = 0.0018062444865771165 Iter 30: T = 717.4552524363589 K, F = -47.075479844183214, relative_change = 0.0007772132053735065 Iter 35: T = 715.7411016418438 K, F = -19.70349623660078, relative_change = 0.00032902006773011293 Iter 40: T = 715.0198591868823 K, F = -8.243059123662297, relative_change = 0.00013830884697953473 Iter 45: T = 714.7174553384992 K, F = -3.447841423978156, relative_change = 5.7967307771739276e-5 Iter 50: T = 714.590850857645 K, F = -1.4420153074556419, relative_change = 2.4264534186225317e-5 Iter 55: T = 714.5378795931239 K, F = -0.6030832241524405, relative_change = 1.0151555813047485e-5 Iter 60: T = 714.5157222189372 K, F = -0.2522192662002573, relative_change = 4.246173490539752e-6 Iter 65: T = 714.5064550128233 K, F = -0.10548157445736517, relative_change = 1.7759179569183147e-6 Iter 70: T = 714.5025792292748 K, F = -0.044113735515050156, relative_change = 7.427306500922137e-7 Iter 75: T = 714.5009583080462 K, F = -0.0184489052494754, relative_change = 3.106224225420828e-7 Iter 80: T = 714.5002804155368 K, F = -0.007715554989509044, relative_change = 1.2990663541931257e-7 Iter 85: T = 714.4999969121127 K, F = -0.003226737675186775, relative_change = 5.432861631062472e-8 Iter 90: T = 714.4998783474758 K, F = -0.0013494603073552769, relative_change = 2.2720895395890582e-8 Iter 95: T = 714.4998287623079 K, F = -0.0005643604284312209, relative_change = 9.502153139974708e-9 Iter 100: T = 714.4998080251949 K, F = -0.0002360222728179373, relative_change = 3.973914501593193e-9 Iter 105: T = 714.499799352686 K, F = -9.870733395800357e-5, relative_change = 1.6619386120406632e-9 Iter 110: T = 714.4997957257391 K, F = -4.12805858552856e-5, relative_change = 6.950425917475094e-10 Iter 115: T = 714.4997942089065 K, F = -1.726403317126035e-5, relative_change = 2.9067510143183513e-10 Iter 120: T = 714.499793574549 K, F = -7.2200251475251775e-6, relative_change = 1.2156380436422695e-10 Iter 125: T = 714.4997933092532 K, F = -3.019501194190255e-6, relative_change = 5.083944246687466e-11 Iter 130: T = 714.4997931983032 K, F = -1.2627921066599157e-6, relative_change = 2.126167289655309e-11 Iter 135: T = 714.4997931519027 K, F = -5.281155841529994e-7, relative_change = 8.89189974033386e-12 Iter 140: T = 714.4997931324974 K, F = -2.2086359807715894e-7, relative_change = 3.718687782704184e-12 Iter 145: T = 714.4997931243819 K, F = -9.236767017917202e-8, relative_change = 1.5551975500766514e-12 Iter 150: T = 714.4997931209879 K, F = -3.863028663619872e-8, relative_change = 6.504194272757643e-13 Iter 155: T = 714.4997931195685 K, F = -1.6154759419073628e-8, relative_change = 2.719982242996103e-13 Converged in 157 iterations to T = 714.4997931192681 K Iter 1: T = 969.2822841701744 K, F = -6999.06077191701, relative_change = 0.030717715829825618 Iter 2: T = 940.704457566233 K, F = -5929.754324430286, relative_change = 0.02948349213707903 Iter 3: T = 914.2276380413387 K, F = -5022.128323193962, relative_change = 0.028145736221336228 Iter 5: T = 867.39227935296 K, F = -3598.34660600543, relative_change = 0.02519100407631965 Iter 10: T = 782.9591751202319 K, F = -1551.878680575725, relative_change = 0.01692577892192128 Iter 15: T = 735.8881667650253 K, F = -661.7860236856578, relative_change = 0.00953057849459657 Iter 20: T = 712.6377024673367 K, F = -279.678045393307, relative_change = 0.004670097903406087 Iter 25: T = 702.0654306500429 K, F = -117.54871154457614, relative_change = 0.0021053096555183714 Iter 30: T = 697.4711453398612 K, F = -49.26916608096701, relative_change = 0.0009102394204147121 Iter 35: T = 695.5173671547619 K, F = -20.62454229714933, relative_change = 0.0003861427497306819 Iter 40: T = 694.6944354648339 K, F = -8.628897441266718, relative_change = 0.00016246647905068389 Iter 45: T = 694.3492413556479 K, F = -3.609317526058921, relative_change = 6.811781637996699e-5 Iter 50: T = 694.2046951902279 K, F = -1.5095665348424256, relative_change = 2.8517948753065265e-5 Iter 55: T = 694.1442123771329 K, F = -0.6313374561361302, relative_change = 1.1931848289943186e-5 Iter 60: T = 694.1189121611825 K, F = -0.26403613631445666, relative_change = 4.990969302302306e-6 Iter 65: T = 694.1083303321816 K, F = -0.1104236378810679, relative_change = 2.0874452932229103e-6 Iter 70: T = 694.1039047140937 K, F = -0.04618058421452664, relative_change = 8.730229451539649e-7 Iter 75: T = 694.102053837877 K, F = -0.019313289338308448, relative_change = 3.6511358810039306e-7 Iter 80: T = 694.101279774113 K, F = -0.008077051311986327, relative_change = 1.5269573154329835e-7 Iter 85: T = 694.1009560504887 K, F = -0.0033779198540843103, relative_change = 6.385933042073738e-8 Iter 90: T = 694.1008206652431 K, F = -0.0014126865181036674, relative_change = 2.6706761206534143e-8 Iter 95: T = 694.1007640454885 K, F = -0.000590802387998246, relative_change = 1.1169091105695353e-8 Iter 100: T = 694.1007403664262 K, F = -0.0002470806181595897, relative_change = 4.67104811857917e-9 Iter 105: T = 694.1007304635585 K, F = -0.0001033320657561898, relative_change = 1.953488248981651e-9 Iter 110: T = 694.100726322061 K, F = -4.321470392132376e-5, relative_change = 8.169721380670944e-10 Iter 115: T = 694.1007245900371 K, F = -1.8072904128363376e-5, relative_change = 3.416674872777039e-10 Iter 120: T = 694.1007238656841 K, F = -7.558303678156797e-6, relative_change = 1.4288941170090737e-10 Iter 125: T = 694.100723562751 K, F = -3.1609723978309745e-6, relative_change = 5.975804975562454e-11 Iter 130: T = 694.1007234360608 K, F = -1.3219570446088014e-6, relative_change = 2.499154214993734e-11 Iter 135: T = 694.1007233830775 K, F = -5.528589558378982e-7, relative_change = 1.04517752366934e-11 Iter 140: T = 694.1007233609191 K, F = -2.3121161440986526e-7, relative_change = 4.371045816974679e-12 Iter 145: T = 694.1007233516523 K, F = -9.6695604412389e-8, relative_change = 1.8280263225195646e-12 Iter 150: T = 694.1007233477768 K, F = -4.043836832057224e-8, relative_change = 7.644856473149181e-13 Iter 155: T = 694.100723346156 K, F = -1.6911589684198702e-8, relative_change = 3.1971288961269644e-13 Converged in 158 iterations to T = 694.1007233456814 K Iter 1: T = 963.5133443958096 K, F = -8313.519187184469, relative_change = 0.036486655604190454 Iter 2: T = 928.9011967880969 K, F = -7054.391452672363, relative_change = 0.035922852349717024 Iter 3: T = 896.1298086681549 K, F = -5985.056294282149, relative_change = 0.035279735060367155 Iter 5: T = 835.9898540968254 K, F = -4305.755552583342, relative_change = 0.033726164756020804 Iter 10: T = 715.9126143067583 K, F = -1881.8844310714665, relative_change = 0.028054521295002088 Iter 15: T = 635.8357119645062 K, F = -815.0707901213752, relative_change = 0.020168187755183996 Iter 20: T = 588.8039043565825 K, F = -349.06216962216433, relative_change = 0.012134655811869123 Iter 25: T = 564.5497665758228 K, F = -147.97200900527434, relative_change = 0.006233151504078176 Iter 30: T = 553.2192869291683 K, F = -62.30019192408986, relative_change = 0.0028845107983096183 Iter 35: T = 548.2265195366231 K, F = -26.13413325220621, relative_change = 0.001262870604463943 Iter 40: T = 546.0896139978698 K, F = -10.944052558941385, relative_change = 0.0005387294858810282 Iter 45: T = 545.1870239586158 K, F = -4.579502753692243, relative_change = 0.00022720879998514585 Iter 50: T = 544.807963559423 K, F = -1.9156553113209343, relative_change = 9.535889556771431e-5 Iter 55: T = 544.6491564053484 K, F = -0.8012293202442184, relative_change = 3.993955963228261e-5 Iter 60: T = 544.582692305567 K, F = -0.3350975733848141, relative_change = 1.671360050035698e-5 Iter 65: T = 544.554887634794 K, F = -0.14014423999454104, relative_change = 6.991647910854063e-6 Iter 70: T = 544.5432578861008 K, F = -0.05861042044096554, relative_change = 2.924309197007791e-6 Iter 75: T = 544.5383939233167 K, F = -0.024511652225195163, relative_change = 1.2230367520416415e-6 Iter 80: T = 544.5363597099906 K, F = -0.0102510787104724, relative_change = 5.114983223203124e-7 Iter 85: T = 544.535508969638 K, F = -0.004287125816720944, relative_change = 2.1391641165230074e-7 Iter 90: T = 544.5351531784554 K, F = -0.0017929276136841588, relative_change = 8.946269620382834e-8 Iter 95: T = 544.5350043820877 K, F = -0.0007498238091646625, relative_change = 3.741442008102137e-8 Iter 100: T = 544.5349421536266 K, F = -0.0003135852839360742, relative_change = 1.5647166419999074e-8 Iter 105: T = 544.5349161289336 K, F = -0.00013114511281575592, relative_change = 6.543833455926581e-9 Iter 110: T = 544.5349052450947 K, F = -5.484645220849016e-5, relative_change = 2.7367095528560553e-9 Iter 115: T = 544.5349006933433 K, F = -2.293744211412374e-5, relative_change = 1.1445247034629064e-9 Iter 120: T = 544.5348987897463 K, F = -9.592712216621724e-6, relative_change = 4.786539071459837e-10 Iter 125: T = 544.5348979936393 K, F = -4.011786619823043e-6, relative_change = 2.0017877219881711e-10 Iter 130: T = 544.5348976606979 K, F = -1.677777252351298e-6, relative_change = 8.37171622530719e-11 Iter 135: T = 544.5348975214579 K, F = -7.016665427572732e-7, relative_change = 3.5011520031488364e-11 Iter 140: T = 544.534897463226 K, F = -2.934457047076844e-7, relative_change = 1.4642254614827862e-11 Iter 145: T = 544.5348974388727 K, F = -1.2272275501379326e-7, relative_change = 6.123578561552726e-12 Iter 150: T = 544.5348974286878 K, F = -5.132357622228412e-8, relative_change = 2.5609264642865834e-12 Iter 155: T = 544.5348974244284 K, F = -2.1464286653616327e-8, relative_change = 1.0710177227762953e-12 Iter 160: T = 544.5348974226471 K, F = -8.976241805402907e-9, relative_change = 4.4789348058962897e-13 Converged in 165 iterations to T = 544.5348974219021 K Iter 1: T = 966.9478072159162 K, F = -7530.973566605601, relative_change = 0.033052192784083764 Iter 2: T = 935.9552906778681 K, F = -6384.443879056234, relative_change = 0.03205190218827148 Iter 3: T = 906.9919516924042 K, F = -5410.9971010023155, relative_change = 0.030945216372981955 Iter 5: T = 855.021070172208 K, F = -3883.125821184519, relative_change = 0.028413479535891156 Iter 10: T = 757.7699870002149 K, F = -1682.7621489893925, relative_change = 0.020606187049976202 Iter 15: T = 700.247179486235 K, F = -721.086320995803, relative_change = 0.012513486981071829 Iter 20: T = 670.3975279357019 K, F = -305.81766121482474, relative_change = 0.006473047978044079 Iter 25: T = 656.3955798642537 K, F = -128.79202097283817, relative_change = 0.00300775972463167 Iter 30: T = 650.2120942697198 K, F = -54.03376234760508, relative_change = 0.0013194638753827562 Iter 35: T = 647.5628385690385 K, F = -22.62878322140491, relative_change = 0.0005633770423145927 Iter 40: T = 646.4433346668676 K, F = -9.469183963350547, relative_change = 0.00023769588003403098 Iter 45: T = 645.9730860783012 K, F = -3.9611049109819887, relative_change = 9.977665710127556e-5 Iter 50: T = 645.7760595933559 K, F = -1.6567531589136042, relative_change = 4.179275133292064e-5 Iter 55: T = 645.6935970811235 K, F = -0.692904040561572, relative_change = 1.7489615587622328e-5 Iter 60: T = 645.6590991200047 K, F = -0.28978600929438597, relative_change = 7.316359765482281e-6 Iter 65: T = 645.64466970875 K, F = -0.12119289082317419, relative_change = 3.06013786173639e-6 Iter 70: T = 645.6386348151644 K, F = -0.05068447537554632, relative_change = 1.2798472206996456e-6 Iter 75: T = 645.6361108908649 K, F = -0.021196881072585105, relative_change = 5.352580655978704e-7 Iter 80: T = 645.6350553451338 K, F = -0.008864793734148724, relative_change = 2.2385318214917228e-7 Iter 85: T = 645.6346139014759 K, F = -0.0037073634680998557, relative_change = 9.361840062867551e-8 Iter 90: T = 645.6344292841467 K, F = -0.0015504638274449478, relative_change = 3.9152390267891875e-8 Iter 95: T = 645.634352074919 K, F = -0.000648422515383329, relative_change = 1.6374007174988216e-8 Iter 100: T = 645.6343197850881 K, F = -0.0002711780434341837, relative_change = 6.847807071508913e-9 Iter 105: T = 645.6343062810936 K, F = -0.0001134098976124931, relative_change = 2.863835015366202e-9 Iter 110: T = 645.6343006335615 K, F = -4.742937394275337e-5, relative_change = 1.1976900638339835e-9 Iter 115: T = 645.634298271696 K, F = -1.9835530413403468e-5, relative_change = 5.00888291914886e-10 Iter 120: T = 645.6342972839357 K, F = -8.29545596486847e-6, relative_change = 2.0947747363265781e-10 Iter 125: T = 645.6342968708425 K, F = -3.4692591899809777e-6, relative_change = 8.760599245968086e-11 Iter 130: T = 645.6342966980819 K, F = -1.4508851832739644e-6, relative_change = 3.663786117646275e-11 Iter 135: T = 645.6342966258314 K, F = -6.06777292355698e-7, relative_change = 1.532238558259827e-11 Iter 140: T = 645.6342965956155 K, F = -2.5376177958946755e-7, relative_change = 6.4080114448040184e-12 Iter 145: T = 645.6342965829788 K, F = -1.0612726719649856e-7, relative_change = 2.6799336920024297e-12 Iter 150: T = 645.6342965776939 K, F = -4.4383146935444984e-8, relative_change = 1.1207665473360377e-12 Iter 155: T = 645.6342965754837 K, F = -1.8561469583566748e-8, relative_change = 4.68715618774261e-13 Converged in 160 iterations to T = 645.6342965745595 K Iter 1: T = 965.2593159086562 K, F = -7915.697917134681, relative_change = 0.03474068409134379 Iter 2: T = 932.4973498521072 K, F = -6713.661263354562, relative_change = 0.03394110320055109 Iter 3: T = 901.6847101145543 K, F = -5692.929515761262, relative_change = 0.033043139202958295 Iter 5: T = 845.7940540495765 K, F = -4090.3423943645344, relative_change = 0.030934068238918897 Iter 10: T = 738.0013017393982 K, F = -1779.5656066815823, relative_change = 0.02389769808531271 Iter 15: T = 670.7831028224131 K, F = -766.0567396397693, relative_change = 0.015591710393915237 Iter 20: T = 634.1090891659214 K, F = -326.12511701788964, relative_change = 0.008551634292059103 Iter 25: T = 616.2889165769601 K, F = -137.6682387666213, relative_change = 0.004118661624553855 Iter 30: T = 608.2635735136486 K, F = -57.82713493704278, relative_change = 0.0018398797425609173 Iter 35: T = 604.7926936125219 K, F = -24.230734192158454, relative_change = 0.0007921102674907655 Iter 40: T = 603.3198394900298 K, F = -10.14195952185892, relative_change = 0.00033540495627822515 Iter 45: T = 602.7000519039827 K, F = -4.242969160878747, relative_change = 0.00014100689449544904 Iter 50: T = 602.4401733350245 K, F = -1.774720472171126, relative_change = 5.910058351626176e-5 Iter 55: T = 602.3313702278878 K, F = -0.7422548715842542, relative_change = 2.473934829643494e-5 Iter 60: T = 602.2858466526023 K, F = -0.3104278290279981, relative_change = 1.0350280278512937e-5 Iter 65: T = 602.2668045059405 K, F = -0.12982602106762345, relative_change = 4.329308961051801e-6 Iter 70: T = 602.258840215271 K, F = -0.054295036589250445, relative_change = 1.8106908445212771e-6 Iter 75: T = 602.2555093422802 K, F = -0.02270687541849864, relative_change = 7.572738988001451e-7 Iter 80: T = 602.2541163119106 K, F = -0.00949629394365209, relative_change = 3.167047248226391e-7 Iter 85: T = 602.2535337265622 K, F = -0.003971464842246808, relative_change = 1.3245035169972714e-7 Iter 90: T = 602.2532900818153 K, F = -0.001660914254039969, relative_change = 5.539243315548888e-8 Iter 95: T = 602.2531881865681 K, F = -0.0006946142162727043, relative_change = 2.3165797056081282e-8 Iter 100: T = 602.2531455727407 K, F = -0.0002904959688915243, relative_change = 9.688216524079828e-9 Iter 105: T = 602.2531277511258 K, F = -0.00012148888420615567, relative_change = 4.0517284483194634e-9 Iter 110: T = 602.253120297913 K, F = -5.0808102239008335e-5, relative_change = 1.6944813241247339e-9 Iter 115: T = 602.2531171808904 K, F = -2.1248555327479934e-5, relative_change = 7.086523500694771e-10 Iter 120: T = 602.2531158773143 K, F = -8.886399258500877e-6, relative_change = 2.9636686758383676e-10 Iter 125: T = 602.2531153321431 K, F = -3.716397806718952e-6, relative_change = 1.2394414761027998e-10 Iter 130: T = 602.2531151041461 K, F = -1.5542416098024425e-6, relative_change = 5.183491161961281e-11 Iter 135: T = 602.253115008795 K, F = -6.500020180988386e-7, relative_change = 2.1677966265748475e-11 Iter 140: T = 602.2531149689181 K, F = -2.718394903067356e-7, relative_change = 9.066013855866614e-12 Iter 145: T = 602.253114952241 K, F = -1.1368602559347352e-7, relative_change = 3.791498734130684e-12 Iter 150: T = 602.2531149452665 K, F = -4.7544972126001284e-8, relative_change = 1.5856540036377197e-12 Iter 155: T = 602.2531149423496 K, F = -1.988355180504442e-8, relative_change = 6.631286572926917e-13 Iter 160: T = 602.2531149411298 K, F = -8.314925470376267e-9, relative_change = 2.7730786817040073e-13 Converged in 162 iterations to T = 602.2531149408716 K Iter 1: T = 980.0510811926164 K, F = -4545.380126583101, relative_change = 0.019948918807383666 Iter 2: T = 962.1497980535552 K, F = -3839.590424124649, relative_change = 0.018265663374685867 Iter 3: T = 946.1758977125837 K, F = -3241.8814131213007, relative_change = 0.01660230077820203 Iter 5: T = 919.4890489314407 K, F = -2307.939123963202, relative_change = 0.013424415125697935 Iter 10: T = 877.0824586205482 K, F = -979.8978482617669, relative_change = 0.007063660227578327 Iter 15: T = 856.9886190956104 K, F = -412.94817710302385, relative_change = 0.00331547393227448 Iter 20: T = 848.0663074865388 K, F = -173.3068637420903, relative_change = 0.0014617466821420827 Iter 25: T = 844.2337495731929 K, F = -72.59003263493953, relative_change = 0.0006255394914541401 Iter 30: T = 842.6123663720779 K, F = -30.37781908212067, relative_change = 0.00026418087828718233 Iter 35: T = 841.9309703142704 K, F = -12.707858539922825, relative_change = 0.00011094010652755912 Iter 40: T = 841.6454175929102 K, F = -5.315191050308545, relative_change = 4.647680644791405e-5 Iter 45: T = 841.5258933844599 K, F = -2.2229837171484172, relative_change = 1.945124087782361e-5 Iter 50: T = 841.4758889517857 K, F = -0.9296971242784091, relative_change = 8.137207400798028e-6 Iter 55: T = 841.4549733538914 K, F = -0.38881372671880654, relative_change = 3.4035088411306077e-6 Iter 60: T = 841.4462256505112 K, F = -0.16260711876025957, relative_change = 1.423463532291319e-6 Iter 65: T = 841.4425671601849 K, F = -0.06800433953689633, relative_change = 5.953226529059949e-7 Iter 70: T = 841.4410371189947 K, F = -0.02844024451678262, relative_change = 2.489733525240713e-7 Iter 75: T = 841.4403972345505 K, F = -0.011894052975904401, relative_change = 1.0412403328795706e-7 Iter 80: T = 841.4401296267188 K, F = -0.004974235536576277, relative_change = 4.354598486618033e-8 Iter 85: T = 841.4400177098375 K, F = -0.0020802847961771676, relative_change = 1.8211463239624217e-8 Iter 90: T = 841.4399709048455 K, F = -0.0008699999614227849, relative_change = 7.616253573196585e-9 Iter 95: T = 841.4399513304362 K, F = -0.00036384437582714924, relative_change = 3.185208571602069e-9 Iter 100: T = 841.4399431441839 K, F = -0.0001521640619990272, relative_change = 1.332092315343207e-9 Iter 105: T = 841.4399397205954 K, F = -6.363682762411393e-5, relative_change = 5.57096922752022e-10 Iter 110: T = 841.4399382888098 K, F = -2.6613681362919195e-5, relative_change = 2.329845887051604e-10 Iter 115: T = 841.43993769002 K, F = -1.1130159870420542e-5, relative_change = 9.743694203959106e-11 Iter 120: T = 841.439937439599 K, F = -4.654767829848083e-6, relative_change = 4.074931080663842e-11 Iter 125: T = 841.4399373348699 K, F = -1.946680477260543e-6, relative_change = 1.704185702828135e-11 Iter 130: T = 841.4399372910708 K, F = -8.141259979499438e-7, relative_change = 7.12711666119588e-12 Iter 135: T = 841.4399372727536 K, F = -3.4047711272577885e-7, relative_change = 2.980644407899724e-12 Iter 140: T = 841.4399372650931 K, F = -1.4239108558911084e-7, relative_change = 1.2465366309546278e-12 Iter 145: T = 841.4399372618894 K, F = -5.95523903523798e-8, relative_change = 5.213404738742512e-13 Converged in 150 iterations to T = 841.4399372605495 K Iter 1: T = 976.4437326569491 K, F = -5367.317921909211, relative_change = 0.023556267343050902 Iter 2: T = 955.0489891210208 K, F = -4538.413316558113, relative_change = 0.02191088213317959 Iter 3: T = 935.7240742687998 K, F = -3835.7829055180764, relative_change = 0.020234474956103213 Iter 5: T = 902.8625381538523 K, F = -2736.210258501497, relative_change = 0.016881801891681848 Iter 10: T = 848.7468728431209 K, F = -1166.7696495555572, relative_change = 0.00949758548873931 Iter 15: T = 822.0312959287727 K, F = -493.07098508489696, relative_change = 0.004651229186544204 Iter 20: T = 809.8873462676082 K, F = -207.2335471079276, relative_change = 0.0020961529189083014 Iter 25: T = 804.6109318736777 K, F = -86.85867724527544, relative_change = 0.0009061485643634531 Iter 30: T = 802.3672355321617 K, F = -36.359715193895916, relative_change = 0.0003843827107166042 Iter 35: T = 801.4222205614584 K, F = -15.212152506045078, relative_change = 0.00016172153158592565 Iter 40: T = 801.0258217302606 K, F = -6.362973585003825, relative_change = 6.780469696147557e-5 Iter 45: T = 800.8598351124018 K, F = -2.661259038441675, relative_change = 2.8386721732595806e-5 Iter 50: T = 800.7903810841322 K, F = -1.113003134157992, relative_change = 1.1876919067725072e-5 Iter 55: T = 800.761328200247 K, F = -0.46547694545852447, relative_change = 4.967988751951792e-6 Iter 60: T = 800.7491768209687 K, F = -0.1946690220877556, relative_change = 2.0778330664880245e-6 Iter 65: T = 800.7440947737676 K, F = -0.08141308556600102, relative_change = 8.690027371430419e-7 Iter 70: T = 800.741969366781 K, F = -0.034047955384822526, relative_change = 3.6343224363213323e-7 Iter 75: T = 800.7410804902228 K, F = -0.01423926693137667, relative_change = 1.5199256524024042e-7 Iter 80: T = 800.7407087503859 K, F = -0.0059550324239330266, relative_change = 6.356525650050089e-8 Iter 85: T = 800.740553284164 K, F = -0.002490465842458489, relative_change = 2.6583775729994834e-8 Iter 90: T = 800.7404882663013 K, F = -0.0010415425868162131, relative_change = 1.1117657095861482e-8 Iter 95: T = 800.740461075049 K, F = -0.00043558555241174357, relative_change = 4.64953776436489e-9 Iter 100: T = 800.7404497033416 K, F = -0.0001821670804342812, relative_change = 1.9444923562884943e-9 Iter 105: T = 800.7404449475576 K, F = -7.618445041845945e-5, relative_change = 8.132099682484267e-10 Iter 110: T = 800.740442958632 K, F = -3.1861249255582536e-5, relative_change = 3.40094148603679e-10 Iter 115: T = 800.7404421268395 K, F = -1.3324755372523533e-5, relative_change = 1.422314398230899e-10 Iter 120: T = 800.7404417789738 K, F = -5.572570817125033e-6, relative_change = 5.948287606912725e-11 Iter 125: T = 800.7404416334923 K, F = -2.3305143873608714e-6, relative_change = 2.487643551780664e-11 Iter 130: T = 800.7404415726503 K, F = -9.746510900576766e-7, relative_change = 1.0403645278675035e-11 Iter 135: T = 800.7404415472054 K, F = -4.0760989106214396e-7, relative_change = 4.350919793339143e-12 Iter 140: T = 800.740441536564 K, F = -1.7046867961667544e-7, relative_change = 1.8196210852558373e-12 Iter 145: T = 800.7404415321137 K, F = -7.129190104926408e-8, relative_change = 7.609858107210721e-13 Iter 150: T = 800.7404415302524 K, F = -2.9814944402239973e-8, relative_change = 3.1825143254512195e-13 Converged in 153 iterations to T = 800.7404415297075 K Iter 1: T = 980.6615787713536 K, F = -4406.277672534695, relative_change = 0.0193384212286464 Iter 2: T = 963.3434398426094 K, F = -3721.4585473638517, relative_change = 0.01765964865314861 Iter 3: T = 947.921070116906 K, F = -3141.610813237761, relative_change = 0.016009212382474068 Iter 5: T = 922.2293449388598 K, F = -2235.8291140464835, relative_change = 0.012879523258945598 Iter 10: T = 881.6293976990914 K, F = -948.6517986284811, relative_change = 0.006708050312033426 Iter 15: T = 862.5078695611536 K, F = -399.62059724166306, relative_change = 0.0031294741409751805 Iter 20: T = 854.0452091046553 K, F = -167.67992221787551, relative_change = 0.0013755760943666177 Iter 25: T = 850.4157640403729 K, F = -70.22678736703794, relative_change = 0.0005878591082847054 Iter 30: T = 848.8813687072667 K, F = -29.38767908427186, relative_change = 0.0002481206482510961 Iter 35: T = 848.2367205726744 K, F = -12.29345069506212, relative_change = 0.00010416961714242333 Iter 40: T = 847.9666015744295 K, F = -5.141824552274562, relative_change = 4.363579467632542e-5 Iter 45: T = 847.8535434172798 K, F = -2.150469926869908, relative_change = 1.826142596308989e-5 Iter 50: T = 847.8062451776367 K, F = -0.8993692666635842, relative_change = 7.639320080897877e-6 Iter 55: T = 847.7864616944271 K, F = -0.37612995273395256, relative_change = 3.195235223943874e-6 Iter 60: T = 847.7781875165952 K, F = -0.15730256022534794, relative_change = 1.3363520620115705e-6 Iter 65: T = 847.7747270710955 K, F = -0.06578590057509714, relative_change = 5.588900290598391e-7 Iter 70: T = 847.7732798565039 K, F = -0.027512465235533412, relative_change = 2.3373652012441061e-7 Iter 75: T = 847.7726746114623 K, F = -0.011506044322611153, relative_change = 9.775176012488309e-8 Iter 80: T = 847.7724214903002 K, F = -0.0048119656338094785, relative_change = 4.08810157394896e-8 Iter 85: T = 847.7723156319272 K, F = -0.0020124215780736865, relative_change = 1.7096939874507435e-8 Iter 90: T = 847.7722713606776 K, F = -0.0008416187511042228, relative_change = 7.150146330844691e-9 Iter 95: T = 847.7722528459097 K, F = -0.0003519750151665946, relative_change = 2.9902769177058957e-9 Iter 100: T = 847.7722451028122 K, F = -0.00014720015381386453, relative_change = 1.250569564336151e-9 Iter 105: T = 847.7722418645565 K, F = -6.156086202557809e-5, relative_change = 5.230031342288694e-10 Iter 110: T = 847.7722405102792 K, F = -2.5745487818085167e-5, relative_change = 2.1872615945386365e-10 Iter 115: T = 847.7722399439042 K, F = -1.0767071656481164e-5, relative_change = 9.147390238313991e-11 Iter 120: T = 847.7722397070395 K, F = -4.5029174673416605e-6, relative_change = 3.825547433288919e-11 Iter 125: T = 847.7722396079798 K, F = -1.883175224426381e-6, relative_change = 1.5998907824750077e-11 Iter 130: T = 847.7722395665518 K, F = -7.875652539013345e-7, relative_change = 6.690924850029863e-12 Iter 135: T = 847.7722395492261 K, F = -3.293670873816268e-7, relative_change = 2.7982067759355584e-12 Iter 140: T = 847.7722395419803 K, F = -1.3774499585395006e-7, relative_change = 1.1702413371947756e-12 Iter 145: T = 847.7722395389501 K, F = -5.760553478673103e-8, relative_change = 4.893998336699533e-13 Converged in 150 iterations to T = 847.7722395376828 K Iter 1: T = 967.3093605693389 K, F = -7448.5932911022255, relative_change = 0.03269063943066113 Iter 2: T = 936.6932192902517 K, F = -6313.987059396891, relative_change = 0.03165082705399137 Iter 3: T = 908.1202533126615 K, F = -5350.700762931384, relative_change = 0.030504081153956142 Iter 5: T = 856.9657060790585 K, F = -3838.8922083160746, relative_change = 0.027895181608731865 Iter 10: T = 761.823719527927 K, F = -1662.2794075069019, relative_change = 0.019976877118890273 Iter 15: T = 706.1140727503342 K, F = -711.7059972513639, relative_change = 0.011971619531674766 Iter 20: T = 677.4613670028903 K, F = -301.6426575531354, relative_change = 0.006131002979086322 Iter 25: T = 664.0994245259774 K, F = -126.98524328904756, relative_change = 0.0028323492950056064 Iter 30: T = 658.2169374044786 K, F = -53.26571280396472, relative_change = 0.0012389900615529708 Iter 35: T = 655.7003202082831 K, F = -22.305240920633825, relative_change = 0.0005283428212801982 Iter 40: T = 654.6375488605788 K, F = -9.333453588776857, relative_change = 0.00022279199649797993 Iter 45: T = 654.1912534115901 K, F = -3.904266224587599, relative_change = 9.349873515041302e-5 Iter 50: T = 654.004284574417 K, F = -1.6329694179130518, relative_change = 3.91593268860079e-5 Iter 55: T = 653.9260353494068 K, F = -0.6829550954171292, relative_change = 1.6386895770202912e-5 Iter 60: T = 653.8933006724898 K, F = -0.28562483885041945, relative_change = 6.854945671655547e-6 Iter 65: T = 653.879608904317 K, F = -0.11945256917476155, relative_change = 2.8671263645808215e-6 Iter 70: T = 653.8738825397699 K, F = -0.04995663974908371, relative_change = 1.1991200527050139e-6 Iter 75: T = 653.8714876526275 K, F = -0.020892489366929834, relative_change = 5.014956959193225e-7 Iter 80: T = 653.8704860729357 K, F = -0.00873749311157368, relative_change = 2.0973312789233643e-7 Iter 85: T = 653.8700671987228 K, F = -0.0036541247616913575, relative_change = 8.77131854242232e-8 Iter 90: T = 653.8698920202406 K, F = -0.0015281987545119335, relative_change = 3.668275180448748e-8 Iter 95: T = 653.8698187584575 K, F = -0.0006391109943608697, relative_change = 1.534117366517495e-8 Iter 100: T = 653.8697881194962 K, F = -0.000267283854226974, relative_change = 6.4158635613386565e-9 Iter 105: T = 653.8697753059151 K, F = -0.00011178130108502327, relative_change = 2.6831910421852567e-9 Iter 110: T = 653.8697699471223 K, F = -4.67482752005699e-5, relative_change = 1.1221425849634172e-9 Iter 115: T = 653.8697677060111 K, F = -1.9550687594238614e-5, relative_change = 4.692934526179943e-10 Iter 120: T = 653.8697667687516 K, F = -8.176330648812513e-6, relative_change = 1.96264118467349e-10 Iter 125: T = 653.8697663767784 K, F = -3.4194388651154206e-6, relative_change = 8.207999226740556e-11 Iter 130: T = 653.8697662128505 K, F = -1.430049910766673e-6, relative_change = 3.432682682393117e-11 Iter 135: T = 653.869766144294 K, F = -5.980638762559387e-7, relative_change = 1.4355887137623309e-11 Iter 140: T = 653.8697661156228 K, F = -2.501177222002937e-7, relative_change = 6.00380985097289e-12 Iter 145: T = 653.8697661036322 K, F = -1.0460138771817284e-7, relative_change = 2.5108450394399654e-12 Iter 150: T = 653.8697660986176 K, F = -4.374495193859573e-8, relative_change = 1.0500510363734965e-12 Iter 155: T = 653.8697660965204 K, F = -1.829488299742721e-8, relative_change = 4.3914920466798714e-13 Converged in 159 iterations to T = 653.8697660957635 K Iter 1: T = 973.3745816353405 K, F = -6066.6269016990545, relative_change = 0.026625418364659488 Iter 2: T = 948.9423178643779 K, F = -5134.044118683619, relative_change = 0.025100577138468853 Iter 3: T = 926.6369010413956 K, F = -4343.006651735564, relative_change = 0.0235055560312467 Iter 5: T = 888.0892279638767 K, F = -3103.6652730240767, relative_change = 0.020181838310616866 Iter 10: T = 822.3439934190653 K, F = -1329.2032370262382, relative_change = 0.012146730763853262 Iter 15: T = 788.4320069218359 K, F = -563.4755801472364, relative_change = 0.006240852075875328 Iter 20: T = 772.5875380433803 K, F = -237.2405617451121, relative_change = 0.0028884744539869095 Iter 25: T = 765.6051571471802 K, F = -99.51983316762781, relative_change = 0.0012646915219747651 Iter 30: T = 762.6165910386297 K, F = -41.67547878605867, relative_change = 0.0005395226459753451 Iter 35: T = 761.3542554720636 K, F = -17.438982270984482, relative_change = 0.00022754629085960124 Iter 40: T = 760.8241093645478 K, F = -7.294916789284289, relative_change = 9.55010686316693e-5 Iter 45: T = 760.6020043114158 K, F = -3.0511241278505925, relative_change = 3.9999199738694904e-5 Iter 50: T = 760.5090486140772 K, F = -1.2760695758594562, relative_change = 1.673857457793519e-5 Iter 55: T = 760.4701613976571 K, F = -0.5336768154596496, relative_change = 7.002097950648179e-6 Iter 60: T = 760.4538961934715 K, F = -0.2231916409598732, relative_change = 2.92868050536688e-6 Iter 65: T = 760.4470935224304 K, F = -0.09334169364562128, relative_change = 1.2248650563059705e-6 Iter 70: T = 760.4442484997201 K, F = -0.03903666067210032, relative_change = 5.122629708719443e-7 Iter 75: T = 760.4430586659751 K, F = -0.0163256063731384, relative_change = 2.1423620206234465e-7 Iter 80: T = 760.4425610613218 K, F = -0.006827565071004793, relative_change = 8.959643726963921e-8 Iter 85: T = 760.4423529567686 K, F = -0.002855369516847839, relative_change = 3.747035238413858e-8 Iter 90: T = 760.4422659248987 K, F = -0.0011941496771267213, relative_change = 1.5670557985462122e-8 Iter 95: T = 760.4422295271208 K, F = -0.0004994076631834599, relative_change = 6.5536160815266725e-9 Iter 100: T = 760.4422143051337 K, F = -0.00020885824854410817, relative_change = 2.7408007681461483e-9 Iter 105: T = 760.4422079391165 K, F = -8.734701420010094e-5, relative_change = 1.1462356637853785e-9 Iter 110: T = 760.4422052767721 K, F = -3.6529565342613424e-5, relative_change = 4.793694628224368e-10 Iter 115: T = 760.4422041633478 K, F = -1.5277100206767535e-5, relative_change = 2.0047803202609648e-10 Iter 120: T = 760.4422036977005 K, F = -6.389066381173869e-6, relative_change = 8.384231568689637e-11 Iter 125: T = 760.4422035029613 K, F = -2.6719839391065037e-6, relative_change = 3.506385876129745e-11 Iter 130: T = 760.442203421519 K, F = -1.1174557914550576e-6, relative_change = 1.4664127089272898e-11 Iter 135: T = 760.4422033874589 K, F = -4.673337898886132e-7, relative_change = 6.132718754427106e-12 Iter 140: T = 760.4422033732145 K, F = -1.9544571350227358e-7, relative_change = 2.5647912021520258e-12 Iter 145: T = 760.4422033672573 K, F = -8.173773902164783e-8, relative_change = 1.0726264095421122e-12 Iter 150: T = 760.442203364766 K, F = -3.418475658101272e-8, relative_change = 4.48599057816164e-13 Converged in 155 iterations to T = 760.442203363724 K Iter 1: T = 970.0270604163417 K, F = -6829.36279576268, relative_change = 0.029972939583658306 Iter 2: T = 942.2119314194537 K, F = -5784.810825140759, relative_change = 0.028674590773735315 Iter 3: T = 916.511721958432 K, F = -4898.290489419412, relative_change = 0.02727646361079721 Iter 5: T = 871.2497317735222 K, F = -3507.89697773433, relative_change = 0.024221876827908172 Iter 10: T = 790.5417614839747 K, F = -1510.7590124771953, relative_change = 0.015919265369726213 Iter 15: T = 746.2731535835184 K, F = -643.4256969031642, relative_change = 0.008787441553497644 Iter 20: T = 724.6771843970039 K, F = -271.6851290180818, relative_change = 0.00424979741370021 Iter 25: T = 714.929012697471 K, F = -114.13685890501704, relative_change = 0.0019025701744865317 Iter 30: T = 710.708257672424 K, F = -47.828827377385196, relative_change = 0.0008199211520566412 Iter 35: T = 708.9162852658695 K, F = -20.01970661783434, relative_change = 0.0003473332015030588 Iter 40: T = 708.1620446824032 K, F = -8.375507266410871, relative_change = 0.00014604891382106653 Iter 45: T = 707.8457601517869 K, F = -3.503268990135508, relative_change = 6.121868130258391e-5 Iter 50: T = 707.7133364265063 K, F = -1.4652021249068454, relative_change = 2.5626825725551114e-5 Iter 55: T = 707.6579289972473 K, F = -0.6127813398156041, relative_change = 1.072172551220926e-5 Iter 60: T = 707.6347523542984 K, F = -0.2562753285396853, relative_change = 4.484702834510937e-6 Iter 65: T = 707.6250588015921 K, F = -0.10717790220180323, relative_change = 1.8756873485248476e-6 Iter 70: T = 707.6210047014725 K, F = -0.04482316598977665, relative_change = 7.844577751559631e-7 Iter 75: T = 707.6193092037919 K, F = -0.018745598586580647, relative_change = 3.2807361978983975e-7 Iter 80: T = 707.6186001221117 K, F = -0.007839635868408301, relative_change = 1.372050071454746e-7 Iter 85: T = 707.6183035749325 K, F = -0.0032786298120752733, relative_change = 5.7380895224060794e-8 Iter 90: T = 707.6181795552291 K, F = -0.0013711622230961895, relative_change = 2.399739709019112e-8 Iter 95: T = 707.618127688685 K, F = -0.0005734364307473649, relative_change = 1.0036001798409746e-8 Iter 100: T = 707.6181059974729 K, F = -0.0002398179660669797, relative_change = 4.197176462731828e-9 Iter 105: T = 707.6180969259481 K, F = -0.00010029473684591839, relative_change = 1.7553094183180535e-9 Iter 110: T = 707.618093132128 K, F = -4.194445577943018e-5, relative_change = 7.340913638205476e-10 Iter 115: T = 707.6180915455071 K, F = -1.754167191314604e-5, relative_change = 3.070057712418349e-10 Iter 120: T = 707.6180908819633 K, F = -7.336136435664997e-6, relative_change = 1.28393476150587e-10 Iter 125: T = 707.6180906044614 K, F = -3.068059647670651e-6, relative_change = 5.369568128834476e-11 Iter 130: T = 707.6180904884068 K, F = -1.28309886693323e-6, relative_change = 2.2456169627076857e-11 Iter 135: T = 707.6180904398714 K, F = -5.366078043023137e-7, relative_change = 9.391447682720337e-12 Iter 140: T = 707.6180904195733 K, F = -2.2441583313881353e-7, relative_change = 3.927616295341341e-12 Iter 145: T = 707.6180904110844 K, F = -9.38534561178983e-8, relative_change = 1.6425773462062417e-12 Iter 150: T = 707.6180904075342 K, F = -3.92502483848034e-8, relative_change = 6.869386754431009e-13 Iter 155: T = 707.6180904060494 K, F = -1.6414107073536854e-8, relative_change = 2.8727168453167884e-13 Converged in 157 iterations to T = 707.6180904057352 K Iter 1: T = 973.5268929966378 K, F = -6031.9226131419655, relative_change = 0.02647310700336223 Iter 2: T = 949.2468049992673 K, F = -5104.461954154995, relative_change = 0.02494033618592016 Iter 3: T = 927.0922158268596 K, F = -4317.792622360024, relative_change = 0.023339124299106593 Iter 5: T = 888.8368652584827 K, F = -3085.360098752701, relative_change = 0.020009470018273665 Iter 10: T = 823.7113400652113 K, F = -1321.0579907294714, relative_change = 0.011999497235778887 Iter 15: T = 790.2001924230615 K, F = -559.9236532872442, relative_change = 0.006148483888457796 Iter 20: T = 774.5677913663792 K, F = -235.72080349175553, relative_change = 0.0028412759176667784 Iter 25: T = 767.6846438656329 K, F = -98.87730497096474, relative_change = 0.001243076483382325 Iter 30: T = 764.7397072490619 K, F = -41.40546745851838, relative_change = 0.0005301200793385524 Iter 35: T = 763.4960148134038 K, F = -17.325826610072724, relative_change = 0.00022354773317392567 Iter 40: T = 762.9737367939658 K, F = -7.2475523650632345, relative_change = 9.381701380574736e-5 Iter 45: T = 762.754934885437 K, F = -3.0313084861600785, relative_change = 3.9292826194603376e-5 Iter 50: T = 762.6633628199007 K, F = -1.2677811629182716, relative_change = 1.644279544807413e-5 Iter 55: T = 762.6250546434158 K, F = -0.5302102789952818, relative_change = 6.878335611687317e-6 Iter 60: T = 762.6090316686688 K, F = -0.22174185496030874, relative_change = 2.876910421587582e-6 Iter 65: T = 762.6023303127732 K, F = -0.09273536899511214, relative_change = 1.2032122304141816e-6 Iter 70: T = 762.5995276633486 K, F = -0.03878308726559565, relative_change = 5.032071578793998e-7 Iter 75: T = 762.5983555509818 K, F = -0.016219558736176864, relative_change = 2.1044889298355797e-7 Iter 80: T = 762.5978653576844 K, F = -0.0067832146448696395, relative_change = 8.801252888526856e-8 Iter 85: T = 762.5976603526598 K, F = -0.0028368216320547868, relative_change = 3.680794114188623e-8 Iter 90: T = 762.5975746170519 K, F = -0.0011863927313479072, relative_change = 1.5393529402147564e-8 Iter 95: T = 762.5975387613865 K, F = -0.0004961636180205176, relative_change = 6.437759394721167e-9 Iter 100: T = 762.5975237661173 K, F = -0.00020750155201110232, relative_change = 2.692348133609764e-9 Iter 105: T = 762.5975174949162 K, F = -8.677962626191249e-5, relative_change = 1.1259721755575645e-9 Iter 110: T = 762.5975148722251 K, F = -3.629227758017439e-5, relative_change = 4.708950380667111e-10 Iter 115: T = 762.5975137753843 K, F = -1.517786344362726e-5, relative_change = 1.9693392395154056e-10 Iter 120: T = 762.5975133166723 K, F = -6.347563862418859e-6, relative_change = 8.236012052566293e-11 Iter 125: T = 762.5975131248335 K, F = -2.654625669951116e-6, relative_change = 3.4443968604081616e-11 Iter 130: T = 762.5975130446043 K, F = -1.110196092390936e-6, relative_change = 1.4404878172727836e-11 Iter 135: T = 762.5975130110515 K, F = -4.642984048341958e-7, relative_change = 6.024306881161678e-12 Iter 140: T = 762.5975129970194 K, F = -1.9417666785592758e-7, relative_change = 2.519456935988674e-12 Iter 145: T = 762.5975129911509 K, F = -8.120746231021769e-8, relative_change = 1.0536729589510642e-12 Iter 150: T = 762.5975129886966 K, F = -3.396272230116182e-8, relative_change = 4.4066888785347733e-13 Converged in 154 iterations to T = 762.5975129878107 K Iter 1: T = 964.2520002978026 K, F = -8145.215737272186, relative_change = 0.03574799970219737 Iter 2: T = 930.4251534346158 K, F = -6910.20329180545, relative_change = 0.03508091956536222 Iter 3: T = 898.4883044613591 K, F = -5861.393899089925, relative_change = 0.03432500599899249 Iter 5: T = 840.171322250849 K, F = -4214.477572757172, relative_change = 0.03252074620147479 Iter 10: T = 725.4813498862693 K, F = -1838.2988729082138, relative_change = 0.0261877084864885 Iter 15: T = 651.2745332951292 K, F = -793.9692667284801, relative_change = 0.01800667022718287 Iter 20: T = 609.178414413644 K, F = -339.054545170544, relative_change = 0.010361565127313408 Iter 25: T = 588.0958722951293 K, F = -143.42725425905192, relative_change = 0.005153205433163237 Iter 30: T = 578.4286357493128 K, F = -60.31447123872909, relative_change = 0.0023418330386165073 Iter 35: T = 574.2098045236888 K, F = -25.286468719757387, relative_change = 0.0010163484620478512 Iter 40: T = 572.4122206067864 K, F = -10.586335276664583, relative_change = 0.00043187853594652887 Iter 45: T = 571.6544416114257 K, F = -4.429322935720709, relative_change = 0.00018183961249117414 Iter 50: T = 571.3364634834961 K, F = -1.8527459784688893, relative_change = 7.626350753967412e-5 Iter 55: T = 571.2032936802892 K, F = -0.7749018965024976, relative_change = 3.193224775973853e-5 Iter 60: T = 571.1475675921088 K, F = -0.3240839773515397, relative_change = 1.3361094379858356e-5 Iter 65: T = 571.1242565186227 K, F = -0.13553767065324557, relative_change = 5.588932654649807e-6 Iter 70: T = 571.1145065417901 K, F = -0.05668380155546235, relative_change = 2.3375619274483044e-6 Iter 75: T = 571.1104288087932 K, F = -0.023705900305647176, relative_change = 9.776319191660225e-7 Iter 80: T = 571.1087234213277 K, F = -0.009914100679252302, relative_change = 4.088635715353468e-7 Iter 85: T = 571.1080102025311 K, F = -0.004146197062251333, relative_change = 1.709927176565046e-7 Iter 90: T = 571.1077119249699 K, F = -0.0017339894354496677, relative_change = 7.151138712284766e-8 Iter 95: T = 571.1075871815666 K, F = -0.0007251751436895826, relative_change = 2.9906949430650666e-8 Iter 100: T = 571.1075350123568 K, F = -0.0003032769156977033, relative_change = 1.2507449275837866e-8 Iter 105: T = 571.1075131945652 K, F = -0.00012683402983065806, relative_change = 5.230765683020357e-9 Iter 110: T = 571.1075040701033 K, F = -5.304350674401048e-5, relative_change = 2.1875688745252105e-9 Iter 115: T = 571.1075002541443 K, F = -2.2183428799504856e-5, relative_change = 9.148674907552097e-10 Iter 120: T = 571.1074986582645 K, F = -9.277375342731098e-6, relative_change = 3.8260853586816883e-10 Iter 125: T = 571.1074979908485 K, F = -3.879909009574245e-6, relative_change = 1.6001145354944948e-10 Iter 130: T = 571.1074977117272 K, F = -1.6226244171635429e-6, relative_change = 6.691870647445701e-11 Iter 135: T = 571.1074975949953 K, F = -6.78600653447603e-7, relative_change = 2.7986191693704646e-11 Iter 140: T = 571.1074975461765 K, F = -2.837985099146678e-7, relative_change = 1.1704143613391303e-11 Iter 145: T = 571.10749752576 K, F = -1.1868717314511557e-7, relative_change = 4.894781583638271e-12 Iter 150: T = 571.1074975172216 K, F = -4.9636379173545464e-8, relative_change = 2.0470555346144295e-12 Iter 155: T = 571.1074975136507 K, F = -2.0758782359742156e-8, relative_change = 8.561136213029736e-13 Iter 160: T = 571.1074975121574 K, F = -8.681612095884361e-9, relative_change = 3.5803864800190064e-13 Converged in 163 iterations to T = 571.1074975117201 K Iter 1: T = 963.6197295273543 K, F = -8289.279233763618, relative_change = 0.036380270472645734 Iter 2: T = 929.1209170726582 K, F = -7033.6212944580675, relative_change = 0.035801272428925224 Iter 3: T = 896.4702593148864 K, F = -5967.23904034733, relative_change = 0.035141451621434665 Iter 5: T = 836.5951946625424 K, F = -4292.595974772763, relative_change = 0.0335503009975145 Iter 10: T = 717.3122088301203 K, F = -1875.5786378532732, relative_change = 0.02777490012833747 Iter 15: T = 638.1252449698175 K, F = -811.9948701895257, relative_change = 0.01983247552982673 Iter 20: T = 591.8661302842588 K, F = -347.5884426455569, relative_change = 0.011849027706037787 Iter 25: T = 568.122224561579 K, F = -147.2968116859384, relative_change = 0.00605449345048594 Iter 30: T = 557.0640545739739 K, F = -62.003567276153625, relative_change = 0.002793376712046763 Iter 35: T = 552.19917136739 K, F = -26.00716151937595, relative_change = 0.0012211699890387103 Iter 40: T = 550.1185764187355 K, F = -10.890403062246587, relative_change = 0.0005205965262011354 Iter 45: T = 549.2400632242877 K, F = -4.556966975981524, relative_change = 0.00021949879138789436 Iter 50: T = 548.8711667841436 K, F = -1.9062130515452298, relative_change = 9.211192959174325e-5 Iter 55: T = 548.7166270803793 K, F = -0.79727737179776, relative_change = 3.85776655635725e-5 Iter 60: T = 548.6519506250663 K, F = -0.3334442809462481, relative_change = 1.6143342817145417e-5 Iter 65: T = 548.6248940848259 K, F = -0.1394527187441121, relative_change = 6.753037211027918e-6 Iter 70: T = 548.6135773036283 K, F = -0.05832120144152764, relative_change = 2.8244979806291664e-6 Iter 75: T = 548.6088442434002 K, F = -0.024390694489598103, relative_change = 1.181290770462014e-6 Iter 80: T = 548.6068647778524 K, F = -0.01020049223425254, relative_change = 4.940390002671698e-7 Iter 85: T = 548.6060369341582 K, F = -0.004265969859460594, relative_change = 2.0661460026397827e-7 Iter 90: T = 548.6056907187162 K, F = -0.0017840799246240657, relative_change = 8.640897149246677e-8 Iter 95: T = 548.6055459270524 K, F = -0.0007461235974753899, relative_change = 3.6137312451220746e-8 Iter 100: T = 548.605485373409 K, F = -0.0003120378112869415, relative_change = 1.511306417164192e-8 Iter 105: T = 548.605460049145 K, F = -0.00013049794076031018, relative_change = 6.320465389348276e-9 Iter 110: T = 548.6054494582341 K, F = -5.457579774759136e-5, relative_change = 2.6432943727199337e-9 Iter 115: T = 548.6054450289885 K, F = -2.2824249961195253e-5, relative_change = 1.105457295960903e-9 Iter 120: T = 548.6054431766252 K, F = -9.54537410896572e-6, relative_change = 4.6231546004780727e-10 Iter 125: T = 548.6054424019446 K, F = -3.99198986408833e-6, relative_change = 1.9334586804680118e-10 Iter 130: T = 548.605442077964 K, F = -1.6694974111497451e-6, relative_change = 8.08595307247582e-11 Iter 135: T = 548.6054419424714 K, F = -6.982042602132754e-7, relative_change = 3.381644590773861e-11 Iter 140: T = 548.6054418858067 K, F = -2.919966199943502e-7, relative_change = 1.4142405701049198e-11 Iter 145: T = 548.6054418621089 K, F = -1.2211669281336768e-7, relative_change = 5.914533575853124e-12 Iter 150: T = 548.6054418521983 K, F = -5.107076256338772e-8, relative_change = 2.4735335767174736e-12 Iter 155: T = 548.6054418480535 K, F = -2.1358584401109937e-8, relative_change = 1.0344700767611816e-12 Iter 160: T = 548.6054418463201 K, F = -8.932589223853427e-9, relative_change = 4.326361750704115e-13 Converged in 164 iterations to T = 548.6054418456945 K Iter 1: T = 969.2995967688737 K, F = -6995.116079834831, relative_change = 0.03070040323112627 Iter 2: T = 940.7395412642428 K, F = -5926.384411996691, relative_change = 0.029464631575041252 Iter 3: T = 914.2808645867602 K, F = -5019.248439905102, relative_change = 0.02812540083297153 Iter 5: T = 867.4824255813312 K, F = -3596.24188701071, relative_change = 0.02516816562966469 Iter 10: T = 783.1377624571406 K, F = -1550.9195459594878, relative_change = 0.016901560994324022 Iter 15: T = 736.1344281761442 K, F = -661.3564727840359, relative_change = 0.009512355734403805 Iter 20: T = 712.9244522493127 K, F = -279.4905943212919, relative_change = 0.004659660454372494 Iter 25: T = 702.3725093787018 K, F = -117.46858292783331, relative_change = 0.0021002409534956346 Iter 30: T = 697.7874754313201 K, F = -49.235315741711624, relative_change = 0.0009079742382404332 Iter 35: T = 695.8377120895079 K, F = -20.610323241943128, relative_change = 0.000385168056615899 Iter 40: T = 695.0164861679768 K, F = -8.622939705380738, relative_change = 0.0001620539114255469 Iter 45: T = 694.6720101967855 K, F = -3.606823960602837, relative_change = 6.794440023460755e-5 Iter 50: T = 694.527765205667 K, F = -1.508523350268117, relative_change = 2.8445270079074966e-5 Iter 55: T = 694.4674084947654 K, F = -0.6309011233238512, relative_change = 1.1901426207812832e-5 Iter 60: T = 694.4421610420947 K, F = -0.26385364612143875, relative_change = 4.978241698566821e-6 Iter 65: T = 694.431601283849 K, F = -0.1103473164492873, relative_change = 2.082121630493001e-6 Iter 70: T = 694.4271848968056 K, F = -0.04614866535566997, relative_change = 8.707963811741679e-7 Iter 75: T = 694.4253378812601 K, F = -0.019299940433635032, relative_change = 3.6418238715375993e-7 Iter 80: T = 694.4245654320993 K, F = -0.00807146863000674, relative_change = 1.5230628774816694e-7 Iter 85: T = 694.4242423837255 K, F = -0.0033755851086562094, relative_change = 6.369645961171388e-8 Iter 90: T = 694.4241072808785 K, F = -0.0014117100986906772, relative_change = 2.663864654072827e-8 Iter 95: T = 694.4240507792265 K, F = -0.0005903940378935157, relative_change = 1.1140604719284591e-8 Iter 100: T = 694.4240271495561 K, F = -0.0002469098418903526, relative_change = 4.659134779306864e-9 Iter 105: T = 694.4240172673448 K, F = -0.00010326064496612997, relative_change = 1.9485059453643147e-9 Iter 110: T = 694.4240131344858 K, F = -4.3184834002230055e-5, relative_change = 8.148884622485844e-10 Iter 115: T = 694.4240114060748 K, F = -1.8060411940412635e-5, relative_change = 3.40796064825502e-10 Iter 120: T = 694.4240106832327 K, F = -7.553080114575117e-6, relative_change = 1.425249878911142e-10 Iter 125: T = 694.4240103809316 K, F = -3.1587879187888745e-6, relative_change = 5.960564484684016e-11 Iter 130: T = 694.4240102545057 K, F = -1.321042801039063e-6, relative_change = 2.4927791962891014e-11 Iter 135: T = 694.4240102016328 K, F = -5.524761297337477e-7, relative_change = 1.042510509169434e-11 Iter 140: T = 694.4240101795207 K, F = -2.3105126445432944e-7, relative_change = 4.3598873946486185e-12 Iter 145: T = 694.4240101702732 K, F = -9.66291670012609e-8, relative_change = 1.8233714850505786e-12 Iter 150: T = 694.4240101664058 K, F = -4.041189816117452e-8, relative_change = 7.625637791625156e-13 Iter 155: T = 694.4240101647882 K, F = -1.6898866528336498e-8, relative_change = 3.1887795698581465e-13 Converged in 158 iterations to T = 694.4240101643147 K Iter 1: T = 966.4762803157789 K, F = -7638.411419339777, relative_change = 0.03352371968422113 Iter 2: T = 934.9915778518689 K, F = -6476.351603271218, relative_change = 0.032576797905089744 Iter 3: T = 905.5161730335409 K, F = -5489.672523617034, relative_change = 0.031524781095940334 Iter 5: T = 852.4686657819736 K, F = -3940.88605170514, relative_change = 0.029100539927869016 Iter 10: T = 752.3918823507327 K, F = -1709.6008645149584, relative_change = 0.0214643821658744 Iter 15: T = 692.3767723203622 K, F = -733.4433685614323, relative_change = 0.013275449117900389 Iter 20: T = 660.843021270791 K, F = -311.346161701417, relative_change = 0.0069656302118187245 Iter 25: T = 645.9262008500255 K, F = -131.19280829187156, relative_change = 0.003263951667698624 Iter 30: T = 639.308718172117 K, F = -55.05616936594784, relative_change = 0.0014378204242540256 Iter 35: T = 636.4674317028097 K, F = -23.059835011158057, relative_change = 0.0006150658757426304 Iter 40: T = 635.265642742507 K, F = -9.650082240909796, relative_change = 0.00025971471879532553 Iter 45: T = 634.7606254430106 K, F = -4.036870005314134, relative_change = 0.00010905694394175265 Iter 50: T = 634.5489951811344 K, F = -1.688458604523438, relative_change = 4.56865343190762e-5 Iter 55: T = 634.4604141015714 K, F = -0.7061670694004476, relative_change = 1.9120263674627573e-5 Iter 60: T = 634.423355337898 K, F = -0.29533336738497823, relative_change = 7.998705403678832e-6 Iter 65: T = 634.4078546279945 K, F = -0.12351296739370032, relative_change = 3.3455710593424833e-6 Iter 70: T = 634.4013716449535 K, F = -0.05165477750138575, relative_change = 1.3992307070860458e-6 Iter 75: T = 634.3986603138726 K, F = -0.021602676227687856, relative_change = 5.851877494110922e-7 Iter 80: T = 634.3975263905648 K, F = -0.009034502677416345, relative_change = 2.4473473673371325e-7 Iter 85: T = 634.3970521681497 K, F = -0.0037783378741314544, relative_change = 1.0235137990908842e-7 Iter 90: T = 634.3968538422969 K, F = -0.0015801461900215585, relative_change = 4.280463767722215e-8 Iter 95: T = 634.3967708999911 K, F = -0.0006608360365132349, relative_change = 1.7901422598202178e-8 Iter 100: T = 634.3967362125169 K, F = -0.000276369527255127, relative_change = 7.486590795925849e-9 Iter 105: T = 634.3967217057989 K, F = -0.00011558103789471863, relative_change = 3.1309820488750022e-9 Iter 110: T = 634.3967156389158 K, F = -4.833737039483532e-5, relative_change = 1.3094141447722626e-9 Iter 115: T = 634.3967131016727 K, F = -2.0215265442602437e-5, relative_change = 5.47612640048108e-10 Iter 120: T = 634.3967120405673 K, F = -8.454264194712735e-6, relative_change = 2.2901811432274014e-10 Iter 125: T = 634.3967115968005 K, F = -3.5356747989934156e-6, relative_change = 9.577812561464786e-11 Iter 130: T = 634.3967114112119 K, F = -1.4786618623974235e-6, relative_change = 4.005556784686814e-11 Iter 135: T = 634.3967113335965 K, F = -6.183939414983186e-7, relative_change = 1.6751713913852762e-11 Iter 140: T = 634.3967113011367 K, F = -2.5861937952287306e-7, relative_change = 7.0057572829769165e-12 Iter 145: T = 634.3967112875617 K, F = -1.0815707929268115e-7, relative_change = 2.9298741936328575e-12 Iter 150: T = 634.3967112818844 K, F = -4.5232810108597477e-8, relative_change = 1.2253145509753933e-12 Iter 155: T = 634.3967112795102 K, F = -1.8915940092067984e-8, relative_change = 5.124151381476353e-13 Converged in 160 iterations to T = 634.3967112785172 K Iter 1: T = 966.452276274804 K, F = -7643.880762909636, relative_change = 0.033547723725195995 Iter 2: T = 934.9424777734203 K, F = -6481.030961577557, relative_change = 0.03260357420113751 Iter 3: T = 905.4409153028066 K, F = -5493.678832497662, relative_change = 0.03155441449282743 Iter 5: T = 852.3382330013291 K, F = -3943.8286512212353, relative_change = 0.029135857755510332 Iter 10: T = 752.1152579094557 K, F = -1710.971042267673, relative_change = 0.02150925581807656 Iter 15: T = 691.9691790999003 K, F = -734.0763373819707, relative_change = 0.013316043019668792 Iter 20: T = 660.3456499231753 K, F = -311.63029124859486, relative_change = 0.006992262069135475 Iter 25: T = 645.3795747708007 K, F = -131.3164704193887, relative_change = 0.003277924976008223 Iter 30: T = 638.7385998783969 K, F = -55.1088950370238, relative_change = 0.0014443041255841132 Iter 35: T = 635.8868919485757 K, F = -23.082076681581107, relative_change = 0.0006179030487170593 Iter 40: T = 634.6806322844133 K, F = -9.659418595318524, relative_change = 0.0002609243554931523 Iter 45: T = 634.1737250067015 K, F = -4.040780726222045, relative_change = 0.00010956695496367908 Iter 50: T = 633.9613007392201 K, F = -1.6900951963928208, relative_change = 4.5900555239406364e-5 Iter 55: T = 633.8723869648647 K, F = -0.706851701349426, relative_change = 1.9209897625029436e-5 Iter 60: T = 633.8351889534285 K, F = -0.2956197218541273, relative_change = 8.036213787689084e-6 Iter 65: T = 633.8196299890446 K, F = -0.12363273006336734, relative_change = 3.3612614330388137e-6 Iter 70: T = 633.8131226398893 K, F = -0.05170486469674335, relative_change = 1.40579329447479e-6 Iter 75: T = 633.8104011180145 K, F = -0.021623623469626485, relative_change = 5.879324218016749e-7 Iter 80: T = 633.8092629326911 K, F = -0.009043263095707743, relative_change = 2.458826124977895e-7 Iter 85: T = 633.808786927832 K, F = -0.0037820015916995575, relative_change = 1.0283143894730086e-7 Iter 90: T = 633.8085878565366 K, F = -0.0015816784012055995, relative_change = 4.300540473628072e-8 Iter 95: T = 633.8085046024773 K, F = -0.000661476826152585, relative_change = 1.7985385904606477e-8 Iter 100: T = 633.8084697846239 K, F = -0.0002766375133279042, relative_change = 7.521705277445676e-9 Iter 105: T = 633.8084552233797 K, F = -0.0001156931120165905, relative_change = 3.145667324487222e-9 Iter 110: T = 633.8084491336932 K, F = -4.838424143399633e-5, relative_change = 1.3155557112119469e-9 Iter 115: T = 633.8084465869134 K, F = -2.0234867342983076e-5, relative_change = 5.501811130852056e-10 Iter 120: T = 633.8084455218199 K, F = -8.462463699843159e-6, relative_change = 2.30092328066967e-10 Iter 125: T = 633.8084450763849 K, F = -3.5391037503385014e-6, relative_change = 9.622736980552362e-11 Iter 130: T = 633.8084448900986 K, F = -1.48009504341573e-6, relative_change = 4.024342413690652e-11 Iter 135: T = 633.8084448121916 K, F = -6.189933746680865e-7, relative_change = 1.683027927165623e-11 Iter 140: T = 633.8084447796099 K, F = -2.5887095966847795e-7, relative_change = 7.038638418294351e-12 Iter 145: T = 633.8084447659838 K, F = -1.082625648574087e-7, relative_change = 2.9436328019269407e-12 Iter 150: T = 633.8084447602853 K, F = -4.52764578606768e-8, relative_change = 1.2310558750847449e-12 Iter 155: T = 633.8084447579021 K, F = -1.8935114143303622e-8, relative_change = 5.148411473278405e-13 Converged in 160 iterations to T = 633.8084447569055 K Iter 1: T = 976.3743815394165 K, F = -5383.11964000895, relative_change = 0.02362561846058347 Iter 2: T = 954.9116692611457 K, F = -4551.861480780009, relative_change = 0.021982051848217565 Iter 3: T = 935.5207489707136 K, F = -3847.2245270230555, relative_change = 0.0203065067844816 Iter 5: T = 902.5353139341267 K, F = -2744.481331963089, relative_change = 0.01695252168040457 Iter 10: T = 848.1753609628008 K, F = -1170.4027156871323, relative_change = 0.009550807035476781 Iter 15: T = 821.3153324343391 K, F = -494.63689233722545, relative_change = 0.004681716207621311 Iter 20: T = 809.0992350417127 K, F = -207.8986272695703, relative_change = 0.002110959093753228 Iter 25: T = 803.7900622041401 K, F = -87.13880712603421, relative_change = 0.0009127655661831511 Iter 30: T = 801.5321633534318 K, F = -36.47723298089041, relative_change = 0.0003872299981310373 Iter 35: T = 800.5811166906166 K, F = -15.261364843689764, relative_change = 0.000162926736291359 Iter 40: T = 800.1821789185149 K, F = -6.383566238404678, relative_change = 6.831128643074398e-5 Iter 45: T = 800.0151275903975 K, F = -2.6698731447135495, relative_change = 2.8599033480243983e-5 Iter 50: T = 799.9452277795122 K, F = -1.1166060088322114, relative_change = 1.1965789262567154e-5 Iter 55: T = 799.9159883750223 K, F = -0.46698377237762534, relative_change = 5.005169139610147e-6 Iter 60: T = 799.9037589750253 K, F = -0.1952992058928884, relative_change = 2.0933847651271666e-6 Iter 65: T = 799.8986442959034 K, F = -0.08167663784824952, relative_change = 8.755070659721918e-7 Iter 70: T = 799.8965052413811 K, F = -0.03415817642545482, relative_change = 3.6615250554991196e-7 Iter 75: T = 799.8956106571771 K, F = -0.014285362744077545, relative_change = 1.5313022418734576e-7 Iter 80: T = 799.8952365303201 K, F = -0.005974310251244286, relative_change = 6.4041041297482e-8 Iter 85: T = 799.8950800658153 K, F = -0.0024985280611801164, relative_change = 2.678275500279688e-8 Iter 90: T = 799.8950146304583 K, F = -0.0010449143024824359, relative_change = 1.1200872664743294e-8 Iter 95: T = 799.894987264605 K, F = -0.000436995646740157, relative_change = 4.6843395480985325e-9 Iter 100: T = 799.8949758198772 K, F = -0.00018275679820367596, relative_change = 1.9590468743002507e-9 Iter 105: T = 799.8949710335553 K, F = -7.643107701160723e-5, relative_change = 8.192968374175943e-10 Iter 110: T = 799.8949690318583 K, F = -3.19643898650801e-5, relative_change = 3.4263973323959223e-10 Iter 115: T = 799.8949681947246 K, F = -1.3367888698323505e-5, relative_change = 1.4329601971841765e-10 Iter 120: T = 799.8949678446253 K, F = -5.590609653438605e-6, relative_change = 5.992809566906646e-11 Iter 125: T = 799.8949676982096 K, F = -2.33806019867e-6, relative_change = 2.5062650421652102e-11 Iter 130: T = 799.894967636977 K, F = -9.778064385956853e-7, relative_change = 1.0481518385812639e-11 Iter 135: T = 799.8949676113687 K, F = -4.0893130293095936e-7, relative_change = 4.383506593610017e-12 Iter 140: T = 799.8949676006589 K, F = -1.7102091542930964e-7, relative_change = 1.833245107684892e-12 Iter 145: T = 799.89496759618 K, F = -7.152241321417563e-8, relative_change = 7.666788228156644e-13 Iter 150: T = 799.8949675943069 K, F = -2.9912817445243434e-8, relative_change = 3.2064806870539727e-13 Converged in 153 iterations to T = 799.8949675937585 K Iter 1: T = 965.2539633936404 K, F = -7916.91749277257, relative_change = 0.03474603660635951 Iter 2: T = 932.4863573081105 K, F = -6714.705344401888, relative_change = 0.03394713446223578 Iter 3: T = 901.6677857477596 K, F = -5693.82414074349, relative_change = 0.03304989002661403 Iter 5: T = 845.7644146749915 K, F = -4091.000975382107, relative_change = 0.030942330427892007 Iter 10: T = 737.9362919200099 K, F = -1779.875656870389, relative_change = 0.023909161295221408 Iter 15: T = 670.6836435895583 K, F = -766.2027016552964, relative_change = 0.015603203542200874 Iter 20: T = 633.9840055714 K, F = -326.191974882228, relative_change = 0.00855985458140306 Iter 25: T = 616.148917631833 K, F = -137.69776108317748, relative_change = 0.004123214123860912 Iter 30: T = 608.116216771663 K, F = -57.83982225855747, relative_change = 0.0018420514056405471 Iter 35: T = 604.6420187989823 K, F = -24.23610623352998, relative_change = 0.0007930727034545506 Iter 40: T = 603.1677307357454 K, F = -10.14421826016626, relative_change = 0.0003358175700408709 Iter 45: T = 602.5473350277902 K, F = -4.243915947349071, relative_change = 0.00014118127209942864 Iter 50: T = 602.2872006347618 K, F = -1.7751168095990797, relative_change = 5.917383190516168e-5 Iter 55: T = 602.1782902746386 K, F = -0.7424206913227156, relative_change = 2.4770038167569557e-5 Iter 60: T = 602.132721798505 K, F = -0.3104971885039537, relative_change = 1.03631250546478e-5 Iter 65: T = 602.113660865652 K, F = -0.129855030073126, relative_change = 4.33468253379082e-6 Iter 70: T = 602.105688716952 K, F = -0.054307168860429245, relative_change = 1.8129384402270814e-6 Iter 75: T = 602.1023545573904 K, F = -0.022711949341958748, relative_change = 7.582139232422506e-7 Iter 80: T = 602.1009601524942 K, F = -0.009498415930643433, relative_change = 3.170978635750965e-7 Iter 85: T = 602.1003769922947 K, F = -0.003972352284306757, relative_change = 1.3261476863940363e-7 Iter 90: T = 602.1001331071369 K, F = -0.0016612853938213767, relative_change = 5.5461194586480066e-8 Iter 95: T = 602.1000311113467 K, F = -0.0006947694310479591, relative_change = 2.319455394493851e-8 Iter 100: T = 602.0999884554709 K, F = -0.00029056088059042917, relative_change = 9.700242974307031e-9 Iter 105: T = 602.0999706162711 K, F = -0.0001215160317324937, relative_change = 4.056758077530802e-9 Iter 110: T = 602.099963155704 K, F = -5.081945585372338e-5, relative_change = 1.6965847818843929e-9 Iter 115: T = 602.0999600356057 K, F = -2.1253303579493732e-5, relative_change = 7.095320424352138e-10 Iter 120: T = 602.0999587307433 K, F = -8.88838538187775e-6, relative_change = 2.9673477704004855e-10 Iter 125: T = 602.0999581850343 K, F = -3.7172295636045405e-6, relative_change = 1.2409804966056495e-10 Iter 130: T = 602.0999579568122 K, F = -1.5545895677426813e-6, relative_change = 5.189927886525303e-11 Iter 135: T = 602.099957861367 K, F = -6.501475708908799e-7, relative_change = 2.1704886492769265e-11 Iter 140: T = 602.0999578214507 K, F = -2.7189959261875174e-7, relative_change = 9.077246553418887e-12 Iter 145: T = 602.0999578047573 K, F = -1.137120569927319e-7, relative_change = 3.796226274612337e-12 Iter 150: T = 602.0999577977759 K, F = -4.755607668771589e-8, relative_change = 1.587638396699582e-12 Iter 155: T = 602.0999577948562 K, F = -1.9888609814611158e-8, relative_change = 6.639723627062392e-13 Iter 160: T = 602.0999577936351 K, F = -8.318474908897144e-9, relative_change = 2.777085724397231e-13 Converged in 162 iterations to T = 602.0999577933767 K Iter 1: T = 964.5906692420601 K, F = -8068.049696165773, relative_change = 0.03540933075793983 Iter 2: T = 931.1226218793329 K, F = -6844.1124978287935, relative_change = 0.03469663187704811 Iter 3: T = 899.5655157659578 K, F = -5804.732000990595, relative_change = 0.0338914610942238 Iter 5: T = 842.0718565890312 K, F = -4172.698499153231, relative_change = 0.03198007414042201 Iter 10: T = 729.7562040726648 K, F = -1818.4644334219506, relative_change = 0.025386880969923586 Iter 15: T = 658.0184863382924 K, F = -784.4812295264593, relative_change = 0.0171341301528939 Iter 20: T = 617.8910430905331 K, F = -334.6247735511783, relative_change = 0.009687929314343278 Iter 25: T = 598.0183903969886 K, F = -141.4419094684958, relative_change = 0.0047604682829217385 Iter 30: T = 588.9678646040627 K, F = -59.45392101394362, relative_change = 0.002149262025077318 Iter 35: T = 585.0317736501673 K, F = -24.92057687635839, relative_change = 0.000929895656988131 Iter 40: T = 583.3573021355548 K, F = -10.432205523172675, relative_change = 0.0003946033893631864 Iter 45: T = 582.6519050236031 K, F = -4.364665298829248, relative_change = 0.0001660481824415182 Iter 50: T = 582.3559934927673 K, F = -1.8256702705993968, relative_change = 6.962341430045411e-5 Iter 55: T = 582.2320804170373 K, F = -0.7635723448495673, relative_change = 2.91489598189688e-5 Iter 60: T = 582.1802305559427 K, F = -0.31934474296298165, relative_change = 1.219598168570427e-5 Iter 65: T = 582.1585414345869 K, F = -0.13355547709599025, relative_change = 5.101474541027633e-6 Iter 70: T = 582.1494699293623 K, F = -0.055854791447969176, relative_change = 2.133667164859892e-6 Iter 75: T = 582.1456759678617 K, F = -0.02335919258939312, relative_change = 8.923547540344669e-7 Iter 80: T = 582.1440892616721 K, F = -0.009769102359579562, relative_change = 3.731986036105459e-7 Iter 85: T = 582.1434256776154 K, F = -0.004085556857605754, relative_change = 1.5607702045938342e-7 Iter 90: T = 582.1431481580371 K, F = -0.0017086289459449233, relative_change = 6.527343260830415e-8 Iter 95: T = 582.1430320958953 K, F = -0.0007145690799773008, relative_change = 2.72981568460771e-8 Iter 100: T = 582.1429835572968 K, F = -0.0002988413315992422, relative_change = 1.1416420062117771e-8 Iter 105: T = 582.1429632578711 K, F = -0.0001249790156224173, relative_change = 4.774484073306254e-9 Iter 110: T = 582.142954768408 K, F = -5.22677172422048e-5, relative_change = 1.996746410621582e-9 Iter 115: T = 582.1429512180131 K, F = -2.1858984059930364e-5, relative_change = 8.350632384914617e-10 Iter 120: T = 582.1429497331955 K, F = -9.14168814425409e-6, relative_change = 3.492334217724886e-10 Iter 125: T = 582.1429491122269 K, F = -3.82316313729536e-6, relative_change = 1.46053587712016e-10 Iter 130: T = 582.1429488525305 K, F = -1.5988918212750391e-6, relative_change = 6.108132950920708e-11 Iter 135: T = 582.1429487439224 K, F = -6.686757258456133e-7, relative_change = 2.5544944215732876e-11 Iter 140: T = 582.1429486985012 K, F = -2.7964812726599675e-7, relative_change = 1.0683198952173426e-11 Iter 145: T = 582.1429486795055 K, F = -1.1695233753661327e-7, relative_change = 4.467847155761735e-12 Iter 150: T = 582.1429486715613 K, F = -4.891128607686923e-8, relative_change = 1.8685231522540005e-12 Iter 155: T = 582.1429486682389 K, F = -2.0454950622195156e-8, relative_change = 7.814259628494521e-13 Iter 160: T = 582.1429486668494 K, F = -8.554995434284507e-9, relative_change = 3.2682041956290857e-13 Converged in 163 iterations to T = 582.1429486664425 K Iter 1: T = 964.3829377089405 K, F = -8115.381523590774, relative_change = 0.03561706229105943 Iter 2: T = 930.6949046555231 K, F = -6884.649646965047, relative_change = 0.034932215965422606 Iter 3: T = 898.9050873768127 K, F = -5839.4843534658285, relative_change = 0.03415707673878019 Iter 5: T = 840.9073416559353 K, F = -4198.319516893057, relative_change = 0.03231082893248746 Iter 10: T = 727.1422246810871 K, F = -1830.6195839292243, relative_change = 0.02587418896346994 Iter 15: T = 653.9054021213541 K, F = -790.2878264556098, relative_change = 0.01766133926748488 Iter 20: T = 612.5898944625335 K, F = -337.33109551519874, relative_change = 0.010092191258698013 Iter 25: T = 591.9906842912367 K, F = -142.65314251143812, relative_change = 0.004995035831116895 Iter 30: T = 582.5709483209034 K, F = -59.97849808347886, relative_change = 0.0022639767092792556 Iter 35: T = 578.4658539585946 K, F = -25.143527763505418, relative_change = 0.0009813314956584088 Iter 40: T = 576.7178473752313 K, F = -10.526105086763433, relative_change = 0.00041676831976614307 Iter 45: T = 575.9811724540946 K, F = -4.404053184981061, relative_change = 0.00017543602347825973 Iter 50: T = 575.6720864872163 K, F = -1.8421635932829845, relative_change = 7.357048609820385e-5 Iter 55: T = 575.5426471749198 K, F = -0.7704737092345606, relative_change = 3.080336068773998e-5 Iter 60: T = 575.4884832738669 K, F = -0.32223161720126214, relative_change = 1.2888518563468427e-5 Iter 65: T = 575.4658258850461 K, F = -0.13476291461435094, relative_change = 5.391214954928147e-6 Iter 70: T = 575.4563493498409 K, F = -0.05635977587370403, relative_change = 2.254859877166242e-6 Iter 75: T = 575.4523859844015 K, F = -0.023570386542467986, relative_change = 9.430424592763582e-7 Iter 80: T = 575.4507284287391 K, F = -0.00985742679438767, relative_change = 3.943974134850986e-7 Iter 85: T = 575.4500352141105 K, F = -0.004122495295613704, relative_change = 1.6494272191968425e-7 Iter 90: T = 575.4497453025899 K, F = -0.0017240770608156208, relative_change = 6.898119340389077e-8 Iter 95: T = 575.4496240579751 K, F = -0.0007210296684693751, relative_change = 2.8848789902000477e-8 Iter 100: T = 575.4495733520022 K, F = -0.0003015432277020391, relative_change = 1.2064913903178769e-8 Iter 105: T = 575.449552146154 K, F = -0.00012610898070763987, relative_change = 5.045692032902083e-9 Iter 110: T = 575.4495432776142 K, F = -5.274028198604119e-5, relative_change = 2.1101688290716402e-9 Iter 115: T = 575.4495395686848 K, F = -2.2056615681054215e-5, relative_change = 8.824978282346706e-10 Iter 120: T = 575.4495380175663 K, F = -9.224340470903591e-6, relative_change = 3.69071151016526e-10 Iter 125: T = 575.44953736887 K, F = -3.85772952976593e-6, relative_change = 1.5434997114356834e-10 Iter 130: T = 575.4495370975774 K, F = -1.6133483705660367e-6, relative_change = 6.455099381097013e-11 Iter 135: T = 575.4495369841195 K, F = -6.747213125435358e-7, relative_change = 2.6995986797153914e-11 Iter 140: T = 575.4495369366701 K, F = -2.821765155980316e-7, relative_change = 1.1290044275947276e-11 Iter 145: T = 575.4495369168262 K, F = -1.1800977345322039e-7, relative_change = 4.721638739766892e-12 Iter 150: T = 575.4495369085273 K, F = -4.935307040820902e-8, relative_change = 1.9746446617340183e-12 Iter 155: T = 575.4495369050567 K, F = -2.0640790687753707e-8, relative_change = 8.258498774157929e-13 Iter 160: T = 575.4495369036051 K, F = -8.632096537564138e-9, relative_change = 3.4537513486359854e-13 Converged in 163 iterations to T = 575.4495369031802 K Iter 1: T = 980.0433582414117 K, F = -4547.139808361489, relative_change = 0.019956641758588252 Iter 2: T = 962.1346833085756 K, F = -3841.085073558186, relative_change = 0.018273349625032343 Iter 3: T = 946.153777665773 K, F = -3243.150303743561, relative_change = 0.016609842592772716 Iter 5: T = 919.4542516730115 K, F = -2308.8520037713174, relative_change = 0.013431378735578333 Iter 10: T = 877.0245090630311 K, F = -980.2937809420636, relative_change = 0.007068251271389252 Iter 15: T = 856.918128242599 K, F = -413.1171689725078, relative_change = 0.003317889947466983 Iter 20: T = 847.9898664333247 K, F = -173.37823825500317, relative_change = 0.0014628694001175646 Iter 25: T = 844.1546746608153 K, F = -72.62001411450636, relative_change = 0.0006260311091126446 Iter 30: T = 842.5321625780657 K, F = -30.39038149967802, relative_change = 0.00026439054237444904 Iter 35: T = 841.8502894676903 K, F = -12.713116513714644, relative_change = 0.00011102851680802443 Iter 40: T = 841.5645363614576 K, F = -5.317390740218146, relative_change = 4.651390886559106e-5 Iter 45: T = 841.4449281956192 K, F = -2.223903783912548, relative_change = 1.94667800568876e-5 Iter 50: T = 841.3948886239571 K, F = -0.9300819299751366, relative_change = 8.14371001345666e-6 Iter 55: T = 841.3739583257905 K, F = -0.38897466104576506, relative_change = 3.406229001407295e-6 Iter 60: T = 841.3652044737536 K, F = -0.16267442411670485, relative_change = 1.424601256530954e-6 Iter 65: T = 841.3615434118408 K, F = -0.06803248756271651, relative_change = 5.957984838853229e-7 Iter 70: T = 841.3600122951572 K, F = -0.02845201637835304, relative_change = 2.49172354412676e-7 Iter 75: T = 841.3593719609242 K, F = -0.011898976114812498, relative_change = 1.04207258918542e-7 Iter 80: T = 841.359104164985 K, F = -0.004976294454960284, relative_change = 4.3580790951457125e-8 Iter 85: T = 841.3589921694347 K, F = -0.0020811458656353476, relative_change = 1.822601962445761e-8 Iter 90: T = 841.3589453315423 K, F = -0.0008703600692101521, relative_change = 7.622341215185016e-9 Iter 95: T = 841.3589257433736 K, F = -0.00036399497998984565, relative_change = 3.1877545211481413e-9 Iter 100: T = 841.3589175513671 K, F = -0.00015222704940365261, relative_change = 1.3331570877361715e-9 Iter 105: T = 841.358914125372 K, F = -6.366317351247375e-5, relative_change = 5.575422566090033e-10 Iter 110: T = 841.3589126925799 K, F = -2.6624701502608872e-5, relative_change = 2.3317084993821974e-10 Iter 115: T = 841.3589120933692 K, F = -1.113476932812496e-5, relative_change = 9.751484487645813e-11 Iter 120: T = 841.358911842772 K, F = -4.656693820326296e-6, relative_change = 4.078187547390551e-11 Iter 125: T = 841.3589117379694 K, F = -1.947486468090176e-6, relative_change = 1.7055480506190667e-11 Iter 130: T = 841.3589116941396 K, F = -8.14462710385655e-7, relative_change = 7.1328109905018424e-12 Iter 135: T = 841.3589116758095 K, F = -3.4061852649536206e-7, relative_change = 2.983031068980757e-12 Iter 140: T = 841.3589116681436 K, F = -1.4245220292252725e-7, relative_change = 1.247552068154668e-12 Iter 145: T = 841.3589116649376 K, F = -5.957475024409575e-8, relative_change = 5.217371255296648e-13 Converged in 150 iterations to T = 841.3589116635968 K Variable extinction detected - using variable ray tracing Found spectral variation: bin 2, face (1,1) β = 1.001111111111111 vs reference β = 1.0 Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Running direct ray tracing for 10 spectral bins Processing spectral bin 1/10 ┌ Warning: No emitters found for spectral bin 1 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 1 ray tracing: 6%|█▊ | ETA: 0:00:16 Bin 1 ray tracing: 12%|███▌ | ETA: 0:00:15 Bin 1 ray tracing: 18%|█████▍ | ETA: 0:00:14 Bin 1 ray tracing: 24%|███████▏ | ETA: 0:00:13 Bin 1 ray tracing: 30%|████████▉ | ETA: 0:00:12 Bin 1 ray tracing: 36%|██████████▊ | ETA: 0:00:11 Bin 1 ray tracing: 42%|████████████▌ | ETA: 0:00:10 Bin 1 ray tracing: 48%|██████████████▍ | ETA: 0:00:09 Bin 1 ray tracing: 54%|████████████████▎ | ETA: 0:00:08 Bin 1 ray tracing: 60%|██████████████████ | ETA: 0:00:07 Bin 1 ray tracing: 66%|███████████████████▊ | ETA: 0:00:06 Bin 1 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:05 Bin 1 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:04 Bin 1 ray tracing: 85%|█████████████████████████▍ | ETA: 0:00:03 Bin 1 ray tracing: 92%|███████████████████████████▊ | ETA: 0:00:01 Bin 1 ray tracing: 99%|██████████████████████████████| ETA: 0:00:00 Bin 1 ray tracing: 100%|██████████████████████████████| Time: 0:00:16 Updating spectral results for spectral bin 1 Energy per ray: 0.0 Processing spectral bin 2/10 ┌ Warning: No emitters found for spectral bin 2 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 2 ray tracing: 8%|██▍ | ETA: 0:00:11 Bin 2 ray tracing: 17%|█████▏ | ETA: 0:00:10 Bin 2 ray tracing: 26%|███████▉ | ETA: 0:00:08 Bin 2 ray tracing: 36%|██████████▊ | ETA: 0:00:07 Bin 2 ray tracing: 46%|█████████████▋ | ETA: 0:00:06 Bin 2 ray tracing: 55%|████████████████▋ | ETA: 0:00:05 Bin 2 ray tracing: 65%|███████████████████▋ | ETA: 0:00:04 Bin 2 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:03 Bin 2 ray tracing: 84%|█████████████████████████▍ | ETA: 0:00:02 Bin 2 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 2 ray tracing: 100%|██████████████████████████████| Time: 0:00:10 Updating spectral results for spectral bin 2 Energy per ray: 0.0 Processing spectral bin 3/10 ┌ Warning: No emitters found for spectral bin 3 └ @ RayTraceHeatTransfer ~/.julia/packages/RayTraceHeatTransfer/UYbSj/src/RayTracing/RayTracing2D/DirectTracing/directRayTracing.jl:25 Bin 3 ray tracing: 10%|███ | ETA: 0:00:09 Bin 3 ray tracing: 20%|██████ | ETA: 0:00:08 Bin 3 ray tracing: 30%|████████▉ | ETA: 0:00:07 Bin 3 ray tracing: 39%|███████████▊ | ETA: 0:00:06 Bin 3 ray tracing: 49%|██████████████▋ | ETA: 0:00:05 Bin 3 ray tracing: 58%|█████████████████▌ | ETA: 0:00:05 Bin 3 ray tracing: 66%|███████████████████▋ | ETA: 0:00:04 Bin 3 ray tracing: 72%|█████████████████████▊ | ETA: 0:00:03 Bin 3 ray tracing: 79%|███████████████████████▉ | ETA: 0:00:02 Bin 3 ray tracing: 86%|█████████████████████████▊ | ETA: 0:00:02 Bin 3 ray tracing: 92%|███████████████████████████▋ | ETA: 0:00:01 Bin 3 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 3 ray tracing: 100%|██████████████████████████████| Time: 0:00:12 Updating spectral results for spectral bin 3 Energy per ray: 0.0 Processing spectral bin 4/10 Bin 4 ray tracing: 7%|██ | ETA: 0:00:15 Bin 4 ray tracing: 13%|███▉ | ETA: 0:00:14 Bin 4 ray tracing: 19%|█████▉ | ETA: 0:00:13 Bin 4 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 4 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 4 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 4 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 4 ray tracing: 52%|███████████████▊ | ETA: 0:00:07 Bin 4 ray tracing: 59%|█████████████████▋ | ETA: 0:00:06 Bin 4 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 4 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 4 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 4 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 4 ray tracing: 92%|███████████████████████████▌ | ETA: 0:00:01 Bin 4 ray tracing: 99%|█████████████████████████████▋| ETA: 0:00:00 Bin 4 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 4 Energy per ray: 0.0001853335835185918 Processing spectral bin 5/10 Bin 5 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 5 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 5 ray tracing: 19%|█████▊ | ETA: 0:00:13 Bin 5 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 5 ray tracing: 34%|██████████ | ETA: 0:00:10 Bin 5 ray tracing: 41%|████████████▎ | ETA: 0:00:09 Bin 5 ray tracing: 47%|██████████████▏ | ETA: 0:00:08 Bin 5 ray tracing: 53%|████████████████ | ETA: 0:00:07 Bin 5 ray tracing: 60%|██████████████████ | ETA: 0:00:06 Bin 5 ray tracing: 67%|████████████████████▎ | ETA: 0:00:05 Bin 5 ray tracing: 75%|██████████████████████▌ | ETA: 0:00:04 Bin 5 ray tracing: 81%|████████████████████████▍ | ETA: 0:00:03 Bin 5 ray tracing: 88%|██████████████████████████▍ | ETA: 0:00:02 Bin 5 ray tracing: 94%|████████████████████████████▎ | ETA: 0:00:01 Bin 5 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 5 Energy per ray: 0.04303963948070305 Processing spectral bin 6/10 Bin 6 ray tracing: 10%|██▉ | ETA: 0:00:13 Bin 6 ray tracing: 16%|████▉ | ETA: 0:00:13 Bin 6 ray tracing: 23%|██████▉ | ETA: 0:00:12 Bin 6 ray tracing: 29%|████████▊ | ETA: 0:00:11 Bin 6 ray tracing: 35%|██████████▋ | ETA: 0:00:10 Bin 6 ray tracing: 42%|████████████▌ | ETA: 0:00:09 Bin 6 ray tracing: 48%|██████████████▍ | ETA: 0:00:08 Bin 6 ray tracing: 54%|████████████████▍ | ETA: 0:00:07 Bin 6 ray tracing: 61%|██████████████████▎ | ETA: 0:00:06 Bin 6 ray tracing: 67%|████████████████████▏ | ETA: 0:00:05 Bin 6 ray tracing: 74%|██████████████████████▏ | ETA: 0:00:04 Bin 6 ray tracing: 80%|████████████████████████▏ | ETA: 0:00:03 Bin 6 ray tracing: 87%|██████████████████████████▏ | ETA: 0:00:02 Bin 6 ray tracing: 94%|████████████████████████████▏ | ETA: 0:00:01 Bin 6 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 6 Energy per ray: 0.013246116789219251 Processing spectral bin 7/10 Bin 7 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 7 ray tracing: 12%|███▊ | ETA: 0:00:14 Bin 7 ray tracing: 19%|█████▋ | ETA: 0:00:13 Bin 7 ray tracing: 25%|███████▌ | ETA: 0:00:12 Bin 7 ray tracing: 32%|█████████▌ | ETA: 0:00:11 Bin 7 ray tracing: 39%|███████████▋ | ETA: 0:00:09 Bin 7 ray tracing: 46%|█████████████▉ | ETA: 0:00:08 Bin 7 ray tracing: 53%|███████████████▉ | ETA: 0:00:07 Bin 7 ray tracing: 59%|█████████████████▉ | ETA: 0:00:06 Bin 7 ray tracing: 66%|███████████████████▊ | ETA: 0:00:05 Bin 7 ray tracing: 72%|█████████████████████▋ | ETA: 0:00:04 Bin 7 ray tracing: 79%|███████████████████████▌ | ETA: 0:00:03 Bin 7 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 7 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 7 ray tracing: 98%|█████████████████████████████▍| ETA: 0:00:00 Bin 7 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 7 Energy per ray: 0.000216614824573769 Processing spectral bin 8/10 Bin 8 ray tracing: 7%|██ | ETA: 0:00:14 Bin 8 ray tracing: 13%|████ | ETA: 0:00:13 Bin 8 ray tracing: 20%|██████ | ETA: 0:00:12 Bin 8 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 8 ray tracing: 33%|█████████▉ | ETA: 0:00:10 Bin 8 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 8 ray tracing: 45%|█████████████▋ | ETA: 0:00:08 Bin 8 ray tracing: 52%|███████████████▋ | ETA: 0:00:07 Bin 8 ray tracing: 58%|█████████████████▌ | ETA: 0:00:06 Bin 8 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 8 ray tracing: 71%|█████████████████████▍ | ETA: 0:00:04 Bin 8 ray tracing: 78%|███████████████████████▍ | ETA: 0:00:03 Bin 8 ray tracing: 84%|█████████████████████████▎ | ETA: 0:00:02 Bin 8 ray tracing: 91%|███████████████████████████▎ | ETA: 0:00:01 Bin 8 ray tracing: 97%|█████████████████████████████▏| ETA: 0:00:00 Bin 8 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 8 Energy per ray: 1.0195075180910974e-6 Processing spectral bin 9/10 Bin 9 ray tracing: 7%|██▏ | ETA: 0:00:14 Bin 9 ray tracing: 14%|████▏ | ETA: 0:00:13 Bin 9 ray tracing: 20%|██████ | ETA: 0:00:13 Bin 9 ray tracing: 26%|███████▉ | ETA: 0:00:11 Bin 9 ray tracing: 33%|█████████▉ | ETA: 0:00:11 Bin 9 ray tracing: 39%|███████████▊ | ETA: 0:00:09 Bin 9 ray tracing: 46%|█████████████▊ | ETA: 0:00:08 Bin 9 ray tracing: 52%|███████████████▋ | ETA: 0:00:08 Bin 9 ray tracing: 59%|█████████████████▌ | ETA: 0:00:07 Bin 9 ray tracing: 65%|███████████████████▌ | ETA: 0:00:05 Bin 9 ray tracing: 72%|█████████████████████▌ | ETA: 0:00:04 Bin 9 ray tracing: 78%|███████████████████████▌ | ETA: 0:00:03 Bin 9 ray tracing: 85%|█████████████████████████▌ | ETA: 0:00:02 Bin 9 ray tracing: 91%|███████████████████████████▍ | ETA: 0:00:01 Bin 9 ray tracing: 97%|█████████████████████████████▎| ETA: 0:00:00 Bin 9 ray tracing: 100%|██████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 9 Energy per ray: 2.172423637119241e-9 Processing spectral bin 10/10 Bin 10 ray tracing: 6%|█▉ | ETA: 0:00:15 Bin 10 ray tracing: 13%|███▊ | ETA: 0:00:14 Bin 10 ray tracing: 19%|█████▌ | ETA: 0:00:13 Bin 10 ray tracing: 25%|███████▍ | ETA: 0:00:12 Bin 10 ray tracing: 32%|█████████▎ | ETA: 0:00:11 Bin 10 ray tracing: 38%|███████████▏ | ETA: 0:00:10 Bin 10 ray tracing: 45%|█████████████ | ETA: 0:00:09 Bin 10 ray tracing: 51%|██████████████▉ | ETA: 0:00:08 Bin 10 ray tracing: 58%|████████████████▊ | ETA: 0:00:07 Bin 10 ray tracing: 64%|██████████████████▌ | ETA: 0:00:06 Bin 10 ray tracing: 70%|████████████████████▍ | ETA: 0:00:05 Bin 10 ray tracing: 77%|██████████████████████▎ | ETA: 0:00:04 Bin 10 ray tracing: 83%|████████████████████████▏ | ETA: 0:00:03 Bin 10 ray tracing: 90%|██████████████████████████ | ETA: 0:00:02 Bin 10 ray tracing: 96%|███████████████████████████▉ | ETA: 0:00:01 Bin 10 ray tracing: 100%|█████████████████████████████| Time: 0:00:15 Updating spectral results for spectral bin 10 Energy per ray: 1.5017824710273407e-5 Iter 1: T = 967.2946925141354 K, F = -7451.935421433268, relative_change = 0.032705307485864636 Iter 2: T = 936.6632990437407 K, F = -6316.845200299431, relative_change = 0.03166707489191256 Iter 3: T = 908.0745338723414 K, F = -5353.146456446929, relative_change = 0.030521923086541634 Iter 5: T = 856.8870218885228 K, F = -3840.6858176145292, relative_change = 0.02791606685765942 Iter 10: T = 761.6604149943661 K, F = -1663.108790181395, relative_change = 0.020001942558416287 Iter 15: T = 705.8787743562524 K, F = -712.0850181013377, relative_change = 0.011992936588069134 Iter 20: T = 677.1789833830396 K, F = -301.8110133915024, relative_change = 0.006144332156959914 Iter 25: T = 663.7920213921625 K, F = -127.05800521367914, relative_change = 0.0028391471877369776 Iter 30: T = 657.8978070370785 K, F = -53.29662227625245, relative_change = 0.0012421002906108764 Iter 35: T = 655.3760303198111 K, F = -22.318257487353137, relative_change = 0.0005296952017256541 Iter 40: T = 654.3110536768826 K, F = -9.338913463505886, relative_change = 0.00022336700797269876 Iter 45: T = 653.8638274070455 K, F = -3.9065524772545723, relative_change = 9.374089144566153e-5 Iter 50: T = 653.6764677786007 K, F = -1.6339260603474048, relative_change = 3.926089557104062e-5 Iter 55: T = 653.5980548544844 K, F = -0.6833552631011963, relative_change = 1.6429424950035692e-5 Iter 60: T = 653.565251670111 K, F = -0.2857922092293764, relative_change = 6.87274097965009e-6 Iter 65: T = 653.5515312431561 K, F = -0.11952256817420348, relative_change = 2.8745701669048764e-6 Iter 70: T = 653.5457928917388 K, F = -0.04998591464042168, relative_change = 1.202233418244325e-6 Iter 75: T = 653.5433929912947 K, F = -0.02090473255830022, relative_change = 5.027977912693208e-7 Iter 80: T = 653.5423893149366 K, F = -0.00874261337372989, relative_change = 2.1027768821036395e-7 Iter 85: T = 653.5419695638652 K, F = -0.003656266118138629, relative_change = 8.794092852199362e-8 Iter 90: T = 653.541794018669 K, F = -0.0015290942943922414, relative_change = 3.677799691475644e-8 Iter 95: T = 653.5417206035216 K, F = -0.0006394855200300142, relative_change = 1.5381006356216393e-8 Iter 100: T = 653.5416899004215 K, F = -0.00026744048662918907, relative_change = 6.432522107197793e-9 Iter 105: T = 653.5416770600168 K, F = -0.00011184680610082376, relative_change = 2.690157833731519e-9 Iter 110: T = 653.541671690006 K, F = -4.677567064931276e-5, relative_change = 1.1250561918999716e-9 Iter 115: T = 653.5416694442032 K, F = -1.9562143673490517e-5, relative_change = 4.705119332606195e-10 Iter 120: T = 653.5416685049817 K, F = -8.181122417016962e-6, relative_change = 1.9677371842568663e-10 Iter 125: T = 653.5416681121881 K, F = -3.4214434586621323e-6, relative_change = 8.229312792952597e-11 Iter 130: T = 653.5416679479171 K, F = -1.430888964149002e-6, relative_change = 3.4415979729976345e-11 Iter 135: T = 653.5416678792169 K, F = -5.984147182225286e-7, relative_change = 1.439317049665135e-11 Iter 140: T = 653.5416678504857 K, F = -2.5026433853048147e-7, relative_change = 6.019399564827119e-12 Iter 145: T = 653.54166783847 K, F = -1.0466385730323324e-7, relative_change = 2.517392533265876e-12 Iter 150: T = 653.5416678334449 K, F = -4.3771809621340196e-8, relative_change = 1.0528068576059175e-12 Iter 155: T = 653.5416678313434 K, F = -1.830662993418386e-8, relative_change = 4.4031411315608945e-13 Converged in 159 iterations to T = 653.5416678305849 K Iter 1: T = 970.3529271656716 K, F = -6755.113746948536, relative_change = 0.0296470728343283 Iter 2: T = 942.8703476485979 K, F = -5721.410706615598, relative_change = 0.028322251366158437 Iter 3: T = 917.5074488538265 K, F = -4844.140860198159, relative_change = 0.026899667444228486 Iter 5: T = 872.9244060666789 K, F = -3468.3820224938495, relative_change = 0.02380630344025578 Iter 10: T = 793.7967641785264 K, F = -1492.8566023641938, relative_change = 0.01550057157483278 Iter 15: T = 750.6881299095674 K, F = -635.4655900236362, relative_change = 0.008486676490400902 Iter 20: T = 729.7640375070649 K, F = -268.23126336112716, relative_change = 0.004082756948765949 Iter 25: T = 720.3467308261654 K, F = -112.66537034881092, relative_change = 0.00182276848350268 Iter 30: T = 716.2750890300906 K, F = -47.208207727228704, relative_change = 0.000784530149636679 Iter 35: T = 714.5475420331235 K, F = -19.75920111157702, relative_change = 0.00033215582185135004 Iter 40: T = 713.8206210808778 K, F = -8.266390566129855, relative_change = 0.0001396338624331155 Iter 45: T = 713.5158288898784 K, F = -3.45760508041639, relative_change = 5.852385191893427e-5 Iter 50: T = 713.3882231927887 K, F = -1.4460996675602036, relative_change = 2.4497710572171598e-5 Iter 55: T = 713.334832789675 K, F = -0.6047915418920433, relative_change = 1.0249147089619149e-5 Iter 60: T = 713.3125000535222 K, F = -0.25293373825518695, relative_change = 4.287000303690191e-6 Iter 65: T = 713.3031594961301 K, F = -0.10578038100672327, relative_change = 1.7929944880245874e-6 Iter 70: T = 713.2992530339602 K, F = -0.044238700997460856, relative_change = 7.498726564656747e-7 Iter 75: T = 713.2976192821736 K, F = -0.0185011674836153, relative_change = 3.136093643541139e-7 Iter 80: T = 713.2969360237031 K, F = -0.007737411709540565, relative_change = 1.311558222808909e-7 Iter 85: T = 713.2966502761581 K, F = -0.0032358784206238944, relative_change = 5.485104327691706e-8 Iter 90: T = 713.296530773001 K, F = -0.0013532830774155569, relative_change = 2.29393809674339e-8 Iter 95: T = 713.2964807953324 K, F = -0.0005659591575882805, relative_change = 9.59352649533498e-9 Iter 100: T = 713.2964598940707 K, F = -0.00023669088079247835, relative_change = 4.0121279467475565e-9 Iter 105: T = 713.2964511529129 K, F = -9.898695350263331e-5, relative_change = 1.6779199281084226e-9 Iter 110: T = 713.2964474972562 K, F = -4.139752577614342e-5, relative_change = 7.017261640166905e-10 Iter 115: T = 713.2964459684168 K, F = -1.7312938309199666e-5, relative_change = 2.934702420923509e-10 Iter 120: T = 713.2964453290381 K, F = -7.2404795221636675e-6, relative_change = 1.227327937842511e-10 Iter 125: T = 713.2964450616423 K, F = -3.028056790310707e-6, relative_change = 5.132835044114073e-11 Iter 130: T = 713.2964449498141 K, F = -1.266370604824374e-6, relative_change = 2.1466147679031437e-11 Iter 135: T = 713.2964449030462 K, F = -5.296115329622708e-7, relative_change = 8.977403091421208e-12 Iter 140: T = 713.2964448834873 K, F = -2.2148988110259893e-7, relative_change = 3.7544574085591725e-12 Iter 145: T = 713.2964448753075 K, F = -9.263144173932147e-8, relative_change = 1.5701882225563235e-12 Iter 150: T = 713.2964448718867 K, F = -3.873960141564936e-8, relative_change = 6.566719112712084e-13 Iter 155: T = 713.2964448704561 K, F = -1.620227230159088e-8, relative_change = 2.746434328316515e-13 Converged in 157 iterations to T = 713.2964448701532 K Iter 1: T = 974.4270031270647 K, F = -5826.831663698399, relative_change = 0.025572996872935246 Iter 2: T = 951.0431533009784 K, F = -4929.690190062846, relative_change = 0.023997538811059784 Iter 3: T = 929.7736149003385 K, F = -4168.876405971074, relative_change = 0.022364430390792767 Iter 5: T = 893.2236406352151 K, F = -2977.333032035049, relative_change = 0.019009756724755432 Iter 10: T = 831.6647182113151 K, F = -1273.1090451991442, relative_change = 0.011165583294712714 Iter 15: T = 800.4211289818871 K, F = -539.064139142478, relative_change = 0.005634496526445968 Iter 20: T = 785.9748037501017 K, F = -226.8096102657075, relative_change = 0.0025812886957782737 Iter 25: T = 779.6432929161451 K, F = -95.11286325490653, relative_change = 0.0011245997575302195 Iter 30: T = 776.9401997476947 K, F = -39.82411890630084, relative_change = 0.0004786965038442547 Iter 35: T = 775.7997184246227 K, F = -16.663227414719568, relative_change = 0.00020170005911908533 Iter 40: T = 775.3209758626637 K, F = -6.970222493223206, relative_change = 8.461923952610778e-5 Iter 45: T = 775.1204466582641 K, F = -2.9152866347307373, relative_change = 3.543549225438528e-5 Iter 50: T = 775.0365279915577 K, F = -1.2192525713444073, relative_change = 1.4827732525863752e-5 Iter 55: T = 775.0014225793348 K, F = -0.5099138402605821, relative_change = 6.202567807857612e-6 Iter 60: T = 774.9867393926912 K, F = -0.21325343155479604, relative_change = 2.5942386469776826e-6 Iter 65: T = 774.9805984140886 K, F = -0.0891853721604351, relative_change = 1.0849854403818402e-6 Iter 70: T = 774.9780301319695 K, F = -0.03729842975936226, relative_change = 4.5376153955360144e-7 Iter 75: T = 774.9769560367029 K, F = -0.015598656111280862, relative_change = 1.8976983656763455e-7 Iter 80: T = 774.9765068356587 K, F = -0.006523545557076793, relative_change = 7.93642466299531e-8 Iter 85: T = 774.9763189741417 K, F = -0.0027282248823878863, relative_change = 3.319111676883488e-8 Iter 90: T = 774.9762404081637 K, F = -0.0011409762668188606, relative_change = 1.3880928594405922e-8 Iter 95: T = 774.976207550925 K, F = -0.00047716990752577626, relative_change = 5.805171363728386e-9 Iter 100: T = 774.9761938096339 K, F = -0.00019955815533634347, relative_change = 2.427792214653001e-9 Iter 105: T = 774.9761880628615 K, F = -8.345760294592441e-5, relative_change = 1.015331723716985e-9 Iter 110: T = 774.9761856594927 K, F = -3.490296645214386e-5, relative_change = 4.2462386125464435e-10 Iter 115: T = 774.9761846543751 K, F = -1.4596837439873056e-5, relative_change = 1.775827714414545e-10 Iter 120: T = 774.9761842340229 K, F = -6.1045708376061825e-6, relative_change = 7.426722501143633e-11 Iter 125: T = 774.9761840582266 K, F = -2.5530053219258164e-6, relative_change = 3.1059451343510033e-11 Iter 130: T = 774.9761839847065 K, F = -1.0676972405088136e-6, relative_change = 1.2989432580245081e-11 Iter 135: T = 774.9761839539595 K, F = -4.465241462137115e-7, relative_change = 5.432340811357808e-12 Iter 140: T = 774.9761839411008 K, F = -1.8674204760316115e-7, relative_change = 2.2718736603009837e-12 Iter 145: T = 774.976183935723 K, F = -7.809735458330636e-8, relative_change = 9.50119831608072e-13 Iter 150: T = 774.976183933474 K, F = -3.266066239682175e-8, relative_change = 3.973443559346667e-13 Converged in 154 iterations to T = 774.9761839326623 K Iter 1: T = 970.3370482090354 K, F = -6758.7317823229, relative_change = 0.029662951790964585 Iter 2: T = 942.8382804060856 K, F = -5724.4998379092995, relative_change = 0.028339397999596783 Iter 3: T = 917.4589798419084 K, F = -4846.77900558313, relative_change = 0.02691797850342493 Iter 5: T = 872.8429846824115 K, F = -3470.306680995119, relative_change = 0.023826436487058664 Iter 10: T = 793.6390123270583 K, F = -1493.727733995787, relative_change = 0.01552068202957376 Iter 15: T = 750.4747355876389 K, F = -635.8524833467305, relative_change = 0.0085010130199127 Iter 20: T = 729.5185830425344 K, F = -268.39898591961816, relative_change = 0.004090679812194707 Iter 25: T = 720.0855372120043 K, F = -112.73679069107563, relative_change = 0.001826543691821975 Iter 30: T = 716.006813053713 K, F = -47.2383227852179, relative_change = 0.000786202379091564 Iter 35: T = 714.2762082037437 K, F = -19.771840540875463, relative_change = 0.00033287257482432655 Iter 40: T = 713.5479909581828 K, F = -8.271684534188879, relative_change = 0.00013993674523362862 Iter 45: T = 713.2426535352075 K, F = -3.4598204925396887, relative_change = 5.865107453491314e-5 Iter 50: T = 713.1148192683361 K, F = -1.4470264270358362, relative_change = 2.4551013847728607e-5 Iter 55: T = 713.0613331786062 K, F = -0.605179167150639, relative_change = 1.0271456200877314e-5 Iter 60: T = 713.0389604083554 K, F = -0.2530958553584573, relative_change = 4.2963332241134635e-6 Iter 65: T = 713.0296031052833 K, F = -0.1058481816419431, relative_change = 1.7968981488104216e-6 Iter 70: T = 713.0256896393555 K, F = -0.044267056266030336, relative_change = 7.515053053585468e-7 Iter 75: T = 713.0240529584237 K, F = -0.018513026036221625, relative_change = 3.1429217359189565e-7 Iter 80: T = 713.023368474934 K, F = -0.007742371107732349, relative_change = 1.3144138409913108e-7 Iter 85: T = 713.0230822150685 K, F = -0.0032379525017312005, relative_change = 5.497046913353428e-8 Iter 90: T = 713.0229624976523 K, F = -0.0013541504820668848, relative_change = 2.2989326354476413e-8 Iter 95: T = 713.0229124303779 K, F = -0.0005663219163793975, relative_change = 9.61441426368156e-9 Iter 100: T = 713.0228914916421 K, F = -0.00023684259213585523, relative_change = 4.0208634852275415e-9 Iter 105: T = 713.022882734812 K, F = -9.905039984448027e-5, relative_change = 1.6815732154766103e-9 Iter 110: T = 713.0228790726011 K, F = -4.142405985807507e-5, relative_change = 7.032540135770943e-10 Iter 115: T = 713.0228775410206 K, F = -1.7324037475896503e-5, relative_change = 2.941092459943027e-10 Iter 120: T = 713.0228769004955 K, F = -7.245119250987031e-6, relative_change = 1.229999976694282e-10 Iter 125: T = 713.0228766326201 K, F = -3.0299945525946725e-6, relative_change = 5.1440053733192116e-11 Iter 130: T = 713.0228765205915 K, F = -1.267178593167273e-6, relative_change = 2.1512822495016663e-11 Iter 135: T = 713.0228764737398 K, F = -5.299498792021851e-7, relative_change = 8.996930462345548e-12 Iter 140: T = 713.0228764541458 K, F = -2.2163235424699224e-7, relative_change = 3.762640502209194e-12 Iter 145: T = 713.0228764459514 K, F = -9.268858092159604e-8, relative_change = 1.5735690299906094e-12 Iter 150: T = 713.0228764425244 K, F = -3.876369158994919e-8, relative_change = 6.580890975884518e-13 Iter 155: T = 713.0228764410913 K, F = -1.6212646114510676e-8, relative_change = 2.7524121706426306e-13 Converged in 157 iterations to T = 713.022876440788 K Iter 1: T = 969.2898189409221 K, F = -6997.343967234723, relative_change = 0.030710181059077888 Iter 2: T = 940.7197269014252 K, F = -5928.287670949198, relative_change = 0.029475283327244178 Iter 3: T = 914.2508040175928 K, F = -5020.874936272321, relative_change = 0.028136885117756236 Iter 5: T = 867.4315155187182 K, F = -3597.430579605788, relative_change = 0.02518106251129105 Iter 10: T = 783.0369136024404 K, F = -1551.461227422414, relative_change = 0.01691523385437776 Iter 15: T = 735.9953737114274 K, F = -661.5990583657118, relative_change = 0.009522641757249144 Iter 20: T = 712.7625432581187 K, F = -279.5964530809601, relative_change = 0.004665551159189714 Iter 25: T = 702.1991262905619 K, F = -117.51383304656159, relative_change = 0.0021031014216830765 Iter 30: T = 697.6088709072725 K, F = -49.25443151004989, relative_change = 0.0009092525246779049 Iter 35: T = 695.6568416486107 K, F = -20.618352916999186, relative_change = 0.00038571808638494147 Iter 40: T = 694.8346530257348 K, F = -8.626304106963255, relative_change = 0.00016228672621002664 Iter 45: T = 694.4897717534466 K, F = -3.6082321046411483, relative_change = 6.80422598987612e-5 Iter 50: T = 694.3453567865272 K, F = -1.5091124479959164, relative_change = 2.848628299761566e-5 Iter 55: T = 694.2849289065157 K, F = -0.631147525203887, relative_change = 1.1918593523793183e-5 Iter 60: T = 694.2596516755 K, F = -0.2639567003110743, relative_change = 4.985423940357938e-6 Iter 65: T = 694.2490794610444 K, F = -0.11039041598782212, relative_change = 2.0851257961139083e-6 Iter 70: T = 694.2446578642191 K, F = -0.046166690280050604, relative_change = 8.720528406845344e-7 Iter 75: T = 694.2428086698027 K, F = -0.019307478704097103, relative_change = 3.6470786779165794e-7 Iter 80: T = 694.2420353093983 K, F = -0.008074621230406587, relative_change = 1.5252605252347745e-7 Iter 85: T = 694.2417118799291 K, F = -0.003376903563821032, relative_change = 6.378836828383052e-8 Iter 90: T = 694.241576617703 K, F = -0.0014122614924206855, relative_change = 2.6677083918787684e-8 Iter 95: T = 694.2415200493969 K, F = -0.0005906246384831393, relative_change = 1.1156679724254751e-8 Iter 100: T = 694.2414963918508 K, F = -0.0002470062798406447, relative_change = 4.6658575034125074e-9 Iter 105: T = 694.2414864979816 K, F = -0.00010330097628996615, relative_change = 1.9513174658846445e-9 Iter 110: T = 694.2414823602472 K, F = -4.3201703075479436e-5, relative_change = 8.160643121383899e-10 Iter 115: T = 694.2414806297973 K, F = -1.806746849042362e-5, relative_change = 3.4128785142879843e-10 Iter 120: T = 694.2414799061023 K, F = -7.556030232835909e-6, relative_change = 1.4273063974962452e-10 Iter 125: T = 694.2414796034445 K, F = -3.160021931458701e-6, relative_change = 5.96916553981068e-11 Iter 130: T = 694.2414794768694 K, F = -1.321558096845088e-6, relative_change = 2.4963747810926515e-11 Iter 135: T = 694.2414794239342 K, F = -5.526910682451813e-7, relative_change = 1.044013160145648e-11 Iter 140: T = 694.241479401796 K, F = -2.3114259284362504e-7, relative_change = 4.366198817030965e-12 Iter 145: T = 694.2414793925376 K, F = -9.666674383179696e-8, relative_change = 1.8259993426523797e-12 Iter 150: T = 694.2414793886657 K, F = -4.0426754277511634e-8, relative_change = 7.636465635659915e-13 Iter 155: T = 694.2414793870463 K, F = -1.6906221977919245e-8, relative_change = 3.1935233355221296e-13 Converged in 158 iterations to T = 694.2414793865722 K Iter 1: T = 963.5257279125406 K, F = -8310.69759111753, relative_change = 0.03647427208745939 Iter 2: T = 928.926776843605 K, F = -7051.973691048717, relative_change = 0.03590869456479745 Iter 3: T = 896.1694513751208 K, F = -5982.982200981223, relative_change = 0.03526362495415416 Iter 5: T = 836.0603715455889 K, F = -4304.2235117647315, relative_change = 0.033705654223371066 Iter 10: T = 716.0759122272256 K, F = -1881.1499172309764, relative_change = 0.028021778347508144 Iter 15: T = 636.1034211919388 K, F = -814.712075902687, relative_change = 0.020128650457283098 Iter 20: T = 589.1627407278078 K, F = -348.89001751853823, relative_change = 0.01210081346110334 Iter 25: T = 564.969052222358 K, F = -147.89301899273173, relative_change = 0.006211886613512965 Iter 30: T = 553.670931990716 K, F = -62.26545775308748, relative_change = 0.0028736348252683913 Iter 35: T = 548.693386127898 K, F = -26.119257975527287, relative_change = 0.0012578876007033415 Iter 40: T = 546.5631881232749 K, F = -10.93776591452226, relative_change = 0.0005365614348744748 Iter 45: T = 545.6634670043153 K, F = -4.57686176107611, relative_change = 0.00022628672902211608 Iter 50: T = 545.2856178844938 K, F = -1.91454871766352, relative_change = 9.497053666290505e-5 Iter 55: T = 545.1273193303315 K, F = -0.8007661603869711, relative_change = 3.9776660706364836e-5 Iter 60: T = 545.0610682896264 K, F = -0.33490380968067346, relative_change = 1.6645389541606173e-5 Iter 65: T = 545.0333527851877 K, F = -0.1400631943685542, relative_change = 6.9631064419457625e-6 Iter 70: T = 545.0217603378584 K, F = -0.05857652420905224, relative_change = 2.912370218317356e-6 Iter 75: T = 545.0169119768639 K, F = -0.02449747606908842, relative_change = 1.2180432744922639e-6 Iter 80: T = 545.0148842887273 K, F = -0.010245150012208132, relative_change = 5.094099109592734e-7 Iter 85: T = 545.0140362773456 K, F = -0.0042846463541077184, relative_change = 2.1304299920901015e-7 Iter 90: T = 545.0136816274613 K, F = -0.0017918906709447069, relative_change = 8.909742225918436e-8 Iter 95: T = 545.0135333083999 K, F = -0.0007493901468032527, relative_change = 3.726165772029564e-8 Iter 100: T = 545.0134712795543 K, F = -0.00031340392077119916, relative_change = 1.5583279285666415e-8 Iter 105: T = 545.013445338343 K, F = -0.00013106926435571542, relative_change = 6.517115070011365e-9 Iter 110: T = 545.0134344894173 K, F = -5.4814732045826986e-5, relative_change = 2.7255356309892917e-9 Iter 115: T = 545.0134299522666 K, F = -2.2924174830574184e-5, relative_change = 1.1398515591728292e-9 Iter 120: T = 545.0134280547761 K, F = -9.587163222191109e-6, relative_change = 4.766995195576904e-10 Iter 125: T = 545.0134272612229 K, F = -4.009466240600945e-6, relative_change = 1.9936143774023369e-10 Iter 130: T = 545.0134269293494 K, F = -1.6768056557425748e-6, relative_change = 8.33752842021196e-11 Iter 135: T = 545.0134267905561 K, F = -7.012607903811308e-7, relative_change = 3.4868571422383295e-11 Iter 140: T = 545.013426732511 K, F = -2.932752419249063e-7, relative_change = 1.4582433332829818e-11 Iter 145: T = 545.0134267082359 K, F = -1.2265125748367467e-7, relative_change = 6.09855020179527e-12 Iter 150: T = 545.0134266980838 K, F = -5.1294525876821595e-8, relative_change = 2.550501703632859e-12 Iter 155: T = 545.013426693838 K, F = -2.1451775300551645e-8, relative_change = 1.066639929247469e-12 Iter 160: T = 545.0134266920624 K, F = -8.971755144360216e-9, relative_change = 4.4609978141568246e-13 Converged in 165 iterations to T = 545.0134266913198 K Iter 1: T = 966.8804835073624 K, F = -7546.3133376409705, relative_change = 0.03311951649263759 Iter 2: T = 935.8177857349383 K, F = -6397.564897407682, relative_change = 0.03212671917809749 Iter 3: T = 906.781540088808 K, F = -5422.227539622417, relative_change = 0.03102767022463332 Iter 5: T = 854.6577752450977 K, F = -3891.367706218204, relative_change = 0.028510801085302774 Iter 10: T = 757.0085241801386 K, F = -1686.5853163383895, relative_change = 0.02072606586077721 Iter 15: T = 699.1389658112304 K, F = -722.8418928202215, relative_change = 0.012618305001810779 Iter 20: T = 669.0577376369761 K, F = -306.60104400658935, relative_change = 0.006539995775162958 Iter 25: T = 654.9309963709567 K, F = -129.13161294985792, relative_change = 0.0030423294397107004 Iter 30: T = 648.6885720311368 K, F = -54.17824827164482, relative_change = 0.00133537737774777 Iter 35: T = 646.0132924876857 K, F = -22.68967302197144, relative_change = 0.00057031554366099 Iter 40: T = 644.8826477836816 K, F = -9.4947326086816, relative_change = 0.00024064952618923092 Iter 45: T = 644.4076936464098 K, F = -3.9718045174429744, relative_change = 0.00010102116048068959 Iter 50: T = 644.2086910410283 K, F = -1.6612304756824667, relative_change = 4.231484928051201e-5 Iter 55: T = 644.1254006493521 K, F = -0.6947769661183644, relative_change = 1.7708249568897626e-5 Iter 60: T = 644.0905562063604 K, F = -0.2905693693524638, relative_change = 7.407845268816138e-6 Iter 65: T = 644.075981847993 K, F = -0.12152051539099801, relative_change = 3.098406970351623e-6 Iter 70: T = 644.0698863280506 K, F = -0.05082149433707561, relative_change = 1.2958533546978399e-6 Iter 75: T = 644.0673370477302 K, F = -0.0212541844692819, relative_change = 5.419522906533418e-7 Iter 80: T = 644.0662708975714 K, F = -0.008888758774592775, relative_change = 2.2665283401167507e-7 Iter 85: T = 644.0658250189738 K, F = -0.003717385947426155, relative_change = 9.478925669213522e-8 Iter 90: T = 644.0656385468926 K, F = -0.0015546553509433458, relative_change = 3.964205771039653e-8 Iter 95: T = 644.0655605619842 K, F = -0.0006501754605108268, relative_change = 1.6578792186992733e-8 Iter 100: T = 644.0655279477542 K, F = -0.0002719111474852043, relative_change = 6.933450688465195e-9 Iter 105: T = 644.0655143080919 K, F = -0.00011371648982849702, relative_change = 2.8996521896195057e-9 Iter 110: T = 644.0655086038219 K, F = -4.7557593697844514e-5, relative_change = 1.2126692155357397e-9 Iter 115: T = 644.065506218228 K, F = -1.9889153304142315e-5, relative_change = 5.071527485930488e-10 Iter 120: T = 644.0655052205442 K, F = -8.317882014940992e-6, relative_change = 2.1209735240878536e-10 Iter 125: T = 644.0655048033009 K, F = -3.478637595366596e-6, relative_change = 8.870164603408278e-11 Iter 130: T = 644.0655046288048 K, F = -1.4548075510378844e-6, relative_change = 3.709608174712072e-11 Iter 135: T = 644.0655045558284 K, F = -6.084179588472516e-7, relative_change = 1.5514026122484434e-11 Iter 140: T = 644.0655045253089 K, F = -2.5444884221847985e-7, relative_change = 6.488181238737981e-12 Iter 145: T = 644.0655045125453 K, F = -1.0641449404991121e-7, relative_change = 2.713459090125218e-12 Iter 150: T = 644.0655045072073 K, F = -4.450349361251327e-8, relative_change = 1.1347928716677434e-12 Iter 155: T = 644.0655045049748 K, F = -1.8611636731780123e-8, relative_change = 4.745774090801636e-13 Converged in 160 iterations to T = 644.0655045040412 K Iter 1: T = 965.1637712792786 K, F = -7937.467851824753, relative_change = 0.0348362287207213 Iter 2: T = 932.3010988926121 K, F = -6732.298985252742, relative_change = 0.03404880432168383 Iter 3: T = 901.3825068147793 K, F = -5708.899803068143, relative_change = 0.0331637408928918 Iter 5: T = 845.2646007494907 K, F = -4102.099982680407, relative_change = 0.031081818596036915 Iter 10: T = 736.838488194508 K, F = -1785.103316714101, relative_change = 0.02410339669705408 Iter 15: T = 669.0013402734481 K, F = -768.6657990869201, relative_change = 0.01579881910300968 Iter 20: T = 631.8653442267414 K, F = -327.32128063304356, relative_change = 0.008700320086673105 Iter 25: T = 613.7755587584793 K, F = -138.1967859686817, relative_change = 0.00420120634287302 Iter 30: T = 605.61701027841 K, F = -58.05436687543673, relative_change = 0.0018793060791385645 Iter 35: T = 602.0860142765232 K, F = -24.326965951994893, relative_change = 0.0008095935693916502 Iter 40: T = 600.5871713685171 K, F = -10.182424598533515, relative_change = 0.0003429023126415081 Iter 45: T = 599.9563605179396 K, F = -4.259931340939649, relative_change = 0.00014417575612373044 Iter 50: T = 599.6918444002829 K, F = -1.781821171578109, relative_change = 6.0431745606299634e-5 Iter 55: T = 599.5810969717991 K, F = -0.7452256821782535, relative_change = 2.5297094273203303e-5 Iter 60: T = 599.5347594084295 K, F = -0.3116704700132858, relative_change = 1.0583718243521585e-5 Iter 65: T = 599.5153766934283 K, F = -0.13034574555841458, relative_change = 4.42696735406779e-6 Iter 70: T = 599.5072699469727 K, F = -0.05451239808530245, relative_change = 1.8515383230836385e-6 Iter 75: T = 599.5038794927153 K, F = -0.02279777973022118, relative_change = 7.743577769056598e-7 Iter 80: T = 599.5024615439518 K, F = -0.009534311411562246, relative_change = 3.238495771665621e-7 Iter 85: T = 599.5018685372941 K, F = -0.003987364236253066, relative_change = 1.35438444100375e-7 Iter 90: T = 599.5016205342067 K, F = -0.001667563576779496, relative_change = 5.6642094304755005e-8 Iter 95: T = 599.5015168162453 K, F = -0.0006973950437119125, relative_change = 2.3688421191522122e-8 Iter 100: T = 599.5014734401361 K, F = -0.00029165894329913344, relative_change = 9.906784304493387e-9 Iter 105: T = 599.5014552997259 K, F = -0.00012197525409346488, relative_change = 4.143136134291288e-9 Iter 110: T = 599.5014477131891 K, F = -5.101150806913202e-5, relative_change = 1.732709119157408e-9 Iter 115: T = 599.5014445404088 K, F = -2.1333621878949494e-5, relative_change = 7.246396647518991e-10 Iter 120: T = 599.5014432135141 K, F = -8.921975341913413e-6, relative_change = 3.030529614474759e-10 Iter 125: T = 599.501442658591 K, F = -3.731277377183595e-6, relative_change = 1.2674039333067564e-10 Iter 130: T = 599.5014424265155 K, F = -1.560464909233783e-6, relative_change = 5.3004351257528695e-11 Iter 135: T = 599.5014423294587 K, F = -6.526050601030065e-7, relative_change = 2.2167052690590153e-11 Iter 140: T = 599.5014422888684 K, F = -2.7292705040427023e-7, relative_change = 9.270520072268656e-12 Iter 145: T = 599.501442271893 K, F = -1.1414133788134606e-7, relative_change = 3.877041731407325e-12 Iter 150: T = 599.5014422647937 K, F = -4.773502321198109e-8, relative_change = 1.6214167495160225e-12 Iter 155: T = 599.5014422618246 K, F = -1.9962850095200935e-8, relative_change = 6.780786377637162e-13 Iter 160: T = 599.5014422605831 K, F = -8.348952196257642e-9, relative_change = 2.835890719536863e-13 Converged in 162 iterations to T = 599.5014422603203 K Iter 1: T = 980.0965308328088 K, F = -4535.024382831488, relative_change = 0.01990346916719124 Iter 2: T = 962.238740934107 K, F = -3830.7945251255146, relative_change = 0.01822043986170183 Iter 3: T = 946.3060524898661 K, F = -3234.414203732455, relative_change = 0.016557936992615742 Iter 5: T = 919.6937640599958 K, F = -2302.5671578757006, relative_change = 0.01338347024669666 Iter 10: T = 877.4232725781467 K, F = -977.56811894062, relative_change = 0.007036689544197672 Iter 15: T = 857.403114214414 K, F = -411.95386063695287, relative_change = 0.00330128834020711 Iter 20: T = 848.5157494439102 K, F = -172.88692280802323, relative_change = 0.0014551564357736305 Iter 25: T = 844.6986584038445 K, F = -72.41363546153593, relative_change = 0.0006226540958977856 Iter 30: T = 843.083903909772 K, F = -30.30390810822085, relative_change = 0.00026295038594676675 Iter 35: T = 842.4053089863818 K, F = -12.676923342327964, relative_change = 0.00011042124931260229 Iter 40: T = 842.1209328607523 K, F = -5.302249228280183, relative_change = 4.625906395673865e-5 Iter 45: T = 842.001901620604 K, F = -2.217570529444524, relative_change = 1.9360046655733782e-5 Iter 50: T = 841.9521035112787 K, F = -0.9274331309176643, relative_change = 8.099045814761488e-6 Iter 55: T = 841.9312742279553 K, F = -0.38786687428157673, relative_change = 3.3875451719047733e-6 Iter 60: T = 841.9225626272031 K, F = -0.16221112967721685, relative_change = 1.4167866287204648e-6 Iter 65: T = 841.9189192362741 K, F = -0.06783873145778774, relative_change = 5.925301685129471e-7 Iter 70: T = 841.9173955099805 K, F = -0.0283709851138636, relative_change = 2.4780548057471673e-7 Iter 75: T = 841.9167582665272 K, F = -0.011865087845099875, relative_change = 1.0363561151534965e-7 Iter 80: T = 841.916491763194 K, F = -0.0049621219686646345, relative_change = 4.334172038260364e-8 Iter 85: T = 841.9163803082282 K, F = -0.0020752187599841765, relative_change = 1.8126037305922415e-8 Iter 90: T = 841.9163336964148 K, F = -0.0008678812857338958, relative_change = 7.580527418358615e-9 Iter 95: T = 841.916314202795 K, F = -0.00036295831952037894, relative_change = 3.170267456386089e-9 Iter 100: T = 841.91630605033 K, F = -0.00015179350575778017, relative_change = 1.3258437889434689e-9 Iter 105: T = 841.9163026408717 K, F = -6.348185774429638e-5, relative_change = 5.544837244753199e-10 Iter 110: T = 841.9163012149955 K, F = -2.6548872526177547e-5, relative_change = 2.3189173034187495e-10 Iter 115: T = 841.9163006186769 K, F = -1.1103055375771831e-5, relative_change = 9.697988979809041e-11 Iter 120: T = 841.9163003692895 K, F = -4.643430854711639e-6, relative_change = 4.055815250572846e-11 Iter 125: T = 841.9163002649926 K, F = -1.9419391363850735e-6, relative_change = 1.6961911603978345e-11 Iter 130: T = 841.9163002213744 K, F = -8.121419157181009e-7, relative_change = 7.093672056755198e-12 Iter 135: T = 841.9163002031328 K, F = -3.3964804257990977e-7, relative_change = 2.9666635626101086e-12 Iter 140: T = 841.9163001955038 K, F = -1.4204323450783818e-7, relative_change = 1.2406798665672409e-12 Iter 145: T = 841.9163001923134 K, F = -5.940371461399252e-8, relative_change = 5.188630981093967e-13 Converged in 150 iterations to T = 841.9163001909791 K Iter 1: T = 976.3840323567205 K, F = -5380.920692105953, relative_change = 0.023615967643279542 Iter 2: T = 954.930780363651 K, F = -4549.990020543632, relative_change = 0.021972145469531284 Iter 3: T = 935.5490489623693 K, F = -3845.632270566404, relative_change = 0.02029647781790103 Iter 5: T = 902.5808677929191 K, F = -2743.3302525079976, relative_change = 0.0169426702418674 Iter 10: T = 848.2549569242613 K, F = -1169.8970450939034, relative_change = 0.009543384364116936 Iter 15: T = 821.4150744282723 K, F = -494.41891921480556, relative_change = 0.0046774608464902395 Iter 20: T = 809.20904416638 K, F = -207.80604317179348, relative_change = 0.002108891562959609 Iter 25: T = 803.9044434313926 K, F = -87.09980983226713, relative_change = 0.0009118413816004237 Iter 30: T = 801.6485270568564 K, F = -36.46087294208938, relative_change = 0.0003868322870379805 Iter 35: T = 800.698322378156 K, F = -15.25451379305406, relative_change = 0.0001627583860031092 Iter 40: T = 800.2997390329027 K, F = -6.380699444094531, relative_change = 6.824052180201579e-5 Iter 45: T = 800.1328363357754 K, F = -2.6686739356904186, relative_change = 2.8569375808675632e-5 Iter 50: T = 800.0629987553057 K, F = -1.1161044360037202, relative_change = 1.195337501519849e-5 Iter 55: T = 800.0337853887831 K, F = -0.46677400000428815, relative_change = 4.999975417690897e-6 Iter 60: T = 800.0215668803563 K, F = -0.1952114750716083, relative_change = 2.091212349945767e-6 Iter 65: T = 800.0164567566007 K, F = -0.08163994750627845, relative_change = 8.745984767511998e-7 Iter 70: T = 800.0143196072538 K, F = -0.034142832042277194, relative_change = 3.6577251234848617e-7 Iter 75: T = 800.0134258198286 K, F = -0.014278945532666065, relative_change = 1.5297130469039823e-7 Iter 80: T = 800.013052026196 K, F = -0.0059716264965629096, relative_change = 6.39745789616377e-8 Iter 85: T = 800.0128957010498 K, F = -0.002497405682614251, relative_change = 2.6754959604134398e-8 Iter 90: T = 800.0128303239744 K, F = -0.0010444449092642527, relative_change = 1.1189248276082731e-8 Iter 95: T = 800.012802982495 K, F = -0.0004367993376017676, relative_change = 4.679478053078683e-9 Iter 100: T = 800.012791547961 K, F = -0.00018267469977573114, relative_change = 1.957013743013654e-9 Iter 105: T = 800.0127867659021 K, F = -7.639673967452243e-5, relative_change = 8.184465276423787e-10 Iter 110: T = 800.0127847659879 K, F = -3.195003022860021e-5, relative_change = 3.4228413046570007e-10 Iter 115: T = 800.0127839295999 K, F = -1.3361883278717457e-5, relative_change = 1.4314730187991938e-10 Iter 120: T = 800.0127835798124 K, F = -5.5880997206214644e-6, relative_change = 5.986591729791787e-11 Iter 125: T = 800.0127834335273 K, F = -2.33700968732542e-6, relative_change = 2.5036637816495903e-11 Iter 130: T = 800.012783372349 K, F = -9.773669156221132e-7, relative_change = 1.0470637593792199e-11 Iter 135: T = 800.0127833467635 K, F = -4.0874529061429854e-7, relative_change = 4.37893255688842e-12 Iter 140: T = 800.0127833360633 K, F = -1.7094179183274605e-7, relative_change = 1.8313179254296657e-12 Iter 145: T = 800.0127833315884 K, F = -7.149160496933149e-8, relative_change = 7.658973051461836e-13 Iter 150: T = 800.012783329717 K, F = -2.9899112630182856e-8, relative_change = 3.203124310861091e-13 Converged in 153 iterations to T = 800.012783329169 K Iter 1: T = 980.8618267052891 K, F = -4360.65099030253, relative_change = 0.0191381732947109 Iter 2: T = 963.7344588184764 K, F = -3682.7189112950045, relative_change = 0.017461550057813437 Iter 3: T = 948.4920377106654 K, F = -3108.7362824163724, relative_change = 0.015815996790752834 Iter 5: T = 923.1237346113503 K, F = -2212.1991291490326, relative_change = 0.01270316574057565 Iter 10: T = 883.1064386727385 K, F = -938.4250731622104, relative_change = 0.006594472674611036 Iter 15: T = 864.2958526432427 K, F = -395.26222083505553, relative_change = 0.003070538059467743 Iter 20: T = 855.9795013954505 K, F = -165.84064354199256, relative_change = 0.0013483800074814377 Iter 25: T = 852.4145634279373 K, F = -69.45447872609542, relative_change = 0.0005759882311016142 Iter 30: T = 850.9077672728566 K, F = -29.06413176728556, relative_change = 0.00024306494463760946 Iter 35: T = 850.2747733926881 K, F = -12.158040396568149, relative_change = 0.00010203899420636601 Iter 40: T = 850.0095481676251 K, F = -5.085176950035522, relative_change = 4.274187342174173e-5 Iter 45: T = 849.8985401304036 K, F = -2.126776173320639, relative_change = 1.7887073795125724e-5 Iter 50: T = 849.852099886359 K, F = -0.8894597220564596, relative_change = 7.482673318490908e-6 Iter 55: T = 849.8326753341112 K, F = -0.3719855694181712, relative_change = 3.1297082386747074e-6 Iter 60: T = 849.8245512842077 K, F = -0.15556931328255152, relative_change = 1.308945193270293e-6 Iter 65: T = 849.8211536272742 K, F = -0.06506103314625356, relative_change = 5.474276768052559e-7 Iter 70: T = 849.8197326721834 K, F = -0.027209316516778825, relative_change = 2.2894274485991032e-7 Iter 75: T = 849.8191384092788 K, F = -0.011379263817154817, relative_change = 9.574693157714515e-8 Iter 80: T = 849.8188898809951 K, F = -0.0047589444983136, relative_change = 4.004256998094189e-8 Iter 85: T = 849.818785943422 K, F = -0.001990247503965037, relative_change = 1.6746291408547863e-8 Iter 90: T = 849.8187424754741 K, F = -0.0008323452894929417, relative_change = 7.003500889831033e-9 Iter 95: T = 849.8187242966569 K, F = -0.0003480967429112525, relative_change = 2.9289480313077544e-9 Iter 100: T = 849.818716694058 K, F = -0.00014557821742067212, relative_change = 1.2249211179392009e-9 Iter 105: T = 849.8187135145603 K, F = -6.0882549247853746e-5, relative_change = 5.122766505696592e-10 Iter 110: T = 849.8187121848564 K, F = -2.5461811352656127e-5, relative_change = 2.142402329647647e-10 Iter 115: T = 849.8187116287583 K, F = -1.0648432122950524e-5, relative_change = 8.959781196400514e-11 Iter 120: T = 849.8187113961915 K, F = -4.453303732221414e-6, relative_change = 3.747089396176073e-11 Iter 125: T = 849.8187112989292 K, F = -1.8624272921652363e-6, relative_change = 1.567079629204421e-11 Iter 130: T = 849.818711258253 K, F = -7.788869818003974e-7, relative_change = 6.553694353840015e-12 Iter 135: T = 849.8187112412417 K, F = -3.257407874546203e-7, relative_change = 2.7408412383855863e-12 Iter 140: T = 849.8187112341275 K, F = -1.362303660989994e-7, relative_change = 1.1462666626954216e-12 Iter 145: T = 849.8187112311521 K, F = -5.697252691838628e-8, relative_change = 4.793770300058821e-13 Converged in 150 iterations to T = 849.8187112299078 K Iter 1: T = 967.2946043490948 K, F = -7451.9555099216295, relative_change = 0.03270539565090521 Iter 2: T = 936.6631191982121 K, F = -6316.8623797469745, relative_change = 0.03166717255855572 Iter 3: T = 908.0742590531444 K, F = -5353.161156865282, relative_change = 0.030522030342712732 Iter 5: T = 856.8865488895578 K, F = -3840.6965986694827, relative_change = 0.027916192428336668 Iter 10: T = 761.6594331306375 K, F = -1663.1137757418153, relative_change = 0.020002093335763974 Iter 15: T = 705.877359368991 K, F = -712.0872966614457, relative_change = 0.011993064883491113 Iter 20: T = 677.1772850164053 K, F = -301.8120255804223, relative_change = 0.006144412408998504 Iter 25: T = 663.790172408667 K, F = -127.05844269646344, relative_change = 0.002839188125559117 Iter 30: T = 657.8958874462398 K, F = -53.296808125360904, relative_change = 0.0012421190228912784 Iter 35: T = 655.3740796625149 K, F = -22.31833575295081, relative_change = 0.000529703347242333 Iter 40: T = 654.3090897407061 K, F = -9.338946292649435, relative_change = 0.0002233704713956152 Iter 45: T = 653.8618578659919 K, F = -3.9065662240715056, relative_change = 9.37423500204634e-5 Iter 50: T = 653.6744958844105 K, F = -1.6339318124674096, relative_change = 3.926150734982001e-5 Iter 55: T = 653.5960819745835 K, F = -0.6833576692383625, relative_change = 1.642968111648744e-5 Iter 60: T = 653.5632783776937 K, F = -0.2857932155983085, relative_change = 6.872848166395394e-6 Iter 65: T = 653.5495577781703 K, F = -0.11952298906553999, relative_change = 2.8746150032718246e-6 Iter 70: T = 653.5438193545742 K, F = -0.04998609066649712, relative_change = 1.202252171062759e-6 Iter 75: T = 653.5414194239426 K, F = -0.02090480617523227, relative_change = 5.028056342211948e-7 Iter 80: T = 653.5404157349597 K, F = -0.008742644162798963, relative_change = 2.1028096831400943e-7 Iter 85: T = 653.5399959786083 K, F = -0.0036562789965693954, relative_change = 8.794230035902527e-8 Iter 90: T = 653.5398204312038 K, F = -0.0015290996818307367, relative_change = 3.6778570671572617e-8 Iter 95: T = 653.5397470151328 K, F = -0.0006394877713139513, relative_change = 1.538124626496579e-8 Iter 100: T = 653.5397163116463 K, F = -0.00026744142735968257, relative_change = 6.432622421107142e-9 Iter 105: T = 653.5397034710801 K, F = -0.00011184719906776053, relative_change = 2.6901997752034753e-9 Iter 110: T = 653.5396981010017 K, F = -4.677583374257388e-5, relative_change = 1.1250737022554817e-9 Iter 115: T = 653.5396958551707 K, F = -1.956221214410858e-5, relative_change = 4.705192626279758e-10 Iter 120: T = 653.5396949159374 K, F = -8.181150246366897e-6, relative_change = 1.9677676427137863e-10 Iter 125: T = 653.5396945231388 K, F = -3.4214539332277916e-6, relative_change = 8.229437374160142e-11 Iter 130: T = 653.5396943588657 K, F = -1.4308924140005175e-6, relative_change = 3.4416478357085965e-11 Iter 135: T = 653.5396942901649 K, F = -5.984178295670439e-7, relative_change = 1.4393419161762907e-11 Iter 140: T = 653.5396942614333 K, F = -2.5026531014216147e-7, relative_change = 6.019495632148646e-12 Iter 145: T = 653.5396942494174 K, F = -1.0466393640662375e-7, relative_change = 2.5174248390255282e-12 Iter 150: T = 653.5396942443923 K, F = -4.3772353686133414e-8, relative_change = 1.0528326586916255e-12 Iter 155: T = 653.5396942422907 K, F = -1.8306730187322984e-8, relative_change = 4.4032184226525487e-13 Converged in 159 iterations to T = 653.5396942415322 K Iter 1: T = 973.499179091631 K, F = -6038.237252760488, relative_change = 0.026500820908369003 Iter 2: T = 949.1914130748854 K, F = -5109.8444157089925, relative_change = 0.024969477672726025 Iter 3: T = 927.0094030258119 K, F = -4322.380126098851, relative_change = 0.023369374968548542 Iter 5: T = 888.7009444239301 K, F = -3088.6902756797076, relative_change = 0.02004076336536562 Iter 10: T = 823.4630173115063 K, F = -1322.53937008754, relative_change = 0.012026150488547861 Iter 15: T = 789.8793193086024 K, F = -560.569453885689, relative_change = 0.0061651684709956 Iter 20: T = 774.2085890837604 K, F = -235.99706741045125, relative_change = 0.0028497906186180514 Iter 25: T = 767.3075198040088 K, F = -98.99409276896183, relative_change = 0.0012469734447200745 Iter 30: T = 764.3547064380887 K, F = -41.454543184374984, relative_change = 0.0005318147871826423 Iter 35: T = 763.1076487574431 K, F = -17.346392715787797, relative_change = 0.0002242683415477983 Iter 40: T = 762.5839505772694 K, F = -7.256160800356394, relative_change = 9.412049370185128e-5 Iter 45: T = 762.3645524805145 K, F = -3.034909945262088, relative_change = 3.942011750983171e-5 Iter 50: T = 762.272730684756 K, F = -1.2692875654964981, relative_change = 1.6496095539654004e-5 Iter 55: T = 762.2343179985016 K, F = -0.5308403146951779, relative_change = 6.900637790581821e-6 Iter 60: T = 762.2182513043363 K, F = -0.22200535044022118, relative_change = 2.8862394618667314e-6 Iter 65: T = 762.211531662326 K, F = -0.09284556718205939, relative_change = 1.2071140968501576e-6 Iter 70: T = 762.2087213650568 K, F = -0.03882917367825689, relative_change = 5.048390263035952e-7 Iter 75: T = 762.207546054205 K, F = -0.016238832662409663, relative_change = 2.1113137057239438e-7 Iter 80: T = 762.2070545232515 K, F = -0.006791275238593464, relative_change = 8.829795105138788e-8 Iter 85: T = 762.2068489588011 K, F = -0.002840192668222108, relative_change = 3.6927308408270075e-8 Iter 90: T = 762.2067629892342 K, F = -0.0011878025375884338, relative_change = 1.5443450255784593e-8 Iter 95: T = 762.2067270357245 K, F = -0.0004967532150752518, relative_change = 6.4586368917283645e-9 Iter 100: T = 762.2067119995355 K, F = -0.00020774812928814335, relative_change = 2.7010793635842836e-9 Iter 105: T = 762.2067057112214 K, F = -8.688274893298154e-5, relative_change = 1.12962369488837e-9 Iter 110: T = 762.2067030813733 K, F = -3.633540327707685e-5, relative_change = 4.724221284831704e-10 Iter 115: T = 762.2067019815395 K, F = -1.5195901019060543e-5, relative_change = 1.9757259602217495e-10 Iter 120: T = 762.2067015215758 K, F = -6.355108537525744e-6, relative_change = 8.262723571273077e-11 Iter 125: T = 762.2067013292135 K, F = -2.6577834222329955e-6, relative_change = 3.4555711561712195e-11 Iter 130: T = 762.2067012487653 K, F = -1.111516826912684e-6, relative_change = 1.44516120330887e-11 Iter 135: T = 762.2067012151208 K, F = -4.6484825666492924e-7, relative_change = 6.043819129261606e-12 Iter 140: T = 762.2067012010504 K, F = -1.9440550469429496e-7, relative_change = 2.5276026990789213e-12 Iter 145: T = 762.2067011951659 K, F = -8.130277528994867e-8, relative_change = 1.0570745648184603e-12 Iter 150: T = 762.2067011927049 K, F = -3.4002055060433634e-8, relative_change = 4.4208463276083627e-13 Converged in 154 iterations to T = 762.2067011918166 K Iter 1: T = 969.9899179491179 K, F = -6837.825742251239, relative_change = 0.030010082050882143 Iter 2: T = 942.1368400773354 K, F = -5792.037898544899, relative_change = 0.028714811727809653 Iter 3: T = 916.3980881576955 K, F = -4904.463803240046, relative_change = 0.027319547251253965 Iter 5: T = 871.0583490006263 K, F = -3512.4032228254896, relative_change = 0.024269566942282748 Iter 10: T = 790.1683792977338 K, F = -1512.8029182550454, relative_change = 0.015967800081231324 Iter 15: T = 745.765097838587 K, F = -644.3357427630449, relative_change = 0.008822618675258674 Iter 20: T = 724.090640273449 K, F = -272.0804157411455, relative_change = 0.004269448329916197 Iter 25: T = 714.3036759737588 K, F = -114.30537024918644, relative_change = 0.0019119869185811873 Iter 30: T = 710.0654063187227 K, F = -47.89992029897047, relative_change = 0.0008241032919515544 Iter 35: T = 708.2658603845055 K, F = -20.04955185967403, relative_change = 0.0003491278225917788 Iter 40: T = 707.5084071015818 K, F = -8.388009110406205, relative_change = 0.0001468076510598737 Iter 45: T = 707.1907709056051 K, F = -3.508500973753854, relative_change = 6.153744668727483e-5 Iter 50: T = 707.057780474575 K, F = -1.467390828267905, relative_change = 2.5760392525487785e-5 Iter 55: T = 707.002135792508 K, F = -0.6136967912287302, relative_change = 1.0777629491158193e-5 Iter 60: T = 706.9788598838718 K, F = -0.2566582004222157, relative_change = 4.508090379548468e-6 Iter 65: T = 706.969124809417 K, F = -0.10733802715053897, relative_change = 1.8854696697692744e-6 Iter 70: T = 706.9650533430676 K, F = -0.04489013274066311, relative_change = 7.88549098450641e-7 Iter 75: T = 706.963350582388 K, F = -0.018773604984844927, relative_change = 3.29784701999939e-7 Iter 80: T = 706.9626384631939 K, F = -0.007851348494735011, relative_change = 1.3792060946276773e-7 Iter 85: T = 706.9623406456831 K, F = -0.0032835281745521305, relative_change = 5.7680169926827185e-8 Iter 90: T = 706.9622160947105 K, F = -0.0013732107783677172, relative_change = 2.4122557587485216e-8 Iter 95: T = 706.9621640059831 K, F = -0.0005742931616379288, relative_change = 1.0088345461377849e-8 Iter 100: T = 706.9621422218512 K, F = -0.0002401762612884717, relative_change = 4.219067216576687e-9 Iter 105: T = 706.9621331114664 K, F = -0.00010044458125535449, relative_change = 1.764464412864751e-9 Iter 110: T = 706.9621293013945 K, F = -4.200712420276975e-5, relative_change = 7.379201219030628e-10 Iter 115: T = 706.962127707977 K, F = -1.7567880922997325e-5, relative_change = 3.0860700934476656e-10 Iter 120: T = 706.9621270415906 K, F = -7.347098092580495e-6, relative_change = 1.2906314596664985e-10 Iter 125: T = 706.9621267629 K, F = -3.072645170854038e-6, relative_change = 5.3975766749927297e-11 Iter 130: T = 706.9621266463482 K, F = -1.2850163891853228e-6, relative_change = 2.257330120798329e-11 Iter 135: T = 706.9621265976049 K, F = -5.37408811229767e-7, relative_change = 9.44041731591214e-12 Iter 140: T = 706.9621265772198 K, F = -2.247509081065857e-7, relative_change = 3.9480974643724855e-12 Iter 145: T = 706.9621265686945 K, F = -9.399448019919987e-8, relative_change = 1.651158485129623e-12 Iter 150: T = 706.9621265651291 K, F = -3.9308116428493634e-8, relative_change = 6.905078876906367e-13 Iter 155: T = 706.962126563638 K, F = -1.6439021366387863e-8, relative_change = 2.8877684689290813e-13 Converged in 157 iterations to T = 706.9621265633225 K Iter 1: T = 973.5380346624612 K, F = -6029.383973985635, relative_change = 0.026461965337538793 Iter 2: T = 949.2690724984942 K, F = -5102.298095752323, relative_change = 0.024928622508704975 Iter 3: T = 927.1255042992669 K, F = -4315.948375328436, relative_change = 0.02332696686403679 Iter 5: T = 888.8914942357737 K, F = -3084.021355528737, relative_change = 0.0199968980857732 Iter 10: T = 823.811112716535 K, F = -1320.4625267846357, relative_change = 0.011988799008109027 Iter 15: T = 790.3290842357145 K, F = -559.6640871020737, relative_change = 0.0061417914734901964 Iter 20: T = 774.7120604234275 K, F = -235.60977162086488, relative_change = 0.0028378618940789737 Iter 25: T = 767.8361012523029 K, F = -98.83036884169049, relative_change = 0.001241514272199831 Iter 30: T = 764.8943236069678 K, F = -41.385744584341396, relative_change = 0.0005294407646508997 Iter 35: T = 763.6519807370872 K, F = -17.317561421396427, relative_change = 0.0002232588918635707 Iter 40: T = 763.1302722334364 K, F = -7.244092782096515, relative_change = 9.36953719377977e-5 Iter 45: T = 762.9117094074227 K, F = -3.0298611229744123, relative_change = 3.9241805185013817e-5 Iter 50: T = 762.8202374879561 K, F = -1.2671757664561831, relative_change = 1.642143172090495e-5 Iter 55: T = 762.7819712216022 K, F = -0.5299570788766228, relative_change = 6.869396469206924e-6 Iter 60: T = 762.7659657790475 K, F = -0.2216359608318924, relative_change = 2.873171164534586e-6 Iter 65: T = 762.7592717561772 K, F = -0.09269108231555145, relative_change = 1.2016482883710632e-6 Iter 70: T = 762.7564721736604 K, F = -0.03876456596285871, relative_change = 5.025530741530055e-7 Iter 75: T = 762.7553013439373 K, F = -0.01621181289104323, relative_change = 2.1017534307012352e-7 Iter 80: T = 762.7548116870613 K, F = -0.006779975238996316, relative_change = 8.789812631692322e-8 Iter 85: T = 762.7546069063752 K, F = -0.0028354668739236644, relative_change = 3.676009649758192e-8 Iter 90: T = 762.7545212645886 K, F = -0.0011858261540010906, relative_change = 1.5373520161539644e-8 Iter 95: T = 762.7544854481605 K, F = -0.0004959266689480435, relative_change = 6.429391291907447e-9 Iter 100: T = 762.7544704693007 K, F = -0.00020740245830019877, relative_change = 2.6888485082350535e-9 Iter 105: T = 762.7544642049623 K, F = -8.673818605509087e-5, relative_change = 1.1245086158209635e-9 Iter 110: T = 762.7544615851411 K, F = -3.627494521252217e-5, relative_change = 4.702829394089417e-10 Iter 115: T = 762.7544604895006 K, F = -1.5170615005111188e-5, relative_change = 1.9667793911859156e-10 Iter 120: T = 762.7544600312907 K, F = -6.344532967994532e-6, relative_change = 8.225307095089817e-11 Iter 125: T = 762.7544598396618 K, F = -2.65335844407133e-6, relative_change = 3.4399203490688306e-11 Iter 130: T = 762.7544597595203 K, F = -1.1096671864718743e-6, relative_change = 1.438617065054739e-11 Iter 135: T = 762.7544597260041 K, F = -4.6407544340709705e-7, relative_change = 6.016460256166111e-12 Iter 140: T = 762.7544597119874 K, F = -1.940829733593219e-7, relative_change = 2.5161695416250414e-12 Iter 145: T = 762.7544597061252 K, F = -8.116522898227174e-8, relative_change = 1.0522585957789696e-12 Iter 150: T = 762.7544597036737 K, F = -3.394411884904969e-8, relative_change = 4.4006517671999244e-13 Converged in 154 iterations to T = 762.7544597027888 K Iter 1: T = 964.3035598407818 K, F = -8133.467846358598, relative_change = 0.03569644015921821 Iter 2: T = 930.5313880988252 K, F = -6900.140762810307, relative_change = 0.035022344776506634 Iter 3: T = 898.6524684315823 K, F = -5852.766114864488, relative_change = 0.0342588332591069 Iter 5: T = 840.461331792715 K, F = -4208.114179669767, relative_change = 0.032437953355549116 Iter 10: T = 726.1365901832727 K, F = -1835.2733370880858, relative_change = 0.026063656412201517 Iter 15: T = 652.3141001102761 K, F = -792.5176028115671, relative_change = 0.017869448250025816 Iter 20: T = 610.5284043041448 K, F = -338.3742272445472, relative_change = 0.010254086307795793 Iter 25: T = 589.6386399788662 K, F = -143.12141236183152, relative_change = 0.00508991568221383 Iter 30: T = 580.0703022812899 K, F = -60.18166341297407, relative_change = 0.0023106307698964696 Iter 35: T = 575.8969624314972 K, F = -25.229950668434018, relative_change = 0.0010023043263380385 Iter 40: T = 574.1192166605564 K, F = -10.562517848693432, relative_change = 0.0004258163294574813 Iter 45: T = 573.3698839781395 K, F = -4.4193297669852285, relative_change = 0.00017927013382102553 Iter 50: T = 573.0554649773975 K, F = -1.848560982958193, relative_change = 7.518285178045449e-5 Iter 55: T = 572.923788371029 K, F = -0.7731506742544093, relative_change = 3.1479236518040695e-5 Iter 60: T = 572.8686875856532 K, F = -0.32335141881648627, relative_change = 1.317145237072768e-5 Iter 65: T = 572.8456381666829 K, F = -0.13523127503455595, relative_change = 5.5095893073369675e-6 Iter 70: T = 572.8359976423444 K, F = -0.05655565784516506, relative_change = 2.304373853721483e-6 Iter 75: T = 572.8319656881403 K, F = -0.023652308129819943, relative_change = 9.637512665299585e-7 Iter 80: T = 572.8302794466915 K, F = -0.009891687626848888, relative_change = 4.030583412850052e-7 Iter 85: T = 572.829574235124 K, F = -0.004136823627651609, relative_change = 1.6856487034688684e-7 Iter 90: T = 572.8292793063052 K, F = -0.0017300693471298256, relative_change = 7.049602697231234e-8 Iter 95: T = 572.8291559633903 K, F = -0.0007235357149167898, relative_change = 2.9482312744802684e-8 Iter 100: T = 572.8291043798822 K, F = -0.0003025912859928592, relative_change = 1.2329860942908441e-8 Iter 105: T = 572.8290828070382 K, F = -0.000126547291304846, relative_change = 5.156496093827111e-9 Iter 110: T = 572.8290737850162 K, F = -5.292358835429223e-5, relative_change = 2.156508403059611e-9 Iter 115: T = 572.8290700118988 K, F = -2.2133277012614805e-5, relative_change = 9.018776097004635e-10 Iter 120: T = 572.829068433936 K, F = -9.25640031934627e-6, relative_change = 3.771759734976675e-10 Iter 125: T = 572.8290677740131 K, F = -3.871136572575207e-6, relative_change = 1.577394735467623e-10 Iter 130: T = 572.8290674980254 K, F = -1.6189555391843413e-6, relative_change = 6.596853152676095e-11 Iter 135: T = 572.8290673826041 K, F = -6.770660128108119e-7, relative_change = 2.758880622327538e-11 Iter 140: T = 572.8290673343336 K, F = -2.8315716743554376e-7, relative_change = 1.1537971303291009e-11 Iter 145: T = 572.8290673141463 K, F = -1.1841984504101788e-7, relative_change = 4.8253229343512824e-12 Iter 150: T = 572.8290673057037 K, F = -4.952466114982457e-8, relative_change = 2.0180104373233917e-12 Iter 155: T = 572.8290673021729 K, F = -2.07118419082164e-8, relative_change = 8.439575794724506e-13 Iter 160: T = 572.8290673006964 K, F = -8.661905137596904e-9, relative_change = 3.529517329280109e-13 Converged in 163 iterations to T = 572.829067300264 K Iter 1: T = 963.5657309931551 K, F = -8301.582851146779, relative_change = 0.03643426900684496 Iter 2: T = 929.0094021105413 K, F = -7044.163583637736, relative_change = 0.03586296997818338 Iter 3: T = 896.2974871457986 K, F = -5976.282366106542, relative_change = 0.03521160807460838 Iter 5: T = 836.2880699288796 K, F = -4299.2749002381815, relative_change = 0.033639469255388285 Iter 10: T = 716.6027336099573 K, F = -1878.7780873566871, relative_change = 0.02791635811094524 Iter 15: T = 636.9660440940261 K, F = -813.5545124529586, relative_change = 0.02000176377364355 Iter 20: T = 590.3175885661824 K, F = -348.3350043482707, relative_change = 0.011992571717827543 Iter 25: T = 566.3172495725163 K, F = -147.63857086391351, relative_change = 0.006144047842633928 Iter 30: T = 555.1224553466443 K, F = -62.15362895319175, relative_change = 0.0028389904102872634 Iter 35: T = 550.1934683593795 K, F = -26.07137908215247, relative_change = 0.0012420263384217548 Iter 40: T = 548.0846591017805 K, F = -10.917533667614801, relative_change = 0.0005296626450220147 Iter 45: T = 547.194084548646 K, F = -4.568362738072966, relative_change = 0.00022335309429825882 Iter 50: T = 546.8200968612581 K, F = -1.9109876514782391, relative_change = 9.373501944194729e-5 Iter 55: T = 546.663419614717 K, F = -0.7992757063377831, relative_change = 3.925843045989979e-5 Iter 60: T = 546.5978477508938 K, F = -0.33428027824866224, relative_change = 1.6428392366902016e-5 Iter 65: T = 546.5704164837972 K, F = -0.13980239005652512, relative_change = 6.872308853077825e-6 Iter 70: T = 546.5589429424842 K, F = -0.05846744642913421, relative_change = 2.87438939600523e-6 Iter 75: T = 546.5541443154533 K, F = -0.024451857336841853, relative_change = 1.202157808903051e-6 Iter 80: T = 546.5521374277122 K, F = -0.010226071520394953, relative_change = 5.027661690140463e-7 Iter 85: T = 546.5512981154892 K, F = -0.004276667466891287, relative_change = 2.1026446315103852e-7 Iter 90: T = 546.5509471037294 K, F = -0.0017885537989404399, relative_change = 8.79353976245986e-8 Iter 95: T = 546.5508003061809 K, F = -0.0007479946270045057, relative_change = 3.677568384768366e-8 Iter 100: T = 546.5507389136512 K, F = -0.0003128202979886252, relative_change = 1.538003899596871e-8 Iter 105: T = 546.5507132385549 K, F = -0.00013082518639923046, relative_change = 6.432117517359543e-9 Iter 110: T = 546.5507025009216 K, F = -5.47126553674393e-5, relative_change = 2.6899886146700127e-9 Iter 115: T = 546.5506980103149 K, F = -2.288148570497861e-5, relative_change = 1.124985399217406e-9 Iter 120: T = 546.5506961322895 K, F = -9.56931063028632e-6, relative_change = 4.704823390648781e-10 Iter 125: T = 546.5506953468769 K, F = -4.001999619862584e-6, relative_change = 1.9676131622399437e-10 Iter 130: T = 546.550695018408 K, F = -1.6736841313147455e-6, relative_change = 8.228793724229568e-11 Iter 135: T = 546.5506948810383 K, F = -6.999550141717492e-7, relative_change = 3.4413813974725734e-11 Iter 140: T = 546.5506948235886 K, F = -2.9272898971477446e-7, relative_change = 1.4392240641372237e-11 Iter 145: T = 546.5506947995626 K, F = -1.2242276115070894e-7, relative_change = 6.019007002168665e-12 Iter 150: T = 546.5506947895145 K, F = -5.119800317032741e-8, relative_change = 2.5171882802648413e-12 Iter 155: T = 546.5506947853123 K, F = -2.1411416306627018e-8, relative_change = 1.0527083646911145e-12 Iter 160: T = 546.550694783555 K, F = -8.954120139792465e-9, relative_change = 4.402360420611478e-13 Converged in 164 iterations to T = 546.5506947829206 K Iter 1: T = 969.3016868838198 K, F = -6994.639845156147, relative_change = 0.03069831311618016 Iter 2: T = 940.7437767128241 K, F = -5925.977571383116, relative_change = 0.02946235476263914 Iter 3: T = 914.2872900926172 K, F = -5018.900761389619, relative_change = 0.028122946199710088 Iter 5: T = 867.4933072004691 K, F = -3595.987795621742, relative_change = 0.025165409403268283 Iter 10: T = 783.1593153000161 K, F = -1550.803762371833, relative_change = 0.016898639945576145 Iter 15: T = 736.1641426873681 K, F = -661.3046231263756, relative_change = 0.009510158953253876 Iter 20: T = 712.9590479437327 K, F = -279.46796926546136, relative_change = 0.004658402654524841 Iter 25: T = 702.4095553275931 K, F = -117.45891191638873, relative_change = 0.0020996302502105926 Iter 30: T = 697.825636321835 K, F = -49.23123030323164, relative_change = 0.0009077013421957389 Iter 35: T = 695.8763568093689 K, F = -20.608607142205646, relative_change = 0.00038505063592052057 Iter 40: T = 695.0553364455399 K, F = -8.622220668172119, relative_change = 0.00016200421050044652 Iter 45: T = 694.7109470144455 K, F = -3.6065230134874313, relative_change = 6.792350940329729e-5 Iter 50: T = 694.5667383165559 K, F = -1.5083974489499665, relative_change = 2.8436514762086808e-5 Iter 55: T = 694.5063968016651 K, F = -0.6308484625950904, relative_change = 1.1897761382643458e-5 Iter 60: T = 694.4811557072563 K, F = -0.2638316215003056, relative_change = 4.976708456468164e-6 Iter 65: T = 694.4705986086558 K, F = -0.11033810526569449, relative_change = 2.081480310857932e-6 Iter 70: T = 694.4661833340028 K, F = -0.04614481308827778, relative_change = 8.705281562188131e-7 Iter 75: T = 694.4643367836892 K, F = -0.01929832936291076, relative_change = 3.6407020923709947e-7 Iter 80: T = 694.4635645290966 K, F = -0.008070794859898589, relative_change = 1.5225937307338804e-7 Iter 85: T = 694.4632415620941 K, F = -0.003375303328077228, relative_change = 6.367683920994185e-8 Iter 90: T = 694.4631064932777 K, F = -0.0014115922547602855, relative_change = 2.6630441040171758e-8 Iter 95: T = 694.4630500058578 K, F = -0.0005903447539259421, relative_change = 1.1137173073923278e-8 Iter 100: T = 694.4630263821393 K, F = -0.0002468892300092618, relative_change = 4.6576996098413495e-9 Iter 105: T = 694.4630165024173 K, F = -0.0001032520257512326, relative_change = 1.9479057576264734e-9 Iter 110: T = 694.4630123705994 K, F = -4.318123021973541e-5, relative_change = 8.146374730868242e-10 Iter 115: T = 694.4630106426238 K, F = -1.805890529893439e-5, relative_change = 3.4069110766085216e-10 Iter 120: T = 694.4630099199637 K, F = -7.552450460468485e-6, relative_change = 1.424811018766748e-10 Iter 125: T = 694.4630096177385 K, F = -3.158523939061908e-6, relative_change = 5.958727891423217e-11 Iter 130: T = 694.4630094913445 K, F = -1.3209320705032113e-6, relative_change = 2.4920104864999664e-11 Iter 135: T = 694.4630094384848 K, F = -5.524286817992774e-7, relative_change = 1.0421868764694354e-11 Iter 140: T = 694.4630094163784 K, F = -2.310311139064325e-7, relative_change = 4.35852813111859e-12 Iter 145: T = 694.4630094071332 K, F = -9.661991484666288e-8, relative_change = 1.822787458327835e-12 Iter 150: T = 694.4630094032668 K, F = -4.040641188307603e-8, relative_change = 7.622890263910845e-13 Iter 155: T = 694.4630094016499 K, F = -1.6899690535865375e-8, relative_change = 3.188218909987892e-13 Converged in 158 iterations to T = 694.4630094011765 K Iter 1: T = 966.4910195886672 K, F = -7635.053061991509, relative_change = 0.03350898041133283 Iter 2: T = 935.021724982625 K, F = -6473.478352095705, relative_change = 0.032560359039275254 Iter 3: T = 905.562377497821 K, F = -5487.212574305715, relative_change = 0.0315065914488258 Iter 5: T = 852.5487318077554 K, F = -3939.0793043696904, relative_change = 0.02907887015042041 Iter 10: T = 752.5616005141441 K, F = -1708.7597196973923, relative_change = 0.02143688653337912 Iter 15: T = 692.6267069562051 K, F = -733.0548969618535, relative_change = 0.013250613356967757 Iter 20: T = 661.147879583271 K, F = -311.1718302762443, relative_change = 0.006949356232123909 Iter 25: T = 646.2611673445626 K, F = -131.11694779809093, relative_change = 0.003255419182107357 Iter 30: T = 639.6580384250385 K, F = -55.0238280028756, relative_change = 0.00143386274095857 Iter 35: T = 636.8231181060313 K, F = -23.046192834607847, relative_change = 0.0006133343378324813 Iter 40: T = 635.624059900427 K, F = -9.644355799114742, relative_change = 0.0002589765256475745 Iter 45: T = 635.1201969728606 K, F = -4.034471389931577, relative_change = 0.00010874571398062324 Iter 50: T = 634.9090516699451 K, F = -1.687454815119025, relative_change = 4.555593151533148e-5 Iter 55: T = 634.82067379064 K, F = -0.7057471569819393, relative_change = 1.9065566300536078e-5 Iter 60: T = 634.7837000751714 K, F = -0.29515773473883344, relative_change = 7.975816693683178e-6 Iter 65: T = 634.7682349452481 K, F = -0.12343951217843868, relative_change = 3.3359963446362e-6 Iter 70: T = 634.7617668442452 K, F = -0.05162405703328965, relative_change = 1.3952260301838908e-6 Iter 75: T = 634.7590617373718 K, F = -0.0215898284531586, relative_change = 5.835128728004939e-7 Iter 80: T = 634.757930417165 K, F = -0.009029129564944893, relative_change = 2.440342705581791e-7 Iter 85: T = 634.7574572834088 K, F = -0.003776090770980123, relative_change = 1.0205843435759588e-7 Iter 90: T = 634.7572594128482 K, F = -0.0015792064232346692, relative_change = 4.268212393639016e-8 Iter 95: T = 634.7571766609514 K, F = -0.0006604430147066909, relative_change = 1.7850185820136558e-8 Iter 100: T = 634.7571420531085 K, F = -0.00027620516116383387, relative_change = 7.465162960710842e-9 Iter 105: T = 634.7571275796932 K, F = -0.00011551229735978774, relative_change = 3.1220206520939706e-9 Iter 110: T = 634.7571215267378 K, F = -4.830862259586066e-5, relative_change = 1.3056663897525766e-9 Iter 115: T = 634.7571189953194 K, F = -2.0203241959226848e-5, relative_change = 5.460452621829079e-10 Iter 120: T = 634.75711793665 K, F = -8.449236286678374e-6, relative_change = 2.2836263057932905e-10 Iter 125: T = 634.757117493902 K, F = -3.5335718567841568e-6, relative_change = 9.550398874609346e-11 Iter 130: T = 634.7571173087393 K, F = -1.4777812110677857e-6, relative_change = 3.99408887287943e-11 Iter 135: T = 634.7571172313022 K, F = -6.180258646515391e-7, relative_change = 1.6703759745372036e-11 Iter 140: T = 634.7571171989171 K, F = -2.5846621443115225e-7, relative_change = 6.985723083995419e-12 Iter 145: T = 634.7571171853732 K, F = -1.0809407002820848e-7, relative_change = 2.921523967756035e-12 Iter 150: T = 634.757117179709 K, F = -4.52062672851028e-8, relative_change = 1.221817194387803e-12 Iter 155: T = 634.7571171773402 K, F = -1.8906350596203936e-8, relative_change = 5.109934004568622e-13 Converged in 160 iterations to T = 634.7571171763495 K Iter 1: T = 966.5262740892356 K, F = -7627.020290501304, relative_change = 0.03347372591076439 Iter 2: T = 935.0938271783905 K, F = -6466.605984025561, relative_change = 0.03252104754261767 Iter 3: T = 905.6728734793754 K, F = -5481.328856982497, relative_change = 0.031463103320649256 Iter 5: T = 852.7401657216172 K, F = -3934.7581167539047, relative_change = 0.02902708971109542 Iter 10: T = 752.9671191114176 K, F = -1706.7483900332657, relative_change = 0.021371299567006053 Iter 15: T = 693.223470969175 K, F = -732.1263120887344, relative_change = 0.01319148595340554 Iter 20: T = 661.8753920621098 K, F = -310.75526102269504, relative_change = 0.006910672112891019 Iter 25: T = 647.0602792962769 K, F = -130.93572016227972, relative_change = 0.0032351558934942937 Iter 30: T = 640.4912650682313 K, F = -54.94657552076533, relative_change = 0.0014244682570770093 Iter 35: T = 637.6714710685394 K, F = -23.013608240575945, relative_change = 0.0006092249983057718 Iter 40: T = 636.4789004915326 K, F = -9.630678437407916, relative_change = 0.0002572247833021602 Iter 45: T = 635.9777799352611 K, F = -4.028742462369876, relative_change = 0.00010800718979982826 Iter 50: T = 635.7677866943279 K, F = -1.6850573443877574, relative_change = 4.5246026425030336e-5 Iter 55: T = 635.6798915303194 K, F = -0.7047442316914665, relative_change = 1.8935776757095602e-5 Iter 60: T = 635.643119851548 K, F = -0.29473825135994386, relative_change = 7.92150500629457e-6 Iter 65: T = 635.6277392436899 K, F = -0.12326407081232199, relative_change = 3.3132769215477624e-6 Iter 70: T = 635.621306495707 K, F = -0.05155068388775297, relative_change = 1.3857235117116178e-6 Iter 75: T = 635.6186161747429 K, F = -0.02155914267041137, relative_change = 5.795386339053785e-7 Iter 80: T = 635.6174910383293 K, F = -0.009016296360182419, relative_change = 2.4237216630012827e-7 Iter 85: T = 635.6170204907354 K, F = -0.003770723763463768, relative_change = 1.01363317235315e-7 Iter 90: T = 635.6168237017433 K, F = -0.0015769618750871572, relative_change = 4.239141672958644e-8 Iter 95: T = 635.6167414021722 K, F = -0.0006595043185625982, relative_change = 1.772860845859842e-8 Iter 100: T = 635.6167069834974 K, F = -0.00027581258658915253, relative_change = 7.414317812012613e-9 Iter 105: T = 635.6166925891946 K, F = -0.00011534811816571455, relative_change = 3.100756603909492e-9 Iter 110: T = 635.616686569325 K, F = -4.823996105635109e-5, relative_change = 1.2967735143078698e-9 Iter 115: T = 635.6166840517435 K, F = -2.0174528145788795e-5, relative_change = 5.423261893994054e-10 Iter 120: T = 635.6166829988608 K, F = -8.437228392887963e-6, relative_change = 2.2680728522758204e-10 Iter 125: T = 635.6166825585327 K, F = -3.528549770703826e-6, relative_change = 9.485351820011315e-11 Iter 130: T = 635.6166823743823 K, F = -1.4756818034755703e-6, relative_change = 3.966887817730827e-11 Iter 135: T = 635.6166822973682 K, F = -6.17146848458372e-7, relative_change = 1.658997427864717e-11 Iter 140: T = 635.6166822651602 K, F = -2.580986133149388e-7, relative_change = 6.938136957157539e-12 Iter 145: T = 635.6166822516903 K, F = -1.0794039645434239e-7, relative_change = 2.901624477043724e-12 Iter 150: T = 635.6166822460572 K, F = -4.5141405724535844e-8, relative_change = 1.213479031822959e-12 Iter 155: T = 635.6166822437012 K, F = -1.887981332382438e-8, relative_change = 5.075220238687517e-13 Converged in 160 iterations to T = 635.6166822427159 K Iter 1: T = 976.4727305374269 K, F = -5360.710727258253, relative_change = 0.023527269462573167 Iter 2: T = 955.1063977734793 K, F = -4532.790365375608, relative_change = 0.02188113615030299 Iter 3: T = 935.8090637979744 K, F = -3830.9990729466517, relative_change = 0.020204381439063113 Iter 5: T = 902.9992731732059 K, F = -2732.752292878634, relative_change = 0.0168522819412679 Iter 10: T = 848.9855184575422 K, F = -1165.2510324300936, relative_change = 0.009475412937630477 Iter 15: T = 822.330122677421 K, F = -492.4165430021232, relative_change = 0.004638544808786322 Iter 20: T = 810.2162064807096 K, F = -206.95561587765366, relative_change = 0.002089997066860645 Iter 25: T = 804.9534230204646 K, F = -86.74161897999795, relative_change = 0.000903398384062329 Iter 30: T = 802.7156352828407 K, F = -36.31060892684387, relative_change = 0.00038319948619074893 Iter 35: T = 801.7731294414916 K, F = -15.19158871022901, relative_change = 0.00016122072586859996 Iter 40: T = 801.3777867495991 K, F = -6.354368802648023, relative_change = 6.759419650025798e-5 Iter 45: T = 801.2122430194397 K, F = -2.657659580630809, relative_change = 2.8298501933702252e-5 Iter 50: T = 801.1429744222851 K, F = -1.1114976516413346, relative_change = 1.1839991888337034e-5 Iter 55: T = 801.1139991247225 K, F = -0.4648473090921347, relative_change = 4.952539656173466e-6 Iter 60: T = 801.1018801994137 K, F = -0.19440569615927006, relative_change = 2.0713710713050004e-6 Iter 65: T = 801.0968117259774 K, F = -0.08130295873471671, relative_change = 8.663000788651005e-7 Iter 70: T = 801.0946919958985 K, F = -0.034001898893051496, relative_change = 3.6230192911633364e-7 Iter 75: T = 801.0938054935253 K, F = -0.014220005533401525, relative_change = 1.5151984887501778e-7 Iter 80: T = 801.0934347466069 K, F = -0.0059469770696602975, relative_change = 6.336755989978831e-8 Iter 85: T = 801.0932796956364 K, F = -0.0024870969939587706, relative_change = 2.650109646139305e-8 Iter 90: T = 801.0932148514371 K, F = -0.0010401336923521187, relative_change = 1.108307959203183e-8 Iter 95: T = 801.093187732813 K, F = -0.00043499633731136633, relative_change = 4.635077049391464e-9 Iter 100: T = 801.0931763914796 K, F = -0.00018192066480959834, relative_change = 1.938444724199638e-9 Iter 105: T = 801.0931716483983 K, F = -7.608139400305802e-5, relative_change = 8.10680749912743e-10 Iter 110: T = 801.0931696647851 K, F = -3.18181494918246e-5, relative_change = 3.390363955993507e-10 Iter 115: T = 801.0931688352143 K, F = -1.3306728222195474e-5, relative_change = 1.417890502109913e-10 Iter 120: T = 801.0931684882779 K, F = -5.565032659249347e-6, relative_change = 5.929787424823256e-11 Iter 125: T = 801.093168343185 K, F = -2.3273621752029072e-6, relative_change = 2.4799069145607084e-11 Iter 130: T = 801.0931682825054 K, F = -9.733318387938894e-7, relative_change = 1.0371279484453813e-11 Iter 135: T = 801.0931682571286 K, F = -4.0706038140214673e-7, relative_change = 4.3374076701715336e-12 Iter 140: T = 801.0931682465156 K, F = -1.702382751433973e-7, relative_change = 1.8139638101523805e-12 Iter 145: T = 801.093168242077 K, F = -7.119487832607518e-8, relative_change = 7.586127893173632e-13 Iter 150: T = 801.0931682402208 K, F = -2.9775594434511277e-8, relative_change = 3.172720746054484e-13 Converged in 153 iterations to T = 801.0931682396774 K Iter 1: T = 965.1883218590217 K, F = -7931.873978876675, relative_change = 0.03481167814097828 Iter 2: T = 932.351532330657 K, F = -6727.5098582933015, relative_change = 0.03402112187300261 Iter 3: T = 901.4601786575024 K, F = -5704.795999545931, relative_change = 0.03313273223880875 Iter 5: T = 845.4007224490908 K, F = -4099.078490440042, relative_change = 0.03104379950951682 Iter 10: T = 737.1377564695698 K, F = -1783.6797343037827, relative_change = 0.024050323276208176 Iter 15: T = 669.4604656663621 K, F = -767.9946644802296, relative_change = 0.01574520438536215 Iter 20: T = 632.44411061319 K, F = -327.01336765815614, relative_change = 0.00866171650388036 Iter 25: T = 614.4242909265455 K, F = -138.0606555747029, relative_change = 0.004179734201507251 Iter 30: T = 606.3003515245464 K, F = -57.99582422626739, relative_change = 0.0018690399521313979 Iter 35: T = 602.7849840652779 K, F = -24.302169782362267, relative_change = 0.0008050390212548718 Iter 40: T = 601.2928993576114 K, F = -10.171997233057086, relative_change = 0.0003409487907323097 Iter 45: T = 600.664955364591 K, F = -4.25556026918151, relative_change = 0.00014335000140327524 Iter 50: T = 600.4016454097341 K, F = -1.7799913342412679, relative_change = 6.0084853346140884e-5 Iter 55: T = 600.2914036831255 K, F = -0.7444601059167604, relative_change = 2.515174703651247e-5 Iter 60: T = 600.2452778331678 K, F = -0.3113502414512223, relative_change = 1.0522884490094857e-5 Iter 65: T = 600.2259836982711 K, F = -0.13021181244975424, relative_change = 4.401517583811238e-6 Iter 70: T = 600.2179140039026 K, F = -0.05445638396281138, relative_change = 1.840893461113395e-6 Iter 75: T = 600.2145390464655 K, F = -0.022774353658597646, relative_change = 7.699057123957471e-7 Iter 80: T = 600.2131275788661 K, F = -0.009524514297461095, relative_change = 3.219876258473777e-7 Iter 85: T = 600.2125372827451 K, F = -0.003983266956044618, relative_change = 1.3465974595300166e-7 Iter 90: T = 600.2122904132431 K, F = -0.001665850043783168, relative_change = 5.631643207318295e-8 Iter 95: T = 600.2121871693616 K, F = -0.0006966784236137613, relative_change = 2.355222512218671e-8 Iter 100: T = 600.2121439915186 K, F = -0.000291359243649314, relative_change = 9.849825422310771e-9 Iter 105: T = 600.2121259340257 K, F = -0.00012184991628405584, relative_change = 4.119315248068962e-9 Iter 110: T = 600.212118382166 K, F = -5.0959090493962744e-5, relative_change = 1.7227469453864505e-9 Iter 115: T = 600.212115223888 K, F = -2.131170072550148e-5, relative_change = 7.204733814855918e-10 Iter 120: T = 600.2121139030583 K, F = -8.912807273830925e-6, relative_change = 3.013105591661963e-10 Iter 125: T = 600.2121133506716 K, F = -3.7274424699584863e-6, relative_change = 1.2601167570420445e-10 Iter 130: T = 600.2121131196568 K, F = -1.558860759309777e-6, relative_change = 5.269958112386226e-11 Iter 135: T = 600.2121130230437 K, F = -6.519341996247263e-7, relative_change = 2.2039594660195802e-11 Iter 140: T = 600.212112982639 K, F = -2.726463796398626e-7, relative_change = 9.217211949023792e-12 Iter 145: T = 600.2121129657413 K, F = -1.1402440835972527e-7, relative_change = 3.854762864420722e-12 Iter 150: T = 600.2121129586745 K, F = -4.7686961268667005e-8, relative_change = 1.6121278774445185e-12 Iter 155: T = 600.212112955719 K, F = -1.9942891782420702e-8, relative_change = 6.741987944863664e-13 Iter 160: T = 600.2121129544829 K, F = -8.340098445192012e-9, relative_change = 2.819492969749588e-13 Converged in 162 iterations to T = 600.2121129542214 K Iter 1: T = 964.5430665745573 K, F = -8078.896009238132, relative_change = 0.03545693342544272 Iter 2: T = 931.0246346188628 K, F = -6853.401390379574, relative_change = 0.0347505809924388 Iter 3: T = 899.4142615394267 K, F = -5812.694906344627, relative_change = 0.03395224133073197 Iter 5: T = 841.8053454123029 K, F = -4178.568200797037, relative_change = 0.032055622679585484 Iter 10: T = 729.1594491183589 K, F = -1821.2468370568474, relative_change = 0.025497475028283118 Iter 15: T = 657.0824131722142 K, F = -785.8082245987874, relative_change = 0.01725277529704529 Iter 20: T = 616.6879764592171 K, F = -335.24200042884786, relative_change = 0.009778179872545518 Iter 25: T = 596.6529840893153 K, F = -141.71770373179626, relative_change = 0.004812545804520022 Iter 30: T = 587.5202558257439 K, F = -59.57325144702017, relative_change = 0.0021746537186803825 Iter 35: T = 583.5466054807646 K, F = -24.971269796310594, relative_change = 0.0009412645473321799 Iter 40: T = 581.8558051074726 K, F = -10.453551214812997, relative_change = 0.0003994994237835941 Iter 45: T = 581.143465109409 K, F = -4.373618326327165, relative_change = 0.00016812131187660914 Iter 50: T = 580.8446296371405 K, F = -1.8294191261452952, relative_change = 7.049495189671947e-5 Iter 55: T = 580.7194901453013 K, F = -0.7651409675282473, relative_change = 2.951424413269086e-5 Iter 60: T = 580.6671267523712 K, F = -0.3200009010025097, relative_change = 1.2348887659430961e-5 Iter 65: T = 580.6452227555192 K, F = -0.13382991495649404, relative_change = 5.165446105625852e-6 Iter 70: T = 580.6360613674834 K, F = -0.05596956896549024, relative_change = 2.160425117083835e-6 Iter 75: T = 580.6322298125391 K, F = -0.023407194675026277, relative_change = 9.035459979150023e-7 Iter 80: T = 580.6306273837314 K, F = -0.009789177537934846, relative_change = 3.7787904642869653e-7 Iter 85: T = 580.6299572241845 K, F = -0.004093952559931557, relative_change = 1.5803446044104127e-7 Iter 90: T = 580.6296769546396 K, F = -0.0017121401329754926, relative_change = 6.609206139142981e-8 Iter 95: T = 580.6295597424257 K, F = -0.0007160374998542163, relative_change = 2.7640517835220448e-8 Iter 100: T = 580.629510722853 K, F = -0.00029945544244097677, relative_change = 1.1559599638596914e-8 Iter 105: T = 580.6294902222778 K, F = -0.00012523584372026164, relative_change = 4.83436348778936e-9 Iter 110: T = 580.6294816486917 K, F = -5.2375125611570095e-5, relative_change = 2.0217886924644197e-9 Iter 115: T = 580.6294780631156 K, F = -2.190390326212155e-5, relative_change = 8.455362105785089e-10 Iter 120: T = 580.6294765635847 K, F = -9.160473901703714e-6, relative_change = 3.536133442745425e-10 Iter 125: T = 580.629475936463 K, F = -3.831020083056025e-6, relative_change = 1.478853436028522e-10 Iter 130: T = 580.6294756741933 K, F = -1.6021781654163014e-6, relative_change = 6.18474097964285e-11 Iter 135: T = 580.629475564509 K, F = -6.700511094859252e-7, relative_change = 2.5865366589508007e-11 Iter 140: T = 580.6294755186376 K, F = -2.802231616194639e-7, relative_change = 1.0817196930612383e-11 Iter 145: T = 580.6294754994535 K, F = -1.1719231279849751e-7, relative_change = 4.523867046422726e-12 Iter 150: T = 580.6294754914306 K, F = -4.9010519476144765e-8, relative_change = 1.8919079989657704e-12 Iter 155: T = 580.6294754880753 K, F = -2.0496564334671064e-8, relative_change = 7.912100184129258e-13 Iter 160: T = 580.6294754866722 K, F = -8.572391296812754e-9, relative_change = 3.3091213557186186e-13 Converged in 163 iterations to T = 580.6294754862613 K Iter 1: T = 964.31548965942 K, F = -8130.749625833686, relative_change = 0.03568451034057996 Iter 2: T = 930.5559660127135 K, F = -6897.812538905689, relative_change = 0.035008795366991155 Iter 3: T = 898.6904440203435 K, F = -5850.769898630794, relative_change = 0.03424353091723087 Iter 5: T = 840.528399704148 K, F = -4206.641968693268, relative_change = 0.03241882147600629 Iter 10: T = 726.2879704769534 K, F = -1834.5735950728333, relative_change = 0.026035064178533435 Iter 15: T = 652.5539646761647 K, F = -792.1820920169416, relative_change = 0.01783792914000562 Iter 20: T = 610.8395268709513 K, F = -338.21712698631586, relative_change = 0.010229481135868064 Iter 25: T = 589.9939078520936 K, F = -143.05083683456593, relative_change = 0.005075460590994726 Iter 30: T = 580.4481833543456 K, F = -60.15102984892864, relative_change = 0.002303513486124448 Iter 35: T = 576.2852370007641 K, F = -25.21691688546031, relative_change = 0.0009991028030461601 Iter 40: T = 574.51202205964 K, F = -10.557025761860803, relative_change = 0.00042443475495931843 Iter 45: T = 573.764618126442 K, F = -4.417025524626516, relative_change = 0.00017868461887739939 Iter 50: T = 573.4510118123105 K, F = -1.8475960159345117, relative_change = 7.493661158479556e-5 Iter 55: T = 573.3196761510284 K, F = -0.7727468842120118, relative_change = 3.137601468456558e-5 Iter 60: T = 573.2647181408017 K, F = -0.32318250881814503, relative_change = 1.3128241464690294e-5 Iter 65: T = 573.2417284650112 K, F = -0.1351606278232457, relative_change = 5.491510583644002e-6 Iter 70: T = 573.2321129317434 K, F = -0.05652611110647987, relative_change = 2.2968118195045877e-6 Iter 75: T = 573.228091430111 K, F = -0.0236399511157534, relative_change = 9.605885067969087e-7 Iter 80: T = 573.226409560229 K, F = -0.009886519738253774, relative_change = 4.017355977330281e-7 Iter 85: T = 573.2257061769336 K, F = -0.004134662348446894, relative_change = 1.6801167626483864e-7 Iter 90: T = 573.2254120127255 K, F = -0.0017291654739489681, relative_change = 7.026467341788441e-8 Iter 95: T = 573.2252889895809 K, F = -0.0007231577043769755, relative_change = 2.938555772221085e-8 Iter 100: T = 573.2252375398045 K, F = -0.0003024331971551719, relative_change = 1.2289396788469689e-8 Iter 105: T = 573.225216022889 K, F = -0.00012648117708075057, relative_change = 5.139573511832357e-9 Iter 110: T = 573.2252070242569 K, F = -5.289593898183398e-5, relative_change = 2.1494311917999337e-9 Iter 115: T = 573.2252032609214 K, F = -2.2121713089851003e-5, relative_change = 8.989178098135275e-10 Iter 120: T = 573.2252016870494 K, F = -9.25156468201127e-6, relative_change = 3.7593817152555055e-10 Iter 125: T = 573.2252010288374 K, F = -3.869114634735826e-6, relative_change = 1.572218256210444e-10 Iter 130: T = 573.2252007535653 K, F = -1.618109927714606e-6, relative_change = 6.575204445701992e-11 Iter 135: T = 573.2252006384433 K, F = -6.767132122997843e-7, relative_change = 2.7498303112926576e-11 Iter 140: T = 573.2252005902978 K, F = -2.8300983040407957e-7, relative_change = 1.1500130279787814e-11 Iter 145: T = 573.2252005701629 K, F = -1.1835828223061284e-7, relative_change = 4.809499598046276e-12 Iter 150: T = 573.2252005617421 K, F = -4.9498896814714755e-8, relative_change = 2.011392188735062e-12 Iter 155: T = 573.2252005582205 K, F = -2.0701183767179998e-8, relative_change = 8.411944913429829e-13 Iter 160: T = 573.2252005567476 K, F = -8.656895977843249e-9, relative_change = 3.5177375799761087e-13 Converged in 163 iterations to T = 573.2252005563165 K Iter 1: T = 980.2024747529794 K, F = -4510.884959841933, relative_change = 0.019797525247020647 Iter 2: T = 962.4460183772349 K, F = -3810.2919704616893, relative_change = 0.018115090333983615 Iter 3: T = 946.6093003120304 K, F = -3217.009490786445, relative_change = 0.01645465591089096 Iter 5: T = 920.1705142250725 K, F = -2290.047264554383, relative_change = 0.013288265568145134 Iter 10: T = 878.2162619441651 K, F = -972.1397173207021, relative_change = 0.006974135075776705 Iter 15: T = 858.3670339573102 K, F = -409.6374288573898, relative_change = 0.0032684369263640367 Iter 20: T = 849.5606683172994 K, F = -171.90868565360415, relative_change = 0.0014399061737707622 Iter 25: T = 845.7794106051456 K, F = -72.00274201312818, relative_change = 0.0006159794121149905 Iter 30: T = 844.1800104019321 K, F = -30.131745656920515, relative_change = 0.0002601043584440601 Iter 35: T = 843.5079033005121 K, F = -12.604865881937522, relative_change = 0.00010922125173475137 Iter 40: T = 843.226252240896 K, F = -5.272103899699856, relative_change = 4.575548908504744e-5 Iter 45: T = 843.1083627279797 K, F = -2.204961633153048, relative_change = 1.9149143390929795e-5 Iter 50: T = 843.059042465874 K, F = -0.9221596317956857, relative_change = 8.01079060510961e-6 Iter 55: T = 843.0384130875603 K, F = -0.385661380056744, relative_change = 3.3506265228575146e-6 Iter 60: T = 843.029785100598 K, F = -0.16128875621953842, relative_change = 1.4013451876166268e-6 Iter 65: T = 843.0261766799013 K, F = -0.06745298221159435, relative_change = 5.860720898510265e-7 Iter 70: T = 843.0246675789168 K, F = -0.028209659885464644, relative_change = 2.451045853680009e-7 Iter 75: T = 843.0240364520021 K, F = -0.01179761965744297, relative_change = 1.0250605620897938e-7 Iter 80: T = 843.0237725066889 K, F = -0.00493390595774601, relative_change = 4.286932534410226e-8 Iter 85: T = 843.0236621215192 K, F = -0.0020634184852639237, relative_change = 1.792847579007258e-8 Iter 90: T = 843.0236159571077 K, F = -0.0008629462692979484, relative_change = 7.497904783536955e-9 Iter 95: T = 843.0235966505968 K, F = -0.0003608944382034185, relative_change = 3.13571368912516e-9 Iter 100: T = 843.023588576383 K, F = -0.00015093036512570102, relative_change = 1.311392982301764e-9 Iter 105: T = 843.0235851996503 K, F = -6.312088185378428e-5, relative_change = 5.484402228105148e-10 Iter 110: T = 843.0235837874603 K, F = -2.639790828573574e-5, relative_change = 2.2936426729540094e-10 Iter 115: T = 843.0235831968655 K, F = -1.103991894435552e-5, relative_change = 9.592286255071604e-11 Iter 120: T = 843.0235829498718 K, F = -4.617025950004461e-6, relative_change = 4.011608676163457e-11 Iter 125: T = 843.023582846576 K, F = -1.9308956442642966e-6, relative_change = 1.677702877933452e-11 Iter 130: T = 843.0235828033765 K, F = -8.075219311010073e-7, relative_change = 7.016339138562206e-12 Iter 135: T = 843.0235827853099 K, F = -3.377159309980726e-7, relative_change = 2.934322169292444e-12 Iter 140: T = 843.0235827777543 K, F = -1.4123838476542971e-7, relative_change = 1.2271820354021365e-12 Iter 145: T = 843.0235827745944 K, F = -5.9066509905392195e-8, relative_change = 5.132128916050531e-13 Converged in 150 iterations to T = 843.0235827732729 K Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 33%|███████████ | ETA: 0:00:02 Bin 1 progress: 73%|████████████████████████▎ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013460326333447176 Iteration 10: d = 8.870427445672309e-6 Iteration 20: d = 9.132219533059423e-8 Iteration 30: d = 1.195419641226407e-9 Iteration 40: d = 1.6144358592624435e-11 Iteration 50: d = 2.1955357403189236e-13 Iteration 60: d = 3.0077148736768318e-15 Converged after 61 iterations. d = 1.959744428194186e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 8651.592844012872 Iteration 2: convergence error = 4835.388417218606 Iteration 3: convergence error = 1100.8845311753075 Iteration 4: convergence error = 321.2075258783593 Iteration 5: convergence error = 95.37527803089915 Iteration 6: convergence error = 28.453477254877953 Iteration 7: convergence error = 8.494853628281817 Iteration 8: convergence error = 2.537930064368993 Iteration 9: convergence error = 0.7590373977948275 Iteration 10: convergence error = 0.22669906185637956 Iteration 11: convergence error = 0.06765422345733896 Iteration 12: convergence error = 0.020181123532438505 Iteration 13: convergence error = 0.006018446304096869 Iteration 14: convergence error = 0.0017945662300462573 Iteration 15: convergence error = 0.0005350541086954763 Iteration 16: convergence error = 0.00015951979094097624 Iteration 17: convergence error = 4.7557499101458234e-5 Iteration 18: convergence error = 1.4178037417877931e-5 Iteration 19: convergence error = 4.226776127325138e-6 Iteration 20: convergence error = 1.260086946786032e-6 Iteration 21: convergence error = 3.75650870410027e-7 Iteration 22: convergence error = 1.1185102266608737e-7 Iteration 23: convergence error = 3.2436446417705156e-8 Iteration 24: convergence error = 9.357108865515329e-9 Iteration 25: convergence error = 2.689375833142549e-9 Iteration 26: convergence error = 7.696598913753405e-10 Iteration 27: convergence error = 2.2077983885537833e-10 Iteration 28: convergence error = 6.298250809777528e-11 Iteration 29: convergence error = 1.8417267710901797e-11 Converged after 29 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:02 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012501477843777878 Iteration 10: d = 9.420323230650747e-6 Iteration 20: d = 9.169179474595502e-8 Iteration 30: d = 1.0838886893186913e-9 Iteration 40: d = 1.3258794643645974e-11 Iteration 50: d = 1.6438818223893926e-13 Converged after 60 iterations. d = 2.0737839204318146e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 12278.753665732913 Iteration 2: convergence error = 8330.551471674034 Iteration 3: convergence error = 1947.4189405282534 Iteration 4: convergence error = 477.8513738591439 Iteration 5: convergence error = 121.56485579143146 Iteration 6: convergence error = 32.40574497626767 Iteration 7: convergence error = 8.815924882881973 Iteration 8: convergence error = 2.412320186547504 Iteration 9: convergence error = 0.6609288227680281 Iteration 10: convergence error = 0.1811121018954509 Iteration 11: convergence error = 0.049627749546971245 Iteration 12: convergence error = 0.013598218331480894 Iteration 13: convergence error = 0.0037258694426327565 Iteration 14: convergence error = 0.001020863003532213 Iteration 15: convergence error = 0.0002797079159790883 Iteration 16: convergence error = 7.66374544127757e-5 Iteration 17: convergence error = 2.0997956198698375e-5 Iteration 18: convergence error = 5.753244067818741e-6 Iteration 19: convergence error = 1.5763346254971111e-6 Iteration 20: convergence error = 4.319037998357089e-7 Iteration 21: convergence error = 1.1920678844035137e-7 Iteration 22: convergence error = 3.1985337045625784e-8 Iteration 23: convergence error = 8.543565854779445e-9 Iteration 24: convergence error = 2.276919985888526e-9 Iteration 25: convergence error = 6.091340765124187e-10 Iteration 26: convergence error = 1.6211743059102446e-10 Iteration 27: convergence error = 4.388311936054379e-11 Iteration 28: convergence error = 1.1823431123048067e-11 Converged after 28 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 5 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (5 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 44%|██████████████▌ | ETA: 0:00:01 Bin 1 progress: 88%|████████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012501477843777878 Iteration 10: d = 9.420323230650747e-6 Iteration 20: d = 9.169179474595502e-8 Iteration 30: d = 1.0838886893186913e-9 Iteration 40: d = 1.3258794643645974e-11 Iteration 50: d = 1.6438818223893926e-13 Converged after 60 iterations. d = 2.0737839204318146e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10994.543231621854 Iteration 2: convergence error = 5744.18618368466 Iteration 3: convergence error = 2019.548204817696 Iteration 4: convergence error = 896.7165282261217 Iteration 5: convergence error = 409.30259769591567 Iteration 6: convergence error = 192.94443313095826 Iteration 7: convergence error = 91.04710420258334 Iteration 8: convergence error = 42.987721153820075 Iteration 9: convergence error = 20.297657548163443 Iteration 10: convergence error = 9.58222290109552 Iteration 11: convergence error = 4.52252759643261 Iteration 12: convergence error = 2.1340361113343533 Iteration 13: convergence error = 1.0068130985850985 Iteration 14: convergence error = 0.474944419527219 Iteration 15: convergence error = 0.2240267174784094 Iteration 16: convergence error = 0.10557306604550831 Iteration 17: convergence error = 0.04930783217014323 Iteration 18: convergence error = 0.02250203985386179 Iteration 19: convergence error = 0.010231172291696566 Iteration 20: convergence error = 0.004642001097181492 Iteration 21: convergence error = 0.002103537844504899 Iteration 22: convergence error = 0.0009525407554065168 Iteration 23: convergence error = 0.0004311549346311949 Iteration 24: convergence error = 0.00019510763013386168 Iteration 25: convergence error = 8.827747797113261e-5 Iteration 26: convergence error = 3.993799055024283e-5 Iteration 27: convergence error = 1.8067519704345614e-5 Iteration 28: convergence error = 8.173272362910211e-6 Iteration 29: convergence error = 3.6973042369936593e-6 Iteration 30: convergence error = 1.6725039131415542e-6 Iteration 31: convergence error = 7.565658961539157e-7 Iteration 32: convergence error = 3.422328518354334e-7 Iteration 33: convergence error = 1.5481009540962987e-7 Iteration 34: convergence error = 7.002790880505927e-8 Iteration 35: convergence error = 3.167770046275109e-8 Iteration 36: convergence error = 1.4327724784379825e-8 Iteration 37: convergence error = 6.486970960395411e-9 Iteration 38: convergence error = 2.9322109185159206e-9 Iteration 39: convergence error = 1.32467903313227e-9 Iteration 40: convergence error = 5.989022611174732e-10 Iteration 41: convergence error = 2.7466739993542433e-10 Iteration 42: convergence error = 1.241460267920047e-10 Iteration 43: convergence error = 5.4569682106375694e-11 Iteration 44: convergence error = 2.5011104298755527e-11 Iteration 45: convergence error = 1.0913936421275139e-11 Converged after 45 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Uniform extinction detected across 10 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (10 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012501477843777878 Iteration 10: d = 9.420323230650747e-6 Iteration 20: d = 9.169179474595502e-8 Iteration 30: d = 1.0838886893186913e-9 Iteration 40: d = 1.3258794643645974e-11 Iteration 50: d = 1.6438818223893926e-13 Converged after 60 iterations. d = 2.0737839204318146e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 10826.597530363899 Iteration 2: convergence error = 7363.661878860141 Iteration 3: convergence error = 1735.0006727125656 Iteration 4: convergence error = 504.08064493076927 Iteration 5: convergence error = 156.48191098748384 Iteration 6: convergence error = 48.580537850007204 Iteration 7: convergence error = 15.057559723477425 Iteration 8: convergence error = 4.659474410539133 Iteration 9: convergence error = 1.440194143840472 Iteration 10: convergence error = 0.44483328293335944 Iteration 11: convergence error = 0.13733873921410122 Iteration 12: convergence error = 0.04239214497783905 Iteration 13: convergence error = 0.013083348447253229 Iteration 14: convergence error = 0.0040375604139626375 Iteration 15: convergence error = 0.001245948768882954 Iteration 16: convergence error = 0.0003844771372314426 Iteration 17: convergence error = 0.00011864097223224235 Iteration 18: convergence error = 3.660962829599157e-5 Iteration 19: convergence error = 1.1296756838419242e-5 Iteration 20: convergence error = 3.485876277409261e-6 Iteration 21: convergence error = 1.075644377124263e-6 Iteration 22: convergence error = 3.3174910640809685e-7 Iteration 23: convergence error = 1.0111943993251771e-7 Iteration 24: convergence error = 3.0074716050876305e-8 Iteration 25: convergence error = 8.908955351216719e-9 Iteration 26: convergence error = 2.6293491828255355e-9 Iteration 27: convergence error = 7.803464541211724e-10 Iteration 28: convergence error = 2.3010215954855084e-10 Iteration 29: convergence error = 6.957634468562901e-11 Iteration 30: convergence error = 2.2737367544323206e-11 Iteration 31: convergence error = 8.185452315956354e-12 Converged after 31 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 78%|█████████████████████████▊ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012501477843777878 Iteration 10: d = 9.420323230650747e-6 Iteration 20: d = 9.169179474595502e-8 Iteration 30: d = 1.0838886893186913e-9 Iteration 40: d = 1.3258794643645974e-11 Iteration 50: d = 1.6438818223893926e-13 Converged after 60 iterations. d = 2.0737839204318146e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 7541.678070062554 Iteration 2: convergence error = 5530.669337055327 Iteration 3: convergence error = 938.6260982128117 Iteration 4: convergence error = 170.73042014875477 Iteration 5: convergence error = 30.95853978474497 Iteration 6: convergence error = 5.62825570201835 Iteration 7: convergence error = 1.0245601018220896 Iteration 8: convergence error = 0.18698341407753105 Iteration 9: convergence error = 0.0341526794541096 Iteration 10: convergence error = 0.006234374081032001 Iteration 11: convergence error = 0.0011377130331311491 Iteration 12: convergence error = 0.0002075902034448518 Iteration 13: convergence error = 3.787448940784088e-5 Iteration 14: convergence error = 6.909857802384067e-6 Iteration 15: convergence error = 1.2606246855284553e-6 Iteration 16: convergence error = 2.2999029170023277e-7 Iteration 17: convergence error = 4.1937710193451494e-8 Iteration 18: convergence error = 7.646121957805008e-9 Iteration 19: convergence error = 1.401076588081196e-9 Iteration 20: convergence error = 2.5556801119819283e-10 Iteration 21: convergence error = 4.4565240386873484e-11 Iteration 22: convergence error = 1.0913936421275139e-11 Converged after 22 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Uniform extinction detected across 50 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (50 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 41%|█████████████▍ | ETA: 0:00:01 Bin 1 progress: 84%|███████████████████████████▉ | ETA: 0:00:00 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 32×32 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0012501477843777878 Iteration 10: d = 9.420323230650747e-6 Iteration 20: d = 9.169179474595502e-8 Iteration 30: d = 1.0838886893186913e-9 Iteration 40: d = 1.3258794643645974e-11 Iteration 50: d = 1.6438818223893926e-13 Converged after 60 iterations. d = 2.0737839204318146e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 3298.4764643569165 Iteration 2: convergence error = 2718.8219849916254 Iteration 3: convergence error = 204.9830244401702 Iteration 4: convergence error = 19.337502175352927 Iteration 5: convergence error = 1.5980855527826208 Iteration 6: convergence error = 0.13009444731424574 Iteration 7: convergence error = 0.010602140644190006 Iteration 8: convergence error = 0.0008659533438408256 Iteration 9: convergence error = 7.083341671810008e-5 Iteration 10: convergence error = 5.800625164510756e-6 Iteration 11: convergence error = 4.75395479855759e-7 Iteration 12: convergence error = 3.8959876935074855e-8 Iteration 13: convergence error = 3.193879617196738e-9 Iteration 14: convergence error = 2.6059610770211464e-10 Iteration 15: convergence error = 2.1827872842550278e-11 Converged after 15 iterations Writing spectral results to mesh... Spectral bin 1 results written: 16 volumes, 16 surfaces Spectral bin 2 results written: 16 volumes, 16 surfaces Spectral bin 3 results written: 16 volumes, 16 surfaces Spectral bin 4 results written: 16 volumes, 16 surfaces Spectral bin 5 results written: 16 volumes, 16 surfaces Spectral bin 6 results written: 16 volumes, 16 surfaces Spectral bin 7 results written: 16 volumes, 16 surfaces Spectral bin 8 results written: 16 volumes, 16 surfaces Spectral bin 9 results written: 16 volumes, 16 surfaces Spectral bin 10 results written: 16 volumes, 16 surfaces Spectral bin 11 results written: 16 volumes, 16 surfaces Spectral bin 12 results written: 16 volumes, 16 surfaces Spectral bin 13 results written: 16 volumes, 16 surfaces Spectral bin 14 results written: 16 volumes, 16 surfaces Spectral bin 15 results written: 16 volumes, 16 surfaces Spectral bin 16 results written: 16 volumes, 16 surfaces Spectral bin 17 results written: 16 volumes, 16 surfaces Spectral bin 18 results written: 16 volumes, 16 surfaces Spectral bin 19 results written: 16 volumes, 16 surfaces Spectral bin 20 results written: 16 volumes, 16 surfaces Spectral bin 21 results written: 16 volumes, 16 surfaces Spectral bin 22 results written: 16 volumes, 16 surfaces Spectral bin 23 results written: 16 volumes, 16 surfaces Spectral bin 24 results written: 16 volumes, 16 surfaces Spectral bin 25 results written: 16 volumes, 16 surfaces Spectral bin 26 results written: 16 volumes, 16 surfaces Spectral bin 27 results written: 16 volumes, 16 surfaces Spectral bin 28 results written: 16 volumes, 16 surfaces Spectral bin 29 results written: 16 volumes, 16 surfaces Spectral bin 30 results written: 16 volumes, 16 surfaces Spectral bin 31 results written: 16 volumes, 16 surfaces Spectral bin 32 results written: 16 volumes, 16 surfaces Spectral bin 33 results written: 16 volumes, 16 surfaces Spectral bin 34 results written: 16 volumes, 16 surfaces Spectral bin 35 results written: 16 volumes, 16 surfaces Spectral bin 36 results written: 16 volumes, 16 surfaces Spectral bin 37 results written: 16 volumes, 16 surfaces Spectral bin 38 results written: 16 volumes, 16 surfaces Spectral bin 39 results written: 16 volumes, 16 surfaces Spectral bin 40 results written: 16 volumes, 16 surfaces Spectral bin 41 results written: 16 volumes, 16 surfaces Spectral bin 42 results written: 16 volumes, 16 surfaces Spectral bin 43 results written: 16 volumes, 16 surfaces Spectral bin 44 results written: 16 volumes, 16 surfaces Spectral bin 45 results written: 16 volumes, 16 surfaces Spectral bin 46 results written: 16 volumes, 16 surfaces Spectral bin 47 results written: 16 volumes, 16 surfaces Spectral bin 48 results written: 16 volumes, 16 surfaces Spectral bin 49 results written: 16 volumes, 16 surfaces Spectral bin 50 results written: 16 volumes, 16 surfaces ✓ 2D Spectral Participating Media tests complete ------------------------------------------------------------ Testing Spectral Consistency ------------------------------------------------------------ Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Surface-Only Grey Solver === Found 96 surfaces Populating workspace... Computing emissive powers... Computing B matrix... Computing K matrix... Solving for S_infty... Assembling linear system... Solving linear system... Computing absorbed and reflected energies... Computing temperatures... Writing results to domain... Grey results written: 96 surfaces Computing energy conservation error... === 3D Grey Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.2319049346352 Iteration 2: convergence error = 858.4060420534064 Iteration 3: convergence error = 199.12106737711963 Iteration 4: convergence error = 59.265629268140174 Iteration 5: convergence error = 17.985482911037252 Iteration 6: convergence error = 5.463033078096487 Iteration 7: convergence error = 1.660989611064224 Iteration 8: convergence error = 0.5052487627317532 Iteration 9: convergence error = 0.15371874094239502 Iteration 10: convergence error = 0.04677131697644654 Iteration 11: convergence error = 0.014231269026709015 Iteration 12: convergence error = 0.004330236512828378 Iteration 13: convergence error = 0.0013175920926187246 Iteration 14: convergence error = 0.0004009136245031186 Iteration 15: convergence error = 0.00012198903971238906 Iteration 16: convergence error = 3.711853855747904e-5 Iteration 17: convergence error = 1.1294342471046548e-5 Iteration 18: convergence error = 3.4366166801191866e-6 Iteration 19: convergence error = 1.045686303768889e-6 Iteration 20: convergence error = 3.1818046863918426e-7 Iteration 21: convergence error = 9.68161657510791e-8 Iteration 22: convergence error = 2.946035237982869e-8 Iteration 23: convergence error = 8.963752406998537e-9 Iteration 24: convergence error = 2.7299620342091657e-9 Iteration 25: convergence error = 8.292317943414673e-10 Iteration 26: convergence error = 2.5431745598325506e-10 Iteration 27: convergence error = 7.696598913753405e-11 Iteration 28: convergence error = 2.3646862246096134e-11 Iteration 29: convergence error = 9.094947017729282e-12 Converged after 29 iterations Energy conservation errors by band: [1.5428857128674637e-25, 8.401053096241687e-26, 1.1490863489811346e-25, 9.400697635337753e-26, 1.2440020930973268e-25, -3.2610768469290563e-19, 2.7533531010703882e-14, 1.7053025658242404e-12, 5.6701310313655995e-12, 2.6432189770275727e-12, 7.176481631177012e-13, 8.526512829121202e-14, 4.9960036108132044e-15, 2.636779683484747e-16, 2.0166160408230382e-17, 1.0062751413381088e-18, 3.560185356428231e-20, 1.2755125045567687e-21, 4.105530024647957e-23, 5.6284752489113644e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Uniform extinction detected across 20 spectral bins (β_g=1.0) - using fast uniform ray tracing Building optimized cache structures... Pre-computing coarse mesh geometry... Pre-computing fine mesh geometry... Optimization cache built successfully! Building spatial acceleration structures... Building coarse mesh acceleration... Building fine mesh acceleration... Spatial acceleration structures built! element type of rtm.fine_mesh[1][1].T_in_g is Float64 Computing single F matrix for uniform spectral extinction (20 bins) Using 1 threads for spectral bin 1 Bin 1 progress: 38%|████████████▌ | ETA: 0:00:02 Bin 1 progress: 78%|█████████████████████████▋ | ETA: 0:00:01 Bin 1 progress: 100%|█████████████████████████████████| Time: 0:00:02 Smoothing single F matrix for uniform spectral extinction Matrix size: 45×45 Strategy: Serial Tolerance: 2.220446049250313e-15 Iteration 1: d = 0.0013460326333447176 Iteration 10: d = 8.870427445672309e-6 Iteration 20: d = 9.132219533059423e-8 Iteration 30: d = 1.195419641226407e-9 Iteration 40: d = 1.6144358592624435e-11 Iteration 50: d = 2.1955357403189236e-13 Iteration 60: d = 3.0077148736768318e-15 Converged after 61 iterations. d = 1.959744428194186e-15 ==== Building and Factorizing Block matrix ==== Starting spectral steady-state iteration... Iteration 1: convergence error = 6030.3098966902935 Iteration 2: convergence error = 3620.3495146455866 Iteration 3: convergence error = 595.6482648267096 Iteration 4: convergence error = 104.95388639303474 Iteration 5: convergence error = 18.684629702690927 Iteration 6: convergence error = 3.294837867730621 Iteration 7: convergence error = 0.5787487237430469 Iteration 8: convergence error = 0.10149415689852503 Iteration 9: convergence error = 0.01778692978473373 Iteration 10: convergence error = 0.003116315501756617 Iteration 11: convergence error = 0.0005459248538954853 Iteration 12: convergence error = 9.56322123784048e-5 Iteration 13: convergence error = 1.6752034980527242e-5 Iteration 14: convergence error = 2.9344453196245013e-6 Iteration 15: convergence error = 5.14034582010936e-7 Iteration 16: convergence error = 9.00463419384323e-8 Iteration 17: convergence error = 1.5774958228575997e-8 Iteration 18: convergence error = 2.7428086468717083e-9 Iteration 19: convergence error = 4.890807758783922e-10 Iteration 20: convergence error = 8.481038094032556e-11 Iteration 21: convergence error = 1.4779288903810084e-11 Converged after 21 iterations Writing spectral results to mesh... Spectral bin 1 results written: 25 volumes, 20 surfaces Spectral bin 2 results written: 25 volumes, 20 surfaces Spectral bin 3 results written: 25 volumes, 20 surfaces Spectral bin 4 results written: 25 volumes, 20 surfaces Spectral bin 5 results written: 25 volumes, 20 surfaces Spectral bin 6 results written: 25 volumes, 20 surfaces Spectral bin 7 results written: 25 volumes, 20 surfaces Spectral bin 8 results written: 25 volumes, 20 surfaces Spectral bin 9 results written: 25 volumes, 20 surfaces Spectral bin 10 results written: 25 volumes, 20 surfaces Spectral bin 11 results written: 25 volumes, 20 surfaces Spectral bin 12 results written: 25 volumes, 20 surfaces Spectral bin 13 results written: 25 volumes, 20 surfaces Spectral bin 14 results written: 25 volumes, 20 surfaces Spectral bin 15 results written: 25 volumes, 20 surfaces Spectral bin 16 results written: 25 volumes, 20 surfaces Spectral bin 17 results written: 25 volumes, 20 surfaces Spectral bin 18 results written: 25 volumes, 20 surfaces Spectral bin 19 results written: 25 volumes, 20 surfaces Spectral bin 20 results written: 25 volumes, 20 surfaces Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.492427513024 Iteration 2: convergence error = 871.304602661783 Iteration 3: convergence error = 207.75299581225158 Iteration 4: convergence error = 62.49550550490892 Iteration 5: convergence error = 18.97931530918413 Iteration 6: convergence error = 5.76621559404623 Iteration 7: convergence error = 1.7533061530655232 Iteration 8: convergence error = 0.5333443698997371 Iteration 9: convergence error = 0.16226812526508638 Iteration 10: convergence error = 0.04937275063014113 Iteration 11: convergence error = 0.015022831428041172 Iteration 12: convergence error = 0.0045710916562029524 Iteration 13: convergence error = 0.0013908789702554714 Iteration 14: convergence error = 0.00042321318846916256 Iteration 15: convergence error = 0.0001287742984459328 Iteration 16: convergence error = 3.9183143599075265e-5 Iteration 17: convergence error = 1.1922556950594299e-5 Iteration 18: convergence error = 3.6277691606301232e-6 Iteration 19: convergence error = 1.1038513321182108e-6 Iteration 20: convergence error = 3.3587832604098367e-7 Iteration 21: convergence error = 1.0220117019343888e-7 Iteration 22: convergence error = 3.1099034458748065e-8 Iteration 23: convergence error = 9.464656613999978e-9 Iteration 24: convergence error = 2.880597094190307e-9 Iteration 25: convergence error = 8.786855687503703e-10 Iteration 26: convergence error = 2.6830093702301383e-10 Iteration 27: convergence error = 8.185452315956354e-11 Iteration 28: convergence error = 2.6261659513693303e-11 Iteration 29: convergence error = 8.29913915367797e-12 Converged after 29 iterations Energy conservation errors by band: [9.81469183839774e-26, 1.2278462217584005e-25, 1.7064639101740927e-25, 1.3045866106183005e-25, 1.2440020930973268e-25, -2.642742795433417e-19, -7.993605777301127e-15, 8.526512829121202e-14, 7.013056801952189e-12, 4.575895218295045e-12, 5.826450433232822e-13, 8.79296635503124e-14, 5.218048215738236e-15, 3.642919299551295e-16, 2.0166160408230382e-17, 8.775261333554552e-19, 3.7613556814011274e-20, 1.2358078351542233e-21, 3.6499344528902346e-23, 4.998575315730623e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 4381.115813729987 Iteration 2: convergence error = 2115.1156110176394 Iteration 3: convergence error = 714.8959934551629 Iteration 4: convergence error = 296.01907471323966 Iteration 5: convergence error = 115.88799395378669 Iteration 6: convergence error = 44.11524923618913 Iteration 7: convergence error = 16.599581025126554 Iteration 8: convergence error = 6.215983404932786 Iteration 9: convergence error = 2.323124567003788 Iteration 10: convergence error = 0.867563639824084 Iteration 11: convergence error = 0.3238934304874874 Iteration 12: convergence error = 0.12090784413658184 Iteration 13: convergence error = 0.04513241840754745 Iteration 14: convergence error = 0.016846741615154315 Iteration 15: convergence error = 0.0062884074741305085 Iteration 16: convergence error = 0.0023472777563711134 Iteration 17: convergence error = 0.0008761691055951815 Iteration 18: convergence error = 0.00032704782211112615 Iteration 19: convergence error = 0.00012207719146317686 Iteration 20: convergence error = 4.556777093966957e-5 Iteration 21: convergence error = 1.700909024293651e-5 Iteration 22: convergence error = 6.348985607473878e-6 Iteration 23: convergence error = 2.3698869426880265e-6 Iteration 24: convergence error = 8.846079708746402e-7 Iteration 25: convergence error = 3.302000095573021e-7 Iteration 26: convergence error = 1.2325472198426723e-7 Iteration 27: convergence error = 4.600792635756079e-8 Iteration 28: convergence error = 1.7174670574604534e-8 Iteration 29: convergence error = 6.410573405446485e-9 Iteration 30: convergence error = 2.39469954976812e-9 Iteration 31: convergence error = 8.949427865445614e-10 Iteration 32: convergence error = 3.3423930290155113e-10 Iteration 33: convergence error = 1.248281478183344e-10 Iteration 34: convergence error = 4.774847184307873e-11 Iteration 35: convergence error = 1.864464138634503e-11 Converged after 35 iterations Energy conservation errors by band: [1.9952501103574007e-25, 1.4136387421560532e-25, 1.0339757656912846e-25, 1.6478988765704848e-25, 2.1729646950855903e-25, 9.486769009248164e-20, 5.240252676230739e-14, 2.9274360713316128e-12, 1.2093437362636905e-11, 5.6203930398623925e-12, 2.0961010704922955e-13, 1.84297022087776e-14, 1.582067810090848e-15, 1.723881454251952e-16, 7.101524229780054e-18, 4.641740550953566e-19, 1.4770137017746862e-20, 4.963083675318166e-22, 1.7991178323028352e-23, 9.298117831235686e-16] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 54×54 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.4655024587873898e-15 Converged after 4 iterations. d = 1.993453929734661e-16 Computing view factors (geometry only, wavelength-independent)... Matrix size: 96×96 Strategy: Serial Tolerance: 2.220446049250313e-16 Iteration 1: d = 1.3443865071168132e-15 Converged after 4 iterations. d = 1.8549284161345355e-16 === 3D Spectral Surface Radiation Solver === Spectral mode: spectral_uniform Number of spectral bins: 20 Computing GERT matrices for each spectral band... (Using same view factor matrix F for all bands) Building matrices for spectral bin 1... Building matrices for spectral bin 2... Building matrices for spectral bin 3... Building matrices for spectral bin 4... Building matrices for spectral bin 5... Building matrices for spectral bin 6... Building matrices for spectral bin 7... Building matrices for spectral bin 8... Building matrices for spectral bin 9... Building matrices for spectral bin 10... Building matrices for spectral bin 11... Building matrices for spectral bin 12... Building matrices for spectral bin 13... Building matrices for spectral bin 14... Building matrices for spectral bin 15... Building matrices for spectral bin 16... Building matrices for spectral bin 17... Building matrices for spectral bin 18... Building matrices for spectral bin 19... Building matrices for spectral bin 20... Assembling block matrix structure... Setting up boundary conditions... Starting spectral iteration... Iteration 1: convergence error = 1885.3621662238243 Iteration 2: convergence error = 864.8522700482431 Iteration 3: convergence error = 203.43244494690748 Iteration 4: convergence error = 60.87736397590345 Iteration 5: convergence error = 18.481426659698286 Iteration 6: convergence error = 5.6143306186266955 Iteration 7: convergence error = 1.7070587705935623 Iteration 8: convergence error = 0.5192694771476454 Iteration 9: convergence error = 0.1579851928424887 Iteration 10: convergence error = 0.04806952669207476 Iteration 11: convergence error = 0.014626287390910875 Iteration 12: convergence error = 0.004450431969985402 Iteration 13: convergence error = 0.0013541649049102489 Iteration 14: convergence error = 0.0004120419150694943 Iteration 15: convergence error = 0.00012537512975541176 Iteration 16: convergence error = 3.8148852013364376e-5 Iteration 17: convergence error = 1.1607843930505624e-5 Iteration 18: convergence error = 3.532008690854127e-6 Iteration 19: convergence error = 1.0747122587417834e-6 Iteration 20: convergence error = 3.270116621933994e-7 Iteration 21: convergence error = 9.950440471584443e-8 Iteration 22: convergence error = 3.027832917723572e-8 Iteration 23: convergence error = 9.214204510499258e-9 Iteration 24: convergence error = 2.8029489840264432e-9 Iteration 25: convergence error = 8.546976459911093e-10 Iteration 26: convergence error = 2.609112925711088e-10 Iteration 27: convergence error = 8.003553375601768e-11 Iteration 28: convergence error = 2.489741746103391e-11 Iteration 29: convergence error = 8.753886504564434e-12 Converged after 29 iterations Energy conservation errors by band: [1.4621063561728321e-25, 7.674038885990003e-26, 1.32882041762669e-25, 1.3116548043290807e-25, 1.126872025890111e-25, -1.5246593050577406e-19, -3.6637359812630166e-14, 2.5721647034515627e-12, 7.627676268384675e-12, 2.8421709430404007e-12, 4.973799150320701e-13, 7.194245199571014e-14, 4.385380947269368e-15, 4.198030811863873e-16, 2.3310346708438345e-17, 9.84252284709497e-19, 4.1081097941833566e-20, 9.880672416945916e-22, 2.4156258825962636e-23, 4.8210806556121566e-15] Writing spectral results to mesh... Computing final scalar temperatures and heat fluxes... === 3D Spectral Solution Complete === ✓ Spectral Consistency tests complete ================================================================================ TEST SUITE COMPLETE ================================================================================ Test Summary: | Pass Total Time RayTraceHeatTransfer.jl | 1394 1394 10m12.5s Testing RayTraceHeatTransfer tests passed Testing completed after 618.92s PkgEval succeeded after 740.36s